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Abstract

Novelty detection is an important signal processing task. This task is essential for

many industry, and biomedical applications. This thesis is presenting research on

the topic of novelty detection utilizing parameters of linear adaptive filters. A new

method of adaptive novelty detection is presented in this thesis - Error and Learning

Based Novelty Detection. The goal of this thesis is to present the new method

as a viable tool for online unsupervised novelty detection in non-stationary and

drifted data. The method is supported with various experimental evidence collected

from multiple studies. These studies cover multiple traditional applications like

system change point detection and outlier detection. The results are obtained from

experiments with real and synthetic data.
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Abstrakt česky

Detekce novosti je d̊uležitá část zpracováńı signál̊u a je esenciálńı pro r̊uzné pr̊umyslové

a bioinženýrské aplikace. Tato disertace prezentuje výzkum metod detekce novosti

využ́ıvaj́ıćı parametry adaptivńıch filtr̊u. V této práci je popsána nová methoda

adaptivńı detekce novosti nazvaná Error and Learning Based Novelty Detection.

Ćılem této práce je popsat tuto novou metodu jako užitečný nástroj pro online detekci

novosti pro data, která jsou nestacionárńı nebo obsahuj́ı drift. Studie podporuj́ıćı

užitečnost této metody jsou představeny v této práci. Tyto studie pokrývaj́ı r̊uzné

oblasti tradičńıho zpracováńı signál̊u, např́ıklad: detekce změny chováńı systému a

detekce anomálíı. Experimentálńı výsledky těchto studíı jsou źıskány na reálných i

syntetických datech.

4



Contents

1 Introduction 17

1.1 What novelty detection is . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Importance of novelty detection . . . . . . . . . . . . . . . . . . . . . 18

1.3 Adaptive novelty detection . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Novelty detection implementation challenges . . . . . . . . . . . . . . 20

2 State of the art 21

2.1 Novelty detection concepts introduction . . . . . . . . . . . . . . . . . 21

2.2 Cross-validation of novelty detection methods . . . . . . . . . . . . . 23

2.3 Main approaches to novelty detection . . . . . . . . . . . . . . . . . . 26

2.3.1 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Gaussian mixture model . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Support vector machines based approach . . . . . . . . . . . . 29

2.3.5 K-nearest neighbour algorithm . . . . . . . . . . . . . . . . . . 31

2.3.6 Neural networks clustering based methods . . . . . . . . . . . 33

2.3.7 Reconstruction based approaches . . . . . . . . . . . . . . . . 33

2.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Thesis objectives 37

4 Developed method 39

4.1 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Methods of implementation . . . . . . . . . . . . . . . . . . . . . . . 41

5



4.2.1 LMS adaptive filter . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 NLMS adaptive filter . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 LMF adaptive filter . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 NLMF adaptive filter . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 GNGD adaptive filter . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.6 RLS adaptive filter . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.7 Individual learning rate LMS/NLMS adaptive filter . . . . . . 44

4.2.8 Online centered NLMS adaptive filter . . . . . . . . . . . . . . 45

4.3 Method implementation overview . . . . . . . . . . . . . . . . . . . . 47

5 Experimental results 49

5.1 Nonstationary biomedical data . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Perturbation detection in ECG . . . . . . . . . . . . . . . . . 50

5.1.1.1 Artifical data . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1.2 Real measured data . . . . . . . . . . . . . . . . . . 54

5.1.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Alzheimer’s disease classification . . . . . . . . . . . . . . . . . 55

5.2 Dealing with concept drift . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Modeling of concept drift . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Testing framework and cross-validation . . . . . . . . . . . . . 61

5.2.3 Reference methods and signals . . . . . . . . . . . . . . . . . . 64

5.2.3.1 Error of prediction . . . . . . . . . . . . . . . . . . . 64

5.2.3.2 Learning entropy (LE) . . . . . . . . . . . . . . . . . 64

5.2.3.3 Sample Entropy . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . 65

5.2.4.1 System change point detection with NLMS . . . . . . 66

5.2.4.2 Outlier detection with NLMS . . . . . . . . . . . . . 69

5.2.4.3 Comparison of system change point detection with

NLMS, NLMF, RLS and GNGD . . . . . . . . . . . 71

5.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Other experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6



5.3.1 System change point detection . . . . . . . . . . . . . . . . . . 76

5.3.2 Influence of noise type and level on ELBND performance . . . 78

5.3.2.1 Experiment design . . . . . . . . . . . . . . . . . . . 79

5.3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 ELBND time complexity analysis . . . . . . . . . . . . . . . . 85

6 Conclusion 87

7 References 89

7



Nomenclature

x̄(k) Mean value of input vector in discrete time k

∆w(k) Vector of adaptive weights increments in discrete time k

δ Initialization parameter [1]

ε Regularization term (small positive constant (NLMS, NLMF) [1]

η Normalized learning rate (small positive constant) [1]

γ Forgetting factor [1]

µ Learning rate [1]

ρ Hyperparameter of GNGD [1]

σx Standard deviation of input values [1]

σy Standard deviation of target [1]

I Identity matrix

nd(k) Vector of novelty descriptors in discrete time k

R(k) Auto-correlation matrix in discrete time k

w(k) Vector of adaptive weights in discrete time k

X Matrix of all input data

x(k) Input vector in discrete time k

xc(k) Centered input vector in discrete time k
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ỹ(k) Adaptive model output [1]

~1 Vector of all ones

e(k) Error of adaptive model in discrete time k [1]

hi(k) i-th parameter of data generator in time k

k Discrete time index [1]

nd(k) Result of novelty descriptors reduction in discrete time k [1]

oi i-th operation

v(k) Additive noise

wi i-th adaptive weight in discrete time k [1]

xi i-th adaptive model input in discrete time k [1]

y(k) Adaptive model target [1]

yt(k) Z-scored target in discrete time k [1]

ACC Accuracy

ANN Artificial neural networks

AP Affine projection

ApEn ApEn

AUROC Area under the receiver operating characteristic

AWGN Additive white Gaussian noise

ECG Electrocardiography

EEG Electroencephalography

ELBND Error and Learning Based Novelty Detection

FD Fuzzy Density
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FN False negative

FP False positive

FPR False positive rate

GMM Gaussian mixture models

GNGD Generalized normalized gradient descent

HF High Frequency power in ECG: frequency activity in the 0.15 - 0.40Hz range

HMM Hidden Markov models

HONU Higher order neural units

IoT Internet of Things

IQR Interquartile range

KNN K-nearest neighbour algorithm

LE Learning entropy

LF Low Frequency power in ECG: frequency activity in the 0.04 - 0.15Hz range

LMF Least mean fourth

LMS Least mean squares

LNU Linear neural unit

MD Mahanobilis distance

MEG Magnetoencephalography

MLP Multi-layer perceptron

mV milivolt

NLMF Normalized least mean fourth

NLMS Normalized least mean squares
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NSSLMS Normalized sign-sign least mean squares

OCNLMS Online centered normalized least mean squares

PCA Principal component analysis

PPV Precision

PQRST ECG wave: P wave followed by the QRS complex and the T wave

RLS Recursive least squares

RNN Replicator neural network

ROC Receiver operating characteristic

SE Sample Entropy

SEN Sensitivity

SNR Signal to noise ratio

SOM Self-organizing map

SPE Specificity

sps Samples per second

SSLMS Sign-sign least mean squares

SVDD Support vector data description

SVM Support vector machine

TN True negative

TP True positive

TPR True positive rate
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Chapter 1

Introduction

1.1 What novelty detection is

Novelty detection is the name for identification of something new or unknown in data.

The exact meaning of event described as something new depends on its application

and on the field. However, in general the novel event is something that is not expected

in the data because of the data generating process nature.

The task of novelty detection is one of the oldest and the most fundamental tasks

in machine learning field. The monitoring of production process or of any other

process is a costly work if it is done by a human operator. That is the reason why

huge effort to automate this process has been done in the last few decades. Despite

of this fact, the term novelty detection has started appearing in literature after year

2000. Although the novelty detection topic is that old, the conquest of novelty

detection algorithms development has not yet finished. With every new technology

or ability to measure, transfer and store data that mankind posses a new novelty

detection challenges emerge.

Today, the term of novelty detection is used as a broader term for detection of

various novel events - anomaly detection [1], outlier detection [2], fault detection

[3], novel class detection [4], concept drift detection [5]. The need for multiple more

specific names is caused by the fact, that the objective of novelty detection task

can significantly differ among various novelty detection applications. In some cases
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the goal of novelty detection can be perturbation detection (one-sample-outliers)

in gradually changing environment. In other case, the goal may be detection of

gradual changes of environment by itself while the perturbations are ignored. Various

categorizations of novelty detection are often used. Probably the most fundamental

categorization is based on the scale of the detection [6]. The categories are:

• contextual novelty detection - can be understand as system change point de-

tection, or detection of change in process that is generating the data;

• value based novelty detection - this name stands for detection of various per-

turbations, or generally short-time events, that does not belong into expected

behavior of the observed system.

1.2 Importance of novelty detection

Nowadays the novelty detection is crucial in many fields. The demand is even in-

creasing in the last decade. This is caused by the increase in production of data

streams in modern world [7]. This increase is related to modern concepts like Inter-

net of Things (IoT) 1 and Big Data 2. The data streams need to be often monitored

online as fast (with low lag) as possible. This is required for example in medical

diagnostic, process control and market fluctuations monitoring. In some scenarios

the novelty detection is an important mechanism used as the safety stop mechanism

for processes that are hard to control. Such mechanism can stop a process in case

when it reaches out of the planned or safe boundaries.

In different scenario, a novelty detection mechanism can be used as a medical

diagnostic tool for detection of malfunctioning organ symptoms in a patient. In

other scenario, the novelty detection can adjust learning rate of a machine learning

algorithm according to the level of novelty in data. In general it is possible to sum-

1IoT is the network of devices, vehicles, home appliances and other items embedded with elec-

tronics, software, sensors or actuators.
2Big Data is unofficial definition term commonly used to describe data sets that are so volumi-

nous and complex that traditional data-processing application software are inadequate to deal with

them.
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marize that the novelty detection is an automated tool for tasks that cost significant

amount of time, require high level of focus and or have only small error tolerance.

1.3 Adaptive novelty detection

Adaptive novelty detection is a special case of novelty detection. It is a special

case because it is featuring adaptive or learning algorithms. In some broader sense,

the learning algorithm function can be understood as a compression of information

from data into adaptive parameters. Such a compressed information in form of a

smaller number of parameters can be processed much faster than full scale data.

Furthermore, the process of learning can also highlight the important features from

data and reflect them in adaptive parameters or their increments. Another interesting

feature of adaptive models is their prediction or classification error. Such an error

can provide valuable information about novelty hidden in data. An adaptive novelty

detection method can use error of the adaptive model, or increment of adaptive

parameters, or both, to determine how novel the particular samples are. Summary

of the key features of adaptive models that are desirable during novelty detection

process is as follows:

• Compression - the adaptive algorithms has the ability to describe a long window

of historic information in smaller number of parameters of their updates.

• Prediction - the ability to predict few samples ahead can be useful to minimize

the delay between sample acquisition and evaluation of sample novelty.

• Compensation - the adaptation by itself is a mechanism how to compensate

for gradual changes in data

Because of the reasons mentioned above, the adaptive novelty detection is a promising

field of the machine learning for future research.
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1.4 Novelty detection implementation challenges

In general, a novelty detection process can by understood as a type of classification.

However, the type of the classification used for the novelty detection varies according

to the used approach. Some methods dealt with the novelty detection as with a

binary classification - the first class is a normal event and the second class is a novel

event. Other methods used multiple classes, where one or more classes represents

the novel events. Also it is not uncommon to understand the novelty detection as a

classification with unknown class or classes.

The issue of novelty detection as a classification is evident. A sufficient training

sample is a must for any successful classification. However novelty detection is a task

commonly defined without any information about how the novel events should look

like. Basically the novelty detection is search for something that is not known, hard

to model and difficult to predict.

However, in specific cases it is possible to at least annotate the novel event ret-

rospectively and thus the novelty detector (classifier) can be supervised, or at least

some kind of reinforcement learning3 can be applied.

3Reinforcement learning is process where some kind of reward function is used instead of an

exact input/output pair as a feedback.
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Chapter 2

State of the art

The current state of research in the field of novelty detection is presented in this

chapter. The bare minimum on theory, implementation and essential idea behind

the main novelty detection concepts are presented in section 2.1. The cross-validation

concepts used in this thesis and in general are explained in section 2.2. The main

approaches and directions in novelty detection field are introduced one by one in

section 2.3.

2.1 Novelty detection concepts introduction

The novelty detection may be supervised and also unsupervised. Supervised means,

that we have some information how the novelty in the data should look and thus we

can train a model to search for this novel events or objects. The term unsupervised

novelty detection means, that we do not know what is the novelty in given data-set

and we need some method to identify and describe those not common pieces of data.

Note that the supervised novelty detection is not too different from an ordinary two-

class classification. The classification approach is suitable for any cases, where it is

possible to measure whether the finding of the novel event was correct.

Also for some cases of unsupervised novelty detection, it is possible to use a

clustering algorithm as a novelty detector. However, this approach could have a

problem with insufficient number of anomalies for pre-training of such a clustering

model. For this reason, the novelty detection methods are mostly designed in the way
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that they measure the distance between the current state and the normal state. The

decision whether the distance is big enough follows. If the distance is big enough,

the particular state can be considered as a novel state or event.

Common problems associated with novelty detection are: noisy data features;

not enough samples for detection; too many normal (and different) states of the

system; and insufficient system identification. The other problem may be a difficulty

to find out whether the novelty detection works well or not for the given task. This

problem is commonly caused by absence of any suitable benchmark. For a lot of

applications, only one way how to evaluate novelty detection method exists - human

expert advice.

Because of all those issues related to the novelty detection, several different meth-

ods of the novelty detection was developed. According to results of those methods,

it is possible to say that the success of a given method strongly relies on given task

and conditions. There is no universally best solution for case of novelty detection

[8]. This statement can be related to the no free lunch theorem [9].

Novelty detection methods are commonly separated into statistical based and

neural network based. Also it is common to combine something from both approaches

in one method. A statistical approach of novelty detection uses statistical properties

of the acquired data to decide, whether the data is novel or not. Statistical novelty

detection methods could be divided between two groups - parametric approaches

and non-parametric approaches. Parametric approaches expect, that distribution of

evaluated data is Gaussian in nature. It means, that the data distribution can be

modelled just with the data mean and covariance. Non-parametric approaches are

more flexible, because they do not have assumptions about the data distribution

form. This cause that they are also more computationally expensive [8] in general.

However, it is important to note that literature on this topic is not completely united

in opinion what methods are parametric and what methods are non-parametric [10].

The example of the most simple statistical approach of novelty detection is box-
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plot1. Another simple example is histogram2. More about usability of this methods

for novelty detection is in subsection 2.3.1.

The second category of novelty detection methods is based on artificial neural

networks (ANN) [12]. Such methods are heavily used for novelty detection tasks

today, because of the recent general popularity of ANN. The ANN based methods

have advantages and also disadvantages in comparison to the statistical approaches.

Probably the main advantage of the ANN based methods is possibility of online

retraining. Commonly discussed disadvantage of the ANN is the huge dependence

on the chosen ANN architecture and the complexity of its optimization [13]. If the

chosen ANN architecture is too simple, it may have difficulties to learn the system

properly. On the other hand, if the architecture is too complicated, it may lose the

ability of the generalization that leads to bad performance. For selection of a correct

ANN architecture a few approaches exist. The most common and intuitive ones are

performance testing while pruning - decreasing complexity, and performance testing

while increasing the architecture complexity (also known as constructive algorithms).

In general the most common ANN architecture also for novelty detection is multi-

layer perceptron (MLP) [14]. The confidence measure of a MLP input patterns is

popular novelty indicator. The simplest method how to achieve that is to put a

threshold on the ANN output. In other words, the MLP recognize whether the new

pattern is know or unknown.

2.2 Cross-validation of novelty detection methods

In matter of cross-validation, a novelty detection can be understand as a binary clas-

sification for the purpose of cross-validation. That allows us for using conventional

tools, tests and concepts to evaluate the outcome of a novelty detection method.

The common way how to systematically describe the process of cross-validation is

the construction of the confusion matrix (Table 2.1). The confusion matrix is based

1Boxplot [11] (or box-and-whisker plot) is popular plot that uses box (and sometimes whiskers)

to display quartiles, median and extreme values of a data sample, invented by J. Tukey.
2A histogram is an accurate representation of the distribution of numerical data. It is an estimate

of the probability distribution of a continuous variable.

23



on estimation of four variables:

• True positive (TP) - number of successful hits

• True negative (TN) - number of correct rejections

• False positive (FP) - number of type I error3

• False negative (FN) - number of type II error4

The other metrics that are used for cross-validation are obtained from the deriva-

tions of the variables above (TP, TN, FP, FN). The most common derivations are

• Specificity (SPE), also known as true negative rate

SPE =
TN

TN + FP
(2.1)

• Sensitivity (SEN), also known as recall, hit rate, or true positive rate

SEN =
TP

TP + FN
(2.2)

• Precision (PPV), also known as positive predictive value

PPV =
TP

TP + FP
(2.3)

• Accuracy (ACC)

ACC =
TP + TN

TP + TN + FP + FN
(2.4)

Other tool used for cross-validation of binary classifiers is the receiver operating

characteristic (ROC) [15]. The graphical plot of the ROC is called ROC curve

and it is probably the most fundamental plot used to illustrate the discrimination

threshold of a binary classifier. The ROC curve is obtained by plotting the true

positive rate (TPR) against the false positive rate (FPR). Note that the following

relations hold: TPR = SEN,FPR = 1− SPE. The ROC curve with examples of the

optimal, the absolutely random, a good and a bad prediction performance is shown
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Table 2.1: Confusion matrix

Figure 2.1: The ROC curve with examples of the optimal, the absolutely random

one, a good and a bad one prediction performance.

in Figure 2.1. In general, the ROC is obtained by calculating TPR and FPR for

changing classification threshold.

Another concept related to the ROC curve is the area under the roc (AUROC,

often also referred only as AUC). The AUROC is an indicator how well the classifier

performs independently on the selected threshold. In other words, the AUROC can

be understood as overall performance for all possible threshold settings. The AU-

ROC is commonly used together with maximal accuracy to compare the performance

of multiple classifiers. The maximal accuracy (maximal ACC) is accuracy obtained

with the optimal threshold. These two metrics (maximal ACC and AUROC) are

3A type I error is the incorrect rejection of a true null hypothesis
4A type II error is the failure to reject the false null hypothesis
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used together because they are not necessary correlated and they describe different

aspects of performance. While the AUROC describes the performance of the clas-

sifiers independently on a threshold, the maximal ACC highlight the best possible

accuracy that can be achieved if the threshold is set correctly. So it is possible that

some classifiers score with a maximal ACC, although they have low AUROC and

vice versa. However, it is important the keep in mind that the ACC is highly af-

fected by class imbalance. An example is a classifier that predicts false all the time.

This classifier can still get high accuracy if a dataset contains many more negative

samples than positive ones.

2.3 Main approaches to novelty detection

2.3.1 Hypothesis testing

Figure 2.2: The box plot rule for novelty detection (Q = quartile, IQR = interquartile

range). In this case the IQR is the span occupied by the second and the third quartile.

Hypothesis testing belongs into the group of parametric approaches. It is simple

statistical method commonly used for testing whether the tested data or sample

belongs to the same distribution as training data or not. The test popular for this

topic is the Grubbs’ test [16]. The Grubbs’ test is based on comparison of distance

from the test data points and the sample mean. Any data point with this distance
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higher than a certain threshold is considered as an outlier. The popular value for the

threshold is commonly the value of three standard deviations from the mean value.

This test assumes that the training data posses Gaussian distribution and it works

only with univariate continuous data. Many variants of this test was proposed later

to deal with multivariate data sets, for example [17]. The hypothesis testing approach

has been used for detection of damaged beams with t-test in study [18]. This method

uses subsequent measurements and compare them against the previous values. The

results of the study was promising, however the method was tested just on simulated

data representing this single problem. In other study [19], the boxplot rule was used

to visually localize the outliers in data. The boxplot rule is a commonly used method

for outlier detection in unstructured datasets. The inner fence and outer fence are

defined in the boxplot and anything out of the fences is considered as an outlier.

The position of inner and outer fences is estimated according to the interquartile

range (IQR). The boxplot rule usage is displayed in the figure 2.2. More detailed

information on the topic of statistical tests for the novelty detection can be found in

[20].

2.3.2 Gaussian mixture model

Gaussian mixture models (GMM) [20] is a parametric probabilistic approach. This

approach is based on the idea that data are generated from a weighted mixture of

Gaussian distributions. Thus it is considered as a parametric approach. Although

similar approach - general mixture model - can be based on various different dis-

tributions (the gamma distribution, the Poisson distribution, the Student’s t distri-

bution), the Gaussian distribution is popular of its convenient analytical properties.

The GMM models are used as an estimator of the probability density of the normal

data points. The parameters of such a model are generally estimated by a maximum

likelihood method or by the Bayesian methods. The novel data points are identified

via threshold.

However, in practice the GMM approach (or similar) has a problem with the

dimensionality of data. With the high dimensionality, this method needs a very large
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number of samples to train a model [8]. Another problem is the correct selection

of suitable threshold. Study [21] proposes the GMM for modelling of a text; it

uses GMM with Latent semantic analysis representation for novelty detection. This

method works with very high dimensional lists of terms and the reported performance

is comparable with other state-of-the-art methods. In study [22], the GMM based

novelty detection was used for identification of masses in mammograms.

2.3.3 Hidden Markov models

Figure 2.3: An example of Hidden Markov model with three hidden states and two

observable outputs.

Hidden Markov models (HMM) [23] are stochastic models for sequential data,

and belong into group of parametric approaches. The HMM is build on assumption,

that modeled system is process with unobserved hidden states - Markov process.

The transition from the hidden states to observable states is done via stochastic

process. Every observable state is associated with a set of probability distributions.

The change in probabilities of any observable event is compared to a threshold to

test for novelty. The hidden Markov models are generally popular for pattern recog-

nition, for example: temporal pattern recognition in bioninformatics, speech, gesture

recognition, handwriting recognition and similar tasks. An example of HMM model

is shown in Figure 2.3.

In study [24], the HMM based approach was used for intrusion detection in com-
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puter security and compared with instance-based learning novelty detection method.

The reported accuracy of both methods was similar, but the HMM approach has

much lower computational and storage requirements. The HMM based approach

for intrusion detection was used also in study [25]. The reported accuracy was also

comparable with other methods, while computational cost seems to be a bit lower.

Another applications of the HMM based approach for anomaly detection in field of

internet security is in [26], [27], [28]. In study [29] was proposed to use the HMM for

abnormality in the duration of human daily living activities also with a promising

results. The study [30] presents a HMM based framework for anomaly detection

in crowd behavior from a video records. The issue of this method is that modeled

distribution must be Gaussian in nature.

2.3.4 Support vector machines based approach

Figure 2.4: An example of the linear SVM binary classification for a data with two

features (x1, x2). The line represents the border between the classes.

Support Vector Machines (SVM) [31] is a not-probabilistic method [32]. It is

designed to work as a binary classifier. In other words the SVM algorithm search

for best hyperplane to separate the known classes. An example is in the Figure 2.4.

Although the algorithm was originally created as linear classifier, it was later ex-

tended with kernel transformation to nonlinear classifier. The kernel transformation

can change linearly inseparable task into the task that is linearly separable. As a
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Figure 2.5: An example of the SVM novelty detection. Every data-point laying out

of the hypersphere is an outlier.

probabilistic novelty detector the SVM can be used as a classifier for the input vector

distribution. However, commonly it is used only as one class classifier - where the

one class is the normal class with tight boundary. Anything behind the boundary

is classified as novel [33]. An example of such a classification is in Figure 2.5. The

major advantages of SVM algorithm implementation are: it works really well with

clear margin of separation, it is effective in high dimensional spaces, and it is effective

in cases where number of dimensions is greater than the number of samples. On the

other hand, SVM are not really good for data with overlapping distributions (small

margin between classes).

The one-class SVM approach was studied on artificial and real data with promis-

ing results in [33]. In study [34], a method based on SVM for novelty detection

in the Electroencephalography (EEG) signal is presented. The targeted novelty in

this study is an epileptic seizure. The reported results are not better then other

state-of-the-art methods, however the usage of novelty detection as an EEG seizure

detector is beneficial, because it does not need supervised pre-learning. In study [35],

an algorithm for online novelty detection based on SVM was proposed. This algo-

rithm is processing the data sequentially during training and uses different update

equation that has much lower time complexity. Other real-time novelty detection

method based on generalized SVM was proposed in [36] for the novelty detection in

video surveillance.
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Furthermore, support vector data description (SVDD) [37] based approaches are

similar to the SVM approaches. The SVDD is a method how to describe a dataset.

This description can be used to determine if a new sample is normal or novel. This

approach is based on SVM. The data description is spherically shaped boundary

around the normal data set. Multiple extensions of SVDD were proposed. Some

extensions are based on modifying the margin and/or size of the hypersphere of the

data descriptor [38, 39]. Other extension is based on usage of multi-hypersphere data

description [40]. This approach was even more stretched with multi-hyper-spheres

with different centres and radii in [41]. The experimental results of this extension

claim to outperform the original SVDD in all 28 tested datasets. A different extension

of the original SVDD focuses on speed of the algorithm by proposing an effecient

SVDD [42]. This approach seems to outperform the both one-class SVM and SVDD

in speed.

2.3.5 K-nearest neighbour algorithm

K-nearest neighbour algorithm (KNN) [43] is non-parametric statistical method used

for classification and regression. The KNN based methods are among the most

popular methods for novelty detection nowadays [10]. The KNN algorithm assigns

the class for every new sample according to the class of k nearest neighbours. An

example is shown in Figure 2.6. The KNN novelty detection approach is based on

the assumption that normal data-points have close neighbours, while novel points are

located far from those points [44]. The distance of the points is commonly measured

with Euclidean or Mahalanobis distance5. Other well documented measures that are

suitable for KNN algorithm can be found in [23].

The main potential issue of the KNN is a classification output dependency on

parameter k (the number of the nearest neighbours). This problem is a case of sensi-

tivity to the local structure of data. This issue can be addressed with weighted sum

of the distances from the new data-point to the nearest neighbours. This approach

5The Mahalanobis distance [45] is a multi-dimensional generalization of the idea of measuring

how many standard deviations away the point is from the mean of the distribution. This concept

was introduced by P.C. Mahalanobis in 1936.
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Figure 2.6: An example of the KNN classification. Note that the classification yields

a different result for a different number of the nearest neighbours.

was successfully used for outlier detection in study [46]. Another issue of the KNN

algorithm is the need to measure the distance from every point to find out the nearest

neighbors. However this problem can be reduced with various algorithm extensions.

The KNN based method was used in study [47] for intrusion detection using

KNN based classification of short system call sequences. The reported accuracy is

comparable with the other methods, but amount of needed computation time seems

to be smaller. The study [48] proposes a method for fault detection using the KNN

rule for semiconductor manufacturing processes. The obtained results are compared

with Principal Component Analysis (PCA) [49] on the same data. Conclusion of the

study is that KNN based method works better with given conditions.

However, the KNN technique has problem with huge data-sets, because its eval-

uation demands much bigger number of computational operations [8].
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2.3.6 Neural networks clustering based methods

Clustering is operation of splitting data into groups. For novelty detection it means

classification to normal data and novel data. It could be either supervised or unsu-

pervised.

Probably the most common ANN for clustering is self-organizing map (SOM)

[50]. As the survey [6] suggests, the SOM is also really popular concept for novelty

detection. It is non statistical alternative to clustering algorithms. Therefor, the

most common task suitable for SOM is classification of an input patterns. According

to the SOM classificator characteristics, the most intuitive way how to use SOM for

novelty detection is to use it just as a classifier for the detection whether the given

state is normal or novel [51]. Another approach for novelty detection with SOM is

monitoring of firing units in the map. For the evaluation of SOM units firing could

be used Euclidean distance of map units, or directly unit indexes [52]. Study [53]

proposed a novelty detection method based on robust rejection filtering mechanism.

For clustering, they used analysis of inter versus intra-cluster distances to find out

which cluster represents the novel data. In study [54], the SOM is used to estimate

the novelty in features obtained as vector of adaptive parameters of higher order

neural units (HONU).

Although the clustering approaches have shown some potentionals in mentined

studies, they struggle with the issues of correct segments selection and feature ex-

traction [53] in general.

2.3.7 Reconstruction based approaches

Reconstruction based approaches are methods based on data reconstruction (current

or historical sample estimation from reduced features) or prediction. Various ANN

architectures or similar learning models could be used for this purposes. Basic idea

is that the adaptive model is trained for reconstruction (prediction) of input data.

When input data vary from training data, reconstruction error rises up. This method

could be used online with forward reconstruction. Big advantage of this approach is

simple retraining (online adaptation). During the retraining the increment of adap-
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Figure 2.7: The general schema of auto-encoder design. The output (on the right)

is reconstructed from the code (in the middle) in order to follow the input (in the

left).

tive parameters of the auto-associator could be used as a novelty indicator. These

features make the reconstruction based approaches excellent for online processing of

data streams.

The adaptive model used for this approach could be as simple as an adaptive

filter used in predictive settings. However, the most common data reconstructors

are auto-encoders [55] and replicator neural networks (RNN) [56]. Such a network

architecture is a model that uses dimensional bottleneck between input and output to

filter redundant and incorrect information in training data-set. Particularly the auto-

encoders squeeze the input through a hidden layer that has fewer neurons than the

input/output layers. This is the way how the network is forced to learn a compressed

representation of the data. The architecture of typical auto-encoder is displayed in

Figure 2.7. The original idea behind the auto-encoders is based on Elman network

[57]. The RNN also squeeze the data through a hidden layer; however, that layer uses

a staircase-like activation function. The staircase-like activation function makes the
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network compress the data by assigning it to a certain number of clusters (depending

on the number of neurons and number of steps). This approach yields somehow

different results than plain auto-encoders.

The reconstruction approaches are applicable on various learning algorithms.

Applicability of MLP was tested for this purposes in study [58]. This study con-

cludes, that the probabilistic ANN [59] works superior when compared with back-

propagation ANN. A recently developed method based on evaluation of data predic-

tion process is Learning Entropy (LE) [60]. Other application of MLP was reported

by study [61]. In this study, the distribution of data identification error was evalu-

ated and considered as a novel, if an error was unexpectedly higher than the error

from training data. Study [62] tests auto-associators to detect faults according to

model residuals. The autoassociative mappings using the kernel based approach [63]

and the least squares approach [64] were used in the tested methods. According to

the reported results, the kernel based approach seems to work better. Study [65]

and study [66] proposes to use RNN [67]. They tested RNN approach on multiple

data-sets and report promising results.

Methods based on data reconstruction seems to work well. But they also have the

same issues like other ANN methods - it is hard to make a mathematical evidence

why it works [61]. Also the computational demands of such algorithms could be

overwhelming for some applications.

2.4 Open problems

Major novelty detection methods were presented in this chapter. Most of these

methods feature at least one of the following issues:

• A method needs an a-priori information about the novelty and/or healthy data.

In other words, the method works as a classifier for known classes.

• A method needs a heavy pre-training and/or has a great time complexity. Thus

the method is suitable only for offline use.

• A method heavily relies on statistical attributes of the data. Therefor the
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method has a hard time to deal with non-stationary process - data with any

kind of concept drift.
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Chapter 3

Thesis objectives

As it was introduced in previous section, the machine learning field has currently

huge demand for algorithms that can work for data streams produced in real time.

According to this demand, the first objective of the thesis is set to:

1. objective - Development of an adaptive novelty detection method suitable for

online data streams processing. Such a method should be able to re-adapt to new

data on the fly without the need for any time expensive re-learing.

The optional but often required feature of novelty detection methods for data

streams is computation speed. Not every real-time process use high sampling rate,

however a low lag novelty detection is generally beneficial. Because of that reason,

the second objective of this study is

2. objective - Development of a fast adaptive novelty detection method applicable

with fast adaptive algorithms. Such a method should have low time complexity.

Thus, it should be suitable for machines with low computational performance.

The fast adaptive algorithms can be for example adaptive filters. The usage of

adaptive filters for novelty detection is in principle similar to the usage of neural

network auto-associators. The difference is that adaptive filters are simpler, thus
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they can run faster and they are easier to implement. That is beneficial because of

lower time complexity, but the drawback is the lower abstraction ability of adaptive

filters algorithms in comparison to neural networks. However, in some case the lower

level of abstraction ability might by desirable. This is because the lower level of

abstraction also means lower complexity and thus higher possibility to explain the

learning algorithm behavior.

The online data streams processing posses the issue of concept drift and other

significant data imbalances that cannot be removed in real-time. Hence the third

objective of this thesis is set to:

3. objective - Development of an adaptive novelty detection method robust against

concept drift and non-stationary data. Data trends and drifts are common and it is

hard to deal with them in a real-time processing. Therefore the proposed algorithm

should be able to compensate for data drifts on the fly.

In the next chapters, derivation, implementation and experimental analysis of

the adaptive novelty detection method that should accomplish all objectives of this

thesis are presented.
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Chapter 4

Developed method

In this chapter, the developed method called Error and Learning Based Novelty

Detection (ELBND) is introduced and explained. The general idea and derivation of

the main detection rule is presented in section 4.1. The particular implementation of

the ELBND for specific adaptive filters is demonstrated in section 4.2. The final notes

on derivation and implementation of this method are summarized in section 4.3.

4.1 Method description

The proposed method of novelty detection utilizes the adaptive parameters of a

learning model and its error. This method could be implemented on various super-

vised adaptive models (tracking adaptive algorithms). The idea behind this method

is based on assumption, that the model error and the adaptive parameters of the

model carry a different information about novelty of data, although both features

are correlated. On this account, the proposed method is called Error and Learning

Based Novelty Detection (ELBND).

In this work, various types of adaptive filters are used as the base for adaptive

models. An adaptive filter is a system with a linear filter that has a transfer function

controlled by variable parameters to adjust those parameters according to an opti-

mization algorithm. The scheme of an adaptive filter function is displayed in figure

4.1

The output of adaptive filter or of any similar adaptive model could be described

39



Figure 4.1: The schema of an adaptive filter function.

with the following equation

ỹ(k) = w1(k) · x1(k) + ...+ wn(k) · xn(k) =
n∑
i=1

wixi = wT (k) · x(k), (4.1)

where k is discrete time index, ỹ(k) is output (filtered) signal, w is vector of adaptive

weights, x is input vector and (.)T denotes the transposition. The initial values of

adaptive weights (adaptive parameters) w are usually set to all zeros, or alternatively

to random numbers (normal distribution, zero mean value). The x(k) is input vector

made from input data

x(k) = [x1, ..., xn], (4.2)

where n is the size of input vector. The input vector can be augmented with bias

(= 1) as follows

x(k) = [1, x1, ..., xn]. (4.3)

The bias should mimic the bias in neural units. In practice, this bias can compensate

offsets and similar data imbalances. In case where only input data is the history of

the target signal, the input vector can be formed as follows

x(k) = [1, y(k − n− 1), ..., y(k − 1)], (4.4)

where y is the measured signal. The mentioned error e of the adaptive filter is

calculated as

e(k) = y(k)− ỹ(k). (4.5)

The second input of the method is the increment of adaptive weights defined as

∆w(k) = w(k + 1)−w(k). (4.6)
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The method of the increment ∆w(k) estimation depends on chosen learning algo-

rithm. The proposed way how to combine the parameters ∆w(k) and error e(k) to

obtain the descriptor of novelty in given sample can be described as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣. (4.7)

The novelty descriptor nd(k) is vector of coefficients describing how much novelty is

encounter with individual weights ∆w(k).

For some applications it could be desirable to describe novelty in data just with

single value for every sample. As a good practice how to achieve that, it is reduction

of this vector nd(k) to scalar as follows

nd(k) = max(nd(k)). (4.8)

However, other function than max might be used.

4.2 Methods of implementation

4.2.1 LMS adaptive filter

The classical least means squares algorithm (LMS) [68] is stochastic gradient descent

method. It is probably the most common algorithm for adaptive filters. The LMS

weights adaptation could be described as follows

w(k + 1) = w(k) + ∆w(k), (4.9)

where ∆w(k) is

∆w(k) = µ · e(k) · ∂y(k)

∂w(k)
= µ · e(k) · x(k), (4.10)

where µ is the learning rate (step size) and The general stability criteria of LMS [68]

stands as follows

|1− µ · x(k)T · x(k)| ≤ 1. (4.11)

The novelty detection could be done as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)2 · x(k) · µ

∣∣∣. (4.12)
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4.2.2 NLMS adaptive filter

The normalized least mean squares (NLMS) [68] adaptive filter is extension of LMS

adaptive filter. The NLMS adaptation rule could be described as follows

∆w(k + 1) =
µ

ε+ x(k)T · x(k)
· x(k) ·w(k) = η · x(k) ·w(k), (4.13)

where ε is a constant (regularization term) introduced to preserve stability for inputs

close to zero [69]. The model is stable if

0 ≤ µ ≤ 2 +
2ε

x(k)T · x(k)
, (4.14)

or in case without regularization term ε

µ ∈< 0, 2 > . (4.15)

With the NLMS adaptive filter the novelty in data could be calculated as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)2 · x(k) · η

∣∣∣ =

∣∣∣∣∣ e(k)2 · x(k) · µ
ε+ x(k)T · x(k)

∣∣∣∣∣. (4.16)

4.2.3 LMF adaptive filter

The least mean fourth algorithm (LMF) [68] is slight modification of the LMS algo-

rithm. The LMF weights adaptation ∆w(k) is calculated as follows

∆w(k) = µ · e(k)3 · ∂y(k)

∂w(k)
= µ · e(k)3 · x(k), (4.17)

The ELBND is then calculated as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)4 · x(k) · µ

∣∣∣. (4.18)

According to the (4.18) the ELBND emphasize the error of adaptive filter more with

the LMF than the plain LMS.

4.2.4 NLMF adaptive filter

The normalized least mean fourth (NLMF) is often used because it has greater ability

to suppress noise than NLMS adaptive filter according to study [70]. On the other
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hand, it is much harder to enforce stability of the NLMS filter than NLMS filter

[71, 72]. The NLMF adaptation [68] is similar to NLMS adaptation. The vector of

adaptive weights of a NLMF filter w is done according to the rule

w(k + 1) = w(k) + ∆w(k) = w(k) + η(k)w(k)e(k)3, (4.19)

where η(k) has the same meaning like in (4.13). With the NLMF adaptive filter the

novelty in data could be calculated as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)3 · x(k) · η

∣∣∣ =

∣∣∣∣∣ e(k)3 · x(k) · µ
ε+ x(k)T · x(k)

∣∣∣∣∣. (4.20)

4.2.5 GNGD adaptive filter

The generalized normalized gradiend descend (GNGD) adaptive filter [69] is an ex-

tension of the NLMS adaptive filter. The adaptive weights of a GNGD filter w are

adapted according to the same rule as NLMS. The difference is in parameter η(k).

The adaptive learning rate (step size) η(k) is estimated in similar way like for NLMS

or NLMF, however the regularization term ε is obtained in the way that follows

ε(k) = ε(k − 1)− ρµe(k)− e(k − 1)xT (k)x(k − 1)

(||x(k − 1)||2 + ε(k − 1))2
, (4.21)

where the ρ is a custom parameter. As proposed in [69] the GNGD the method

should be robust if the parameter ρ is set to small (< 1) positive number. The

resulting GNGD formula for novelty detection can be combined from (4.21) and

(4.16).

4.2.6 RLS adaptive filter

Other algorithm what could be used for the novelty detection is Recursive least

squares (RLS) [68]. For this method the adaptive weights are calculated as follows

w(k + 1) = w(k) + R−1(k)x(k)e(k) (4.22)

where the matrix R−1(k) is inverse of the auto-correlation matrix with size n × n,

where n is number of adaptive weights w(k). The R−1(k) matrix is obtained as
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follows

R−1(k) =
1

γ

(
R−1(k − 1)− R−1(k − 1)x(k)xT (k)R−1(k − 1)

γ + xT (k)R−1(k − 1)x(k)

)
. (4.23)

The initial value of matrix R−1 is set as follows

R−1(0) =
1

δ
I =


1
δ

. . .

1
δ

 , (4.24)

where initialization parameter δ stands for small positive constant. According to

the adaptation rule (4.22), we can describe proposed novelty detection method with

RLS algorithm as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e2(k)R−1(k)x(k)

∣∣∣. (4.25)

4.2.7 Individual learning rate LMS/NLMS adaptive filter

This filter [mc6] is extension of LMS or NLMS adaptive filter. The extension is a

replacement of the scalar learning rate µ with vector of learning rates µ. With this

modification the increment of adaptive weights ∆w(k) is

∆w(k) = µ · e(k) · x(k) = [µ1e(k)x(k)1, ..., µne(k)x(k)n]T , (4.26)

In this case the general stability criteria stands as follows

|1− µ · x(k)T · x(k)| ≤ 1. (4.27)

And the novelty detection could be done as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)2 · x(k) · µ

∣∣∣. (4.28)

The NLMS adaptation rule with individual learning rates could be described as

follows

∆w(k + 1) =
µ

ε+ x(k)T · x(k)
· x(k) ·w(k), (4.29)

where ε is a constant (regularization term) introduced to preserve stability for inputs

close to zero [69]. The model is stable if

0 ≤ µ ≤ 2 +
2ε

x(k)T · x(k)
, (4.30)
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or in case without regularization term ε

µ ∈< 0, 2 > . (4.31)

With the NLMS adaptive filter the novelty detection could be done as follows

nd(k) =
∣∣∣e(k) ·∆w(k)

∣∣∣ =
∣∣∣e(k)2 · x(k) · η

∣∣∣ =

∣∣∣∣∣ e(k)2 · x(k) · µ
ε+ x(k))T · x(k)

∣∣∣∣∣. (4.32)

4.2.8 Online centered NLMS adaptive filter

The Online Centered NLMS (OCNLMS) adaptive filter is extension of NLMS filter

for better convergence with high offset data. This modification was proposed in

[mc7]. The main idea behind this modification is data common data transformation

for improving the condition number of input data matrix x. This transformation is

commonly noted as z-score

yt(k) =
y(k)− ȳ ·~1

σy
, (4.33)

where ȳ is mean value of y, σy is standard deviation of y and ~1 is n sample length

vector of all ones. The result of transformed signal filtering ỹt could be transformed

back as simple as

ỹ(k) = (ỹt(k) · σy) + ȳ ·~1. (4.34)

Filter with normalized data could be defined according to (4.1) as follows

ỹt(k) = wT
t (k) · xt(k), (4.35)

where xt(k) is input vector build from transformed data yt according to (4.2) and

wt(k) is set of parameters of adaptive filter for transformed data. From (4.33) and

(4.35) is possible to obtain

ỹ(k)− ȳ
σy ·~1

= wT
t (k) ·

(
x(k)− ȳ ·~1

σy

)
(4.36)

that could be simplified to

ỹ(k) = wT
t (k) · (x(k)− ȳ ·~1) + ȳ. (4.37)
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The adaptation rule for such an adaptive filter could be obtained in the same way

as filter equation (4.37) from (4.10) and (4.33) as follows

∆wt(k) =
µ

σ2
y

· e(k) · (x(k)− ȳ ·~1). (4.38)

This is still not beneficial for online filtering, because of the need to know mean value

for all the data, what is impossible during real time filtering. Because of that, it is

proposed to substitute the ȳ(k) with mean value of input vector x̄(k) and σy with

σx. These parameters of input vector could obtain for every single sample just from

vector x(k). That means that the input vector will be centered

xc(k) = x(k)− x̄(k) ·~1. (4.39)

This usability suggestion is based on following assumptions

ȳ ≈ x̄(k) ∧ σy ≈ σx. (4.40)

Now the equation for online centered adaptation looks like

∆wt(k) =
µ

σ2
y

· e(k) · xc(k), (4.41)

and the filter equation stands as follows

ỹ(k) = wT
t (k) · xc(k) + x̄(k). (4.42)

The general stability criteria can be obtained from (4.41) and (4.39) as

|1− µ

σ2
y

· xc(k)T · xc(k)| ≤ 1. (4.43)

The NLMS algorithm is already using the learning rate normalization (4.13) accord-

ing to power of input. For that reason there is no need to normalize the learning rate

furthermore according to power σx. This simplification decreases the error caused

by σx 6= σy. Finally the proposed learning rule could be described as follows

∆w(k + 1) =
µ

ε+ xc(k)T · xc(k)
· xc(k) ·w(k). (4.44)

For this filter the novelty in data could be calculated as follows

nd(k) =
∣∣∣e(k)2 · xc(k) · η

∣∣∣ =

∣∣∣∣∣ e(k)2 · xc(k) · µ
ε+ xc(k)T · xc(k)

∣∣∣∣∣ =∣∣∣∣∣ e(k)2 · (x(k)− x̄(k)) · µ
ε+ (x(k)− x̄(k))T · (x(k)− x̄(k))

∣∣∣∣∣ (4.45)
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4.3 Method implementation overview

In this subsection, the overview of method implementations for various adaptation

rules is presented. Novelty detection rules for all methods described in this chapter

are in Table 4.1. The most efficient (the lowest time complexity) is the LMS algo-

rithm. The most complicated one is the RLS algorithm. However it is not possible

to conclude that the most sophisticated algorithms yields the best results. For some

cases the best results can by achieved with simpler adaptation algorithms due to the

multiple reasons.

In general, the proposed adaptive novelty detection method can by implemented

for every adaptive model with measurable error, if the used adaptive rule features

adaptive parameters. In other words, the ELBND algorithm is not limited to the

mentioned algorithms. Some other algorithms that could be used for implementation

of the proposed method are: sign-sign least-mean-squares (SSLMS), normalized sign-

sign least-mean-squares (NSSLMS) and affine projection (AP).
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Filter nd(k) =

LMS
∣∣∣e(k)2 · x(k) · µ

∣∣∣

LMF
∣∣∣e(k)4 · x(k) · µ

∣∣∣

NLMS

∣∣∣∣∣ e(k)2 · x(k) · µ
ε+ x(k))T · x(k)

∣∣∣∣∣

NLMF

∣∣∣∣∣ e(k)3 · x(k) · µ
ε+ x(k))T · x(k)

∣∣∣∣∣

RLS
∣∣∣e2(k)R−1(k)x(k)

∣∣∣

iNLMS

∣∣∣∣∣ e(k)2 · x(k) · µ
ε+ x(k))T · x(k)

∣∣∣∣∣

ocNLMS

∣∣∣∣∣ e(k)2 · (x(k)− x̄(k)) · µ
ε+ (x(k)− x̄(k))T · (x(k)− x̄(k))

∣∣∣∣∣
Table 4.1: Novelty detection rule for different learning algorithms.
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Chapter 5

Experimental results

Experimental analysis is the key procedure how to make a discovery or to validate

a hypothesis. All published experimental results related to methods introduced in

previous chapter are presented in this chapter. This chapter displays the potentials

of the proposed novelty detection method.

This chapter is organized as follows: in section 5.1 results related to biomedical

data processing are presented, in section 5.2 the experiments featuring concept drift

and their results are described, and in the section 5.3 findings from other applications

or publications are presented.

5.1 Nonstationary biomedical data

Biomedical sciences are a set of applied sciences derived from natural science deal-

ing with healthcare or public health. The data processing requests by biomedical

science researches are mainly related to signals measured on human body, for ex-

ample: electroencephalography (EEG) [73], magnetoencephalography (MEG) [74]

and electrocardiography (ECG) [75]. These signals are naturally complex and non-

stationary. However, in cases where only short segments (less than 30 seconds) of

reasonably normal signal are used, the signal is considered stationary. Because of

the non-stationary and complexity, the biomedical data processing is a challenging

task. In this subsection, there are introduced two studies of the proposed novelty

detection method use for biomedical data processing - the detection of perturbations
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in ECG and the classification of Alzheimer’s disease from EEG signal. These two

studies should demonstrate the abilities of ELBND to deal with non-stationary and

offseted real-time signal.

5.1.1 Perturbation detection in ECG

Figure 5.1: Details of prediction in areas of introduced perturbations in artificial

ECG without noise - the disturbed line is the prediction. The plot is adopted from

study [mc1].

This study was presented in [mc1]. The goal of this study was detection of artifi-

cial perturbations in ECG signal. The detection of perturbations can be considered

as the value based novelty detection. The ECG measurement is a process of record-

ing the electrical activity of the heart over a period of time using electrodes placed

on the skin. A various perturbations can occur in this signal naturally as the ECG

artifacts. Such perturbations might decrease the accuracy of further ECG processing

or even make it completely impossible. In cases where the perturbations are small,

it can be difficult to remove them with conventional methods or by human operator.

Because of this reason, the novelty detection can be a simple way how to detect such
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Figure 5.2: Novelty Detection used on artificial ECG signal. The plot is adopted

from study [mc1].

artifacts in ECG and report them for further processing.

This study uses artificial and also real ECG signal to demonstrate the idea and

to validate its usefulness. The real measured signal (and also the artificial one) has

sampling frequency of 256 samples per second (sps). The noise was added to the

artificial signal, to highlight the ability of the proposed novelty detection method

in detection of unexpected samples within the data. The predictive model features

lower prediction accuracy comparative to data without noise. The reason why was

this method tested on an artificial signal is to emphasize how well the detection

works on perturbed data if the signal does not contain any complicated phenomena.

The artificial ECG time series used in this work was created by repeating pattern of

a real ECG signal. Thus, this artificial time series is an ideally periodic signal. The

used adaptation rule was NLMS applied for linear neural unit (LNU) predictor.

5.1.1.1 Artifical data

The used artificial data has 8000 samples. First 200 samples was used for pre-

training. For sufficient training, 100 epochs was enough. In Figure 5.1, there are

shown the details of all perturbations included in the artificial ECG signal with-
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Figure 5.3: Novelty Detection used on artificial ECG signal with noise. The plot is

adopted from study [mc1].

out noise. The size of the introduced perturbation was 0.03 mV. As we can see in

Figure 5.1, these perturbations are small in comparison with the amplitude of the

signal. Looking at the behavior of the used predictive model, it is possible to see

how to model re-learn immediately when the prediction error and weight adaptation

increases (5.2). The return of the predictive model to previous prediction accuracy

takes approximately 20 following samples. In Figure 5.2, it is displayed the predic-

tion error in specific places of a single period. These errors are caused by insufficient

prediction ability of the simple, linear predictive model. Furthermore, in Figure 5.2,

these errors are not detected as new data by the applied novelty detection method.

Figure 5.3, shows the simulation of the artificially created ECG with the addition of

noise. Here again, three perturbations were introduced to the data. These perturba-

tions are located on the same positions as the signal without noise. This introduced

noise was generated via a generator of pseudo-random numbers, composed as a vector

of random numbers in range from 0 to 0.01.

Figure 5.3 displays the artificial signal contaminated with noise. Here in the first

graph, it is possible to see the difference between the signals within the region of
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Figure 5.4: Novelty Detection used on real measured ECG signal. The plot is adopted

from study [mc1].

peaks of the amplitude. For the used predictive model, it is much more difficult

to learn the pattern of the signal with added noise in comparison to that without

noise. The errors and absolute values of the weight increments (Figure 5.3) are not

entirely dependent on the periodicity of the signal. In the plot of error on the same

Figure, it is not possible to see the perturbations clearly, as in the plot of prediction

error without noise on the Figure 5.2. In the graph of the absolute error of weight

increments we can more evidently see the location of the perturbations. Furthermore,

on the graph of novelty detection (Figure 5.3) the perturbation locations are even

more evidently seen and, this is because a huge part of the models periodic errors, are

filtered. Furthermore, these errors have no impact on the detection of unexpected

samples in the data. The adaptive model again immediately reacts to the introduced

perturbation and tries to relearn the data signal. The time in which the model needs

for regaining normal accuracy after meeting a perturbation is hard to estimate,

because the prediction error is highly dependent on the noise level present in the

data.
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5.1.1.2 Real measured data

The second used signal is real measured ECG signal from the Yoshizawa-Sugita Lab

(formerly Yoshizawa-Homma Lab), Tohoku university. The used time series was

measured by an internal cardio-defibrillator with frequency of 256Hz. This signal

was chosen because it contains spontaneous ventricular tachycardia, which is a rare

phenomenon to measure. The used novelty detection method works in both in the

healthy section of ECG and also in the arrhythmic section of this signal. The same

method and implementation was used for this signal like for the signals used before

(the artificial ECG signal). The size of data chosen for learning of the predictive

model is 1000 samples. In order to achieve sufficient pre-learning of the used neural

unit with such amount of data, less than 500 epochs is enough for achieving optimal

results. Usage of more epochs does not improve the accuracy a in significant way.

Figure 5.4 shows which part is the healthy ECG signal and which part represents

the arrhythmia. In the introduced novelty detection, it is possible to detect the

start of the arrhythmia signal, approximately 1000 samples before the arrhythmia is

introduced. The shape of the period before the arrhythmia, looks the same but the

scale of amplitudes starts changing. In the first graph of Figure 5.4, it is possible to

see how the measured signal is practically identical with the predicted signal. The

included perturbations are not clearly seen in this graph. However, these perturba-

tions are located in the samples of discrete time 1000, 3000, 5000. On the graph of

the prediction error, it is possible to see the perturbations, and even more so in the

graph of absolute values of adaptive weights increments. However, looking on the

graph of novelty detection, these perturbations are even more evidently pronounced.

Moreover, the periodic error are suppressed in region of the healthy ECG and ar-

rhythmia signal. It is important to notice that the suppressing of the periodic error,

is not that dominant in the onset of arrhythmia unlike in other parts of the data.

The included perturbations are significantly small in size (0.04 – approximately 2%

of the amplitude of healthy ECG signal). Furthermore, the adaptive model imme-

diately reacted with re-learning of the ECG data and achieved the previous model

accuracy. This re-learning takes about 5-10 next samples.
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5.1.1.3 Summary

This experiments demonstrate that the proposed novelty detection method is capable

to highlight perturbations in the ECG data, even if the data are contaminated with

noise. The simulation was performed on a personal computer and measured speed

was higher than what is sampling of ECG signal. In other words, this implementation

can be used in real time.

5.1.2 Alzheimer’s disease classification

This section is based on study [mc8]. In this case the novelty detection method was

used for extraction of features from EEG signal. The features were used for classi-

fication of patients. Simple classification method was used to determine how usable

the extracted features are for Alzheimer’s disease detection. As the data records of

EEG obtained from hospital were used. These records are manually selected section

with no artifacts. Data selection contains records from 220 anonymous patients.

From that selection, 110 patients match the clinical criteria of dementia and the rest

are normal. Every patient has 2 to 5 manually selected records with length 90s or

less.

The EEG signal history was used for adaptation of LNU predictor. The tested

history windows for prediction of one sample were really short (4 samples back and

9 samples back). This history cannot contain complete information about signal

dynamics. That cause significant prediction inaccuracy. But such inaccuracy is not

an issue for this method. Actually the proposed method works better with less

precise simple model, than with more complicated models what we have tried in

this case. This fact could be an advantage in case of implementation for real-time

usage. Smaller size of input vector means less calculations for one sample prediction.

Interesting thing is that the correlation coefficient between real measured EEG signal

and prediction output is 0.3856 (4 samples history as input) and even just 0.3098 (9

samples history as input).

The ELBND values were obtained from attributes of predictive model (prediction

error, increment of adaptive weights) for every EEG electrode for every patient.
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Two statistical functions applied on estimated ND were used to created criteria to

decide whether the EEG records belong to healthy person of patient with dementia.

First investigated function was standard deviation and the second one was entropy.

For every function a different length of history as an input of predictor was used

– 4 samples back for standard deviation extraction, 9 samples back for entropy

extraction.

Every patient from the data-set has a multiple EEG records. From every record,

it was used data recorded by electrodes 13 to 19. Records has different length, so the

records were segmented into 1000 samples chunks (7.8125 seconds). The ELBND

coefficients of segment were estimated in third epoch of LNU training. From the

ELBND output of every segment are estimated standard deviation and entropy. So

multiple values are obtained for one patient (depends on lengths of patient records).

For classification of every patient, the average of those values was used - one average

value for standard deviation and one average value for entropy.

For validation of the method, non-exhaustive cross-validation was used. We split

patients between two groups (2-fold cross-validation). One group was for training

(setting the criteria) and the other one for testing. Every group contains the same

amount of patients with and without dementia. To eliminate the error caused by

splitting into the groups, the patients were split into groups randomly 100 times for

every tested criteria. The average of all results was estimated and presented as a

final result. Three different criteria were used for patient classification. The first

one utilizes just standard deviation of ELBND, second works just with entropy of

ELBND, and the last one uses both functions.

The criteria based on standard deviation was just median of all patients from the

training group. Patients from the testing group with lower value than median were

classified as healthy ones and those with higher value as patients with dementia.

This criteria gave as both specificity and sensitivity over 88%. The distribution of

values of this criteria is in Fig. 5.5.

The entropy based criteria was build on the finding that demented patients have

much bigger dispersion of novelty detection entropy than healthy patients (that is

obvious from Fig. 5.5). So from the training group the lowest and highest value
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for normal patients and the lowest and highest value of demented patients were

estimated. Patients below lowest value of normal or above highest value of normal

were considered as demented. That means that all demented patients with entropy

in range of entropy dispersion of normal patients were marked incorrectly. That is

reason why this criteria has much lower sensitivity and specificity than first (standard

deviation based) criteria. The sensitivity of this criteria is 82% and the specificity is

66%.

The last criteria uses both statistical functions. The main part of this criteria is

standard deviation. This value was further modified with a penalization for entropy.

If the patient has entropy in normal range of testing group, the penalization is 0.

If the entropy is below the normal range, there is linear penalization according to

formula

Pi =
ennormL − eni

ennormL − endementL
· C, (5.1)

where C stands for criteria, Pi stands for penalization of i-th patient, ennormL is lowest

value of normal patients from training group, endementL is lowest value of demented

patients from training group and eni is value for i-th patient. This criteria has best

classification results. The sensitivity and specificity are both 90%. Dispersion is

shown in Fig. 5.5.

The novelty of EEG signal of 110 normal and 110 demented patients was esti-

mated. Three different criteria for classification of patients were used. The best

result was obtained with criteria that uses features of both other criteria. With the

method that was proposed in this study and this model settings that was used, the

specificity and sensitivity of 90% was achieved. Results of all criteria are summarized

in Table 5.1. The results of some of other methods are in Table 5.2.

Criteria based on Specificity Sensitivity

Standard deviation 88% 88%

Entropy 65% 82%

Standard deviation and entropy 90% 90%

Table 5.1: Table of results for classification based on ELBND method
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Method Specificity Sensitivity

Fractal Dimension Measure 99,9% 67.00%

Probability Density Function of the Zero-crossing Inter-

vals

99,9% 78.00%

Approximate Entropy at P3 100.00% 70.00%

Approximate Entropy at P4 75.00% 80.00%

Other studies of American Academy of Neurology 70.00% 81.00%

Table 5.2: Table of results for other methods
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Figure 5.5: Box and whisker plots of results for all tested classification criteria

5.2 Dealing with concept drift

The potentials of the proposed ELBND method for novelty detection with drifted

real-time data are presented in this section. This potentials were tested in two

studies [mc9] and [mc2]. The explanation of the concept drift and its modeling is

in subsection 5.2.1. The framework used for testing and cross-validation of both

related studies is described in subsection 5.2.2. The description of reference signals

and methods used for comparison in the studies is in subsection 5.2.3. The results

of the studies can be found in subsection 5.2.4. Finally the conclusion of the studies

is in subsection 5.2.5.
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5.2.1 Modeling of concept drift

Most of methods in machine learning field is mainly focused on learning from data

assumed to be drawn from a particular distribution [76]. However, the modern

industry brings a new challenges like highly non-stationary data obtained in real-time

as data streams [77]. Dealing with these data streams has multiple difficulties. One

of them is impossibility to remove noise with advanced methods that use knowledge

of future samples. Other difficulty is concept drift [78]. The concept drift is well

known name to describe that the statistical attributes of the observed variable change

over time in unforeseen ways. The concept drift is a cause of a significant problems

for all methods that rely on data long term statistic attributes (thresholding, etc.).

In a field of novelty detection, the concept drift is considered as a challenging

data imbalance that should be ignored, and only system changes and outliers that

represent novelty should by highlighted by the novelty detection methods. In other

words, the drift in general does not represent a novelty. The field of application for

such novelty detection methods is broad. For example, the method can be used as a

supportive method for real-time system fault detection, for onset detection of events

in biomedical signals, monitoring of non-linearly controlled processes, or event driven

automated trading, etc..

As it was mentioned allready in the introduction chapter, the intuitive way how

to deal with concept drift is adaptation [79, 78, 80]. The learning model adaptation

can compensate the drift gradually and thus makes the adaptive model a suitable

novelty detector. Such a novelty detector can successfully ignore the concept drift

that is not considered to be a novel event. Although novelty detection via learning

of adaptive models is a topic already researched for a few decades [13, 10], the most

of the published methods are limited rather for a specific purpose. At least, there

are not tested for more general use cases.

It is important to highlight that most of the developed novelty detection meth-

ods works as independent systems. However, in the age of Big Data, when every

possible information is logged in the most raw form, the adaptive methods can be

used on already implemented devices and solutions (predictors, filters, controllers).
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The adaptive models such as adaptive filters, fuzzy systems and neural networks be-

come an essential technologies in a great array of technological processes. Thus the

adaptive novelty detection is another option how to use already implemented tools

to optimize and improve processes for minimal computational cost.

No unified theory how to categorize concept drift exists. This is because the

categorization of different types of concept drift is a complex task [80]. However,

various categorizations exists according to purpose of the categorization. The most

simple categorization has only two categories of concept drift: abrupt and gradual

[81]. However, others [82] reference the gradual drift as concept drift and the abrupt

change as concept shift. The examples of gradual, recurring and abrupt drift are

shown in Figure 5.6. For complex categorization of concept drift see [80]. Another

categorization [83] is separating concept drift into these two types of concept drift:

real (concept shift) and virtual (drift that does not influence target concept [84]).

In case of simple adaptive models like adaptive filter, the concept shift (abrupt

change) can be hard to ignore. Such a sharp change always excites adaptation and

thus is emphasized by attached adaptive novelty detector. In general such a sharp

changes are not that difficult to detect. For this reason the study focuses only on

most basic type of concept drift - gradual drift.

Two types of gradual concept drift were simulated in the studies presented in the

next subsections. Two models of concept drift were used in mentioned works:

• Ramp (pure gradual drift - slow constant increment). This kind of drift is prob-

lematic because greater distance from data zero mean can alter the adaptive

model performance and also it makes any standardization (z-score) impossible.

• Harmonic wave (periodically repeating drift). This drift is also known as re-

curring trend. This drift is commonly present in various biological systems and

stock market behavior.

These two models cover the most of the features of concept drift in time series.

The constant increment drift was starting from zero and finishing in 1 at the end of

simulation. The sinus like drift has period of 104 samples and amplitude of 1.

60



Figure 5.6: Examples of concept drift effect on synthetic dummy signal.

5.2.2 Testing framework and cross-validation

The ELBND method is used as an unsupervised feature extractor implemented on

supervised learning model. The feature extraction is a process that derives values

(features) intended to be informative and non-redundant. Because of this reason, any

direct empirical comparison of the proposed method can be done only through the

performance of a classifier that uses the extracted features. A suitable classification

framework is used for this task and it is described in this subsection.

The ELBND (and the reference method LE) have already demonstrated their

applicability on real life task in past [mc6, mc1, mc10] and [85]. In general, however,
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the real tasks are too specific for objective comparison of multiple methods. This

problem exists because of multiple reasons. The major problems of real data involve:

• In real measured data it is hard to find and adjust the level and type of the

noise.

• The correct positions of a novel event can be unobtainable in larger scale.

• The exact positions of a novel event cannot be annotated with high precision.

• Furthermore, the process of annotation of a novel event onset is often opinion

based.

Because of the reasons above, a synthetically created data that fully model the

general challenges of novelty detection in a large scale was used. The concept drift

was also modelled and added into the data. The inspiration for this solution comes

from [86].

Both mentioned studies used the similar classification framework as in the older

study [mc4]. The ELBND and all other methods in mentioned studies work as

a feature extractor. Thus the classifier used for method comparison has only the

purpose to detect weather the extracted feature (level of novelty) rises only on seg-

ments of data where the target event occurs (change point=system change, pertur-

bation=outlier). In other words, the classification can be described (Fig. 5.7) as:

• true condition: 1 is in the position of novel event and some number of samples

after, 0 is everywhere else. This position is annotated during the process of

data creation.

• predicted condition: 1 for time index where the novelty rises over threshold, 0

everywhere else.

The example of classification process is displayed in Fig. 5.7. The present threshold

is moving in full range to test significant number of settings to build a receiver op-

erator characteristic (ROC) curve. The interpretation of possible output conditions

is displayed in Tab. 5.3.
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Figure 5.7: The very principle of the classification framework used for cross-validation

of the two new novelty detection methods (ELBND, LE) and two bench-marking ones

(plain error, SE), where the true conditions are the desirable objectives (bottom

axes). The interpretation of classifier output is explained in Tab. 5.3 in more detail.

The area considered as surroundings of the novel event is some number of samples

after the novel event occurrence. This number is trade-off based on two requirements:

1. An adaptive model needs some time to adapt to a new (changed) process, thus

the error and other parameters are high for a while after a novel event.

2. A novelty detection measure should react fast to a novelty and should not

merge together two events close in time.

Note that this cross-validation setup results in the same number of positive segments

as negative segments. In other words the classification data-set is balanced and its

segments has the same length.
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True condition
Detector output

Positive finding Negative finding

Novel event (true positive) True positive False negative

No change (true negative) False positive True negative

Table 5.3: Interpretation of classifier possible output conditions (true condition =

presence of novel event, finding = actual result from classifier).

5.2.3 Reference methods and signals

5.2.3.1 Error of prediction

The simplest reference signal is just the plain error of the adaptive model. This

reference is interesting because it is the most easiest feature describing novelty in

data that is possible to obtain from adaptive model. Usage of the error as a reference

directly displays how much information can be obtained from the adaptive model

with more sophisticated methods like ELBND or LE. That is the reason why it is

used in study [mc9] for result validation.

5.2.3.2 Learning entropy (LE)

The learning entropy (LE) is more advanced but similar learning-based method to

ELBND. That is the reason why it is useful to compare it with ELBND in this thesis.

The method called the LE is also called the approximate individual sample learning

entropy (see AISLE in [87]), however in this thesis and in some mentioned studies it

is called with shorter name learning entropy and it is obtained as follows

LE(k) =
1

n · nα

∑
f(∆wi(k), α) ; ∀α ∈ α , (5.2)

where n is the number of adaptive weights and nα is the number of user defined

detection sensitivities

α = [α1, α2, . . . , αnα ] ; α1 < α2 < . . . < αnα . (5.3)
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The function f(∆wi(k), α) is defined as follows

f(∆wi(k), α) =

1, if |∆wi(k)| > α · |∆wMi(k)|

0, otherwise

(5.4)

where |∆wMi(k)| is the mean value of the window used for LE evaluation and depends

on the data and possible periodicity [87]. Also the optimal number of detection

sensitivities and their values is optional, and it should be chosen within the range

where the function LE(k) returns a value lower than 1 for at least one sample in the

data, and at most for one sample returns value of 0 on pre-training data [87].

5.2.3.3 Sample Entropy

Sample entropy (SE) is a modification of approximate entropy (ApEn), used for

assessing the complexity of time-series signals, mainly used for physiological time-

series and diagnosing diseased states [88]. The SE is a proven to be a conventional

tool for detection of novelty events. It was studied for detection of epilepsy in

clinical applications [89]. In [90], neonatal sepsis detection from abnormal heart rate

characteristics was studied.

The SE was chosen as a benchmark tool for the study [mc9] because it annotates

the samples in similar way like the proposed method ELBND, or the similar adaptive

method LE. That is the reason why it is interesting for direct comparison also in this

thesis.

5.2.4 Experiments and results

Data for all simulation were created synthetically to achieve uniform occurrence of

novel events among data. The detailed reasons for this solution were explained in

introduction. Two different novelty detection tasks were created for the experimen-

tal analysis. First task is the system change point detection (contextual novelty

detection) with a system that can be completely modeled by a used adaptive model.

Second task is the outlier detection (value based novelty detection) in a more com-

plex signal (ECG waveform) that is not possible to fully model with a given adaptive

65



model. These two tasks were selected because every one of them represents different

challenge for adaptive models and novelty detectors. The experiments are explained

in detail in following subsections. All simulations have been done in language Python.

Figure 5.8: Data used for detection and validation (each of 250 000 samples in

total). Doted vertical lines mark the positions of novelty occurrences (of random

magnitudes): a) the detail of first data set is the output of system with system

changes as novelty; b) the part of second data set for outlier detection - Ecgsyn

generated ECG (waveform with perturbations - outliers)

5.2.4.1 System change point detection with NLMS

This experiment can be found in study [mc9]. The goal of this experiment was to test

the ability of ELBND, LE and SE to detect novel events (system change point) in

data. The results of the experimental analysis is interesting for this thesis, because it

provides some new information on ELBND novelty detection potentials. Especially

it provides comparison between adaptive based methods (ELBND, LE and error of

prediction) and the conventional method SE.
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Drift Method Maximal accuracy [%] AUROC[%]

none LE 88.687 95.262

none ELBND 91.01 96.295

none ERR 89.394 95.519

none SE 50.808 48.854

ramp LE 76.162 81.347

ramp ELBND 71.818 80.276

ramp ERR 71.515 79.579

ramp SE 50.505 48.714

sinus LE 69.596 75.474

sinus ELBND 67.374 74.602

sinus ERR 65.657 72.502

sinus SE 51.515 48.723

both LE 70.303 75.039

both ELBND 65.96 68.266

both ERR 64.747 67.906

both SE 50.909 49.563

Table 5.4: Table of results for system change point detection (change point is the

novel event). The process with novel events is represented by equation 5.5.

In order to achieve a general data-set for testing novelty detection, first, a system

that is possible to be modeled by an adaptive filter with zero error was created. In

other words, the model should be able to recognize novel event in data in all cases

without a mistake. This ideal system was contaminated with noise and concept drift

(5.5) to make the task of novelty detection difficult. With this setup it was possible

to monitor how difficult is the environment for the adaptive model.

The used data y(k) were generated according to the following equation

y(k) = h1(k)x1(k) + ...+ hn(k)xn(k) + ξ(k) + χ(k), (5.5)

where hi(k) are parameters of the data generator, xi(k) are input variables, ξ(k)

is noise and χ(k) represents the concept drift. Ten independent series of white
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Figure 5.9: The ROC curves for system change point detection analysis (ERR - error

of prediction, SE - based on sample entropy).

Gaussian noise with unit standard deviation and zero mean were used as the input.

The generator parameters hi(k) change randomly every nchange = 500 samples. These

changes of parameters are sharp and with unit standard deviation and zero mean.

The data contains 500 of such changes. The example of the resulting data can be

seen at Figure 5.8a.

The signal to noise ratio (SNR) was evaluated with following formula

SNR = 10 log10

σ2
y

σ2
ξ

, (5.6)

where σy is a standard deviation of unknown system output and σξ is a standard

deviation of noise ξ(k). The level of noise for this simulation was 10.429dB on

average. Note that the level of noise was slightly different in every segment of data.

This variation is caused by different parameters hi(k) of generator.

The adaptive filter was used in predictive settings with n = 10 adaptive parame-

ters (a parameter for an input). At the beginning, the parameters were set to zeros.
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Drift Method Maximal accuracy [%] AUROC[%]

none LE 90.909 94.127

none ELBND 87.273 88.094

none ERR 81.111 82.661

none SE 51.717 50.023

ramp LE 73.131 76.698

ramp ELBND 59.596 62.749

ramp ERR 55.657 56.112

ramp SE 50.505 48.39

sinus LE 70.404 73.491

sinus ELBND 60.505 64.107

sinus ERR 56.162 57.617

sinus SE 52.828 52.308

both LE 72.121 76.137

both ELBND 57.374 60.645

both ERR 54.646 55.283

both SE 52.424 51.72

Table 5.5: Table of results for outlier detection (the occurrence of an outlier is the

novel events). The outliers are the perturbations in Ecgsyn output (Fig.2b).

Initial value for adaptive learning rate was set to η(k) = 1.5.

The results of the experiment were evaluated by three different metrics: AUROC,

maximal accuracy (MAX ACC) and ROC (for graphical comparison). More detailed

information about these used cross-validation tools can be found in section 2.2.

The resulting receiver operator curve (ROC) are shown in Fig. 5.9. Maximal

accuracy and area under the receiver operator curve (AUROC) are displayed in

Tab. 5.4.

5.2.4.2 Outlier detection with NLMS

The goal of this analysis was to correctly detect occurrence of perturbations in data.

Synthetic electrocardiography (ECG) data was used for this study. To generate syn-

69



Figure 5.10: The ROC curves for outlier detection analysis (ERR - novelty detection

based on error of adaptive model, data Fig.2b).

thetic ECG data, the Ecgsyn [91] (a realistic ECG waveform generator) was used.

Parameters of the generator were set as follows: sampling frequency was 256Hz,

mean heart rate was 60 beats per minute, standard deviation of heart rate was 1

beat per minute, LF/HF ratio was 0.5, internal sampling frequency was 512Hz, an-

gles of PQRST extrema was set to [70,−15, 0, 15, 100], z-position of PQRST ex-

trema was set to 1.2,−5, 30,−7.5, 0.75 and Gaussian width of peaks was set to

[0.25, 0.1, 0.1, 0.1, 0.4].

Perturbations (simulated outliers) were introduced into this simulated waveform

time-series. The outliers were random numbers from normal distribution with zero

mean and 0.1 standard deviation (standard deviation of non drifted ECG signal is

0.907). These outliers were added to the signal values. One outlier was placed at

every 500 samples. Total number of introduced outliers was 500. The example of

the resulting data can be seen at Figure 5.8b.
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The resulting receiver operator curves (ROC) are shown in Fig. 5.10. The maxi-

mal accuracy and the area under the receiver operator curve (AUROC) are displayed

in Tab. 5.5.

The adaptive filter was used in predictive settings with n = 10 adaptive parame-

ters (a parameter for an input). At the beginning, the parameters were set to zeros.

Initial value for adaptive learning rate was set to η(k) = 1.5. Note that the average

period of one ECG wave is about 25.6 times greater than history used for predic-

tion (n = 10). Thus, in this experiment the adaptive model cannot fully learn the

dynamic behind the ECG generating process. In other words, the model will always

have some prediction error, no matter how long it will learn.

5.2.4.3 Comparison of system change point detection with NLMS, NLMF,

RLS and GNGD

The results presented here are obtained from study [mc2]. Simulated data were used

in this study to compare the performance of ELBN and LE in dependency of used

adaptive filter (NLMS, NLMF, RLS, GNGD). The main contribution of this study

for this thesis is the performance overview of ELBND used with various adaptive

filters.

The data used in the study were generated according to the following equation

y(k) = h1(k)x1(k) + ...+ hn(k)xn(k), (5.7)

where hi(k) are parameters of the process and xi(k) represents input variables. There

were ten input variables. Each one of them was independent series of white Gaussian

noise with unit standard deviation and zero mean value. The process parameters

hi(k) were randomly changed every 500 samples. These sharp changes were intro-

duced to the data as the target novelty. The actual values of the process parameters

hi(k) were taken from normal distribution with standard deviation of 0.5 and zero

mean value. The data-set contain 500 of such sharp changes representing novel

events (250 × 103 samples). The generated data were contaminated with additive

white Gaussian noise (AWGN). At the end, the concept drift was added to the data.

The concept drift was modeled as a harmonic wave with period of 104 samples and
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varying amplitude. First two waves (20 × 103 samples) were used for training of

adaptive filters. The rest of the data was used for testing.

The process of data generation described above is also shown graphically in Fig-

ure 5.11 (drift period=10000, drift amplitude=5, SNR = 10db).

Figure 5.11: The simulated signal representing output of simulated system and its

components.

The results of the experiments were evaluated by three different metrics: AUROC,

maximal accuracy (MAX ACC) and ROC (for graphical comparison). More detail

information about these used cross-validation tools can be found in section 2.2.

The graphical results - the ROC curves are shown in figures: Figure 5.12, Fig-

ure 5.13, Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17. The AUROC and

maximal accuracy results are in Table 5.6.
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Adaptation Detection AUROC [%] MAX ACC [%]

SNR = 5.4dB; drift amplitude = 5 [-]

NLMF
LE 73.9 68.6

ELBND 83.7 75.7

NLMS
LE 53.1 53.9

ELBND 53.6 53.5

GNGD
LE 63.6 58.9

ELBND 65.8 61.7

RLS
LE 79.6 71.9

ELBND 87.6 81.5

SNR = 5.4dB; drift amplitude = 2 [-]

NLMF
LE 81.0 74.4

ELBND 96.1 90.3

NLMS
LE 57.9 56.7

ELBND 63.1 60.2

GNGD
LE 74.2 68.1

ELBND 77.9 71.3

RLS
LE 88.3 80.1

ELBND 96.4 90.6

SNR = 5.5dB; drift amplitude = 0 [-]

NLMF
LE 82.3 76.2

ELBND 96.7 91.5

NLMS
LE 61.5 60.5

ELBND 71.3 65.3

GNGD
LE 79.1 73.1

ELBND 83.8 77.3

RLS
LE 91.5 83.3

ELBND 96.8 91.4

Adaptation Detection AUROC [%] MAX ACC [%]

SNR = 24.0dB; drift amplitude = 5 [-]

NLMF
LE 93.4 87.6

ELBND 99.0 96.9

NLMS
LE 65.5 62.0

ELBND 56.2 58.6

GNGD
LE 81.9 74.1

ELBND 72.0 65.5

RLS
LE 90.3 83.1

ELBND 95.0 89.5

SNR = 24.1dB; drift amplitude = 2 [-]

NLMF
LE 97.4 94.0

ELBND 99.5 97.9

NLMS
LE 85.8 80.2

ELBND 84.7 75.5

GNGD
LE 94.8 88.3

ELBND 94.9 88.0

RLS
LE 97.7 92.4

ELBND 99.3 96.0

SNR = 24.0dB; drift amplitude = 0 [-]

NLMF
LE 96.1 91.9

ELBND 99.0 97.1

NLMS
LE 99.9 99.9

ELBND 100.0 100.0

GNGD
LE 100.0 99.9

ELBND 100.0 100.0

RLS
LE 100.0 99.7

ELBND 99.6 97.9

Table 5.6: The results of the ELBND and LE comparison with various adaptive

filters. Results for experiments with high level of noise are on the left side, the

results for experiments with the level of noise are on the right side.

According to the obtained results, it seems that ELBND has better potential

with NLMF and RLS algorithms, while the LE works better with GNGD and NLMS

algorithms. It is not surprising because the GNGD and NLMS are very similar

gradient methods.

5.2.5 Summary

In this section all results related to the ELBND method used for data with concept

drift were presented . Multiple novelty detection tasks were simulated to test the

method and their suitability for system change detection and for outlier detection

under the occurrence of concept drift, which usually complicates the detection as

it appears from comparison to merely detection via plain error based detection and

sample entropy based detection.

The results from both presented studies displays that ELBND can compete to
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Figure 5.12: ROC curves for data without drift and with low level of noise (SNR

= 24.0dB). Empty plots represents zero or almost zero detection error. The plot is

adopted from study [mc2].

LE in various cases. Furthermore, the ELBND extracted feature is generally better

than just plain prediction error for novelty detection. According to the second study,

it seems that the LE works especially well with RLS and NLMF algorithm. The

most important finding is, that the ELBND works in all cases better than the SE

algorithm.
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Figure 5.13: ROC curves for data without drift and with high level of noise (SNR =

5.5dB). In this case the ELBND yields better results than LE for all tested adaptive

filters. The plot is adopted from study [mc2].

5.3 Other experiments

In this section results from studies that does not fit in previous sections are presented.

In subsection 5.3.1, it is presented that ELBND has its potential for system change

point detection. The investigation of noise level influence on ELBND performance is

presented in subsection 5.3.2. The study related to time complexity of the ELBND

method is in subsection 5.3.3.
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Figure 5.14: ROC curves for data with concept drift (drift amplitude=2) and with

low level of noise (SNR = 24.1dB). In this case ELBND produces better results only

for some adaptive filters. The plot is adopted from study [mc2].

5.3.1 System change point detection

This subsection is based on the results presented in [mc3]. For demonstration of

the proposed method with LMS adaptation, a linear adaptive model (linear neural

unit) was used. In this study, the novelty detection is used for detection of changes

in a system. The change of a system is the plant model sensitivity and the model

time constant. The simulated data with record of changed parameters are shown in

Figure 5.18.

The results ared displayed in Figure 5.19. The squared error of the prediction or

the presented novelty detection method produce visible high coefficients for samples
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Figure 5.15: ROC curves for data with concept drift (drift amplitude=2) and with

high level of noise (SNR = 5.4dB). In this case ELBND produces better results than

LE with all tested adaptive filters. The plot is adopted from study [mc2].

where the system changes occur. So the coefficients could be used for visual or even

automated detection of system changes (for example with implemented threshold).

The second tested method was RLS adaptation. The same data was used also for

LMS based Novelty detection approach. The results of the RLS novelty detection

example are displayed in Figure 5.20. In this results it is possible to see, that

introduced technique could produce different and better information about novelty

in data than just the squared error of prediction e2.

77



Figure 5.16: ROC curves for data with drift (drift amplitude=5) and with low level

of noise (SNR = 24.0dB). In this case ELBND produces better results than LE only

for some adaptive filters. The plot is adopted from study [mc2].

5.3.2 Influence of noise type and level on ELBND perfor-

mance

This subsection is based on study [mc4]. The study investigates how the type and

the level of additive noise contained in data influence the outcome of the ELBND

and LE method.

The data-set for this study was created synthetically by simulation. This is due

to the fact that for a real measured data it is difficult to set the noise exactly to the

desired level in some consistent way. Also the exact positions of a process changes
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Figure 5.17: ROC curves for data with drift (drift amplitude=5) and with high level

of noise (SNR = 5.4dB). In this case ELBND produces better results than LE only

for some adaptive filters. The plot is adopted from study [mc2].

can be unobtainable at larger scale.

5.3.2.1 Experiment design

The used data y(k) were generated according to the following equation

y(k) = h1(k)x1(k) + ...+ hn(k)xn(k), (5.8)

where hi(k) are parameters of the data generator and xi(k) are input variables.

Ten independent series of white Gaussian noise with unit standard deviation and

zero mean were used as the input of system 5.8. The generator parameters hi(k)
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Figure 5.18: Data used for the experiment - output of the simulated system. The

plot is adopted from study [mc3].

Figure 5.19: Novelty detection results with the LMS algorithm. The plot is adopted

from study [mc3].

Figure 5.20: Novelty detection results with the RLS algorithm. The plot is adopted

from study [mc3].
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were changed randomly every 200 samples. These changes are sharp and with unit

standard deviation and zero mean. The data contains 2000 of such changes (total

length of data is 400000 samples).

The signal to noise ratio (SNR) was evaluated for every experiment to measure

how the classifier performance declines with the increasing level of noise in the data.

Because the data and also the noise have zero mean, than it is possible to estimate

the SNR with formula as follows

SNR = 10 log10

σ2
y

σ2
v

(5.9)

where σy is the standard deviation of unknown system output and σv is the stan-

dard deviation of noise v(k). The classification performance was evaluated for data

contaminated with three different types of noise.

White Gaussian noise This is a noise with normal distribution. The Gaussian

noise used in this study has zero mean value and the standard deviation was altered

to simulate different levels of SNR.

White uniform noise This noise has an uniform distribution. It is used in this

study with different ranges of values to achieve various levels of SNR. Although this

type of noise seems to be unnatural, a noise similar to this one can be produced by

a process of uniform quantisation in real applications [92].

Brownian noise The alternative name of this noise is the random-walk noise.

This noise was obtained by integration of white Gaussian noise. To prevent the

noise signal from wandering off during long integration, the leaky integration was

used. The leak of 1% was enough to keep the noise in range where the adaptive

model still works effectively. Such a small leak cuts only the lowest frequencies, so

it does not influence the results of experiment.

5.3.2.2 Results

The results were obtained as an average of 5 simulations with different random seed.

The AUROC and maximum accuracy were used as the criteria of classifier perfor-

mance. Although both measures are likely to be correlated, they provide different

information. The AUROC is equal to the probability that a classifier will rank a
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Figure 5.21: Demonstration how the used algorithms process the data (annotate

novelty). This Figure is adopted from [mc4].

randomly chosen positive instance higher than a randomly chosen negative example.

On the other hand, the maximum accuracy reflects the best result what is possible

to achieve if the criteria is selected correctly. It is important to note, that both used

criteria (AUROC and maximal accuracy) are build on the assumption that there is

the same cost for the false positives and for the false negatives.

A demonstration how the used algorithms annotate the novelty in data is shown

in Figure 5.21. Optimal result can be described as follows:

• high values of novelty on change point positions,

• low values of novelty elsewhere,

• all high values (detection of change) should have similar height (for easy selec-

tion of threshold).
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Figure 5.22: AUROC and maximal accuracy of classifiers using RLS adaptive algo-

rithm with different noise distribution, from top: normal, Brownian, uniform. The

error label stands for accuracy based only on error. This Figure is adopted from

[mc4].
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Figure 5.23: AUROC and maximal accuracy of classifiers using NLMS adaptive

algorithm with different noise distribution, from top: normal, Brownian, uniform.

The error label stands for accuracy based only on error. This Figure is adopted from

[mc4].
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The obtained results are shown in Figure 5.23 for the NLMS algorithm, and in

Figure 5.22 for the RLS algorithm. The three lines in figures represents the results

of ELBND, LE and reference (detection based only on error of adaptive model).

5.3.2.3 Conclusion

The study presented in this subsection compares two adaptive novelty detection

methods (LE, ELBND) implemented on two different adaptive filters (NLMS, RLS).

The metric used for comparison was AUROC and maximum accuracy of tested meth-

ods during classification of simulated process changes. This study results can be

concluded as:

• LE and ELBND were always beneficial in comparison to classification based

only on the error of the adaptive model.

• For high level of noise (low SNR) the ELBND scored always better than LE.

• For low level of noise (high SNR) the LE scored always better than ELBND in

maximal accuracy.

• Performance of all detectors were generally better when RLS adaptation was

applied.

5.3.3 ELBND time complexity analysis

This subsection presents results from study [mc5]. The study investigate time com-

plexity of algorithms for adaptive novelty detection. One of the studied algorithms

was ELBND. The other studied algorithms are: LE, Mahanobilis distance of weights

increments (MD) [45] and Fuzzy Density (FD) of weights increments [mc5].

The time complexity of the ELBND algorithm iteration is broken down step by

step in Tab 5.7. As you can see from the table, the complexity of the algorithm

strongly relies on the target device, environment and language of the chosen imple-

mentation.

The final measured results from comparison of the ELBND and the other similar

methods is possible to see in Tab. 5.8.
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order operation complexity additions multiplications note

1. o1 = ∆w(k)e O(n) 0 n -

2. o2 = |o1| O(n) 0 0 abs()

3. max(o2) O(n) 0 0 max()

Table 5.7: Time complexity and number of operations for one iteration of ELBND

algorithms, n is the number of adaptive model parameters. The table is from [mc5]

n ELBND LE FD MD

3 0.040565 12.106009 17.114869 27.900899

13 0.057102 12.484739 91.514165 45.028556

23 0.067401 12.566594 132.167673 51.513525

33 0.078859 12.785707 170.275357 60.336528

43 0.091092 13.055424 211.303988 71.177681

53 0.102716 13.517995 251.945065 82.149545

63 0.112905 13.724406 291.961026 95.538772

73 0.128387 14.128523 330.522018 108.705011

83 0.140568 14.402364 370.774985 128.212707

93 0.152008 14.572935 409.528680 146.476234

Table 5.8: Measured time for all algorithms in miliseconds.

As the results shows, the ELBND is much faster than the other methods. Espe-

cially if the big number of adaptive weights is required for evaluation.
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Chapter 6

Conclusion

In this thesis the derivation, implementation and experimental analysis of newly

developed adaptive novelty detection method - ELBND is described. The method

is designed to by used with any supervised adaptive algorithm that has adaptive

parameters and error. The experimental analysis that is present in this work features

adaptive filters as the adaptive models used together with ELBND. Although the

adaptive filters are one of the simplest adaptive algorithms, the ELBND algorithm

is able to effectively utilize information produced by their operation.

As shown in previous chapters, the ELBND method with adaptive filters does

not require the knowledge of future samples (whole batches) [mc2, mc5, mc1, mc10].

Thus the ELBND is suitable for online data streams processing. Therefore the 1.

goal of this thesis is accomplished. This is the key feature of the ELBND method,

because not many novelty detection methods are designed to be able work in this

way. Even though this feature is required by a lot of common novelty detection

applications.

Yet another important aspect of the ELBND method is the requirement for low

computational power [mc2, mc5, mc6, mc9]. The time complexity of the ELBND

method is only constant. In other words, the constant time complexity is the lowest

time complexity possible to have for an algorithm. Also it is shown that the particular

count of machine instructions necessary to estimate the level of novelty with ELBND

is small. Furthermore the experimental analysis prove that the ELBND algorithm is
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fast in comparison with alternative state of the art algorithms. As a conclusion the

ELBND overall speed is good enough to accomplish the 2. goal of this thesis. The

speed aspect of the ELBND together with its ability to work without data batches

makes it perfect option for real time novelty detection applications.

The ELBND is an adaptive method and this fact should ensure some concept

drift robustness by itself. Because the ELBND method use adaptive parameter in-

crements and model error as the input values, it is possible to improve its robustness

furthermore with the selection of an adaptive model. If the adaptive model is de-

signed to handle data offsets and other non-stationarity in a smart way, then the

penalization for ill conditioned data can be reduced. The ELBND ability to perform

well with distorted data was investigated more via means of experimental analysis

[mc4, mc7, mc9]. Although it is difficult to measure this robustness in some fair way,

the results indicate that the ELBND posses ability to deal with reasonably sized

concept drift. Even when tested with adaptive models derived with assumption of

zero-mean data. Therefore the 3. goal of this thesis is also accomplished. Accord-

ing to the results presented, the ELBND can be considered as an algorithm safe for

operation on data with reasonable sized gradual or recurring concept drift.

Furthermore, the presented method - ELBND - is different from all other pub-

lished methods and that is the main reason why the development of this method is

a contribution to the field of machine learning and signal processing.
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