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Abstract

A new approach suitable for determination of the
maximal stable time step for the finite-difference time-
domain (FDTD) algorithm in curvilinear coordinates is
presented. It is based on a modified variable separation
method, applied to the set of difference equations of the
FDTD algorithm. Investigation is carried out in
spherical and cylindrical coordinates. A simple yet
accurate enough approximative formula for cylindrical
coordinates is presented. Applied to Cartesian
coordinates, this approach yields the well-known
Courrant condition.

1. Introduction

The solution of Maxwell’s equations in the time
domain is becoming increasingly important as a tool for
analyzing microwave components and systems. The
precision of modeling of electromagnetic field is a tricky
question. One major factor that has a considerable
influence on the precision is the time step of the FDTD
algorithm. An optimal value of the time step exists,
resulting in fastest and most precise computation. The
other reason one should set this constant properly is that
even a small excess over its optimal value would result in
instability of the algorithm. There is a condition for the
time step called Courant ([1]), valid only for rectangular
coordinates. We used a new approach to find the best
time step that is not restricted to rectangular coordinates.

2. Method

2.1. Introduction – description of the algorithm

First, let us describe the form that we will designate
the derivative:
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Using this symbolic, let us write first two Maxwell’s
equations in general curvilinear coordinates ( )321 ,, uuu :
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where the curl operators are written by means of local
length units ( )321 ,, hhh  in the coordinate system (e.g.
[2]). (The missing 2x2 equations are formed by cyclic
replacement of indices 3,2,1 .)

The FDTD algorithm we are interested in is the
commonly used first order leapfrog one. The
discretization mesh ([3],[4]) is designed so that along
each coordinate axis the samples of components of
vector E and H were interlaced.

Our equations are formed of terms of the following
form:

( ) xfC
f

,1

where C  is a component of the vector and x  is a
coordinate ( )tuuu ,,, 321 . For FDTD we need to
approximate this term using samples of C . We will use
only two neighboring samples (first order FDTD). The
place where the approximation is demanded to be most
precise is in the center between the samples (it follows
from the formation of the mesh). This is the leapfrog
principle, which is most convenient.

The possible solution of the problem can be:
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, 0C , 1C  are the samples, which are located at positions

0x , 1x , (other coordinates remain constant), the result is
most precise at xx ∆+ 2

1
0 .

If we introduce this discretization to the equations (1),
we obtain the FDTD algorithm; the form in rectangular
coordinates with lossy media can be found e.g. in [1], the
one in cylindrical coordinates in [4].

We will not substitute this in (1) using lots of
confusing indices, but let us write the algorithm exactly
the same way as (1). Before operating with these



equations, however, we will have to check whether the
operation remains correct even with the discretized form.

2.2. Method

The method we used to determine the time step is
based on modified variable separation method, applied to
the set of difference equations (1). We will assume each
component of the field vectors to be a product of 4
functions that each depends on only one coordinate:
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A separate set of difference equations for each part of
xC can be obtained and the coefficients in the set do not

depend on the other coordinates as well.
The difference equations for time (lossless medium

for simplicity, leaving out upper indices) are:

kEtHkHtE
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where     xx HHEE == ,   ,  321 ,,... uuux
k is a constant, which connects these equations with the
remaining sets.

On the contrary to the continuous case, the solution
for its discretized counterpart may diverge unless the
following condition is fulfilled:
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This is the principle of FDTD instability.
To be able to apply the variable separation method,

we investigated FDTD stability in a mesh with the
boundaries complying with the coordinate system. The
boundaries that enclose the mesh are given by:

21 , iiii UconstuUconstu ====  ; 3,2,1...i
Boundary condition has been applied, which remained

the same on these separate parts of boundaries.
In this case it is possible to determine the unknown

constant k (4) by solving the remaining ordinary (non-
partial – involving only one variable) difference equation
sets with the corresponding boundary conditions at

21 , ii UU . These constants correspond to characteristic
functions – let us call them mesh modes. The number of
solutions is not infinite, as it was in the continuous case.
To ensure stability of the sum of all the possible modes,
we must fulfill condition (5) for all the mode constants.
Only the largest constant is of interest as it yields to the
smallest time step:

max

2
k

t
µε

<∆   (6)

Finally it should be noted that a linear combination of
the mesh modes can make up arbitrary initial state of the
mesh. In other words, using variable separation method
(3) does not leave out any solution that could be
expressed in the mesh.

3. Results

The mesh of all the cases we investigated had the
simplest termination - condition that modeled ideal
metallic boundary – components of vector E  tangential
to the surface were set to zero.

The results obtained were verified by means of the
FDTD algorithm itself. We have experimentally verified
the time step resulting from our analysis in the following
manner: We made two experiments for each case. One
experiment has been carried out with time step slightly
over our predicted value, and it proved to diverge in all
cases. Second experiment has been made with time-step
slightly under our predicted value, and it proved to be
stable in all cases. By “slightly” we mean here a relative
change of one part per billion.

For convenience, all the numerical results in the
following text will be normalized to:

1== µε

3.1. Rectangular coordinates ( )zyx ,,

The equation sets are the same for all the space
coordinates, we will write them only for dimension x :

xxzzxy EkxHHkxE −== ,,,   , …
The demanded constant k is composed of the partial

constants in the following way:
2222
zyx kkkk ++=

For the specified boundary condition they can be be
solved analytically, the formula for the largest constant is
this one:
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where xN is the number of x∆ in the mesh (number of
cells between the zero boundary condition).

The resulting time step limit is thus following:
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The time step limit is a bit higher than that obtained

by the Currant condition ([1]), but for meshes that are
dense enough, it is practically the same.



3.2. Cylindrical coordinates ( )zr ,,ϕ

The situation with this coordinate system is a bit more
complex. The equations for the z and ϕ  are virtually the
same as those for the rectangular system. There is
absolutely no problem to cancel out the field dependence
along z orϕ (the case presented in [1]) coordinate (or
both at the same time). For sake of simplicity we did so
for z  and obtained FDTD in two dimensions only. Then
we confined to the mesh modes with 0=zk .

The only equation set that must be solved numerically
is the one for r coordinate (again, leaving out upper
indices):
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After eliminating a component we would arrive to the

Bessel differential equation. In the continuous case we
could use roots of Bessel functions to determine the
constant k , but in our case we have to solve the
difference equation again. It can be shown that it is the
largest ϕk  that would yield the largest k , which we are
to find. We can get the largest ϕk the same way as we did
in the rectangular case, as the equations are the same.

Because cylindrical coordinates are used quite often,
we found a simple approximative formula for the k .
There was also one significant requirement to the
approximation – the time step computed according to it
(by means of (6)) had to be smaller or equal to the
critical one. Here it is:
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where 1R is the smaller radius of the vector component
that the zero boundary condition is applied to, r∆  is the
cell dimension in the direction of r .

Following figures catch some interesting
dependencies:

Fig. 1. Dependence of the exact time step and its
approximation on the larger radius.

Fig. 2. Dependence of the exact time step and its
approximation on the ϕ-coordinate characteristic
constant (kϕ).

The conclusions follow:
The time step does not depend much on the larger radius

2R  , if r∆  remains constant. The value stabilizes very
quickly and for practical mesh dimensions varies in a
negligible way. The approximation is quite good for
large constant ϕk ( 100002 =ϕk  and more), which is also
fulfilled in practical case.



3.3. Spherical coordinates ( )ϕϑ,,r

In this case there is again a coordinate, that can be
managed easily. It is the ϕ one. But the remaining two
are a bit worse to handle. We proceeded with full
generality. The only exception is that the FDTD
algorithm under investigation was again a 2 dimensional
one, as the ϕ  variable does not bring any problem at all.

The separated difference equation sets are following:
- for variable r :
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- for variable ϑ :
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The important thing is that one component of a field

vector is zero ( 0=rE ). It means that the mesh modes
based on these equations could not form any field
configuration and the method would not be justified.

Fortunately, it is really only a part of the modes. The
rest is described by the same equations where
vectors E and H are interchanged. The mode constants
computed according these two equation sets are slightly
different. We cannot say in advance, which of the sets
would yield the largest one.

At this place let us show here one concrete result for
this coordination system. The boundary conditions were
at:

101 =R  , 162 =R  , 1=∆r

3.01 =Θ , 3.12 =Θ ,
7
1=∆ϑ

52 =ϕk
The operator Av (2) was defined in a slightly different
way:
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It was mode 0=rE , the constant of which was the
largest one, and the corresponding critical time step was:

0050.00000000
4150.71575420
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±

4. Conclusion

A method, capable of predicting critical time steps in
curvilinear coordinates, has been presented. The method
yields results with extreme precision. It is applicable to
certain boundary conditions and mesh shapes, which
were not handled by approaches published so far. In
addition, a simple approximative formula useful in
cylindrical meshes has been presented.
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