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Abstract 

Bipolar affective disorder (BD) is a severe mental illness burdening 2 % of the global 

population, considerably shortening their lives by 15-20 years. The traditional treatment 

involves permanent medication and several examinations in a year. Thus, many clinical 

episodes are overlooked, which may lead to hospitalisation or even suicide. The links 

between changes in circadian rhythm and progression of BD are studied for years. But only 

the recent novel possibilities of continuous data sharing allow monitoring of circadian 

characteristics in the long-term by actigraphy wearables. In this thesis, statistical analysis 

and advanced machine learning concepts are applied to these data to deepen the knowledge 

about BD and its episodes and explore the feasibility of automatic episode detection. 

The thesis contributes in three areas: 

First, the adjustment of the actigraphic features for long-term monitoring. The traditional 

(non-parametric circadian rhythm analysis) features were updated to overcome the limits 

of long-term monitoring. Their robustness to missing data was evaluated. Moreover, the 

features set was extended to assess circadian rhythm changes typically connected with BD 

symptoms. Particular focus was given to descriptors of circadian phenotype preferences 

(chronotypes), where we offered clear guidelines for the use of actigraphy for chronotyping 

purposes. 

Second, the diagnostic BD recognition. The differences between BD patients and healthy 

people have been explored, focusing on long-term variability that has not been studied to 

this extent before. Using machine learning methods, we have shown that distinguishing 

between non-symptomatic BD patients and healthy people is possible based on actigraphy 

alone. The proposed model achieved an accuracy of 88 %.  

Third, detection of BD patient’s state via machine learning techniques. The circadian 

rhythm changes in the patients’ natural environment associated with BD symptomatic 

episodes were explored. These associations are vital for better understanding the 

undergoing processes in bipolar depression and mania, and they may support individual 

treatment.  

This thesis shows that actigraphy presents a great opportunity in treatment objectivization 

in psychiatry. Hopefully, the use of objective biomarkers will facilitate evidence-based and 

efficient clinical decision-making to prevent severe BD conditions in the future. 

 

Keywords: Actigraphy, Bipolar disorder, Circadian rhythms, Chronotype, Statistical 

analysis, Machine learning 

  





Abstrakt 
Bipolární afektivní porucha (BAP) je závažné mentální onemocnění, které postihuje 2 % 

světové populace a zkracuje život o 15 až 20 let. Tradiční léčba sestává z neustálé 

preventivní medikace a několika lékařských vyšetření ročně. To může vést k přehlédnutí 

mnoha klinických epizod, což může vyústit v nutnost hospitalizace a v extrémních případech 

i k sebevraždě pacienta. Propojení mezi cirkadiálními rytmy a průběhem BAP je studováno 

už léta. Nicméně až nové možnosti sdílení dat online umožnují dlouhodobé sledování 

pomocí autografu. Tato doktorská práce zpracovává tyto dlouhodobé záznamy, pomocí 

metod strojového učení a statistických analýz, za účelem rozšíření znalostí o BAP a jejích 

klinických epizodách s cílem ověřit možnosti jejich automatické detekce. 

Tato práce rozšiřuje znalosti ve třech oblastech: 

Za prvé aktualizuje tradiční aktigrafické příznaky tak, aby mohly být využity pro dlouhodobé 

sledováni stavu pacientů, včetně ověření jejich odolnosti vůči chybějícím datům. Navíc jsou 

přidány další příznaky, u nichž je předpokládané propojení s BAP. Speciální pozornost je 

věnována využití aktigrafie pro určování chronotypů, kde je poskytnut přehledný návod, jak 

dosáhnout co největší shody s klasickými dotazníky chronotypů. 

Za druhé se zabývá možností podpory diagnostiky. Zde jsou zkoumány rozdíly v pohybové 

aktivitě během dne, a zvláště v jejich dlouhodobých změnách v rozsahu, který doposud nebyl 

studován. Pomocí metod strojového učení ukazuje, že aktigrafie je schopná odlišit 

bezpříznakové pacienty a zdravé lidi. Námi navržený model je byl schopen odlišit s 88 % 

přesností. 

Za třetí se zabývá možností automatického rozpoznávání stavu pacientů. Zde jsou 

analyzovány souvislosti mezi změnami v cirkadiálním rytmu a neodhalenými či ambulantně 

léčenými klinickými epizodami. Tyto souvislosti jsou důležité pro odhalení vnitřních 

procesů během bipolárních epizod deprese a mánie, navíc mohou být použity jako podpora 

pro individuální nastavení léčby. 

Tato práce ukazuje, že aktigrafie je velmi přínosnou metodou pro posuzování průběhu léčby 

pacientů s BAP. Jsem přesvědčen, že již brzy bude díky takto objektivizované a cílené péči 

snazší předcházet závažným stavům u pacientů s BAP.  

 

Klíčová slova: aktigrafie, bipolární porucha, cirkadiální rytmy, chronotyp, statistická 

analýza, strojové učení 
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1. Introduction 

The treatment of patients suffering from a mental disorder is a complicated process. 

Diagnosing these diseases is quite different and more complicated than in other fields of 

medicine. Many diagnoses in psychiatry may have unprecedented physiological causes and 

effects. Therefore, they commonly cannot be obtained by mere physiological measurement, 

genetic tests, or medical imaging techniques. From this point of view, psychiatry differs from 

other fields of medical care. Despite modern technical advances, the diagnoses are commonly 

obtained using a structured interview (with patients, relatives, etc.). Such an approach is highly 

time-consuming and partly subjective. It requires an excessive level of training and experience 

to suppress the subjectivity. Especially as interrater reliability is not lower than in other 

medical fields, Cohen’s κ ~ 0.7 (Pies, 2007). Nonetheless, it may take years before the patient 

is correctly diagnosed and receives the optimal treatment (Baldessarini et al., 2007; Kessing 

et al., 2015). While many diagnoses (such as BD, major depressive disorder, or schizophrenia) 

are not fully curable, the patients may still live a full life if they receive the correct treatment.  

In bipolar disorder, which is the objective of this thesis, the patients suffer from irregularly 

recurring episodes of either elevated or depressed mood. In between the episodes (inter-

episode time), they may live a valuable life with normal work and family life. Many famous 

and highly successful people such as Carrie Fisher, Francis Ford Coppola, Miloš Kopecký, 

Sting, or Winston Churchill1 are known to have been diagnosed with BD. It is also suspected 

that some other historical celebrities, such as Isaac Newton, Abraham Lincoln, Vincent Van 

Gogh, Ludwig Von Beethoven, etc.2 may have suffered from BD as well. On the other hand, 

symptomatic episodes (relapses) of BD substantially reduce the quality of life, affecting both 

personal and professional life, with a deteriorating tendency (adding comorbidities). Timely 

detection of relapses could significantly increase the quality of patients’ lives and reduce the 

treatment expenses, as early detected episodes can usually be managed in an ambulatory 

setting and not by hospitalisation. 

                                                 
1 https://olympiahouserehab.com/celebrities-with-bipolar (2021-Jan) 
2 https://www.butler.org/blog/famous-people-and-depression (2021-Jan) 

https://olympiahouserehab.com/celebrities-with-bipolar/
https://www.butler.org/blog/famous-people-and-depression
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During classical treatment, the patients visit their doctor only a few times a year, which 

increases the risk, that onset of the episode is not detected before the point when hospitalisation 

is required. Moreover, the disease’s long-term state development is usually based on the 

patient recalling mood fluctuations between visits, which is highly obscured by recall bias. 

Fortunately, there is a revolution, called digital phenotyping, starting in psychiatry, which may 

transfer it into a data-driven medicine in a similar way as genetic testing transferred oncology 

(Hsin et al., 2018). Digital phenotyping uses devices, such as wearables and smartphones, to 

evaluate behaviour changes and circadian rhythmicity, and use them as warning signs. 

This thesis aims to extract relevant clinical information from the long-term actigraphy 

recordings to be used as a supportive tool for diagnostics and BD treatment by objectively 

evaluating BD patient’s state. The thesis contributes to two fields. First, it explores and updates 

the actigraphic features, commonly used to describe the circadian rhythm. Second, it uses the 

updated features to explore the changes in the circadian rhythm connected with BD diagnosis. 

In order to achieve that, the longest (to our knowledge) continuous actigraphy data were 

recorded in a large group of patients. The recording was done in cooperation with the National 

Institute of Mental Health (NIMH) and Mindpax Co. Ltd. (a Czech company developing a 

digital tool for people with severe mental illnesses). 
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1.1. Goals of the Thesis 

The methodological goals targeting data processing are: 

• to design a set of traditional and novel circadian features and enhance the features, 

where necessary, in order to comply with the requirements of long-term actigraphy 

monitoring.  

• to provide an explainable physical activity descriptor that may be used in the physician-

patient communication (and evaluation) and in enhancing patients’ self-awareness. 

• to examine limitations in actigraphic features used for long-term monitoring 

 The clinically relevant goals include analyses: 

• to objectify the estimation of chronotype using actigraphy in comparison to clinically 

used questionnaires.  

• to evaluate differences between BD patients and healthy controls, and use machine 

learning technics to evaluate the utility as a diagnostic tool. 

• to identify features that may be used for automatic detection of patient state and 

perform patient state estimation based on these features. 

 

1.2. The Structure of the Thesis 

The thesis is structured as follows:  

Chapter 2 gives a brief introduction to the epidemiology of bipolar disorder and its treatment. 

Section 2.1 provides information about bipolar disorder, its prevalence, and its symptoms. 

Sections 2.2 and 2.3 describe a standard treatment procedure with an overview of commonly 

used clinical scales. Section 2.4 provides information about patients’ momentary  

self-assessment and emerging methods of digital phenotyping. 

Chapter 3 provides basic information about actigraphy and its derived features describing 

sleep and circadian rhythmicity. Sections 3.1 and 3.2 give a brief history and describe the 

principles of function of actigraphy wearables. Section 3.3 presents procedures of commonly 

used pre-processing techniques and their limitations. In section 3.4, we introduce parameters 
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of commonly used actigraphy wearables, from both – scientific and commercial spheres. And 

finally, section 3.5 presents the used actigraphic features with additional updates and 

extensions to be used in long-term recordings.  

Chapter 4 contains information about all of the datasets used, including the onboarding 

procedures, recording methodologies, and basic health and demography summaries of 

volunteers included in the studies.  

Chapter 5 focuses on variability in circadian features during long-term monitoring and the 

reliability of these features when they are estimated over samples, including missing values, 

which are the major problem of long-term actigraphy. 

Chapter 6 evaluates the possibility and benefits of objectification of the chronotype estimation 

using actigraphy. It focuses on the accuracy and stability of actigraphy based estimation of 

chronotype (chronotyping). The results are validated by comparison to clinical questionnaires. 

Chapter 7 explores the differences in circadian and sleep features developed in Chapter 4 

between BD patients in remission and healthy controls, focusing on variation obtained from 

long-term monitoring. Within, we evaluate the usability of the actigraphy recordings in clinical 

practices. An example of a supportive diagnostic tool is provided using a machine learning 

task of classification BD patients and healthy controls. 

Chapter 8 provides a preliminary exploration of circadian rhythm changes during symptomatic 

periods. Several actigraphic features (section 3.5) were identified as the most promising in 

detecting the relapse. The feasibility of such detection is tested using two machine learning 

approaches. 

Chapter 9 concludes the thesis while highlighting the achievements and contributions. 
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2. Background 

2.1. Bipolar Affective Disorder 

Bipolar disorder (BD), previously known as manic depression, is a summary name for a 

complex group of severe chronic mood disorders that are defined as the repetitive occurrence 

of relapses, episodes of depression, mania, hypomania, or their mixture, with non-

symptomatic euthymic periods (remissions) in between. The BD group contains, according to 

DSM-5 (APA, 2013), three conditions: Bipolar 1 disorder (BD-I), Bipolar 2 disorder (BD-II), 

and Cyclothymic disorder (BD-III). These are sometimes accompanied by other disorders of 

the bipolar spectrum ‘not otherwise specified’, where episodes are too short or too few, so 

they don’t meet definitions of mania or hypomania (Towbin et al., 2013). The difference 

between BD-I and BD-II is the severity of manic episodes – mania and hypomania. 

Cyclothymic disorder (BD-III) describes a condition of frequently cycling brief episodes of 

hypomania and depression.  

The global prevalence of BD (BD-I and BD-II) is expected to be between 1-2 % worldwide 

(Merikangas et al., 2011), though it is reported even higher in specific localities, e.g. 3-4 % in 

South Africa (Steel et al., 2014). The WHO signified BD as the 6th leading source of disability 

affecting about 5 % of the global population (BD-I, II, III, and spectrum) (Colombo, Fossati 

and Colom, 2012). BD is typical by its early onset. 70 % of BD individuals manifest clinical 

symptoms before the age of 25 years (Nowrouzi et al., 2016). Individuals with this disorder 

are symptomatic about half of their lives (Judd and Akiskal, 2003; Judd et al., 2003). The 

consequences of the disease are quite severe. The mortality studies associate it with loss of 

approximately 10-20 potential years of life (McIntyre et al., 2020). The reported suicide rate 

is 20-30 times higher in BD patients compared to the general population (Dome, Rihmer and 

Gonda, 2019; Dong et al., 2019). Additionally, compared to the general population, adults 

with BD experience elevated rates of obesity, diabetes, cardiovascular disease, and metabolic 

syndrome (Fagiolini et al., 2003; McIntyre et al., 2020). Total estimated annual treatment costs 

are over 202 billion US$ in the USA (McIntyre et al., 2020) and 113 billion € in the EU 

(Gustavsson et al., 2011). The diagnosis of BD is often delayed because some of the 

symptoms, such as impulsivity, affective instability, anxiety, cognitive disorganisation, 

depression, and psychosis, are shared with many other mood and mental disorders – for 
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example, major depressive disorder (MDD), schizophrenia, attention-deficit hyperactivity, 

borderline personality disorder, etc. Moreover, BD is commonly accompanied by a plethora 

of comorbidities, such as sleep disorders and alcohol or substance abuse. Therefore, it takes 

approximately 6-10 years from the first occurrence of symptoms to obtain an accurate 

diagnosis (Baldessarini et al., 2007; Kessing et al., 2015). The length of the diagnostic process 

is also given by the predominance of depressive episodes (Akiskal et al., 2000) and overlooked 

hypomania episodes, which are usually not considered pathological by patients, and therefore 

not reported (Angst, 1998). 

The pathogenesis of BD is poorly understood. Recent findings (Andreazza, Duong and Young, 

2018) associate it with disturbances in mitochondrial function. The genetic origin is well 

documented. Inheritability of BD is about 70 %, and common genetic variants were already 

detected (Stahl et al., 2019). 

The mood changes associated with relapses are accompanied by extreme shifts in energy, 

activity, sleep, and behaviour. The mania and hypomania are manifested by increased activity, 

energy, or agitation, euphorically exaggerated senses of self-confidence, abnormal 

cheerfulness, decreased need for sleep, over-talkativeness, racing thoughts, high distractibility, 

and poor decision making. The depressive episodes, which are typically both more prolonged 

and frequent, are manifested by depressed mood (feelings of sadness, emptiness, hopelessness, 

sometimes accompanied with higher irritability), loss of interest in most activities, changes in 

appetite connected with weight changes, changes in sleep insomnia or hypersomnia, loss of 

energy, feeling worthless and guilty, decreased concentration, and/or suicidal thoughts. When 

a patient develops several symptoms from both depression and mania simultaneously, we talk 

about a mixed state (APA, 2013). All of these relapses are life-threatening. In depression, the 

suicide risk is higher, especially in a depression with mixed symptoms (Dome, Rihmer and 

Gonda, 2019). In mania, the risk of poor decision making is combined with a reduced need for 

sleep, which (when untreated) may cause life-threatening exhaustion (Plante and Winkelman, 

2008). 

The factors contributing to relapse in BD are also not clearly understood. Still, it has been 

suggested that there could be an association with dysregulation of circadian (circa = about, 

dies = day) rhythm (Murray and Harvey, 2010; Alloy et al., 2017) and disturbed sleep (Millar, 

Espie and Scott, 2004; St-Amand et al., 2013; Geoffroy, Boudebesse, et al., 2014; Bellivier et 

al., 2015; Gold and Sylvia, 2016).  
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The circadian rhythm dysregulation appears in acute episodes as well as in inter-episode 

periods (see Chapter 7). Therefore, measurements of circadian rhythm via motor activity 

profiles may provide a valid trait marker of BD (Milhiet et al., 2011), and a deeper 

understanding of this dysregulation may contribute to improved management of the disease 

(Scott, Vaaler, et al., 2017; Merikangas et al., 2019). For example, depression induces a lack 

of physical activity, which is associated with many comorbidities in adults with BD, and which 

may become one of the future clinical treatment targets (Fagiolini et al., 2003; Janney et al., 

2014; Vancampfort et al., 2017). 
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2.2. Clinical Practice - Standard Treatment  

The clinical treatment consists of pharmacotherapy, including mood stabilisers, 

antidepressants, and antipsychotics, psychological interventions, and electroconvulsive 

therapy (McIntyre et al., 2020). The first line of pharmacological therapy is monotherapy by 

mood stabilisers or antipsychotics. The oldest mood stabiliser used in BD is Lithium, which 

is also highly disease-specific. It is efficient in approximately one-third of patients (Hui et al., 

2019), even in monotherapy, in treatment of both types of acute relapses, as well as in relapse 

and suicidality prevention. The main disadvantage is that the effective dosage is only slightly 

lower than the toxic levels, and therefore it should be periodically updated/tested, also with 

respect to the renal function (every 2-3 months). It also requires a salt-restricted diet and 

avoidance of certain medications. Other monotherapies include valproate or antipsychotics 

(olanzapine, quetiapine, aripiprazole, etc.). During acute episodes, the medications are 

commonly combined with other mood stabilisers (lamotrigine, carbamazepine, etc.), 

antipsychotics, and possibly antidepressants. The use of antidepressants is not generally 

advisable as it may cause rapid cycling or manic shift (Látalová, 2010). Due to additional 

comorbidities, BD patients are often prescribed multiple medications. For these medication 

mixtures, it usually takes a longer time to adjust the optimum dosage. 

Psychological interventions are in most cases focused on the education of the patient on how 

to cope with his illness. One of these methods is cognitive behaviour therapy (CBT), which is 

non-pharmacological psychotherapy, focusing on teaching patients how to become aware of, 

and examine their distorted thinking, and cognitively test it against reality judgments. CBT is 

often combined with psychoeducation, which focuses on the education of patients, and 

possibly their relatives, in better understanding of the mental illness, in order to better cope 

with it (Bäuml et al., 2006; Miziou et al., 2015). Interpersonal and social therapy is another 

type of psychological intervention. During this therapy, the patients are educated on possible 

changes in social rhythm, which pose a risk of relapse onset, as well as risks posed by low 

medication adherence. Patients learn about the need for a regular daily routine and how to 

avoid or cope with daily stressful events (Frank, 2007) as these may cause disruptions of the 

circadian rhythm, which are reported as a possible relapse trigger (Scott, Vaaler, et al., 2017; 

Merikangas et al., 2019). 
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2.3. Clinical Practice - State Assessment 

Periodic ambulatory examinations commonly evaluate the course of the patient’s state. The 

re-evaluation period varies around 3-4 months (Wang et al., 2005). The most objective 

evaluation of patient state is possible through clinical-administered scales, which are 

recommended for the treatment (Tohen et al., 2009). Most of the clinical scales evaluate 

separately manic and depressive symptoms. Manic symptoms may be assessed by Young 

Mania Rating Scale (Young et al., 1978) (YMRS), Bech-Rafaelsen Mania Rating Scale 

(Bech, P., Rafaelsen, O. J., Kramp, P., & Bolwig, 1974), Clinical-Administered Rating Scale 

for Mania (Altman et al., 1994), and Observer-Rated Scale for Mania (Krüger et al., 2010). 

Depressive symptoms may be assessed by Montgomery-Åsberg Depression Rating Scale 

(Montgomery and Åsberg, 1979) (MADRS), Quick Inventory of Depressive Symptomatology 

(Trivedi et al., 2004), the five-item Hamilton Depression Rating Scale (González-Pinto et al., 

2009), Inventory of Depressive Symptomatology (Trivedi et al., 2004), or Bipolar Depression 

Rating Scale (Berk et al., 2007). Several scales evaluate both manic and depressive symptoms 

together. These are, for example, the National Institute of Mental Health’s Prospective Life 

Chart Methodology - Clinician (Denicoff et al., 2000), Clinician Monitoring Form (Sachs, 

Guille and McMurrich, 2002), Brief Bipolar Disorder Symptom Scale (Dennehy et al., 2004), 

and Bipolar Inventory of Symptoms Scale (Gonzalez et al., 2008).  

The administration of clinical scales is time-consuming; therefore, their use is optional in most 

clinical practices. The clinical scales, if used, are usually utilized to monitor the state only 

during acute episodes. Out of these episodes, the patients are usually evaluated by a semi-

structured personal interview. The long re-evaluation period may cause missing an episode’s 

onset, which is the best moment for intervention. The long re-evaluation period also causes 

that most of the minor subclinical episodes are unnoticed. In order to cope with this issue, 

there are emerging long-term monitoring systems. 
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2.4. Emerging Approaches for Long-term Monitoring 

The need for a finer sampling of patient illness state progression leads to the development of 

long-term monitoring systems, which may be divided into three categories:  

• Patient’s self-assessment questionnaires are an illness progression monitoring 

approach, where the patient himself evaluate his state/mood. They are subjective but 

highly focused. This approach is already used in practice. Patient-filled ‘diaries’ may 

help to follow the course of illness between medical check-ups. When completed 

online, the self-assessment could additionally be used for a timely warning.  

• Behavioural analyses explore the development of illnesses development/state based on 

objectively measured changes in smartphone usage. These are mostly in the research 

stage, and wide usage would be substantially limited by regulatory restrictions and the 

patient’s willingness to share sensitive data. 

• Physical activity, measured using an actigraph or a smartphone, which monitors 

changes in circadian rhythm may be used to assess a patient’s state. This approach is 

presently also in the research/development stage. 

The optimal system would probably combine all three approaches, or at least two: the focused 

self-evaluations and one of the other two objective measures. 

2.4.1. Self-assessment (Ecological Momentary Assessment - EMA) 

The self-assessment mood reports usage in clinical practice and research is gaining importance 

in the last years (Barrigón et al., 2017; Cerimele et al., 2019). There are obvious advantages 

of their use over the clinical-administered scales. First of all, the reporting may be much more 

frequent, which is extremely important. It has been reported that physicians may miss up to 

half of the patients’ symptoms and underestimate the severity of symptoms (Cerimele et al., 

2019). Another advantage is the reduction of measurement cost, as no clinical personnel is 

needed. Moreover, the administration in patients’ natural environment may increase the 

acquired data’s accuracy (introducing the so-called ‘ecological validity’), as it reduces the 

degree to which the examination by a physician and clinical environment affects the results 

(the so-called ‘white cloak syndrome’). Some even argue that the accuracy may be increased 

by avoiding the clinician interpretation (FDA, 2006). And finally, it may be used as a part of 

CBT, as the patient cognitively contemplates his/her state.  
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On the other hand, the need for increased patients’ adherence appears to be the main 

disadvantage of this method, as the adherence in BD patients’ has generally been reported low 

(Chakrabarti, 2016). Among others, the patients may experience fear of possible interventions 

based on the reports, and there may be a loss of insight during more severe symptomatic 

periods. 

The value of self-assessed reports, commonly referred to as ecological momentary assessment 

(EMA), can be seen in the Cerimele’s meta-analysis summarising existing studies using 

patient-observed and clinician-observed symptoms. These studies indicate that patients from 

psychiatric clinics who use self-assessment reports have a better outcome than those who don’t 

(Cerimele et al., 2019).  

As in clinical scales (section 2.3), the EMAs may be divided into those assessing only 

depression, those assessing only mania, and those assessing both polarities at once. Cerimele 

et al (2019) evaluated EMAs considering selected parameters: briefness, possible public use, 

the inclusion of remission indicator and suicidal ideation indicator, test-retest repeatability, 

sensitivity to change, etc. In case of manic symptoms, the following best EMAs achieved 

comparable or better performance than clinician-administered: Altman Self-Rating Mania 

Scale (Altman et al., 1997), Self-Report Manic Inventory (Shugar et al., 1992), and 

Computerized Adaptive Testing-Mania (Achtyes et al., 2015). Concerning EMAs focused on 

depressive symptoms, the best (and only comparable to the clinician-administered) was the 

Quick Inventory of Depressive Symptomatology (Bernstein et al., 2010). The best self-

assessed questionnaires targeting both polarities together were the Internal State Scale (Huang 

et al., 2003), Affective Self-Rating Scale (Adler et al., 2008), and National Institute of Mental 

Health’s Prospective Life Chart Methodology - Self (Born et al., 2014). 

The EMAs have been used already for more than two decades now, as indicated by the 

introduction times of individual scales stated above. Nowadays, when e-Health is on the rise, 

the inclusion of smartphones may upgrade the field of psychiatry to a new level. Though there 

is some concern about the deterioration of the patients’ state by focusing them on studying 

their symptoms, some studies (Faurholt-Jepsen, Geddes, et al., 2019) suggest that it doesn’t 

have to be that case. Smartphones are becoming a more and more common part of life. Out of 

92 % of people who own a mobile phone in the USA, 77 % have smartphones (Orsolini, 

Fiorani and Volpe, 2020). The ownership of mobile phones by patients suffering from mood 

disorders is similar to the general population (86 % in 2013), and the expected rate of 
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smartphones is also similar (Matthews et al., 2017). Therefore, the incorporation of EMAs 

may increase patients’ adherence, even using some gamification techniques. Moreover, 

mobiles may be used even beyond the collection of EMAs, as it is documented in the next 

section. 

2.4.2. Behavioural Analysis 

The inclusion of smartphones into psychiatric care may represent the dawn of long-term 

monitoring and, therefore, precise and early identification of many health conditions, which 

allows for timely interventions. There is a plethora of evidence that human behaviour may be 

monitored using smartphones and personal wearable sensors. Such an approach is called 

digital phenotyping (Orsolini, Fiorani and Volpe, 2020). Concerning patient involvement, 

there are two types of measured data: 

1) Actively acquired data, usually obtained through a survey, which requires the 

participation of the patient. 

2) Passively acquired data, which are usually recorded using smartphone statistics and 

sensors readings. These data, which may be collected without patients active 

participation, include: information about movement (accelerometers, GPS readings, 

mobile towers connections, etc.), social interactions (number and duration of calls, 

number of messages, number of running apps, Wi-Fi, and Bluetooth readings as 

number of available devices, screen time, number of unlocks, etc.), and other 

physiological variables (speech parameters, typing dynamics, and possibly heart rate, 

weight, etc.). The list of possible collected data streams may be extended by the usage 

of other personal sensors. 

There is evidence suggesting that passive smartphone data may be used to detect relapses in 

depressive disorders (Onnela and Rauch, 2016), schizophrenia (Barnett et al., 2018), symptom 

severity in anxiety (Jacobson, Summers and Wilhelm, 2020). Considering BD, promising 

results are obtained for speech (Karam et al., 2014; Muaremi et al., 2014; Gideon, Provost and 

McInnis, 2016; McInnis, Gideon and Mower Provost, 2017). Because of privacy issues, the 

recorded data are focused only on speech characteristics, such as pitch frequency, number of 

utterances, etc. Other possible biomarkers include typing dynamics (Cao et al., 2017), 

movement (GPS and accelerometers) (Grünerbl et al., 2015; Palmius et al., 2017), and general 

mobile usage statistics (Faurholt-Jepsen, Busk, et al., 2019). Palmius et al. reported 85 % 

accuracy in depressive episode detection based on geographic location recording. The findings 
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suggest that generated objective smartphone data (the number of text messages/day, the 

duration of phone calls/day) were increased in BD patients compared to the control group 

(Faurholt-Jepsen, Busk, et al., 2019). Increased physical activity may present a warning signal 

for BD phase transition (Beiwinkel et al., 2016).  

A machine learning model using smartphone-collected visual analogue scales for mood, 

energy, and anxiety finds the self-assessed energy to be an important BD state predictor, even 

better than mood (Ortiz, Bradler and Hintze, 2018). 

Using a combination of activity, sleep, light exposure, heart rate, clinical scales, and EMA, 

Cho et al. (2019) train a model with an AUC of around 0.9 and an accuracy of about 80 % in 

predicting remissions, depressions, and hypomanias. 

Additionally, these applications may provide a utility for patients with BD to manage their 

activity levels and exposure to light to coordinate with their circadian rhythm to maintain a 

stable mood state (Perna et al., 2018). 

Although the results seem extremely promising, the studies provided so far are based on 

relatively small samples of people. Also, many measures recorded during the studies could 

pose legal issues in privacy, security, and responsibility for technical errors. Moreover, the 

publicly available applications, such as Beiwee3 and MindLamp4 (which may be obtained for 

free on google and apple app-stores), do not work on all smartphones and do not support all 

the features mentioned before - mainly the speech characteristics are missing. Also, the 

patient’s physical activity is not measured when he/she does not have a smartphone with 

him/her. Therefore, the use of a readily accessible device - an actigraph - may present a 

plausible starting point for broader clinical use. 

  

                                                 
3 https://www.hsph.harvard.edu/onnela-lab/beiwe-research-platform/ (2020-Dec) 
4 https://www.digitalpsych.org/lamp.html (2020-Dec) 

https://www.hsph.harvard.edu/onnela-lab/beiwe-research-platform/
https://www.digitalpsych.org/lamp.html
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2.4.3. Actigraphy 

Actigraphy (Chapter 3) is a non-invasive method of measuring sleep and circadian rhythm in 

the natural environment. Its use does not require additional patients’ participation, as the data 

are collected mostly passively. Thanks to the increased use of different types of sport testers 

and activity monitors, it also poses a low risk of stigmatisation. As there is ample evidence of 

a connection between BD and changes in sleep and circadian rhythm (Section 2.1), both in 

euthymic state and relapse episodes (Tazawa et al., 2019). Actigraphy is a highly promising 

tool for long-term monitoring of the course of the illness. More details on actigraphy measured 

differences between a healthy population and BD patients could be found in section 7.1.2.  
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3. Actigraphy 

3.1. History of Actigraphy 

The first wrist-worn actigraph, a device that records body movement, was developed in the 

1970s (McPartland, Kupfer and Gordon Foster, 1976). Its usage was limited at the beginning, 

but from the 1980s, actigraphy started to be used for sleep research, mainly to analyse sleep-

wake patterns. When compared to polysomnography (PSG), one of the advantages is that the 

sleep may be continuously measured for 24-hours a day, including daily naps. Unlike PSG, it 

can easily be measured for several consecutive days or weeks. Since that time, actigraphy is 

still a largely expanding field, additionally including monitoring of circadian rhythm (Sadeh 

et al., 1995; Ancoli-Israel et al., 2003). The development in microelectromechanical systems 

(MEMS), battery power, and memory media have given rise to modern digital lightweight 

wearables that allow recording physical activity data for weeks, with high sampling 

frequencies. Such capability hugely enhanced the possibilities of research in circadian rhythms 

and sleep disorders. In order to include such wearables in psychiatric care, it is necessary to 

monitor, collect and evaluate the data online to provide real-time feedback. This is achievable 

by mobile network devices, e.g. smartphones which additionally allow for the acquisition of 

EMAs at the same time. 

3.2. Actigraph - Operating Principle 

The key component of an actigraph is a three-axis accelerometer. The accelerometer is usually 

a MEMS sensor that consists of a fixed part and a mass attached to the fixed part by springs 

allowing movement in one direction. According to Newton’s first law of motion, when the 

sensor accelerates (changes movement velocity), the weight tends to stay at the original 

position. This leads to the displacement of the mass relative to the fixed part leading to a 

change in the electrical characteristic of the sensor (for example, capacity), as is shown in 

Figure 3.1. The three-axis accelerometer consists of three such sensors oriented perpendicular 

to each other and therefore allows for measuring of acceleration in 3D. Such a sensor has a 

limited oscillation frequency range, which is still much higher than the frequency range 

common for biological movements. 
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Figure 3.1 - Working principle of MEMS acceleration mechanism5 

 

Generally, the frequency of voluntary physiological movements rarely exceeds the frequency 

of 3-4 Hz. Involuntary tremors can exceed 5 Hz frequency (Redmond and Hegge, 1985). The 

Nyquist-Shannon sampling theorem indicates that the sampling frequency should be at least 

two times higher than the highest recorded frequency. Hence the lowest sampling frequency 

required for physiological activities is about 8 Hz, while the recommended sampling frequency 

should be higher than that in order to cover the involuntary tremors.  

3.3. Actigraphy - Data Pre-processing 

The signal recorded from the accelerometer has to be digitalised and pre-processed by filtering 

out low and high frequencies to remove gravitational acceleration and high-frequency artefacts 

(such as using a drill, driving a car, etc.). The typical filtered frequency range for records with 

a sampling frequency of tens of Hz is 0.25 – 4 Hz using a bandpass filter. (Redmond and 

Hegge, 1985) Some approaches use a higher upper frequency (about 10 Hz) to include faster 

movements that may occur in younger people. (Ancoli-Israel et al., 2003) 

There are wearables that allow for the storage of raw (unfiltered) values even for a relatively 

long time, depending on sampling frequency and battery capacity. Most wearables (and all 

used for long-term monitoring and online processing) aggregate the raw activity data into so-

called epochs. The duration of these epochs is arbitrary, but most are ranging from seconds to 

a few minutes. 

                                                 
5 https://www.electronicwings.com/sensors-modules/adxl335-accelerometer-module (2020-Nov) 

https://www.electronicwings.com/sensors-modules/adxl335-accelerometer-module
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As of today, there are no strict standards in the method used to aggregate the raw data into 

epochs. Therefore, there is also no specific physical unit assigned to the measured epoch score. 

Scientific wearables usually represent the data as activity counts. This goes back to the origin 

of chronobiology, where the activity of an animal was measured by counting events as a 

movement of a wheel, or passages of an animal through an infrared light beam, or similar 

measuring methods (Sokolove et al., 1977; Matikainen-Ankney et al., 2019). In the case of 

the wrist-worn wearable, this method doesn’t hold anymore, but the unit stays the same. The 

most common approaches to aggregate the raw data into epoch activity counts according to 

the paper (Ancoli-Israel et al., 2003) are presented here:  

A. Time above threshold: In this strategy, the amount of time where the activity is above 

a selected acceleration threshold (usually 0.1-0.2 G after low pass filtering) is 

cumulatively counted per selected epoch 

B. Zero-crossing: In this approach, the number of times when the acceleration passes a 

value close to zero is counted for a selected epoch. 

C. Digital integration: This method is used with high sampling rate accelerometers, where 

the output is an integration of acceleration in a given epoch (after filtering). 

D.  Maximum acceleration: In this approach, only the highest acceleration (after filtering) 

is saved for a given epoch.6  

The drawbacks of these approaches are that in A. and B., the acceleration level of the 

movements is not reflected. The B. (Zero-crossing) approach is additionally vulnerable to 

high-frequency artefacts. The C. (Digital integration) needs a high sampling frequency that 

requires more battery power, and therefore does not allow for long actigraphy recording.  

The D. (Maximum acceleration), compared to the C., does not reflect the duration of the 

activities in each epoch. And finally, both C. and D. fail to represent the frequency of the 

movements. 

The aggregated epoch activity counts are then used to estimate features describing circadian 

rhythms, sleep, etc. – see description in section 3.5. While there are differences between the 

wearables in the units measuring activity, the patterns of activity onset, offset, and peaks are 

usually similar across the wearables (Bellone et al., 2016). 

                                                 
6 Method used in Mindpax MindG and MGK wearables - see section 3.4 
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The commercial sport (fitness) trackers use similar accelerometers sensors like the scientific 

wearables. Although the data pre-processing is mostly not public, it also has to include 

bandpass filtering and aggregation of data into epochs. In sport-trackers, the epochs are not 

represented by activity counts but by higher-level aggregations, which are step counts per 

epoch during the active part of a day, and sleep phases (states) during automatically detected 

sleep. The steps are typically obtained using frequency analysis of the raw activity data. Some 

more advanced sport-tracker devices also detect different types of activities like walking, 

running, biking, swimming, etc. These outputs have only limited use in actigraphy analysis, 

but most of the devices would be able to measure the activity counts (as presented previously 

in this section) if used with different firmware. 

Many modern devices, especially commercial sport-trackers, are also equipped with other 

sensors for measuring light, temperature, heart rate, pressure, GPS, ECG, etc.  

3.4. Common Actigraphy Wearables  

Actigraphy is becoming a standard measurement for sleep and circadian research as well as 

fitness tracking. Nowadays, there are over 200 different portable activity trackers made by 

various companies. Widely used in sleep and circadian research are, for example, wearables 

from ActiGraph corporation (Florida, USA) and CamNtech Ltd. (Cambridge, UK). Other 

wearables, more specifically oriented, but approved by published research, are developed by 

Condor (San Paulo, Brazil) (Bellone et al., 2016), Vivago (Helsinki, Finland) (Lötjönen et al., 

2003), and Mindpax (Prague, Czech Republic) (Fárková et al., 2019; Cuesta-Frau et al., 2020; 

Schneider et al., 2020).  

The ActiGraph wearables allow raw recording storage in the high-frequency range of  

30-256 Hz. This allows for a calculation of activity counts using any pre-processing method 

mentioned in section 3.3. It makes it also possible to evaluate body position, especially when 

the wearable is attached to the waist or thigh. The trade-off are higher requirements for storage 

capacity and for higher sample rates, which limit battery life. The old ActiGraph design is of 

bulky construction and might cause some discomfort to wear. Most of the ActiGraph 

wearables have to be read out manually. Nowadays, ActiGraph provides some improved 

models, where CentrePoint Insight can share data online through a reading station or a 
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smartphone. For models with Bluetooth technology (BT), there is a possibility to accompany 

the wearable with Polar heart rate monitors. 

The main CamNtech actigraph model is called MotionWatch. It provides data from an 

accelerometric sensor and a light sensor. Data are pre-processed on the wearable and stored as 

epoch aggregates only. The epoch length may be set from 1-60 sec, where the settings affect 

the recording’s maximal duration. The wearable is equipped with an event button, which may 

be used for different purposes based on study design. Due to lower sampling frequency, the 

requirements for storage and battery are also lowered. Therefore, the CamNTech wearable is 

significantly smaller than the ActiGraph. Similarly to the ActiGraph, the CanNTech cannot 

share data during recording, limiting its clinical use possibilities and the control over the data 

acquisition process. Other CamNTech products include a MotionWatch with increased 

mechanical endurance and a model and tiny actigraph similar to an NFC chip with one axis 

accelerometer designed for animal studies. 

 

 

Figure 3.2 - Example of activity monitoring devices. In the upper row are presented the research wearables (MindG, 

ActiGraph, MotionWatch), which provide raw data for future analyses. In the bottom row are presented commercial 

smartwatches (Garmin, Apple, Withings).7 

                                                 
7 Images were obtained from the respective producers’ webpages 
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The Condor’s ActTrust wearables are primarily oriented on sleep measurements, adding light 

and temperature measurement. Vivago’s WristCare wearables are used in elderly care, 

focusing on automatic alarms. Mindpax’s MingG is focused on psychiatric care, using a 

system for sharing and preparing data for physicians. Technical parameters and features of 

individual wearables shown in Figure 3.2 are presented in the following Table 3-1. 

 

Table 3-1: The technical parameters of selected actigraphs 

Manufacturer Model 

Sampling 

frequency 

Data type 

Storage 

capacity  
Battery life 

Online 

reading 

Additional 

features 

ActiGraph wGT3X-BT 
30-100 Hz 

Raw data 

4 GB (180 days 

at 30 Hz) 

25 days 

(without BT at 

30 Hz) 

No 

BT, Water 

resistance (WR)  

1m 30 min 

 GT9X 
30-100 Hz 

Raw data 

4 GB (180 days 

at 30 Hz) 

14 days (sleep 

mode, at 30 

Hz) 

No 

Display, WR, BT, 

Event button, 

Gyroscope, 

magnetometer, 

additional 16G  

3-axis accelerometer 

 
CentrePoint 

Insight 

32-256 Hz 

Raw data 

512 MB  

(30 days at 

32 Hz) 

30 days at  

32 Hz 
Yes 

Display, WR, BT, 

possible mobile app 

CamNtech MotionWatch 8 
50 Hz 

1-60 sec epochs 

4Mbit  

(1,5 days for 1-

sec epochs to 

91 days 60-sec 

epochs) 

91 days No 
Event marker, light 

sensor, WR 

Condor ActTrust 2 

25 Hz 

1-86400 sec 

epochs 

8MB  

(90 days for 60-

sec epochs) 

90 days for 

60-sec epochs 
No 

Display, shower 

resistant, event 

marker, temperature 

sensors, light 

sensors (all, colours 

and UVA/UVB) 

Mindpax MindG+ 
6.5 Hz 

30-sec epochs 

256 kB  

(27 days - but is 

periodically 

read, so till the 

end of the 

battery) 

Over 

7 months 
Yes 

WR, accompanied 

mobile app, or 

reading station 

Vivago WristCare 

Aggregated sleep, 

activity, and 

circadian rhythm 

data* 

Unknown, but 

as it is read over 

FM it is till the 

end of the 

battery 

2-4 months Over FM 

Alarm button, WR, 

display, mobile app 

for user and family 

*it is possible to record epochs, but the detailed specification is not provided publicly by the manufacturer are not clear 

+ this wearable is used in studies presented in this thesis 
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The online access to the data during recording represents a great advantage, as it allows for 

monitoring of patient compliance and wearable errors. Inclusion of the display also helps, as 

the wearable may be presented as a watch, and it shall not cause stigmatisation feelings to 

patients. Battery capacity is the main factor limiting the possible study duration in most 

wearables. Water resistance is another important feature as it is not uncommon that patients 

forget to take the wearable back on after it is removed, e.g. for hygiene. A display and mobile 

application may also increase patient compliance, as it provides feedback information (if it is 

allowed by the research design). 

The market for commercial sport-trackers and smartwatches is huge. The higher-end consumer 

devices are commonly equipped with GPS, accelerometer, optical heart rate sensor, ambient 

light and infrared sensors, temperature sensor, altitude sensor, gyroscope, magnetometer, and 

some recent models also with electrical ECG monitor (FitBit, Apple, Withings, Samsung), and 

therefore may provide many interesting bio-measurements. While most of the devices are 

medically not validated, some of the flagship devices from well-established companies 

(Apple, Fitbit, Coros, Garmin, Polar, Suunto, Withings, etc.) were tested for accuracy in many 

domains. The accuracy of step count is generally quite high. The mean absolute percentage 

error (MAPE) is usually below 1 %, though it varies between devices. Estimated distance is 

much less accurate (MAPE > 10 %) unless using a GPS. In that case, it is more accurate, 

though usually slightly underestimated (MAPE  3-6 %) (Wahl et al., 2017; Gilgen-Ammann, 

Schweizer and Wyss, 2020). Heart rate measurements are relatively accurate in a resting state, 

while during higher intensity activities, the accuracy drops. The error interval8 obtained from 

the Blan-Altman plot (Altman and Bland, 1983) is approximately +/- 25 bpm (Claes et al., 

2017; Wang et al., 2017). In comparison, the chest strap (which may be added to ActiGraph) 

has an error interval only up to +/- 10 bpm. The heart rate and activity measurements show 

valid proportional changes, and therefore they may be used to assess state alternation rather 

than absolute measurements (Hernando et al., 2018; Henriksen et al., 2020). 

The accuracy of electrical ECG achieves a reasonable level under rest conditions (Saghir et 

al., 2020). Concerning sleep, the accuracy of detected sleep duration was acceptable for all 

actigraphs (Ancoli-Israel et al., 2003). The sleep onset and offset time are less accurate, as 

actigraphs typically detect sleep more likely than wake periods (Sadeh, 2011). Therefore, sleep 

                                                 
8 Measured as limits of agreement, the interval that contains 95% errors 
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is generally well detected in a healthy population, but the accuracy drops for people with lower 

sleep efficiency (as detected by PSG).  

All smartwatches can transfer data through BT to a smartphone, and therefore, they may be 

shared online with the caretaker/researcher. This is an important advantage because many 

possibly valuable measurements can be obtained this way to support treatment decisions. The 

automatic detection of selected activities (such as running, walking, biking, elliptical, 

swimming, etc.), blood oxygen saturation (SpO2), and heart rate is yet another advantage. 

Though some devices are relatively accurate, extreme caution is needed while using the 

outputs for any kind of medical consideration. For example, during the 2020 COVID-19 crisis, 

the SpO2 measurements could be great for homecare monitoring, but unfortunately, the 

reported accuracy is not sufficient for clinical use (Tomlinson et al., 2018; Tarassenko and 

Greenhalgh, 2020). In spite of that, Mishra et al (2020) show that smartwatch measurements 

may present a timely warning sign of respiratory infection. 

The unreliability of smartwatch measurements, together with the fact that circadian 

rhythmicity is not monitored by smartwatches or fitness trackers by default, still limits the 

selection of the wearables for actigraphy studies to those mentioned in Table 3-1.  
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3.5. Actigraphic Features 

The most commonly used approaches assessing the circadian rhythmicity may be divided into 

parametric (usually cosinor) and non-parametric. Additionally, sleep is one of the main state- 

and trait-markers in BD, while another serious candidate for a state-marker is rhythm 

instability. 

3.5.1. Cosinor Analysis 

Cosinor analysis (Minors and Waterhouse, 1988; Cornelissen, 2014; Gonzalez et al., 2018) is 

the most commonly used parametric approach to describe the circadian rhythm. The regular 

activity patterns are estimated by fitting a cosine function (see Eq. 3.1) with a fixed period, 

typically set to 24-hour. The resulting features are named the Acrophase – the time shift of 

the fitted function – the time of the activity peak, the MESOR (Midline Estimating Statistics 

Of Rhythm) – the offset of the fitted cosine function – the overall average activity, and the 

Amplitude – the difference between active and resting activity. The Circadian Quotient 

(CQ), computed as the ratio of the Amplitude and MESOR, represents an estimation of how  

well-circumscribed periods of activity are during a day - a proxy of rhythm robustness. 

(Gonzalez et al., 2018)  

The formula for cosinor: 

𝑌(𝑡)  =  𝑀  +  𝐴  ⋅  cos(𝜔 ⋅  𝑡 + 𝜑) + 𝑒(𝑡), 

3.1 

where 𝑌(𝑡)  – is the data-point measured at time t, 𝑀 – MESOR, 𝐴  – Amplitude, 𝜔 - angular 

frequency of the curve, 𝜑 – phase angle of the maximum value of the fitted curve (or 

acrophase, commonly represented in a daytime hour = −24
𝜑

2π
 ), and 𝑒(𝑡) – residual error at 

time 𝑡. 

The formula 3.1 can be rewritten according to trigonometric angle sum identity as:  

𝑌(𝑡) = 𝑀 + 𝛽𝑥 + 𝛾𝑧 + 𝑒(𝑡), 

3.2 

where 𝛽 = 𝐴 ∙ cos(𝜑), 𝛾 = −𝐴 ∙ sin(𝜑), 𝑥 = cos(𝜔 ⋅ 𝑡), and 𝑧 = sin(𝜔 ⋅ 𝑡). 
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The parameters of the fitted cosinor may be obtained, using the least-squares method, by 

minimising the sum of residual squares (RSS):  

RSS  =  ∑[𝑌𝑖 − (�̂� + �̂� 𝑥𝑖 + 𝛾 𝑧𝑖)]
2

N

i = 1

 

3.3 

In the equation above, 𝑁 is the total number of valid samples, Yi is the measured value at the 

time i, and �̂�, �̂�, and 𝛾 are the parameter estimations. The minimising triple is given by: 
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3.4 

Amplitude is then obtained as 𝐴 = √𝛽2 + 𝛾2 and phase shift as: 

 

𝜑 =

{
 
 
 
 

 
 
 
 − tan−1 |
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𝛽
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3.5 

Additionally, the quality of data approximation may be shown by the two measures:  

1. The mean square error (MSE) of fit is: 

MSE =  
1

𝑁
∑𝑒(𝑡)2

𝑡

 

3.6 
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2. The percentage of data explained by the cosinor model is Goodness of Fit (GOF), 

calculated based on the MSE (3.6) of cosinor model, and MSE of a constant model – (total 

mean square error - TMSE): 

GOF  =  100  ⋅  
𝑇𝑀𝑆𝐸  −  MSE

𝑇𝑀𝑆𝐸
 

3.7

 

Figure 3.3 - Description of Cosinor rhythm characteristics. The figure shows a cosine function (black) fitted on the epoch 

actigraphy data (blue) with marked cosinor features Amplitude, Acrophase, and MESOR. The 24-hour period is fixed. The 

shown actigraphy data have low midday activity, which is increasing residuals error MSE and reducing GOF (12.9 %). For 

comparison, the figure also shows the hourly ExAct score (described in section 3.5.5). 

Physiologically, the MESOR represents the mean overall level of activity. Increased MESOR 

values may be seen due to high levels of daily activity or due to shortened, disturbed, or 

fragmented sleep. The Amplitude feature represents the distinction between the rest and active 

part of days. It is increased in cases of high and stable daily activity with sound sleep. It may 

be reduced by disturbed sleep or fragmented daytime activity. The Acrophase represents the 

actual ‘morningness’ or ‘eveningness’ of the subject (an approximation of chronotype, see 

Chapter 6). During low activity days, the Acrophase is less stable. Additionally, it shows shifts 

in activity timing, e.g. due to the start of the daylight-saving time or travelling across time 

zones. The GOF represents the stability of the rhythm as well as the fragmentation of activity 

during both day and night. 
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The main advantage of the cosinor approach is its robustness. The method may be used for 

non-equidistantly sampled data or records with missing values. On the other hand, five 

assumptions (described below) are required for its use (Cornelissen, 2014), most of which are 

difficult to meet in actigraphy recordings.  

1. The model should fit the data well: this requirement is commonly not met. This is 

the first challenge: Although the circadian activity pattern may be divided into the 

low activity part of sleep and high activity part of the awake state, the activity 

levels seldom follow the increasing and lowering trend of the cosine function. 

Quite commonly, there is a visible drop in activity in midday (see Figure 3.3). The 

data may also be skewed by either morning or evening activity peak, which is 

typical for extreme chronotypes (see Chapter 6).  

2. Normal distribution of residuals: This is also not always met as the values are 

lower bounded (when there is no activity, the minimum actogram value is zero) 

and not from above, as the sensor saturation is not commonly met.  

3. Homogeneous variance: This collides with much higher data variance during the 

waking hours than during sleep.  

4. Independence of residuals: This is also not always met, as continuous actigraphy 

data measured for a given type of activity tends to stay similar over the whole 

course of the activity.  

5. Stability of the features over time: This collides with the fact that the workdays 

and weekend (free) days are usually different. Moreover, variations of feature 

values are expected to change with the BD patient state, which is connected to the 

instability in the circadian rhythms (see Chapters 7 & 8).  

In order to follow these assumptions, the cosinor features should be obtained from a shorter 

estimation window. This is contrary to obtaining a valid rhythm description, where the 

estimation window should be long to eliminate socially induced noise. Considering both of 

these contradictory requirements, we have chosen rather a shorter window, which is better 

determined in time (see Chapter 6 for the impact of window length in the task of chronotype 

estimation from actigraphy). In our research, we use features estimated from one-week and 

two-week-long windows. In this way, the distribution of working and free days should be 

similar in all windows. 
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An additional way to fulfil the assumptions, which may help with the exploration of the 

evening and morning activity peaks, is the use of a multicomponent cosinor (Cornelissen, 

2014). In this way, the data are fitted by a mixture of two or more cosine functions of given 

periods. Similarly, the use of the wavelet function could increase the percentage of explained 

data. Unfortunately, such approaches obscure interpretability and comparability, as the 

classical cosinor is adopted by most of the actigraphy studies even despite the issues 

mentioned above (Jones, Hare and Evershed, 2005; Salvatore et al., 2008; Faedda et al., 2016; 

Krane-Gartiser et al., 2019). 

Throughout this work, the cosinor parameters are obtained from the fit of the cosine function 

with a 24-hour long period on one or two weeks of data (except for chronotype evaluation – 

Chapter 6). In order to maintain causality, the value for each day is based on data from the 

previous week (or two). 

3.5.2. Non-parametric Circadian Rhythm Analysis 

The non-parametric circadian rhythm analysis (NPCRA) (Witting et al., 1990; van Someren 

et al., 1996; Jones, Hare and Evershed, 2005) is a summary name for a set of features that 

describe activity patterns for each day, or few consecutive days, without assuming a particular 

underlying analytical function. Such an approach may be beneficial, as many assumptions of 

cosinor analysis may be violated when used on actigraphic data, especially in BD patients, 

where the rhythm is expected to be more disturbed. Such a less restricted approach to estimate 

features is then more prone to noise and errors based on missing data (see Chapter 5). 

The traditional actigraphic features estimated using the NPCRA are the average activity during 

the most active ten hours (M10) and its mid-time (M10-time), the average activity during the 

least active five hours (L5), and its mid-time (L5-time). Moreover, L5 and M10 are combined 

in Relative Amplitude (RA) (Eq. 3.8), which is closely related to the CQ in cosinor analysis.  

RA =  
M10 − L5

M10 + L5
 

3.8 

The M10 and L5 features, together with their timing, may be estimated for each day  

(Figure 3.4), or from a window of consecutive days (Figure 3.5). In this thesis, 7- and 14-day 

sliding windows were used in order to maintain the same ratio of free and working days.  

As the way of estimation of daily L5 and M10 is not strictly standardised in the actigraphy 

studies (Gonçalves et al., 2015), we have suggested a long-term monitoring approach, shown 
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in Figure 3.4. In this way, we expect to reduce the overlapping detections for consecutive days 

while allowing a maximum range of L5-time and M10-time in each of the days. In our 

approach, we add 5 hours from the previous and the following days to the evaluated daily 

window. In this way, the M10-time and L5-time can be detected for each hour of the evaluated 

day. Still, the possible overlapping M10 or L5 segments may cause a problem. To reduce this 

risk while keeping a reasonable range of possible L5-time and M10-time, the estimation times 

for L5-time are limited to 21:30 from the previous day (-2:30) to 21:30 of the current day. In 

the case of M10-time, the limits were set to 2:30 to 24:00 of the current day. Such an approach 

reduces unjustified jumps (crossing midnight) in L5-time and M10-time while keeping L5 as 

a sleep descriptor, where it is common to add sleep to the day following the wakeup. The daily 

L5 and M10 features are calculated for the respected detected epochs. 

 

Figure 3.4 - Estimation of daily M10 and L5 values. The figure shows estimated L5 and M10 values for actigraphic data 

(blue) and regions where the L5 and M10 features are searched. The bold red section is where the M10 mid-time is searched. 

Similarly, the bold cyan region shows where L5 mid-time is searched. The dashed extensions represent the maximal position 

where the whole M10 or L5 region may expand. The regions do not correspond precisely with a calendar day to eliminate 

the possibility of the same region being detected twice on consecutive days. RA is, in this case, 0.88. For comparison, the 

figure also shows the hourly ExAct score (described in 3.5.5).  
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The daily values L5 and M10 are features that change quickly from day to day, compared to 

cosinor and other NPCRA features. This allows comparison between working and free days, 

etc., but on the other hand, it makes them much more prone to noise and missing data. 

Therefore, there is a modified version of both features, based on a week (or 2 weeks) average 

day. In this approach, the epoch data are aggregated into 5-minute segments. The main daily 

activity profile is computed by averaging daily values through the week (weeks). The mean 

profile is then, again, expanded by 5 hours before and after the 24-hour cycle in order to widen 

the possible mid-times ranges. The expansion is done by copying the first and last 5 hours, as 

shown in Figure 3.5. 

 

Figure 3.5 - Estimation of weekly M10 and L5 values. Daily data aggregated into 5-minute segments (coloured  

semi-transparent lines) are averaged into an average day (blue) and expanded by 5 hours before and after the averaged day 

(blue dashed). The M10 and L5 values are then obtained from the marked estimation regions. The data used for estimation 

were the same as for cosinor (Figure 3.3), and therefore may be compared. The RA for this data epoch is 0.84. 

 

Concerning the physiological interpretation, the M10 represents the amplitude of rest-activity 

rhythm, which is connected to the motor capability and function of the circadian timing system 

(CTS) and cortical function, especially the frontal cortex’s integrity (Gonçalves et al., 2015).  

The CTS functionality depends on the integrity of neurons in the suprachiasmatic nucleus 

(SCN) located near the optic nerve in the frontal part of the hypothalamus. Through  

SCN-Pineal complex, SCN is responsible for the secretion of the hormone melatonin. It has 
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been demonstrated that lowering the number of vasoactive intestinal polypeptide expressing 

neurons (stimulated by the light-dark cycle) causes a deficit in the circadian process (Hofman, 

1950; Gonçalves et al., 2015). 

The reduction in M10 is associated with motor difficulty, exercise reduction, or CTS 

degradation. The reduction is typical for later stages of Alzheimer’s disease (Gonçalves et al., 

2015). The M10-time is also connected with CTS, and it also represents the actual 

morningness or eveningness. Therefore, it is a promising feature for objective estimation of 

chronotype (see Chapter 6), such as cosinor Acrophase. Later activity midpoint was also 

observed in BD patients (Kaufmann et al., 2018). BD patients are associated with evening 

chronotype (Gershon et al., 2018). Daily-based M10-time may be used for social jetlag 

estimation as it may be computed separately for free and working days. In our published article 

(Fárková et al., 2019), we observed an earlier M10-time peak in participants who were 

successfully undergoing a weight-reducing program compared to the unsuccessful group.  

The L5 feature, as a measure of the rest phase, is also connected with the function of the CTS. 

The value of daily L5 is low when sleep is more efficient (few arousals) and increases with 

CTS degradation, commonly connected with ageing, and neurodegenerative diseases, such as 

Alzheimer’s and Parkinson’s (Gonçalves et al., 2015). A higher value of daily L5 is expected 

in BD patients, who have typically low sleep efficiency (Harvey et al., 2005; Gershon et al., 

2012; Geoffroy, Boudebesse, et al., 2014). The weekly L5 may be used to represent the 

regularity of the sleep-wake regime. Higher values are obtained for the irregular regime, i.e. 

shift-work. The L5-time feature may be used similarly as the M10-time for chronotype 

estimation, but as it is correlated with mid-sleep time, it should be closer to the mid-sleep-

based definition of chronotype (Juda, Vetter and Roenneberg, 2013b) – see Chapter 6. The 

variation of daily L5-time may be used to monitor and evaluate sleep hygiene, which is highly 

important in BD patients. 

The derived RA feature is associated with the maturation of the central nervous system (CNS). 

It drops at a later age as the locomotor activity reduces and sleep efficiency decreases 

(Gonçalves et al., 2015).  

Other NPCRA features that focus on the daily rhythm are the Intradaily Variability (IV), which 

describes the fragmentation of daily rhythm, and the Interdaily Stability (IS), which evaluates 

the similarity between days. These features do not have a matching counterpart in the cosinor 

analysis. Unlike M10 and L5, these features may not be estimated for each day separately. The 
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IV and IS originate from the Chi-square periodogram (Sokolove and Bushell, 1978). And as 

such, they have to be estimated from a longer time window (beneficially 10+ days). We have 

used 7-days and 14-days windows. IV and IS are calculated from equations derived by Witting 

et al. (1990). These equations are: 

  

IS  =
𝑁∑ (𝑋ℎ̅̅̅̅ − �̅�)

2𝑝
ℎ=1

𝑝∑ (𝑋𝑖 − �̅�)2
𝑁
𝑖 = 1

 

3.9 

IV =  
𝑁∑ (X𝑖 − X𝑖−1)

2𝑁
𝑖=2

(𝑁 − 1) ∑ (�̅� − X𝑖)2
𝑁
𝑖=1

, 

3.10 

where N is the number of samples in a window, p is the number of samples per day (24-hour 

cycle), �̅�ℎ are the hourly means, �̅� is the average of the data, 𝑋𝑖 are the individual data-points. 

While Witting et al. used 𝑋𝑖 original samples, modern devices allow much finer sampling, 

which affects the results of IS and IV. Gonçalves et al. found that resampling the data into 

specific segment length (approximately 15-30 minutes segments) has favourable 

discriminative properties in both simulated and experimental data. Our findings (Hlaváč, 

2020) support this suggestion as well: the best results were achieved by 10- to 20-minute 

segments for IV and 20-minutes and longer for IS). Consequently, we have resampled the data 

for the calculation of IS and IV into 20-minute segments.  

The IV feature represents a rest-activity fragmentation. Therefore, it is associated with the 

maturation of CTS and diseases of the sleep-wake cycle. Fragmentation includes daytime 

sleepiness and nocturnal arousals. Additionally, a link between IV and sleep quality, poorer 

cognitive and motor performance, and reduced social interactions has been reported 

(Gonçalves et al., 2015). Moreover, a lower IV value, i.e. smaller rest-activity fragmentation, 

is associated with better sleep consolidation. Physical exercise and bright-light therapy, which 

is expected to improve sleep structure, has been shown to improve the IV parameter in elderly 

people and patients suffering from dementia and Alzheimer’s disease (Van Someren et al., 

1997, 1999). 

The IS feature represents the similarity in day-to-day activity profiles. It is used as a marker 

of synchronisation with the light-dark cycle (24-hour zeitgeber) and stability of daily rhythm 
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(Alloy et al., 2017). Therefore, it is associated with CNS function, mainly its photic and  

non-photic synchronisation, where higher IS represents a better state. IS has also been 

associated with CNS development (in new-borns) and mental disorders, where higher IS is 

associated with better cognitive functions. IS is highly affected by social factors and lifestyle. 

The typical value for a daytime worker is 0.66, while for a shift-worker it is typically 0.25. 

(Gonçalves et al., 2015) 

In addition to these widely used non-parametric features, we have included in our dataset also 

Average Daily Activity (ADA – Eq. 3.11) and average activity in four quarters of a day 

(AQA1-4, where 1-4 represents the quarters of the day).  

ADA  =  
1

𝑁𝑑
∑𝑋𝑖

𝑁𝑑

𝑖=1

 

3.11 

In the above equation, 𝑁𝑑 is the number of valid samples in each day (midnight to midnight) 

and 𝑋𝑖 are the recorded activity data-points. AQA1-4 were obtained in a similar manner over 

six-hour-windows (0:00-6:00-12:00-18:00-24:00).  

Another set of added features is designed to directly compare changes in behaviour while the 

effects of different lifestyles are reduced. The data are divided into four categories (low 

activity, sedentary activity, moderate activity, and high activity), based on individual 

thresholds. The thresholds 𝑇1−3 are estimated as 1-3 quartiles (quantiles 0.25, 0.5, 0.75), and 

𝑇4 as the maximal value of each patient’s activity distribution (using the whole set of recorded 

patient’s data). The features, named DA1−4 (in the further text, the subscript is replaced by the 

category low/sedentary/moderate/high) represent a percentage of each day’s activity, which 

belongs to the categories estimated by the following equation: 

DA𝑘   =  
∑ 𝑋𝑖
𝑁𝑑
1 ≤ 𝑇𝑘
𝑁𝑑

  −  DA𝑘−1, 

3.12 

where and DA0 = 0. 

And finally, as a description of fragmentation activity in the active part of a day, the Root 

Mean Squares of Successive Differences (RMSSD – Eq. 3.13) was calculated for the daily 

M10 segments (RMSSDM10). The advantage of RMSSD over standard deviation (SD) is that 
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it measures variability reflecting both temporal order and amplitude of the data (McGowan et 

al., 2020).  

RMSSD  =  √
1

𝑁 − 1
∑(𝑋𝑖 − 𝑋𝑖−1)2
𝑁

𝑖 = 2

, 

3.13 

where 𝑋𝑖 are individual data-points and N is their count.  

 

3.5.3. Sleep Detection and Sleep Derived Features 

As previously stated, actigraphy is often used for sleep/wake monitoring (section 3.4). 

Changes in sleep are connected to BD and both types of relapses, shortened or missing sleep 

in mania and prolonged sleep in depression (Plante and Winkelman, 2008). While the 

distinction between sleep and wake time using actigraphy is generally considered reliable, the 

detection of sleep phases as obtained from polysomnography, was not successful when using 

actigraphy recordings (Kaplan et al., 2012; Kosmadopoulos et al., 2014). Most sleep detectors 

for actigraphy data are based on detecting epochs of low activity. However, the algorithms are 

different between wearables, as their sensitivity for low activity and noise is system-dependent 

(Meltzer et al., 2012; Cellini et al., 2013; Smith et al., 2020). There are no standards, how 

sleep (and especially the main daily sleep) should be detected, and some research-oriented 

systems (such as CamNtech – MotionWatch – section 3.4) work based on patient-marked 

laydown time or in a semi-supervised way (which requires manual correction from a 

researcher). Such an approach is not feasible for large long-term studies. 

In our research, we have used sleep detection using the Mindpax algorithm. Firstly, 

sleep/wear-offs epochs are detected using logistic regression model odds calculated on the 

basis of features using 10- and 30-minute long widows. These features include average value 

in a centralised window, standard deviation, and percentages of increasing and decreasing 

values in windows preceding and following the classified sample. Secondly, the epochs of 

sleep are distinguished from wear-offs using thresholding of activity within detected epochs, 

excluding its edges. And finally, short gaps between the detected periods of sleep are filled, 

and very short periods of sleep are removed. (Vostatek, 2018) 
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Based on the detected sleep segments, a main sleep of the day - the night sleep - is detected as 

the longest sleep within 24-hour starting from 15 o’clock on (Vostatek, 2018): 

1) filling up to 64-minute long gaps between sleep epochs  

2) removal of sleep epochs shorter than 200 minutes  

3) filling up to 240-minute-long gaps between sleep epochs  

The primary sleep parameters are obtained using the detected night sleeps. These include night 

sleep duration (SleDur), the sleep onset time (SleON), sleep offset time (SleOFF), and mid-

sleep for each day. Overall daily amount of sleep (SleDur18) is obtained as a sum of durations 

of all detected sleep epochs within 24-hour, starting at 18 o’clock or at midnight (SleDurdaily). 

This way, the main night sleep is usually not divided between two days. 

Sleep quality is assessed by several features, among them are:  

• Wake After Sleep Onset (WASO). This is the duration of all segments during the main 

night sleep, which the sleep detector didn’t identify as sleep. 

• Variability in data during the main daily sleep RMSSDsleep assessed using Eq. 3.13. 

• Restless sleep (RSL) and immobile sleep (ISL)  

 

 

Figure 3.6 - Thresholds for Restless Sleep (RSL) and Immobile Sleep (ISL) (ACTIBIPO 2 dataset). The figure shows the 

probability density function estimate for activity counts during night sleep. The ISL threshold is chosen, so it includes the two 

least bits of recorded activity counts (includes approximately 85 % of night sleep activity). The RLS threshold is based on the 

distribution of activities during night sleep (includes approximately 5 % of night sleep activity). 
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Restless sleep (RSL) is a percentage of samples surpassing high levels of activity during sleep, 

and ISL is a percentage of samples under low sleep activity thresholds. These thresholds were 

obtained from the main daily periods of sleep (ACTIBIPO 1 and 2 datasets – Chapter 4). The 

ISL threshold is set as the two lowest epoch activity counts (based on the used analogue-digital 

converter used). The RLS is set based on the distribution activities during night sleeps9 

(see Figure 3.6). 

The commonly used diary-based (other markings of bedtime) parameter, the sleep onset 

latency, was substituted by automatic approximation features. These features are average 

activity during 2 hours prior to sleep onset (APSO) and after sleep onset (AASO). Similarly, 

waking up has been described by average activity during 2 hours prior to wake-up (APWU) 

and activity after wake-up (AAWU). Then combined into the ratio of APSO/AASO and 

AAWU/APWU based on a shorter (30 minutes) period were used to evaluate the steepness of 

falling asleep and waking-up processes. 

Based on the main night sleep offsets and onsets, the variability in data during the active part 

of a day was assessed as RMSSDactday (Eq. 3.13) from data resampled into 5-minute segments 

and autocorrelation lag (ACL) (correlation of signal moved by 5 minutes with the original) of 

the resampled active day data. 

  

                                                 
9 The position of Restless Sleep threshold is based on minimal point in sleep activity from Mindpax GMK (older 

version of MindG) see supplement (Schneider et al., 2020) and transformed to MindG (Table 3-1) activity counts. 
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3.5.4. Chronotype Measures 

Chronotype related features can also be calculated based on actigraphy. The detailed 

connection between chronotype and chronotype-related features (such as L5-time, M10-time, 

mid-sleep, Acrophase, etc.) is described in Chapter 6.  

The Munich Chronotype Questionnaire (MCTQ) (Roenneberg, Wirz-Justice and Merrow, 

2003; Juda, Vetter and Roenneberg, 2013a) is based on patient-filled typical sleep times during 

working and free days. The two main features, which are estimated based on the MCTQ, are 

a corrected mid-sleep time on free days (MSFsc) and social jetlag (SJL), the difference 

between sleep habits in freely running regime (free days) and working days. Using the detected 

night sleep epochs in combination with reported free days or calendar-based free days, the 

values of MSFsc and SJL may be obtained from actigraphy as:  

MSFcs  =  MS𝑓𝑟𝑒𝑒 −
SD𝑓𝑟𝑒𝑒 − (𝑝𝑓𝑟𝑒𝑒 ∙ SD𝑓𝑟𝑒𝑒 + 𝑝𝑤𝑜𝑟𝑘 ∙ SD𝑤𝑜𝑟𝑘)

2
 

3.14 

Here the MS𝑓𝑟𝑒𝑒 is the average mid-sleep on free days (waking up on a free day), SD𝑓𝑟𝑒𝑒 is the 

average sleep duration on free days, SD𝑤𝑜𝑟𝑘 is the average sleep duration on work days and 

𝑝𝑓𝑟𝑒𝑒 is the probability (or ratio from all days) of a free-day and 𝑝𝑤𝑜𝑟𝑘 is the probability of a 

working day. For a normal full-time worker, this may be 𝑝𝑓𝑟𝑒𝑒  =  
2
7⁄  and 𝑝𝑤𝑜𝑟𝑘  =  

5
7⁄ , 

based on a five-day workweek. 

SJL  =  MS𝑓𝑟𝑒𝑒 −MS𝑤𝑜𝑟𝑘 

3.15 

Where MS𝑤𝑜𝑟𝑘 is the average mid-sleep on working days, and MS𝑓𝑟𝑒𝑒 is the average mid-sleep 

on free days. 
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3.5.5. Explainable Activity Measure (ExAct) 

Unlike the steps recorded by fitness tracking devices, the activity measured in counts based 

on the acceleration filtered acceleration measurements (section 3.3) has no straightforward 

interpretation. Therefore, we have engineered a feature that could be presented and explained 

to patients as a part of motivation and for better self-understanding. (Schneider, 2021)  

This explainable activity (ExAct) assigns a score to each 5-min segment based on the expected 

activity on such activity level. The 5-min segments are used to filter short bursts of physical 

activity, which may be artefacts caused by the environment (as transport, mechanical drill, 

etc.) and therefore hard to interpret. The activities were divided into 4 levels (see Table 3-2). 

Table 3-2: Explainable activity levels description 

Level Description score Activities 

1 Sleep 0 sleep, passive TV/movie watching, deep meditation, etc. 

2 Low activity  5 (1/min) 
computer work, driving, leisure walking, and low demanding 

housework, etc. 

3 Medium activity 10 (2/min) walking, swimming, active housework etc. 

4 High activity 20 (4/min) sports as running, biking, floorball, etc. 

 

 

Figure 3.7 - Explainable activity and regime visualisation. The figure presents visualisation of hourly explainable activity 

(ExAct) scores for 14 consecutive days. The presented data show a regular regime. The red lines present average sleep onset 

and offset times. The days are organised so that the most outer circle is the actual day and the most inner circle the first 

(oldest) day of the defined window  
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The activity levels’ thresholds were trained in a microstudy where 6 young, healthy individuals 

recorded their activities (145) while writing an activity logbook. The ExAct score can be added 

to hourly scores. These scores may then be presented to patients to visualise their rhythm 

regularity, as in Figure 3.7. Daily values represent the overall activity level during the day and 

could be interpreted as the number of active minutes during a day. The daily ExAct may be 

used as an additional measurement of daily activity or, when it is divided by the interval 

between wakeup and sleep onset (hours), as the active-day-part activity measurement 

(ExActactive per active hour). (Schneider, 2021) 
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4. Datasets 

This chapter presents details about recorded and used datasets, including individual studies 

procedures and recorded data summaries. In the presented thesis, three datasets are used: 

- ACTIBIPO 1 – a dataset for comparison between healthy controls (HC) and BD 

patients (Chapter 7) 

- ACTIBIPO 2 – a dataset for exploration and classification of symptomatic episodes in 

the course of BD (Chapters 5 & 8) 

- CHRONOBIO – a dataset combined from two related datasets, including a set of 

women undergoing a weight reduction program and a set of healthy women. This 

dataset is used to assess the relationship between selected actigraphic features and 

results of chronotype questionnaires (Chapter 6) 

4.1. ACTIBIPO 1 Dataset 

4.1.1. Participants and Procedure 

Actigraphy data were recorded for more than 90 days in 35 BD patients mainly with BD-I 

diagnosis, recruited from the outpatient BD clinic at the National Institute of Mental Health 

(NIMH), in Klecany, Czech Republic, and in 26 HC, matched for age and sex, who were 

recruited by advertisement in the community. All BD patients underwent a baseline psychiatric 

examination by a trained institutional psychiatrist, confirming euthymic state or low levels of 

depressive/manic symptoms, using the Montgomery-Asberg Depression Rating Scale 

(MADRS) (Montgomery and Åsberg, 1979) and the Young Mania Rating Scale (YMRS) 

(Young et al., 1978).  

Inclusion criteria: all BD patients were diagnosed according to DSM-5 criteria (APA, 2013). 

At the study entry, all patients had to be euthymic or in a remitted state (i.e., YMRS ≤ 12 and 

MADRS ≤ 9, see Table 4-1) with no reported mood episodes for ≥ 60 days prior to study entry 

(Tohen et al., 2009). 

Exclusion criteria for BD patients were the presence of an acute depressive episode, 

dysthymia, suicidal thoughts, a (hypo)manic episode, or diagnosis of schizo-affective disorder 

at enrolment. 
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HC exclusion criteria were: past or acute presence of a moderate depressive or (hypo)manic 

episode or suicidal thoughts, diagnosed neurological, sleep, or mood disorders, or a family 

history of mood or psychotic disorder among their first-order relatives. 

All BD patients and HC who fulfilled the inclusion criteria were equipped with an actigraphy 

wearable and instructed to wear it preferably on their non-dominant hands.  

On enrolment into the study, all participants answered a demographic questionnaire. The HC 

pool was contacted through an emailed screening questionnaire which asked for some basic 

information (age, sex, and employment status) and family disease history (neurological: 

epilepsy, Parkinson’s disease, etc., sleep disorders: insomnia, sleep apnea, narcolepsy, etc.). 

Subjects who fulfilled the screening criteria were further evaluated using the M.I.N.I. 

structured questionnaire (Lecrubier et al., 1997) for neuropsychiatric disorders. All 

participants were equipped with a wrist-worn actigraphic monitoring wearable (Mindpax – 

GMK10) and were instructed to remove it only when necessary. 

During follow-up (i.e., the period when the data were recorded), BD participants were assessed 

monthly by their treating physician via in-person visits or a telephone interview to identify 

their current psychiatric state. We allowed for some minor increase of symptoms during 

follow-up (i.e., YMRS  <  15 and MADRS  <  15). The clinical episodes criteria included 

psychiatric hospitalizations, work incapacity, MADRS ≥ 15, YMRS ≥ 15 (Macfadden et al., 

2009), suicidal ideation, or substantial deterioration of the patient’s clinical state. 

The ethical committee of the NIMH in Klecany, Czech Republic, has approved the study and 

all BD patients and HC signed written informed consent.  

  

                                                 
10A device with similar parameters as MindG (Table 3-1), but due to different hardware the counts scores are not 

directly comparable 
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Table 4-1: Demographic, health and activity characteristics in ACTIBIPO 1 patients and controls groups 

Metadata BD HC p-value 

Participants count 

final (original) 

[BD-I/BD-II] 

 

25 (35)  

[16 BD-I, 9 BD-II] 

25 (26) 
 

- 

Age 39.72 (SD 12.85, range 22-63) 39.68 (SD 11.19, range 25-63) p‡ = 0.6549 

Sex 60 % female (N=15) 68 % female (N=17) p† = 0.7688 

Days in study 

(recorded / valid) 

134 (SD 39)  [range 61 - 179] /  

86 (SD 21) [range 50 - 124] 

97 (SD 12) [range 72 - 126] / 86 

(SD 13) [range 62 - 108] 

(for recorded) 

p‡ = 0.0018*  

(for valid) 

p‡ = 0.2977 

Working status 

(full-time/part-time/no work) 
6 / 12 / 7 22 / 3 / 0 p§ = 0.0125* 

Total days in the study 

(recorded/valid) 
3341 / 2158 2426 / 2113 - 

MADRS 

At admission to the study  

2.3 (SD 3.9) 

Through the study - with relapses 8.8 

(SD 7.1) 

- without relapses  

6.6 (SD 3.8) 

- - 

YMRS 

At admission to the study  

0.4 (SD 0.81) 

Through the study - with relapses 1.8 

(SD 3.3) 

- without relapses  

2.1 (SD 3.5) 

- - 

Mood episodes 

In the study: 2 patients with episode/s 

(2 dep., 1 hypomania) 

Excluded: 5 patients with episode/s  

(7 dep., 1 mania - psychosis) 

- - 

Lithium 

Antipsychotics used: 

Quetiapine 

Olanzapine 

Antidepressants used: 

Bupropion 

Sertraline 

Antiepileptic used: 

Lamotrigine 

Valproate 

Carbamazepine 

Mixed/Single treatment 

7 (28 %) 

 12 (48 %) 

10 (40 %) 

4 (16 %) 

 6 (24 %) 

5 (20 %) 

2 (8 %) 

 9 (36 %) 

6 (24 %) 

3 (12 %) 

1 (4 %) 

19 patients/6 patients 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

Average features†† 

ADA (average daily activity) 

Sleep duration 

Circadian quotient 

M10-time 

RSL (restless sleep) 

MSFsc (chronotype) 

 

605 (SD 110) 

8.98 (SD 1.22) hours 

0.78 (SD 0.12) 

14.7 (SD 1.3) o’clock 

2.6 (SD 0.9) % 

3.7 (SD 1.0) o’clock 

 

778 (SD 92) 

7.40 (SD 0.51) hours 

0.66 (0.07) 

14.9 (SD 1.3) o’clock 

2.1 (SD 0.6) % 

3.6 (SD 1.1) o’clock 

The statistical 

comparison is 

presented in Table 

7-2 

LTTV in features†† 

ADA 

Sleep duration 

IV (Intradaily variability) 

IS (Interdaily stability) 

M10 

M10-time 

L5 

L5-time 

RSL 

 

103 (SD 32) 

1.7 (SD 0.6) hours 

0.07 (SD 0.02) 

0.06 (SD 0.02) 

166 (SD 50) 

2.1 (SD 0.8) hours 

31 (SD 23) 

1.8 (SD 0.6) hours 

1.8 (SD 0.8) % 

 

94 (SD 25) 

1.3 (SD 0.3) hours 

0.05 (SD 0.01) 

0.06 (SD 0.02) 

148 (SD 42) 

2.6 (SD 0.5) hours 

38 (SD 23) 

1.4 (SD 0.5) hours 

1.5 (SD 1.0) % 

The statistical 

comparison is 

presented in Table 

7-2 

Significance * < 0.05 ** <0.01 *** <0.001 
‡ Mann-Whitney test; † Fisher exact test; §χ2 test (chi2 = 8.77) 
††Selected features, for all, see Table 7-1 and the supplement of Schneider et al., 2020 article 

LTTV stands for long-term temporal variability.  
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4.1.2. Subjects Characteristics 

The BD patients and HC group characteristics, after exclusions, are shown in Table 4-1. Ten 

(29 %) of the 35 BD patients enrolled in the study were excluded: 5 subjects were excluded 

due to insufficient length of recorded inter-episode data (≤ 50 days - 4 for depression episodes 

and 1 for psychosis after childbirth), 4 for an excessive amount of missing actigraphy data 

(due to wearable removal or its malfunction), and 1 resigned from the study upon personal 

request, resulting in 25 BD patients in the final set. All of the subjects were attending a 

standard BD treatment program and were using clinicians’ choice medication. Among 26 HC, 

1 subject was excluded due to an excessive amount of missing data, resulting in 25 HC in the 

final set. A lower dropout rate in HC vs BD patients was expected. 

4.2. AKTIBIPO 2 Dataset 

4.2.1. Procedure 

The actigraphy data were recorded for 18 months and longer in 369 BD patients. The patients 

were contacted through their treating physicians or an online campaign. The onboarding was 

done in two phases. In the first phase, patients were instructed to fill in an online structured 

pre-screening questionnaire to confirm their BD diagnoses. Those whose diagnosis was 

confirmed were instructed to read information about the study, confirm the informed consent, 

and fill in their contact information and their treating physician contact information.  

In the second phase, the patients have been divided into groups:  

1. CORE group patients have been evaluated by the institutional psychiatrist at NIMH in 

Klecany, who confirmed their diagnosis. 

2. PERIFERY1 group containing those who could not be personally evaluated at NIMH 

or for whom the institutional psychiatrist at NIMH could not confirm their diagnosis 

beyond any doubt. The information about the patients, which was needed during the 

study, was provided by their treating physician.  

3. PERIFERY2 group is similar to the group PERIFERY1. Only the treating physicians 

of the individual patients did not provide the needed additional information. 

All patients were contacted, either during the personal examination (CORE) or by phone 

(PERIFERY1 and PERIFERY2). Additional personal information was collected, and all 

patients were evaluated using MADRS and YMRS clinical scales. The MADRS and YMRS 
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were chosen for their applicability over the phone. All patients, who fulfil the inclusion 

criteria, were instructed to wear an actigraphy wearable (Mindpax – MindG – see section 3.4), 

preferably on their non-dominant hands. Furthermore, they were asked to fill in a weekly 

Aktibipo SElf-RaTing questionnaire (ASERT – introduced in section 4.2.2) using a provided 

Mindpax mobile application.  

The inclusion criteria were the diagnosis of BD disorder according to DSM-5 criteria  

(APA, 2013)  with 2 or more affective episodes in the anamnesis and actual remitted state 

(MADRS ≤ 12 and YMRS ≤ 9).  

Exclusion criteria were the same as in the ACTIBIPO 1 dataset - the presence of an acute 

depressive episode, dysthymia, suicidal thoughts, a (hypo)manic episode, or diagnosis of 

schizo-affective disorder at enrolment. 

Additionally, patients in the CORE group agreed to be evaluated using MADRS and YMRS 

rating scales by phone each month. For CORE and PERIFERY1 groups, the health record 

(hospitalisations with BD diagnosis, work insufficiencies caused by worsening of the BD state, 

and suicidal attempts) was collected at the end of the patient recorded period. 

Relapses according to study protocol were all states with high rating scales scores 

(YMRS ≥ 15, or MADRS ≥ 22), or hospitalisation for BD diagnosis, or work insufficiency 

caused by BD, or suicidal attempt. This study was organised as a non-intervention study. 

Therefore, there were no alternations of treatment based on the periodical scaling. Only when 

the patient had a high score in MADRS suicidal thoughts question, this information was shared 

with his treating physician. 

The ethical committee of the NIMH in Klecany, Czech Republic, has approved the study and 

all BD patients and HC signed written informed consent.  

4.2.2. Self-rating Questionnaire (ASERT) 

The Aktibipo SElf-RaTing (ASERT) is a questionnaire for ecological momentary assessment 

(EMA) of mood in bipolar disorder invented at NIMH (Anýž et al., 2021 preprint). The 

questionnaire (Table 4-2) contains 10 items, mapping depressive (4 items), manic (4 items), 

and non-specific (2 items) symptoms, with 5 possible response levels for each symptom.  
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Table 4-2: ASERT description, questions, questions grouping and possible answers in Czech and English 

No Group  Questions English version Questions Czech version 

1 

depressive 

I feel sad, downhearted Cítím se smutně, sklesle 

2 
I do not enjoy anything, and 

nothing pleases me 
Nic mě nebaví, netěší 

3 I have no energy Nemám energii 

4 
I feel gloomy and pessimistic 

about the future 

Budoucnost vidím černě, 

pesimisticky 

5 

manic 

I feel unusually great, 

optimistic 

Cítím se neobvykle skvěle, 

optimisticky 

6 I have excess energy Mám nadmíru energie 

7 
My thinking is very fast, others 

cannot keep up with me 

Myslí mi to hodně rychle, ostatní 

mě nestíhají 

8 I need to sleep less than usual Potřebuji spát méně, než obvykle 

9 
non-specific 

I feel restless, tense Cítím neklid, napětí 

10 I cannot focus Nemohu se soustředit 

 Reply options Možné odpovědi 

0: I do not agree 0: nesouhlasím 

1: more likely, I do not agree 1: spíše nesouhlasím 

2: I probably agree 2: asi souhlasím 

3: I agree 3: souhlasím 

4: I completely agree 4: naprosto souhlasím 

 

As stated in the previous section, ASERT was administered on a weekly basis through a 

smartphone application developed by Mindpax. The ASERT was provided in Czech, and 

English versions, based on the settings of the mobile phone.  

The questionnaire has been validated against MADRS and YMRS symptomatic episodes 

(MADRS ≥ 15, or YMRS ≥ 15). In the case of symptomatic episodes, the average episode 

thresholds obtained from logistic models (Anýž et al., 2021 preprint) were either the sum of 5 

in the manic ASERT group for a manic episode or the sum of 15 in ASERT depression and 

nonspecific group for a depressive episode. The depressive and nonspecific groups were 

combined because MADRS also includes both of these symptom types.  

4.2.3. Subjects Characteristics 

From 369 BD patients, who were included in the study, 88 were excluded for a short duration 

of recorded data - less than 6 months of valid days data (80 % of data-points per day), 5 were 

excluded for too few recorded ASERTs (at least 12 ASERTs – approx. 3 months were 

required), and 1 was excluded based of missing gender and age information, leaving 275 BD 

patients for analyses. The differences between groups are presented in Table 4-3. 
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Table 4-3: Demographics, activity and health characteristics in ACTIBIPO 2 patients 

Group/parameter CORE PERIPHERY1 PERIPHERY2 

Participants count 98 122 55 

Sex (female)  58 72.5+ 45 

Birth year 1980 (SD 11) 1978 (SD 11) 1975*** (SD 12)  

BMI 27.85 (SD 5.72) 28.83 (SD 6.48) 27.44 (SD 5.93) 

Height 173.7 (SD 9.2) 173.2 (SD 8.7) 171.7 (SD 8.6) 

Weight 84.2 (SD 19.2) 86.4 (SD 19.6) 81.0 (SD 18.7) 

Recorded days per 

patient 
796 (SD 267) 601*** (SD 213) 568*** (SD 245) 

Valid days (%) 85.7 (SD 14.1) 85.1 (SD 16.9) 91.2**/ # (SD 11.9) 

ASERTs (count) 90.4 (SD 35.3) 67.5*** (SD 30.6) 66.6*** (SD 33.1) 

ASERTs per week 

(count) 
0.80 (SD 0.19) 0.80 (SD 0.24) 0.82 (SD 0.18) 

ASERTs average dep. 

score 
3.72 (SD 2.93) 5.24*** (SD 3.41) 5.11* (SD 3.28) 

ASERTs average man. 

score 
1.42 (SD 1.39) 2.28*** (SD 1.88)  2.28* (SD 2.11) 

ASERTs average all 

score 
7.10 (SD 4.83) 10.45*** (SD 6.15) 10.31*** (SD 5.54) 

Relapses‡ (scales and 

hospitalisation) 
365x 66 24 

Relapses per participant‡ 

(min-max) 
3.7 (0-20) 0.54*** (0-7) 0.43*** (0-7)  

+ one participant underwent a change of gender during the study 
‡ in the PERIPHERY groups, the scales were usually not provided. Therefore, scales relapses may not occur. Additionally, 

PERIPHERY2 have quite limited information about relapses. Therefore, the number of relapses may be quite 

underestimated 
x all individual scales (MADRS ≥ 15, or YMRS ≥ 15) are considered as separate relapses 
* < 0.05, **< 0.01, ***< 0.001 for a CORE – PERIPHERY difference 
# < 0.05 for a difference between PERIPHERIES  

 

4.2.4. Expert Labels 

As can be seen from above, the clinical patient state has been assessed only by health records, 

plus in CORE group by monthly scaling. Such data (the ground truth) are too scarce to be 

compared to the daily actigraphic features. Therefore, an expert labelling of patients’ states 

has been introduced. 

Using the MADRS and YMRS scales, ASERTs, medical records, and notes from monthly 

scaling (only CORE group), a team of experts annotated time epochs whenever there was 

sufficient information to conclude a patient state. The team consisted of 3 psychologists, who 

were providing the monthly scaling, and analysts (2-3) who were processing the data. No 

actigraphic features were visualised during annotation, except for regions where the actigraphy 

data were missing. Based on the general agreement of this team of experts, there were marked 

epochs of remission, depression-onset, depression, depression-offset, mania-onset, mania, 
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mania-offset. For cases of mixed symptoms, multiple labels were used for the same epoch. 

These cases were extremely rare. Generally speaking, the scale-based or medical record-based 

relapse (symptomatic) periods were expanded using ASERTs and internal notes from monthly 

scaling. Additionally, the regions around, in which the onset (offset) of symptoms most likely 

occurred were marked as (-onset, or -offset). 

Similarly, regions with elevated symptoms that didn’t reach the threshold for relapse 

(MADRS ≥ 15, or YMRS ≥ 15) were marked as onset or offset. Hospitalisations periods 

haven’t been annotated with expert labels, because the activity during hospitalisation is 

considerably restricted. A summary of the expert annotations is presented in the following 

Table 4-4. 

 

Table 4-4: Expert labels summary information 

Parameter/state Remission 
Mania 

onset 
Mania 

Mania 

offset 

Depression 

onset 
Depression 

Depression 

offset 

Labels (count) 218 94 48 78 156 109 150 

In patients (count) 87 46 27 42 64 50 67 

Labelled days (count) 21424 1960 1189 1554 4893 4232 4154 

Valid actigraphy for 

labelled days (%) 
88.76 89.59 85.95 90.48 88.39 88.40 87.53 

Labelled segments 

duration (days) 

Median (Q1-Q3) 

55  

(26-101) 

16.5  

(9-29) 

19 

 (10.5-34) 

14  

(8-26) 

22  

(11.5-36) 

27  

(8.75-47.25) 

18  

(10-31) 

Valid actigraphy 

during segments (%) 

Median (Q1-Q3) 

98.32 

 (85.5-100) 

100  

(94.74-100) 

100  

(80.03-100) 

100  

(93.24-100) 

100  

(90-100) 

100  

(82.77-100) 

100  

(92.59-100) 

Labelled segments 

per patient 

Median (Q1-Q3) 

2 (1-3.75) 1.5 (1-3) 1 (1-2) 1 (1-2) 2 (2-3) 2 (1-2) 2 (1-3) 
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4.3. CHRONOBIO Dataset  

4.3.1. Procedure 

The CHRONOBIO dataset includes a group of women undergoing weight-loss treatment 

(obese and overweight – obesitology subset), and a control group of healthy women (normal 

weight – control subset). Part of the sample (the obesitology subset) overlaps with the sample 

we have examined previously in a study by Fárková, Schneider et al. (2019); however, the 

data were subjected to different analyses and have now been restudied in the context of 

chronotyping methodology. Both groups underwent the same procedure.  

Inclusion criteria were as follows: age 18+, but not of menopausal and post-menopausal age, 

BMI 18.5-55 kg/m2 during onboarding, no shift work, no pharmacologically treated 

psychiatric illness and written consent to participate in the study. Exclusion criteria were 

having less than four weeks (28 days) of valid recorded days of actigraphy data, time zone 

travel, and BMI ≥ 55.0 kg/m2 at any time during follow-up.  

In this study, we have equipped a group of women participants with an actigraphy wristband 

(GMK11 actigraph by Mindpax Ltd.) and instructed them to wear it at all times for up to three 

months. All participants filled the Morningness-Eveningness Questionnaire (MEQ) (Horne 

and Ostberg, 1976) and Munich Chronotype Questionnaire (MCTQ) (Roenneberg, Wirz-

Justice and Merrow, 2003) chronotyping questionnaires at study admission. For details on 

MCTQ features estimation, see section 3.5.4. All participants were also surveyed for work 

status, dates of between-time-zone (long-distance) travel, and free days other than weekends 

and public holidays (the free days' survey). 

Additionally, after a follow-up period of approximately 18 months, a subgroup of participants 

from the control group re-filled the MCTQ and MEQ questionnaires. 

4.3.2. Subjects Characteristics 

From the total of 122 women recruited to the study, 2 women were excluded due to BMI > 55 

or more; 1 woman was excluded due to travelling between time zones in the observed period, 

and 19 women were excluded due to less than 28 valid consecutive days. The resulting set 

contained actigraphy recordings from 100 participants available for analyses. Descriptive 

statistics of the complete set, as well as of the two original subsamples, can be found in  

                                                 
11A device with similar parameters as MindG (Table 3-1), but due to different hardware the counts scores are not 

directly comparable 
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Table 4-5. The most extreme chronotypes (min-max) in the set were MEQ 27-72, MCTQ-

MSFsc 1.7 – 6.7 o’clock, and the most extreme relative social jetlag values (MCTQ-SJLrel) 

were 0 – 3.5 hours. The key differences between the obesitology subset and control subset 

were in BMI and actigraphy duration by design. No significant differences were observed 

between the two subsets in terms of chronotype, gender or age. Moreover, while there are 

differences in BMI, their combined range is similar to that in the Czech population.  

 

Table 4-5: Demography, health, chronotype and actigraphy data characteristic for the CHRONOBIO data set and its subsets 

Group/parameter 
Whole dataset  

median, (Q1 - Q3)+ 

Obesitology subset 

median, (Q1 - Q3)+ 

Control subset 

median, (Q1 - Q3)+ 
p-value# 

Participants (females) 100 (100) 61 (61) 39 (39) - 

Age (years) 37 (30 - 43) 39 (30 - 44) 34 (29 - 41) 0.124 

Height (cm) 168 (164 - 173) 167 (164 - 173) 170 (164 - 174) 0.240 

Weight (kg) 82.0 (64.0- 99.0) 95.0 (84.2 – 104.8) 63.0 (59.0 – 69.5) <0.001* 

BMI (at onboarding) 30.4  (23.1 – 34.7) 33.4 (30.7 – 37.3) 22.1 (20.5 – 24.0) <0.001* 

Chronotype characteristics    

MEQ 53 (47 - 60) 53 (48 - 60) 53 (46 - 59) 0.544 

MCTQ-MSFsc 3.40 (2.80 - 4.08) 3.38 (2.75 – 3.97) 3.44 (2.82 – 4.40) 0.321 

MCTQ-SJLrel 1.22 (0.55 – 1.76) 1.13 (0.67 – 1.66) 1.25 (0.50 – 1.98) 0.813 

Actigraphy recordings    

Actigraphy  

(follow up days) 
83 (61 - 90) 89 (84 - 92) 56 (47 -69) <0.001* 

Actigraphy  

(valid days) 
69 (46 – 88) 84 (68 - 90) 47 (43 - 62) <0.001* 

# obtained using Wilcoxon rank-sum test between the obesitology subset and the control subset.  
*denotes significant differences between the obesitology and control set at p < 0.05 

+ Q1 and Q3 represent the first and third quartile 
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5. Robustness of Actigraphic Features to 

Missing Data 

5.1. Introduction 

Alteration of circadian rhythm is commonly reported as a risk factor and symptom of several 

psychiatric disorders; for example, BD is directly connected with vulnerable and unstable 

circadian rhythm. Still, it is uncertain whether dysregulation is the cause that provides 

vulnerability for the development of BD or whether rhythm dysregulation is one of the 

symptoms (Alloy et al., 2017; Walker et al., 2020). Other mental disorders which are 

associated with vulnerability to (or considered a cause of) disruption of circadian rhythm are 

anxiety disorders, major depressive disorder, and schizophrenia. The disruptions of sleep and 

circadian rhythm are commonly associated with the severity of disease (major depressive 

disorder and schizophrenia) or as a risk factor (especially jetlag) (Walker et al., 2020). 

Additionally, sleep disturbances, measured as the variation of sleep duration and timing, have 

also been associated with physical health (i.e., heart condition, diabetes, obesity, and sleep 

disorders) and stress (Bei et al., 2016). While the state-of-the-art methods for circadian rhythm 

measurement assess melatonin levels and body core temperature, actigraphy is also widely 

accepted as a less invasive method (Reid, 2019). Therefore, the use of long-term actigraphy 

accompanied by online data collection as described in section 3.4 may present a plausible 

method for monitoring risk factors. It may prove to be a supportive approach for evaluating 

symptoms severity.  

One of the long-term monitoring system downsides is the need for constant checking the data 

collection to achieve a reasonable ratio of missing data-points. The data are usually missing 

either due to wearable removal (selected sports, inconvenience of use – typical for psychiatric 

patients, etc.) or technical difficulties (as may be erroneous data transfer from the wearable to 

the server). As the actigraphic features were not originally developed with consideration of 

missing values, we have analysed these basic actigraphic features (sections 3.5.1 and 3.5.2) to 

see how robust they were against missing data-points in the recording. 
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The goals of this chapter are:  

1. To enumerate the natural fluctuation in individual actigraphic features over a long 

time evaluated as the long-term temporal variability (LTTV) (Exp. 1) 

2. To evaluate and explore the errors caused by missing data in actigraphic features 

estimation - both the estimation error offset (average estimation error) and its 

variation. (Exp. 2) 

3. To evaluate the severity (impact) of the estimation errors and the possibility of their 

correction. (Exp. 1 & Exp. 2) 

5.2. Methods 

5.2.1. Natural Long-term Variation in Features (Exp. 1) 

In order to interpret the meaning of measurement error, its size has to be compared to the 

average value or range of possible values. Since many actigraphic features don’t have a 

defined range of values, it is necessary to define a meaningful range to which the error can be 

compared. In order to meaningfully evaluate the estimation error of actigraphic features caused 

by missing data-points, we compare it to the long-term natural fluctuation of features. 

Therefore, our first step is to obtain the long-term natural fluctuation of each feature (assessed 

by long-term temporal variability – LTTV). These fluctuations are helpful not only for the 

interpretation of estimation errors, but also for interpreting other changes happening in the 

actigraphic features (see Chapters 7 & 8).  

A subset of patients was selected from the ACTIBIPO 2 dataset (section 4.2). The inclusion 

criterion was to have at least one year (365 days) of valid days. Valid in this context means 

that there are not more than 10 minutes of missing data-points in one day, or not more than  

1 hour of missing data-points in a 7-day window, or not more than 2 hours of missing 

datapoints in 14-day window. 

In these patients, the cosinor and NPCRA features (see sections 3.5.1 & 3.5.2) were calculated 

for all of the valid days (and windows). Afterwards, temporal variability of each feature for 

each patient was calculated in the form of (1) standard deviation (SD), (2) interquartile range 

(IQR) (as some features – mainly the timing features [L5-time, M10-time, Acrophase] - do 

not follow a normal distribution), and (3) coefficient of variation (CV) (the ratio of SD and 

MEAN, which is easier to be compared to actograms recorded using a different actigraphy 
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wearable, see Chapter 7). These values are then referred to as long-term temporal variability 

(LTTVSD, LTTVIQR, and LTTVCV). 

The LTTV may differ considerably between individuals, based on their different lifestyles, 

movement possibilities, etc. Therefore, for evaluation/interpretation purposes, we have 

defined three hypothetical patients: 1. the minimal LTTV of each feature is referred to as to 

the most stable patient, 2. the median LTTV of each feature is referred to as typical patient 

and 3. the maximal LTTV of each feature is referred to as the most unstable patient. 

5.2.2. Estimation Error in Features Based on Missing Data (Exp. 2) 

This experiment again uses the ACTIBIPO 2 dataset (see section 4.2). In this case, a patient 

was included based on the completeness of his/her data. The inclusion criterion was to have a 

14-day-long data segment without any missing values. Using these complete segments, we 

have evaluated the impact of a percentage of missing values. A set of cosinor and NPCRA 

features (the same as in Exp. 1) was estimated, as described in section 3.5 (3.5.1 and 3.5.2). 

In addition to features calculated from the segments – samples (𝑠𝑎𝑚𝑝) – without missing data 

𝐹𝑖(𝑠𝑎𝑚𝑝, 0), where 𝐹i represents individual features (see Table 5-1), and 𝑠𝑎𝑚𝑝 represents 

data from one patient (14-day segments), the features were also calculated from segments with 

randomly distributed dropped values 𝐹𝑖(𝑠𝑎𝑚𝑝,𝑚𝑖𝑠𝑠), where the 𝑚𝑖𝑠𝑠 represents percentage 

of missing values in the feature-specific estimation window (1-day, 7-day, 14-day). The 1-day 

window features were calculated from the 2nd day of the segment. The 7-day window features 

were calculated from the 1st week of the segment. The 14-day window features were estimated 

from the whole segment. The range of missing values 𝑚𝑖𝑠𝑠 was 2-60 % (with a 2 % step up 

to 20 % and with a 5 % step onwards). The estimation error (EE) was obtained as  

𝐸𝐹i(s𝑎𝑚𝑝,𝑚𝑖𝑠𝑠)  =  𝐹i(𝑠𝑎𝑚𝑝,𝑚𝑖𝑠𝑠) − 𝐹i(𝑠𝑎𝑚𝑝, 0) 

5.1 

The estimation error offset for an individual feature is defined as an average of 

𝐸𝐹i(s𝑎𝑚𝑝,𝑚𝑖𝑠𝑠) over all of the samples with fixed 𝑚𝑖𝑠𝑠: 

�̅�𝐹i(𝑚𝑖𝑠𝑠) =
1

𝑁𝑠𝑎𝑚𝑝
∑ 𝐸𝐹i(s𝑎𝑚𝑝,𝑚𝑖𝑠𝑠)

𝑠𝑎𝑚𝑝

 

5.2 
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And the estimation error variability for an individual feature with fixed 𝑚𝑖𝑠𝑠 is defined as SD:  

�̃�𝐹i(𝑚𝑖𝑠𝑠) = √
1

𝑁𝑠𝑎𝑚𝑝 − 1
∑ (𝐸𝐹i(s𝑎𝑚𝑝,𝑚𝑖𝑠𝑠) − �̅�𝐹i(𝑚𝑖𝑠𝑠))

2

 

𝑠𝑎𝑚𝑝

 

5.3 

The data removal procedure was repeated 100 times to reduce the effect of random distribution 

of missing values.  

5.2.3. The Nature of Missing Data-based Features Errors (Exp. 2) 

Linear regression models with zero intercepts (Eq. 5.45.2) were trained to represent the 

average (�̅�𝐹i(𝑚𝑖𝑠𝑠)) and �̃�𝐹i(𝑚𝑖𝑠𝑠) for each feature. Further, the model predicted �̅�𝐹i
̂(𝑚𝑖𝑠𝑠) 

represents a common (predictable) offset, which may be corrected. The model predicted 

�̃�𝐹i
̂(𝑚𝑖𝑠𝑠) represents a common uncertainty of the feature.  

 

�̅�𝐹i(𝑚𝑖𝑠𝑠) = 0 + 𝛽1 ∙ 𝑚𝑖𝑠𝑠 [+𝛽2 ∙ 𝑚𝑖𝑠𝑠
2] + ε𝐹i(𝑚𝑖𝑠𝑠) 

5.4 

Where 𝜀𝐹i(𝑚𝑖𝑠𝑠) represents residual errors, and the part in the square brackets is optional, 

based on the type of tested dependency. The model formula for �̃�𝐹i(𝑚𝑖𝑠𝑠) is the same as for 

�̅�𝐹i(𝑚𝑖𝑠𝑠). 

Two dependencies were tested, a linear (Eq. 5.4) and a quadratic (Eq. 5.4, including the square 

bracket). For significant models, a better dependency was chosen by comparison of adjusted 

𝑅2 (Eq. 5.5), where the residual-based 𝑅2 (a coefficient of determination – Eq. 5.6) is adjusted 

by the number of predictors. The quadratic model is used when it explains data better for more 

than 5 % using the 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 . 

 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 −

(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
 

5.5 

In the formula above, 𝑁 is the total sample size, and 𝑝 is the number of predictors. 
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𝑅2 = 1 −
SSE

SST
= 1 −

∑ 𝜀𝐹i(𝑚𝑖𝑠𝑠)
2

𝑚𝑖𝑠𝑠

∑ (�̅�𝐹i(𝑚𝑖𝑠𝑠) − �̅�𝐹i
̅̅ ̅̅ )

2

𝑚𝑖𝑠𝑠

 

5.6 

In the formula above, SST is the sum of squares total, SSE is the sum of squares error, and �̅�𝐹i
̅̅ ̅̅  

stands for the average of estimation errors offsets (Eq. 5.2). 

5.2.4. Effect of Aggregation of Missing Values into Blocks (Exp. 2) 

The random distribution of missing values is not common in the actigraphy recordings. The 

data are usually missing in blocks, which correspond most commonly to wearable removal or 

malfunction.  

The individual strength of dependencies was tested by a model combining, changing the 

percentage of missing values (𝑚𝑖𝑠𝑠), and aggregating these missing values into non-

overlapping blocks, as it would be more probable in a real actigraphy recording. For 

simplification, all blocks were of the same size, and only linear dependency was tested for 

both number of blocks (𝑛𝑏𝑙𝑜𝑐𝑘) and 𝑚𝑖𝑠𝑠 . In this case, the features were estimated for missing 

data 𝑚𝑖𝑠𝑠 (0 - 60 %). for each 𝑚𝑖𝑠𝑠 (except 𝑚𝑖𝑠𝑠 =  0 %), the missing data-points were 

arranged into a different number of blocks 𝑛𝑏𝑙𝑜𝑐𝑘 (1 – 50). The procedure was repeated 100 

times for each sample to reduce the effect of random distribution of missing values’ blocks. 

 

�̅�𝐹i(𝑚𝑖𝑠𝑠, 𝑛𝑏𝑙𝑜𝑐𝑘) = 0 + 𝛽1 ⋅ 𝑚𝑖𝑠𝑠 + 𝛽2 ⋅ 𝑛𝑏𝑙𝑜𝑐𝑘 + ε𝐹i(𝑛𝑏𝑙𝑜𝑐𝑘 , 𝑚𝑖𝑠𝑠) 

5.7 

The �̅�𝐹i(𝑚𝑖𝑠𝑠, 𝑛𝑏𝑙𝑜𝑐𝑘) is obtained similarly as in Eq. 5.4, as average over samples, the model 

for uncertainty �̃�𝐹i(𝑚𝑖𝑠𝑠, 𝑛𝑏𝑙𝑜𝑐𝑘) was trained in similar manner. 
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5.3. Results 

5.3.1. Natural Long-term Variation in Features (Exp. 1) 

Out of 275 patients in the ACTIBIPO 2 dataset, 27 fulfilled the inclusion criteria – i.e. enough 

data-points to be included in features’ natural variability estimation (section 5.2.1). The results 

are presented in Table 5-1. The typical patient (median) LTTVCV of most features was in the 

range of 5-20 % (see the fifth column of the table). The largest LTTVCV were observed for  

L5-time features. The comparison of LTTVSD and LTTVIQR shows that most of the features 

LTTV follow approximately Gaussian distribution. 

 

Table 5-1: Natural variability of selected features in BD patients  

Feature 
Estimation 

window size 

LTTVSD 

median (min, max) 

LTTVIQR 

median (min, max) 

LTTVCV (%) 

median (min, max) 

M10  

One day 

73.12 (47.67, 160.43) 96.39 (57.11, 274,09) 16 (9,29) % 

L5  11.32 (3.96, 112.39) 10.03 (4.09, 147.17) 28 (13, 101) % 

M10-time (hours) 2.26 (1.06, 4.99)  3.06 (0.57, 6.28) 16 (8, 28) % 

L5-time (hour) 1.58 (0.77, 5.33) 2.24 (0.83, 7.93) 60 (28, 872) % 

RA 0.055 (0.024, 0.233) 0.055 (0.019, 0.401) 6 (3, 34) % 

M10 RMSSD 241.04 (179.85, 366.83) 315.84 (215.45, 461.71) 13 (10, 18) % 

MESOR7 

Seven days 

28.95 (15.36, 57.50) 37.14 (20.06, 110.39) 10 (6, 23) % 

Amplitude7 26.88 (18.99, 79.25) 34.25 (21.37, 99.18) 14 (7, 42) % 

Acrophase7 (hour) 0.57 (0.28, 5.00) 0.69 (0.35, 4.44) 4 (2, 30) % 

CQ7 0.076 (0.036, 0.182) 0.095 (0.051, 0.275) 10 (4, 45) % 

GOF7 4.08 (2.69, 9.12) 5.17 (3.41, 11.61) 20 (9, 77) % 

M107 43.36 (27.31, 82.19) 55.93 (24.84, 133.43) 11 (6, 18) % 

L57 10.64 (3.89, 79.90) 9.76 (2.75, 122) 22 (10, 45) % 

M10-time7 (hour) 1.44 (0.37, 4.85) 1.58 (0.08, 4.42) 10 (3, 29) % 

L5-time7 (hour) 0.90 (0.32, 4.51) 1.17 (0.25, 5.25) 34 (13, 133) % 

RA7 0.045 (0.019, 0.176) 0.050 (0.012, 0.279) 5 (2, 41) % 

IV7 0.069 (0.043, 0.111) 0.081 (0.049, 0.164) 14 (11, 22) % 

IS7 0.066 (0.043, 0.146) 0.087 (0.054, 0.210) 12 (6, 50) % 

MESOR14 

Fourteen days 

28.03 (13.29, 57.25) 34.70 (15.63, 113.15) 9 (4, 23) % 

Amplitud14e 24.05 (16.13, 75.01) 29.64 (17.36, 91.92) 12 (7, 46) % 

Acrophase14 (hour) 0.48 (0.25, 4.51) 0.62 (0.30, 3.91) 3 (2, 28) % 

CQ14 0.064 (0.027, 0.171) 0.089 (0.039, 0.317) 9 (3, 44) % 

GOF14 3.43 (2.17, 7.59) 4.37 (2.86, 10.30) 17 (7, 78) % 

M1014 43.12 (21.66, 77.79) 48.74 (24.14, 138.74) 10 (5, 18) % 

L514 9.14 (3.83, 70.54) 9.67 (2.60, 125.71) 19 (9, 39) % 

M10-time14 (hour) 1.10 (0.27, 3.78) 1.33 (0.08, 3.75) 7 (3, 22) % 

L5-time14 (hour) 0.74 (0.26, 3.93) 1.00 (0.25, 5.17) 26 (12, 90) % 

RA14 0.038 (0.014, 0.162) 0.044 (0.011, 0.313) 5 (2, 40) % 

IV14 0.059 (0.031, 0.099) 0.071 (0.039, 0.140) 12 (8, 18) % 

IS14 0.060 (0.037, 0.125) 0.074 (0.047, 0.202) 11 (5, 56) % 

SD- standard deviation, IQR- inter-quintile range, CV- coefficient of variance 
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5.3.2. Features Estimation Error and its Variation (Exp. 2) 

Out of 275 patients, 112 patients (segments) were included in the set, estimating the effect of 

missing data on the estimation error for individual features. The rest 163 patients were 

excluded for not having a 14-day long data segment without missing values. 

The Offsets of Estimation Error Based on Missing Data-points 

The dependency of estimation error (EE) offsets (Eq. 5.2) on the amount of missing  

data-points may be divided into three types (see examples in Figure 5.1): 

1) Zero (no common change with missing values): cosinor Acrophase and MESOR.  

2) Linear (usually with a tiny slope): non-parametric M10-time, L5-time, M107,14, and 

cosinor CQ7,14, and GOF7,14 

3) Nonlinear: non-parametric L5, RMSSDM10, RA, IV7,14, IS7,14 and M10 

 

 

Figure 5.1 - Typical distributions of estimation errors based on samples with a specific amount of missing values. On the left 

top, a distribution of errors in Acrophase7 a feature, which doesn’t systematically change with an increasing number of 

missing values and only the estimation uncertainty (variation) grows. On the top right is an M107 feature, where there is a 

small offset of EE, which is negligible compared to the error variation. At the bottom, there are distributions of errors in IS 

and IV. There is a considerable offset of EE in these features, which is nonlinearly dependant on the amount of missing values.  
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For features where a linear common trend of estimation error offset was observed (significant 

β coefficient; Eq. 5.4– see Table 5-2), its slope was small compared to LTTVSD (as in M107). 

The detailed results for the fitted models - coefficients, their significance, and effect sizes - 

are presented in Table 5-2. The table also presents EE offsets estimated (by models) and 

measured (from data) for 20 % of missing data-points, both randomly distributed and 

aggregated into 4 blocks. 

5.3.3. Features Estimation Error - Blocks of Missing Values 

The arrangement of the missing values into blocks affected the EE of the features. In most 

features, the aggregation of missing values into blocks affected the variation of EE. In some 

features (see Figure 5.2.), it also affected the EE offsets.  

The way how the aggregation of missing values into blocks affects the EE variation may be 

divided into three categories: 

1. The variation of EE increases with the amount of missing data-points and lowers with 

the number of blocks into which are the missing data-points divided. Most of the 

features belong to this category, namely the one-day-based non-parametric features 

(M10, L5, M10-time, L5-time, RA), the cosinor MESOR7,14, and the multiple-days-

based non-parametric features (M107,14, L57,14, RA7,14).  

2. The variation of EE changes in the same way as in the first category, only in this case, 

the variation is low when the missing data-points are in 1 or 2 blocks. The cosinor 

Amplitude7,14, CQ7,14, GOF7,14, and Acrophase7,14 belong to this category, as well 

as the multiple-day-based nonparametric M10-time7,14, L5-time7,14, and IS7,14. The 

change is small, compared to LTTVSD, in the timing features, especially in cosinor 

Acrophase7,14, L5-time14, and M10-time14.  

3. Both variation and offset of the EE change nonlinearly with the number of blocks. 

The features that describe the instability in the daily activities RMSSDM10 and IV7,14 

belong to this category. The EE variation in the RMSSDM10 is lowest when the data 

are missing in 2-6 blocks, for other numbers of blocks it is higher. In the IV7,14 

features, the variation is low for 1 block, it increases slightly for 2-6 blocks, and 

decreases for 10-20 blocks, and eventually increases rapidly for a large number (30+) 

of blocks. In both RMSSDM10 and IV7,14 features, the highest EE variation is reached 

for a large percentage of missing data-points. 
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The variation of EE observed for a different amount of missing values divided into blocks, 

and its comparison to natural long-term variability in the features are presented in Table 5-3. 

The predictions of EE variation �̃�𝐹i
̂  estimated from models Eq. 5.7 are presented in the 

supplement Table S-1. 

Although the EE offsets (Eq. 5.4) are affected by the number of blocks in some features, these 

offsets are substantially (by orders of magnitude) smaller than the LTTVSD for these features. 

The only exception is the RMSSDM10. Concerning the EE offsets, the effects of the 

aggregation of missing values into blocks (Figure 5.2) may be divided into four categories: 

1. Offsets are neither affected by the amount of missing data-points, nor by the number 

of blocks. These include the daily activity peaks and troughs timings features (cosinor 

Acrophase7,14, non-parametric M10-time1,7,14, L5-time1,7,14 both one- and multiple-

day-based) and the cosinor MESOR7,14. 

2. Offsets are not affected by the amount of missing data-points, but they change with 

the number of blocks. The L5 feature and IV7,14 are the representatives of this 

category. In L5, the result is not affected by a small number of blocks, but it is slightly 

affected if there are more blocks (8+). In IV7,14, the effect is nonlinear, but the EE 

offset decreases with the number of blocks in general.  

3. Offsets are affected by the amount of missing data-points, but they are not affected 

by their arrangement into blocks. The M107,14 and L57,14 features belong to this 

category. EE offset increases with the amount of missing data-points for M107,14 and 

decrease for L57,14. 

4. Offsets are affected by both the amount of missing data-points, and by the number of 

blocks. They grow with the increasing amount of missing data-points and decrease 

with the number of blocks. The non-parametric M10 and RA, IS7,14, and cosinor 

Amplitude7,14, CQ7,14 and GOF7,14 belong to this category. In IS7,14, the change 

based on the number of blocks is so pronounced, that it leads to decreased instead of 

increased values for a high number of blocks. For RMSSDM10, the value decreases 

for a few blocks and increases for many blocks. The relation is not linear, as shown 

in Figure 5.2. 
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Figure 5.2 - Estimation error in features based on the amount of missing data-points distributed into blocks. The first two 

graphs show Acrophase and M10 features, where the estimation error variation drops with an increasing number of blocks. 

The last two graphs show RMSSDM10 and IV7 features, that have non-linear relation between EE variation and number of 

blocks.
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Table 5-2: Features stability modelled for data with missing values (estimation error offset) 

Feature 
Window 

size  
Miss model 

  
Miss and Block model  Effect of miss = 20 % compared to natural LTTVSD 

  Quad-lin 

Coeff 

β1 

Coeff 

β2 

R2 

adjusted 

Coeff miss 

β1 

Coeff block 

β2 

R2 

adjusted 

Effect Miss model+  

model �̅�𝐹i
̂  (measured �̅�𝐹i) 

Effect Miss and Block 

model‡ for nblock = 4  

model �̅�𝐹i
̂  (measured �̅�𝐹i) 

M10  

One day 

Quadratic 4.52E-4* 4.31E-4*** 0.9859 0.0281 0.0291 0.0064 0.2630 (0.3066) 0.6790 (3.7056) 

L5  Quadratic -0.0139*** -0.0004*** 0.9992 -0.0076 -0.0218 0.0296 -0.4469 (-0.5021) -0.2393 (-1.5025) 

M10-time  Linear 1.25E-3*** - 0.8884 -9.97E-4 5.97E-4 0.0163 0.0251 (0.0303) -0.0175 (-0.1000) 

L5-time  Linear 1.27E-3*** - 0.6902 0.0046*** -7.88E-4** 0.4931 0.0255 (0.0511) 0.0884 (0.1177) 

RA Quadratic 5.93E-5***  1.9E-6*** 0.9989 5.21E-5 9.51E-5* 0.0214 1.94 E-3 (2.18E-3) 1.42E-03 (7.41E-3) 

RMSSDM10 Quadratic -3.591*** -0.077*** 0.9998 -6.1632*** 11.7286*** 0.5989 -102.58 (-103.92) -76.3493 (-108.81) 

MESOR7 

Seven 

days 

Linear -7.52E-5 - 0.0369 -0.0055*** 0.0018*** 0.3927 -1.50 E-3 (2.88E-3) -0.1023 (-0.0549) 

Amplitude7 Linear 3.97E-4** - 0.2704 0.0468*** -0.0152*** 0.6968 7.94E-3 (-1.52E-3) 0.8745 (0.7163) 

Acrophase7  Linear -1.71E-6 - 0.0104 1.01E-5* 2.55E-6 0.0245 -3.40E-05 (3.57E-4) 2.13E-04 (-1.38E-3) 

CQ7 Linear 1.88E-6** - 0.3096 1.91E-4*** -5.99E-5*** 0.7255 3.76E-05 (-4.91E-6) 3.58E-03 (2.93E-3) 

GOF7 Linear 1.75E-4*** - 0.5625 0.0085*** -0.0024*** 0.8469 3.50 E-3 (1.11E-4) 0.1614 (0.0964) 

M107 Linear 4.26E-3*** - 0.8395 0.0996*** -0.0184*** 0.8534 0.0852 (0.0498) 1.9190 (1.2200) 

L57 Quadratic -5.4E-3* -9.2E-5*** 0.9852 -0.0737*** 0.0174*** 0.8827 -0.0475 (-0.0661) -1.4054 (-0.9700) 

M10-time7 Linear 8.49E-4*** - 0.9269 0.0017*** 8.96E-4*** 0.4558 0.0170 (0.0167) 0.0382 (0.0775) 

L5-time7 Linear -1.3E-4** - 0.3761 -0.0014*** 1.29E-4* 0.6596 -2.57 E-3 (-9.46E-3) -0.0270 (-0.0282) 

RA7 Quadratic 2.94E-6* 4.09E-7*** 0.9910 2.99E-4*** -6.55E-5*** 0.8908 2.22 E-4 (2.85E-4) 5.73E-03 (4.06E-3) 

IV7 Quadratic 2.58E-4***  1.37E-5*** 0.9949 -5.29E-4*** -5.80E-5 0.1568 0.010628 (0.0115) -0.0108 (-3.11E-3) 

IS7 Quadratic -7.5E-5*** -4.1E-6*** 0.9947 0.0012*** -6.74E-4*** 0.7660 -3.14 E-3 (-3.40E-3) 0.0222 (0.0173) 

MESOR14 

Fourteen 

days 

Linear 5.5E-5 - 0.0186 -0.0054*** 0.0022*** 0.4338 1.10 E-3 (-8.03E-3) -0.0995 (-0.1029) 

Amplitude14 Linear 3.68E-4*** - 0.3733 0.0256*** -0.0058*** 0.7217 7.35 E-3 (9.80E-3) 0.4882 (0.4112) 

Acrophase14 Linear -1.97E-6 - 0.0080 1.81E-4*** -3.83E-5*** 0.6764 -3.90E-05 (-9.55E-6) 3.47E-03 (7.51E-3) 

CQ14 Linear 1.26E-6*** - 0.4040 1.18E-4*** -2.86E-5*** 0.8023 2.51E-05 (6.37E-5) 2.24E-03 (1.95E-3) 

GOF14 Linear 9.41E-5*** - 0.7429 0.0052*** -0.0012*** 0.8683 1.88 E-3 (1.93E-3) 0.0996 (0.0880) 

M1014 Linear 2.524E-3*** - 0.8016 0.0491*** -0.0050*** 0.8234 0.050481 (0.0324) 0.9628 (0.6981) 

L514 Quadratic -7.5E-4* -5.24E-5*** 0.9794 -0.0454*** 0.0087*** 0.8881 -0.0359 (-0.0362) -0.8741 (-0.5635) 

M10-time14 Linear -1.6E-4* - 0.3257 -0.0026*** -485E-4*** 0.5879 -3.23 E-3 (5.53E-3) -0.0531 (0.0910) 

L5-time14 Linear -6.662E-5*** - 0.4053 -8.01E-4*** 5.44E-5* 0.7675 -1.32 E-3 (-3.68E-3) -0.0158 (0.0242) 

RA14 Quadratic 2.71E-6* 2.43E-7*** 0.9794 2.0E-4*** -354E-5*** 0.9065 1.51E-4 (1.54E-04) 3.87E-03 (2.70E-3) 

IV14 Quadratic 2.55E-4*** 1.37E-5*** 0.9954 -1.69E-4*** -2.97E-4*** 0.2907 0.0106 (0.0115) -4.57E-03 (-1.68E-3) 

IS14 Quadratic -7.3E-5*** -4.0E-6*** 0.9953 5.87E-4*** -2.93E-4*** 0.8433 -3.04E-3 (-3.27E-3) 0.0106 (7.42E-3) 

Coefficient significance * < 0.05, ** < 0.001, *** < 0.0001 (t-test) for mean estimation error (EE) offset in the 100 repetitions;  
+Miss model (Eq. 5.4) and ‡Miss and Block model (Eq. 5.7) – model prediction (measured from data) 

The bold effect value indicates where the EE offset reached 20+ % of natural LTTVSD of the most stable patient (Table 5-1); the bold shaded effect values indicate where the EE offset reached 40+ % of natural LTTVSD. 
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Table 5-3: Reliability of feature estimation – The variation of estimation error calculated for data missing in blocks 

Feature 
Window 

size 
Variation of estimation error �̃�𝐹i  for selected percentages of missing values aggregated into a specific number of blocks 

  
5 % 

4 blocks 

5 % 

6 blocks 

5 % 

10blocks 

10 % 

4 blocks 

10 % 

6 blocks 

10 % 

10blocks 

15 % 

4 blocks 

15 % 

6 blocks 

15 % 

10blocks 

20 % 

4 blocks 

20 % 

6 blocks 

20 % 

10blocks 

M10  

One day 

6.4451 5.6544 4.6821 10.4582 9.2703 7.6894 16.3404 14.2394 12.0758 20.8263 18.2279 15.1478 

L5  2.3553 1.9477 1.8018 3.3251 3.0734 2.8249 4.9638 4.5527 4.0800 5.8316 5.5461 5.1461 

M10-time  0.6152 0.5748 0.5226 0.8320 0.7822 0.7237 1.1348 1.0238 0.9029 1.4102 1.2750 1.1082 

L5-time  0.7972 0.8056 0.7709 1.0218 1.0290 1.0162 1.3241 1.2464 1.1842 1.4795 1.3875 1.3571 

RA 0.0095 0.0081 0.0071 0.0136 0.0127 0.0114 0.0198 0.0185 0.0163 0.0243 0.0227 0.0206 

RMSSDM10 98.7593 118.6427 148.1665 108.6813 122.6964 154.9828 133.6587 140.2980 162.9907 154.1249 154.0750 174.6695 

MESOR7 

Seven 

days 

3.2306 2.8427 2.3790 5.0467 4.5527 3.9527 7.3471 6.8417 6.0142 8.8041 8.6030 7.5478 

Amplitude7 4.0984 3.6207 3.0366 6.4764 5.8572 5.0503 9.2443 8.7148 7.7017 11.6401 10.8146 9.5127 

Acrophase7 0.0276 0.0247 0.0210 0.0440 0.0391 0.0342 0.0626 0.0574 0.0522 0.0922 0.0726 0.0657 

CQ7 0.0140 0.0125 0.0105 0.0222 0.0204 0.0175 0.0316 0.0300 0.0269 0.0392 0.0370 0.0333 

GOF7 0.7612 0.6673 0.5501 1.2140 1.0921 0.9312 1.7340 1.6310 1.4519 2.1058 2.0272 1.7839 

M107 5.0353 4.4857 3.7890 7.7898 7.1615 6.2032 11.3615 10.5216 9.3287 14.2277 13.1622 11.7217 

L57 3.0739 2.9253 2.3321 5.0621 4.6107 3.8743 7.4872 7.0952 6.2581 8.9633 8.4383 7.6274 

M10-time7 0.6242 0.6185 0.5623 0.8086 0.7559 0.7418 1.0160 0.9268 0.8837 1.1176 1.0428 1.0107 

L5-time7 0.3050 0.3002 0.2705 0.4108 0.4033 0.3495 0.5339 0.5267 0.4948 0.6105 0.5907 0.5965 

RA7 9.21E-03 8.73E-03 7.35E-03 0.0150 0.0136 0.0117 0.0216 0.0205 0.0182 0.0265 0.0245 0.0225 

IV7 0.0139 0.0136 0.0143 0.0199 0.0191 0.0187 0.0279 0.0266 0.0255 0.0332 0.0323 0.0307 

IS7 0.0125 0.0124 0.0109 0.0192 0.0178 0.0169 0.0285 0.0266 0.0238 0.0356 0.0332 0.0302 

MESOR14 

Fourteen 

days 

2.6763 2.4748 2.1048 3.9480 3.7324 3.3970 5.4080 5.2772 5.0410 6.6548 6.2923 6.1983 

Amplitude14 3.4327 3.1835 2.7002 5.0967 4.8520 4.4257 7.0343 6.9386 6.3817 8.0654 8.3904 7.9514 

Acrophase14 0.0320 0.0297 0.0276 0.1091 0.1109 0.0399 0.1135 0.1271 0.1400 0.1955 0.1709 0.1755 

CQ14 0.0120 0.0110 9.39E-03 0.0175 0.0169 0.0153 0.0234 0.0238 0.0221 0.0269 0.0283 0.0275 

GOF14 0.6454 0.5869 0.4978 0.9254 0.8982 0.8124 1.1988 1.2417 1.1906 1.3620 1.4534 1.4533 

M1014 4.0821 3.7806 3.2505 6.1736 5.7225 5.2236 8.7670 8.4095 7.6363 10.4815 10.1856 9.4741 

L514 2.5916 2.3622 1.9939 3.9294 3.5413 3.2838 5.4023 4.9758 4.7303 6.2848 6.2820 6.0266 

M10-time14  1.0136 1.0096 0.9996 1.1867 1.2089 1.1173 1.3039 1.2180 1.2211 1.3441 1.2837 1.3041 

L5-time14  0.2748 0.2756 0.2580 0.3853 0.3697 0.3411 0.4662 0.4188 0.4408 0.6213 0.6107 0.5730 

RA14 8.38E-03 7.64E-03 6.59E-03 0.0122 0.0116 0.0105 0.0174 0.0166 0.0156 0.0198 0.0202 0.0193 

IV14 0.0105 0.0101 9.80E-03 0.0150 0.0144 0.0139 0.0195 0.0196 0.0193 0.0225 0.0229 0.0231 

IS14 9.44E-03 8.85E-03 8.38E-03 0.0141 0.0131 0.0123 0.0195 0.0193 0.0177 0.0230 0.0234 0.0224 

Bold red shaded text indicates the missing data-points setting, where the standard deviation (variation) of estimation error (EE) reaches 40+ % of the natural LTTVSD of a feature for the typical patient (Table 5-1).  

Bold text indicates the setting where the EE variation reaches 20+ % of the natural LTTV.
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5.4. Discussion 

The natural LTTVCV in features presented as percentage (see Table 5-1) is relatively low, 

about 5-10 % in most of the feature, in spite of the fact that these results are obtained from BD 

patients where the overall variability in circadian rhythm (including episodes) is expected 

higher (Alloy et al., 2017). The variability is higher for the L5-time feature describing the 

daily sleep, where the average value is small, and therefore even small changes represent larger 

percentual change. 

The long-term natural variability of circadian rhythm is associated with photoperiodic 

regulation and circannual clock. In a healthy population, it is known that phase advances in 

response to bright light in the morning and that sleep timing changes (even with suppressed 

the photoperiodic time clues) throughout year seasons (phase delay in spring and summer, and 

phase advance in winter and autumn) (Honma et al., 1992). In BD patients, the phase changes 

(M10-time, Acrophase, and L5-time) are expected higher because clinical episodes and their 

severity are known to affect circadian rhythm and sleep stability (Alloy et al., 2017; Schneider 

et al., 2020; Walker et al., 2020). 

The increased instability of circadian rhythm in BD patients may be the reason why we observe 

large intra-individual differences in our sample (Table 5-1). The natural LTTV in features, 

which describe physical activity levels (i.e. M10, MESOR, Amplitude), was approximately  

5-6 times higher in the most unstable patient compared to the most stable patient. Concerning 

the daily regime stability (timings of sleep and activity throughout days - i.e. M10-time,  

L5-time and Acrophase), the most stable patient had LTTV of M10-time and L5-time around 

20 minutes for both 7-day and 14-day based features (for 1-day based features, the LTTV was 

about 1 hour). The most unstable patient had the LTTV in these features about 4-5 hours 

(therefore 5-15 times higher). The typical patient had LTTV of physical activity features only 

2 times higher than the most stable patient. His daily regime stability was about 1 hour for  

7-day and 14-day based features (and approximately 2 hours for 1-day based features). Honma 

et al. observed a sleep shift between summer and winter of about 2.5 hours. This shift 

corresponds to the LTTV in L5-time for the typical patient (slightly less than 1 hour when 

assessed by the SD metric and slightly more when assessed by the IQR metric). 



62 

 

In the features where there were common offsets of estimation errors (EE) (significant model 

coefficients) based on the percentage of missing data, these offsets were mostly very small. 

When there were linear relations between missing data-points and EE offsets, these offsets for 

20 % of missing data-points didn’t reach 1 % of the features’ natural LTTV for the typical 

patient. The only features where the EE offset was comparable to their natural LTTV were the 

RMSSDM10, IV and IS features (43 %, 19 %, and 5 % of their natural LTTV). The correction 

of the EE offset in these features would be complicated because: (1) the relation between 

missing data and offset of EE is not linear (in both global model and individual models), and 

(2) it is strongly affected by the arrangement of missing data-points into blocks. Additionally, 

for two of them (RMSSDM10, and IV), the random distribution of samples represents the most 

extreme case. The nonlinearity of the relationship is probably based on the resampling of the 

data for estimation of these features (20-minute segments for IV and IS, and 5-minute for 

RMSSDM10), where the missing data blocks of a certain length are more harmful for the feature 

estimation. Similar behaviour was not observed in M107,14 and L57,14 features, where the data 

were also resampled into 5-minute segments. Unlike in RMSSDM10, the data in M107,14 and 

L57,14 are averages over several days, which probably reduces the effect caused by the length 

of missing data blocks. The correction may be possible when both effects of the amount of 

missing data-points and size of blocks are considered, but this was beyond the scope of this 

analysis, as only blocks of the same length were tested. 

On the other hand, the variation of EE changes considerably with the increasing amount of 

missing data-points. As was expected, the parametric (cosinor) analysis was more resistant to 

missing data-points, especially the Acrophase feature (where even with 20 % of missing  

data-points, the EE variation did not reach 20 % of its natural LTTV). From the non-parametric 

features, the most stable was the M10 feature. The high stability of M10 could be caused by 

high levels of its LTTV in BD patients, where higher fluctuation of activity is a symptom of 

the disease (Schneider et al., 2020). In other non-parametric features, many were considerably 

(20 % of their typical patient’s LTTV) affected already at 5 % level of missing values, 

especially when the data were missing in a single or few blocks. Unfortunately, as wearable 

removal is the most common cause of missing data-points (for example, for hygiene or sport), 

the data are typically missing in one or a few blocks. While the wear-off for evening hygiene 

or even the whole night would affect the feature’s EE less, as it is usually connected with low 

levels of physical activity, the removal for sports would considerably affect the features, 

mainly those based on 1-day data. The rhythm stability describing features IS and IV are more 
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robust. Still, the stability (measured as EE variation compared to typical patient’s LTTV) drops 

already for 10 % of missing data-points in the sample. The EE variation could be accurately 

predicted using regression models (compare the EE variation - Table 5-3 and their estimations 

Table S-1 in the supplement). The comparison reveals that the model predictions of EE 

variation are more benevolent for smaller (5-10 %) amounts of missing data-points.  

The correction of EE offset is complicated because, in features where EE caused by missing 

data-points are consistent and stable (predictable by the models), the EE offsets are typically 

quite small (around 1 % of their LTTV). And therefore, their correction would have a 

negligible effect on the results. On the other hand, in features where the EE offset caused by 

missing data-points is large (20 % of their LTTV), it is also largely variable and therefore not 

predictable by the used models. More complex models (which are, however, beyond the scope 

of this study) would have to be trained, using simulated data with variable length of missing 

data segments (blocks) in order to correct these EE offsets. A design of such models could be 

beneficial because these features (RMSSDM10, and IV) represent descriptors of rhythm 

fragmentation, which is connected to cognitive and motor performance (Gonçalves et al., 

2015). 

5.5. Limitations 

The presented results need to be interpreted while considering some limitations: 

Firstly, the features’ LTTV may be possibly different in the healthy population than in the BD 

patients, whose data are presented here. Some aspects, such as medication used, or clinical 

episodes, may alter and possibly increase the features’ LTTV (Schneider et al., 2020). On the 

other hand, many BD patients have a free daily regime (due to disability pension), which may 

decrease the features’ LTTV (Schneider et al., 2020). Though the use of a representative 

patient should suppress these extremes, it still may cause some interpretation issues. 

Secondly, the arrangement of missing data-points into blocks of the same size is not something 

that is happening in real-world scenarios. This may affect the features that use resampled data, 

as the resampling may be susceptible to the specific block length. This would not happen in 

real-world scenarios, as the length of segments would be variable.  

Thirdly, the random distribution of these blocks is also a considerable simplification. In  

real-world settings, the wearable is seldom removed during sleep, unless it was removed 
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before bedtime. Therefore, the effects on night-time based features (L5 and L5-time) are 

probably exaggerated in our results. In contrast, the effect on daily activity features 

(Amplitude, M10, etc.) may be underrated, as the probability of wearable removal is higher 

during the daytime. 

5.6. Conclusion 

There are large interpatient differences in LTTV of actigraphic features, even when they are 

obtained from highly reliable (complete) recorded data. The uncertainty introduced into a 

sample by segments of missing values reaches relatively high levels (20+ % LTTV) already 

for small amounts of missing data-points (5-10 %). The largest estimation error variation 

(uncertainty) was usually reached when the missing data were in a single or only a few blocks. 

The only exceptions were features describing the variability in daily activities patterns 

(RMSSDM10, and IV). In these features, the variation of estimation error behaved highly 

irregular and reached a maximum for high number of blocks. The cosinor-based features are 

more robust to missing data (especially Acrophase) than the non-parametric features. The 

difference is not as large (approx. 5-10 %), because for more than 15 % of missing data-points, 

the estimation error variation is considerably large (20+ % LTTV) for most of the features. A 

typical consistent offset of the estimation errors, observed in some features, is negligible 

(< 1 %), and therefore it doesn’t need to be corrected. In features where the estimation error 

offset reaches high values, comparable to its LTTV, it is dependent nonlinearly on both the 

percentage of missing data and the number of blocks (potentially on the block size). Therefore, 

it cannot be corrected be by the methods proposed in this chapter. 
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6. Objectivisation of Chronotype 

Estimation Through Actigraphy 

In this chapter, we are re-using data from our impacted journal article Fárková, E.,  

Schneider, J. et al. (2019) ‘Weight loss in conservative treatment of obesity in women is 

associated with physical activity and circadian phenotype: A longitudinal observational 

study’, BioPsychoSocial Medicine, 13(1), pp. 1–10. doi: 10.1186/s13030-019-0163-2. In this 

paper, we have used the selected actigraphic features to determine how the circadian rhythm 

is associated with weight reduction or gain during a weight reduction programme.  

The results presented in this chapter are about to be submitted as a journal article  

Schneider, J., Fárková, E., Bakštein, E. (2021) ‘Chronotyping Objectivisation Through Wrist-

Worn Actigraphy’. 

6.1. Introduction 

Since the 1980s, physical activity has been a standard and established marker of circadian 

rhythms, which is also helpful for exploring rhythm disturbances. More precisely, human 

physical activity (measured using wrist-worn actigraphy) shows an individual circadian 

pattern in the individual’s private environment, which may be beneficial for clinical practice 

or long-term studies (Portaluppi, Smolensky and Touitou, 2010; Smith et al., 2018). Moreover, 

actigraphy was reported to be an accurate estimation of sleep onset and offset times (Kaplan 

et al., 2012; Kosmadopoulos et al., 2014). 

The long-duration recordings allowed us to produce plots to see changes in circadian rhythms 

over time. From this perspective, actigraphy is a very convenient method for studying 

circadian rhythms in humans (Ancoli-Israel et al., 2003; Portaluppi, Smolensky and Touitou, 

2010; Calogiuri, Weydahl and Roveda, 2011).  

The popularity of actigraphy in chronobiology stems from its apparent benefits: it is cheap, 

easy to use, reliable, and provides objective data about individuals’ daily routines (Portaluppi, 

Smolensky and Touitou, 2010). Over the past years, the circadian system came into the 

research spotlight for its wide implications for overall health (Abbott, Malkani and Zee, 2020). 
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Although actigraphy has been an established means to measure physical activity and sleep, 

there is no consensus on the use of actigraphy for determining the circadian phenotypes: a set 

of subjectively defined variables, such as a rate of social jetlag or a chronotype (individual 

circadian preference). A variety of methods for analysing circadian aspects of activity data 

show promising results (Gupta and Pati, 1994; Gonçalves et al., 2014, 2015). However, the 

quality and range of evidence-based methodology do not seem to be fully in line with the level 

of popularity of actigraphy as a research method. We thus believe further detailed 

methodology-oriented research is needed. 

6.1.1. Actigraphy-based Circadian Parameters 

With respect to chronobiology, existing studies provide evidence that wrist activity covaries 

with the phase of melatonin secretion (Ancoli-Israel et al., 2003), core body temperature 

(Ancoli-Israel et al., 2003), oral temperature (Gupta and Pati, 1994), and heart rate (Gupta and 

Pati, 1994).  Midpoints of sleep are significantly correlated with the dim light melatonin onset 

phase in adolescents, indicating that the middle of sleep may be a useful circadian phase 

marker (Crowley et al., 2006, 2016). 

6.1.2. Subjective Chronotype and Actigraphy 

Several studies have already explored the proper functioning of the subjective tool, the 

chronotype estimating (chronotyping) questionnaires (i.e. Munich Chronotype Questionnaire 

(MCTQ) and Morningness-Eveningness Questionnaire (MEQ)), employing selected 

actigraphic parameters and vice versa.  

Gershon and her team (2018) replaced the subjective determination of chronotype with 

objective actigraphy-based determination. They found that subjective and objective 

chronotypes correlate significantly with each other (Gershon et al., 2018; Kaufmann et al., 

2018).  

Additionally, a significant negative association was observed between Korean MEQ score and 

activity Acrophase timing in the Korean study’s validation subset. The lower the MEQ score 

was (towards eveningness), the more delayed was the activity Acrophase. Furthermore, Lee 

et al. (2014) found that the mean activity Acrophase of the Evening types (E-type) group was 

nearly two hours later than that of the Morning types (M-type) group. This difference was 

even more significant on free days than on workdays. (Lee et al., 2014)  
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Vitale et al. (2015) also observed a significant difference in the Acrophase: The M-types have 

shown an early Acrophase (14:32 h) compared with both other types - the Neither types  

(N-types) (15:42 h) and the E-types (16:53 h).  

Roenneberg, Wirz-Justice and Merrow (2003) described a phase shift of sleep to later phases 

during free days using the MCTQ questionnaires. Actigraphy shows a strong correlation with 

the MCTQ (Santisteban, Brown and Gruber, 2018). The corrected sleep mid-time (MSFsc) on 

free days as measured by the MCTQ was not significantly different from the actigraphy based 

sleep mid-time (mid-sleep) (Santisteban, Brown and Gruber, 2018). Furthermore, an 

actigraphy study by Lehnkering et al. (2006) supported the Roennebergs’ findings concerning 

the sleep phase.  

Lee and his team (2014) found a significant negative correlation between Korean MEQ score 

and bedtime or wake time, with a stronger correlation in both cases, when weekend (free day) 

versus weekday wake time was used. Such correlation is caused by typical patterns, when 

weekday sleep-wake times are shortened because of the need to get up to go to work, while 

weekend sleep-wake times may better reflect the underlying chronotype. This concept has 

been described as a "social jetlag" (SJL) (Wittmann et al., 2006). 

Overall, actigraphy is an elegant and non-invasive method based on the continuous 

measurement of physical activity. Actigraphy is widely used in sleep and circadian rhythms 

studies. It, however, lacks coherence in its use. This chapter provides insight into how well 

actigraphy can replace questionnaires in chronotyping and how long records should be. 

The aims of this study are:  

1. To evaluate the connection between the questionnaire-based chronotype estimates 

obtained through chronotyping questionnaires (MEQ and MCTQ), and objectively 

measured through actigraphy parameters connected to earliness or lateness of 

physical activity (and sleep). 

2. To assess the accuracy of approximation of chronotyping questionnaire scores from 

actigraphy and select actigraphy measures that best resemble the questionnaire-

based chronotypes. 

3. To evaluate how the length of the actigraphy observation period affects the 

accuracy of chronotype estimation. 

4. To evaluate the stability (test-retest) of the actigraphy based chronotypes.  
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6.2. Methods 

In this study, we have equipped a group of women participants (see the CHRONOBIO dataset 

details in section 4.3) with an actigraphy wristband and instructed them to wear it at all times 

for up to three months. All participants filled the screening chronotyping questionnaires at 

study admission, together with the MEQ and MCTQ (for MSFsc and SJLrel). A subgroup of 

patients also filled the MCTQ and MEQ questionnaires after a follow-up period of 18 months. 

The participants also completed a survey where they indicated work status, long-distance 

travel dates, and free and vacation days other than weekends and public holidays. 

6.2.1. Subjective Methods – Chronotype Questionnaires 

Czech versions of the MCTQ and MEQ questionnaires, validated by a double-reverse 

translation from the originals, were used. Previously, the Czech translations of both 

questionnaires were validated, and their relationship investigated (Fárková et al., 2020). 

Morningness-Eveningness Questionnaire (MEQ) 

The gold standard in chronotype detection is the self-assessment inventory developed by 

Horne and Ostberg (1976), the MEQ (Di Milia et al., 2013). The MEQ consists of 14 multiple 

choice questions, and 5 open questions, inquiring about individual preferred times for different 

activities. The MEQ score ranges from 16–86, with lower values indicating a more evening 

chronotype (Horne and Ostberg, 1976). It can be categorized into the E-type (16–41), the  

N-type (42–58), and the M-type (59–86) (Roenneberg, 2015; Ryu et al., 2018). 

Munich Chronotype Questionnaire (MCTQ) 

The Munich Chronotype Questionnaire (MCTQ), designed by Roenneberg and his team 

(2003), quantifies the chronotype according to the phase of entrainment based on the reported 

mid-sleep and takes into account its occurrence on free-regime and scheduled-regime, e.g. 

working days. The MCTQ parameters are mid-sleep on weekdays (MSW), mid-sleep on free 

days (MSF) and mid-sleep on free days corrected for sleep debt on weekdays (MSFsc). The 

latter represents a continuum of circadian preference (Levandovski et al., 2011). MCTQ was 

primarily used for determining MSFsc and the rate of SJL - i.e. the difference between hours 

of sleep on free days and working days. The rate of SJL quantifies (in hours and minutes) the 

discrepancy between circadian and social clocks, which can lead to chronic sleep loss 

(Roenneberg et al., 2012). 
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Questionnaire Chronotype Test-retest Stability  

Based on the data from the 18 volunteers who re-filled the chronotyping questionnaires  

(see section 4.3.1), we evaluated the test-retest long-term stability for both MCTQ and MEQ 

chronotypes, using the Spearman correlation in a similar way as in the study of Lee et al. 

(2014). 

6.2.2. Actigraphy 

The actigraphy wearable (GMK12 actigraph by Mindpax Ltd.)  was worn on the non-dominant 

arm’s wrist and was set to collect activity counts in 30s epochs. The data were wirelessly 

transferred to a server, using base stations at participants’ homes, and stored for offline 

processing.  

First, an exploratory analysis was performed: actograms were studied macroscopically to 

verify the absence of artefacts or abnormalities. The sleep and wake periods, and periods when 

the actigraph wasn’t worn were detected automatically (see section 3.5.3). The wear-off 

periods (when the wearable was removed) were excluded from subsequent analyses.  

The mid-sleep feature was obtained from the detected main daily sleep. Additional features 

included in the analyses were the cosinor Acrophase (3.5.1), the chronotyping MSFscacti, and 

SJLrelacti (3.5.4), and the NPCRA M10-time and L5-time (3.5.2). The features were estimated 

using 1-6 weeks’ time window segments of actigraphy recordings. Except for the Acrophase, 

all features were calculated from individual days and then averaged for the required segment 

length. Acrophase was calculated from the whole segments. The features obtained from 

different length segments were used to evaluate the effect of recording length on 1) the feature 

stability in time and 2) the chronotype estimation accuracy. 

Moreover, for SJL evaluation, mid-sleep, M10-time and L5-time daily values were averaged 

for free-regime and working days of the segments. Sleep, and therefore mid-sleep, is always 

assigned to the day of wake-up. The absolute differences between working and free days are 

referred to as mid-sleepdiff, M10-timediff, and L5-timediff. 

All feature extraction, data processing and statistical analyses were with Matlab software 

(MATLAB 2018b, The MathWorks, Inc., Natick, Massachusetts, United States.). 

                                                 
12 A device with similar parameters as MindG (Table 3-1), but due to different hardware the counts scores are 

not comparable 
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6.2.3. Chronotype Estimation from Actigraphy 

A set of univariate linear models was used to evaluate chronotype estimation accuracy for each 

of the selected actigraphic features. We trained linear regression models with the scale-based 

circadian phenotype score CPSc (chronotypes MSFsc, MEQ, and social jetlag SJLrel) as the 

outcome variable and actigraphic features obtained from the first valid actigraphy window as 

predictors. 

CPSc  =  𝛽0 + 𝛽1𝐹𝑖 + 𝜀𝑖, 

6.1 

where F𝑖 represents the i-th selected feature and ε𝑖 stands for residual error. To evaluate model 

performance on unseen data, we used a 5-fold cross-validation procedure: the study 

participants were divided into 5 folds (groups), where 4 folds were used for training (training 

group) and one for testing (testing group). The performance was evaluated using the test group. 

This procedure was repeated five times. Therefore, each participant had been one time in a 

testing group. 

We chose the mean absolute error (MAE) as a primary accuracy measure, which may be 

interpreted in the response variable’s original units. 

MAE  =  
1

𝑛𝑡𝑒𝑠𝑡
∙ ∑ |CPSc𝑡 − CPSc�̂�|

𝑛𝑡𝑒𝑠𝑡𝑠

𝑡

, 

6.2 

where 𝑛𝑡𝑒𝑠𝑡𝑠 is the number of values in each test set, CPSc𝑡 is the chronotype or SJL recorded 

score and CPSc�̂� is the model estimation of the chronotype or SJL score. 

For each of the selected actigraphic features, and each window length, three linear regression 

models were fitted predicting one of the three circadian phenotype scores: 

a) the MEQ score  

b) MCTQ-MSFsc 

c) MCTQ-SJLrel  

To predict the MEQ score or the MCTQ-MSFsc time, we have used MSFscacti, Acrophase, 

M10-time, L5-time, and mid-sleep as predictors. To predict MCTQ-SJLrel we have used 

SJLrelacti, and differences between working days and free days in M10-timediff, L5-timediff, and 
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mid-sleepdiff as predictors. For the sake of the analysis, the working days and free days were 

based on the Czech calendar weekends and holidays and corrected when the participant filled 

a free day survey. 

To evaluate feature strength and necessary actigraphy recording duration for chronotyping, 

the features were estimated from the 1–6 week-long segments. The usefulness of each 

actigraphic feature was assessed for each questionnaire-based response: (1) by the models’ 

prediction accuracy (MAE) and (2) the Spearman’s correlation between the questionnaire-

based response and actigraphic feature.  

To illustrate the extent to which the actigraphic features improve chronotype estimation for 

each individual, we also computed the performance scores of an intercept-only, null model, 

defined as: 

CPSc  =  𝛽0 + ε𝑖 , 

6.3 

The null model is equivalent to using the sample mean to estimate individual chronotype. The 

same evaluation procedure as for the standard models was used for the null model. 

Sensitivity Analysis for the Impact of Confounders: Age and BMI 

Both age and BMI have been reported previously to be connected with chronotype and 

physical activity (Mecacci et al., 1986; Roenneberg et al., 2007; Bass, 2012; Sridhar and 

Sanjana, 2016). As the dataset used in this study is relatively heterogeneous, we exploratively 

evaluated the relationship between individual actigraphic features, age, and BMI using 

univariate linear regression.  The evaluation was done by cross-validation of an additional set 

of linear models, using a procedure identical to the main analysis. The linear models were 

modified by adding two regressors for age and BMI. The resulting form of the models was: 

CPSc  =  𝛽0 + 𝛽1 ∙ 𝐹𝑖 + 𝛽2 ∙ 𝐵𝑀𝐼 + 𝛽2 ∙ 𝐴𝐺𝐸 + 𝜀𝑖, 

6.4 

Gender was not used as cofounder because all included volunteers were women.  

Test-retest Stability of Actigraphy-based Chronotype 

To evaluate the stability of actigraphy chronotypes’ over time, we have used the test-retest 

procedure, similar to the one used to evaluate the questionnaire-based chronotype stability. 

The stability was estimated using Pearson’s correlation coefficient between actigraphic feature 
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values calculated from two time-windows, separated by a gap. The tested window lengths 

were set to 1-3 weeks. The time gap between the windows was set in the range of 0-3 weeks. 

A scheme of examination procedure is shown in Figure 6.1. 

 

Figure 6.1 - Test-retest evaluation settings. The features are estimated from selected segments (1-week purple marked 

windows at the beginning and the end) with a set gap in between (3 weeks – green dashed line). Features are estimated for 

all patients with sufficient valid data in both windows (maximum 20% missing data-points). The test-retest is obtained as a 

Pearson’s correlation coefficient between Window 1 and Window 2 feature estimates. 

6.3. Results 

The details about participants are presented in the Datasets Chapter 4 - section 4.3, the 

CHRONOBIO dataset.  

6.3.1. Chronotype Estimation from Actigraphy 

All of the selected actigraphic features have shown a significant connection to their respective 

questionnaire counterparts. Table 6-2 summarises the cross-validated linear models’ results 

for features calculated from windows, for which the best prediction accuracy was achieved. 

Analogous results for models using different all used window lengths to compute the 

actigraphic features can be found in Table S-2 in the supplement.  

For MEQ, all of the five features selected for evaluation were significant. The best predictor 

based on low train MAE was the Acrophase (MAE = 5.6 points, R-squared = 0.37), followed 

by the daily M10-time (MAE = 5.9 points, R-squared = 0.29), and mid-sleep 

(MAE = 6.0 points, R-squared = 0.36). AGE was a significant confounder for MEQ score 

prediction. The BMI was not. Using a linear model with confounders brought a little MAE 

improvement for all mentioned strong predictors (< 0.1 MEQ points). The window length with 

minimum error varied from 3-6 weeks, depending on the feature. If an MCTQ-MSFsc 
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questionnaire-based score was used for MEQ prediction, it achieved test MAE = 5.4 and train  

R-squared = 0.47. 

Similarly, for the MCTQ-MSFsc, all features selected for comparison have shown a 

significant connection. The best predictor, based on low MAE, was the MSFscacti 

(MAE = 0.57 hours, R-squared = 0.47), followed by Acrophase (MAE = 0.61 hours,  

R-squared = 0.40), mid-sleep (MAE = 0.62 hours, R-squared = 0.46), and L5-time 

(MAE = 0.65 hours, R-squared = 0.32). AGE was a significant confounder, while BMI score 

was not. The improvement of MAE using the model with confounders was < 2 minutes for all 

mentioned predictors. As the MCTQ MSFsc and MSFscacti have a theoretical 1:1 dependency, 

the fitted and theoretical models are shown in Figure 6.2. The window length achieving 

minimum error varied between 4-6 weeks, depending on the feature. When the questionnaire-

based MEQ score was used for MCTQ-MSFsc estimation, it achieved test MAE = 0,61 hours 

and train R-squared = 0.47. 

 

Figure 6.2 - MCTQ and actigraphy circadian phenotypes dependency. Showing patients data and the fitted and theoretical 

models for MSFsc (left side) and SJLrel (right side) The fitted model (solid red) is shown with the 95% confidence interval 

(dashed red). The solid black line represents the theoretical 1:1 model. The difference between SJLrel models suggests that 

many participants tended to overestimate their SJL. 
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Unlike in the previous two cases, only two of the selected features were significant predictors 

of the MCTQ-SJLrel. The best predictor, based on low MAE was the SJLrelacti 

(MAE = 0.62 hours) followed by and mid-sleepdiff (MAE = 0.65 hours). The other non-

significant features, the M10-timediff and L5-timediff, showed slightly inferior results 

(MAE > 0.67 hours, where 0.69 was the result of a null model). As in previous cases, AGE 

was a significant confounder, while the BMI score was not. The incorporation of confounders 

into the model almost didn’t improve the model. The MAE improvement for the models with 

confounders was less than 1 minute for any of the actigraphy predictors. The window length 

achieving minimum error was varying from 3-4 weeks, depending on the feature. As the 

MCTQ-SJLrel and SJLrelacti have an explicit theoretical 1:1 dependency, the data and the 

fitted theoretical and actual model are shown in Figure 6.2. Additionally, we have observed 

high SJLrelacti variability over time (the median SD of 4-week overlapping windows was 15 

minutes, the first quartile Q1 = 10 minutes, and the third quartile Q3 = 23 minutes). 

Moreover, the correlation of the individual actigraphic features with AGE and BMI can be 

found in Table 6-1. The results of models including confounders can be found in Table S-3 in 

the supplement. 

 

Table 6-1: Pearson’s correlation coefficients between individual actigraphic features, age and BMI 

Feature Correlation with AGE Correlation with BMI 

MSFscacti -0.421*** -0.223* 

Acrophase -0.528*** -0.350*** 

M10-time -0.426*** -0.399*** 

L5-time -0.302* -0.240* 

Mid-sleep -0.413*** -0.232* 

SJLrelacti 0.088 -0.016 

M10-timediff -0.130 0.107 

L5-timediff 0.025 0.020 

Mid-sleepdiff -0.008 -0.180 

*** < 0.001, ** <0.01, * <0.05 
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Table 6-2: Actigraphy vs questionnaire-based chronotype: linear model results. For each actigraphic feature, the optimal 

window length providing minimum test-set MAE is shown.  

1) MEQ TRAIN: β1 TRAIN: R-squared TEST: MAE 

Feature Window 

(weeks) 

mean SD mean SD mean SD 

Acrophase 3 -5.884 0.377 0.372 0.042 5.608 0.453 

MSFscacti 4 -4.249 0.450 0.260 0.043 6.287 0.514 

M10-time 4 -3.871 0.267 0.289 0.038 5.869 0.498 

L5-time 6 -5.994 0.337 0.313 0.021 6.125 0.781 

Mid-sleep 6 -6.400 0.705 0.359 0.042 5.995 1.148 

Where MEQ based on questionnaire MSFsc has an MAE of 5.446 MEQ points and R-squared 0.47. The null model MAE 

is 7.216 points. 

2) MCTQ-MSFsc TRAIN: β1 TRAIN: R-squared TEST: MAE 

Feature Window mean SD mean SD mean SD 

Acrophase 6 0.679 0.041 0.402 0.037 0.605 0.113 

MSFscacti 6 0.658 0.035 0.471 0.034 0.569 0.089 

M10-time 6 0.437 0.061 0.287 0.046 0.691 0.086 

L5-time 6 0.729 0.062 0.356 0.022 0.665 0.155 

Mid-sleep 6 0.830 0.083 0.455 0.061 0.615 0.107 

Where MSFsc based on questionnaire MEQ has an MAE of 0.612 hours and R-squared 0.47. The null model MAE is 0.804 

hour. 

3) MCTQ-SJLrel TRAIN: β1 TRAIN: R-squared TEST: MAE 

Feature Window mean SD mean SD mean SD 

SJLrelacti 4 0.497 0.059 0.188 0.024 0.622 0.116 

Mid-sleepdiff 3 0.223 0.064 0.086 0.047 0.647 0.160 

M10-timediff 6 0.142 0.019 0.038 0.015 0.687 0.141 

L5-timediff 6 0.214 0.069 0.069 0.016 0.674 0.196 

The SJLrel may be predicted from questionnaire MSFsc with MAE of 0.640 hours and R-squared 0.19. The null model has 

MAE 0.691 hour. 

Bold names mark features, which is significant and explains considerable variation in the data (R-squared > 0.35) (for SJL 

the one with significant coefficient), italic names mark features with non-significant coefficients. For comparison, the 

questionnaire-based prediction accuracies and results of null models are provided. 
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6.3.2. Impact of the observation period 

In the previous section, we mentioned that the best results were obtained for specific 

estimation window lengths. The results presented in the Table 6-2 suggest that the longer time 

window usually provided the lowest chronotyping error for both the MEQ and MSFsc 

chronotypes (especially for MSFsc). On the other hand, shorter windows seem better suited 

for the estimation of SJL, where the maximum is reached for an approximately 3-4 weeks long 

window. Figure 6.3 presents the impact of estimation window length on the degree of 

correlation with the respective questionnaire-based chronotypes.  

 

 

Figure 6.3 - Impact of actigraphy estimation window length on the level of association (Spearman’s correlation coefficient) 

with each questionnaire-based chronotype measurement. 

 

According to these results, Acrophase is a stable and valuable predictor of chronotype. It had 

a stable correlation across different observation window lengths (RSpearman ~ 0.6) with both 

questionnaire-based chronotype measures. For MEQ, the Acrophase reached the best score. 
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For MCTQ-MSFsc, there were better-correlated features: the MSFscacti (RSpearman ~ 0.7) and 

mid-sleep. However, for very short recording lengths (one or two weeks), the Acrophase 

achieved the best results also for MCTQ-MSFsc. 

For the MCTQ-SJLrel the closest actigraphic feature is SJLrelacti with a moderate level of 

correlation (RSpearman ~ 0.4), providing consistent results for windows of three weeks and 

longer. The M10-timediff and L5-timediff features showed a low level of correlation 

(RSpearman < 0.3). 

6.3.3. Test-retest Results for Actigraphic Features and Chronotype 

We examined the test-retest stability of selected features by computing each actigraphic 

feature using two estimation windows of the same length, separated by a gap – see Figure 6.1.  

A Pearson’s correlation was calculated for each of the features between the sets of values 

obtained from the two estimation windows. The results are shown in Table 6-3.  

The most stable chronotyping feature was the Acrophase, where the test-retest score reached 

high values (~ 0.7) already for short estimation windows (1 week) with a long gap (3 weeks) 

in between. For longer estimation windows (3 weeks), it reached a very high (~ 0.8) test-retest 

score. The second most stable feature was mid-sleep. Compared to the Acrophase, it had lower 

stability (~ 0.3) for a short estimation window (1 week) and a long gap in between (3 weeks). 

For a long observation period windows (3 weeks), the results were similar to Acrophase 

(~ 0.8). 

In general, the actigraphic features selected for comparison with MCTQ-based phenotypes 

had much lower levels of long-term stability. Their respective test-retest scores were 

dependent mainly on the length of the estimation window. For the MSFscacti, the maximum 

test-retest score (~ 0.7) was reached for two consecutive 3 week-long windows. For the long-

gap scenario (3 weeks), the test-retest score was only moderate (~ 0.5). As the best result for 

the SJLrelacti feature, a moderate test-retest score (~ 0.5) was observed for 3-week estimation 

windows without any gap in between. For shorter estimation windows, the test-retest score 

was even lower. Again, the test-retest score is highly dependent on the estimation window 

length. The length of the gap does not seem to have much effect on these results. All the test-

retest scores were significant (α < 0.05), except for the MSFscacti and SJLrelacti from the one-

week estimation windows with a one-week gap in between. 
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Table 6-3: Stability (test-retest) of chronotype predicting features (Pearson’s correlation coefficients) 

 

Acrophase 

    

Win length/gap 0 weeks 1 week 2 weeks 3 weeks 

1 week 0.801 0.742 0.683 0.688 

2 weeks 0.817 0.756 0.791 0.547 

3 weeks 0.851 0.838 0.592 0.807 

 

Mid-sleep 

    

Win length/gap 0 weeks 1 week 2 weeks 3 weeks 

1 week 0.789 0.745 0.655 0.283 

2 weeks 0.784 0.473 0.720 0.740 

3 weeks 0.823 0.825 0.849 0.782 

 

MSFscacti 

    

Win length/gap 0 weeks 1 week 2 weeks 3 weeks 

1 week 0.293 0.196 0.451 0.456 

2 weeks 0.410 0.597 0.598 0.544 

3 weeks 0.735 0.669 0.549 0.419 

 

SJLrelacti 

    

Win length/gap 0 weeks 1 week 2 weeks 3 weeks 

1 week 0.222 0.120 0.257 0.281 

2 weeks 0.303 0.421 0.392 0.470 

3 weeks 0.559 0.553 0.409 0.477 

Italic values were not significant (p > 0.05) 

 

Questionnaire Chronotype Test-retest Stability 

A subset of 19 women re-filled the MEQ and 17 women re-filled the MCTQ. The median time 

between filling the first and second set of questionnaires was 81 weeks with a minimum of 72 

weeks and a maximum of 107 weeks. The Pearson’s correlations between the first and second 

set of questionnaires were for MEQ RMEQ = 0.956 (p < 0.001), for MCTQ-MSFsc  

RMSFsc = 0.634 (p = 0.004), and for MCTQ-SJL RSJLrel = 0.718 (p < 0.001). 
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6.4. Discussion 

Both subjective (questionnaires) and objective (actigraphy) methods have been used for 

chronotype estimation across the world (Ancoli-Israel et al., 2003; Zavada et al., 2005; Thun 

et al., 2012; Di Milia et al., 2013; Roenneberg et al., 2019). Still, to our knowledge, ours is 

the first study, which determines the quality of their substitutability and defines clear guidance 

for further clinical and research usage. In particular, we focused on the overlap between the 

subjective and objective measures of the chronotype and social jetlag, impact of the 

observation period and repeatability of the measurements (test-retest). 

6.4.1. The Connection Between Questionnaire Chronotypes and Actigraphy 

While multiple actigraphic features were significantly correlated with the questionnaire-based 

chronotypes (Figure 6.3), the overlap between the two chronotyping methods, and therefore, 

their accurate substitutability is limited. 

According to our first hypothesis, we found that the chronotype may be objectively measured 

by actigraphy. Multiple actigraphic features were significantly correlated with the 

questionnaire-based chronotypes. The highest correlation was achieved between the  

MCTQ-MSFsc and its actigraphy counterpart, the MSFscacti. This correlation was observed 

for a six-week window and was RSpearman = 0.70, which is comparable to correlation 

RPearson = 0.73 previously observed by Santisteban and his team (2018). A similar level of 

correlation with MCTQ-MSFsc was also achieved by the time of mid-sleep averaged from a 

six-week window (R = 0.69). These high correlations could be expected because MSFsc is 

defined as a personally perceived average mid-sleep time on free days corrected for socially 

induced jetlag. While being questionnaire-based, the focus of the questions is the regular time 

of sleep onsets and offsets on working and free days (Roenneberg, Wirz-Justice and Merrow, 

2003), the data which could be obtained from the actigraphy-based sleep detection (Kaplan et 

al., 2012; Kosmadopoulos et al., 2014; Bellone et al., 2016). In terms of substitutability, the 

MSFscacti achieved a prediction with a mean average error (MAE) of approximately 

34 minutes while explaining 47 % of the interindividual variability. Compared to the typical 

range of MSFsc of approximately 2-9 hours (Wittmann et al., 2006) (the min-max range in 

our study was 1.7-6.7 hours), this does not appear very high, and is also substantially more 

accurate than the accuracy of the null model (MAE of 48 minutes). The largest residual errors 

were observed on the extreme chronotypes (see Figure 6.2). If we consider actigraphy to be 
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precise in sleep detection, we may be suggesting that people may overestimate their perceived 

inclination toward morningness or eveningness. Additionally, the majority of differences were 

positive (actigraphy later than MCTQ), which suggests that people are prone to report the 

waking time earlier than it actually is. Generally, the actigraphy-based sleep is reported to 

overestimate the sleep duration, and not otherwise (Sadeh, 2011; Smith et al., 2020).  

The highest correlation for MEQ, the R = 0.62 (Acrophase three-week window), was slightly 

lower than the maximum correlation between actigraphy and the MCTQ-MSFsc. This could 

be caused by the MEQ being more an idealised notion of a daily regime. The questions in the 

questionnaire are mainly focused on activity and its ideal timing during the day (Horne and 

Ostberg, 1976). That could also be the reason why the most correlated actigraphic feature is 

the Acrophase. This measure assesses at the same time both the daily activity peak and the 

time of night sleep trough. As in MSFsc, the second most correlated feature (with R = 0.60 for 

a six-week window) is mid-sleep time. This, combined with a lower correlation between MEQ 

and M10-time (R = 0.51), signifies the importance of sleep time for chronotyping. When it 

comes to substitutability, the Acrophase archived MAE of 5.6 points, while explaining 37 % 

of the interindividual variability. Considering this in relation to the range of MEQ scores, it 

should be sufficient to distinguish between the standards chronotype categories (M-type,  

N-type, and E-type people). A pending limitation is that, similarly to the MSFsc, the highest 

residual errors are observed at the extreme chronotype values. This suggests that the optimal 

regime, expressed by the MEQ score, is not reachable for these extreme types. 

Additionally, to put the results into context, we tested possible substitutability of the 

questionnaire chronotyping methods between themselves. The MAE for MEQ prediction from 

MCTQ-MSFsc was 5.4 points, which is slightly better than the MAE for actigraphy 

(5.6 points). The MAE of MSFsc predicted from MEQ was 36 minutes, which is slightly worse 

than the MAE from actigraphy (34 minutes). Moreover, this corresponds to the explained 

interindividual variability, which was 47 % between questionnaires. Therefore, it is better than 

the actigraphy – MEQ relation and the same as in the actigraphy - MSFsc. These differences 

clearly show the need to choose the chronotyping method for planned research correctly. This 

also shows that the actigraphy is more closely related to the MSFsc type of chronotype.  

While the correlation between the questionnaires based chronotypes and selected actigraphic 

features is high, the maximal correlation reached for MCTQ-SJLrel and its actigraphy 

counterpart SJLrelacti was only R = 0.40 for a four-week window. The difference in mid-sleep 
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time between free and working days reached the second-highest correlation (R = 0.33 for a 

three-week window), which is relatively low. Similarly, the free vs working days differences 

for M10-timediff and L5-timediff showed even a lower level of agreement. The prediction MAE 

of about 37 minutes is also relatively high compared to the typical range of SJL of 

approximately 0-4 hours (Wittmann et al., 2006), and the model explained only 19 % of the 

intraindividual variance. Such bad results are most likely connected with the high variability 

observed on the SJL value +/- 15 min based on a 28 days long estimation window with 27 days 

overlap. 

A possible cause could be that the regime on free days may still be affected by other social 

factors other than work. Many authors agree that the difference between the regime on free 

and working days is enormous for some individuals, especially in terms of length, timing and 

mid-sleep time and amount of physical activity (Monk et al., 2000; Roenneberg et al., 2012). 

In general, there is no agreement on the clear distinction between daily regimes (free, working, 

working with a flexible schedule, free with a fixed schedule, etc.). In spite of that, the SJL 

concept is based on these differences (Wittmann et al., 2006). While we considered both 

Saturday and Sunday as free days in this study, the sleep on these days is not the same. The 

Friday-to-Saturday night may still be affected by the work on Friday. Similarly, the Sunday-

to-Monday night may differ from other working days based on free Sunday evening. 

6.4.2. The Actigraphy Period Length for Chronotyping 

Due to the fact that the length of actigraphic records in published studies varies considerably 

(from records of several days to longitudinal studies measuring continuously for several weeks 

or months), we consider it necessary to identify the sufficient length of actigraphic record for 

circadian phenotyping. The ideal record length for the study of sleep parameters has already 

been investigated by several studies (Acebo et al., 1999; Aili et al., 2017). Aili and her team 

(2017) found that more than 7 nights are needed for an accurate actigraphy-measured total 

sleep time. Another study examined record lengths to monitor major sleep attributes in 

children and adolescents. Its authors claim that five or more nights are enough for an objective 

assessment of sleep quality (Acebo et al., 1999). However, these studies did not deal with the 

setting of circadian rhythms but studied only the necessary length of recording suitable for 

describing the main parameters of night sleep. According to our results, the most considerable 

improvement of chronotype prediction was observed for the first three weeks. Afterwards, the 

improvement is relatively small, as shown in Figure 6.3 (for SJL and MSFsc), by flattering the 

correlation score curve. However, the best results were obtained mainly for a six-week-long 
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window (which is the longest window we used). The SJL is hard to predict from actigraphy. 

As for the optimal window length, it behaves similarly to the chronotype prediction.  

Although estimation windows longer than 4 weeks provided worse results in our sample, this 

was due to smaller sample sizes for the long windows. Furthermore, the second-best 

actigraphy predictor for SJLrel, the mid-sleepdiff, prediction power drops for 3 weeks and 

longer estimation windows. The cause for this may be additional inter-daily variability in sleep 

timings which is not evaluated in the simple MCTQ scenario. 

6.4.3. The Test-retest Stability of Chronotypes 

Chronotype is expected to be stable for most of adult life, with a slow move towards 

morningness in older age (Roenneberg et al., 2004, 2007). Our results on the questionnaire 

support that theory. Again, there are differences between the questionnaires. While the MEQ 

is incredibly stable over time – test-retest score R = 0.96 after approximately one and half 

years, which is in agreement with Lee et al. 2014 finding R = 0.90, the MCTQ-MSFsc is much 

less stable, achieving only R = 0.63. These differences again signify the different focus of each 

respective chronotyping questionnaire. 

The stability of actigraphic features varied across features. The Acrophase, which is among 

the top chronotyping features (the best for MEQ), is also the most stable R = 0.81 for a three-

week estimation window and three-week gap. The MSFscacti, which is the actigraphy analogy 

to the MSFsc score, is much less stable, with R = 0.42 for the same settings. These differences 

are likely caused mainly by the necessity to define the free days to compute the MSFscacti, as 

the mid-sleep time by itself is almost as stable as the Acrophase, with R = 0.78. 

6.5. Limitations 

Results of this study need to be interpreted considering the following limitations: 

Firstly, the sample consisted of 122 women. While such sample size, especially considering 

the study duration, is above the average for actigraphy studies (see Figure 7.1), it is not enough 

for global generalisations. Moreover, the dataset included only women. There is no consensus 

concerning gender differences in chronotypes or sleep. But many studies found morning 

chronotype to be more prevalent in women, while evening chronotype being more prevalent 

in men. On the other hand, in a recent Czech study, no significant sex chronotype differences 

were found (assessed by MEQ and MCTQ) (Fárková et al., 2020). Considering actigraphy 
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circadian parameters and sleep, women and men exhibited a similar circadian activity profile; 

however, women exhibited better sleep-wake patterns (Jean-Louis et al., 2000). Another study 

found no significant gender differences (Lehnkering et al., 2006). Even with limitation, we 

consider our sample representative, as it includes a wide range of chronotypes.  

Secondly, while sleep detection using actigraphy is generally considered reliable (see  

section 3.5.3), most actigraphy sleep detectors are based on detecting epochs of low activity, 

and therefore have a tendency to overestimate the sleep duration (Sadeh, 2011; Smith et al., 

2020). Additionally, the quality of sleep detection may be affected by the internal settings of 

actigraphy data pre-processing (within the wearable) (Meltzer et al., 2012; Cellini et al., 2013; 

Smith et al., 2020) and other aspects, such as possible sleep disorders (Sadeh et al., 1995), or 

mood disorders as bipolar disorder (Gruber et al., 2009; Schneider et al., 2020). In this study, 

these patients were excluded based on our exclusion criteria. Nonetheless, it is important to 

consider these limitations for any study, which would include actigraphy-based chronotyping. 

Third, the stability of actigraphy chronotypes was evaluated for short actigraphy segments. 

The test-retest evaluation period for the actigraphic features stability evaluation was limited 

to a three-week maximum estimation window. As seen from our results, this is at the same 

time the minimum window length to consistently estimate the subjective chronotype, based 

on actigraphy. Moreover, the stability after a year and a half for the chronotyping questionnaire 

is not directly comparable to the stability of actigraphy chronotyping features. 

6.6. Conclusions 

Actigraphy is a popular method of estimating sleep and circadian rhythms patterns. As we 

have shown in this study, longer-term recordings of three and more weeks of duration may 

be used as an objective evaluation of the chronotype and show good agreement with the 

MSFsc and MEQ questionnaires, traditionally used to determine the chronotype. The 

Acrophase and MSFscacti estimated from automatically detected sleep periods were the 

best parameters for chronotyping. In all cases, the actigraphy-derived chronotype showed 

a more conservative estimate (closer to the sample mean) than its questionnaire-based 

counterpart, suggesting the tendency of the participants to overestimate the extremity of 

their behaviour. Our study also highlighted the distinction between the idealized MEQ 

scores with high stability over an extended period of time and moderate predictability by 
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actigraphy, the MCTQ-MSFsc, which showed high predictability by actigraphy and lower 

stability over time, and the SJL, which was both highly variable over time and hard to 

predict from actigraphy.  

The increasing availability of actigraphy wearables, allowing long-term monitoring of the 

sleep-wake patterns with relatively high accuracy, stimulates wide-ranging applications of 

monitoring the circadian rhythms on a large scale. We show, that however, the actigraphy-

based chronotype may provide a slightly different view than the traditional questionnaires, 

it may be highly valuable, especially if an unbiased and momentary value is of interest. 
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7. Actigraphy-based Classification of BD 

Patients and HC 

This chapter is based on the article published in CNS spectrums: Schneider, J. et al. (2020) 

‘Motor activity patterns can distinguish between interepisode bipolar disorder patients and 

healthy controls’, CNS Spectrums, pp. 1–11. doi: 10.1017/S1092852920001777. In this 

chapter, I’m using whole text sections as they were published in the journal extended for some 

parts included in the article supplement. 

7.1. Introduction  

7.1.1. Actigraphy Studies in BD Patients 

Actigraphy is a convenient way to study motor activity patterns. Existing findings from 

actigraphy studies suggest that circadian rhythm and sleep are disrupted in patients with BD, 

even in the remitted state. Current evidence, including reviews (meta-analyses) (Scott, 2011; 

Geoffroy et al., 2015; Alloy et al., 2017; Scott, Murray, et al., 2017), documents lower overall 

activity (Harvey et al., 2005; Jones, Hare and Evershed, 2005; Salvatore et al., 2008; St-

Amand et al., 2013) and longer and more disrupted sleep in remitted BD patients than in 

healthy controls (HC) (Millar, Espie and Scott, 2004; Gershon et al., 2012; Geoffroy, 

Boudebesse, et al., 2014; McKenna, Drummond and Eyler, 2014). Similar observations have 

also been found in unaffected child and adolescent offspring of parents with BD (Sebela et al., 

2019). Although previous studies have improved the understanding of motor activity in BD 

patients, most existing studies are based on a limited period of actigraphy monitoring. They, 

therefore, miss the opportunity to assess and account for intra-individual temporal variations 

in actigraphy parameters. Variability in sleep and circadian parameters, obtained from 

actigraphy, suggests lower levels of synchronisation of BD patients with the day and night 

rhythm (Harvey et al., 2005; Scott, 2011; Gershon et al., 2012; Geoffroy, Etain, et al., 2014; 

Bei et al., 2016) and may be closely connected with the symptomatic periods (Krane-Gartiser 

et al., 2014; Scott, Murray, et al., 2017). The short duration of the studies (mostly < 14 days, 

the longest being 50 days - see Figure 7.1) is a limitation for variability assessment (Millar, 

Espie and Scott, 2004; Mullin, Harvey and Hinshaw, 2011; Gershon et al., 2012). In order to 

overcome these issues, we increased the observation period in the actigraphy study presented 



86 

 

here to 90 days, aiming to focus on intra-individual long-term temporal variability (LTTV) in 

circadian rhythm and sleep parameters. 

 

Figure 7.1 - Duration and sample size of BD actigraphic studies. The first bars (green/pink) represent our study, showing 

that the duration is one of the longest and the sample size is comparable to other studies. It may be seen that the duration is 

negatively associated with sample size and that newer studies tend to be longer or bigger. 

 

Contrary to statistical evaluation, the machine learning techniques provide a means to quantify 

between-group differences by evaluating the classification power of a set of features 

(biomarkers), considering complex non-linear relationships among features. At least two 

recent actigraphy studies are employing this approach for actigraphy-based BD-HC 

classification. The first was done by Faedda et al.(2016), who reached 83 % accuracy with 

64 % sensitivity, and 92 % specificity when using 3-5 days of actigraphy and diary data from 

children (5-18 years old). There was no medication used, and all data were recorded during a 
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similar regime (school days). The second recent study by Krane-Gartiser et al. (2019) applied 

classification algorithms to a set of 61 HC, and 61 remitted BD patients with stable medication, 

resulting in 78 % accuracy (75 % sensitivity and 80 % specificity) using selected actigraphic 

features and MADRS scores, resulting in 70 % accuracy using actigraphy alone. The main 

advantages were the use of matched groups (including employment status) and strict remission 

criteria (MADRS and YMRS ≤ 8 for ≥ 3 months).  

7.1.2. Literature-based Differences Between BD Patients and HC 

Following the available literature, we have expected a lower overall motor activity (Harvey et 

al., 2005; Jones, Hare and Evershed, 2005; Salvatore et al., 2008; St-Amand et al., 2013; 

Janney et al., 2014), and also lower peak activity (Gonçalves et al., 2015) in BD patients versus 

HC. Based on diminished adaptability to changes in circadian rhythm, lower rhythm 

robustness was expected (Gonzalez et al., 2018). Additionally, due to greater mood instability, 

higher fragmentation of activity profiles within a day, and instability between days were 

expected, including higher variability in most actigraphy parameters, both motor activity-

based or time based (Kaufmann et al., 2018). 

Reduction in sleep quality has been reported in BD patients (Scott, 2011; De Crescenzo et al., 

2017); therefore, higher motor activity and longer awake or mobile periods were expected 

during night sleep. Further, since BD is associated with longer sleep (Millar, Espie and Scott, 

2004; Ritter et al., 2012; Geoffroy et al., 2015; Ng et al., 2015; Alloy et al., 2017), though 

some reports did not confirm this finding (Jones, Hare and Evershed, 2005; Kaplan et al., 

2012; St-Amand et al., 2013), we expected sleep time to be longer and more variable. 

Moreover, since longer sleep latency is associated with BD (Millar, Espie and Scott, 2004; 

Gershon et al., 2012; Ritter et al., 2012; Geoffroy, Boudebesse, et al., 2014), we also expected 

lower activity before sleep onset and greater activity (restless sleep) after sleep onset, with 

higher variability in both sleep latency and restless sleep. Finally, BD is associated with later 

chronotype (Alloy et al., 2017; Gershon et al., 2018; Kaufmann et al., 2018), represented as a 

later activity peak and a later sleep mid-time. 

7.1.3. Variability Measurements and Primary Objectives 

This chapter is focused on motor activity and intra-individual temporal changes in motor 

activity during waking hours and during sleep. Motor activity was measured using a wrist-

worn actigraphy wearable, an instrument specifically tailored for use in psychiatry (Mindpax 

Ltd. – see section 3.4). Temporal variability is connected to changes in daily routine and in 
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circadian rhythm synchronization. Therefore, temporal variability may be a more 

straightforward way to measure the assumed triggers/predictors of BD symptoms (Milhiet et 

al., 2011; Alloy et al., 2017) than a standard comparison of average activity levels. We have 

also expected the variability measurements to be comparatively insensitive to basic differences 

in daily routine between BD patients and HC.  

Aims of the study were:  

1. To evaluate the motor activity profiles of inter-episode BD patients versus HC. 

2. To use machine learning to distinguish between BD patients and HC using 

actigraphy-derived features focusing on variability measurements. 

3. To evaluate the effect of employment status on the results (post hoc). 

7.2. Methods 

All methods and analyses described in this chapter are applied to the ACTIBIPO 1 dataset 

presented in Chapter 4 - section 4.1, and containing approximately three months’ worth of data 

from 25 BD patients and 25 HC. All actigraphy features were calculated, as described in 

Chapter 3 - section 3.5. Only the one-day NPCRA and sleep features, and the seven-day 

cosinor features, were used. Chronotype and SJL were estimated using the whole actigraphy 

recordings. 

7.2.1. Statistical Analysis 

The LTTV and average values were calculated from all available daily values, using the 

standard deviation and the mean, respectively. Intergroup statistical comparison was 

performed on a preselected subset of features (Table 7-2), chosen based on the available 

literature. 

The features were checked for normality using Q-Q plots, and they were normalized on the 

basis of skewness and kurtosis (for details, see section 7.3.2). When normality was not 

disproved in the transformed values (Jarque-Bera (1987) test, α = 5 %), a student t-test was 

used; otherwise, the Wilcoxon rank-sum test was used for non-normally distributed data.  

One-sided tests were used, based on an apriori hypothesis from the existing literature 

(section 7.1.1). See Table 7-1 for details on feature normality. Additionally, see the data 

processing scheme in Figure 7.2. 
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The results were corrected for multiple comparisons using the Holm (1979) procedure 

(n =  25). The corrected results are marked as ‘corr’ after each result in the Results section. 

The effect size was calculated as the standardized mean difference (SMD). The area under the 

receiver operating characteristic (AUC) was computed to measure the classification power of 

individual actigraphic features. 

All data processing and statistical analyses were conducted with Matlab 2015b, The 

MathWorks, Inc. 

7.2.2. Classification 

In order to illustrate the discriminatory power of the entire feature set combined (as opposed 

to the statistical analysis, which was aimed at individual features/biomarkers), we designed a 

set of classifiers discriminating between BD patients and HC. In total, we used three models 

differing by the features that were employed: A) a model with all the features presented above, 

B) a model based only on temporal variabilities, and C) a model using only features with low 

dependency on employment status (see section 7.3.4).  

 

Figure 7.2 - Pre-processing and machine learning classification scheme; The left side shows the estimation of individual 

values (average and LTTV) from features, based on all valid days for each patient. In the right part, the machine learning 

cross-validation process 

 

The models were trained using a random forest (RF) classifier (Breiman, 2001), commonly 

used for heterogeneous biomedical data including actigraphy (Faedda et al., 2016), and the 

out-of-sample performance was estimated using five-fold cross-validation. In each fold, data 

from 20 BD patients and 20 HC participants were used for training the classifier, the rest were 

used for evaluating the classification performance. In subsequent folds, the data from 5+5 
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different subjects were used for validation until all patients were iterated. The entire five-fold 

procedure was repeated 100 times, to estimate the uncertainty of the results, caused by the 

random division of the patients into folds and random feature selection in RF. See the data 

processing scheme in Figure 7.2. 

7.2.3. Post hoc Analysis of Employment Status 

An analysis of the classification results revealed a strong association between the 

misclassification of individual subjects and employment status. We, therefore, investigated 

the association between employment status, group membership (BD patients or HC) and 

individual actigraphic feature values. A set of linear models was built, so that the parameter 

value was a linear combination of BD patients/HC group status, employment status and 

intercept: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒  ~ 1 +  𝐵𝐷/𝐻𝐶 +  𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑢𝑠 

7.1 

The model was fitted using a least-square means approach with robust bi-square weights, and 

the significance of the coefficient values was evaluated using a standard T-statistic. Based on 

the results, the identified features independent of employment status were used for training 

classification model C. 

7.3. Results 

7.3.1. Statistical Comparison 

In terms of LTTV, compared with HC, BD patients showed significantly greater variation in 

the IV feature (t(48) = -4.71, pcorr = 0.0005 , AUC = 0.85), greater variability in the activity-

peak-time (M10-time; z = 3.24, pcorr = 0.0107, AUC = 0.77), and greater variability in the  

L5-time (t(48) = -2.88, pcorr = 0.0500, AUC = 0.75). In the IS feature, the variability had a 

higher predictive capacity than the mean value (both nonsignificant). For actual differences, 

see Table 4-1, and for effect sizes, see Table 7-2. 

When evaluating individual averages (Table 4-1 and Table 7-2), compared to HC, BD was 

associated with lower ADA (t(48) = 6.06, pcorr < 0.0001, AUC = 0.90), longer sleep duration 

(z = -4.35, pcorr = 0.0002, AUC = 0.86), and lower CQ (z = -4.25, pcorr = 0.0002, AUC = 0.85). 

However, in some features (mainly in the overall averages) the observed differences were 
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highly associated with BD employment status. For more details and post hoc analysis on the 

effect of employment status, see section 7.3.4. 

7.3.2.  Features Normalisation 

A transformation achieved the normality of distribution in most of the features except average 

CQ, LTTV in L5-time and M10-time and average sleep duration. Details of used 

transformations as well typical values for features averages and LTTV for the BD patients and 

HC are presented in following Table 7-1 

Table 7-1: Features overview and normalisation 

Feature Variant BD value‡ HC value‡ Transformation Normality 

achieved 
Activity daily (ADA) 

average 605 (SD 110) 778 (SD 92) - Yes 

LTTV 103 (SD 32) 94 (SD  25) sqrt(x) Yes 

Circadian quotient (CQ) 
average 0.78 (SD 0.12) 0.66 (SD 0.07) x^2 No 

LTTV 0.07 (SD 0.02) 0.06 (SD 0.02) sqrt(x) Yes 

IS 
average 0.53 (SD 0.09) 0.53 (SD 0.06) x^2 Yes 

LTTV 0.06 (SD 0.02) 0.06 (SD 0.02) ln(x) Yes 

IV 
average 0.49 (SD 0.11) 0.46 (SD 0.06) - Yes 

LTTV 0.07 (SD 0.02) 0.05 (SD 0.01) - Yes 

Lest active 5 hours (L5) 
average 73 (SD 24) 73 (SD 19) sqrt(x) Yes 

LTTV 31 (SD 23) 38 (SD 23) ln(x) Yes 

Lest active 5 hours - time 

(L5-time) 

average 2.85 (SD 0.94) 2.85 (SD 0.89) ln(x) Yes 

LTTV 1.80 (SD 0.55) 1.44 (SD 0.47) ln(x) No 

Daily peak activity (M10) 
average 994 (SD 179) 1179 (SD 137) - Yes 

LTTV 166 (SD 50) 148 (SD 42) sqrt(x) Yes 

Time of daily peak 

activity (M10-time) 

average 14.68 (SD 1.27) 14.89 (SD 1.34) - Yes 

LTTV 2.11 (SD 0.79) 2.61 (SD 0.51) ln(x) No 

MSFsc - 3.71 (SD 1.00) 3.62 (SD 1.05) - No 

Activity after sleep onset 
average 102 (SD 26) 80 (SD 17) - Yes 

LTTV 218 (SD 49) 232 (SD 50) sqrt(x) Yes 

Activity prior sleep onset 
average 758 (SD 184) 937 (SD 126) - Yes 

LTTV 71 (SD 32) 57 (SD 30) sqrt(x) Yes 

Restless sleep (RSL) 
average 2.6 (SD 0.9) 2.1 (SD 0.6) sqrt(x) Yes 

LTTV 1.78 (SD 0.79) 1.54 (SD 1.00) ln(x) Yes 

Sleep duration 
average 8.97 (SD 1.22) 7.40 (SD 0.51) x^2 No 

LTTV 1.69 (SD 0.58) 1.32 (SD 0.33) sqrt(x) Yes 

‡ Before normalisation, the italic text with orange shading significates that the normal distribution has not been achieved 

(α = 5 %) 
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Table 7-2: Group differences between patients and controls 

Temporal-variability Average values Rationale 

Hypothesis - LTTV in feature is 

higher/lower in BD patients 
p-value AUC 

SMD 

(non-param.) 

Hypothesis - Average value in 

feature is higher/lower in BD 

patients 

p-value AUC 
SMD 

(non-param.) 
 

Var. in IV is higher in BD patients < 0.001*** 0.8544 1.33 (0.97) IV is higher in BD patients 0.131 0.5872 0.32 (0.26) 
Fragmentation of activity within a 24-hour cycle. 

(Alloy et al., 2017) 

Var. of M10-time is higher in BD 

patients ‡ 
< 0.001* 0.7680 -0.74 (-0.71) M10-time is later in BD patients 0.707 0.5168 -0.15 (-0.24) 

Finding daily activity extremes on a daily basis. 

(Alloy et al., 2017) 

Var. of L5-time is higher in BD patients 0.003* 0.7456 0.71 (0.65) 
L5-time is later in BD  

patients ‡ 
0.197 0.5712 0.04 (0.35) See M10-time 

Var. in sleep duration is higher in BD 

patients 
0.004 0.7168 0.79 (0.56) 

Sleep duration is higher in BD 

patients ‡ 
< 0.001*** 0.8592 1.68 (2.03) A basic sleep-describing feature. 

Var. in AASO is higher in BD patients 0.039 0.6448 0.47 (0.40) AASO is higher in BD patients < 0.001** 0.76 0.99 (0.88) Used as an approximation of sleep latency. 

Var. of CQ is higher in BD patients 0.041 0.6352 0.5 (0.27) CQ is higher in BD patients ‡ < 0.001*** 0.8512 1.23 (1.23) 

An estimate of how well-circumscribed periods 

of activity are during a day; a proxy for rhythm 

robustness (Gonzalez et al., 2018)  

Var. of M10 is higher in BD patients 0.074 0.6112 0.41 (0.23) M10 is lower in BD patients < 0.001** 0.792 -1.16 (-0.53) 

Approximates the amplitude of peak daily 

activity (M10) and sleep quality (L5) for each 

day. It is related to motor capability (Gonçalves 

et al., 2015)  

Var. in RSL is higher in BD patients 0.081 0.6304 0.26 (0.41) RSL is higher in BD patients 0.012 0.6624 0.67 (0.31) 
Feature describing sleep quality. Represents 

sleep inefficiency based on actigraphy 

Var. in IS is higher in BD 0.110 0.6272 0.29 (0.31) IS is lower in BD 0.417 0.5328 -0.11 (-0.14) 
Synchronization to the light-dark cycle and 

stability of daily rhythm. 

Var. in ADA is higher in BD 0.151 0.5904 0.31 (0.34) ADA is lower in BD < 0.001*** 0.8992 -1.71 (-1.05) 
Describes how active a person is throughout the 

day.  

Var. in APSO is lower in BD 0.160 0.5808 -0.27 (-0.24) APSO is lower in BD < 0.001** 0.7712 -1.14 (-0.45) See AASO 

Var. in L5 is higher in BD 0.952 0.3424 -0.32 (-0.25) L5 is higher in BD 0.932 0.3696 -0.38 (-0.38) See M10 

Significance after Holms correction (Holm, 1979) (n = 25) * < 0.05 ** <0.01 *** <0.001 
‡tested using Wilcoxon rank-sum test (non-normally distributed data) 

BD patients are generally a later 

chronotype 
0.249 0.5568 0.08 (0.15) 

Objectively assess the values from MCTQ  

questionnaire. (section 3.5.4) 
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7.3.3. Classification of BD and HC 

The full actigraphy-based model (model A) successfully distinguished people with  

inter-episode BD and HC. Accuracy was around 88 % with a specificity of 91 % - see  

Table 7-3 

When only time-variability of the actigraphic features was used (model B), the classification 

accuracy dropped, mainly due to a higher HC misclassification rate (i.e., a drop of specificity). 

The accuracy drop in the B model was apparently also due to the removal of the strongest 

feature, which was the average sleep duration (BD 8.97±1.22 hours vs HC 7.40±0.5113). Most 

of the misclassifications were in full-time/part-time working BD patients (see the last column 

in Table 7-3). For model A, in the working patients, 1.7 out of 6 were on average misclassified; 

in the part-time working patients, 2.1 out of 12 were misclassified, while there were no 

misclassifications in the unemployed/pensioned patients. For model B, 0.2 out of 

7 unemployed/pensioned patients were misclassified. (For model C, which uses features that 

do not show dependency on employment status, see section 7.3.4) 

Based on the out-of-bag estimation (Hastie, Tibshirani and Friedman, 2017), we assessed the 

importance of each feature in the classification task. Figure 7.3 shows features ordered by their 

average classification strength, depicting their approximate effect sizes based on model A. 

Models B and C differ by not including the unused features (the order of classification strength 

does not change).  

 

Table 7-3: Random forest classifier results in participants whose data were not used during model training 

Model Accuracy 

mean (SD) 

Sensitivity 

mean (SD) 

Specificity 

mean (SD) 

Misclassification in BD patients 

based on employment‡ 

Full-time/Part-time/Pensioned 

A. All features 87.8 (2.6) % 84.8 (3.5) % 91.0 (4.0) % 29 % / 17.2 % / 0 % 

B. Time variations 78.5 (4.2) % 77.7 (5.2) % 79.3 (5.8) % 36 % / 26.7 % / 3 % 

C. employment status 

independent features 
78.7 (3.4) % 76.2 (5.3) %  81.2 (4.2) % 33 % / 29 % / 7 % 

‡The number of BD patients working full-time was 6 (therefore 1 patient corresponds to 16.7 %) part-time working n = 12  

(1 patient ~ 8.3 %) and unemployed n = 7 (1 patient ~ 14.3 %) 

 

  

                                                 
13 This corresponds to adult sleep duration (Roenneberg et al., 2007) 
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Figure 7.3 - Features used in classification the (Model A) ordered by their classification strength, showing the effect size for 

each feature (non-normalized data), LTTVs in blue, average values in orange and global features in grey. The effect size 

(with a 95 % confidence interval) is an approximation because the distribution was not always Gaussian. The grey diamond 

shows the effect size estimated by the median values and shows how precise the blue approximation is. 
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7.3.4. Effect of Employment Status 

Using linear models, we identified four types of features based on their association with 

employment status (see Table 7-4). We trained a new random forest distinguishing BD patients 

and HC, using exclusively the variables that were most affected by the BD patients/HC group 

difference, and not by employment status. Model C, which used only type 1 features (LTTV 

in M10-time, IV, and SleDur and averages of M10, and APSO and AASO) reached an 

accuracy of 78.7 %; for details, see Table 7-3 - model C. 

Table 7-4: Categories of features based on employment status effects 

Category Category description Time-variability of the 

feature 

Average of the feature 

1 Features affected exclusively by BD/HC difference. (used 

for model C) 
M10-time, IV, SleDur M10, APSO, AASO 

2 Features affected exclusively by employment status. L5-time L5-time 

3 Features affected by both BD group and employment 

status. The ↑↑ reduce the BD effect (are in the same 

direction, and combine into a bigger difference) and the ↑↓ 

feature support the BD effect due to employment status (is 

in the opposite direction, and the difference is greater). 

  
↑↑ CQ,     ↑↑ ADA,  

↑↑ SleDur‡, ↑↓ RSL 

4 Features not significantly affected either by BD or by 

working status. 
CQ, M10, IS, ADA, L5, 

APSO, AASO, RSL 

L5, M10-time, IS, IV, 

MSFcs 

‡ for sleep duration, the effect of the disease is twice as strong, resulting in the finding that even working BD patients differed significantly 

from HC 

7.4. Discussion 

This study shows that a machine-learning model using only actigraphic recording was capable 

of distinguishing between inter-episode BD patients and HC with 88 % accuracy on the test 

data. In addition, when the effect of working status was suppressed by empirically derived 

feature selection, our results indicated that actigraphic data on motor activity patterns in BD 

might contain a clinically informative and scalable biosignal, which differentiates between BD 

patients and HC. In her article, Ortiz et al. (2018) used machine learning for forecasting a 

clinical episode based on patient-perceived energy during the evening. Motor activity is 

associated with future mood and energy (Merikangas et al., 2019); therefore, long-term 

actigraphy may be promising for relapse forecasting. 

When compared to existing actigraphy-based machine learning studies of Krane-Gartiser et 

al. (2019) and of Faedda et al. (2016), our model using all features is more accurate than both. 

When only features with low dependency on employment status are used, our results are 

slightly better than the results by Krane-Gartiser (acc. 79 % vs 78 %) and lower than Faedda’s 
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model (acc. 83 %) with higher sensitivity (76 % vs 64 %) and lower specificity (81 % vs 

92 %). These results have to be considered bearing in mind that our remission criteria were 

more lenient than those in the Krane-Gartiser paper, whose dataset was matched for 

employment status. Faedda used children with a similar daily regime (school) and without any 

medication treatment and cleaned noisy data based on additional information obtained from 

parents. In addition to actigraphy, the Krane-Gartiser et al. (2019) employed MADRS as an 

additional predictor variable as well. Post hoc analyses demonstrated that the inclusion of this 

psychopathology score contributed critically to the overall efficacy of the model. When 

MADRS was excluded, the accuracy based selectively on motor activity dropped to 70 %, 

which is lower than our results.  

Matching the BD patients and HC groups based on employment status, Krane-Gartiser et al. 

(2019) reduced the confounding effect of differences in social engagement. This approach has 

been substantiated by the identification of employment status as a significant confounder. The 

fact, that HC are typically employed, while at the same time many BD patients are either 

unemployed or pensioned, may by itself introduce a significant bias, due to the systematic 

effect of the dissimilar social clock and demands in the two groups. To address this problem 

at least partially, some studies have used shift work as an exclusion criterion (Millar, Espie 

and Scott, 2004; St-Amand et al., 2013; Bullock and Murray, 2014). Only a small number of 

actigraphy studies have attempted to match HC on employment status (Jones, Hare and 

Evershed, 2005; Gershon et al., 2012, 2016; Krane-Gartiser et al., 2019). Unfortunately, even 

using age-matched HC groups with a similar rate of unemployment may introduce a different 

type of bias (Millar, Espie and Scott, 2004) due to the reasons causing a healthy person of 

productive age to be unemployed. 

To control specifically for these potential biases, we identified and modelled a set of 

actigraphic features with low dependency on employment status and possibly other aspects 

affecting motor activity during the day, such as family status and type of employment. The 

contribution of these different factors to the BD-specific characteristics of motor activity 

patterns is beyond the scope of the presented dataset, and has to be evaluated in a separate 

study. According to our analysis, LTTV in interdaily variability feature, LTTV in M10-time, 

LTTV in SleDur and average M10, and average activity before sleep onset (APSO) and after 

sleep onset (AASO) fulfil these requirements. In a post hoc analysis, a model incorporating 

exclusively the features with low dependency on employment status achieved predictive 

accuracy of 79 % in discriminating between BD patients and HC. 
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7.4.1. Long-term Temporal Variability 

Recent evidence suggests that not only previously reported changes in sleep and activity of 

BD patients, but also, the temporal variability of these parameters may be a disease-specific 

trait marker (Shou et al., 2017). Despite this promising report, only a few studies have been 

able to specifically address time variation features in actigraphy. The reasons for this situation 

are mainly technical, as the analysis typically requires long-term continuous actigraphy. The 

variability of circadian rhythm has been already discussed in section 5.1; therefore, we 

mention here only the studies evaluating the variability for BD:  

1. Increased standard deviation and RMSSD in actigraphy (Krane-Gartiser et al., 2014) 

2. Positive correlation between mood variability and variability in activity  

(Carr et al., 2018) 

3. Greater variability in afternoon activity (BD-I) and in night-time activity (BD-II), 

without differences in peak time variation (Shou et al., 2017) 

4. Greater variability in peak activity time (Kaufmann et al., 2018) 

Consistently, our analysis of the long-term time variability of actigraphy and sleep features 

revealed a significantly higher variability in the IV feature and in day-peak and day-trough 

activity times (M10-time and L5-time) in BD patients versus HC. In sleep features, we 

observed a difference in SleDur time-variability. Although the feature achieves only pcorr < 0.1 

after correcting for multiple comparisons, this result should not be disregarded due to the 

limited power of the statistical test. Using differences in the sleep features observed by 

Geoffroy et al. (2015), the power for medium effect size (0.5 SMD) is only 0.68 for α = 0.1. 

7.4.2. Average Actigraphy and Sleep 

As in previous studies, a lower overall activity (ADA) and flattening in rhythmicity (CQ) was 

detected in BD patients vs HC. Lower activity is a widely reported trait-marker of BD, even 

in remitted cases (Harvey et al., 2005; Jones, Hare and Evershed, 2005; Salvatore et al., 2008; 

St-Amand et al., 2013; Bullock and Murray, 2014; Janney et al., 2014; McKenna, Drummond 

and Eyler, 2014; Grierson et al., 2016). Unfortunately, ADA also showed significant 

dependency on employment status. A lower daily activity peak was observed by previous 

studies (McKenna, Drummond and Eyler, 2014; Grierson et al., 2016), where it was connected 

with worsening of the disease. 

In contrast to previous studies (Scott, 2011; Alloy et al., 2017; Kaufmann et al., 2018), we did 

not observe an intergroup difference in chronotype based on motor activity, although all 
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subjects were evaluated at approximately the same time of the year. We also did not observe 

any later activity onset in BD patients versus HC, as had been observed previously (Salvatore 

et al., 2008; Gershon et al., 2016; Grierson et al., 2016; Shou et al., 2017; Kaufmann et al., 

2018). 

Prolonged SleDur (in our study for > 1 hour) has been observed by some (Millar, Espie and 

Scott, 2004; Ritter et al., 2012; Geoffroy, Boudebesse, et al., 2014), but not by other studies 

(Jones, Hare and Evershed, 2005; Gershon et al., 2012; St-Amand et al., 2013). It is possible 

that the observed difference may be caused (1) by persistent sub-depressive symptoms, 

because even inter-episode BD patients show more depression-related symptoms (Judd, 2002; 

Geoffroy, Boudebesse, et al., 2014), (2) by medication, whereby especially atypical 

antipsychotics are related to hypersomnia (Ng et al., 2015), and (3) by the difference in 

employment status, as already has been mentioned. 

Other commonly observed differences in BD are lower sleep efficiency (Millar, Espie and 

Scott, 2004; Harvey et al., 2005) and prolonged sleep latency (Millar, Espie and Scott, 2004; 

Gershon et al., 2012; Ritter et al., 2012; Geoffroy, Boudebesse, et al., 2014). These values 

cannot be estimated without the use of sleep diaries or patient markings of sleep time, which 

were not collected in our study. Our fully automatic approximation of these features is RSL, 

for sleep efficiency, and decline in activity on sleep onset, measured by APSO and AASO, for 

sleep latency. The between-group difference in RSL was not significant after corrections for 

multiple comparisons. Further, a slower decline in activity in BD versus HC during sleep onset 

was observed (APSO was lower, and AASO was higher in BD patients vs HC).  

7.5. Limitations 

Results of this study need to be interpreted considering the following limitations: 

First, the relatively small sample size can reduce the power of the statistical tests. Although 

the sample size was small, it is in line with many previous actigraphy studies, each of which 

had a much shorter follow-up duration than our 90-day period. 

Second, we had a relatively high dropout/exclusion rate of about 29 % in BD patients, due to 

loss of interest in participating in the study, the occurrence of a relapse, or technical 

difficulties. However, a comparable dropout rate is not exceptional in this type of study. For 
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example, Krane-Gartiser et al. (2019) had a dropout rate of 54 % in the BD patients group, as 

a consequence of very strict exclusion criteria. 

Third, BD patients and HC were not matched for employment status, as only a few reasons 

might cause unemployment in ‘healthy’ productive age individuals. Contaminating the HC 

group with people with a possible risk of different morbidities might cause a different type of 

bias. To address this issue, we did not select the sample on the basis of employment status. 

Instead, we conducted a sensitivity analysis, creating a model in which those actigraphic 

features, which were highly correlated with employment status, were removed, showing the 

robustness of our discrimination/prediction models. 

Fourth, all BD patients have been using their prescribed medication. There are reported effects 

of medication on sleep (Monti, 2016), and effects on activity can also be expected. However, 

Jones et al. (2005) stated that ‘no evidence was found for a significant association between 

medication use and any of the circadian activity measures’ and Shou et al. (2017) did not 

observe any association between psychotropic medication and levels of activity. It has been 

shown that mood stabilisers can affect several circadian parameters (Hwang et al., 2017). The 

assumed major mechanism is through the regularisation (normalisation) of the sleep and 

circadian rhythm as it has been shown for lithium (seven patients in our study) and valproate 

(three patients in our study) (Geoffroy, Boudebesse, et al., 2014). Considering the combination 

of medications, Gonzalez et al. (2018) observed that individual medication type (mood 

stabilisers, antidepressants, antipsychotics, etc.) had a higher association with motor activity 

changes than the number of medications from each type. The medications may nonetheless 

impact the results, and therefore present a limitation of the study. At the same time, withdrawal 

from medication during the follow-up period is unacceptable due to the risk of relapse and 

related ethical issues. 

Fifth, the BD subjects were not fully euthymic, and residual symptoms may have affected the 

results. Our relapse threshold allowed the presence of subclinical symptoms in the examined 

sample, e.g., residual depression (Judd, 2002). Monthly clinical assessments may also miss or 

underestimate briefer but clinically relevant mood shifts. 

Sixth, there are findings of a high prevalence of comorbidities in BD (Hossain et al., 2019). 

Although many are hard to distinguish from symptoms of bipolar disorder itself (sleep 

disorders, anxiety disorders, borderline personality disorder), other diseases have a higher 

prevalence in the BD group, such as drug/alcohol abuse, asthma, hypothyroidism, migraine, 
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etc., which may also affect circadian rhythm and motor activities throughout the day. These 

were not matched with the HC group and thus present a possible confounder and a limitation 

of the study. 

Finally, we did not include patients with psychiatric disorders other than BD in order to 

evaluate the degree to which the identified actigraphic biosignature is specific to BD, or 

whether it is a more global marker of a mental illness. To overcome this limitation, future 

studies should include psychiatric control groups to investigate this issue. 

7.6. Conclusions 

There are significant differences in activity patterns between BD patients and HC. A clinically 

applicable, cost-effective and scalable classifier-based approach was able to distinguish BD 

patients from HC with approximately 88 % accuracy, which is better than previous studies by 

a large margin. Some of the strongest discriminants, e.g., ADA and SleDur, could be closely 

associated with differences in employment status and also with differences in the use of 

medications. The time-variation in some features (IV, M10-time, SleDur) showed lower 

dependency on employment status and may therefore be a preferable actigraphy biomarker 

candidate. When only such features, which are less dependent on employment status, were 

used, the model was still able to distinguish between BD patients and HC with approximately 

79 % accuracy, which is still comparable with the best results obtained by other groups 

(Faedda et al., 2016; Krane-Gartiser et al., 2019). Future studies are needed in order to identify 

actigraphic features which are global trait-markers of mental illness from those, which are 

more specific to BD, and eventually, to identify features (state-markers) that may be associated 

with an impending relapse. 

  



101 

 

8. Actigraphy-based Clinical State 

Estimation 

This chapter builds on the feasibility study, which we have published Cuesta-Frau, D.; 

Schneider, J. et al. (2020) ‘Classification of Actigraphy Records from Bipolar Disorder 

Patients Using Slope Entropy: A Feasibility Study’, Entropy, 22(11), p. 1243. DOI: 

10.3390/e22111243. 

The study compares entropy estimation methods applied to actigraphy data based on their 

ability to distinguish among BD relapses (depression and mania) and remissions. In the journal 

article, we used the ACTIBIPO 2 dataset, from which we selected 14-days segments from 

episodes of remission, depression, or mania, as described in section 8.2.1. At the  

pre-processing step, periods of high activity with substantial duration (1000+ data-points) 

were extracted from the segments. Afterwards, the entropy for each of the periods was 

estimated using different entropy estimation approaches. We used the following entropy 

measures: sample entropy (Richman and Moorman, 2000), permutation entropy (Bandt and 

Pompe, 2002), weighted permutation entropy (Fadlallah et al., 2013), bubble-entropy (Manis, 

Aktaruzzaman and Sassi, 2017), and slope entropy (Cuesta-Frau et al., 2019). The 

classification was done by three binary classifiers (dep-man, dep-rem, man-rem) and validated 

by leave-one-out (LOO) cross-validation (i.e. leaving always one of the extracted periods for 

testing) on bootstrapped samples. 

The slope entropy was the only entropy estimation method that succeeded in all three 

classification tasks. In contrast, sample entropy was slightly better for the dep-rem 

classification and permutation entropy for dep-man classification. After parameters tuning, the 

classification results were for the dep-man14 binary classification task: accuracy 73 %, 

sensitivity 75 %, and specificity 69 %; for the dep-rem binary classification task: accuracy 

67 %, sensitivity 68 %, and specificity 66 %; and for the man-rem binary classification task: 

accuracy 62 %, sensitivity 75 %, and specificity 61 %. 

                                                 
14 positive class is the first in each pair 
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8.1. Introduction 

The possibility of predicting or detecting clinical mood episodes using objective means is the 

ultimate goal of digital phenotyping. It would significantly enhance the possibilities of 

treatment and, therefore, the wellbeing of BD patients, as the adverse medication effects could 

be diminished by state-based dose adjustment. Moreover, most episodes could be prevented 

using clinical interventions. The means how to achieve the goal may include actigraphy, other 

physiological measures as heart rate (HR) variability and electrodermal activity (Khan and 

Anwar, 2019), and behaviour measures (like smartphone usage – section 2.4.2).  

The association of mood and physical activity in BD was shown and discussed in Chapters 2 

and 7. Recently Merikangas et al. (2019) showed in the short-term (quarters of a day) model 

that the activity significantly affects the future mood, but not the other way. She also observed 

a connection between sleep and activity on consecutive days. Moreover, the activity affects 

both the subjective mood and the energy in the following part of the day. These observations 

make actigraphy a promising approach for patient state prediction. Unfortunately, only a few 

studies are focusing on actigraphy-based differences between episodes of depression and 

mania (Krane-Gartiser et al., 2014; Gershon et al., 2016; Scott, Vaaler, et al., 2017; Cho et 

al., 2019), or changes associated with episodes (like impulsivity and mood instability 

(McGowan et al., 2020)). Moreover, half of them (Krane-Gartiser et al., 2014; Scott, Vaaler, 

et al., 2017) were conducted on acutely hospitalised inpatients.  

Krane-Gartiser et al. (2014) recorded 24-hour actigraphy from 30 acutely hospitalised bipolar 

patients (18 for mania and 12 for depression), compared to 28 HC. Her analysis found 

significant differences between manic and depressive patients and patients and HC. She 

observed physical activity differences, where patients with both depression and mania were 

less active than HC. The results were highly significant for the morning but not for the evening 

activity. Moreover, higher fragmentation of activity was reported for the relapsed patients, and 

expressed for mania in the morning (but not in the evening) by lower autocorrelation lag. The 

observed morning’s differences correspond to Gershon et al. (2016) findings based on 37 BD 

outpatients with a 6-weeks actigraphy recording, comparing daily activity profiles during the 

depression and euthymia. Patients were less physically active during depression episodes, with 

later activity onset (low morning activity) and low evening activity, with steep midday activity 

peak. 
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In another relevant study, McGowan et al. (2020) used 18-day actigraphy recordings to study 

the association between NPCRA (3.5.2) features and impulsivity and mood instability in 

31 euthymic BD patients, 21 borderline personality disorder patients, and 31 HC. Both mood 

instability and impulsivity were associated with BD and may represent episode prodromes. 

Found associations were variability of activity between days (low IS) and lower rhythm 

amplitude (RA) for higher mood instability or impulsivity. Moreover, mood instability was 

associated with higher daily activity fragmentation (IV), higher nocturnal activity (L5) and 

delayed daily activity peak (M10-time). All these associations were significant only for the 

borderline personality disorder group (neither for BD, nor for HC), showing that the 

association expected in BD patients is more pronounced in borderline personality disorder, 

where the changes in actigraphic features appeared larger.  

In a classification scenario, Scott, Vaaler, et al. (2017) used 24-hour long actigraphy 

recordings in 34 acutely hospitalised BD patients (16 manias, 12 depressions, 6 mixed states) 

to evaluate the possibility of actigraphy to distinguish among severe mood episodes. A 

discriminant function analysis reached classification accuracy (depression, mania, mixed 

state) about 79% on training data. The most significant cause of error were depressions 

misclassified as manias (42%). When using cross-validation, the model accuracy was 55 %.  

In another study classifying BD episodes based on physical activity, and in this case, other 

physiological and environmental modalities, Cho et al. (2019) collected activity (steps and 

sleep parameters) and HR using a fitness tracker (Fitbit 2). The data were also combined with 

EMA and light exposure data, which have been collected using a smartphone. The dataset 

consisted of 55 volunteers whose data were collected for 2 years. The data were used to predict 

EMA for three following days. The model based on 130 physiological features from the 

previous 18 days reached an accuracy of about 65 %. Another model that distinguished mood 

episodes, confirmed by clinical scales in the MDD, BD-I, and BD-II in outpatients, reached 

overall accuracy slightly above 80 % on the unbalanced training sets. The best sensitivity at 

detecting episodes was in BD-II outpatients 64 % for depression and 67 % for hypomania. In 

BD-I outpatients, the sensitivity for depressive episodes was 25 %, and for manic episodes, it 

was 20 %.  

The exploration of statistical differences in actigraphic features observed during BD episodes 

is important for better understanding the BD progression. Still, only the possibility of 

recognising episodes could revolutionize the treatment of BD patients. Especially as 
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actigraphy is collected passively, and therefore it is not demanding high patients’ adherence. 

Contribution of such a system to better clinical therapy would be even larger if it could work 

for previously unseen patients.  

There already were some partial successes using a combination of multiple sensors recording 

data from different domains (see section 2.4.2). At the same time, many of those approaches 

could face privacy issues. The combination of multiple sensors seems to have a higher dropout 

(as far as 88 % of excluded days due to missing data Cho et al., (2019)). Possible reasons for 

such large amounts of missing data may be the frequent need for battery recharging in devices 

recording data from multiple domains, or feelings of stigmatisation when using multiple or 

recognisable sensors.  

The goals of this analysis are to: 

1. Statistically evaluate inter-episode differences using actigraphy-based circadian 

features in BD outpatients.  

2. Explore the feasibility of the machine learning approach (using linear and nonlinear 

methods) to distinguish between BD episodes in unseen outpatients.  

3. Find features that are commonly associated with the self-perceived worsened state, 

separately for depression and mania. 

8.2. Methods 

The work presented in this chapter uses data of patients from the ACTIBIPO 2 dataset, which 

is described in detail in Chapter 4 - section 4.2. For the statistical comparison (Goal 1) of 

actigraphic features during episodes (depression, mania, remission) and models for episode 

recognition (Goal 2), only the CORE group patients were included, as they have annotated 

episodes (see expert annotations 4.2.4.). For evaluating individual features’ possibilities for 

distinction among clinical states in individual patients and their self-perceived episodes  

(Goal 3), the data of all ACTIBIPO 2 patients were used. 

All data processing and statistical analyses and evaluation of logistic regression models were 

conducted with Matlab software (Matlab 2018b, The MathWorks, Inc), the evaluation of 

random forest classification was conducted in Python environment (Python 3.7.4, Python 

Software Foundation) 
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8.2.1. Data Pre-processing 

The patients’ states were annotated as (1) symptomatic clinically relevant episodes (relapses), 

(2) mildly symptomatic sub-clinical episodes, and (3) non-symptomatic episodes (remission) 

by a team of experts (for details, see 4.2.4). All hospitalisation periods were excluded, as the 

activity is considerably restricted in hospitals. 

Only the episodes of remission, depression and mania, were included in the analysis.  

A 14-day long segment was selected from each episode in such a way that the segments 

contained a minimum amount of missing data-points. The segments with more than 10 % of 

missing values (1.4 days of missing values) were excluded from further analyses. 

Features, corresponding to days in selected episodes’ segments, were calculated in the way 

described in section 3.5. In cases where features’ estimation window preceded the selected 

episodes’ segments, all the features from the windows, which contained 10+ % of missing 

data-points, were excluded from further analysis. Additionally, Slope Entropy (Cuesta-Frau, 

2019) was estimated from the M10 window for each day, and two environmental features were 

included: daylight duration (duration from dusk till dawn calculated for Prague altitude - SUN) 

and moon-illumination (moon cycle - MOON). The list of 63 actigraphic features is presented 

in Table 8-1 in the results.  

In each segment, the excluded daily feature values were replaced by imputed ones. The 

imputation was done based on the feature estimation window as follows: 

1. For the 1-day-based features, the excluded daily features were imputed as a linear 

interpolation of surrounding values. 

2. For the 7-day-based features, the excluded feature’s values were imputed as the 

average of values from the second week of the segment (episode). (The values in the 

first week may not originate from the episode only). 

3. For the 14-day features, all excluded feature’s values were replaced by the feature 

value for the last day of the segment (episode).  

8.2.2. Statistical Comparison 

First, we evaluated how symptomatic episodes differ from non-symptomatic episodes in their 

alternation of physical activity profiles (Goal 1). The Wilcoxon rank-sum test was used for 

testing the pairwise differences in feature’s distributions during remission, depression, and 

mania. As this analysis is of exploratory nature and many of the features are highly correlated 

(Figure S.1 in supplement), no multiple comparison corrections were applied. Additionally, 
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per-patient feature averages were subtracted from the features for this comparison (Diff 

dataset). In this way, we have partially suppressed the differences in patients’ lifestyles, which 

are apparent from Chapter 5 - Table 5-1. The results for original values are shown in  

Table S-4 in the supplement. 

8.2.3. Models and Feature Selection  

The feasibility of the machine learning approach to distinguish between clinical episodes 

(Goal 2) was tested using two classifiers. First was the logistic regression model (LRM). The 

second was the random forest (RF) classifier. In order to obtain results that could be directly 

comparable to the paper of Cuesta-Frau et al. (2020), the models have been trained and fine-

tuned on each of the binary classification tasks separately (dep-man, dep-rem, and man-rem). 

Logistic Regression Model 

To reduce overfitting the model by too many features, the LRM was trained using a forward 

stepwise feature selection (FFS) procedure to choose from the dataset of 65 features, 

63 actigraphic and 2 environmental (MOON and SUN). The logistic regression equation 

(Hastie, Tibshirani and Friedman, 2017) follows:  

log (
𝑝(𝐹)

1 − 𝑝(𝐹)
) = 𝛽0  +  𝛽1𝐹1 +⋯ + 𝛽𝑝𝐹𝑝 

8.1 

where 𝐹 =  (𝐹1, . . . , 𝐹𝑝) are the p features selected by the FFS procedure and ( 𝛽0, . . . , 𝛽𝑝) are 

the coefficients of the fitted model. 

The FFS used deviance as the optimisation criterion. The deviance (Hastie, Tibshirani and 

Friedman, 2017) represents a difference between the log-likelihood of the actual model and 

the saturated model (a model with the maximum number of parameters that can be estimated), 

as below:  

𝐷 =   − 2 (log(𝑳(𝑏𝑝, 𝑦)) − log(𝑳(𝑏𝑠, 𝑦))), 

8.2 

where 𝑏𝑠 are coefficients (𝛽0𝑠, . . . , 𝛽𝑝𝑠) of the saturated model and 𝑏𝑝 are coefficients 

(𝛽0𝑎, ⋯ , 𝛽𝑝𝑎) of the actual model. The deviance has a Chi-square distribution, which was 

used to stop the feature selection when the difference from the previous model was smaller 
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than the 95th percentile of chi-square with n-p degrees of freedom, where n is the number of 

parameters in the saturated model and p is the number of parameters in the model. 

A final set of features for the model is obtained according to the following procedure: 

1. A set of features is selected from all features by the FFS procedure in every iteration 

of a Leave-One- Subject-Out (LOSO) cross-validation process (see section 8.2.4). 

2. An expected contribution of each feature is estimated using the count of ‘how many 

times such feature was selected by the FFS procedure’, ‘how statistically significant it 

was in every model where it was selected’ and ‘how successful was that specific 

model’. The contribution score (ConSc) for a specific feature was obtained from a 

heuristic using the significance (p-value) of the feature’s coefficient and a probability 

(𝑝𝑠𝑢𝑟𝑟𝐴𝑈𝐶) that a resulting area under the receiver operating characteristic (AUC) of 

the original model being better than AUCs of the same model using surrogates (random 

mixing of labels in the test set – see section 8.2.4).  

 

ConSc𝑘  =  ∑2 ∙ 𝐇(𝑝𝑠𝑢𝑟𝑟𝐴𝑈𝐶 < α) ∙ (1 − 𝑝(𝛽𝑘(LR𝑖)))

𝑛

𝑖

, 

8.3 

where H stands for Heaviside function, α is the significance threshold (α =  0.05), 

and 𝑝(𝛽𝑘(LR𝑖)) is the statistical significance (p-value) for the 𝛽 coefficient of the k-th 

feature in i-th logistic regression 𝑳𝑹𝑖 model, and n is the number of models (patients). 

For the features, which have not been selected to be used in the model, the 

𝑝(𝛽𝑘(LR𝑖)) =  1. In this way, the features, which were frequently selected and had a 

significant impact on the models’ outputs, are evaluated as having a high contribution 

value. 

3. Then N features were selected based on the highest ConSc𝑘 . The N has been arbitrarily 

set based on the visualised drop in ConSc.  

4. The features were then clustered based on their correlation, and from those highly 

correlated (R ~ 0.85+), only those with higher ConSc have been selected into the final 

features set. 

These final features sets were then used for training 3 LRMs (dep-man, dep-rem, and man-

rem) without the FFS procedure. The results are presented in the results section. 
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Random Forest Model 

The random forest has been chosen because it is a robust method, which usually doesn’t tend 

to overfit as much as a single decision tree, and it doesn’t require extensive hyper-parameter 

tuning, as in, e.g. gradient boosting machines.  

First, the hyper-parameter tuning has been carried out on the entire feature set, using a fixed 

validation set with 10 randomly selected patients for dep-man and 15 patients for  

dep-rem and man-rep. This resulted in a training validation split of 79 % (training)/21 % 

(validation) for dep-man, 85 %/15 % for dep-rem and 86 %/14 % for man-rem. Then, the 

model was fitted on the training set and evaluated (for the sole purpose of hyper-parameter 

tuning and feature selection) on the validation set. The following model configurations have 

been selected for each binary classification task: 

• dep-man settings: 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 40; 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑁𝑚𝑎𝑛−𝑑𝑒𝑝; 

𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0.5; 𝑛𝑙𝑒𝑎𝑓 = 50 

• dep-rem settings: 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 40; 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑁𝑑𝑒𝑝−𝑟𝑒𝑚

1.5
⁄ ; 

𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0.7; 𝑛𝑙𝑒𝑎𝑓 = 70 

• man-rem settings: 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 40; 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑁𝑚𝑎𝑛−𝑟𝑒𝑚

2⁄ ; 

𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0.1; 𝑛𝑙𝑒𝑎𝑓 = 50 

where 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 is the number of trees, which are being ensembled to the random forest, 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the maximum number of samples used for building individual trees, 𝑟𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is 

the share of features available at each split and 𝑛𝑙𝑒𝑎𝑓 is the minimum number of samples in 

each final leaf of a tree. 𝑁𝑚𝑎𝑛−𝑑𝑒𝑝, 𝑁𝑑𝑒𝑝−𝑟𝑒𝑚, 𝑁𝑚𝑎𝑛−𝑟𝑒𝑚 are the whole training set sizes for 

each binary classification task. These model settings have then been used during (LOSO) 

cross-validation (see section 8.2.4).  

In order to make the LOSO cross-validation loop more efficient, and the models simpler, the 

number of features has been trimmed down for each binary classification task. The feature 

selection process has been carried out based on feature importance for RF using scikit-learn 

toolbox for Python (Pedregosa et al., 2012). Feature importance is obtained by going 

recursively through each tree and branch. Then, for each split, it is recorded how much the 

feature used for the split contributed to the model’s improvement. This improvement is then 

added to the importance score of each feature.  
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Finally, the importance scores were normalized so that the scores of all features summed up 

to one. For each binary classification task, feature importance has been calculated to include 

only important features in the model. The importance score thresholds were kept low to give 

the RF model a possibility to choose from approximately 15-30 features in order to eliminate 

the possibility that the selected features might change depending on patients used for 

validation. Therefore, more features have been included, and the RF model decided which of 

them to select. Moreover, highly correlated features could also be removed. 

8.2.4. Machine Learning Validation Process 

Due to limited dataset size (number of episodes), the results have been validated using the 

LOSO cross-validation. In this scenario, the model is trained N times, where N is the number 

of patients. For each training step, the data from N-1 patients are used as a training set, and the 

results are validated on the patient who was left out – Leave One Subject Out. This way, all 

episodes of a single patient are used for validation and none for training at each step. This 

approach is more appropriate to evaluate the general capability of distinction between episodes 

than leaving out individual samples (days), which we did in the Cuesta-Frau et al. (2020) 

because it suppresses the similarity in consecutive days as well as similarity in episodes from 

one patient (specific regime). 

Additionally, this represents the more demanding of two application scenarios of an 

actigraphy-based BD episode prediction model: predicting episodes for a new ‘unseen’ 

patient. The less demanding application would be to predict new episodes in a patient whose 

data were used for model training. While such prediction is expectedly easier, our dataset, 

where only a few patients have reported episodes of the same type, is not suitable for this task.  

The validation set was further limited to include only patients with at least one episode of each 

class. And as there are significant differences between the number of episodes of each type 

(depression, mania, remission) in the dataset, the sizes of training data sets were equalised. 

Equalisation was done by random replication of samples (without repetition) from the under-

represented class. When the difference was such that even doubling the under-represented 

class would still not reach equal class sizes, random samples were removed from the over-

represented class. The equalisation of class sizes was done only for the training dataset, as in 

the validation set, it would increase the variation of results. 

Additionally, the surrogates’ analysis was applied to evaluate the models’ results for individual 

patients. In this analysis, the episode labels were randomly shuffled 5000 times in the test-sets 
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(LOSO) patients. AUCs (AUCsurrog) were obtained for these randomly shuffled labels using 

the currently learned model. The AUC, with original labels, was compared to quantiles of the 

AUCsurrog empirical distribution to find whether it is significantly different (two-sided 

p < 0.05). The significant results were interpreted as the model’s ability to distinguish 

episodes from a given patient was better than random (BTR). If the original AUC quantile was 

significantly low (p < 0.025) compared to the AUCsurrog empirical distribution, we marked that 

this patient has the opposite episode manifestation than expected. 

8.2.5. Individual Features vs Subjective Relapses 

The association of actigraphic features changes with the self-perceived worsened state was 

explored to find which features are most commonly associated with elevated or depressed 

mood (Goal 3). The strength of each of the features to recognise episodes of worsened state 

was tested for individual patients. The motivation was to find a possible existence of additional 

BD subtypes, which have different changes in circadian rhythm parameters, or an existence of 

more types of activity changes for episodes of the same kind. In order to work with a larger 

dataset for this task, the patients’ state was assessed by the ASERT (see section 4.2.2) rather 

than by expert labels. The procedure then was as follows: 

1. The actigraphy features were selected only for days where ASERTs were collected. 

2. The ASERTs divided by a threshold separately for manic and depressive (and non-

specific), using the relapse global model threshold values from models by (Anýž et al., 

2021, preprint) 5 of the manic subset of questions and 15 for depressive (& 

nonspecific) subsets of questions. 

3. The classification strength was tested for each of the features separately, by its AUC, 

for patients where there were at least 5 samples (days) in each category. 

4. The potential of individual features was then assessed as the percentage of people for 

whom the |AUC –  0.5|  >  0.2. The direction of changes was assessed by the 

percentage of patients with AUC >  0.5 and AUC <  0.5 

The features were marked as high potential features, when |AUC –  0.5|  >  0.3 occurred in 

30 % of patients where the classification could be tested.  
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8.3. Results 

8.3.1. Dataset Information - Episodes 

Out of the 98 CORE patients, 91 had at least one episode (in this chapter, the term episode 

also includes remissions) lasting 14 days. Out of the 91 patients, 50 patients experienced 

episodes of one type only (45 remissions, 5 depressions, 0 manias), 35 patients experienced 

episodes of two types, and 6 patients experienced episodes of all three types. There have been 

in total 56 depression episodes, 25 manic episodes, and 173 remission episodes, which were 

statistically compared (Goals 1). Multiple episodes of one type may be found for some 

patients. As the models (binary classifiers) were trained solely on patients with episodes in 

both tested classes, there were 10 patients with depression and mania, 15 patients with 

remission and mania, and 28 patients with remission and depression used for models training 

and testing (Goal 2). 

8.3.2. Statistical Comparison 

There were significant differences between remission and depression, remission and mania 

and depression and mania in most used actigraphic features. For a summary, see Table 8-1. 

The (Diff dataset) features are presented in the table because these features reduce the effect 

of inter-patient activity profile differences. Although statistical differences were significant, 

the effect sizes, measured as a standardized mean difference (SMD), were very small, 

SMD < 0.2 for most cases. All except two remission-to-relapse differences reached at best 

only small effect sizes (SMD in range 0.2 - 0.5). The two features that reached medium effect 

size (SMD in range 0.5 – 0.8) were the Acrophase7 between rem-man (z = -3.7, p < 0.001, 

SMD = 0.68) and L514 between rem-man (z = -11.3, p < 0.001, SMD = 0.51). For features 

estimated from both 7-day and 14-day windows, only the one with a larger effect size is 

presented here.  
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Table 8-1: Features (Diff) values during episodes and their strength in the classification of ASERT relapses in individual 

patients  

Feature+ 

Feature values for relapses based on expert 

annotations (dataset 8.3.1)  

Median (IQR) 

ASERT relapses (dataset 8.3.4) 

% of patients divided based on relapse predictability 

Remission Depression‡‡ Mania‡‡ 
Depression (AUC) Mania (AUC) 

<0.3 / >0.7‡ <0.5 / > 0.5 <0.3 / >0.7‡ <0.5 / > 0.5 

 

Cosinor Analysis - 7 days estimation window 

Amplitude7 (counts) 0.6 (38.7) -6.4*** (47.5) -4.1** (42.6) 27% /3% 68% /32% 2% /14% 33% /67% 

Acrophase7 (hours) 0.23 (3.15) 0.72* (3.95) -0.41***/### (4.96) 9% /11% 48% /52% 11% /9% 59% /41% 

MESOR7 (counts) -0.7 (41.1) -14.5*** (51.3) 11.8***/### (81.8) 43% /3% 80% /20% 2% /43% 15% /85% 

CQ7 (Circadian Quotient) 0.00 (0.12) 0.02*** (0.12) -0.05***/### (0.13) 4% /13% 35% /65 % 24% /6% 71% /29% 

MSE7 (Mean Square 

Error of the fitted cosine) 

-1987 

(12608) 

-5109*** 

(14821) 
5095***/### (17477) 36% /6% 69% /31% 4% /32% 25% /75% 

GOF7 (Goodness of Fit) 0.07 (5.64) -0.40* (6.48) -1.42***/### (5.13) 19% /6% 62% /38% 9% /11% 48% /52% 

 

Cosinor Analysis - 14 days estimation window 

Amplitude14 -1.0 (32.1) -3.7*** (39.8) -6.7** (35.6) 27% /2% 70% /30% 8% /17% 37% /63% 

Acrophase14 0.33 (2.55) 0.70 (4.05) 0.24* (3.97) 10% /10% 43% /57% 12% /11% 56% /44% 

MESOR14 0.1 (39.4) -13.3*** (42.7) 18.7***/### (76.7) 45% /4% 72% /28% 1% /35% 16% /84% 

CQ14 0.00 (0.10) 0.01*** (0.10) -0.07***/### (0.13) 8% /15% 46% /54% 31% /3% 70% /30% 

MSE14 
-1947 

(10767) 

-3985*** 

(14217) 
7217***/### (17469) 32% /5 68% /32% 3% /34% 26% /74% 

GOF14 (%) -0.11 (4.50) -0.23 (5.34) -1.18***/### (4.55) 19% /4% 67% /33% 11% /11% 50% /50% 

 

Nonparametric circadian rhythm analysis (NPCRA) - 7 days estimation window 

IV7 (interdaily 

variability) 
-9.9E-3 (0.10) -4.7E-3 (0.12) 8.0E-3** (0.12) 6% /21% 35% /65% 12% /2% 62% /38% 

IS7 (intradaily stability) 4.5E-3 (0.10) 2.4E-3 (0.10) 
-16.0E-2***/## 

(0.10) 
12% /8% 61% /39% 9% /10% 46% /54% 

M107  

(most active 10 hours) 
0.3 (60.7) -18.0*** (71.4) 7.8***/### (83.3) 37% /3% 74% /26% 2% /32% 17% /83% 

M10-time7  

(M107 mid-time) 
-0.01 (1.77) 0.07* (1.82) 0.13 (2.32) 6% /6% 46% /54% 9% /3% 54% /46% 

L57 (Least active 5 hours) -3.3 (13.6) -7.0*** (19.6) 3.5*** (33.1) 26% /3% 68% /32% 2% /33% 27% /73% 

L5-time7 (L57 mid-time) 0.02 (1.00) -0.22*** (1.18) -0.02# (1.47) 7% /10% 42% /58% 10% /6% 60% /40% 

RA7 (Relative Amplitude) 0.01 (0.06) 0.02* (0.07) -0.02***/### (0.09) 11% /11% 46% /54% 16% /7% 56 %/44% 

 

NPCRA - 14 days estimation window 

IV14 -1.3E-3 (0.08) -5.6E-4 (0.11) 4.3E-3**/# (0.08) 8% /21% 42% /58% 11% /1% 59% /41% 

IS14 2.4E-3 (0.09) -3.0E-3 (0.08) 
-18.0E-3***/### 

(0.09) 
19% /5% 67% /33% 10% /11% 50% /50% 

M1014 -1.0 (57.3) -12.7*** (63.6) 9.5***/### (81.1) 39% /4% 74% /26% 2% /31% 22% /78% 

M10-time14 -0.10 (1.54) 0.19*** (1.52) 0.05* (1.47) 12% /12% 46% /54% 6% /10% 56% /44% 

L514 -2.8 (14.2) -5.4*** (21.6) 8.3***/### (32.3) 27% /4% 62% /38% 2% /33% 28% /72% 

L5-time14 0.02 (0.82) -0.23*** (1.14) -0.16*** (1.07) 12% /12% 44% /56% 8% /6% 56% /44% 

RA14 0.01 (0.06) 0.00 (0.07) -0.02***/### (0.09) 13% /15% 50% /50% 16% /4% 59% /41% 

 

NPCRA - daily values 

M10 0.3 (100.8) -23.2*** (120.0) 11.5**/### (130.0) 26% /2% 77% /23% 2% /24% 22% /78% 

M10-time -0.16 (3.27) -0.08 (3.00) -0.08 (4.12) 4% /11% 39% /61% 6% /4% 56% /44% 

L5 -3.0 (12.9) -5.8*** (12.2) -2.4### (15.9) 13% /3% 66% /34% 0% /19% 27% /73% 

L5-time -0.10 (1.95) -0.28** (2.18) -0.03## (2.05) 7% /3% 51% /49% 5% /1% 56% /44% 

RA 0.01 (0.06) 0.02 (0.06) 0.01 (0.08) 8% /5% 56% /44% 6% /4% 49% /51% 

RMSSDM10 (in the M10 

window) 
-14.2 (332.1) -28.9 (366.7) -2.2 (345.7) 12% /2% 66% /34% 4% /4% 34% /66% 

SDM10 -70.8 (465.5) -69.6 (457.7) -60.5 (451.9) 9% /4% 57% /43% 6% /2% 52% /48% 

 

Other nonparametric features – daily values 

ADA (Average daily 

activity) 
-1.6 (67.0) -16.7*** (74.4) 17.0***/### (93.0) 29% /3% 78% /22% 2% /31% 18% /82% 
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Feature+ Remission Depression‡‡ Mania‡‡ 
Depression (AUC) Mania (AUC) 

<0.3 / >0.7‡ <0.5 / > 0.5 <0.3 / >0.7‡ <0.5 / > 0.5 

AQA1 (Average activity 

between 0:00-6:00) 
-11.6 (35.0) -19.6*** (39.0) -7.1*/### (75.0) 14% /3% 69% /31% 1% /21% 28% /72% 

AQA2 (6:00-12:00) 9.9 (135.1) -22.0*** (142.9) 6.4### (192.2) 22% /3% 73% /27% 2% /24% 25% /75% 

AQA3 (12:00-18:00) 0.6 (127.0) -23.4*** (142.0) 15.9*/### (148.1) 25% /2% 70% /30% 2% /18% 23% /77% 

AQA4 (18:00-24:00) -1.7 (113.7) -33.8*** (120.7) 18.3***/### (136.3) 18% /3% 69% /31% 2% /20% 27% /73% 

DAhigh (% of high activty) -0.13 (7.51) -2.21*** (8.29) 1.28***/### (10.65) 28% /1% 79% /21% 1% /27% 22% /78% 

DAmoderate (% of moderate 

activty) 
0.00 (6.05) -1.27*** (6.27) 1.65***/### (6.71) 14% /4% 64% /36% 3% /16% 31% /69% 

DAsedentary (% of 

sedentary activty) 
-0.23 (4.20) -0.05 (4.18) 0.28* (6.17) 3% /11% 44% /56% 8% /4% 57% /43% 

DAlow (% of low activty) -0.78 (9.63) 2.06*** (10.74) -3.67***/### (12.51) 1% /23% 29% /71% 30% /0% 83% /17% 

ACL++ (active day 

autocorelation 5 min lag) 
0.004 (0.032) 

-0.001*** 

(0.041) 
0.008*/### (0.037) 20% /4% 78% /22% 1% /18% 24% /76% 

RMSSDactday (for active 

part of the day)  
0.0 (31.0) -7.3*** (34.1) 5.6***/### (35.9) 23% /3% 71% /29% 0% /21% 26% /74% 

 

Sleep based features - daily values 

SleOn (sleep onset) -3.81 (4.63) -4.66** (5.21) -3.57## (4.87) 11% /6% 62% /38% 1% /13% 30% /70% 

Mid-sleep  -0.38 (1.54) -0.49* (1.83) -0.54 (2.16) 4% /8% 54% /46% 5% /5% 54% /46% 

SleOFF (sleep offset) -2.81 (3.63) -2.73* (3.97) -3.31**/### (4.41) 4% /11% 41% /59% 17% /5% 69% /31% 

SleDur (main daily – 

night - sleep duration) 
-0.12 (2.32) 0.39*** (2.66) -0.92***/### (2.70) 2% /14% 32% /68% 27% /2% 77% /23% 

SleDur18 (sum of sleeps 

18:00-18:00) 
0.07 (2.42) 0.75*** (2.87) -0.84***/### (2.98) 3% /21% 22% /78% 29% /0% 80% /20% 

SleDurdaily (mid-night to 

midnight sum of sleeps) 
0.10 (2.54) 0.77*** (2.66) -0.72***/### (2.83) 2% /20% 25% /75% 25% /0% 77% /23% 

ISL (Immobile sleep) 0.02 (7.27) 0.26 (7.26) 0.65* (7.01) 4% /9% 49% /51% 7% /7% 53% /47% 

RSL (Restless sleep) -0.35 (1.57) -0.32 (1.71) -0.38 (1.53) 9% /11% 46% /54% 2% /6% 46% /54% 

RMSSDsleep 1.49 (36.02) 1.55 (34.94) -2.33***/### (36.97) 5% /4% 46% /54% 8% /6% 52% /48% 

WASO (Wake After 

Sleep Onset) 
-4.69 (12.05) -4.45 (17.21) -4.30*/# (9.88) 4% /10% 47% /53% 6% /2% 52% /48% 

APSO (Activity Prior 

Sleep Onset) 
0.2 (132.8) -18.7*** (138.8) 18.9**/### (167.7) 8% /2% 58% /42% 4% /9% 29% /71% 

AASO (Activity After 

Sleep Onset) 
-3.4 (22.0) -4.3 (21.8) -5.3* (18.4) 9% /7% 50% /50% 4% /4% 52% /48% 

APWU (Activity Prior 

Wake-Up) 
-3.2 (21.4) -2.4 (23.0) -4.7*/# (21.3) 5% /7% 44% /56% 5% /5% 51% /49% 

AAWU (Activity After 

Wake-Up) 
16.4 (122.6) -12.1*** (153.8) 11.0## (147.7) 17% /2% 73% /27% 4% /7% 30% /70% 

APSO/AASO (sleep onset 

ratio %) 
-0.05 (0.16) -0.05 (0.19) -0.07***/### (0.14) 3% /3% 43% /57% 9% /2% 64% /36% 

AAWU/APWU (sleep 

ofset ratio %) 
-0.03 (0.11) -0.03 (0.15) -0.04 (0.11) 3% /7% 32% /68% 4% /3% 52% /48% 

 

Explainable activity features - daily values 

ExAct 202.5 (422.2) 107.3*** (446.9) 301.7***/### (510.4) 26% /1% 78% /22% 2% /30% 18% /82% 

ExActactive (normlised by 

active day duration) 
12.0 (22.8) 9.5*** (24.5) 15. 5*/### (23.7) 18% /1% 71% /29% 2% /16% 26% /74% 

 

Complexity analysis – entropy - daily values 

SlopeEntropyM10 (in the 

M10 window) 
0.31 (2.64) 0.55** (2.60) 0.07## (2.82) 2% /13% 36% /64% 13% /0% 75% /25% 

Statistical significance * < 0.05 ** <0.01 *** <0.001 for rem-dep and rem-man differences using Wilcoxon rank-sum test 

Statistical significance # < 0.05 ## <0.01 ### <0.001 for dep-man difference using Wilcoxon rank-sum test 
+Feature calculations are described in Chapter 3 - section 3.5;  
‡‡ Bold values present remission-relapse differences with medium effect size (SMD 0.5 – 0.8) the bold italic presents small effect size (SMD 

0.2 – 0.5), normal text presents values with SMD < 0.2. 
‡In the ASERT relapses prediction part bold results represent features where ≥ 30 % patients have high predictive capability  

(AUC > 0.7 or < 0.3), and bold-italic where ≥ 25 % of patients have high predictive possibilities in one direction. 
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Features that differ during remission and depression with a small effect size (ordered by 

SMD) were:  

DAhigh
15 (z = 8.5, p < 0.001, SMD = 0.35), MESOR14 (z = 10.9, p < 0.001, SMD = 0.33), 

DAlow (z = -8.8, p < 0.001, SMD = 0.32), ExAct (z = 8.5, p < 0.001, SMD = 0.31),  

SleDur18 (z = -8.4, p < 0.001, SMD = 0.31), SleDurdaily (z = -8.3, p < 0.001, SMD = 0.30), 

ADA (z = 8.9, p < 0.001, SMD = 0.30), M107 (z = 8.7, p < 0.001, SMD = 0.27),  

AQA4 (z = 7.8, p < 0.001, SMD = 0.24), M10 (z = 6.5, p < 0.001, SMD = 0.22),  

RMSSDdaily (z = 7.3, p < 0.001, SMD = 0.22), SleDurnight (z = -7.4, p < 0.001, SMD = 0.22), 

AQA2 (z = 6.4, p < 0.001, SMD = 0.21), DAmoderate (z = 5.7, p < 0.001, SMD = 0.21),  

ACL (z = 4.7, p < 0.001, SMD = 0.21), and AQA3 (z = 5.6, p < 0.001, SMD = 0.20). 

 

The features with the largest differences between remission and mania were the already 

mentioned Acrophase7 and L514. Those that reached at least a small effect size follows:  

CQ14 (z = 10.7, p < 0.001, SMD = 0.45), RA14 (z = 9.6, p < 0.001, SMD = 0.41), 

MESOR14 (z = -8.2, p < 0.001, SMD = 0.40), SleDurdaily (z = 7.1, p < 0.001, SMD = 0.35), 

SleDur18 (z = 7.1, p < 0.001, SMD = 0.34), DAlow (z = -8.8, p < 0.001, SMD = 0.30),  

cos. MSE14 (z = -9.9, p < 0.001, SMD = 0.29), DAmoderate (z = 4.7, p < 0.001, SMD = 0.24), 

SleDurnight (z = 7, p < 0.001, SMD = 0.24), GOF (z = 6.4, p < 0.001, SMD = 0.23),  

AQA1 (z = -2.3, p = 0.02, SMD = 0.22), RMSSDsleep (z = 3.7, p < 0.001, SMD = 0.22),  

M1014 (z = -5.2, p < 0.001, SMD = 0.21), and DAhigh (z = -3.4, p < 0.001, SMD = 0.20).  

The differences between depression and mania were larger than differences between 

remission and relapses, as many of these differences had opposite directions. Therefore, few 

features achieved medium effect size. These features follow, ordered by SMD:  

MESOR14 (z = 11.1, p < 0.001, SMD = 0.66), SleDur18 (z = -10.6, p < 0.001, SMD = 0.65), 

SleDurdaily (z = -10.7, p < 0.001, SMD = 0.65), DAlow (z = -10.3, p < 0.001, SMD = 0.62), 

L514 (z = 11.5, p < 0.001, SMD = 0.57), DAhigh (z = 7.7, p < 0.001, SMD = 0.55),  

Acrophase7 (z = 3.84, p < 0.001, SMD = 0.54), CQ14 (z = -10.9, p < 0.001, SMD = 0.54), and 

ExAct (z = 8.5, p < 0.001, SMD = 0.50). 

 

 

                                                 
15 For features name explanations see Table 8-1 
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8.3.3. Classification and Feature Selection 

The results for both machine learning approaches (LRM and RF) are presented individually 

for each binary classification task (dep-man, dep-rem, and man-rem in Table 8-2). The overall 

performance of models is presented as average characteristics (accuracy, sensitivity, 

specificity, and AUC) obtained for all LOSO cross-validation test set (average performance 

over relevant patients).  

Moreover, the performance for individual patients is presented based on the surrogates’ 

analysis, mentioning the number of patients where the model reached significantly different 

performance (p < 0.05) than the surrogates. For LRM we have also included the count of the 

patients for whom the model performance would be improved by switching classes labels 

(AUC < AUCsurrog), therefore the episodes affect the activity profile in the opposite way. 

Finally, for each model, we present the set of selected features. While for LRM, the removal 

of highly correlated features considerably improved the model performance, in the case of RF, 

the changes were negligible.  

Table 8-2: Summary of final models evaluation global and individualised results 

Model dep-man‡ dep-rem‡ man-rem‡ 

 

Results of classification models 
  

Logistic Regression+ 

Accuracy:     0.61 

Sensitivity:   0.65 

Specificity:   0.55 

AUC:            0.71 

Accuracy:     0.61 

Sensitivity:   0.60 

Specificity:   0.52 

AUC:            0.58 

Accuracy:    0.61 

Sensitivity:  0.49 

Specificity:  0.64 

AUC:           0.62 

Random Forest 

Accuracy:     0.63 

Sensitivity:   0.86 

Specificity:   0.38 

AUC:            0.71 

Accuracy:     0.57 

Sensitivity:   0.43 

Specificity:   0.65 

AUC:            0.55 

Accuracy:    0.70 

Sensitivity:  0.53 

Specificity:  0.79 

AUC:           0.70 

 

Results of surrogate analysis  
  

Logistic Regression BTR: 7/10  BTR: 13/28  BTR: 9/15  

Random Forest BTR: 6/10 BTR: 12/28 BTR: 8/15 
‡ the first mentioned episode type is taken as a positive class (sensitivity) 
+as randomisation is used in the model training, the results varied by 3 % for all accuracy, sensitivity, and specificity 
BTR means Better Than Random tested using surrogates on a 5 % significance level 

 

Classification of Mania and Depression Episodes 

For the dep-man classification, the LRM achieved an accuracy of 61 %, sensitivity of 65 %, 

and specificity of 55 %. Therefore, results were well balanced but only slightly better than 

guessing. For comparison, the RF achieved an accuracy of 63%, sensitivity of 86%, and 38% 

specificity. While the RF was better in detecting depression episodes, it was worse in detecting 

manic episodes. With a specificity lower than 50 %, the model predicts less than half of all 

manic episodes correctly. Both models reach the same AUC of 0.71. The LRM was better than 
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surrogates in 7 out of 10 patients (where 3 had AUC value lower than surrogates), and a similar 

result was obtained for the RF model, with 6 out of 10 patients being better than surrogates.  

The LRM used 17 features (sorted by importance): L514, SUN, M107, RA14, Acrophase14,  

L5-time7, DAsedentary, L5-time14, L5-time, DAmoderate, CQ14, ISL, AQA4, AQA1, and AASO, 

while the RF used 15 features (with descending importance): MESOR14 SleDur18, SUN, CQ14, 

IV14, M107, Amplitude14, Acrophase14 DAsedentary, L514, L5-time14, ISL, RMSSDdaily, IS14, and 

APSO.  

Classification of Remission and Depression Episodes 

In the classification of depression and remission in 28 patients, the LRM achieved an accuracy 

of 61 %, sensitivity of 60 %, and specificity of 52 % and AUC of 0.58. The RF achieved an 

accuracy of 57 %, sensitivity of 43 % and specificity of 65% and AUC 0.55. The resulting 

accuracies are very similar between the models, especially when we consider variability in 

LRM results by about 3%, caused by randomisation. The LRM is slightly better in detecting 

depression, while RF is better in the detection of remission. 

The surrogate analysis of LRM found better than random distinguishing possibilities in 13 out 

of 28 patients (in 5 patients, the AUC was significantly lower than in surrogates). Similarly, 

for RF, in 12 out of 28 patients, it was easier to distinguish depressive days and remission days 

compared with the surrogates.  

Selected features for LRM (in descending order descending) were: Acrophase14’, APSO, 

DAlow, L5-time14, ADA, IS14, MOON, DAhigh, M1014, IV14, SleDur, CQ14, L514, RA14, and 

AAWU. Selected features for RF were: MESOR7, MESOR14, SUN, Acrophase14, IS14, RA14, 

L5-time14, DAsedentary, M1014, AQA1, L5-time7, CQ14, IV14, Amplitude14, RA7, Acrophase7, 

APSO, M10-time14, IS14, L57, Amplitude7, and SleDur.  

Classification of remission and episodes of mania 

Finally, for classifying mania and remission, the LRM achieved an accuracy of 61 %, 

sensitivity of 49 %, and specificity of 64 %., and AUC of 0.62. The RF model achieved an 

accuracy of 70 %, sensitivity of 53 %, specificity of 79 % and AUC of 0.70. In this task, 

therefore, RF clearly outperformed the LRM.  
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The LRM was successful in 9 out of 15 patients (with 2 having the AUC significantly lower 

than AUCsurrog). The RF was successful in 8 out of 15 patients. Both models were, therefore, 

better than random in more than half of the patients.  

Selected features in this task for LRM (in descending order) were: L5-time14, SUN, MOON, 

M10-time, SleDur18, L5-time7, AQA2, ISL, DAlow, RMSSDsleep, RA7, L57, IV14, IS14, 

MESOR7, DAhigh, and SleDur The selected features for RF were: CQ14, SleDurdaily, IV7, IV14, 

RA14, DAlow, SUN, L514, SleDur18, SleDur, RA7, MESOR7, RSL, L57, IS14, MESOR14, 

APWU, M107, M10-time14, RMSSDsleep, DAsedentary, MOON, ISL, DAmoderate, SleOFF, M10-

time14.  

8.3.4. Dataset Information - ASERTs 

Individual feature’s strength to recognise ASERT (section 4.2.2) relapses were studied using 

the whole ACTIBIPO 2 dataset (section 4.2). Out of 275 patients in the dataset, the inclusion 

criteria of at least five days with and without ASERT depression (sum of depressive and non-

specific groups of ASERT score > 15) were fulfilled by 115 patients. The same criteria for 

ASERT mania (ASERT mania score > 5) were fulfilled by 129 patients.  

8.3.5. Individual Features vs Subjective Relapses 

The best features, considering at least moderate power (AUC > 0.7 or AUC < 0.3 – further 

referred as recognising ASERT states) for mood detection, were a successful predictor for 

more than 40 % of patients. These high success percentages were only observed in features 

estimated from windows (7- and 14-day). An example of a distribution of features associated 

with ASERT relapses in a randomly selected patient is shown in Figure 8.1. 

The results for all features and all patients are presented in Table 8-1. Features that recognise 

ASERT relapses in the largest portion of patients are listed below. The percentage of patients 

with recognisable mood changes, the dominant feature change direction associated with the 

worsened state, and the percentage of patients with the change in this dominant direction are 

given for each feature, as well as the average AUC results for the dominant direction  

sub-group. When both 7-day and 14-day features have been successful, only the one with a 

higher percentage of patients with the recognisable state is presented. 

For depression, MESOR14 (48.7 %; decrease - 45.1 % [AUC 0.18), M1014 (42.5 %; decrease 

- 39.3 % [AUC 0.18]), and cosinor MSE7 (41.2 %; decrease - 36.0 % [AUC 0.20]), were the 

only three features that successful in more than 40 % of patients. Additionally, two features 
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were able to recognise ASERT depression relapse in 30+ % of patients: ADA (32.2 %; 

decrease - 28.7 % [AUC 0.21]), and L514 (31.0 %; decrease - 27.4 % [AUC 0.19]).  

 

Figure 8.1 - Individual features distribution for ASERT relapses for patient ID330. The z-scores for features at the day of 

ASERT, the blue circles present non-relapse (depression in right and mania in left) ASERT score (for depression < 15 and 

for mania < 5), the red diamonds present ASERT relapses. Next to each feature name (for the explanation of feature names, 

see Table 8-1) is AUC for feature-based ASERT relapse classification.  
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For mania, only the MESOR7 (44.9 %; increase - 43.3 % [AUC 0.82]) was successful in more 

than 40 % patients. Additionally, ASERT mania relapse was recognisable for 30+ % of 

patients in the following features:  

MSE14 (36.0 %; increase - 33.9 % [AUC 0.78]), L57 (35.4 %; increase - 33.3 % [AUC 0.80]),  

CQ14 (34.4 %; lower 31.2 % [AUC 0.19]), M107 (33.9 %; increase - 32.3 % [AUC 0.80]), 

ADA (32.8 %; higher 31.5 % [AUC 0.81]), ExAct (31.0 %; increase - 30.5 % [AUC 0.80]), 

and DAlow (30.4 %; decrease - 30.4 % [AUC 0.19]).  

Moreover, the following features had a highly specific association with increased manic 

symptoms, meaning the associated change was of one direction only:  

SleDur18 (decrease - 29.1 % [AUC 0.20]), SleDurdaily (decrease - 24.8 % [AUC 0.20]),  

L5 (increase - 18.9 % [AUC 0.76]) and SlopeEntropyM10 (decrease - 12.7 % [AUC 0.23]). 

8.4. Discussion 

We have evaluated state-induced physical activity changes, assessed by actigraphy, in BD 

outpatients. Additionally, we provided these actigraphy differences to machine learning 

models and trained them to distinguish between the remission and relapses of mania or 

depression. While the classification of relapses, based solely on actigraphic features, has 

already been assessed by Scott et al. (2017), our work is, to our knowledge, the first that 

explored the difference in outpatients rather than inpatients. The long-term actigraphy allowed 

us to measure activity during untreated (not hospitalised) relapses. Using these data, we were 

able to assess the differences between outpatient relapsed episodes and remission, which are 

more important for treatment supporting purposes. The relapses and remission differences in 

outpatients were also assessed by Cho et al. (2019), but their dataset was enriched by 

continuous heart-rate and illumination measurements. 

Both of the models, which we used - the linear logistic regression (LRM) and nonlinear 

random forest (RF) - reached similar results for all three (dep-man, rem-dep, rem-man) 

classification tasks. The accuracy of distinction between relapses of mania and depression 

using a balanced dataset was approximately 60 %, with random forest having higher 

depression sensitivity (86 %) and lower specificity (38 %), and logistic regression with more 

balanced sensitivity (65 %) and specificity (55 %). For comparison, Scott et al. (2017) models 

reached an accuracy of 79 % on training data (and of 55 % using cross-validation) in 
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distinguishing depression, mania, and mixed states. The most commonly misclassified episode 

type in the Scotts’ research was depression, where 42 % of episodes were classified as mania 

(the predominant episode type 15 to 12). The similarity between depression and manic 

episodes was also observed in our RF model, where many manic episodes were classified as 

depressions, as the predominant episode was depression (56 to 25). The differences in the ratio 

of mania and depression are probably caused by the fact that Scott was evaluating hospitalised 

patients. While depression is much more common in BD (Akiskal et al., 2000; Látalová, 

2010), it could be managed using a clinical approach, while manic episodes in many cases 

require hospitalisations. 

The accuracy of differentiation between remission and relapses was around 60 % for both 

types of clinical episodes (slightly better – about 70 % - for RF and mania). These results are 

worse than approximately 80 % obtained by Cho et al. (2019). But as we had balanced our 

training sets, a comparison of relapse detection accuracies may be misleading. When we 

compare sensitivity instead, the LRM depression sensitivity of 60 % resembles the sensitivity 

achieved by Chos’ model for BD-II patients (64 %), and it is higher than depression sensitivity 

for BD-I patients (25 %). Concerning days with mania (or hypomania), our RF model’s 

sensitivity of 53 % is comparable to 70 % sensitivity for hypomania (BD-II) and 21 % 

sensitivity for mania (BD-I) achieved by Chos’ models. There are two notable differences 

between our and Chos’ approaches. Firstly, our binary classification included only remissions 

and relapses of one type, while Cho evaluated one type of episode days against all other data 

days. Second, our models were tested using unseen patients, while Chos’ models were tested 

using unseen days. Unfortunately, the information about patients’ BD type (BD-I and BD-II) 

was not yet known for our sample.  

The results from both models are slightly worse than those from our previous study (Cuesta-

Frau et al., 2020), where an accuracy of about 70 % was achieved using the slope entropy 

feature only. As slope entropy wasn’t selected for any of our models, we have to conclude that 

the drop in the accuracy is caused mainly by different length of segments for slope entropy 

estimation (the daily M10 segment vs the longest segment), and by the more demanding LOSO 

validation process used for the models in this study.  

Concerning statistical differences in individual features as presented in Table 8-1, it has to be 

noted that while many differences were highly significant, the classification was not simple. 

Therefore, comparative studies (Krane-Gartiser et al., 2014; Gershon et al., 2016) would 



121 

 

benefit from incorporating at least a simple classifier to evaluate whether the differences are 

feasible for classification.  

The statistical difference and feature selection by classifiers provided us with a large amount 

of information about typical behaviour changes during relapses. The most apparent change 

was in the overall activity (MESOR, also supported by ADA and ExAct), which was higher 

during mania and lowered during the depression. With Amplitude being lower for both 

depression and mania, combined with much shorter sleep in mania and longer in depression, 

the daily profile changes seem clear.  

During the depression, the physical activity profile (see Figure 8.2) is low, starting with longer 

sleep. Then it increases slowly into the active part of the day, where it is significantly lower 

than during remission, as can be deduced from lowering of M10 features as well as in all parts 

of the day (AQA1-4 and ExActactive – an activity score per active day hour). Still, the activity 

profile follows a similar daily profile (GOF is just slightly smaller, and CQ is higher) as in 

remission. These results correspond to lower overall activity, with later onset and low evening 

activity observed by Gershon et al. (2016). The sleep is longer but similar in quality to 

remission (ISL, RSL, RMSSDsleep).  

 

 

Figure 8.2 - Activity profiles during mania, remission, and depression 

 

During mania, the activity profile (see Figure 8.2) is flat. In this case, it is caused by a much 

shorter sleep (SleDurmain, DAlow). Sleep shortening is caused mainly by earlier wake-up 

(SleOFF), as is supported by earlier Acrophase. During the day, the activity varies around high 
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values with probably multiple peaks, as is given by lowering of cosinor GOF and IS while 

increasing IV and RMSSDactday. The daily profile (AQA1-4, M10, L5) is increased, especially 

during the evening (AQA4, APSO). The physical activity increase in manias is not as large as 

its decrease observed during depressions. While the sleep is short, it is also less disturbed 

(RMSSDsleep, AASO, APWU). 

Contrary to our findings, Krane-Gartiser et al. (2014) didn’t observe increased activity in 

hospitalised patients with mania in the evening. We also cannot confirm a decreased activity 

during the morning of BD patients in mania (AAWU). Our results only confirm that there was 

no significant increase of activity during two hours after wake-up (AAWU) in manic patients. 

Our results confirm a decreased activity in patients with depression during the morning, but 

our sample also showed their significantly decreased activity in the evening. The differences 

between our and Krane-Gartisers’ samples and analyses are that, her volunteers were 

hospitalised patients, and the evaluated periods were 64 minutes during morning and evening 

(while AAWU and APSO were 120 min long), and that Krane-Gartiser compared the activities 

to HC while we compared it to patients’ remission. 

The obtained subset of features with significant changes between remission and relapses, as 

well as that selected by the models, enhance our knowledge about relapse manifestation in BD 

outpatients in detail that was not yet available. Interestingly, the frequency with which the 

models selected the day length (the SUN feature) supports the expected seasonality of BD 

relapses (Geoffroy, Bellivier, et al., 2014; Bakstein et al., 2019; Fellinger et al., 2019). 

The remission-depression differences include most of the differences observed between 

remitted BD patients and healthy controls (HC) (see Chapter 7). These differences were 

namely significant decreases in M10, ADA, and APSO, and increases in SleDur and CQ were 

observed. The only difference observed between BD patients and HC, which was not 

significant between remission and depression, was the AASO. These similarities would 

indicate, that the BD vs HC differences are at least partly nourished by persisting symptoms 

of depression.  

While the described changes in physical activity associated with depression or mania seem 

clear, our analysis on the association between actigraphic features and mood shows that the 

changes occur only in a subset of patients. The results based on ASERT (section 4.2.2) self-

evaluated mood showed that even the most significant differences are individually confirmed 
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only in approximately one-third16 of the patients. For example, in the most consistently 

changing feature, the MESOR, the change was significantly (AUC > 0.7 or AUC < 0.3) 

associated with ASERT depression relapse in 49 % of patients and just 45 % in the expected 

direction. While AUC > 0.7 (or AUC < 0.3) could be reached in few patients by chance, 

globally, the results obtained from this analysis confirmed the significant differences from the 

statistical comparison. The LRM surrogate analysis also supports the hypothesis of untypical 

patients whose physical activity and circadian rhythm changes with mood are opposite to most 

BD patients.  

Additionally, while there are features with only one significant direction of change for ASERT 

mania, for ASERT depression, there are always few patients where changes are opposite. 

These untypical patients or relapses could be caused by different subtypes of bipolar disorder 

or episodes of depression. This is consistent with a theory that divides bipolar depressions into 

two kinds: i) a more common depression characterised by hyporeactivity and motor 

retardation, and ii) agitated depression, which is rarer but riskier, as it is associated with higher 

suicidality prevalence (Akiskal, 2005; Henry et al., 2007). The different types of bipolar 

depression (and mania) are also supported by Cho et al. (2019), where the predictability in 

BD-II was much better than in BD-I.  

The high number of patients without any apparent activity change leads to the suggestion that 

both subtypes of BD depressions may evolve in one patient. Additionally, patients with 

‘stable’ activity profiles may project their elevated moods into other activities. Matthews et 

al. (2017) conducted a survey of BD patients concentrating on their use of technology during 

self-perceived mood episodes, and found many links between the technology usage and mood 

state most often associated with overuse during manic-like states and reduced usage during 

the depressed mood (Matthews et al., 2017). This also corresponds with typical changes of 

behaviour like goal-oriented attitude and lack of self-control in mania. When combined with 

technology, these may manifest in other ways, like playing computer games, excessive 

shopping, or increased socialisation evident from changes in instant messaging with friends 

(Urošević et al., 2008). While such activities may be extreme, they would not affect the 

physical activity measured by actigraph. 

Therefore, we expect that by exploring patients’ and episodes’ metadata, where the mood is 

associated with activity, we may recognise a sub-group of patients, where the activity clearly 

                                                 
16 Similarly the mood stabilisation by lithium is effective in approximately one-third of patients (Hui et al., 2019) 
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changes with mood. These patients would then benefit from automatic relapse detection. 

Moreover, such exploration could lead to finding new BD subtypes or episodes’ subtypes. We 

believe that the addition of other passively collected features as keystrokes or voice analysis 

during calls (see section 2.4.2) could enlarge the subgroup where the episodes could be 

detected (Matthews et al., 2017). While heart rate is also a promising feature (Cho et al., 2019; 

Zebin, Peek and Casson, 2019), its collection using the same wearable would most probably 

limit the battery life. This would require a short charging period, which may lead to a 

significantly reduced amount of collected data, as is the case of Chos’ study.  

8.5. Limitations  

Results of this study need to be interpreted considering the following limitations: 

First, the presented results are based on the study that has just ended, and some additional 

information is still being collected. Especially datasets including used medications and 

additional meta-information like notable life-events data are not completed yet.  

Second, although our sample size is more extensive than in most comparable studies (Krane-

Gartiser et al., 2014; Gershon et al., 2016; Scott, Vaaler, et al., 2017; Cho et al., 2019), the 

final models are trained based on episodes from a few patients (10 for depression-mania 

comparison, 28 for depression-remission comparison, and 15 for mania-remission 

comparison). The number of patients with relapses is low, because relapses are relatively rare 

(especially mania). Moreover, we removed all hospitalisations, as well as episodes, where 

there was an excessive amount of missing data. While we enlarged the sample size by also 

using the ASERT relapse-induced changes in actigraphic features (this dataset includes more 

than 100 patients with at least 5 or more ASERT relapses and remission), results from this 

secondary analysis are primarily exploratory.  

Third, our analysis didn’t include mixed states as none of the patients fulfilled our relapse 

criteria for both mania and depression. Nonetheless, there were episodes with both elevated 

scores in MADRS and YMRS. Although the monthly collected scales were not used for 

treatment adjustment, their collection could already affect patients’ self-perceived state. 

Fourth, all patients were undergoing classical treatment by their caring physician. These 

treatments include different types of medication for which effects we used no correction. For 
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a more detailed discussion of the effects of medication on physical activity and sleep, see 

limitations section 7.5.  

Fifth, while BD is typical by having many comorbidities (section 2.1), the possible effects of 

these comorbidities were not corrected. Comorbidities could cause some of the atypical 

changes observed among patients. 

As above mentioned points three and four represent some of the highly probable causes of 

atypical changes in actigraphic features connected with BD relapses, they shall be the first to 

be explored once the dataset is completed.  

8.6. Conclusions 

To our knowledge, this is the first study that compared actigraphy data from BD outpatients 

during relapses and evaluated relapse classification possibilities validated on unseen patients. 

The relapses manifestation into BD patients’ physical activity in their natural environment was 

described in finer detail than ever before. While the statistical differences between many 

relapse states are highly significant, the classification accuracies are only slightly above 

chance. A probable cause for this is the existence of different subtypes of BD patients or 

relapses, as the typical statistically significant changes in actigraphic features associated with 

relapses were found only in a subset of patients. Still, these observations are based on the 

evaluation of a limited number of relapses and are not compensated for used medication and 

other comorbidities. Therefore, future analyses have to be conducted to validate these results. 

Apriori recognition of these subtypes, if validated, could lead to a better understanding of the 

different manifestations of BD symptoms. Moreover, these patients and their physicians may 

largely benefit from treatment supporting tool, providing alerts for risky behaviour. 
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9. Summary and Future Research 

In the presented thesis, I have participated in the collection of the largest actigraphy dataset 

from patients suffering from BD (Chapter 4). Based on the specifics of the long-term 

actigraphy data, I have proposed several new actigraphic features and suggested several 

updates and clarifications on estimating the non-parametric features (Chapter 3). Additionally, 

I have evaluated the validity of the features, describing circadian rhythmicity, when they are 

based on recordings affected by missing values (Chapter 5). Furthermore, I have suggested 

and validated several machine learning models applied to actigraphy based on sleep and 

circadian features in order to detect behavioural changes connected with BD (Chapter 7) and 

its symptomatic episodes (Chapter 8). Moreover, I have tested the feasibility and stability of 

chronotype estimation using actigraphy (Chapter 6). The changes in circadian rhythm and 

sleep parameters that were analysed, may deepen our knowledge of behavioural changes in 

BD and contribute to the distinction of clinical BD manifestation and its relapse episodes 

subtypes. 

9.1. Thesis Contributions 

• I have reimplemented the cosinor and non-parametric actigraphy circadian features 

(Chapter 3) while clarifying the estimation process of several non-parametric features 

and evaluating their robustness to missing data (Chapter 5). I have also added 

additional features that describe sleep onset and offset, and variability of activity 

during the day, which may contribute to the long-term actigraphy research. The 

features were used in a study evaluating the association of circadian rhythm with 

success in weight reduction program published in the Journal of BioPsychoSocial 

Medicine (IF(2019) = 0.9), with my considerable contribution. One of the added 

features - the explainable activity – was additionally trained to distinguish among 

different levels of activity. The explainable activity is incorporated as a part of the 

patients’ micro-education system, which is going to be focused on in a clinical study 

performed by NIMH in 2021.  

• A method of objective estimation of chronotype, and social jetlag was suggested, using 

actigraphic features. I have analysed the data in order to determine the required length 
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of actigraphy recording and stability of different chronotype-related actigraphic 

features. The results were then compared to widely used clinical chronotype 

questionnaires (MEQ and MCTQ). The results show that specific features, such as 

Acrophase are more suited for chronotyping. Duration of actigraphy observation was 

suggested for future chronotype research. We also pointed out the advantage of 

objective chronotyping, where we are showing that extreme questionnaire-based 

chronotype values are often inaccurately overestimated.  The actigraphy-based 

chronotype stability was found similar to that of MCTQ-based chronotype, while it 

was substantially smaller than for the MEQ-based chronotype. The results presented 

in Chapter 6 are about to be submitted to an impacted journal Sleep (IF(2019) = 4.8).  

• A method for classification of non-relapsed BD patients, and sex- and age-matched 

healthy controls (Chapter 7) was developed and evaluated on a dataset collected for 

this purpose, containing three months of continuous actigraphy. This is one of the 

longest continuous actigraphy recordings, which we have used mainly to evaluate the 

long-term variability in the circadian rhythm and sleep features. The model, which has 

been published in CNS Spectrums (IF(2019) = 3.4) (Schneider et al., 2020), was able 

to classify the patients with 88 % accuracy (79 % using only features with low 

dependency on working status) using actigraphy alone. These results are better (resp. 

similar for low work status dependant features) than those achieved by similar studies. 

• Several machine learning techniques were applied to actigraphy data in order to 

distinguish among BD episodes in the patients’ natural environment (Chapter 8). In a 

study published in Entropy (IF(2019) = 2.5) (Cuesta-Frau et al., 2020), with my 

considerable contribution, different entropy measures were tested. It was found that 

the slope entropy is best for distinguishing among patients’ episodes. The approaches 

using actigraphic features alone, together with our suggested validation process, 

provided classification accuracy about 60 %, which is just slightly better than chance. 

In contrast, the statistical comparison of individual features was highly significant 

(p < 0.001) for many of them. The combination of these highly significant differences 

and low classification accuracy supports a theory suggesting the existence of multiple 

subtypes of relapses and possibly bipolar disorders, which should be assessed and 

tested in future work. 
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9.2. Future Work 

In my future work, I would like to improve the classification of BD symptomatic episodes. 

The most promising source of improvement could be based on the clustering of clinical 

episodes (Cassidy, 2001; Akiskal, 2005; Henry et al., 2007) and patients (Akiskal and Pinto, 

1999; Akiskal et al., 2000; Akiskal, 2002; Ghaemi, 2013) into subtypes either by using a 

combination of meta-information, such as clinical and sociodemographic data, actigraphic 

features, and both supervised (BD-I-VI) and unsupervised clustering techniques (beyond the 

clinical BD types). I would also like to apply the knowledge and methods achieved from this 

work to other mental and affective disorders. In addition to that, I would like to include other 

behavioural and physiological measurements. 

I consider the main steps of my future work: 

• To include corrections for pharmaco-therapy and comorbidities into models presented 

in Chapter 8, and publish it as a journal article. 

• To explore the possibility of recognising different subtypes of depression and mania 

episodes (Cassidy, 2001; Akiskal, 2005; Henry et al., 2007) from actigraphic features, 

and their typical changes during clinical episodes, and to include these episodes 

subtypes’ into the models to improve episodes recognition possibilities. 

• To explore the possibilities to discover/recognise different BD subtypes. In the (Cho 

et al., 2019) study, there are clear differences between possibilities of episode 

prediction between BD-I and BD-II. Thus, it would be interesting to see whether the 

defined BD subtypes could be distinguished from actigraphy, and mainly from 

circadian rhythm alternation during clinical episodes, and to explore further 

possibilities of differentiation of the broad spectrum of bipolar disorders (Akiskal and 

Pinto, 1999; Ghaemi, 2013) using additional analysis and clustering of patients based 

on actigraphic features, medication, and other meta-information in order to discover 

new BD subtypes.  

• To use the methods developed for BD patients to monitor and evaluate other affective 

disorders, primarily schizophrenia and borderline personality disorder. Some of the 

feedback provided during our analyses could also be used for the benefit of the healthy 

population, as it could help them to establish and maintain an active and regular 

lifestyle (Schneider, 2021).  
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• To include other digital phenotyping measures (see section 2.4.2) to improve the 

recognition of clinical episodes. Presently, we are working with students on 

implementation of Beiwe and MindLamp applications which are designed to provide 

holistic clinical platform for behavioural data monitoring with strong emphasis on data 

security and privacy. Additionally, a separate heart rate or similar vital sensors could 

be incorporated to access yet another promising source of information.  
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9.3. List of Candidate Publications 

Autor contribution are given based on the V3S database. Citation counts according to ISI Web 

of Science (WoS) are valid as of 27th of April 2021. 

9.3.1. Impacted Journals Publications Related to the Thesis  

Schneider, J., Bakštein, E., Kolenič, M., Vostatek, P., Correl, Christoph U., Novák, D. and 

Španiel, F. (2020) ‘Motor activity patterns can distinguish between interepisode bipolar 

disorder patients and healthy controls’, CNS Spectrums, pp. 1–11. doi: 

10.1017/S1092852920001777. 

IF(2019) = 3.356 , Q2 (51/155), Contribution: 50 %, 0 WoS citations 

Cuesta-Frau, D., Schneider, J., Bakštein, E., Vostatek, P., Španiel, F. and Novák, D. (2020) 

‘Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: 

A Feasibility Study’, Entropy, 22(11), p. 1243. doi: 10.3390/e22111243. 

IF(2019) = 2,494, Q2 (33/85), Contribution: 17 % , 0 WoS citations 

Fárková, E., Schneider, J., Šmotek, M., Bakštein, E., Herlesová, J., Kopřivová, J., Šrámková, 

P., Pichlerová D., and Fried, M. (2019) ‘Weight loss in conservative treatment of obesity in 

women is associated with physical activity and circadian phenotype: A longitudinal 

observational study’, BioPsychoSocial Medicine, 13(1), pp. 1–10. doi: 10.1186/s13030-019-

0163-2. 

IF(2019) = 0.904, Q3 (101/138), Contribution: 11 %, 0 WoS citations 

9.3.2. Conference Reports Related to the Thesis 

Fárková, E., Šmotek, M., Herlesová, J., Schneider, J., Bakštein, E., and Kopřivová, J. (2018) 

‘The role of chronotype and sleep hygiene in the treatment of obesity.’ Journal of Sleep 

Research. 316(2018), ISSN 1365-2869. 

Contribution = 25 %, 0 WOS citations 

Fárková, E., Schneider, J., Bakštein, E., and Kopřivová, J. (2019) ‘Objectivization of chrono-

biological parameters using actigraphy’, Sleep Medicine, 64(2019), p. S110. doi: 

10.1016/j.sleep.2019.11.301. 

Contribution= 25 % 
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9.3.3. Impacted Journal Publication and Selected Conference Reports 

Unrelated to the Thesis 

Bakštein, E., Sieger, T., Wild, J., Novák, D., Schneider, J., Vostatek, P., Urgošík, D. and Jech, 

R. (2017) ‘Methods for automatic detection of artifacts in microelectrode recordings’, Journal 

of Neuroscience Methods, 290, pp. 39–51. doi: 10.1016/j.jneumeth.2017.07.012. 

IF(2017) = 2.668, Q3 (154/261), Contribution: 5 %, 8 WoS citations 

Schneider, J., Novak, D. and Jech, R. (2015) ‘Optimization of Parkinson Disease treatment 

combining anti-Parkinson drugs and deep brain stimulation using patient diaries’, Proceedings 

of the Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMBS, 2015-Novem, pp. 3444–3447. doi: 10.1109/EMBC.2015.7319133. 

Contribution: 90 %, 2 WoS citations 

Bakštein, E., Schneider, J., Sieger, T., Novák, D., Wild, J., and Jech, R. (2015) ‘Supervised 

segmentation of microelectrode recording artifacts using power spectral density’, Proceedings 

of the Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMBS, 2015-Novem, pp. 1524–1527. doi: 10.1109/EMBC.2015.7318661. 

Contribution: 35 %, 6 WOS citations 

Smejkal, V., Sieger, L., Kodl, J. Novák, D. and Schneider, J. (2015) ‘The dynamic biometric 

signature — Is the biometric data in the created signature constant?’, in 2015 International 

Carnahan Conference on Security Technology (ICCST). IEEE, pp. 385–390. doi: 

10.1109/CCST.2015.7389715. 

Contribution: 20 %, 4 WoS citations 

Smejkal, V., Kodl, J., Kodl, J. Jr., Novák, D., and Schneider, J. (2015) ‘Strong Identification 

and Authentication Using Dynamic Biometric Signature’, in Lecture Notes in Electrical 

Engineering, pp. 1245–1252. doi: 10.1007/978-3-662-45402-2_175. 

Contribution: 20 % 

Schneider, J. and Janča, R. (2013) ‘Mutual Phase Spectrum Based Method for Epileptic Spike 

Tracking’, POSTER 2013 - 17th International Student Conference on Electrical Engineering, 

pp. 1–5. Available at: http://radio.feld.cvut.cz/conf/poster2013/. 
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Chapter 5 - Supplementary materials 

Table S-1: Reliability of feature estimation - The modelled variation of estimation error for data missing in blocks 

Feature Window size Miss and block model (Eq. 5.7) Predicted estimation error variation (�̃�𝐹i
̂ )        

  
Coeff 

miss 

Coeff 

blocks 

R2 adj. 5% 

4 blocks 

5% 

6 blocks 

5% 

10blocks 

10% 

4 blocks 

10% 

6 blocks 

10% 

10blocks 

15% 

4 blocks 

15% 

6 blocks 

15% 

10blocks 

20% 

4 blocks 

20% 

6 blocks 

20% 

10blocks 

M10  

One day 

1.0154 -0.2437 0.690 4.1022 3.6149 2.6403 9.1790 8.6917 7.7171 14.2558 13.7685 12.7939 19.3326 18.8453 17.8707 

L5  0.4258 -0.1231 0.565 1.6366 1.3904 0.8980 3.7657 3.5195 3.0270 5.8948 5.6486 5.1561 8.0239 7.7777 7.2852 

M10-time  0.0549 -4.74E-3 0.739 0.2554 0.2460 0.2270 0.5298 0.5204 0.5014 0.8042 0.7948 0.7758 1.0786 1.0692 1.0502 

L5-time  0.0504 8.10E-3 0.694 0.2843 0.3005 0.3329 0.5361 0.5523 0.5847 0.7880 0.8042 0.8366 1.0399 1.0561 1.0885 

RA 1.38E-3 -2.99E-4 0.681 5.71E-3 5.11E-3 3.92E-3 0.0126 0.0120 0.0108 0.0195 0.0189 0.0177 0.0264 0.0258 0.0246 

RMSSDM10 5.6416 3.9474 0.725 43.9976 51.8924 67.6818 72.2058 80.1006 95.8900 100.414 108.309 124.098 128.622 136.517 152.306 

MESOR7 

Seven 

days 

0.3610 -0.0425 0.908 1.6350 1.5500 1.3800 3.4400 3.3550 3.1850 5.2450 5.1600 4.9900 7.0500 6.9650 6.7950 

Amplitude7 0.4478 -0.0462 0.911 2.0544 1.9621 1.7775 4.2935 4.2012 4.0165 6.5325 6.4402 6.2556 8.7716 8.6793 8.4946 

Acrophase7  3.41E-3 -6.24E-4 0.881 0.0146 0.0133 0.0108 0.0316 0.0304 0.0279 0.0487 0.0474 0.0449 0.0657 0.0645 0.0620 

CQ7 1.50E-3 -1.32E-4 0.916 6.96E-3 6.70E-3 6.17E-3 0.0145 0.0142 0.0137 0.0219 0.0217 0.0211 0.0294 0.0292 0.0286 

GOF7 0.0783 -6.62E-3 0.908 0.3652 0.3520 0.3255 0.7570 0.7437 0.7172 1.1487 1.1354 1.1090 1.5404 1.5272 1.5007 

M107 0.5756 -0.0665 0.922 2.6119 2.4788 2.2127 5.4900 5.3569 5.0907 8.3681 8.2350 7.9688 11.2462 11.1131 10.8469 

L57 0.3356 -0.0387 0.890 1.5231 1.4457 1.2910 3.2009 3.1235 2.9688 4.8787 4.8013 4.6466 6.5565 6.4791 6.3244 

M10-time7 0.0349 5.79E-3 0.753 0.1974 0.2090 0.2322 0.3717 0.3833 0.4065 0.5460 0.5576 0.5807 0.7203 0.7319 0.7550 

L5-time7 0.0221 2.26E03 0.851 0.1194 0.1239 0.1329 0.2297 0.2342 0.2432 0.3400 0.3445 0.3535 0.4503 0.4548 0.4638 

RA7 1.01E-3 -9.18E-5 0.903 4.68E-3 4.50E-3 4.13E-3 9.73E-3 9.55E-3 9.18E-3 0.0148 0.0146 0.0142 0.0198 0.0196 0.0193 

IV7 1.22E-3 2.66E-4 0.880 7.17E-3 7.70E-3 8.76E-3 0.0133 0.0138 0.0149 0.0194 0.0199 0.0210 0.0255 0.0260 0.0271 

IS7 1.56E-3 -1.70E-4 0.892 7.11E-3 6.77E-3 6.09E-3 0.0149 0.0146 0.0139 0.0227 0.0224 0.0217 0.0305 0.0301 0.0295 

MESOR14 

Fourtee

n days 

0.2790 -0.0176 0.926 1.3246 1.2894 1.2190 2.7196 2.6844 2.6140 4.1146 4.0794 4.0090 5.5096 5.4744 5.4040 

Amplitude14 0.3408 -0.0136 0.931 1.6494 1.6222 1.5677 3.3534 3.3261 3.2717 5.0573 5.0300 4.9756 6.7612 6.7340 6.6795 

Acrophase14 4.31E-3 -5.52E-4 0.820 0.0193 0.0182 0.0160 0.0409 0.0398 0.0376 0.0624 0.0613 0.0591 0.0840 0.0829 0.0807 

CQ14 1.12E-3 -9.82E-6 0.931 5.55E-3 5.53E-3 5.49E-3 0.0111 0.0111 0.0111 0.0167 0.0167 0.0167 0.0223 0.0223 0.0222 

GOF14 0.0571 2.64E-4 0.924 0.2865 0.2870 0.2880 0.5719 0.5724 0.5734 0.8573 0.8578 0.8589 1.1427 1.1432 1.1443 

M1014 0.4425 -0.0346 0.922 2.0740 2.0048 1.8662 4.2866 4.2174 4.0788 6.4992 6.4300 6.2914 8.7118 8.6426 8.5040 

L514 0.2453 -0.0102 0.915 1.1859 1.1654 1.1246 2.4126 2.3921 2.3513 3.6393 3.6188 3.5780 4.8660 4.8456 4.8047 

M10-time14 0.0353 0.0136 0.595 0.2311 0.2582 0.3126 0.4078 0.4349 0.4893 0.5845 0.6117 0.6660 0.7612 0.7884 0.8427 

L5-time14 0.0195 2.61E-3 0.844 0.1079 0.1132 0.1236 0.2054 0.2107 0.2211 0.3029 0.3082 0.3186 0.4004 0.4057 0.4161 

RA14 8.17E-4 -3.29E-5 0.924 3.95E-3 3.89E-3 3.76E-3 8.04E-3 7.97E-3 7.84E-3 0.0121 0.0121 0.0119 0.0162 0.0161 0.0160 

IV14 9.03E-4 1.47E-4 0.914 5.10E-3 5.40E-3 5.99E-3 9.62E-3 9.91E-3 0.0105 0.0141 0.0144 0.0150 0.0187 0.0189 0.0195 

IS14 9.83E-4 -9.00E-6 0.927 4.88E-3 4.86E-3 4.83E-3 9.79E-3 9.78E-3 9.74E-3 0.0147 0.0147 0.0147 0.0196 0.0196 0.0196 

Bold red shaded text indicates the missing data-points setting, where the standard deviation (variation) of estimation error (EE) reaches 40+ % of the natural LTTVSD of a feature for the patient 

with median stability (Table 5-1). Bold text indicates the setting where the EE variation reaches 20+ % of the natural LTTV 
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Table S-2: Impact of window length on chronotype estimation 

            1) MEQ 
     

Feature 
Window 

(weeks) 
TRAIN: beta1 TRAIN: R-squared TEST: MAE 

  mean std mean std mean std 

MSFscact 

 

1 -2.666 0.353 0.164 0.025 6.581 0.931 

2 -3.640 0.558 0.192 0.039 6.606 0.755 

3 -4.416 0.560 0.265 0.050 6.376 0.419 

4 -4.249 0.450 0.260 0.043 6.287 0.514 

5 -4.137 0.343 0.244 0.037 6.303 0.624 

6 -4.437 0.409 0.269 0.043 6.368 0.636 

M10-time 

1 -2.497 0.287 0.152 0.028 6.470 0.953 

2 -3.266 0.416 0.204 0.042 6.366 0.710 

3 -3.693 0.402 0.254 0.047 6.113 0.559 

4 -3.871 0.267 0.289 0.038 5.869 0.498 

5 -3.826 0.322 0.281 0.043 6.037 0.724 

6 -3.780 0.360 0.281 0.050 6.125 0.850 

L5-time 

1 -2.536 0.372 0.085 0.016 6.831 0.892 

2 -3.888 0.445 0.156 0.022 6.554 0.965 

3 -5.163 0.460 0.236 0.026 6.340 0.879 

4 -5.316 0.402 0.264 0.028 6.183 0.951 

5 -5.656 0.335 0.293 0.022 6.124 0.878 

6 -5.994 0.337 0.313 0.021 6.125 0.781 

Acrophase 

1 -5.727 0.521 0.335 0.037 5.871 0.886 

2 -5.591 0.282 0.335 0.032 5.825 0.545 

3 -5.884 0.377 0.372 0.042 5.608 0.453 

4 -5.716 0.301 0.361 0.032 5.708 0.579 

5 -5.527 0.249 0.356 0.030 5.737 0.607 

6 -5.681 0.290 0.365 0.034 5.691 0.682 

Mid-sleep 

1 -2.704 1.614 0.144 0.080 7.067 0.631 

2 -5.277 0.490 0.282 0.024 6.087 0.897 

3 -5.654 0.600 0.313 0.033 6.025 0.922 

4 -5.418 0.635 0.278 0.031 6.215 0.987 

5 -5.907 0.782 0.333 0.041 5.999 0.983 

6 -6.400 0.705 0.359 0.042 5.995 1.148 

Bold row text marks window length with lowest MAE represents for each feature 

The table continues on the next page 
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           2) MCTQ-MSFsc      

Feature 
Window 

(weeks) 
TRAIN: beta1 TRAIN: R-squared TEST: MAE 

  mean std mean std mean std 

MSFscact 

 

1 0.403 0.037 0.289 0.035 0.703 0.133 

2 0.572 0.045 0.368 0.060 0.640 0.096 

3 0.653 0.045 0.446 0.045 0.594 0.086 

4 0.628 0.032 0.438 0.037 0.590 0.125 

5 0.617 0.034 0.420 0.040 0.601 0.124 

6 0.658 0.035 0.471 0.034 0.569 0.089 

M10-time 

1 0.316 0.025 0.186 0.016 0.720 0.143 

2 0.404 0.062 0.240 0.049 0.712 0.098 

3 0.415 0.065 0.246 0.052 0.715 0.091 

4 0.426 0.068 0.268 0.055 0.712 0.075 

5 0.436 0.063 0.279 0.051 0.701 0.068 

6 0.437 0.061 0.287 0.046 0.691 0.086 

L5-time 

1 0.368 0.058 0.138 0.030 0.736 0.139 

2 0.496 0.082 0.196 0.045 0.722 0.111 

3 0.625 0.068 0.266 0.033 0.691 0.131 

4 0.671 0.057 0.324 0.019 0.670 0.141 

5 0.694 0.061 0.339 0.025 0.668 0.150 

6 0.729 0.062 0.356 0.022 0.665 0.155 

Acrophase 

1 0.707 0.047 0.396 0.045 0.613 0.134 

2 0.681 0.060 0.384 0.055 0.625 0.082 

3 0.701 0.051 0.407 0.048 0.613 0.073 

4 0.684 0.047 0.399 0.040 0.612 0.081 

5 0.662 0.042 0.394 0.039 0.611 0.105 

6 0.679 0.041 0.402 0.037 0.605 0.113 

Mid-sleep 

1 0.397 0.240 0.238 0.132 0.780 0.202 

2 0.677 0.086 0.364 0.073 0.652 0.147 

3 0.722 0.068 0.398 0.053 0.635 0.122 

4 0.714 0.056 0.377 0.043 0.639 0.125 

5 0.743 0.051 0.408 0.035 0.609 0.123 

6 0.830 0.083 0.455 0.061 0.615 0.107 

Bold row text marks window length with lowest MAE represents for each feature 

The table continues on the next page 
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           3) MCTQ-SJL      

Feature 
Window 

(weeks) 
TRAIN: beta1 TRAIN: R-squared TEST: MAE 

  mean std   mean std 

SJLrelact 

 

1 0.161 0.051 0.675 0.153 0.055 0.016 

2 0.275 0.053 0.663 0.145 0.069 0.020 

3 0.466 0.081 0.632 0.116 0.166 0.032 

4 0.497 0.059 0.622 0.116 0.188 0.024 

5 0.517 0.050 0.626 0.144 0.177 0.020 

6 0.527 0.063 0.637 0.139 0.163 0.025 

M10-timediff 

1 0.078 0.014 0.671 0.180 0.055 0.021 

2 0.092 0.025 0.692 0.145 0.057 0.028 

3 0.088 0.017 0.693 0.149 0.034 0.011 

4 0.100 0.018 0.694 0.143 0.040 0.013 

5 0.111 0.021 0.686 0.126 0.048 0.015 

6 0.142 0.019 0.687 0.141 0.069 0.016 

L5-timediff 

1 0.009 0.024 0.697 0.165 0.002 0.003 

2 0.112 0.072 0.707 0.176 0.033 0.026 

3 0.185 0.063 0.683 0.180 0.044 0.027 

4 0.270 0.075 0.686 0.183 0.064 0.032 

5 0.188 0.068 0.675 0.184 0.036 0.027 

6 0.214 0.069 0.674 0.196 0.034 0.022 

Mid-sleepdiff 

1 0.047 0.047 0.705 0.186 0.019 0.031 

2 0.162 0.113 0.690 0.186 0.069 0.074 

3 0.223 0.064 0.647 0.160 0.086 0.047 

4 0.232 0.070 0.662 0.169 0.065 0.037 

5 0.129 0.085 0.672 0.162 0.024 0.017 

6 0.110 0.089 0.671 0.190 0.018 0.012 

Bold row text marks window length with lowest MAE for each feature  
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Table S-3: Chronotyping results with confounders AGE and BMI 

1) MEQ TRAIN: β coeff.  TRAIN: R-squared TEST: MAE 

Feature 
Window 

(weeks) 
Feat AGE BMI mean SD mean SD 

Acrophase 3 -5.840 0.083 -0.126 0.389 0.030 5.621 0.465 

MSFscacti 4 -3.546 0.180 -0.008 0.285 0.035 6.133 0.625 

M10-time 4 -3.603 0.185 -0.129 0.327 0.028 5.873 0.521 

L5-time 6 -5.332 0.242 -0.053 0.365 0.016 5.968 0.915 

Mid-sleep 6 -5.707 0.176 -0.047 0.385 0.031 5.936 0.988 

  

2) MCTQ-MSFsc TRAIN: β coeff.  TRAIN: R-squared TEST: MAE 

Feature Window Feat AGE BMI mean SD mean SD 

Acrophase 6 0.615 -0.020 0.012 0.429 0.044 0.595 0.093 

MSFscacti 6 0.558 -0.027 0.003 0.515 0.043 0.546 0.076 

M10-time 6 0.365 -0.033 0.012 0.358 0.058 0.656 0.055 

L5-time 6 0.614 -0.037 -0.037 0.443 0.028 0.611 0.132 

Mid-sleep 6 0.718 -0.027 0.004 0.495 0.071 0.591 0.092 

  

3) MCTQ-SJLrel TRAIN: β coeff.  TRAIN: R-squared TEST: MAE 

Feature Window Feat AGE BMI mean SD mean SD 

SJLrelacti 4 0.469 -0.027 0.012 0.218 0.033 0.658 0.083 

Mid-sleepdiff 3 0.214 -0.029 0.016 0.138 0.037 0.711 0.099 

M10-timediff 6 0.105 -0.029 0.012 0.126 0.010 0.727 0.129 

L5-timediff 6 0.283 -0.032 0.017 0.142 0.045 0.714 0.132 

 . 
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Figure S.1 - Correlation between actigraphic features represented as colours see colorbar at the bottom of the image 
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Table S-4: Actigraphic features during relapses 

Feature 
Remission 

Mean (SD) 

Depression 

Mean (SD) 

Mania 

Mean (SD) 

Anova 

 

Cosinor Analysis - 7 days estimation window  

Amplitude7  209.50 (55.27) 188.01*** (55.25) 196.05***/# (54.96) F = 48.31 p < 0.0001 

Acrophase7  14.87 (1.55) 15.22*** (1.99) 15.04 (1.63) F = 13.98 p < 0.0001 

MESOR7 298.16 (64.11) 263.16*** (60.28) 311.82***/### (64.34) F = 109.96 p < 0.0001 

CQ7  0.71 (0.14) 0.72 (0.16) 0.63***/### (0.14) F = 54.33 p < 0.0001 

MSE7 89756 (24367) 86327*** (24958) 94156**/### (23911) F = 13.06 p < 0.0001 

GOF7  20.18 (7.19) 17.65*** (7.18) 17.48*** (6.89) F = 50.23 p < 0.0001 

Cosinor Analysis - 14 days estimation window  

Amplitude14 207.31 (52.68) 186.72*** (52.49) 193.40***/# (53.03) F = 49.73 p < 0.0001 

Acrophase14 14.89 (1.36) 15.22*** (1.99) 14.96# (1.50) F = 13.60 p < 0.0001 

MESOR14 298.30 (62.57) 265.28*** (57.81) 312.32***/### (63.06) F = 105.39 p < 0.0001 

CQ14 0.70 (0.13) 0.71 (0.15) 0.62***/### (0.15) F = 57.47 p < 0.0001 

MSE14 90693 (24260) 87802** (24904) 95306***/### (23734) F = 11.71 p < 0.0001 

GOF14 (%) 19.67 (6.74) 17.26*** (6.85) 17.04*** (6.40) F = 52.24 p < 0.0001 

Nonparametric circadian rhythm analysis (NPCRA) - 7 days estimation window  

IV7  0.47 (0.12) 0.51*** (0.13) 0.47### (0.29) F = 23.05 p < 0.0001 

IS7  0.52 (0.13) 0.47*** (0.13) 0.47*** (0.15) F = 45.39 p < 0.0001 

M107  446.86 (93.42) 400.51*** (88.91) 449.19### (96.07) F = 77.43 p < 0.0001 

M10-time7  14.80 (1.85) 15.29*** (2.05) 14.91## (2.28) F = 18.54 p < 0.0001 

L57 59.05 (32.06) 58.46 (39.29) 77.11***/### (46.00) F = 41.98 p < 0.0001 

L5-time7 3.28 (1.40) 3.51*** (2.06) 3.16## (1.56) F = 7.94 p = 0.0004 

RA7 0.77 (0.10) 0.75*** (0.12) 0.71***/### (0.13) F = 39.93 p < 0.0001 

NPCRA - 14 days estimation window  

IV14 0.47 (0.10) 0.51*** (0.12) 0.50*** (0.09) F = 41.74 p < 0.0001 

IS14 0.49 (0.12) 0.45*** (0.12) 0.44*** (0.13) F = 53.87 p < 0.0001 

M1014 443.49 (90.28) 399.82*** (83.31) 445.36### (93.29) F = 74.28 p < 0.0001 

M10-time14 14.78 (1.78) 15.34*** (1.91) 15.02*/# (2.08) F = 26.95 p < 0.0001 

L514 61.93 (32.33) 61.81 (43.21) 82.64***/### (45.64) F = 51.09 p < 0.0001 

L5-time14 3.32 (1.24) 3.54*** (1.90) 3.04***/### (1.44) F = 15.65 p < 0.0001 

RA14 0.76 (0.10) 0.74*** (0.12) 0.69***/### (0.15) F = 50.64 p < 0.0001 

NPCRA - daily values  

M10 469.93 (118.95) 426.39*** (118.56) 474.79### (124.48) F = 42.03 p < 0.0001 

M10-time 14.90 (2.72) 15.28*** (2.92) 15.10 (3.44) F = 5.46 p = 0.0043 

L5 45.18 (27.29) 42.41** (21.87) 53.32***/### (43.77) F = 18.15 p < 0.0001 

L5-time 3.04 (2.18) 3.18 (2.62) 3.04 (2.55) F = 1.05 p = 0.3494 

RA 0.82 (0.08) 0.81* (0.09) 0.80*** (0.11) F = 7.98 p = 0.0003 

RMSSDM10  1979 (375) 2031*** (405) 1974# (337) F = 6.00 p = 0.0025 

SDM10 2124 (534) 2192** (533) 2137 (475) F = 4.82 p = 0.0081 

Other nonparametric features – daily values  

ADA (0:00-24:00) 298.05 (78.69) 262.09*** (73.47) 310.50**/### (84.61) F = 74.29 p < 0.0001 

AQA1 (0:00:6:00) 79.60 (68.60) 80.68 (86.75) 102.87***/### (84.41) F = 15.07 p < 0.0001 

AQA2 (6:00-12:00) 345.96 (138.01) 285.14*** (126.95) 358.95### (145.33) F = 65.48 p < 0.0001 

AQA3 (12:00-18:00) 431.47 (131.73) 387.46*** (132.24) 433.99### (136.16) F = 34.37 p < 0.0001 

AQA4 (18:00-24:00) 335.85 (125.68) 297.68*** (128.58) 349.20### (139.30) F = 31.44 p < 0.0001 

DAhigh (%) 25 (6) 22*** (6) 26***/### (8) F = 55.10 p < 0.0001 

DAmoderate (%) 25 (5) 24*** (6) 26***/### (6) F = 30.26 p < 0.0001 

DAsedentary (%) 14 (6) 14 (6) 15***/### (6) F = 9.94 p < 0.0001 

DAlow (%) 36 (9) 40*** (0.11) 32***/### (0.11) F = 75.69 p < 0.0001 

ACL (auto-corr. lag) 0.90 (0.04) 0.88*** (0.04) 0.90### (0.03) F = 89.39 p < 0.0001 

RMSSDactday  269.21 (37.34) 262.99*** (39.11) 272.94### (36.63) F = 11.14 p < 0.0001 

Sleep based features - daily values  

SleOn -0.23 (3.87) -0.03 (4.32) 1.07***/### (5.34) F = 15.10 p < 0.0001 

Mid-sleep  3.85 (3.04) 4.33*** (3.48) 4.34** (4.21) F = 8.55 p = 0.0002 

SleOFF 8.20 (3.67) 8.98*** (4.27) 8.28# (5.09) F = 11.49 p < 0.0001 

SleDur (main daily sleep) 8.56 (3.10) 9.24*** (3.60) 7.39***/### (3.48) F = 39.62 p < 0.0001 

SleDur18 (sum of sleeps 

18:00-18:00) 

9.03 (2.47) 
9.83*** (2.76) 7.90***/### (2.64) F = 71.86 p < 0.0001 

SleDurdaily (mid-night to 

midnight sum of sleeps) 

9.01 (2.50) 
9.82*** (2.78) 7.80***/### (2.75) F = 75.21 p < 0.0001 



i 

 

Feature 
Remission 

Mean (SD) 

Depression 

Mean (SD) 

Mania 

Mean (SD) 

Anova 

 

     

ISL (Immobile sleep) 0.77 (0.09) 0.76** (0.10) 0.77 (0.11) F = 4.52 p = 0.0109 

RSL (Restless sleep) 0.03 (0.02) 0.03 (0.02) 0.02**/# (0.02) F = 4.06 p = 0.0173 

RMSSDsleep 162.05 (40.70) 165.66* (41.75) 154.26***/### (35.20) F = 9.61 p < 0.0001 

WASO 12.60 (26.90) 18.98*** (40.10) 10.22### (23.03) F = 16.16 p < 0.0001 

APSO (Activity Prior 

Sleep Onset) 

361.58 (125.69) 
315.59*** (122.84) 368.33### (132.02) F = 42.86 p < 0.0001 

AASO (Activity After 

Sleep Onset) 

51.80 (25.29) 
51.61 (22.61) 47.94**/# (30.73) F = 3.60 p = 0.0274 

APWU (Activity Prior 

Wake-Up) 

58.65 (24.85) 
58.32 (22.13) 55.74* (26.02) F = 2.17 p = 0.1138 

AAWU (Activity After 

Wake-Up) 

459.42 (133.95) 
406.57*** (138.81) 430.93***/## (134.10) F = 47.45 p < 0.0001 

APSO/AASO (sleep onset 

ratio) 

0.22 (0.22) 
0.26*** (0.22) 0.19*/### (0.20) F = 13.14 p < 0.0001 

AAWU/APWU (sleep 

offset ratio) 

0.18 (0.18) 
0.22*** (0.22) 0.19# (0.17) F = 9.61 p < 0.0001 

Explainable activity features - daily values  

ExAct 1319 (426) 1140*** (390) 1371*/### (475) F = 61.43 p < 0.0001 

ExActactive  88.26 (23.31) 80.98*** (22.57) 86.00### (25.91) F = 28.71 p < 0.0001 

Complexity analysis – entropy - daily values  

SlopeEntropyM10
++ 21.83 (2.61) 22.53*** (2.55) 21.53*/### (3.12) F = 25.88 p < 0.0001 

Statistical significance * < 0.05 ** <0.01 *** <0.001 for rem-dep and rem-man differences using t-test 

Statistical significance # < 0.05 ## <0.01 ### <0.001 for dep-man difference using Wilcoxon rank-sum test 
+Feature calculations are described in Chapter 3 - section 3.5;  
++Slope entropy was estimated based on equations presented in (Cuesta-Frau et al., 2020) for each day in the M10 window.  
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