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a b s t r a c t 

This paper presents a new approach to the optimal design of an axisymmetric membrane with variable 

thickness, which has potential applications in the development of active optical elements (liquid lenses). 

The governing equations are based on the Saint Venant-Kirchhoff material law, which postulates a linear 

relation between the Green-Lagrange strains and the second Piola-Kirchoff stresses, combined with the 

exact description of geometric nonlinearity, without any simplifying assumptions. It is shown that the 

membrane thickness can be designed such that the prestressed membrane subjected to a given uniform 

liquid pressure deforms into a prescribed rotationally symmetric shape, e.g., a spherical or parabolic cap. 

For the special but important case of a spherical cap, a closed-form solution is derived. A numerical 

procedure is developed for the general case, and its high accuracy and efficiency is demonstrated by 

examples. The sensitivity of the optimal design to material parameters and prestressing displacement is 

assessed. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Membrane liquid lenses ( Holochip; Optotune; Rawicz and

ikhailenko, 1996; Ren and Wu, 2012; Sugiura and Morita, 1993;

ang et al., 2008; Ren and Wu, 2007; Shaw and Lin, 2007; Li et al.,

011; Fuh et al., 2012a; Mikš et al., 2013; Wang et al., 2014; Liang

nd Wang, 2016; Hasan et al., 2017 ) have been one of increasingly

opular topics in optics over the past few years. The optical surface

f such a lens is formed by a circular elastic membrane subjected

o hydrostatic pressure exerted by an optical liquid. If a constant-

hickness membrane is used, the resulting deformed shape is not

ptimal from the optical point of view and suffers from opti-

al aberrations ( Pokorný et al., 2017a; 2017b ). The optical aberra-

ion correction of membrane liquid lenses can be implemented in

any different ways ( Zhang et al., 2004; Wang et al., 2013; 2014;

asan et al., 2017; Choi et al., 2011; Fuh et al., 2012b; Liang and

ang, 2016; Du et al., 2016; Santiago-Alvarado et al., 2013; Huang

t al., 2016; Ding et al., 2017; Zhao et al., 2015 ). In the present

tudy, the deformed membrane shape is controlled by designing a

uitable variation of the membrane thickness (still preserving ax-

al symmetry). Ideally, the membrane should deform exactly into

he prescribed shape, which eliminates the need for other opti-

al members to correct for optical aberrations. This topic has re-
∗ Corresponding author. 
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ently received attention, e.g., in Santiago-Alvarado et al. (2013) ,

uang et al. (2016) , Ding et al. (2017) and Zhao et al. (2015) . 

Santiago-Alvarado et al. (2013) proposed to design the variable

hickness such that, already in the undeformed state, the mem-

rane shape would correspond to the previously designed spherical

r parabolic surface. The deformed shape under uniform pressure

oading was then calculated in Solidworks FEM plugin. Further-

ore, the authors investigated optical parameters of the resulting

eformed surfaces. With respect to the membrane optimal variable

hickness determination, this approach remains a trial-and-error

rocedure. 

Another method was suggested by Huang et al. (2016) who

alculated the deformed shape of a constant-thickness membrane

nder uniform pressure using the COMSOL finite element pack-

ge. The deformed shape was later used as a thickness profile

or a variable-thickness membrane. Again, this approach does not

eem to have a theoretical background and can be considered as

 trial-and-error method. A similar approach was presented by

ing et al. (2017) , who investigated three thickness profiles (spher-

cal concave, spherical convex, constant thickness) and calculated

he deformed shape using COMSOL. 

Let us now discuss the approach developed by

hao et al. (2015) . Firstly, the authors determined the desired

hape of the membrane optical surface using the Code V optical

esigning software. Secondly, based on a set of two differential

quations describing large deflections of circular axisymmetric

https://doi.org/10.1016/j.ijsolstr.2020.04.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.04.021&domain=pdf
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Fig. 1. Sketch of a circular axisymmetric membrane deformed by constant liquid 

pressure p (dashed blue lines – initial straight shape of the prestressed membrane 

at zero applied pressure, w ( r ) and u ( r ) – vertical and horizontal displacements of a 

point with initial coordinates [ r , 0], ˜ r (r) = r + u (r) – horizontal coordinate in de- 

formed shape, g( ̃ r ) – prescribed deformed shape, a – membrane radius, h ( r ) –

membrane thickness, g 0 – maximum deflection, u a – prestressing displacement) 
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slabs ( Timoshenko and Woinowsky-Krieger, 1959 ), they calculated

the variable thickness that corresponds to the designed deformed

shape, mechanical parameters and loading pressure. Since the

designed optical surface typically does not contain any inflection

points and the adopted model takes into account the influence of

bending stiffness, the solution for the variable thickness tends to

zero on the edge boundary (any other value of boundary thickness

would result into inflection points close to this boundary). To

make the design feasible from the practical point of view, the

authors decided to increase the boundary thickness to the mini-

mal feasible value and they approximated the resulting thickness

profile by a suitable exponential function with a few parameters

that can be changed to optimize the thickness profile later. Fur-

thermore, finite element simulations in ANSYS were performed

and the difference between the resulting deformed shape and the

designed shape was assessed. The whole process was embedded

into an optimization loop, in which the parameters of an expo-

nential function describing the thickness profile were optimized

such that the difference between the calculated deformed shape

and the designed shape would become as small as possible. The

optimization method used by the authors is not clearly explained

in this paper but otherwise the whole process is well described. 

In most of the above mentioned publications, the numerical

methods treating the adopted mechanical models are not exposed

in detail. A more elaborate coverage of various applicable numer-

ical methods (power series method, relaxation iterative technique,

finite difference method, finite element method) can be found

in Hencky (1915) , Campbel (1956) , Goldberg and Pifko (1963) ,

Pifko and Goldberg (1964) , Kao and Perrone (1971) , Perrone and

Kao (1971) , Kelkar et al. (1985) , Fichter (1997) , Allman (1982) ,

Sheploak and Dugundji (1998) , Zhao et al. (2015) , Stanford and

Ifju (2008) and Mikš and Novák (2014) . 

The aim of the present paper is to derive and analyze a proce-

dure for a systematic design of the variable membrane thickness

profile that leads, for given mechanical parameters and loading by

given uniform pressure, to the prescribed deformed shape. The un-

derlying mechanical model is introduced in Section 2 and its math-

ematical structure is analyzed in detail. A computational approach

based on finite differences is presented in Section 3.1 and its per-

formance is illustrated by a numerical example. In Section 4 it is

shown that a closed-form solution can be derived for the special

case of a spherical cap. Finally, sensitivity of the resulting opti-

mal design to changes of material properties and initial prestress

(imposed by prescribing a radial displacement on the boundary) is

studied in Section 5 . 

2. Theoretical prediction of variable-thickness membrane 

shape 

2.1. Derivation of governing equations 

Let us consider a circular axisymmetric membrane of a liquid

lens, with the axis of symmetry denoted as z and the radial axis as

r ; see Fig. 1 . In the undeformed (stress-free) state, the membrane

is characterized by variable thickness h ( r ) and radius a , with h so

small that the bending stiffness can be neglected. Along its circum-

ference, the membrane can generally be displaced (prestressed) in

the radial direction by prescribed displacement u a , which induces

an initial prestress. Under applied pressure p of the optical liquid

in the lens, the membrane deforms and a general point on its mid-

plane with initial coordinates [ r , 0] is displaced to a new position

[ r + u (r) , w (r)] , where w ( r ) denotes the deflection (displacement

in the z -direction) and u ( r ) is the radial displacement. The de-

formed shape of the membrane can be characterized by a certain

function g ( r ), implicitly defined by the relation g(r + u (r)) = w (r) .

The membrane thickness h is considered as very small compared
o the deflection, and so the deformed shape is determined by the

idsurface. It is also assumed that strains and stresses are uni-

ormly distributed across the thickness of the membrane, which

eans that bending effects are neglected. 

The radial stretch λr and the tangential (circumferential) stretch

t in the deformed state are easily expressed as 

r = 

√ 

(1 + u 

′ ) 2 + w 

′ 2 (2.1)

t = 1 + 

u 

r 
(2.2)

here u ′ and w 

′ are the derivatives of displacements u and w with

espect to the radial coordinate, r . The corresponding in-plane nor-

al components of the Green-Lagrange strain tensor are evaluated

rom the stretches as 

 r = 

1 
2 
(λ2 

r − 1) = u 

′ + 

1 
2 
(u 

′ 2 + w 

′ 2 ) (2.3)

 t = 

1 
2 
(λ2 

t − 1) = 

u 

r 
+ 

u 

2 

2 r 2 
(2.4)

Let us assume that the material can be described by the Saint

enant-Kirchhoff model, which postulates a linear relation be-

ween the Green-Lagrange strain and the second Piola-Kirchhoff

tress ( Audoly and Pomeau, 2010 ) and is the simplest hyperelas-

ic material model. In Pokorný et al. (2017a,b) it was shown that,

espite its simplicity, this model applied to analysis of membranes

f a constant thickness leads to a very good agreement with ex-

erimentally measured deflections for materials typically used for

iquid lenses, such as Sylgard ( Sylgard, 184; Johnston et al., 2014 ). 

Since the state of the material corresponds to plane stress, the

train energy density E int (per unit volume in the stress-free state)

s given by ( Timoshenko and Woinowsky-Krieger, 1959; Volmir,

967 ) 

 int (ε r , ε t ) = 

E 

2(1 − ν2 ) 
( ε 2 r + 2 νε r ε t + ε 2 t ) (2.5)

here E is the Young modulus and ν is the Poisson ratio charac-

erizing the membrane material. The expression in (2.5) does not

ontain the out-of-plane normal strain but this does not mean that

his strain component is assumed to be zero—it has been elimi-

ated based on the assumption that the out-of-plane stress is zero.

ifferentiating the strain energy density with respect to strains, we

et the corresponding work-conjugate stresses 

r = 

∂E int 

∂ε 
= 

E 

1 − ν2 
(ε r + νε t ) (2.6)
r 
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t = 

∂E int 

∂ε t 
= 

E 

1 − ν2 
(ε t + νε r ) (2.7) 

he strain energy density has been differentiated with respect to

reen-Lagrange strains, and so the resulting stresses are the sec-

nd Piola-Kirchhoff stresses. It is important to realize that symbols

 and h ( r ) denote the membrane radius and thickness in the ini-

ial undeformed state (i.e., before application of possible prestress

aused by imposed radial displacement u a , and before application

f the liquid pressure). 

The equilibrium state after application of in-plane prestress and

ateral pressure p can be found by exploiting the principle of min-

mum potential energy. The total potential energy, 

 p = E int + E ext (2.8) 

s the sum of the strain energy, E int , and the energy of external

orces, E ext . The strain energy 

 int = 2 π

∫ a 

0 

E int h r d r (2.9) 

s obtained by integrating the strain energy density specified in

2.5) over the initial volume of the membrane. The energy of ex-

ernal forces can be expressed as minus the applied pressure mul-

iplied by the volume between the initial midplane and the de-

ormed midsurface, which leads to 

 ext = −2 π p 

∫ a 

0 

w (r + u )(1 + u 

′ ) d r (2.10) 

The state of minimum potential energy is attained only if the

ariation of functional E p vanishes for all admissible variations of

isplacements u and w . The first variations of the strain energy and

f the energy of external forces are evaluated as 

E int = 2 π

∫ a 

0 

(
∂E int 

∂ε r 
δε r + 

∂E int 

∂ε t 
δε t 

)
h r d r 

= 2 π

∫ a 

0 

(σr δε r + σt δε t ) h r d r 

= 2 π

∫ a 

0 

(
h r σr (δu 

′ + u 

′ δu 

′ + w 

′ δw 

′ ) + hσt (δu + u δu/r) 
)
d r

= 2 π
[
hrσr 

(
δu + u 

′ δu + w 

′ δw 

)]a 

r=0 

−2 π

∫ a 

0 

((
hrσr (1 + u 

′ ) 
)′ 
δu + 

(
hrσr w 

′ )′ 
δw 

)
d r 

+2 π

∫ a 

0 

hσt 

(
δu + 

uδu 

r 

)
d r (2.11)

nd 

E ext = −2 π p 

∫ a 

0 

(r + u )(1 + u 

′ ) δw d r 

− 2 π p [ w (r + u ) δu ] 
a 
r=0 + 2 π p 

∫ a 

0 

w 

′ (r + u ) δu d r (2.12) 

As shown in Fig. 1 , admissible functions u and w are con-

trained by boundary conditions 

 (a ) = u a , w (a ) = 0 (2.13) 

nd by the condition 

 (0) = 0 (2.14) 

hich follows from displacement continuity and axial symmetry.

n fact, functions that do not satisfy (2.14) would not lead to a

nite value of strain energy. Variations δu and δw of admissible

unctions must satisfy conditions 

u (a ) = 0 , δw (a ) = 0 , δu (0) = 0 (2.15) 
umming (2.11) and (2.12) and making use of conditions (2.15) , we

btain the variation of total potential energy in the form 

E p = δE int + δE ext = −2 πhrσr w 

′ δw | r=0 

+2 π

∫ a 

0 

(
hσt 

(
1 + 

u 

r 

)
−
(
hrσr (1 + u 

′ ) 
)′ + pw 

′ (r + u ) 
)
δu d r 

−2 π

∫ a 

0 

((
hrσr w 

′ )′ + p(r + u )(1 + u 

′ ) 
)
δw d r (2.16) 

he corresponding strong form of equilibrium equations reads 

hrσr (1 + u 

′ ) 
)′ − hσt 

(
1 + 

u 

r 

)
= p(r + u ) w 

′ (2.17) 

(hrσr w 

′ ) ′ = p(r + u )(1 + u 

′ ) (2.18) 

Since the variation δw at r = 0 is arbitrary, the first term on the

ight-hand side of (2.16) leads to the boundary condition 

rσr w 

′ = 0 at r = 0 (2.19) 

t a first glance, the condition seems to be satisfied automatically.

ndeed, if σ r w 

′ has a finite value at r = 0 , then multiplication by

ero leads to rσr w 

′ = 0 . In a general case, a concentrated vertical

orce F 0 could be applied at r = 0 and then the resulting boundary

ondition would read lim r→ 0 + (hrσr w 

′ ) = F 0 / (2 π) . For the problem

tudied here, no such concentrated force is present, and condition

2.19) is rewritten more carefully as 

lim 

→ 0 + 
(hrσr w 

′ ) = 0 (2.20) 

n this form, we admit that h σ r w 

′ might tend to infinity but its

rowth must be slower than 1/ r . 

Two differential equations (2.17) –(2.18) contain three functions,

 ( r ), u ( r ) and w ( r ). If one of these functions is prescribed, the other

wo can be computed, provided that we know the mechanical pa-

ameters of membrane material, the dimensions and loading pres-

ure p . In a standard setting, the membrane thickness h ( r ) is pre-

cribed and displacements u ( r ) and w ( r ) are treated as unknown

unctions. However, in the present context of optimal design of a

iquid lens, we consider the thickness h ( r ) as unknown and we pre-

cribe a desired shape of the deformed membrane. The deformed

hape is affected by u ( r ) as well as by w ( r ), and so neither of these

unctions is given directly. Instead, prescribing the deformed shape

eads to the constraint equation 

 (r) = g(r + u (r)) (2.21) 

hich provides a link between functions u ( r ) and w ( r ). Here, g( ̃ r )

s a given function that describes how the deflection should de-

end on the radial coordinate in the deformed configuration, ˜ r =
 + u (r) ; see Fig. 1 . Our objective is to find the function h ( r ) such

hat the deformed shape calculated for the specific values of ma-

erial parameters E and ν and hydrostatic pressure p satisfies con-

ition (2.21) . 

Let us first eliminate the deflection function w ( r ) from the gov-

rning equations, by making use of condition (2.21) . Integrating

2.18) with boundary condition (2.20) we obtain 

rσr w 

′ = − 1 
2 

p(r + u ) 2 (2.22) 

ased on condition (2.21) , the derivative of w can be expressed

s 

 

′ (r) = (1 + u 

′ (r)) g ′ (r + u (r)) (2.23) 

o simplify notation, we will write this relation without explicitly

pecifying the arguments, i.e., as 

 

′ = (1 + u 

′ ) g ′ (2.24) 

ut it should be borne in mind that g ′ has to be evaluated at r + u

nd not at r . The same convention will later be used for the second

erivative, g ′′ . 
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Using (2.24) in (2.22) yields 

hrσr = − p(r + u ) 2 

2(1 + u 

′ ) g ′ (2.25)

and the first term on the left-hand side of (2.17) can now be ex-

pressed as (
hrσr (1 + u 

′ ) 
)′ = − p 

2 

(
(r + u ) 2 

g ′ 

)′ 

= p(r + u )(1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ 

)
(2.26)

The tangential stress σ t is then evaluated from (2.17) as 

σt = 

r 

(r + u ) h 

[
(hrσr (1 + u 

′ )) ′ − p(r + u )(1 + u 

′ ) g ′ 
]

= 

= 

pr 

h 

(1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)

(2.27)

and, according to (2.25) , the radial stress is given by 

σr = − p(r + u ) 2 

2 hr(1 + u 

′ ) g ′ = − pr 

h 

(r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ (2.28)

By inversion of constitutive equations (2.6) –(2.7) , strains are ex-

pressed as 

ε r = 

pr 

Eh 

[
− (r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ − ν(1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)]
(2.29)

ε t = 

pr 

Eh 

[
ν

(r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ + (1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)]

(2.30)

and substitution into the strain-displacement equations (2.3) - (2.4)

yields 

pr 

Eh 

[
− (r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ − ν(1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)]

= u 

′ + 

1 
2 
(u 

′ 2 + (1 + u 

′ ) 2 g ′ 2 ) , (2.31)

pr 

Eh 

[
ν

(r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ + (1 + u 

′ ) 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)]

= 

u 

r 
+ 

u 

2 

2 r 2 
(2.32)

This is a set of two equations for unknown functions u and h , but

h is involved only algebraically and can easily be eliminated. The

resulting first-order differential equation for unknown function u

reads [
(r + u ) 2 

2 r 2 g ′ + ν(1 + u 

′ ) 2 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)](

u 

r 
+ 

u 

2 

2 r 2 

)

+ 

[
ν

(r + u ) 2 

2 r 2 g ′ + (1 + u 

′ ) 2 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)]

(
u 

′ + 

1 
2 

u 

′ 2 + 

1 
2 
(1 + u 

′ ) 2 g ′ 2 
)

= 0 (2.33)

and its solution should satisfy the first condition in (2.13) and also

condition (2.14). Once the displacement function is determined, the

thickness function h can be calculated from (2.31) as 

h = 

pr 

E 
×

ν(1 + u 

′ ) 
(

g ′ + 

1 

g ′ −
(r + u ) g ′′ 

2 g ′ 2 

)
− (r + u ) 2 

2 r 2 (1 + u 

′ ) g ′ 

u 

′ + 

1 
2 
(u 

′ 2 + (1 + u 

′ ) 2 g ′ 2 ) 
(2.34)

An alternative formula could be obtained from (2.32) but it would

provide the same results. 
.2. Mathematical structure of the problem 

In the previous section, we have derived Eq. (2.33) , which can

e used together with (2.34) to find the membrane thickness dis-

ribution h ( r ) that will lead, under pressure p , to the prescribed

eformed shape g( ̃ r ) . Differential equation (2.33) has certain spe-

ial features and deserves a deeper analysis before we proceed to

 numerical scheme. First of all, the equation is not only highly

onlinear, but it does not even have the standard form u ′ = F (u, r) ,

hich would permit a direct evaluation of the derivative u ′ ≡ d u /d r

rom the values of u and r . Instead of that, the equation is pre-

ented in an implicit form, F (u ′ , u, r) = 0 , and even if the value

f u at point r is known, the corresponding derivative u ′ must be

omputed by solving a nonlinear algebraic equation. In terms of

 

′ , function F is a fourth-order polynomial, and therefore a unique

olution cannot be expected. 

Luckily, it turns out that u ′ can be found analytically, because

q. (2.33) can be reformulated as a quadratic equation in terms of

 transformed unknown, defined as 

= (1 + u 

′ ) 2 (2.35)

ased on this transformation, all terms (1 + u ′ ) 2 in (2.33) are re-

laced by η, and the expression u ′ + u ′ 2 / 2 is replaced by (η − 1) / 2 .

f the whole equation is then multiplied by 4 g ′ 2 and divided by

(r + u ) g ′′ − 2 g ′ − 2 g ′ 3 , the resulting quadratic equation can be pre-

ented in the form 

 (u, r) η2 + B (u, r) η + C(u, r) = 0 (2.36)

here 

 (u, r) = 1 + g ′ 2 (2.37)

 (u, r ) = 

2 νu 

r 
+ 

νu 

2 

r 2 
− 1 + ν(1 + g ′ 2 ) α(u, r) (2.38)

(u, r) = 

(
2 u 

r 
+ 

u 

2 

r 2 
− ν

)
α(u, r) (2.39)

re coefficients and 

(u, r) = 

(
1 + 

u 

r 

)
2 g ′ 

(r + u ) g ′′ − 2 g ′ − 2 g ′ 3 (2.40)

s an auxiliary function, introduced for convenience. 

If the discriminant D = B 2 − 4 AC is positive, Eq. (2.36) has two

eal roots, 

1 , 2 (u, r) = 

−B (u, r) ±
√ 

B 

2 (u, r) − 4 A (u, r) C(u, r) 

2 A (u, r) 
(2.41)

nd if both of these roots are positive, the original Eq. (2.33) has

our real roots, which can be symbolically presented as 

 

′ 
1 , 2 , 3 , 4 = ±√ 

η1 , 2 − 1 (2.42)

ntuitively it can be expected that only one of these roots corre-

ponds to a physically meaningful solution. To get more insight, let

s work out a specific example. 

.3. Example: Parabolic cap (part I) 

Consider a membrane of radius a = 9 mm (in the undeformed

tate). The membrane is prestressed by imposing an initial radial

isplacement u a = 1 mm on the outer boundary, i.e., its radius

s increased to a p = a + u a = 10 mm. Furthermore, suppose that

he desired deformed shape is an axisymmetric parabolic cap, de-

cribed by 

( ̃ r ) = 

(
1 − ˜ r 2 

(a + u a ) 2 

)
g 0 = 

(
1 − ˜ r 2 

a 2 p 

)
g 0 (2.43)



M. Jirásek, F. Šmejkal and M. Horák / International Journal of Solids and Structures 198 (2020) 1–16 5 

w  

r  

f

g

g

L  

o  

t  

a  

(

α

a

A

B

C

S  

α  

c  

0  

o  

u  

−
 

a  

l  

w

h

F  

d  

−  

n  

t  

d  

t  

i  

c  

b  

p  

w  

g  

u  

s

 

w  

t  

n  

b  

r  

T  

t  

s  

c  

s

I  

s

g

S  

p

s

F  

E  

p  

t  

c  

r  

i

ν

S  

α  

d

 

t  

t

i

α

F  

a

w  

t  

t

α

R  

r  

g  

h

α

a

F  

t  

i  

E  

ε
 

c  
here g 0 = g(0) = 3 mm is the given deflection at the center, and

˜  is the radial coordinate in the deformed configuration, running

rom 0 to a p . The derivatives of g are easily expressed as 

 

′ ( ̃ r ) ≡ d g( ̃ r ) 

d ̃

 r 
= −2 g 0 ̃  r 

a 2 p 

(2.44) 

 

′′ ( ̃ r ) ≡ d 

2 g( ̃ r ) 

d ̃

 r 2 
= −2 g 0 

a 2 p 

(2.45) 

et us now set up Eq. (2.36) at r = a and u = u a , so that the value

f u ′ ( a ) can be determined. The values of g ′ and g ′′ that are substi-

uted into (2.37) –(2.40) correspond to ˜ r = r + u = a + u a = a p and

re given by g ′ = −2 g 0 /a p and g ′′ = −2 g 0 /a 2 p . Formulae (2.40) and

2.37) –(2.39) now yield 

(u a , a ) = −
−2 g 0 a p 

a 2 

−2 g 0 
a p 

+ 

4 g 0 
a p 

+ 

16 g 3 0 

a 3 p 

= − a 2 p 

a 2 (1 + 8 g 2 
0 
/a 2 p ) 

(2.46) 

nd 

 (u a , a ) = 1 + 

4 g 2 0 

a 2 p 

(2.47) 

 (u a , a ) = ν
a 2 p 

a 2 
− ν − 1 + ν

(
1 + 

4 g 2 0 

a 2 p 

)
α(u a , a ) (2.48) 

(u a , a ) = 

(
a 2 p 

a 2 
− 1 − ν

)
α(u a , a ) (2.49) 

ubstituting ν = 0 . 4 , g 0 /a p = 0 . 3 and a p /a = 10 / 9 , we obtain

= −0 . 71777 , A = 1 . 36 , B = −1 . 2966 and C = 0 . 1187 . The dis-

riminant D = 1 . 0353 is positive and the roots of (2.36) , η1 =
 . 85079 and η2 = 0 . 10262 , are also positive. Therefore, the

riginal Eq. (2.33) has four solutions, u ′ 1 = 

√ 

η1 − 1 = −0 . 07762 ,

 

′ 
2 

= 

√ 

η2 − 1 = −0 . 67965 , u ′ 
3 

= −√ 

η1 − 1 = −1 . 92238 and u ′ 
4 

=√ 

η2 − 1 = −1 . 32035 . 

Now we need to determine which of these four solutions that

ll satisfy Eq. (2.33) is physically meaningful. First of all, we will

ook at the corresponding values of membrane thickness at r = a,

hich are according to (2.34) evaluated as 

 (a ) = 

pa 

E 

1 

u 

′ + 0 . 5 u 

′ 2 + 0 . 18(1 + u 

′ ) 2 (
1 

0 . 972(1 + u 

′ ) − 0 . 57333(1 + u 

′ ) 
)

(2.50) 

or the four possible values of u ′ listed above, the respective

imensionless factors that multiply pa / E in (2.50) are 7.5231,

7 . 0441 , −7 . 5231 and 7.0441. Roots u ′ 
2 

and u ′ 
3 

would lead to a

egative thickness can be excluded from consideration. The other

wo roots, u ′ 1 = −0 . 07762 and u ′ 4 = −1 . 32035 , are retained as can-

idates for a physically meaningful solution. Root u ′ 
4 

is smaller

han −1 , which means that 1 + u ′ 
4 

would be negative and, accord-

ng to (2.24) , the sign of w 

′ would differ from the sign of g ′ . This

orresponds to a parasitic solution for which the membrane would

e stretched from the outer support to the external part of the

araboloid described by (2.43) , with ˜ r > a p . Such a solution is not

hat we are aiming at. Later it will be shown that, when prolon-

ated, this solution would not satisfy condition u (0) = 0 . Therefore,

 

′ 
1 

= −0 . 07762 is the only root that leads to a physically admissible

olution. 

It is natural to ask the question whether the problem al-

ays admits exactly one physically admissible solution. Of course,

o guarantee uniqueness, certain assumptions or constraints are

eeded. In quadratic equation (2.36) , the leading coefficient A given
y (2.37) is always positive, and so the equation has one positive

oot if C < 0 and two positive roots if 0 < C < B 2 /(4 A ) and B < 0.

he sign of coefficient C given by (2.39) is affected by the sign of

he auxiliary factor α introduced in (2.40) . The sign of α corre-

ponds to the sign of the expression ˜ r g ′′ /g ′ − 2 − 2 g ′ 2 . Let us first

onsider the special case of a parabolic cap, for which g ′ = ̃  r g ′′ , and

o 

˜ r g ′′ 
g ′ − 2 − 2 g ′ 2 = −1 − g ′ 2 < 0 (2.51) 

n a general case, α is negative if the shape-defining function g

atisfies the condition 

 

′′ > 

2(g ′ + g ′ 3 ) 
˜ r 

(2.52) 

ince usually g ′ < 0 and g ′′ < 0, this condition means that the

rescribed shape must not be “too curved”. 

Once we know that α is negative, we can evaluate 

gn C = sgn (2 ε t − ν) sgn α = sgn (ν − 2 ε t ) (2.53) 

or convenience, we have exploited the strain-displacement

q. (2.4) and replaced 2 u/r + u 2 /r 2 in formula (2.39) by 2 εt , which

ermits a physical interpretation of the result. Since εt represents

he circumferential strain, it is typically small. As long as εt < ν/2,

oefficient C is positive, and Eq. (2.36) has either 2 or 0 positive

oots. A necessary condition for the existence of two positive roots

s then B < 0, which can be rewritten as (
2 ε t + (1 + g ′ 2 ) α

)
< 1 (2.54) 

ince we already assume that εt < ν/2, which is needed to get

< 0, the left-hand side of (2.54) is smaller than ν2 and the con-

ition is satisfied. 

To guarantee the existence of two positive roots, one still needs

o check that the discriminant D = B 2 − 4 AC is positive. This leads

o the inequality 

(1 − 2 νε t ) 
2 + α2 ν2 (1 + g ′ 2 ) 2 + 2 α(1 + g ′ 2 )[ ν + 2(ν2 − 2) ε t ] 

> 0 (2.55) 

n which 

= 

1 

˜ r g ′′ /g ′ − 2 − 2 g ′ 2 
˜ r 2 

r 2 
(2.56) 

or ε t = 0 , condition (2.55) is always satisfied. If all other variables

re fixed, the left-hand side of (2.55) is a quadratic function of εt 

ith a positive second derivative. It is thus sufficient to show that

he first derivative evaluated at ε t = 0 is positive, which leads to

he inequality 

(1 + g ′ 2 )(ν2 − 2) > ν (2.57) 

eplacing α by the right-hand side of (2.56) , we would obtain a

ather complicated condition, which is not easy to analyze in full

enerality. In the special case of a prescribed parabolic cap we

ave 

= − 1 

1 + 2 g ′ 2 
˜ r 2 

r 2 
(2.58) 

nd condition (2.57) can be rewritten as 

˜ r 2 

r 2 
> 

ν

2 − ν2 

1 + 2 g ′ 2 
1 + g ′ 2 (2.59) 

or u ≥ 0, the left-hand side is not smaller than 1. Since ν ≤ 0.5,

he right-hand side is smaller than 4/7, and so the condition

s satisfied, which means that the discriminant is positive and

q. (2.36) has two positive roots. Note that u ≥ 0 is equivalent to

t ≥ 0. 

In summary, we have proven that, for the prescribed parabolic

ap and for circumferential strains in the range 0 ≤ εt ≤ ν/2,
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Eq. (2.36) has two positive roots, η1 and η2 . Among the four corre-

sponding roots of Eq. (2.33) , those that are smaller than −1 can be

excluded, for reasons that have already been explained. Therefore,

we only need to consider u ′ 
1 

= 

√ 

η1 − 1 and u ′ 
2 

= 

√ 

η2 − 1 as poten-

tial solutions. Their physical admissibility should be assessed based

on the sign of the corresponding membrane thickness h evaluated

from (2.34) . In our example, we have shown that one of these

roots leads to positive thickness and the other to negative thick-

ness. In fact, since we always consider only the roots for which

u ′ = 

√ 

η − 1 , formula (2.34) for the membrane thickness can be

rewritten in terms of variable η as 

h = 

pr 

E 
× 2 

η − 1 + ηg ′ 2 ×
[
− ˜ r 2 

2 r 2 
√ 

ηg ′ − ν
√ 

η

(
˜ r g ′′ 
2 g ′ 2 −

1 

g ′ − g ′ 
)]

= − p ̃ r 2 

Erg ′ √ 

η
× 1 

(1 + g ′ 2 ) η − 1 

×
(

1 + 

νη

α

)
(2.60)

Since g ′ < 0 for all ˜ r > 0 , the thickness is positive if expressions

(1 + g ′ 2 ) η − 1 and 1 + νη/α have the same sign. Restricting atten-

tion to cases in which α < 0, we can write the resulting condi-

tion for the selection of the physically meaningful solution in the

form 

min 

(
1 

1 + g ′ 2 , −
α

ν

)
< η < max 

(
1 

1 + g ′ 2 , −
α

ν

)
(2.61)

For the specific data treated in our illustrative example,

we have 1 / (1 + g ′ 2 ) = 1 / 1 . 36 = 0 . 735 and −α/ν = 0 . 71777 / 0 . 4 =
1 . 794 . Therefore, the solution is admissible if 0.735 < η < 1.794,

and the correct root is η1 = 0 . 85079 , while η2 = 0 . 10262 should

be excluded. This confirms that u ′ 
1 

= 

√ 

η1 − 1 = −0 . 07762 should

be selected as the physically meaningful solution. 

We have demonstrated that even though the differential equa-

tion to be solved is written in an implicit form F (u ′ , u, r) = 0 , the

derivative u ′ can be uniquely determined from given values of r

and u , provided that the prescribed shape satisfies a certain con-

straint and the circumferential strain does not exceed ν/2. The

reasoning leading to this conclusion was based on an auxiliary

quadratic Eq. (2.36) with coefficients given by (2.37) –(2.39) . Spe-

cial attention needs to be paid to the point with coordinate r = 0 ,

because coefficients B and C cannot be directly evaluated from for-

mulae (2.38) and (2.39) , which contain fractions u / r . Undetermined

expressions are also found in formula (2.40) for the auxiliary factor

α that needs to be substituted into (2.38) and (2.39) . 

Under certain assumptions it is possible to obtain finite limits

of α( u ( r ), r ), B ( u ( r ), r ) and C ( u ( r ), r ) for r approaching zero. The

assumptions are that u / r tends to a finite limit, 

ε 0 = lim 

r→ 0 + 

u (r) 

r 
(2.62)

and that the prescribed shape satisfies conditions g ′ (0) = 0 and

g ′′ (0) = g ′′ 
0 

	 = 0 . Recall that g ′ and g ′′ must be evaluated at ˜ r = r + u

and not at r . This needs to be taken into account when express-

ing the limit of the fraction (r + u ) /g ′ , which would be written in

careful notation as 

lim 

r→ 0 + 

r + u (r) 

g ′ (r + u (r)) 
= 

1 

g ′′ (0) 
= 

1 

g ′′ 
0 

(2.63)

Based on (2.62) –(2.63) and on the assumed properties of function

g , it is easy to evaluate 

lim 

r→ 0 + 
α(u (r ) , r ) 

= 

lim 

r→ 0 + 

(
1 + 

u (r) 

r 

)
2 

lim 

r→ 0 + 

[
(r + u (r)) g ′′ (r + u (r)) 

g ′ (r + u (r)) 
− 2 − 2 g ′ 2 (r + u (r)) 

]

= 

(1 + ε 0 ) 
2 

(1 − 2 − 0) 
= −(1 + ε 0 ) 

2 (2.64)

lim 

→ 0 + 
B (u (r ) , r ) = 2 νε 0 + νε 2 0 − 1 − ν(1 + ε 0 ) 

2 = −1 − ν (2.65)

lim 

→ 0 + 
C(u (r ) , r ) = −

(
2 ε 0 + ε 2 0 − ν

)
(1 + ε 0 ) 

2 

= (1 + ν)(1 + ε 0 ) 
2 − (1 + ε 0 ) 

4 (2.66)

oefficient A (0 , 0) = 1 can be evaluated by direct substitution into

2.37) . Quadratic equation (2.36) written at r = 0 and u = 0 thus

eads 

2 − (1 + ν) η + (1 + ν)(1 + ε 0 ) 
2 − (1 + ε 0 ) 

4 = 0 (2.67)

nd it has two real roots, 

1 = (1 + ε 0 ) 
2 (2.68)

2 = 1 + ν − (1 + ε 0 ) 
2 (2.69)

oot η1 is always positive, and η2 is positive if ε 0 < 

√ 

1 + ν − 1 .

dmissibility condition (2.61) reads 

 < η < 

(1 + ε 0 ) 
2 

ν
(2.70)

nd it is easy to see that η1 is always admissible while η2 is not.

nterestingly, the resulting admissible solution for u ′ is u ′ 
1 

= 

√ 

η1 −
 = ε 0 (of course, provided that ε 0 > −1 , which is quite natural). 

The foregoing analysis is mathematically correct but its physical

nterpretation is somewhat tricky. In order to evaluate coefficients

f quadratic Eq. (2.67) and to calculate the derivative u ′ at r = 0 ,

e had to make the assumption that we know ε0 defined in (2.62) .

he calculation then resulted into the conclusion that u ′ (0) = ε 0 .
ut this should not be so surprising, since the right-hand side of

2.62) in fact represents the derivative of u at r = 0 (we have as-

umed that the limit is finite, which is only possible if u (0) = 0 ,

nd then the numerator can also be written as u (r) − u (0) ). There-

ore, the analysis does not really show how to compute u ′ (0) with-

ut knowing it beforehand. Still, it is not worthless, because it re-

eals a special property of differential equation (2.33) . Even though

e know the value of u = 0 at point r = 0 , the corresponding

erivative u ′ cannot be determined from F (u ′ , 0 , 0) = 0 . The equa-

ion can be satisfied in the limit sense for an arbitrary value of u ′ 
reater than −1 . 

. Computational approach 

.1. Adopted numerical scheme 

The intriguing result obtained in the previous example is

losely related to another peculiar feature of the problem at hand.

fter elimination of unknown functions w and h , we ended up

ith differential equation (2.33) for the remaining unknown func-

ion, u . It is unusual that the equation is of the first order but

he solution should satisfy two boundary conditions, u (0) = 0 and

 (a ) = u a . It might seem that the problem is overdetermined and

here is a danger that no solution exists. Normally, one could use

 (0) = 0 as the initial condition and integrate the governing first-

rder differential equation, e.g., by using the forward Euler scheme.

his procedure would provide the entire function u ( r ), includ-

ng the value of u ( a ). But then, the boundary condition u (a ) = u a
ould be satisfied only by chance, for one particular value of u a ,

nd so the problem would in general have no solution. 

Fortunately, as shown above, the governing equation has a spe-

ial structure at r = 0 and the derivative u ′ (0) can be completely
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rbitrary. Therefore, the numerical procedure can in principle start

rom various values of u ′ (0) and generate a family of solutions,

nd then one particular solution can be selected based on the pre-

cribed value u a at r = a . Such an approach could be implemented

n the spirit of the shooting method, which converts the problem

nto a nonlinear algebraic equation G (ε 0 ) = u a where G ( ε0 ) is de-

ned as the value of u ( a ) computed with u ′ (0) set to ε0 . 

The shooting method would require an iterative solution of the

onlinear algebraic equation described above. However, the prob-

em can be solved in a simpler way: The numerical integration pro-

edure can start from r = a and proceed in space in the opposite

irection. At r = a, the initial value u (a ) = u a is prescribed by the

oundary condition, and coefficients A ( u a , a ), B ( u a , a ) and C ( u a , a )

an be evaluated without problems, since formulae (2.37) –(2.39)

ave no singularity at that point. Therefore, u ′ ( a ) can be calculated

rom (2.33) and a standard integration scheme can be used to con-

truct a numerical solution by marching backwards to r = 0 . Inter-

stingly, no matter which initial value u a is imposed at r = a, the

olution always tends to 0 as the point r = 0 is approached. Due

o the special structure of the governing equation, different partic-

lar solutions have different derivatives u ′ (0) but the same value

 (0) = 0 . 

The most straightforward approach to the numerical solution

f differential equation (2.33) can be based on the forward Eu-

er scheme, which needs to be slightly adjusted because we start

n the right boundary and proceed to the left. The interval 〈 0,

 〉 is divided into N computational subintervals of size �r = a/N,

nd the numerical approximation of u ( r i ) is denoted as u i , with

 i = i �r, i = N, N − 1 , . . . , 0 . The procedure starts by setting r N = a

nd u N = u a . In a generic step, the value of u i is known and the

orresponding value of u ′ 
i 

that approximates u ′ ( r i ) is calculated

rom Eq. (2.33) , using the previously developed procedure that first

omputes the auxiliary variable η from quadratic equation (2.36) .

or simplicity, we slightly abuse notation and use u ′ 
i 

to denote the

alue of u ′ at r i , even though before we used u ′ with subscripts

, 2, 3 and 4 to denote four values satisfying Eq. (2.33) at one

iven point. Now we already know which of these four solutions to

hoose and subscript i will be used to refer to the computational

tep number. 

Denoting 

˜ 
 i = r i + u i (3.1) 

 

′ 
i = g ′ ( ̃ r i ) (3.2) 

i = α(u i , r i ) = 

(
1 + 

u i 

r i 

)
2 

˜ r i g ′′ ( ̃ r i ) /g ′ 
i 
− 2 − 2 g ′ 2 

i 

(3.3) 

 i = 1 + g ′ 2 i (3.4) 

 i = 

2 νu i 

r i 
+ 

νu 

2 
i 

r 2 
i 

− 1 + ν(1 + g ′ 2 i ) αi (3.5) 

 i = 

(
2 u i 

r i 
+ 

u 

2 
i 

r 2 
i 

− ν

)
αi (3.6) 

 i = B 

2 
i − 4 A i C i (3.7) 

e can express the roots of quadratic Eq. (2.36) as 

±
i 

= 

±
√ 

D i − B i 

2 A 

(3.8) 

i 
nd select the physically meaningful one based on condition (2.61) .

he corresponding value of displacement derivative is then calcu-

ated as 

 

′ 
i = 

√ 

ηi − 1 (3.9) 

he value of u i −1 is approximated by 

 i −1 = u i − u 

′ 
i �r (3.10) 

nd the algorithm proceeds to the next step, with counter i decre-

ented by 1. It is also possible to directly evaluate the membrane

hickness at point r i , which is according to (2.60) given by 

 i = 

p 

E 
×

(
− ˜ r 2 

i 

r i g 
′ 
i 

√ 

ηi 

)
× 1 

(1 + g ′ 2 
i 
) ηi − 1 

×
(

1 + 

νηi 

αi 

)
(3.11) 

he forward Euler scheme is simple but leads only to a linear con-

ergence rate. Quadratic convergence can be achieved by the mod-

fied forward Euler method, i.e., by treating the value of u ′ 
i 

as a

entative estimate, from which we construct a mid-step approxi-

ation 

 i −1 / 2 = u i − u 

′ 
i �r/ 2 (3.12) 

hen the value of displacement derivative at mid-step, u ′ 
i −1 / 2 

, is

omputed by using formulae analogous to (3.1) –(3.9) but with sub-

cript i replaced by i − 1 / 2 , and with r i −1 / 2 = r i − �r/ 2 . Finally, the

isplacement at the end of the step is set to 

 i −1 = u i − u 

′ 
i −1 / 2 �r (3.13) 

o matter which integration scheme is adopted, the value of u 0 in

he last step does not need to be computed because it is known

o be zero. The numerical scheme would lead to values very close

o zero. Thickness h 0 cannot be computed from (3.11) because r 0 =
 , ˜ r 0 = 0 and typically also g ′ 

0 
= 0 , which leads to undetermined

ractions 0/0 in (3.11) and also in (3.3) , needed for the evaluation

f α0 . Still, the thickness can be properly evaluated by taking into

ccount that u ′ ( r ) tends to a finite limit u ′ 
0 

as r tends to zero. In

he limit of r → 0 + , formula (2.60) yields 

 0 = − p 

E 

1 − ν

(2 u 

′ 
0 

+ u 

′ 2 
0 
) g ′′ 

0 

(3.14) 

he value of u ′ 
0 

can be estimated, e.g., as 2 u ′ 
1 

− u ′ 
2 
. 

.2. Example: Parabolic cap (part II) 

The complete solution procedure will be illustrated by an ex-

mple with the same data as in Section 2.3 . The integration pro-

ess starts from r N = a = 9 mm with the displacement set to u N =
 a = 1 mm. The objective is to obtain a membrane deformed into

 parabolic cap with maximum deflection g 0 = 3 mm if the mem-

rane is loaded by pressure p = 0 . 001 E. Poisson’s ratio is set to

= 0 . 4 . 

Convergence of the finite difference method is documented in

ig. 2 , which shows the displacement function u computed on

rids with �r = 1 mm, 0.5 mm and 0.25 mm. For reference, a

ighly accurate solution obtained with �r = 0 . 001 mm is plotted

s the solid curve. As expected, the standard forward Euler method

 Fig. 2 a) gives less accurate results than the modified method

 Fig. 2 b). In both cases, convergence is regular, but for the stan-

ard method the displacements converge from below while for the

odified method they converge from above. All subsequent calcu-

ations are done with a very fine grid, so that the numerical error

emains below the resolution level in presented graphs. 

The results plotted in Fig. 2 correspond to the physical solution,

ith the selection of proper roots ηi that satisfy condition (2.61) ,

nd with the derivative u ′ 
i 

calculated as 
√ 

ηi − 1 . To demonstrate

he consequence of a wrong choice, the graphs in Fig. 3 compare
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Fig. 2. Illustrative example with a = 9 mm, u a = 1 mm, g 0 = 3 mm (parabolic cap), p/E = 10 −3 and ν = 0 . 4 : radial displacements computed on relatively coarse grids using 

the (a) forward Euler method, (b) modified forward Euler method; the solid curve is an accurate solution obtained with �r = 0 . 001 mm. 

Fig. 3. Results of an illustrative example with a = 9 mm, u a = 1 mm, g 0 = 3 mm (parabolic cap), p/E = 10 −3 and ν = 0 . 4 : (a) radial displacements, (b) variable thickness, (c) 

deformed shape. 
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the physically meaningful results (solid curves) to non-physical re-

sults (dashed curves) that would be obtained with the other root,

say η∗
i 
. In this case, one would need to set u ′ 

i 
= −√ 

η∗
i 

− 1 in or-

der to get a positive membrane thickness, but then 1 + u ′ 
i 

would

be negative and the updated radial coordinate ˜ r = r u would be-

come larger than a p and would grow as r is increased. As the

radial coordinate r is decreased and approaches zero, the com-
uted displacement would not tend to zero but grow to infinity

 Fig. 3 a). The evaluated membrane thickness would be positive but

ery small compared to the thickness in the physically meaning-

ul case ( Fig. 3 b). The deformed shapes of the membrane, shown

n Fig. 3 c, demonstrate that the non-physical solution formally sat-

sfies Eq. (2.33) but points of the deformed membrane would be

ocated on the outer part of the prescribed paraboloid. Of course,
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Fig. 4. Influence of (a) Poisson’s ratio, (b) prestressing displacement on the optimized membrane thickness distribution; other parameters set to a = 9 mm, g 0 = 3 mm 

(parabolic cap) and p/E = 10 −3 . 
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Fig. 5. Optimized values of membrane thickness at the border and at the center 

depending on the prestressing displacement u a ; other parameters set to a = 9 mm, 

g 0 = 3 mm (parabolic cap), p/E = 10 −3 and ν = 0 . 4 . 
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his configuration could not be attained by continuously increasing

he pressure applied on a prestressed circular membrane. 

Finally, let us check how the physically meaningful solution is

ffected by the values of various parameters. The optimal distribu-

ion of initial thickness along the radius computed with reference

alues of parameters is plotted in both parts of Fig. 4 by the thick

olid curves. The other curves in Fig. 4 a correspond to modified

alues of Poisson’s ratio, and in Fig. 4 b they correspond to mod-

fied values of initial prestress (expressed in terms of the radial

isplacement u a applied on the boundary). The effect of Young’s

odulus and applied pressure is not shown because the thickness

s simply proportional to the ratio p / E . The results in Fig. 4 are

lotted for p/E = 0 . 001 . If the prescribed maximum deflection g 0 
emains the same and the ratio p / E is increased by a factor of 2

either by doubling the pressure, or by reducing the elastic modu-

us to one half), the solution in terms of displacement function u ( r )

emains the same and the membrane thickness must be increased

y a factor of 2. 

The plots of thickness distribution in Fig. 4 indicate that, in

rder to get a parabolic cap, the thickness near the border must

e larger than near the membrane center. The variation of thick-

ess becomes more dramatic if the prestressing displacement u a 
s reduced. The effect of this parameter on the thickness directly

t the border, h ( a ), and at the membrane center, h (0), is further

ocumented in Fig. 5 . As expected, for lower prestress the thick-

ess must be larger. If the prestressing displacement tends to zero,

he optimized thickness at the center tends to a finite value, but

he thickness at the border tends to infinity. For an unprestressed

embrane, a solution with bounded thickness cannot be obtained.

f course, in practice the thickness must be kept sufficiently small,

therwise the bending stiffness of the membrane could not be ne-

lected. 

. Analytical solution for spherical cap 

Numerical solutions have also been computed for a spherical

hape of the deformed membrane, which is described by 

( ̃ r ) = 

√ 

R 

2 − ˜ r 2 − a 2 p − g 2 0 

2 g 0 
(4.1) 

here 

 = 

a 2 p + g 2 0 

2 g 0 
(4.2) 

s the radius of the sphere. As usual, a p = a + u a is the radius of

he membrane in the prestressed state and g = g(0) is the maxi-
0 
um deflection after application of pressure p . It is assumed that

 0 ≤ a p , because otherwise the deformed shape would represent

ore than a half of the full sphere and it could not be described

y a unique function g . Differentiation of (4.1) leads to 

d g( ̃ r ) 

d ̃

 r 
= − ˜ r √ 

R 

2 − ˜ r 2 
(4.3) 

The optimal distribution of membrane thickness has been de-

igned using the numerical procedure described in Section 3.1 , and

he behavior of the membrane has been checked by finite element

imulations performed using the open-source package OOFEM

 Patzák, 2012; Patzák and Bittnar, 2001 ); see Section 5.2 for more

etails. Based on numerically computed results, it has been found

hat, in the special case of a spherical cap, the radial strain is

qual to the hoop strain (both strains still depend on the radial

oordinate). An example is provided in Fig. 6 for a spherical cap

ith parameters a = 9 mm, u a = 1 mm, g 0 = 3 mm, p/E = 10 −3 

nd ν = 0 . 4 . The thickness has been designed using a computa-

ional grid consisting of 90 0 0 equally spaced points, and the same

oints have been used as finite element nodes. At each integration

oint of the finite element mesh, the numerically obtained values
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Fig. 6. Radial strain, εr , and hoop strain, εt , computed numerically for a membrane 

with variable thickness optimized such that the deformed shape corresponds to a 

spherical cap; parameters set to a = 9 mm, u a = 1 mm, g 0 = 3 mm, p/E = 10 −3 and 

ν = 0 . 4 . 
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of the radial strain and of the hoop strain agree up to 5 significant

digits. This interesting property of the solution permits an analyti-

cal treatment of the governing equations. 

The analytical solution is based on the assumption that ε r (r) =
ε t (r) for all r ∈ [0, a ] (this equality is for the moment motivated

by numerical results but later will be validated). The assumption of

equal strains is equivalent with the assumption of equal stretches,

λr (r) = λt (r) , which can be written in terms of displacements and

their derivatives as √ 

(1 + u 

′ ) 2 + w 

′ 2 = 1 + 

u 

r 
(4.4)

Substituting 

w 

′ = (1 + u 

′ ) g ′ = −(1 + u 

′ ) r + u √ 

R 

2 − (r + u ) 2 
(4.5)

into (4.4) and assuming that 1 + u ′ > 0 , we obtain 

(1 + u 

′ ) R √ 

R 

2 − (r + u ) 2 
= 1 + 

u 

r 
(4.6)

Introducing a transformed unknown function ˜ r (r) = r + u (r)

and taking into account that ˜ r ′ (r) = 1 + u ′ (r) , we can rewrite

(4.6) in the form 

˜ r ′ R √ 

R 

2 − ˜ r 2 
= 

˜ r 

r 
(4.7)

This differential equation for unknown function ˜ r (r) can be han-

dled by separation of variables, which leads to 

R d ̃

 r 

˜ r 
√ 

R 

2 − ˜ r 2 
= 

d r 

r 
(4.8)

Integrating on both sides, we obtain 

ln 

˜ r 

R + 

√ 

R 

2 − ˜ r 2 
= ln r + C (4.9)

where C is an arbitrary constant. After additional easy manipula-

tions, we get the explicit formula 

˜ r (r) = 

2 RKr 

1 + K 

2 r 2 
(4.10)

where K = e C is a transformed version of the integration constant. 

The value of integration constant K can be determined from the

boundary condition ˜ r (a ) = a p , which leads to the quadratic equa-

tion 

a p a 
2 K 

2 − 2 RaK + a p = 0 (4.11)
ecall that the sphere radius R is given by (4.2) . The discriminant

f quadratic equation (4.11) can thus be expressed as 

D = 4 R 

2 a 2 − 4 a 2 p a 
2 = 4 

(
(a 2 p + g 2 0 ) 

2 

4 g 2 
0 

− a 2 p 

)
a 2 = 

(
a 2 p − g 2 0 

)
2 

g 2 
0 

a 2 

(4.12)

nd it is always non-negative. Consequently, quadratic equation

4.11) has two real roots, 

 1 , 2 = 

2 Ra ±
√ 

D 

2 a p a 2 
= 

a 2 p + g 2 0 

g 0 
± a 2 p − g 2 0 

g 0 
2 a p a 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a p 

g 0 a 

g 0 
a p a 

(4.13)

nd differential equation (4.6) has two solutions, 

 1 , 2 (r) = 

˜ r 1 , 2 (r) − r = 

(
2 RK 1 , 2 

1 + K 

2 
1 , 2 

r 2 
− 1 

)
r (4.14)

Now we need to determine which of these solutions is physi-

ally meaningful. As discussed in Section 2.3 , solutions for which

 + u ′ (a ) < 0 would lead to a deformed shape that formally sat-

sfies the constraint equation but the membrane is stretched into

 region located behind the outer support, and so such solutions

hould be excluded. It is easy to show that the sign of 1 + u ′ (a )

s the same as the sign of 1 − K 

2 a 2 . Since 1 − K 

2 
1 a 

2 = 1 − a p /g 0 ,

 − K 

2 
2 

a 2 = 1 − g 0 /a p and g 0 is assumed to be smaller than a p ,

e find that a physically meaningful solution is obtained only for

 = K 2 = g 0 / (a p a ) . This solution can be presented in the form 

 (r) = 

(
2 Rg 0 a p a 

a 2 p a 
2 + g 2 

0 
r 2 

− 1 

)
r = 

( (
a 2 p + g 2 0 

)
a p a 

a 2 p a 
2 + g 2 

0 
r 2 

− 1 

) 

r (4.15)

or a given set of parameters, it can be verified that this analyt-

cal solution agrees (up to the numerical error) with the numeri-

al solution obtained by the method described in Section 3.1 . An

xample computed with parameters a = 9 mm, a p = 10 mm and

 0 = 3 mm (leading to R = 18 . 1 ̄6 mm and K = 0 . 0 ̄3 mm 

−1 ) is pre-

ented in Fig. 7 a. 

Recall that the analytical expression (4.15) for the displace-

ent function u has been constructed in a somewhat heuris-

ic manner, based on the observation that numerical solutions of

q. (2.33) lead to equal values of radial and circumferential strains.

t is therefore necessary to check that the displacement function

4.15) indeed satisfies Eq. (2.33) with function g given by (4.1) . Di-

ect substitution would be possible but tedious. Instead of that, we

an find expressions for strains, stresses and thickness, and verify

he original equilibrium equations (2.17) –(2.18) . 

First of all, the circumferential stretch and strain can be evalu-

ted from (2.2) and (2.4) : 

t = 1 + 

u 

r 
= 

2 Rg 0 a p a 

a 2 p a 
2 + g 2 

0 
r 2 

(4.16)

 t = 

1 
2 
(λ2 

t − 1) = 

2 R 

2 g 2 0 a 
2 
p a 

2 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

− 1 

2 

(4.17)

he radial strain, εr , could be evaluated independently from

2.1) and (2.3) combined with (4.5) , but since the displacement

unction has been found by solving Eq. (4.6) , which corresponds

o the equality between the radial and circumferential strains, we

an set ε r = ε t and proceed to the evaluation of stresses 

r = σt = 

E 

1 − ν
ε t = 

E 

2(1 − ν) 

(
4 R 

2 g 2 0 a 
2 
p a 

2 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

− 1 

)
(4.18)

ased on constitutive equations (2.6) –(2.7) . 
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Fig. 7. Example of (a) radial displacement and (b) optimized thickness obtained analytically and numerically for a spherical cap with parameters a = 9 mm, u a = 1 mm, 

g 0 = 3 mm, p/E = 10 −3 and ν = 0 . 4 . 
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The thickness function, h , could be evaluated from the rather

omplicated expression (2.34) , but since we already have a formula

or stress, it is easier to make use of Eq. (2.28) . In fact, instead of

irectly constructing a formula for h , it turns out to be useful to

rst evaluate 

σr = − p 

2 r 

(r + u ) 2 

1 + u 

′ 
1 

g ′ = 

p 

2 r 

r + u 

1 + u 

′ 
√ 

R 

2 − (r + u ) 2 

= 

p 

2 r 

2 Rg 0 a p ar 

a 2 p a 
2 + g 2 

0 
r 2 

2 Rg 0 a p a 
a 2 p a 

2 − g 2 0 r 
2 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

√ 

R 

2 −
(

2 Rg 0 a p ar 

a 2 p a 
2 + g 2 

0 
r 2 

)
2 

= 

pR 

2 

(4.19) 

his remarkably simple result means that the product h σ r has a

onstant value pR /2 over the whole membrane, and the same holds

or the product h σ t because σt = σr . It is then easy to write the

ormula for the thickness, 

 = 

pR 

2 σr 
= 

(1 − ν) p 

E 

(
4 Rg 2 0 a 

2 
p a 

2 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

− 1 

R 

)
−1 

= 

(1 − ν) p 

2 Eg 0 

(
a 2 p a 

2 (a 2 p + g 2 0 ) 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

− 1 

a 2 p + g 2 
0 

)
−1 (4.20) 

or illustration, the optimal distribution of thickness obtained for

arameters a = 9 mm, a p = 10 mm, g 0 = 3 mm, ν = 0 . 4 and p/E =
0 −3 is plotted in Fig. 7 b. The numerical results shown in the fig-

re have been obtained with a large step �r = 1 mm, but they still

gree quite well with the analytical solution. The relative error re-

ains below 2%. For sufficiently refined steps, the difference would

e indiscernible. 

Knowing that hσr = hσt = pR/ 2 = const. and taking into ac-

ount (4.5) , we can reduce equilibrium equations (2.17) –(2.18) to 

 

(
u 

′ + 

u 

r 

)′ 
= − 2 

R 

(r + u )(1 + u 

′ ) r + u √ 

R 

2 − (r + u ) 2 
(4.21) 

 

r(1 + u 

′ ) r + u √ 

R 

2 − (r + u ) 2 

) ′ 
= 

1 

R 

(
(r + u ) 2 

)′ 
(4.22) 

elation (4.22) directly follows from (4.6) , i.e., from the differen-

ial equation from which we determined the displacement func-

ion. Making use of (4.6) once again, Eq. (4.21) can be rewritten

s 

u 

′ + 

u 

r 

)′ 
= − 2 

R 

2 r 2 
(r + u ) 3 (4.23) 
nd its validity can be confirmed by direct substitution from

4.15) . Evaluation of the left-hand side is facilitated by the

act that 

 

′ + 

u 

r 
= 

4 Rg 0 a 
3 
p a 

3 

(a 2 p a 
2 + g 2 

0 
r 2 ) 2 

− 2 (4.24) 

n summary, it has been demonstrated that the derived closed-

orm expressions for radial displacement and thickness given by

ormulae (4.15) and (4.20) lead to an exact satisfaction of the gov-

rning differential equations of the problem. This confirms that the

ssumption of equal strains, ε r (r) = ε t (r) , initially motivated by

umerical results, is an exact identity and not just an approxima-

ion. 

It might seem that the relation hσr = hσt = pR/ 2 is something

rivial that could have been determined without tedious deriva-

ions. Of course, pR /2 is the well-known expression for the specific

ormal force n (considered as force per unit current width) in a

pherical membrane of current radius R , uniformly loaded by in-

ernal pressure p . For a hollow sphere that has in the undeformed

tate a spherical shape and constant thickness, it is clear that,

ue to spherical symmetry, the specific normal force must be the

ame for all directions, and then the relation 2 πRn = πR 2 p, lead-

ng to n = pR/ 2 , easily follows from equilibrium in the deformed

tate. On the other hand, in our case the undeformed membrane

s flat and its thickness is variable in the undeformed as well as

n the deformed state. Moreover, the interpretation of the product

 σ r or h σ t as the specific normal force is correct only if λr = λt ,

hich is indeed the case for the state when the properly designed

embrane is loaded precisely into a spherical cap, but not in

eneral. 

In the present notation, σ has the meaning of second Piola-

irchoff stress, and h refers to the membrane thickness in the

ndeformed state. The normal force per unit width in the unde-

ormed state is the product of h with the first Piola-Kirchhoff nor-

al stress, so it would be equal to h λr σ r for the radial direction

nd h λt σ t for the circumferential direction. The normal force per

nit width in the deformed state is the product of the deformed

hickness, h λ3 , with the Cauchy normal stress, which is given by

r λr /( λt λ3 ) for the radial direction and by σ r λt /( λr λ3 ) for the cir-

umferential direction, with λ3 denoting the out-of-plane stretch.

nly in the special case when λr = λt , we can interpret h σ r and

 σ t as the specific normal forces per unit current width. If they

re both equal to pR /2 at all points of the membrane midsurface,

quilibrium is indeed guaranteed. However, this happens only for

he single value of pressure p that was used when designing the

embrane. For the same membrane but other values of pressure,

he deformed shape will not be precisely spherical. Sensitivity of
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the resulting membrane shape to modifications of parameters will

be assessed in the next section. 

5. Sensitivity to parameters 

The boundary value problem derived in Section 2 , which can

be solved approximately by the numerical method described in

Section 3.1 , or in some cases even analytically, as demonstrated

in Section 4 , provides a tool for designing the optimal variation

of membrane thickness. The design is optimal in the sense that

if the membrane is loaded by a given uniform pressure p , its de-

flected midsurface perfectly matches a prescribed ideal shape, e.g.,

a spherical or parabolic cap. Of course, this is true only if the ac-

tual properties of the membrane and the actual applied pressure

perfectly correspond to the values used in the design procedure.

The optimal design is affected by the elastic constants of the mem-

brane, E and ν , by the membrane radius in the undeformed state,

a , by the radial displacement on the outer boundary that defines

the prestressed state, u a , and by the desired maximum deflection,

g 0 . In practice, these parameters are not known exactly, and the

purpose of the present section is to examine the sensitivity of the

resulting deformed shape to the errors involved in the determina-

tion of these material and geometric parameters. 

A related issue has already been briefly addressed in

Section 3.2 , where we studied how changes of certain parameters

affect the optimal design. Here we will treat a somewhat different

issue, namely how the imprecise knowledge of material properties

and prestressing displacement affect the quality of the resulting

deformed shape. The basic question can be formulated as follows:

If the optimal design is performed using certain assumed values of

elastic constants and prestressing displacement but the properties

of the actual membrane are different, how much does the actual

deformed shape deviate from the desired ideal shape? 

It is obvious that if, for instance, the actual elastic modulus of

the membrane material is lower than the value used in design,

then the membrane deflection caused by the given design pressure

will be higher than expected. However, if the main objective is to

get as close as possible to the prescribed shape, it makes sense

to adjust the pressure such that the maximum deflection would

attain the prescribed value. In fact, in many cases one does not

control directly the pressure but rather the mass of the fluid that

is injected into the device. Provided that the maximum deflection

can be measured during the loading process, it is possible to make

sure that this deflection will attain the prescribed value, indepen-

dently of how the actual parameter values differ from those used

when designing the thickness distribution. 

5.1. Effect of elastic modulus 

One general observation that can be made based on the struc-

ture of the governing equations is that the designed thickness vari-

ation depends on the dimensionless ratio p / E but not on the pres-

sure p and elastic modulus E separately. Indeed, Eq. (2.33) does

not contain p and E at all, and Eq. (2.34) contains these parame-

ters only in the form of the fraction p / E . Therefore, if the thickness

is designed assuming pressure p = p d and modulus E = E d and the

actual modulus E a is different from E d , it is sufficient to load the

membrane by adjusted pressure p a = p d E a /E d and the design will

remain optimal, i.e., the deformed shape will exactly correspond

to the desired one. In other words, an imprecise knowledge of

the elastic modulus can be fully compensated by adjusting the ap-

plied pressure, making sure that the maximum deflection attains

the prescribed value. This is true for an arbitrary ideal shape, be-

cause Eqs. (2.33) –(2.34) are general and have the same form for an

arbitrary shape function g . 
.2. Effect of Poisson’s ratio 

The effect of Poisson’s ratio is more difficult to assess.

qs. (2.33) –(2.34) contain Poisson’s ratio, ν , which multiplies cer-

ain terms and is not combined with any other parameter that

ould be adjusted so as to compensate the effect of imprecise

nowledge of ν . Therefore, in general it can be expected that if

he design is based on an assumed value of ν that differs from

he actual one, the actual deformed shape will deviate from the

deal shape even if the pressure is adjusted to get the prescribed

aximum deflection. To assess how important this deviation is, we

ave performed numerical simulations of the deformed membrane,

sing the finite element method with axisymmetric membrane el-

ments based on linear interpolation of both displacement compo-

ents, as described in our previous paper ( Pokorný et al., 2017a ).

he calculations have been done within the OOFEM open-source

ackage ( Patzák, 2012; Patzák and Bittnar, 2001 ). 

First of all, it is good to check that loading of an optimally de-

igned membrane with all parameters kept the same as in the de-

ign indeed leads to the desired deformed shape. This simulation

lso represents an independent verification of the design proce-

ure because the deflection is now evaluated by a different nu-

erical technique. The objective is to determine the numerical er-

or in the case when the theoretical result would be expected to

e perfect. In general, the numerical error comes from the design

rocedure that defines the thickness distribution (performed nu-

erically using the algorithm described in Section 3.1 ) as well as

rom the finite element solution of the membrane deflection. To

solate the second source of error, let us first consider the spher-

cal cap , for which the optimal thickness distribution is described

y an analytical formula. The calculations are done with param-

ter values considered in the previous examples, i.e., a = 9 mm,

 0 = 3 mm, p/E = 10 −3 , ν = 0 . 4 and u a = 1 mm. The ideal shape

s described by function g given in (4.1) , with a p = a + u a = 10 mm

nd R = (a 2 p + g 2 
0 
) / (2 g 0 ) = 18 . 1 ̄6 mm. The optimum thickness dis-

ribution is evaluated analytically from (4.20) , and the exact value

f h is computed at each Gauss integration point of the finite el-

ment model, which uses 2 integration points per element. Local

eviations from the optimal spherical shape along the membrane

adius are plotted by blue solid curves in Fig. 8 a-c for simulations

ith 90, 900 and 9000 finite elements. Already for 90 elements,

he deviation of the computed surface from the ideal shape does

ot exceed 400 nm, and for 900 elements it is in the order of a

ew nanometers. 

To characterize the deviation by one global quantity, the root-

ean-square error is defined as 

 RMS = 

(
1 

a p 

∫ a 

0 
[ w (r) − g ( r + u (r) ) ] 2 

(
1 + u 

′ (r) 
)

d r 

)
1 / 2 (5.1)

here u and w are the displacement components computed by fi-

ite elements. The dependence of this error on the number of fi-

ite elements is plotted by the red dashed curve in Fig. 8 d. As

he number of elements increases, the error tends to zero and is

oughly proportional to the square of the element size, as may

ave been expected. Here, the error comes exclusively from the fi-

ite element simulation of the deformed shape, and the “actual”

eformed shape obtained in the limit would be an ideal spherical

ap. It is thus confirmed that the proposed method provides excel-

ent designs, and if the membrane could indeed be manufactured

ith the assumed properties and loaded in the prescribed way, the

nal deformed shape would be perfect. 

As the next step, we repeat the calculations for the parabolic

ap described by formula (2.43) , with all geometric and material

arameters kept the same as before. No analytical expression for

he optimal thickness is available, and so the thickness needs to

e calculated numerically, which introduces an additional error. In



M. Jirásek, F. Šmejkal and M. Horák / International Journal of Solids and Structures 198 (2020) 1–16 13 

Fig. 8. Deviation of the numerically computed deflected shape from the ideal shape for simulations with (a) 90, (b) 900 and (c) 9000 finite elements; (d) dependence of the 

root-mean-square error on the element size. 
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e  
ll simulations, we use grid points for thickness evaluations coin-

ident with finite element nodes, and the designed values of thick-

ess calculated at the grid points are transmitted to the integration

oints of finite elements by linear interpolation. Local deviations

rom the optimal parabolic shape along the membrane radius for

imulations with 90, 900 and 90 0 0 finite elements and the depen-

ence of the global root-mean-square error on the number of ele-

ents are plotted by dashed red curves in Fig. 8 a-c. The deviations

re slightly larger than for the spherical cap, which is caused by an

dditional error due to the numerical design of optimal thickness.

evertheless, the error is again roughly proportional to the square

f finite element size (equal to the grid spacing) and tends to zero

s the mesh and grid are simultaneously refined. 

The foregoing simulations show that the numerical error caused

y the combined effect of numerical evaluation of optimal thick-

ess and finite element simulation of the deflected shape is, for the

eference set of parameters, in the order of nanometers if 900 ele-

ents (and the same number of grid intervals) are used. Now we

roceed to the evaluation of the effect of Poisson’s ratio. The thick-

ess design is done for νd = 0 . 4 , as before, but the deflected shape

s simulated for membranes with actual Poisson ratios νa = 0 . 36

nd 0.44. The applied pressure is adjusted to get the prescribed

aximum deflection, g 0 = 3 mm, and 900 elements are used. 

For the parabolic cap , the resulting deviations from the ideal

hape are in the order of micrometers, i.e., by three orders of mag-

itude larger than if the actual Poisson ratio is set equal to the

alue used in design; see Fig. 9 a. Moreover, if the number of finite

lements (and simultaneously of the grid intervals) is increased

o 90 0 0, the error is not visibly reduced. This indicates that the
hape distortion is caused by the deviation of the actual Poisson

atio from the value used in design. Still, from the practical point

f view, the deviation from the ideal shape is relatively small, with

he maximum local deviation of about 0.07% of the maximum de-

ection and the root-mean-square error below 0.05% of the max-

mum deflection, even though the change of Poisson’s ratio from

.4 to 0.36 or to 0.44 is quite large. Additional numerical simula-

ions with other values of Poisson’s ratio reveal that the deviation

s roughly proportional to the difference between the actual value

f Poisson’s ratio and the value used in design of optimal thick-

ess distribution. For the reference case, the root-mean-square er-

or can be estimated as e RMS ≈ | νa − νd | × 35 μm, where νd = 0 . 4

s the design value of Poisson’s ratio and νa is the actual one; see

ig. 9 b. 

An interesting result is obtained for the spherical cap . Even af-

er a change of Poisson’s ratio, the calculated error is of the same

rder of magnitude as for the original value of ν , i.e., in the or-

er of nanometers if 900 elements are used, and it keeps decreas-

ng with increasing number of elements (provided that the applied

ressure is always adjusted so as to get the prescribed value of

aximum deflection). This indicates that the error is purely nu-

erical and vanishes in the limit. The design remains optimal even

fter a change of Poisson’s ratio. The reason becomes clear if we

xamine formula (4.20) for the optimal thickness, in which a func-

ion dependent purely on the geometrical parameters g 0 , a p and a

s multiplied by the fraction (1 − ν) p/E. This means that, for the

pherical cap, inaccurate knowledge of both elastic constants can

e fully compensated by adjusting the applied pressure. For the

lastic modulus, a similar statement holds independently of the
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Fig. 9. Influence of Poisson’s ratio ν on the deviation from the ideal parabolic shape: (a) deviation of deflections along the radius for ν = 0 . 36 and 0.44, (b) dependence of 

the root-mean-square error on Poisson’s ratio in the range from 0.3 to 0.5. 
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prescribed shape; see Section 5.1 . The extension to Poisson’s ratio

is valid for the spherical cap only. 

It may seem strange that Eq. (2.33) , from which the radial dis-

placement u is calculated, contains parameter ν , but the analyti-

cal solution (4.15) valid for the spherical cap is independent of ν .

The only possible explanation is that the solution of the reduced

version of (2.33) obtained for ν = 0 automatically satisfies the full

equation for any other ν , i.e., the expression that multiplies ν on

the left-hand side of (2.33) vanishes if the solution of the reduced

equation with ν = 0 is substituted. The reduced equation reads 

(r + u ) 2 

2 r 2 g ′ 

(
u 

r 
+ 

u 

2 

2 r 2 

)
+ (1 + u 

′ ) 2 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)

(
u 

′ + 

1 
2 

u 

′ 2 + 

1 
2 
(1 + u 

′ ) 2 g ′ 2 
)

= 0 (5.2)

and the condition that the complementary terms that are multi-

plied by ν vanish can be written as 

(1 + u 

′ ) 2 
(

(r + u ) g ′′ 
2 g ′ 2 − 1 

g ′ − g ′ 
)(

u 

r 
+ 

u 

2 

2 r 2 

)
+ 

(r + u ) 2 

2 r 2 g ′ (
u 

′ + 

1 
2 

u 

′ 2 + 

1 
2 
(1 + u 

′ ) 2 g ′ 2 
)

= 0 (5.3)

To prove that if function u satisfies (5.2) then it also automatically

satisfies (5.3) , it is sufficient to show that 

u 

r 
+ 

u 

2 

2 r 2 
= u 

′ + 

1 
2 

u 

′ 2 + 

1 
2 
(1 + u 

′ ) 2 g ′ 2 (5.4)

which can be rewritten as (
1 + 

u 

r 

)
2 = (1 + u 

′ ) 2 (1 + g ′ 2 ) (5.5)

This is found to be equivalent with Eq. (4.4) in which w 

′ is re-

placed by (1 + u ′ ) g ′ , as indicated in (4.5) . Therefore, condition

(5.4) corresponds to the differential equation from which the an-

alytical solution for u was constructed in Section 4 , and so it is

natural that this condition is indeed satisfied. Of course, the valid-

ity of (5.4) could also be checked by directly substituting u given

by (4.15) and g ′ given by (4.3) . 

5.3. Effect of prestressing displacement 

In the preceding subsection we have examined how imprecise

knowledge of the actual elastic constants affects the quality of the

resulting deformed membrane shape. Another important parame-

ter that may play a role is the initial radial displacement that in-

duces prestress before the membrane is loaded by liquid pressure.

The optimal design is based on an assumed value of u a , but the
ctually imposed displacement may slightly differ because techni-

ally it is quite difficult to impose precisely the prescribed value of

he displacement on the boundary (especially since this displace-

ent is taken with respect to the undeformed state of a very flex-

ble membrane). Therefore, it is of interest to look at deviations

rom an ideal shape caused by changes of the actually prescribed

isplacement. 

Of course, if the actually imposed radial displacement u a + �u a 
iffers from the value u a that was used in the design stage, the de-

ormed shape must differ from the originally prescribed one, even

f the pressure is adjusted such that the maximum deflection at-

ains the prescribed value. The reason is that the original shape

as supposed to have zero deflection at a circular boundary of

adius a + u a but the actual boundary is now a circle of radius

 + u a + �u a . Instead of evaluating the deviation from the origi-

ally intended shape, we can take as a reference an ideal shape

f the same type (a spherical or parabolic cap) but with adjusted

arameters. For instance, if the originally intended shape was a

pherical cap of a certain radius, the actual shape could be close

o a spherical cap with a somewhat different radius. 

The effect of prestressing displacement is illustrated by a nu-

erically computed example, with the design of thickness distri-

ution performed for a spherical or parabolic cap with the stan-

ard set of parameters used in previous examples. In particular,

he radius of the undeformed membrane is taken as a = 9 mm

nd the prestressing displacement is in the design stage consid-

red as u a = 1 mm. The actual deformed shape is then computed

y finite elements for prescribed displacements equal to 0.9 mm

nd 1.1 mm. In each case, the applied pressure is adjusted so as

o produce the desired value of maximum deflection, g 0 = 3 mm.

hen evaluating the deviation, the ideal shape is taken as a spher-

cal or parabolic cap characterized by g 0 as initially prescribed and

y a p equal to the actual value, i.e., 9.9 mm or 10.1 mm. Devi-

tions from such adjusted ideal shapes are plotted in Fig. 10 . It

s worth noting that even though the prestressing displacement

as been changed by ± 10%, deviations from the adjusted ideal

hape (perfect sphere or perfect paraboloid) are still by three or-

ers of magnitude smaller than the maximum deflection. In this

ense, the optimum design can be considered as relatively robust,

ot too sensitive to imprecise enforcement of the actual prestress-

ng displacement. This conclusion is confirmed by Fig. 11 , which

hows that when the prestressing displacement is varied between

.5 mm and 2.0 mm, the root-mean-square error remains below

8 μm for the parabolic cap and below 15 μm for the spherical

ap, i.e., it does not exceed 1% of the maximum deflection. 
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Fig. 10. Influence of prestressing displacement on the deviation from the ideal shape: (a) for a spherical cap, (b) for a parabolic cap. 

Fig. 11. Dependence of the root-mean-square error on prestressing displacement 

u a + �u a in the range from 0.5 to 2.0 mm. 
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. Summary and conclusions 

We have studied the mechanical behavior of axially symmetric

lastic membranes that are first prestressed by imposing a radial

isplacement on the boundary and then subjected to a uniform

ydrostatic pressure acting perpendicular to the deformed mid-

urface. The membrane material has been described by the Saint

enant-Kirchhoff material law, which provides a good approxima-

ion of the actual response of materials used for membranes in liq-

id lenses. The primary objective has been to develop techniques

or design of variable thickness such that the deformed membrane

ould have a prescribed shape, e.g., a spherical or parabolic cap.

he main conclusions can be summarized as follows: 

• Under the given assumptions, the problem of optimum thick-

ness design can be reduced to one nonlinear first-order differ-

ential equation for the radial displacement. Once this equation

is solved, the corresponding thickness distribution can be eval-

uated by substitution into an algebraic expression. 

• Formally, the solution of the governing first-order equation

should satisfy two boundary conditions. However, the condition

of zero radial displacement on the axis of symmetry is satis-

fied “automatically” due to the special asymptotic structure of

the governing equation. Effectively, only one boundary condi-

tion that prescribes the displacement on the outer boundary

needs to be enforced. 

• Due to the implicit form of the governing equation, the solu-

tion is not unique. For a given value of displacement at a given
point, there are in general four possible values of the displace-

ment derivative that satisfy the governing equation. However,

only one of them leads to a physically admissible solution. 

• A numerical algorithm based on a finite difference scheme has

been developed for problems with an arbitrary shape of the

prescribed deformed midsurface. Robustness and accuracy of

this algorithm has been tested for prescribed surfaces that have

the shape of a parabolic or spherical cap. 

• The resulting distributions of membrane thickness continuously

increase from the minimum value on the axis of symmetry to

the maximum value on the outer boundary. They are strongly

affected by the applied prestress. As the prestress is reduced

to zero, the maximum thickness tends to infinity. Therefore, a

certain minimum level of prestress is needed in order to keep

the designed thickness physically realistic. 

• For the special but practically important case of a spherical cap,

an analytical solution for the optimum thickness distribution

and for the displacements has been derived. 

• It has been verified by finite element simulations that the opti-

mally designed membranes indeed deform into the prescribed

shape, provided that the material and geometric properties are

the same as assumed in the design. 

• Sensitivity to elastic constants and to the prescribed prestress-

ing displacement has been studied analytically and numeri-

cally. If the actually applied pressure is adjusted so as to attain

the prescribed value of the maximum deflection, the deformed

shape exactly corresponds to the desired one even if the actual

elastic modulus differs from the value assumed in design. This

is true for an arbitrary shape. For the special case of a spherical

shape, an analogous statement holds also for changes of Pois-

son’s ratio. 

• Sensitivity to changes of Poisson’s ratio for a parabolic cap

and to changes of prestressing displacement for parabolic and

spherical caps has been evaluated and shown to be relatively

mild. Therefore, the optimal thickness design remains useful

even if the properties are not known in advance with absolute

accuracy. 

The developed thickness design procedure can be used for fur-

her analyses and simulations of imaging properties of the result-

ng optical elements. It would also be interesting to validate the

btained results experimentally. The numerical procedure and the

nalytical solution can serve for the development of high-precision

ptical elements. 

If the designed thickness of the membrane is not sufficiently

mall, the solution may require additional corrections that remove

ertain simplifying assumptions. First, it should be taken into ac-
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count that the optical surface is actually the top surface of the

membrane (at contact with air) rather than the midsurface. Sec-

ond, flexural stiffness may become important, especially near the

clamped edge. These refinements are the subject of an ongoing re-

search. 
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