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ABSTRACT 

Reconstructing neuronal activity from MEG and EEG mea- 
surements requires the accurate calculation of the electro- 
magnetic field inside the head. The boundary element for- 
mulation of this prohlem leads to a dense linear system 
which is too large to he solved directly. We propose to 
accelerate the computations via the fast multiple method. 
This method approximates the electromagnetic interaction 
between surface elements by performing multipole expan- 
sions at a coarse resolution. It significantly reduces the com- 
putational complexity of the matrix-vector products needed 
for the iterative solution of the linear system, and avoids the 
storage of its ma&. We describe the single-level fast multi- 
pole method and present several experiments demonsuating 
its accuracy and performance. 

1. INTRODUCTION 

Elecuolmagnetoencephalogmphy ( W G )  measures the 
small electric and magnetic fields on the surface of the 
skull [l].  The ultimate goal is to solve the inverse problem: 
reconstruct from these measurements the primary currents 
inside the cortex, due to brain activity. Its essential part is 
the solution of the fowanfpmblem: find the field caused by 
a known distribution of current sources. In this short article 
we focus on the computation of the electric potential since 
the magnetic field follows from the Biot-Savart law [I]. 
Anatomical data (MRI) can provide a head model [2] 
consisting of several regions of constant conductivity, 
representing for example the white matter, the cortex, the 
cerebrospinal fluid, the skull, and the scalp [3]. In the 
surface approach, the potential, sought at the boundaries 
between different regions, is govemed by an integral equa- 
tion, which can be solved numerically with the boundary 
element method (BEM). 

Recent experiments indicate that existing BEM imple- 
mentations suffer from unacceptably large errors when the 
current source approaches the volume discontinuity [4]. 
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Unfortunately, this is precisely the case in the brain, where 
the main primary current sources are supposedly the pyra- 
midal cells in the cortex, a layer only a few millimeters 
thick. Although the BEM is able to deal with complex sur- 
face geometry, realistic head models do nor appear to offer 
greater accuracythan a simple concentric spheres model [5] .  

We believe that one of the reasons for this inadequacy 
is the simplicity of the surface model employed the bound- 
aries are represented with at most several thousand triangles 
that cannot capture the fine cortex geometry nor the impor- 
tant spatial variations of the potential. Unfortunately, the 
computational complexity and storage requirements of the 
direct calculation of painvise interactions between elements 
quickly become prohibitive. Iterative techniques [61 avoid 
the storage at the expense of increased number of opera- 
tiOnS. 

The fast multipole method (FMM) is a standard tool in 
particle simulations and computational electromagnetics. It 
reduces the asymptotical complexity of the interaction eval- 
uation from O(P*), where P is the number of parame- 
ters (degrees of freedom) in our model, ultimately down to 
O(P logP) ,  which allows to use models with an order of 
several magnitudes more elements than with the classical 
approach. 

2. BOUNDARY ELEMENT METHOD 

2.1. Surface equation 

The potential V(r) on a smooth surface S, separating two 
regions with conductivities U:, U, satisfies the following 
integral equation [4,71: for r E S,, 



with R = r - r', R = IlRll and V' (A) = $, where N is 

Oriented from the region with "i to the One with v, 
is a potential due to a known primary current distribution 
Jp(r) in the infinite homogeneous space With conductivity 
u0 [71 

Table 1: For a current dipole at a distance d from a unitary 

h 0.3, we show the relative error for the collocation methods 
A: 'p = 6. d = 6 and B: 'p = p0, + = 6 ;  a semi-cderkin 
method c; and full Galerkin methods D 9 = Po, $ = Po, 3 point 
Gauss quadrature; and E as D, but 10 point Gauss quadrature. 

the number of surfaces, n k  is the vector to s k  spherical discretized with triangles with m~ edge.len@h 

2.2. Discretization 

Each surface s k  is typically represented by a triangulation, 
a triangle is called a boundary element We discretize the 
potential V and the primary current J 

P, 
Jp(r) = CUI nu ld r )  (4) 

1=1 

Each basis function 9 . k .  k = 1 ~. . N ,  i = 1 . .  . p k  is 
nonzero on only one element of S k .  Similarly, each 41 
is nonzero on only one element of the cortex surface 
SJ .  There is one basis function per triangle for the 
piecewise-constant (PO) approximation, one per vertex for 
the piecewise-linear case (Pl). We restrict J p  to be normal 
to S J ,  which is physiologically motivated, and n u  is the 
unit vector normal to the lth element of SJ. 

Variational formulations of (1) and (2) are obtained by 
taking the inner product between both sides of the equations 
and test-functions Qj,, which are nonzeroonly on S,. Be- 
cause of (I), b,, = (uo&, 1/13,,,) satisfies 

*€s"PP*,." 
"€.uPPvili 

(6)  
which represents alinearsystem bjm = Cik a,k,j,v;k. For 
some choices of 9: 11, the integral i? can be calculated ana- 
lytically [8]. Because of (2) and (4), 

(7) 

which represents another linear system bj ,  = X I  u~c i j , .  
We therefore have AV = b = Cu, where both A and C 

are weighted concatenations of matrices I'k,,,,. The direct 
FJMEG problem consists of computing v from U. 

2.3. Accuracy 

The accuracy of the BEM method varies with each specific 
implementation choice. However, no method can perform 
well unless the distance between the current source and the 
discontinuity is at least comparable to the typical element 
size, otherwise there are not enough degrees of freedom to 
describe the variations in the potential. Table 1 shows the 
relative LZ error of the BEM-calculated potential as com- 
pared to an analytical solution [9]. We observe that ap- 
proaching the source to the surface increases the error which 
becomes unacceptably large when the distance to the sur- 
face is less than about h. This coincides with other recent 
findings [lo, 111. 

Consequently, to accurately model the effects of current 
sources inside the cortex, a triangulation with an element 
size around 1 mm appears to he necessary. Given a cortex 
surface area of approximately 2500cmZ, we would ideally 
need about lo5 N loE triangles to represent the cortex ad- 
equately. Hence the interest in the FMM, which allows to 
process large numbers of triangles efficiently. 

3. FAST MULTIPOLE METHOD 

The FMM allows the computation of matrix-vector prod- 
ucts I'x with a divide-and-conquer procedure. It does not 
require the explicit storage of the matrix coefficients, and 
its computational cost is only O(P log P) for a matrix I' 
of size P x P. The FMM is an approximate method - 
whose error can however be controlled. The main idea is 
to approximate the function of r, r' in the integral (6) by 
a sum of separable functions. In this article, we concentrate 
on a single-level FMM (sFMM), which is easy to describe. 
The transition to full, multi-level Fh4M is straightforward, 
albeit involved. 
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The computational bulk of the matrix-vector products 
resides in the computation of expressions of the form 
yj = E, r f y z i  (see (6)). where f ,  is nonzero inside 
an element T; with center c%, and gj is nonzero inside 
an element Tj with center cj. The three-dimensional 
space is decomposed into a set of C identically sized 
disjoint cubic cells C, with centers M, and neighborhoods 
(containing 26 cells each)N(C,). 

Let I:(r) and O:(r) denote the inner and outer spher- 
ical harmonics 1121. We precalculate for each cell C, 

a;"(C,) = (-1)"c v;/V'I;"(M, - r')f,(r')ds(r') 

d;,"(Cp) = 

e ,  €6 r' ET, 

0:2?'(M, - M,) a;"(C,) 
C & W P I  
n=ll...CO 

m= -a... n 

and for each element T, € C, 

b;"'(Tj) = I;"(M, - r)gj(r)ds(r) J 
PET, 

Itisprovedin[13]that,ifcj E C,, 

yj = c d~,"(C,)b;,""(Tj) + zirf? (8) 
"'=O ...CO C P E I W Q I  

m>= -*'...d CiEC, 

The infinite series over n,n' are in practice replaced by finite 
sums up to some a priori chosen truncation order L this 
explains why the FMM is an approximate method. 

In summary, computing yj via the sFMM involves four 
steps corresponding to the four equations above: (1) A 10- 
cal computation of a inside each cell, precomputahle for 
a given cottex geometry and discretization. (2) A come- 
level computation of d involving pairs of non-neighboring 
cells; O(M, - M,) can be precomputed. (3) Another 
local computation of b for all elements inside each cell. 
(4) A small number of interactions between elements from 
neighboring cells to be computed explicitly, possibly ana- 
lytically. 

Assuming uniformly distributed elements in space, the 
asymptotical computational complexity for the evaluation 
ofrxbythe~FMMisO(L~P+C*+C(P/C)~),  whichis 
minimized for cop, - p2I3, yielding a total computational 
cost of 0(P413) (instead of P2 for the direct method), with 
approximately P1I3 elements per cell. 

4. NUMERICAL EXPERIMENTS 

The first experiment evaluates the accuracy of the 
sFMM method with respect to the direct method as 
a function of the truncation order L. We generated 
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Fig. 1 Mean relative ea error and maximum relative ermr with 
respect to truncation order L. 
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Fig. 2 Mean evaluation time with respect to the number of cells. 

a small triangulated spherical surface with 56 trian- 
gles and compared the products re, (e, are natural 
basis vectors) to their sFMM approximations re,. 
Fig. 1 shows the dependence of the me? relative e 2  

error (typical case) e?' = mean, Ipe, - ~e,l l2/ l l~e,l lz 
and the maximum Flative e ,  error (the worst case) 
e 2  = max, [Ire, - ~ e J ~ / ~ p e ~ ~ ~ C O .  We see that both 

Fig. 3 Mean evaluation time for the sFMM and direct methods 
(exmplated) with respect to the number of elements P. 
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Fig. 4 The experimentally found optimum number of cells C,, as 
a function of the number of elements P. 

errors decrease steadily with the approximation order 
L. However, depending on the accuracy required, we 
might need to use relatively high orders L, in this case 
L = 15 N 20. 

Fig. 2 shows the mean time required to evaluate r x  
depending on the choice of the number of cells C, for 
a fixed number of elements P = 14280 and a fixed order 
L = 5. We observe that there is a geometry-dependent opti- 
mal number of cells c,,, somewhat different from the theo- 
retical value derived in the preceding section for the uniform 
case. For our spherical triangulations, the optimum CO, is 
typically situated between P1lz and Pz13 (c.f. Fig. 4). 

Finally the third experiment (Fig. 3) compares the com- 
putational complexity of the sFMM algorithm with the di- 
rect method for progressively increasing number of ele- 
ments P, for L = 5, and with an experimentally found 
optimal C (shown in Fig. 4). We observe that above P z 
70000, it pays off to use the sFMM method, the full FMM 
will likely shift the crossing point even lower. The times for 
the direct method were quadratically extrapolated for high 
P, where it failed for the lack of memory. Note that, if the 
coefficients r;,j in the direct method were not stored but in- 
stead calculated as needed, the FMM would become even 
more competitive. 

5. CONCLUSIONS 

We have presented a new FMM (in its simplified sFMM 
form) for the efficient evaluation of matrix-vector products 
encountered in the BEM formnlation of the direct UMEG 
problem. This will permit the use of significantly larger and 
more precise head models, improving the accuracy of the 
solution of the direct - and consequently also inverse - 
WMEG problem. We have shown that the method is viable 
and outperforms the classical approach for fine triangula- 
tions. Future extensions to full FMM are likely to improve 
these results even further. 
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