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ABSTRACT

We present a new algorithm for mutual information esti-
mation for image registration based on the nearest neigh-
bor entropy estimator of Kozachenko and Leonenko. We
modify the algorithm to be numerically robust and com-
putationally efficient, with optimal asymptotic complex-
ity O(Npixelsddim). We propose two MI-based criteria ex-
ploiting the high-dimensionality of the feature space and
show their effectiveness in determining the correct align-
ment even in difficult cases when classical criteria fail.

1. INTRODUCTION

Mutual information (MI) [1, 2] is then the registration cri-
terion of choice for multimodal image registration, for its
ability to explore the statistical dependency between im-
ages not known a priori. However, the predominantly used
histogram-based estimator makes the MI criterion usable
only for features of very small dimensionality d, in most
cases scalar pixel intensities are used.

We shall present an alternative entropy estimator, suf-
ficiently accurate and computationally efficient even for
much higher feature dimensions d, making feasible to use
more powerful higher dimensionality features. Two exam-
ples of such high-dimensional MI criteria will be demon-
strated, one based on color and other on pixel neighbor-
hoods.

2. IMAGE REGISTRATION

Given two images F and G’, and a family of geometrical
transformations!, we search for a geometrical transforma-
tion T such that a warped test image G = G’ o T is as
similar as possible to a reference image F in the sense of
maximizing an image similarity criterion J.
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2.1. SSD and MI criteria

One of the simplest criteria is the (negative) sum of the
squared differences (SSD):
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where f(x;) and g(x;) are intensity values of images F and
G o T at pixel locations x;. They can be scalars or vectors,
e.g. for color images. The SSD criterion is simple, fast, and
optimal for i.i.d. Gaussian noise corruption.

If the dependence between the image intensities is a pri-
ori unknown, MI criterion is normally used:

Jw(F,G) = I(F,G) = H(F) + H(G) — H(F,G) (2)

where H () stands for a differential entropy? of random vari-
ables F, G; pixel values f; = f(x;), g; = g(x;) are assumed
to be realizations of F, G: f; ~ F, g; ~ G, (fi,9:) ~ (F,G).
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2.2. Higher dimensionality MI criteria

We propose to use more general and more powerful d-
dimensional feature vectors instead of using just simple
scalar pixel values (d = 1) as in (2). Each sample vector
f; will correspond to one spatial location x;. Let us present
two examples:

e The 3D color component vector (for color images)

£50 = (i), 9 (xa), S5 (x2) ©)

leads to a color MI (CoMI) criterion Jeom = I (FC°, G<°).
It adapts automatically to any relation of the image colors.
e The neighborhood criterion (presented here in the 2D
case and for grey-level images) Jyomi = I(FN°,GNP),
forms feature vectors of dimension d = (2h + 1)? from
pixel values in the neighborhood of a current location:
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This criterion learns correspondences between image de-
tails such as peaks, ridges and transitions, generalizing the
work [3] (that only uses d = 2) by adding spatial relation-
ships.
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3. ENTROPY ESTIMATION

Mutual information criteria (2,3,4) are evaluated using
a suitable entropy estimator. It needs to be fast, of at most
weakly superlinear complexity in both N and d, as we might
want to evaluate it for 100-dimensional features and images
with 107 pixels at each iteration of the optimizer.

3.1. Histogram and graph estimators

A histogram estimator works well in small dimensions
(d = 1,2). For higher d however, the number of bins in-
creases exponentially, raising the computational costs, caus-
ing quantization errors and increasing variance, making the
estimator unusable [4]. Parzen windowing helps but is ex-
cessively costly for higher d.

Area of Voronoi diagram cells [5], minimum spanning
tree length [6], or pairwise interaction through a kernel esti-
mator [7] can be used to estimate Shannon or Rényi entropy;
all approaches are slow for d > 2, with O(dN?) at best.

4. PROPOSED MI ESTIMATOR

Kozachenko and Leonenko (KL) [8, 4, 9] proposed to esti-

mate the entropy H (F) from N samples F = {f;}} | using

distances p; = min,;||f; — f;|| from samples f; to their
nearest neighbors (NN):
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where v ~ 0.577 is the Euler constant. The estimator is
consistent with bias <H|2]|Y) (F)> — H(F) ~ O(N*1/2).

4.1. Robustifying the KL estimator

The KL estimator (5) diverges if two samples are equal, e.g.
due to quantization. This should not happen for smooth den-
sities, however, in practice we need to treat such cases. Our
approach is to replace the distance ¢ by max(g, ). This
corresponds to assuming quantization and calculating the
upper bound for H and leads to a KLD estimator:
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4.2. Batch KL estimator

A range of algorithms exist for the all-NN search needed
by the KL estimator (5) — from a brute force O(dN?) to
asymptotically optimal O(dN log N) solution [10]. Unfor-
tunately, all known implementations are currently too slow
for our purposes for high N and d.

d | N=10® | N=10* | N=10°
1 0.004 0.04 0.51

3 0.005 0.06 0.67
10 0.010 0.13 1.40
30 0.023 0.29 3.51
100 0.078 0.86 10.69

Table 1. Evaluation time in seconds of the proposed KLBD MI
estimator in dimension d with N samples and M = 20.

We sidestep the issue by taking an approximative ap-
proach: We randomly (and possibly non-exhaustively) di-
vide the N samples into groups Fi,...,F|n/ar), so that
each group contains M samples. The estimate is then
a mean of the Hkp estimator on the groups:
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This is the estimator that we use in the experimental part
for evaluating (2,3,4). The batch size M controls the trade-
off between its bias O(M ~'/2) and its speed O(M Nd) (us-
ing the brute force NN search). The experiments show that
the estimator performs surprisingly well even for very small
batch sizes M = 20 ~ 100. It is simple and fast.

5. EXPERIMENTS

The first experiment (Table 1) measures the speed of evalu-
ating a MI between two sets of samples using the KLBD
entropy estimator (6) with M = 20, including all over-
heads, on a 1.4 GHz Pentium machine. The execution times
are very reasonable and correspond to the predicted M -fold
slowdown with respect to evaluating the SSD (1).

Figure 1 shows the bias and variance of the KLD, KLBD
and histogram MI estimators for two 1D Gaussian random
variables with varying dependency and N = 10%. We ob-
serve that all KL-based estimators have about the same vari-
ance, larger than the histogram estimator but still accept-
able. The bias of the KLBD estimator decreases with M,
for M > 50 it is already better than that of the histogram
and it essentially vanishes for the K LD estimate.

We evaluate the new proposed MI-based image registra-
tion criteria CoMI and NbMI on real images by a rotation
experiment: Starting from two perfectly aligned images of
size 5122 pixels, we rotate one of them by 4-10° (using lin-
ear interpolation), crop the images to a fixed size to avoid
the influence of the background and evaluate the criterion.
A good criterion should have its maximum for a rotation
angle 0 and decrease smoothly away from it.

First of all we compare the CoMI (3), the vector
SSD (1), and standard scalar gray-scale histogram-based
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Fig. 1. Biases and variances of several mutual information estima-
tors (histogram, KLLD, and KLBD with M = 20, 50 and 100) for
two linearly dependent Gaussian random sources from N = 10*
samples. 100 experiments were performed.

MI criteria when registering a color Mandrill image with
itself (Fig. 2), to verify that all criteria work well in this
simple case. We then modify the colors in one of the im-
ages (by increasing the saturation and brightness and rotat-
ing the colormap) and add some i.i.d. Gaussian noise to in-
dividual color components. This confuses the SSD criterion
beyond usability and the standard MI is only slightly bet-
ter, while the CoMI still provides correct and almost undis-
turbed results. We also observe that the uncertainty due to
the stochastic character of the estimator (one standard devi-
ation shown) is below the level of changes we need to detect
for a registration accuracy that can be realistically expected,
(i.e. around 1 pixel ~ 0.2°).

We perform the same kind of experiment comparing the
SSD and MI criteria and the NbMI criterion (4) with A = 2,
leading to d = 25 dimensional features. First we register
a gray-scale Lena image with itself, to find that all criteria
work well. Then we register a low-pass version of the im-
age with a smoothed Sobel-detected edges from the same
image. The SSD criterion is useless in this case, showing
only irrelevant oscillations due to the global orientation of
the edges, while the NbMI criterion identifies the correct
alignment flawlessly.

6. CONCLUSIONS

We have developed a fast and robust approximative ver-
sion of a little known binless Kozachenko-Leonenko NN
entropy estimator. This has allowed us to extend MI-based
image registration criteria to higher-dimensionality feature
vectors. Experiments have shown that such criteria are very
general and versatile thanks to their ability to adapt to the
statistics of the features used, that need not to be known
a priori. We have presented two examples: a color based
criterion with 3D features; and a neighborhood criterion
with 25D features. Mutual information could not have been
previously calculated for such features. The criteria perform
adequately and in robust manner even when registering dif-
ficult images of very different nature, for which classical
methods fail.
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Fig. 2. SSD, MI and CoMI (with M = 20) criteria all work
well when registering a Mandrill color image (top left) with itself.
We show the criteria (rescaled to [0, 1]) as a function of a rota-
tion angle (fop graph). One standard deviation is shown for the
CoMI criterion, since the estimator is stochastic. When registering
the original image with its color-modified and noisy version (top
right), the SSD and MI criteria break down, while the proposed
CoMI criterion still gives correct results (bottom graph).
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Fig. 3. The correct rotation angle can be determined from any of
the SSD, MI and NbMI criteria when registering a B&W Lena im-
age (top left) with itself. We show the criteria (rescaled to [0, 1])
as a function of a rotation angle (top graph). One standard de-
viation is shown for the NbMI criterion, since the estimator is
stochastic. When registering a blurred version of the original im-
age with a blurred version of its edges (fop right), the SSD and MI
are clearly inadequate, while the proposed NbMI criterion allows
for the correct angle to be reliably detected (bottom).



