

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta strojní Ústav letadlové techniky

Diplomová práce

Návrh UAV pro velmi nízká Reynoldsova čísla

Bc. Martin Bartoš

2021 Vedoucí práce: Ing. Jan Klesa, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: E	3artoš	Jméno: Martin	Osobní číslo: 457625
Fakulta/ústav: F	[:] akulta strojní		
Zadávající katedra/	ústav: Ústav le	tadlové techniky	
Studijní program: L	.etectví a kosmo	onautika	
Studijní obor: L	.etadlová a kosn	nická technika	
ÚDAJE K DIPLON	MOVÉ PRÁCI		
Název diplomové prác	xe:		
Návrh UAV pro velm	ni nízká Reynold	sova čísla	
Název diplomové prác	e anglicky:		
UAV Design for Very	y Low Reynolds	Numbers	
Pokyny pro vypracová	iní:		
 popis proudění při veli návrh různých koncep výpočet letových výko porovnání a výběr opti 	mi nízkých Re icí UAV nů imální varianty		
Seznam doporučené l	iteratury:		
Dle pokynů vedoucího p	práce		
Iméno a pracoviště ve	edoucí(ho) diplom	nové práce:	
Ing. Jan Klesa, Ph.D)., ústav letadle	ové techniky FS	
Jméno a pracoviště dr	uhé(ho) vedoucí	(ho) nebo konzultanta(ky) diplomov	é práce:
Datum zadání diplom	ové práce: 30.1	0.2020 Termín odevzdání	diplomové práce: 15.01.2021
Platnost zadání diplo	mové práce:		
		Ing Robert Theiner Ph D	
Ing. Jan Klesa, Ph. podpis vedoucí(ho) prác	.D. ce	podpis vedoucí(ho) ústavu/katedry	podpis děkana(ky)

Datum převzetí zadání

Podpis studenta

© VUT v Praze, Design: VUT v Praze, VIC

Poděkování / Prohlášení

Rád bych poděkoval panu Ing. Janu Klesovi, PhD. za vstřícný postoj, flexibilní konzultace a odborné připomínky při vedení této práce. Dále bych rád poděkoval své rodině, přátelům a všem, kteří mě na mé cestě vysokoškolskými studii provázeli. Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně s použitím literárních pramenů a informací, které cituji a uvádím v seznamu použité literatury.

V Hradci Králové dne 15. 1. 2021

Abstrakt / Abstract

Cílem této práce je návrh rádiem řízeného modelu UAV pro velmi nízká Reynoldsova čísla. Mezi hlavní požadavky patří možnost létat v malé hale, nízká rychlost letu a dlouhá vytrvalost. Na základě studia aerodynamického chování při nízkých Reynoldsových číslech a rešeršní části halových modelů jsou definovány čtyři koncepty modelů – jednoplošník, dvouplošník, samokřídlo s malou štíhlostí a samokřídlo s větší štíhlostí. U každého z nich je pomocí programu XFLR5 analyzován vliv různých geometrických parametrů na potřebný výkon. Zvolená optimální varianta samokřídla se dvěma elektromotory poskytuje nejnižší hodnotu potřebného výkonu ze zkoumaných návrhů, při zachování nízké rychlosti letu. V závěru práce je popsán předběžný návrh konstrukčního řešení samokřídla.

Klíčová slova: velmi nízké Reynoldsovo číslo; aerodynamický návrh; XFLR5; halový model; jednoplošník; dvouplošník; samokřídlo.

The aim of this thesis is to design a radio-controlled UAV model for very low Reynolds numbers. The main requirements include the ability to fly in a small hall, low flight speed and long endurance. Based on the studies of aerodynamic behaviour at low Reynolds numbers and subsequent research of existing indoor models, four model concepts are defined – monoplane, biplane, flying wing with low aspect ratio and flying wing with greater aspect ratio. The influence of various geometric parameters on the required power is analyzed for each of them using the XFLR5 program. The selected concept of the flying wing equipped with two electric motors provides the lowest required power while maintaining a low flight speed. A preliminary design of the flying wing is presented at the end of the thesis.

Keywords: very low Reynolds number; aerodynamic design; XFLR5; indoor airplane model; monoplane; biplane; flying wing.

Obsah /

1 Ú	vod1
2 A	erodynamika2
2.1	Reynoldosovo číslo2
	2.1.1 Reynoldsovo číslo v at-
	mosféře Marsu3
2.2	Profily při různých Reynold-
	sových číslech4
2.3	Profily při nízkých Reynold-
	sových číslech5
	2.3.1 Vliv tloušťky profilu6
	2.3.2 Vliv prohnutí profilu7
	2.3.3 Vliv pozice maximální-
	ho prohnutí9
	2.3.4 Vliv tvaru náběžné a
	odtokové hrany 10
	2.3.5 Vliv drsnosti povrchu 10
	2.3.6 Vliv Reynoldsova čísla 10
2.4	Vhodné profily pro nízká
	Reynoldsova čísla 11
2.5	Křídlo při různých Reynold-
	sových číslech 13
3 Pì	fehled a statistika modelů $\dots 15$
31	Volná holová modely 15
0.1	vome nalove modely 15
0.1	3.1.1 G-Quirl
3.2	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 16 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22
3.2	3.1.1 G-Quirl
3.2	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 16 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23
3.2	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 16 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23
3.2	3.1.1 G-Quirl
3.2	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabi-
3.2	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabilita lita 24
3.2 3.3 4 EI	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabi- lita 24 ektronika 26
3.2 3.3 4 EI 4.1	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabi- lita 24 ektronika 26 Serva 26
3.2 3.3 4 EI 4.1 4.2	volue halove modely 15 $3.1.1$ G-Quirl 15 $3.1.2$ Quirl, Quix, Sino II, 16 $penny$ 16 $3.1.3$ Soli 17 RC modely 18 $3.2.1$ Night Vapor 18 $3.2.2$ Ice Cream 19 $3.2.3$ RC Quirl 20 $3.2.4$ Carbon Butterfly 21 $3.2.5$ Sans fin 22 Statistika modelů 23 $3.3.1$ Profily 23 $3.3.2$ Křídlo a plošné zatížení 23 $3.3.3$ Mohutnosti ocasních ploch a podélná stabilita lita 24 ektronika 26 Serva 26 Elektromotor 27
3.2 3.3 4 El 4.1 4.2 4.3	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabi- lita 24 ektronika 26 Serva 26 Elektromotor 27 Přijímač 28
3.2 3.3 4 EI 4.1 4.2 4.3 4.4	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 15 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabi- lita 24 ektronika 26 Serva 26 Elektromotor 27 Přijímač 28 Regulátor otáček motoru 28
3.2 3.3 4 El 4.1 4.2 4.3 4.4	3.1.1 G-Quirl. 15 3.1.2 Quirl, Quix, Sino II, 16 3.1.3 Soli 17 RC modely 18 3.2.1 Night Vapor 18 3.2.2 Ice Cream 19 3.2.3 RC Quirl 20 3.2.4 Carbon Butterfly 21 3.2.5 Sans fin 22 Statistika modelů 23 3.3.1 Profily 23 3.3.2 Křídlo a plošné zatížení 23 3.3.3 Mohutnosti ocasních ploch a podélná stabilita lita 24 ektronika 26 Serva 26 Elektromotor 27 Přijímač 28 Regulátor otáček motoru 29

5 Konstru	ukce modelů a stavební	
materia	ály	31
5.1 Bals	a	31
5.2 Uhlí	kové kompozity	31
5.3 Pota	hové materiály	32
5.4 Depi	ron	32
6 Návrh r	ůzných koncepcí UAV	34
6.1 Poža	davky na model	34
6.2 Navi	ržené koncepce	34
7 Metoda	a výpočtu aerodynamic-	
kých ch	arakteristik	36
7.1 Mete	oda výpočtu	36
7.2 Výpe	očet modelu Sans fin	36
7.2.1	Výsledky a srovnání	38
8 Analýza	a navržených koncepcí	40
8.1 Anal	lýza jednoplošníku	40
8.1.1	Návrh hmotnosti jed-	
	noplošníku	40
8.1.2	Stanovení geometrie	
	jednoplošníku	42
8.1.3	Výběr profilu	42
8.1.4	Vliv štíhlosti	42
8.1.5	Vliv zúžení	43
8.2 Anal	lýza dvouplošníku	44
8.2.1	Stanovení hmotnosti a	
	geometrie dvouplošníku	44
8.2.2	Vliv štíhlosti a svis-	
	lé vzdálenosti nosních	
	ploch	44
8.2.3	Vliv stupnéní nosných	4 5
0.0.4	ploch	45
8.2.4	Vliv rozdilne velikosti	45
0.0.4.1	nosnych ploch	45
8.3 Anal	lyza samokridia s malou	16
	Stanovoní hrzatnosti a	40
8.3.1	stanoveni ninotnosti a	16
0 9 9	Zakladni geometrie	40
0.5.2		40
0.4 Anal	ostí	17
SUIII Q / 1	Stanovení hmotnosti a	41
0.4.1	základní geometrie	17
819	Vliv štíhlosti	±1 /8
0.4.2 8 1 9	Vliv zvětšené plochy	40
0.4.0	amokřídla	40
		ч <i>Э</i>

9	Porovnání navržených koncep-		
	cí a výběr optimální varianty $\dots 51$		
10	Navržený model samokřídla $\dots 53$		
11	Závěr		
	Literatura		
A	Výsledky – jednoplošník $\dots \dots 61$		
В	Výsledky – dvouplošník		
С	Výsledky – samokřídlo		
D	Souřadnice autostabilního		
	profilu		

Tabulky / Obrázky

2.1.	Vliv tloušťky profilu na C_d 6
2.2.	Vliv prohnuti profilu na
	$(C_l/C_d)_{max}$
3.1.	Specifikace modelu G-Quirl 16
3.2.	Specifikace modelů klasické
	konstrukce na gumový pohon 17
3.3.	Specifikace modelu Soli 18
3.4.	Hmotnost částí modelů Va-
	por a Mini Vapor 18
3.5.	Specifikace modelu Night Va-
	por 19
3.6.	Specifikace modelu Ice Cream . 20
3.7.	Hmotnosti RC modelu Sans
	fin
3.8.	Specifikace modelu Sans fin 23
3.9.	Parametry křídel modelů 24
3.10.	Parametry ocasních ploch
	modelů
3.11.	Charakteristiky podélné sta-
	bility vybraných modelů 25
4.1.	Parametry stejnosmerných
	motorů
4.2.	Parametry LiPo akumulátorů . 30
5.1.	Pouziti jednotlivych typu
	balsy na ruzne casti mode-
	1131
5.2.	Vlastnosti uhlikovych tyci 32
5.3.	Hmotnost Depronovych desek . 33
7.1.	Odhad omocenych ploch cas-
	ti trupu modelu Sans fin 37
8.1.	Zvolene vybaveni navrhova-
	neho modelu
8.2.	Hmotnost casti draku mode-
• •	lu vapor 41
8.3.	Uvazovana nmotnost jednot-
	nvych časti draku pro model
0.4	navrnovaneno jednopiosniku 41
8.4.	Zvolene vybaveni samokridia
0 5	s vetsi stilliosti
ð.5.	Uvazovana ninotnost jednot-
	nvych cash draku pro model
10.1	Samokhula s vetsi stimosti 48 Specifikace pourženého mo
10.1.	delu comelettida
	delu samokridia 53

2.1.	Porovnání atmosférv Marsu	
	a Země	3
2.2.	Vizualizace proudu vzduchu	-
	při malých úhlech náběhu v	
	závislosti na <i>Re</i>	4
2.3.	Vliv Re na maximální aero-	
	dynamickou jemnost profilů	5
2.4.	Zkušební nádoba	6
2.5.	Poláry profilů vybraných	
	NACA	7
2.6.	Poláry profilu NACA 0002 a	
	tenké desky	8
2.7.	Vztlakové čáry profilů NA-	
	CA 0002 a NACA 4402	8
2.8.	Poláry profil NACA 0002 a	
	NACA 4402	9
2.9.	Vztlakové čáry profilů NA-	
	CA0002 a NACA0008	11
2.10.	Testované profily	11
2.11.	Charakteristiky testovaných	
	profilů	12
2.12.	Optimalizovane profily R2 a	10
	$\mathbf{K}_{\mathbf{D}}$	12
2.13.	Porovnani promu Ko, NA- CA 4402 \circ NACA 4702	19
2 1 4	CA 4402 a NACA 4702	19
2.14.	nimální opadání	14
21	Halový větroň C-Ouirl	14
3.1.	Volný halový model Quirl-CM	16
33	Model Soli	17
3.4.	Night Vapor	19
3.5.	Model Ice Cream	20
3.6.	RC model Quirl	$\overline{21}$
3.7.	Model Carbon Butterfly	22
3.8.	Model Sans fin	22
4.1.	Microservo.	26
4.2.	Lineární servo H2040L	27
4.3.	Možnosti umístění magnetic-	
	kého aktuátoru	27
4.4.	Ukázka reálné aplikace mag-	
	netického aktuátoru	27
4.5.	Přijímač MA-RX42-D	28
4.6.	Přijímač DT Rx43d	29
4.7.	Přijímač 24R6CLV11	29
5.1.	Depronové desky	32

5.2.	Depron tvarovaný teplou vo-	
	dou	32
6.1.	Model Drenalyn	35
6.2.	E-flite X-VERT VTOL $0,5~{\rm m}$.	35
7.1.	Geometrie modelu Sans fin v	
	XFLR5	37
7.2.	Sans fin – potřebný výkon	
	pro různé polohy těžiště	38
7.3.	Sans fin – jednotlivé vlivy na	
	potřebný výkon	39
8.1.	Jednoplošník – vliv různých	
	štíhlostí na potřebný výkon	43
8.2.	Jednoplošník – vliv různých	
	zúžení na potřebný výkon	43
8.3.	Dvouplošník – vliv různých	
	štíhlostí a svislé vzdálenosti	
	nosných ploch na potřebný	
	výkon	44
8.4.	Dvouplošník – vliv stupnění	
	křídel na potřebný výkon	45
8.5.	Dvouplošník – vliv velikosti	
	nosných ploch na potřebný	
	výkon	46
8.6.	Porovnání autostabilního	
	profilu s NACA 3402	47
8.7.	Samokřídlo – vliv různých	
	štíhlostí na potřebný výkon	48
8.8.	Samokřídlo – větší plocha,	
	vliv různých stihlosti na po-	-
• •	trebny vykon	50
9.1.	Porovnani jednotlivych kon-	۳1
10.1	$\begin{array}{l} \text{cepc1 pro } \lambda = 4 \dots \\ Det i show or isomorphism in a second s$	51
10.1.	Potrebny vykon navrzeneno	54
10.2	Poléza pozzženého somolyžídla	54 54
10.2.	Pueblostní polére pouržené	04
10.3.	ho somelyřídle	55
10 /	3D model navrženého sa	00
10.4.	mokřídla	55
10 5	Navržené samokřídlo – tři	00
10.5.	nohledy	56
	pomedy	00

Seznam použitých symbolů a značení

A_{SOP}	Mohutnost svislé ocasní plochy
A_{VOP}	Mohutnost vodorovné ocasní plochy
b	Hloubka křídla
b_{root}	Hloubka kořenového žebra
b_{SAT}	Délka střední aerodynamické tětivy křídla
c	Charakteristický rozměr tělesa
C	Kapacita akumulátoru
C_d	Součinitel odporu profilu
C_{d0}	Součinitel odporu nulového vztlaku profilu
C_D	Součinitel odporu – 3D (křídlo, letadlo)
C_{Dtvar}	Tvarový součinitel odporu trupu
C_{fe}	Součinitel odporu povrchového tření
C_l	Součinitel vztlaku profilu
C_{lmax}	Maximální součinitel vztlaku profilu
$C_{l\alpha}$	Sklon vztlakové čáry profilu
C_L	Součinitel vztlaku – $3D$
C_m	Součinitel klopivého momentu
C_{m0}	Součinitel klopivého momentu nulového vztlaku
$C_{m\alpha}$	Sklon momentové čáry
D	Odporová síla
D_{prop}	Průměr vrtule
g	Tíhové zrychlení na Zemi
g_{Mars}	Tíhové zrychlení na planetě Mars
Ι	Elektrický proud
l	Rozpětí křídla
L	Vztlaková síla
m	Hmotnost
$m_{k{ m \check{r}}}$	Hmotnost křídla
P_p	Potřebný výkon
P_{p_prop}	Potřebný výkon s uvažováním vlivu vrtule
Re	Reynoldsovo číslo
S	Plocha křídla
S_{Dtr}	Největší průřez trupu
S_{SOP}	Plocha směrového kormidla
S_{VOP}	Plocha výškového kormidla
$S_{wet_{tr}}$	Omočená plocha ve vrtulovém proudu
$S_{wet_{tr}}$	Omočená plocha trupu

T	Vytrvalost
U	Elektrické napětí
v	Rychlost letu, rychlost obtékané tekutiny
v_{min}	Minimální rychlost letu
v_z	Vertikální rychlost letu
x_{AC}	Poloha aerodynamického středu letadla
x_c	Těžištní zásoba letadla
x_T	Poloha těžiště letadla
Δx	Stupnění křídel dvouplošníku
Δz	Svislá vzdálenost nosných ploch dvouplošníku
α	Úhel náběhu
$\alpha_{C_l=0}$	Úhel náběhu nulového vztlaku
δ	Výchylka klapky
δ_n	Koeficienty řady
η	Zúžení
$\eta_{Peffective}$	Účinnost vrtule s vlivem částí letadla ve vrtulovém proudu
η_{pohon}	Účinnost pohonu (vrtule–akumulátor)
η_P	Účinnost vrtule
λ	Štíhlost křídla
λ_{VOP}	Štíhlost vodorovné ocasní plochy
λ_{SOP}	Štíhlost svislé ocasní plochy
v	Kinematická viskozita
ρ	Hustota
$\left(c\right)$	
$\left(\frac{C_l}{C_d}\right)_{max}$	Maximální poměr součinitele vztlaku ku součiniteli odporu
$\left(\frac{C_l^{3/2}}{C_d}\right)_{max}$	Maximální poměr součinitele vztlaku na tři poloviny ku součiniteli odporu
$\frac{C_L}{C_D}$	Poměr součinitele vztlaku ku součiniteli odporu letadla
L/D	Poměr vztlaku ku odporu
t/b	Poměr tloušťky profilu k jeho hloubce

t/b Pomer tloustky W/S Plošné zatížení

Rozvoj na poli elektroniky posouvá možnosti rádiem řízených modelů. Jejich velikost a hmotnost se snižuje až na jednotky gramů, což umožňuje létání nejen venku, ale i v menších halách, či dokonce ve větších pokojích. Velkou výhodou je možnost létání opravdu kdykoli i za špatného počasí.

Předmětem této práce je návrh rádiem řízeného modelu UAV, se kterým bude možné létat v menší hale, na malých rychlostech se značnou vytrvalostí. S jistým přebytkem tahu motoru by bylo možné s letadlem provést některý ze základních prvků akrobacie, jako například přemet. V případě, že by byl tah motoru větší než tíha letounu, mohl by i viset na vrtuli. Takový model by pak mohl být v praxi použit například při prezentaci ústavu nebo celé fakulty v rámci dne otevřených dveří nebo veletrhů vysokých škol.

Na základě přehledu halových modelů, elektroniky a stavebních materiálů jsou v práci navrženy čtyři možné koncepce. Ty jsou v další části detailněji rozpracovány a pomocí programu XFLR5 analyzovány. Porovnávány jsou zejména různé změny geometrie křídla a zkoumán jejich vliv na aerodynamické charakteristiky. Po zhodnocení a srovnání koncepcí mezi sebou je vybrána optimální varianta a navržena konstrukce.

Kapitola **2** Aerodynamika

Aerodynamika je rozsáhlý vědní obor zabývající se prouděním plynů a jeho působením na tělesa. Nejčastější dělení probíhá z hlediska rychlosti proudění na: aerodynamiku nízkých rychlostí a aerodynamiku vysokých rychlostí. Pro popis proudění slouží řada podobnostních čísel. Mezi ta nejdůležitější patří Machovo a Reynoldsovo číslo. V případě aerodynamiky velmi nízkých rychlostí je velikost Machova čísla zanedbatelná a proudění definuje zejména číslo Reynoldsovo.

2.1 Reynoldosovo číslo

Reynoldosovo číslo je bezrozměrné podobnostní číslo, které vyjadřuje poměr setrvačných a třecích sil proudícího média. Zároveň se využívá pro rozlišení laminárního a turbulentního proudění. U vyšších hodnot je tendence proudu k turbulentnímu chování. [1]

Reynoldosovo číslo je definováno dle vztahu

$$Re = \frac{v \cdot c}{v},\tag{2.1}$$

kde:

- $\blacksquare v$ rychlost obtékané tekutiny,
- \Box c charakteristický rozměr tělesa,
- v kinematická viskozita obtékané tekutiny.

V leteckých aplikacích se rychlost obtékání definuje jako střední rychlost vzduchu, který obtéká zkoumanou část letadla (profil, křídlo, trup, ocasní plochy). Tato rychlost je shodná s rychlostí letadla vůči vzduchu. Charakteristický rozměr je definován jako hloubka profilu či křídla. V případě trupu se počítá s jeho délkou. Kinematická viskozita je charakteristika obtékané tekutiny a závisí na hustotě a dynamické viskozitě.

Při velmi nízkých Re dominují vazké síly a popis proudění je značně obtížný, zejména kvůli obvyklému odtržení proudu. Pokud je proudění laminární, dochází k odtržení v mezní vrstvě na horní straně profilu už při nízkém úhlu náběhu. Vzdálenost místa odtržení od náběžné hrany závisí na Re a úhlu náběhu α . Tyto dva parametry také ovlivňují, zda dojde ke zpětnému přilnutí po odtržení. Pokud proudění zůstane odtržené, skokově se sníží C_l a zvýší C_d , čímž dojde k prudkému snížení výkonnostních charakteristik stejně jako v aerodynamice vysokých Re. [2] [3]

Obtékání tělesa nízkými Reynoldsovými čísly může být dosaženo několika způsoby. Ze vzorce (2.1) plynou tyto možnosti:

- nízká rychlost obtékání
- malý charakteristický rozměr obtékaného tělesa
- vysoká kinematická viskozita
- kombinace výše uvedených

Nejčastěji je proudění při nízkých Reynoldsových číslech dosaženo právě díky prvním dvěma možnostem ze seznamu a jejich kombinací. Při uvažování letu ve vzduchu definovaném mezinárodní standardní atmosférou a malých výškách je výrazná změna kinematické viskozity nemožná.

Velká změna v kinematické viskozitě by však nastala, pokud bychom uvažovali například atmosféru jiné planety. Z pohledu současných vizí kosmonautiky v nadcházejících dekádách se jako velmi aktuální jeví planeta Mars.

2.1.1 Reynoldsovo číslo v atmosféře Marsu

Složení atmosféry Marsu je tvořeno z 95 % CO₂ a hodnota kinematické viskozity je přibližně o dva řády vyšší (10^{-3}) než viskozita vzduchu na Zemi. Tím se výrazně snižuje Reynoldosovo číslo.

Hustota atmosféry Marsu se pohybuje okolo jednoho procenta hustoty atmosféry Země. Pro ilustraci, jeden metr krychlový atmosféry Marsu váží pouhých 15 g. K získání vztlaku potřebného pro let je tedy nutné vygenerovat mnohem větší rychlost proudění, popřípadě zvětšit plochu křídla.

Dalším významným rozdílem je nižší rychlost zvuku, která je zapříčiněna velkým podílem CO_2 v atmosféře a nízkou teplotou. To má za následek vyšší Machova čísla a z nich vyplývající problémy se stlačitelností proudu.

Naopak ve prospěch aerodynamického letu hraje nižší tíhové zrychlení, které je přibližně 3.7 m.s^{-2} . Hodnoty jsou převzaté z článku [4] a spolu s dalšími charakteristikami atmosféry Marsu jsou zobrazeny v tabulce na obrázku 2.1.

Parameter	Mars	Earth	Units
Total solar irradiance	591	1373	W m ⁻²
Orbital eccentricity	0.093	0.017	
Axial inclination (obliquity)	25.2	23.4	degrees
Length of day	24.62 (1 sol)	23.94	hours
Length of year	686.98 (667 sols)	365.26	Earth days
Gravity, g	3.7	9.8	$m s^{-2}$
Atmospheric gas constant, R	188	287	$J kg^{-1} K^{-1}$
Typical surface pressure, p	7	1015	hPa
Typical surface density, ρ	1.5×10^{-2}	1.2	kg m ^{-3}
Typical surface temperature, T	220	300	K
Scale height, $H = RT/g$	11	9	km
C_p	730	1010	$J K^{-1} kg^{-1}$
Kinematic viscosity, ν	10^{-3}	1.5×10^{-5}	$m^2 s^{-1}$
Buoyancy parameter, g/T	$1.8 imes 10^{-2}$	3.3×10^{-2}	$m K^{-1} s^{-2}$
Dry adiabatic lapse rate, Γ	4.5×10^{-3}	9.8×10^{-3}	$K m^{-1}$

TABLE 1. Parameters Characterizing the Climate andAtmosphere for Mars and the Earth

Obrázek 2.1. Porovnání atmosféry Marsu a Země. [4]

Pro názornost je uveden výpočet Reynoldsova čísla pro model letadla o hmotnosti m = 0.5 kg, rozpětí l = 2 m s uvažovanou konstantní hloubkou křídla b = 0.18 m a součinitelem vztlaku $C_L = 1$. Křídlo musí vygenerovat vztlakovou sílu dle

$$L = \frac{m}{g_{Mars}} = \frac{0.5}{3.7} = 1.85 \text{ N.}$$
(2.2)

2. Aerodynamika

Rychlost letu letadla v atmosféře Marsu se následně vypočítá podle

$$v = \sqrt{\frac{2 \cdot L}{C_L \cdot \rho \cdot b \cdot l}} = \sqrt{\frac{2 \cdot 1,85}{1 \cdot 1,5 \cdot 10^{-2} \cdot 0,18 \cdot 2}} = 26,2 \text{ m.s}^{-1}.$$
 (2.3)

A Reynoldosovo číslo na křídle tedy vychází

$$Re = \frac{v \cdot b}{v} = \frac{26.2 \cdot 0.18}{1 \cdot 10^{-3}} = 4\ 700. \tag{2.4}$$

Stejný model letadla pohybující se ve výšce hladiny moře dle mezinárodní standardní atmosféry Země by se pohyboval rychlostí $v = 4,72 \text{ m.s}^{-1}$ a Reynoldsovo číslo na křídle by odpovídalo hodnotě Re = 58 100. Je tedy patrné, že v atmosféře Marsu jsou kvůli menší hustotě a vyšší kinematické viskozitě potřebné vyšší rychlosti k zajištění potřebného vztlaku, a zároveň je dosaženo výrazně nižších Reynoldsových čísel.

Uvažovaný model má poměrně nízké plošné zatížení 13,9 g.dm⁻² a k zajištění vodorovného letu na Marsu potřebuje rychlost 26,2 m.s⁻¹. V případě použití běžně využívaných letadel pro dopravu lidí na Zemi by byly rychlosti potřebné k zajištění ustáleného vodorovného letu mnohem vyšší a spolu s nižší rychlostí zvuku by se ve většině případů takové letadlo pohybovalo v oblastech supersonických rychlostí.

Let na Marsu lze za určitých podmínek přirovnat k letu v atmosféře Země ve výšce okolo 30 km. Jak plyne z výpočtů i z řady článků, jedná se o velmi obtížné podmínky pro uskutečnění aerodynamického letu. [5] [6]

2.2 Profily při různých Reynoldsových číslech

Ještě předtím, než bude zkoumán vliv různých parametrů profilu na jeho aerodynamické charakteristiky a výkony při nízkých Reynoldsových číslech, bude uveden obecný přehled aerodynamiky proudícího vzduchu kolem běžných profilů v rámci celé škály Reynoldsových čísel.

Obrázek 2.2 ukazuje schéma proudnic okolo profilu pro různá Reynoldsova čísla a malé úhly náběhu.

Obrázek 2.2. Vizualizace proudu vzduchu při malých úhlech náběhu v závislosti na Re. [7]

Pro Reynoldsova čísla $Re > 500\ 000$ je typická dvojice typů proudění v mezní vrstvě profilu. V blízkosti náběžné hrany se nachází laminární proudění, které se při dosazení kritického Reynoldsova čísla na horní straně odtrhává a mění na turbulentní. Turbulentní vrstva je méně náchylná k separaci, takže obvykle zůstává přilnutá k profilu až k jeho odtokové hraně. Při vyšších úhlech náběhu se i turbulentní mezní vrstva začne odtrhávat, a to v blízkosti odtokové hrany. Dochází ke zvýšení odporu a snížený vztlaku profilu. Při dalším zvyšování úhlu náběhu se začne bod odtržení posouvat směrem k náběžné hraně, razantně narůstá odpor a klesá vztlak. V poslední fázi nastane odtržení na celém profilu, a ten přestává generovat vztlak. [7] V oblasti 50 000 < Re < 500 000 je velikost separační bubliny a tloušťka turbulentní mezní vrstvy větší, což vede ke zvýšení odporu. Dochází k odtržení na horní straně profilu a následnému přilnutí proudění zpět v oblasti odtokové hrany. Se zvyšujícím se úhlem náběhu, se bod zpětného přilnutí pohybuje směrem k odtokové hraně, což vytváří relativně velké separační bubliny (15–40 % hloubky profilu). Když se profil pohybuje na úhlech náběhu blízkých pádové rychlosti, proud osciluje mezi celkovým odtržením a zpětným přilnutím, což může vést k nestabilním aerodynamickým jevům. [7]

Pro nízká Reynoldsova čísla je odtržení laminární mezní vrstvy posunuto až do oblasti odtokové hrany i při nízkých úhlech náběhu. Se zvyšujícím se úhlem náběhu se bod odtržení pohybuje směrem k náběžné hraně. Odtržené proudění při nízkých *Re* nepřilne zpět k profilu, což vede k vysokým hodnotám odporu a snížení generovaného vztlaku už při nízkých úhlech náběhu. [7]

Jak je patrné z obrázku 2.3, konvenční letadlové profily výrazně převyšují aerodynamickou jemnost, kterou je možné dosáhnout pomocí tenké desky. Není divu, lidstvo se vývojem profilů pro vysoká Reynoldsova čísla zabývá více než jedno století a jedná se o jeden z hlavních zájmů v oblasti letectví. Pro nižší Reynoldsova čísla (řádově 10^5) se však výkony konvenčních profilů začínají snižovat až na hodnoty tenké desky. Při nízkých Reynoldsových číslech (< 10^5) začíná být tenká deska dokonce aerodynamicky výkonnější. To vede hned k řadě výzkumných otázek. Jak ovlivňují jednotlivé geometrické charakteristiky profilu aerodynamické parametry při nízkých Reynoldsových číslech? Je tenká deska to nejlepší, co můžeme při nízkých Reynoldsových číslech použít? Jaký tvar by měl mít optimální profil pro nízká Reynoldsova čísla?

Obrázek 2.3. Vliv Re na maximální aerodynamickou jemnost profilů. [7]

2.3 Profily při nízkých Reynoldsových číslech

Analýzou a návrhem vhodných profilů v oblasti nízkých Reynoldsových čísel ($Re < 10\ 000$) se na přelomu 21. století zabývala dvojice Kunz, Kroo na univerzitě ve Standfordu. Svůj výzkum prováděli v rámci vývoje malého létajícího zařízení o hmotnosti 10–20 g. Proudění je uvažované jako stabilní, nestlačitelné, laminární. Série profilů byla analyzovaná pomocí dvoudimenzionálního Navier-Stokes programu pro nestlačitelné proudění - INS2d. Jejich poznatky byly sepsány v 3. kapitole knihy "Fixed and flapping wing aerodynamics for micro air vehicle applications" [3].

2. Aerodynamika

Dalším zdrojem informací je článek "Airfoil Section Characteristics at a Low Reynolds Number" [8] z roku 1997, který se zabývá aerodynamickými charakteristikami profilů a jiných tvarů při $Re = 4\ 000$. Pro měření byla použita nádoba s vodou o velikosti 1800x700x300 mm, její nákres je zobrazen na obrázku 2.4. Do nádoby byla postupně umisťována křídla s různými profily, která byla tažena vodou uvnitř nádoby.

Obrázek 2.4. Zkušební nádoba pro testování křídel různých profilů. [8]

2.3.1 Vliv tloušťky profilu

Vliv maximální tloušťky byl Kunzem a Krooem zkoumán na symetrických profilech NACA 0002, NACA 0004, NACA 0006 a NACA 0008. Každý profil byl zkoumán pro $Re = 2\ 000$ a $Re = 6\ 000$. [3]

Vypočítané poláry profilů jsou zobrazeny v grafu na obrázku 2.5. Snížením Reynoldsova čísla z 6 000 na 2 000 se hodnoty součinitele odporu zdvojnásobily. Je patrné, že i malá změna Re má velký vliv na odpor a výkon profilu. Maximální hodnoty součinitele vztlaku se zvýšily, ovšem ne tak razantně jako součinitel odporu. Pro obě hodnoty Re je patrné, že tenčí profily vykazují vyšší poměr C_l/C_d a se snižováním Re dochází ke snižování maximální hodnoty C_l/C_d .

Výsledky potvrzují předpoklad lineární závislosti mezi tloušťkou profilu a součinitelem odporu při nulovém vztlaku. Složka odporu závislá na tloušťce profilu roste s klesající hodnotou Re a její lineární přírůstek je výraznější pro nízká Re (druhý sloupec v tabulce 2.1). Výsledky extrapolace součinitele odporu při nulovém vztlaku pro nulovou tloušťku profilu (první sloupec tabulky) jsou vůči teoretickému laminárnímu odporu tenké desky (třetí sloupec tabulky) odlišné o 5,3 % při Re = 6 000 a o 9,5 % při Re = 2 000. Hodnoty pro součinitel odporu nulového vztlaku jsou pro nízká Reo řád větší oproti hodnotám pro $Re = 6 \cdot 10^6$. Podobně to platí i pro přírůstek C_d v závislosti na tloušťce. [3]

Re	Zero thickness,	C_d increase	Laminar plate
	zero lift C_d	per % t/b	C_d
2 000	0,0656	0,0013	0,0593
6 000	0,0362	0,0008	0,0342
$6 \cdot 10^6$	0,0040	0,0002	_

Tabulka 2.1. Vliv tloušťky profilu na součinitel odporu C_d pro různá Re.[3]

Obrázek 2.5. Poláry profilů NACA 0002, NACA 0004, NACA 0006 a NACA 0008 pro různá Re. [3]

Autoři porovnávali rozdíl ve výkonnosti rovné desky konstantní tloušťky a NACA profilu se stejnou maximální tloušťkou. V rámci analýzy byl vybrán profil NACA 0002 a rovná deska s tloušťkou 2 %.

Jak lze vidět z grafu na obrázku 2.6, hlavní rozdíl je posunutí poláry tenké desky k větším hodnotám součinitele odporu při zachování téměř totožných tvarů křivek. Zároveň však nedochází ke snížení sklonu vztlakové čáry ($C_{l\alpha}$) a tím pádem nedochází k drastickému snižování poměru L/D. Nárůst součinitele odporu lze přirovnat ke zvýšení tloušťky profilu z 2 % na 5 %, které by však způsobilo markantní snížení L/D o 20–25 %. Pro vyšší Reynoldsova čísla je procentuální zvýšení součinitele odporu tenké desky vůči profilu NACA 0002 větší. V případě Re = 1 000 a Re = 2 000 je přírůstek asi 5 %, v případě Re = 6 000 se jedná už o 18% zvýšení. Lze tedy konstatovat, že se snižujícím se Reynoldsovým číslem a snižující se maximální tloušťkou profilu se zmenšuje vliv rozložení tloušťky po profilu. [3]

2.3.2 Vliv prohnutí profilu

Vliv prohnutí profilu má při nízkých Re stejný efekt na aerodynamické charakteristiky jako při vyšších Re. Projevuje se zejména posunutím úhlu náběhu nulového vztlaku do oblasti záporných úhlů náběhu. Z naměřených hodnot ve studii [8], která zkoumala vlastnosti různých profilů v měřící nádobě s vodou, je patrné, že poměr $(C_l/C_d)_{max}$ je nejvyšší pro prohnutí profilu 5 % s polohou maximálního prohnutí přibližně v polovině hloubky profilu. Sklon vztlakové čáry roste s rostoucím prohnutím. [3] [8]

Studie [3] porovnávala profily NACA 0002 a NACA 4402. Z grafu vztlakových čar na obrázku 2.7 a grafu polár na obrázku 2.8 lze vyčíst výrazné zlepšení výkonnostních parametrů zakřiveného profilu. U profilu s 4% prohnutím ve 40 % hloubky se maximální součinitel vztlaku C_{lmax} zvýšil o 30 % oproti profilu bez zakřivení. Zároveň došlo k posunutí úhlu nulového vztlaku $\alpha_{C_l=0}$ o 2–2,5°. Kvůli zakřivení vzrostl také součinitel odporu, ale méně výrazně než součinitel vztlaku, což vede ke znatelnému zvýšení poměru $(C_l/C_d)_{max}$. Pro Re = 1 000 došlo ke zvýšení z 4,5 na 5,4 a pro Re = 6 000 z 9,3 na 11,0. 2. Aerodynamika

Obrázek 2.6. Poláry profilu NACA 0002, tenké desky s tupou náběžnou hranou a tenké desky s rádiusem pro různá *Re.* [3]

Obrázek 2.7. Vztlakové čáry profilů NACA 0002 a NACA 4402 pro různá Re. [3]

U profilu NACA 0002 se zmenšení Re projevuje snížením sklonu lineární části vztlakové čáry. U prohnutých profilů má snížení Re za následek posun vztlakové čáry k vyšším hodnotám úhlu náběhu nulového vztlaku. To je způsobeno tím, že zmenšování Re vede ke snižování efektivního prohnutí profilu.

Z grafu polár na obrázku 2.8 je patrný stejný vliv prohnutí profilu jako u aerodynamiky vysokých Re. Součinitel odporu nulového vztlaku se zvětšuje s rostoucím prohnutím a dochází k posunu polár směrem k vyšším hodnotám C_l .

Oddálení odtržení proudu na odtokové hraně s klesajícím Reynoldsovým číslem je z grafů patrné i pro prohnutý profil NACA 4402. Pro $Re = 6\ 000,\ \alpha = 5^\circ$ dojde k odtržení v 55 % hloubky profilu, zatímco pro stejný úhel náběhu při $Re = 2\ 000$ dojde k odtržení až v 92 % hloubky. Při $Re = 1\ 000$ a stejném úhlu náběhu je proud vzduchu plně přilnut k profilu a k odtržení dochází až při vyšších α .

Obrázek 2.8. Poláry profilů NACA 0002 a NACA 4402 pro různá Re. [3]

2.3.3 Vliv pozice maximálního prohnutí

Ve studii [8] byl vliv pozice maximálního prohnutí zkoumán na tenké desce s 5% tloušťkou a 5% prohnutím při $Re = 4\ 000$. V prvním případě bylo maximum prohnutí umístěno v 25 % hloubky profilu, v druhém případě v 50 % a ve třetím v 75 %. Profily s pozicí maximálního prohnutí v 25 % a v 75 % vykazují stejnou hodnotu poměru $(C_l/C_d)_{max} = 7,3$. Pro první profil je této hodnoty dosaženo při $\alpha = 9^\circ$, zatímco u profilu s maximálním prohnutím v 75 % hloubky při $\alpha = 3^\circ$. Nejlépe vychází profil s maximálním prohnutím v půlce hloubky, který vykazuje $(C_l/C_d)_{max} = 8,6$ při $\alpha = 5^\circ$ a jedná se zároveň o nejvyšší dosaženou hodnotu $(C_l/C_d)_{max}$ ze všech patnácti zkoumaných profilů v tomto článku. Kompletní výsledky jsou zobrazeny v tabulce na obrázku 2.11.

Autoři studie [3] se snažili pomocí parametrizace najít optimální kombinaci velikosti a polohy maximálního prohnutí při Re = 12~000. Pro porovnání byly vybrány profily NACA s 2% tloušťkou a maximálním prohnutím 2 %, 4 % a 6 % v 30 %, 50 % a 70 % hloubky. Vzniklo tedy 9 kombinací, výsledné hodnoty $(C_l/C_d)_{max}$ jsou zobrazeny v tabulce 2.2.

Maximální	$(C_l/C_d)_{max}$			
$\operatorname{prohnut}$ í	s polohou maximální tloušťky v			
	30~%	$50 \ \%$	70~%	
2	14,7	14,8	15,4	
4	13,7	13,9	15,7	
6	10,4	11,5	14,8	

Tabulka 2.2. Vliv prohnutí profilu na součinitel $(C_l/C_d)_{max}$ při $Re = 12\ 000.[3]$

Profily vykazovaly nejlepší poměr (C_l/C_d) při umístění maximálního prohnutí profilu v 70 % jeho hloubky. Je patrné, že posunutím pozice maximálního prohnutí blíže k odtokové hraně lze dosáhnout výrazně lepších výkonů. Volba velikosti maximálního prohnutí už není tak jednoznačná. Hodnoty pro maximální prohnutí 2 % a 4 % s pozicí v 70 % hloubky jsou si velmi blízko a jedná se zároveň o jedinou pozici maximálního prohnutí, kdy profil s 4% maximálním prohnutím vykazuje lepší hodnoty než s 2% maximálním prohnutím. Dále je patrné, že 6% prohnutí je už příliš velké. Takový profil výkonnostně výrazně zaostává pro všechny pozice maximálního prohnutí za profily s menším prohnutím.

Pokud porovnáme výsledky ze studií [8] a [3], zjistíme, že zvýšením Reynoldsova čísla z 4 000 na 12 000 se hodnoty $(C_l/C_d)_{max}$ zvýšily téměř dvojnásobně. Z obou studií však plyne, že zvyšováním maximálního prohnutí nad 6 % s sebou nese výrazný pokles $(C_l/C_d)_{max}$.

2.3.4 Vliv tvaru náběžné a odtokové hrany

Studie [3] zkoumala dva typy náběžné hrany na tenké desce – tupou a s rádiusem. Tvar náběžné hrany ovlivňuje vznik odtržení. Ze studie vyplývá, že náběžná hrana s rádiusem oddaluje odtržení proudu vzduchu k větším úhlům náběhu. Například při Re = 6~000 dojde k odtržení na desce s tupou náběžnou hranou prakticky okamžitě, avšak u desky s rádiusem se toto odtržení posouvá o 1,5°. Zhoršené parametry tupé náběžné hrany lze zpozorovat i v grafu na obrázku 2.6. Autoři doporučují se tupé náběžné hraně zcela vyhnout.

Z měření profilů v nádobě s vodou ve studii [8] při $Re = 4\ 000\ \text{vyplývá}$, že nejlepších výkonů ploché desky je dosaženo ostrou náběžnou hranou. Úhel náběhu při kterém dojde k odtržení proudění je pro plochou desku s ostrou náběžnou hranou větší než pro desku o stejné tloušťce bez ostré náběžné hrany. Obdobně vychází z měření i poměr $(C_l/C_d)_{max}$, který dosahuje vyšších hodnot pro desku s ostrou náběžnou hranou. Autoři zkoumali i ostrou odtokovou hranu, která má však podle provedených měření zanedbatelný vliv na aerodynamické charakteristiky.

2.3.5 Vliv drsnosti povrchu

Dle studie [8] neovlivňuje drsnost povrchu výkon profilu při malých *Re*. Autoři studie uvádí dva možné důvody. Zaprvé, Reynoldsovo číslo uvažované v této studii je mnohem menší než kritické Reynoldsovo číslo. Druhé možné vysvětlení je, že turbulence způsobené pohybem křídla ve vodě jsou tak velké, že turbulence způsobené drsností povrchu nemohou být pozorovány.

2.3.6 Vliv Reynoldsova čísla

Nejvýraznější změnou při nízkých Re je nárůst součinitele odporu profilu. Tento nárůst není doprovázen nárůstem vztlaku (zůstává ve stejném řádu), což vede ke snížení poměru L/D. Let je tedy méně efektivní, je zapotřebí větší výkon pro generování stejného vztlaku a profil při nízkých hodnotách Re nedisponuje takovou aerodynamickou jemností. Při vysokých Re je žádoucí využívat profil na maximálních hodnotách L/D. Při nízkých Re je tato potřeba ještě markantnější. Oblast, kde profil dosahuje maximálních hodnot L/D je však umístěna velmi blízko pádové rychlosti a vzniká problém se zajištěním dlouhodobě stabilního obtékání. [3]

Změnou Reynoldsova čísla je ovlivněna také vztlaková čára. Zmenšením Re dochází ke zmenšení sklonu lineární části vztlakové čáry a k jejímu prodlužování k vyšším úhlům náběhu. V této části tloušťka mezní vrstvy postupně snižuje efektivní prohnutí profilu se zvyšujícím se úhlem náběhu. Efektivní prohnutí profilu se zvětšuje se snižujícím se Reynoldsovým číslem. Konečným výsledkem je významné zvýšení maximálního úhlu náběhu (steady-state angle of attack) a součinitele vztlaku C_l . [3]

V grafu na obrázku 2.9 jsou zobrazeny vztlakové čáry profilů NACA 0002 a NACA 0008 pro Re = 6 000 a Re = 2 000. U profilu NACA 0002 je velmi dobře patrná změna sklonu lineární části v závislosti na Re. Pro druhý profil není

Obrázek 2.9. Vztlakové čáry profilů NACA 0002 a NACA 0008 pro různá Re. [3]

změna tak viditelná zejména proto, že tento profil s větší tloušťkou má kratší lineární část vztlakové čáry. U obou profilů je patrný nárůst maximální hodnoty součinitele vztlaku a zvětšení hodnoty maximálního úhlu náběhu při nižších Reynoldsových číslech.

2.4 Vhodné profily pro nízká Reynoldsova čísla

Na obrázku 2.10 jsou zobrazeny zkoumané profily z článku [8]. Naměřené aerodynamické parametry jsou uvedeny v tabulce na obrázku 2.11.

Obrázek 2.10. Testované profily. [8]

V samotném závěru studie jsou shrnuty tři klíčové vlastnosti profilu s dobrými vlastnostmi při $Re = 4\ 000$. Takový profil je tenčí než profily vhodné pro vyšší Re, má ostrou náběžnou hranu a prohnutí 5 %, jehož maximum je umístěno v polovině hloubky. [8]

Na konci studie autorů Kunze a Krooma [3] lze nalézt optimalizované profily pro nízká Re. Autoři zafixovali maximální tloušťku profilu na 2 % a distribuce tloušťky byla použita z čtyřmístných NACA profilů, aby bylo zmenšeno množství proměnných,

	Life allows	CHC I	(C)) 12 (C)	Cd at $C_d =$	small angle of attain $C_{d0} + \delta_1 \alpha + \delta_2 \alpha^2$	ck	
	Cl_{α}	$(\alpha \text{ deg})$	$(CI)^{-7}(CI)$ max (α deg)	Cd_0	δ_1	δ_2	$\delta_2 \left/ \left(\frac{C l_{\alpha}^2}{\pi} \right) \right.$
Airfoil (1)							
$\text{Re} = 4 \times 10^3$	3.7	6.4 (6)	4.6 (8)	3.9*10 ⁻²	-1.7*10 ⁻⁹	2.82	0.647
$Re = 6 \times 10^{6[1]}$	5.9	90 (7)	78.0 (7.8)	5.0*10 ⁻³	-2.9*10 ⁻⁹	0.18	0.016
Airfoil (2)			,				
$Re = 4 \times 10^3$	2.9	5.5 (6)	3.8 (8)	3.6*10 ⁻²	-5.1×10^{-9}	2.42	0.889
$Re = 4 \times 10^{4[2]}$	5.5	20 (6)	15 (5.9)	1.6×10^{-2}	$4.6*10^{-9}$	1.35	0.140
$Re = 3 \times 10^{5(2)}$	5.5	51 (4.8)	35 (5.3)	6.8×10 ⁻³	$-3.0*10^{-8}$	0.18	0.019
$Re = 6 \times 10^{6(1)}$	6.1	125 (9.5)	104 (11.4)	5.5*10-3	-1.3*10-9	0.16	0.013
Airfoil (3)					110 10		
$Re = 4 \times 10^3$	2.0	3.6 (12)	2.3 (10)	4.8*10 ⁻²	1.5*10-8	1.88	1.477
$Re = 3 \times 10^{5[2]}$	5.7	46 (6)	37.8 (7.1)	8.4*10-3	-2.5*10-9	0.36	0.034
$Re = 6 \times 10^{6[1]}$	6.3	95 (9)	***	5.8+10-3	-6.8*10-11	0.18	0.014
Airfoil (4)					010 10		
$Re = 4 \times 10^3$	5.2	6.8 (5)	47 (5)	$4.2*10^{-2}$	7.0*10 ⁻⁹	4.18	0.486
Airfoil (5)		0.0 (0)	(2)				
$Re = 4 \times 10^3$	5.8	5.5 (5)	4.0 (6)	5.7*10-2	3 2*10-9	5.33	0.498
Airfoil (6)	510	0.0 (0)	4.0 (0)	5.1 10	5.2 10	5.55	
$Re = 4 \times 10^{3}$	5.7	6.3 (4)	46(7)	5.6*10-2	2.1*10-1	4.14	0.400
Airfoil (7)	5.7	0.5 (4)	4.0 (7)	5.0.10	2.1 10		01100
$Re = 4 \times 10^3$	56	5 5 (5)	37(7)	6.1*10-2	$-1.5*10^{-1}$	5 16	0 535
Airfoil (8)	510	5.5 (5)	5.7 (7)	0.1 10	1.5 10	2.10	0.000
$Re = 4 \times 10^3$	59	86(5)	7.6 (6)	7 7*10-2	-2.8×10^{-1}	4 07	0.460
Airfoil (9)	0.9	0.0 (0)	1.0 (0)	1.1.10	2.0 10		01100
$Re = 4 \times 10^3$	60	80(10)	9.2 (10)	1.0*10-1	-2.6*10-1	3.04	0.265
Airfoil (10)	0.0	0.0 (10)	<i>).4</i> (10)	1.0 10	2.0.10	5.04	0.205
$Re = 4 \times 10^3$	67	36(14)	41 (15)	1 7*10~1	6.9+10-2	3 11	0.218
Airfoil (11)	0.1	5.0 (14)	4.1 (15)	1.7.10	0.9.10	5.11	0.210
$Re = 4 \times 10^3$	57	73(0)	67(11)	8 6*10-2	-5.4+10-1	4 28	0 4 1 4
Airfoil (12)	5.7		0.7 (11)	0.0.10	5.4.10	1.20	0.414
$Re = 4 \times 10^3$	54	73(3)	66(6)	6.9*10-2	1.9*10-1	4 72	0.509
Airfoil (13)	5.4	,(.)	0.0 (0)	0.7-10	1.2*10	-1.72	0.507
$Re = 4 \times 10^3$	47	33(11)	27(11)	1.6*10-1	-4 3*10-1	1 08	0.282

¹¹ From Abbott and Doenhoff (1985), ^[2] from Jacobs and Sherman (1937).

Obrázek 2.11. Charakteristiky testovaných profilů. [8]

které do optimalizace vstupují. Výsledkem jsou dva optimalizované profily pro maximální poměr L/D, první pro $Re = 2\ 000\ (R2)$ a druhý pro $Re = 6\ 000\ (R6)$ zobrazené na obrázku 2.12. [3]

Oba profily jsou si podobné a vykazují charakteristické geometrické rysy. Na první pohled je patrné dvojité lomení v prohnutí profilu doprovázené pozvolným lineárním nárůstem v oblasti 20–60 % hloubky profilu. K rychlejšímu nárůstu prohnutí dochází od 65 % hloubky, které kulminuje v 80 % hloubky, kde se nachází maximální prohnutí profilu.

Obrázek 2.12. Optimalizované profily R2 a R6. [3]

Optimalizovaný profil R6 má maximální prohnutí 4 % a jeho distribuce po hloubce je blízká čtyřmístným NACA profilům. Profil dosahuje poměru L/D = 12.9, což odpovídá 4% nárůstu oproti NACA 4702 a 16% nárůstu oproti NACA 4402, jak je patrné z grafu 2.13. Výhody profilu R6 se začínají projevovat kolem $\alpha = 3^{\circ}$ a při $\alpha = 5^{\circ}$ dosahuje poměr L/D nejvyšších hodnot. Příčinou lepších aerodynamických parametrů optimalizovaného profilu oproti NACA profilům je oddálení odtržení na odtokové hraně.

Obrázek 2.13. Porovnání optimalizovaného profilu R6 s NACA 4402 a NACA 4702 při $Re=6\ 000.\ [3]$

U R2 je maximální prohnutí dokonce 6 %. Tento nárůst kompenzuje snížení efektivního prohnutí při nižších Re.

2.5 Křídlo při různých Reynoldsových číslech

Součinitel odporu profilu křídla při malých úhlech náběhu lze dle [8] rozepsat jako řadu

$$C_d = C_{d0} + \sum_{n=1} \delta_n \alpha^n \simeq C_{d0} + \delta_2 \alpha^2.$$
 (2.5)

Proměnné C_{d0} a δ_2 lze pro testované profily najít v tabulce na obrázku 2.11. Stejně tak lze dohledat i člen δ_1 , ten je však vůči ostatním členům v rovnici velmi malý, a proto je v rovnici (2.5) zanedbán.

Pro součinitel odporu křídla autoři uvádějí následující rovnici

$$C_D \simeq C_{d0} + \left(\frac{C_{l\alpha}^2}{\pi\lambda}\right) \left(1 + \frac{\delta_2}{C_{l\alpha}^2/\pi\lambda}\right) \alpha^2.$$
(2.6)

Dle [8] je součinitel odporu křídla aproximován pro 3 různé intervaly Reynoldsova čísla. Při vysokých Re je indukovaný odpor dominantní a profilový odpor je uvažován konstantní. Při nízkých Re nelze uvažovat profilový odpor konstantní, protože je závislý na hodnotě Reynoldsova čísla. Matematická aproximace pro různá rozmezí Re je dle [8] uvedena ve vztazích

$$C_D \simeq \begin{cases} C_{d0} + \frac{C_L^2}{\pi\lambda} & \text{pro } 10^5 < Re, \\ C_{d0} + \delta_2 \alpha^2 + \frac{C_L^2}{\pi\lambda} & \text{pro } 10^4 < Re < 10^5, \\ C_{d0} + \delta_2 \alpha^2 & \text{pro } Re < 10^4. \end{cases}$$
(2.7)

Z poslední rovnice pro vyjádření součinitele odporu při $Re < 10^4$ je patrné, že štíhlost křídla nemá vliv na velikost součinitele odporu. Z toho plyne, že oproti aerodynamice vyšších Reynoldsových čísel se výhody vysoké štíhlosti při velmi nízkých Re vytrácejí. [8]

2. Aerodynamika

V tabulce na obrázku 2.14 jsou uvedeny obdobné aproximace také pro maximální klouzavost a minimální opadání křídla. Z tabulky na obrázku 2.11 je patrné, že poměry $(C_l/C_d)_{max}$ a $(C_l^{3/2}/C_d)_{max}$ jsou při $Re = 4 \cdot 10^3$ výrazně nižší než při vysokých hodnotách Re. To znamená, že křídla při nízkých Reynoldsových číslech dosahují nižší maximální klouzavosti a vyššího minimálního opadání. [8]

		Table 2 (a) Optimal flight (minimu	m glidi	ling angle)
Re	$C_{L,\gamma_{\min}}$	$(L/D)_{\rm max} \simeq 1/\gamma_{\rm min}$	С	$C_{D,\gamma_{\min}}$ $U_{\gamma_{\min}}$
10 ⁵ ~	$\sqrt{\pi A \mathbf{R}_e C_{d0}}$	$\frac{1}{2}\sqrt{\pi}AR_{e}/C_{d0}$	2	$2C_{d0} \qquad \sqrt{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)} / \sqrt[4]{\pi A \mathbf{R}_e \ C_{d0}}$
$10^4 \sim 10^5$	$\sqrt{C_{d0}} \left/ \left(\frac{\delta_2}{Cl\alpha^2} + \frac{\delta_2}{\pi} \right) \right $	$\frac{1}{2\sqrt{1/C_{d0}\left(\frac{\delta_2}{Cl\alpha^2}+\frac{1}{\pi A \mathbf{R}_{\rm e}}\right)}}$	2	$2C_{d0} \qquad \qquad \sqrt{\left(\frac{2}{\rho}\right) \left(\frac{W}{S}\right)} \sqrt[4]{\left(\frac{\delta_2}{Cl\alpha^2} + \frac{1}{\pi A R_c}\right)} \Big/ C_{d0}$
$\sim \! 10^{4}$	$C l \alpha \sqrt{C_{d0}/\delta_2}$	$\frac{Cl\alpha}{2}\sqrt{1/\delta_2 C_{d0}}$	2	$2C_{d0} \qquad \sqrt{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)} \sqrt[4]{\delta_2/C_{d0}Cl\alpha^2}$
		Table 2 (b) Optimal flight (minimu	m sinki	ing speed)
Re	$C_{L,w_{\min}}$	w_{\min}	$C_{D,w_{\min}}$	$U_{w_{ m main}}$
105~	$\sqrt{3\pi A R_e C_{d0}}$	$\sqrt[4]{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)}\sqrt{C_{d0}/(3\pi/\mathbf{R}_{e})^{3}}$	$4C_{d0}$	$\sqrt{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)} / \sqrt[4]{16C_{d0}^2 + 3\pi A \mathbf{R}_e C_{d0}}$
$10^{4} \sim 10^{5}$	$\sqrt{3C_{d0}} / \left(\frac{\delta_2}{Cl\alpha^2} + \frac{1}{\pi A \mathbf{R}_{\rm e}}\right)$	$\sqrt[4]{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)}\sqrt[4]{C_{d0}}\left/\left(\frac{\delta_2/Cl\alpha^2+1/\pi A R_e}{3}\right)^3\right.$	$4C_{d0}$	$\sqrt{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)} / \sqrt[4]{16C_{d0}^2 + 3C_{d0}} / \left(\frac{\delta_2}{Cl\alpha^2} + \frac{1}{\pi A \mathbf{R}_e}\right)$
$\sim 10^{4}$	$C l \alpha \sqrt{3C_{d0}/\delta_2}$	$\sqrt[4]{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)}\sqrt[4]{C_{d0}\left(\frac{\delta_2}{3Cl\alpha^2}\right)^3}$	$4C_{d0}$	$\sqrt{\left(\frac{2}{\rho}\right)\left(\frac{W}{S}\right)} / \sqrt[4]{16C_{d0}^2 + 3C_{d0}Cl\alpha^2/\delta_2}$

Obrázek 2.14. Maximální klouzavost a minimální opadání pro různá rozmezí Re. [8]

Kapitola **3** Přehled a statistika modelů

Přehled a statistika modelů je důležitou součástí návrhu nového letadla. V rámci této části byly vybrány relevantní modely pohybující se v oblasti aerodynamiky nízkých Reynoldsových čísel. Byly vyhledány základní údaje o jednotlivých modelech, které slouží jako podklady pro vydefinování požadavků na model, hmotový rozbor, ale i pro volbu některých parametrů navržených koncepcí.

3.1 Volné halové modely

Rozšířenou modelářskou disciplínou jsou volné halové modely. Mezinárodní letecká federace (FAI) definuje celou řadu kategorií, ve kterých je možné soutěžit. Ve většině případů je lehký balsový model poháněn vrtulí a natočenou gumou. Sledovaným výkonnostním parametrem je doba letu, která se u nejvyšší kategorie F1D pohybuje v řádu desítek minut.

3.1.1 G-Quirl

Prvním z uvažovaných modelů je G-Quirl, volný halový kluzák balsové konstrukce potažené Mylarem. Model má rozpětí 400 mm, délku 490 mm a hmotnost 3 g. Na základě plánku v knize [9] mohla být stanovena bližší specifikace, která je zobrazena v tabulce 3.1.

Obrázek 3.1. Halový větroň G-Quirl. [9]

Délka [mm]	490
Rozpětí [mm]	400
Hmotnost [g]	2,5-3
Plocha křídla [dm ²]	3,6
Hloubka křídla – u kořene [mm]	90
Střední aerodynamická tětiva [mm]	90
Štíhlost křídla [–]	5,2
Plošné zatížení $[g.dm^{-2}]$	$0,\!69\!-\!0,\!83$
Mohutnost VOP [–]	1,34
Štíhlost VOP [–]	3,4
Mohutnost SOP [-]	0,24

Tabulka 3.1. Specifikace modelu G-Quirl.

3.1.2 Quirl, Quix, Sino II, Penny

Quirl je malý halový model na gumový pohon od německého konstruktéra Heinricha Edera. Model byl postupnými iteracemi konstrukce navržen v několika verzích – Quirl, Quirl-C, Quirl-CM. Rozpětí křídel standardního Quirlu měří 300 mm a délka je 360 mm. V závislosti na použité balse a dalších materiálů váží hotový model připravený k letu 2,5–3 g.

Další modely s obdobnými rozměry a geometrií jsou například Quix a Sino II. Model Penny je trochu větší a splňuje požadavky německé národní kategorie F1M-L. Podrobnější specifikace těchto modelů, byly stanoveny na základě stavebních plánků dostupných v [9] a jsou uvedeny v tabulce 3.2. Hmotnost modelů nebyla v publikaci uvedena, avšak u modelů Quix a Sino II bude v rozmezí 2,5–3 g (stejně jako u modelu Quirl). Model Penny bude vzhledem k hmotnostním omezením kategorie F1M-L vážit 3,5–4,5 g.

Obrázek 3.2. Volný halový model Quirl-CM na gumový pohon. [10]

Model	Quirl	Quix	Sino II	Penny
Délka [mm]	315	400	325	475
Rozpětí [mm]	270	315	300	600
Hmotnost [g]	2,5-3	2,5-3	2,5-3	$3,\!5\!-\!4,\!5$
Plocha křídla [dm ²]	2,3	3,0	2,8	6,9
Hloubka křídla – u kořene [mm]	85	100	100	150
Střední aerodyn. tětiva [mm]	85	$95,\!5$	96,4	148,2
Štíhlost křídla [–]	3,2	3,3	3,1	3,2
Plošné zatížení $[g.dm^{-2}]$	1,08-1,30	$0,\!83\!-\!1,\!00$	$0,\!89\!-\!1,\!07$	$0,\!51\!-\!0,\!65$
Mohutnost VOP [–]	0,94	1,12	1,09	1,13
Štíhlost VOP [–]	2,3	2,9	2,5	2,7
Mohutnost SOP [-]	0,32	0,18	0,19	0,13

Tabulka 3.2. Specifikace volných halových modelů klasické konstrukce na gumový pohon.

3.1.3 Soli

Soli je model netradiční koncepce. Jedná se o samokřídlo doplněné o svislou ocasní plochu. Podélnou stabilitu zajišťuje deskový profil křídla s klapkou přizvednutou nahoru. Energii pro pohon vrtule zajišťuje natočená guma. Hmotnost samotné konstrukce modelu je 1,25 g, s připočítáním vrtule a pohonné gumy se hmotnost dostane přes 2 g. Model je dlouhý 270 mm a rozpětí křídla je 300 mm.

Obrázek 3.3. Model Soli. [9]

Délka [mm]	270
Rozpětí [mm]	300
Hmotnost [g]	od 2
Plocha křídla [dm ²]	2,9
Hloubka křídla – u kořene [mm]	110
Střední aerodynamická tětiva [mm]	105,87
Štíhlost křídla [–]	2,9
Plošné zatížení $[g.dm^{-2}]$	od 0,69
Mohutnost VOP [–]	_
Štíhlost VOP [–]	_
Mohutnost SOP [-]	0,075

Tabulka 3.3. Specifikace modelu Soli.

3.2 RC modely

Další možností letu v hale je využití rádiem řízených modelů. Oproti volným modelům jsou RC modely těžší, zejména kvůli elektronice, která zajišťuje ovládání modelu, a větší robustnosti konstrukce.

3.2.1 Night Vapor

Velmi populárním rádiem řízeným halovým modelem se stal Vapor od firmy Parkzone. Prodáván byl postupně v několika verzích, dnes již není dostupný. Jedná se o hornoplošník s velkým vzepětím, rozpětím 376 mm a hmotností 16,4 g. Ovládání plovoucího směrového a výškového kormidla zajišťují dvě lineární serva umístěná přímo na tištěném spoji přijímače. O pohon modelu se stará stejnosměrný motor o průměru 6 mm, převodovka a vrtule s rozměrem 140x45 mm. Energii poskytuje akumulátor LiPo 1S 70 mAh. Většina pilotů však používá větší kapacitu akumulátoru (150–220 mAh), aby prodloužili dobu letu, čímž ale zvýší hmotnost modelu na hodnotu přesahující 20 g. [11] [12]

Konstrukce Night Vapora je tvořena uhlíkovými tyčkami o průměru 0,75 mm, trup je z dutého hranolu s vnějšími rozměry 1,5 x 1,5 mm. Nosné a řídící plochy jsou potaženy odolnou fólií. Křídlo je odnímatelné pro jednodušší transport. Model je schopný letět na velkém úhlu náběhu velmi pomalu, avšak svislý vis na vrtuli nezvládne. Parametry modelu ve druhé polovině tabulky 3.5 byly vypočteny na základě provedeného měření skutečného modelu Night Vapor. V tabulce 3.4 jsou zobrazeny hmotnosti jednotlivých částí modelu Vapor (1. generace) a Mini Vapor.

Model	Vapor (375 mm)	Mini Vapor (220 mm)
Celková hmotnost modelu [g]	15,0	9,1
Akumulátor	2,62	1,45
Motor s převodovkou	2,44	1,75
Vrtule	0,85	$0,\!58$
Gumový kužel	0,2	—
Přijímač se servy a ESC	3,3	$2,\!85$
Dopočítaná hmotnost draku	$5,\!59$	$2,\!47$

Tabulka 3.4. Hmotnost částí modelů Vapor a Mini Vapor. [12]

Obrázek 3.4. Night Vapor. [13]

Délka [mm]	389
Rozpětí [mm]	376
Hmotnost [g]	16,4
Plocha křídla [dm ²]	4,8
Hloubka křídla – u kořene [mm]	150
Střední aerodynamická tětiva [mm]	139,2
Štíhlost křídla [–]	2,7
Plošné zatížení $[g.dm^{-2}]$	3,4
Mohutnost VOP [-]	0,51
Štíhlost VOP [–]	2,8
Mohutnost SOP [-]	0,19

Tabulka 3.5. Specifikace modelu Night Vapor. [12]

3.2.2 Ice Cream

Velmi zajímavým modelem je Ice Cream od Dancing Wings Hobby. Za velmi nízkou cenu (v době psaní této práce 50 €) je možné získat malý model v BNF verzi. Dokoupit je třeba pouze RC soupravu (DSM2/DSMX) a lepidlo. Rozpětí modelu je 226 mm a délka 230 mm. Ostatní specifikace, včetně vypočtených hodnot mohutnosti VOP apod. z dostupných obrázků, jsou zobrazeny v tabulce 3.6. Deskové křídlo s mírně lomenými konci, VOP i SOP jsou z Depronu. Trup a další doplňky jsou plastové. Dva magnetické aktuátory ovládají výškové a směrové kormidlo. Pohon zajišťuje 4 mm stejnosměrný motor, plastová 76 mm vrtule a LiPo akumulátor 1S 50 mAh. Letová hmotnost 6,2–6,8 g. [14]

Obrázek 3.5. Model Ice Cream. [15]

Délka [mm]	230
Rozpětí [mm]	226
Hmotnost [g]	6,2-6,8
Plocha křídla [dm ²]	1,5
Hloubka křídla – u kořene [mm]	70
Střední aerodynamická tětiva [mm]	66,7
Štíhlost křídla [–]	3,4
Plošné zatížení $[g.dm^{-2}]$	4,13-4,53
Mohutnost VOP [–]	0,47
Štíhlost VOP [–]	2,2
Mohutnost SOP [-]	0,16

Tabulka 3.6. Specifikace modelu Ice Cream. [14]

3.2.3 RC Quirl

Upravením konstrukce volného modelu Quirl a zástavbou elektroniky vznikl RC Quirl. Na první pohled viditelnou změnou je přidání podvozku a řiditelného směrového kormidla.

S konstrukcí modelu RC Quirl prováděl John Stennard řadu experimentů, které byly popsány v článku německého časopisu FMT [11]. Autor nejdříve zkoušel tento model postavit v 60% velikosti, tj. s rozpětím křídel 210 mm. Postavil dva prototypy, oba s řiditelným výškovým i směrovým kormidlem pomocí aktuátorů. První prototyp byl pouhou zmenšeninou původního RC Quirl. To znamená, že měl podvozek, svislou ocasní plochu umístěnou pod výškovou ocasní plochou (složí zároveň jako ostruha) a motor instalovaný na trupu. Druhý (upravený) 60% prototyp má svislou ocasní plochu na vodorovné ocasní ploše, nemá podvozek, křídlo má pouze jedno vzepětí přímo od kořenového žebra a motor je umístěn na náběžné hraně křídla. Elektromotor byl použit z modelu Mini Vapor (stejnosměrný ø6 mm) a pohonný akumulátor je LiPo 1S 28 mAh. Model připravený k letu váží 6,3 g. Autor uvádí, že druhý prototyp létá pomaleji a velmi dobře. [11]

Následně byl postaven také RC Quirl ve 100% velikosti. Vybavení je totožné s 60% verzí, pouze akumulátor byl nahrazen větším s kapacitou 50 mAh. Ovládané funkce jsou směrové kormidlo a motor. Letová hmotnost rovných 9 g. Autor popisuje, že tato verze

létá krásně a úžasně pomalu, jedinou nevýhodu vidí v křehkosti modelu. V porovnání s robustní uhlíkovou konstrukcí Night Vapora je hmotnost modelu připraveného k letu poloviční. [11]

Obrázek 3.6. RC model Quirl (100% velikost). [16]

Další verzí je RC Quirl 150 %, s rozpětím 510 mm, plochou křídla 6,9 dm² a hmotností 18,5 g. Pro řízení směrového kormidla bylo použito 1,5 g servo, výškové kormidlo není řiditelné, takže se režimy letu mění pomocí tahu motoru. Použitý akumulátor je LiPo 1S 110 mAh. Tento model je srovnatelně rychlý jako 100% verze, ale díky větším rozměrům působí jeho let pomaleji. [11]

Na základě všech získaných zkušeností z různých velikostí stejného modelu byla autorem postavena poslední verze. Konstrukce a velikost je totožná s druhou verzí RC Quirl 60 %, pouze bylo zvětšeno rozpětí na 300 mm a motor umístěn zpět na trup. Ovládat je možné pouze směrové kormidlo a tah motoru. Velký důraz byl kladen na nízkou hmotnost, která v konečném důsledku vyšla na 5,6 g. Autor hodnotí, že se jedná o nejpomalejší verzi modelu RC Quirl. Bez ovládaného výškového kormidla je nutná citlivá manipulace s plynem. [11]

Podrobnější specifikaci modelu RC Quirl nebylo možné dohledat, zejména kvůli absenci volně dostupného stavebního plánku.

3.2.4 Carbon Butterfly

Zřejmě nejlehčím komerčně prodávaným indoor flyerem je model Carbon Butterfly od firmy Plantraco Microflight. Tento 3 gramový model má rozpětí pouhých 180 mm a dokáže létat v místnosti o rozměrech 3,6 x 5 metrů. Pilot může ovládat tah motoru a směrové kormidlo, které je řízeno pomocí magnetického aktuátoru. Pohon zajišťuje stejnosměrný motor s převodovkou, vrtule z uhlíkových vláken a 1S LiPo akumulátor. [17]

Podrobnější specifikace výrobce neudává.

Obrázek 3.7. Model Carbon Butterfly. [18]

3.2.5 Sans fin

Příkladem halového modelu se značnou vytrvalostí je model Sans fin. Díky velké kapacitě akumulátoru (1050 mAh) je reálná doba letu více než 3,5 hodiny.

Křídlo je obdélníkové o rozpětí 900 mm a hloubce 140 mm. Náběžná a odtoková hrana je navržena z uhlíkových trubiček, žebra jsou balsová potažená uhlíkovými vlákny a kulaté konce křídel jsou tvořeny pomocí uhlíkové tyčky o průměru 0,7 mm. Křídlo má dvojí vzepětí. Délka modelu je 580 mm. Dle plánku uvedeného na konci knihy [9] má VOP rozpětí 300 mm, hloubku 100 mm a je tvarově totožná s křídlem. Z obrázku 3.8 je patrné, že na postaveném modelu je VOP hranatější a navíc vyztužena uhlíkovými tyčkami do kříže. SOP je kulatá, vysoká 120 mm a je tvořena jednou uhlíkovou tyčkou o průměru 0,7 mm. Všechny plochy modelu jsou potaženy stříbrnou Mylarovou folií o plošné hustotě 2 g.m⁻². Ovládanými prvky jsou: směrové kormidlo, jedna polovina výškového kormidla a motor. O pohon se stará stejnosměrný elektromotor o průměru 7 mm s převodovkou (1:9) a vrtulí z uhlíkových vláken o průměru 180 mm. Model připravený k letu váží 39 g. [9]

Obrázek 3.8. Model Sans fin. [9]

Potažené křídlo	$5,4~{ m g}$
Potažené ocasní plochy	$1,\!05~{\rm g}$
Trup s elektronikou a akumulátorem	$32{,}4~{\rm g}$
Celkem	$38,85~{ m g}$

Tabulka 3.7. Hmotnosti jednotlivých částí modelu Sans fin. [9]

V knize je uvedeno, že proud elektromotorem za letu je 150 mAh, což odpovídá příkonu 0,55 W. Účinnost pohonu se pohybuje okolo 20 %, hnací výkon je tedy 0,1 W při rychlosti letu asi 1,5 m.s⁻¹. Teoretická doba letu je 4–5 hodin. [9]

Z plánku modelu Sans fin byly vypočteny geometrické charakteristiky, které jsou zobrazeny v tabulce 3.8. Hmotnosti jednotlivých částí letadla jsou rozepsány v tabulce 3.7.

Délka [mm]	585
Rozpětí [mm]	900
Hmotnost [g]	39
Plocha křídla [dm ²]	12,0
Hloubka křídla – u kořene [mm]	140
Střední aerodynamická tětiva [mm]	137,2
Štíhlost křídla [–]	6,7
Plošné zatížení $[g.dm^{-2}]$	3,25
Mohutnost VOP [–]	0,67
Štíhlost VOP [–]	3,2
Mohutnost SOP [-]	0,23

 Tabulka 3.8.
 Specifikace modelu Sans fin.

3.3 Statistika modelů

U většiny modelů z přehledu bylo možné zjisti jejich geometrii a rozměry. Z těchto údajů lze přímo vypočítat geometrické charakteristiky, jako například štíhlost křídla nebo mohutnost ocasních ploch. U některých modelů bylo možné získat i celkovou hmotnost a polohu těžiště, popřípadě i použité profily. Díky tomu mohly být pomocí XFLR5 stanoveny průběhy momentových čar a těžištní zásoba.

3.3.1 Profily

Většina modelů z přehledu má prohnutý profil s maximálním prohnutím v rozmezí 4– 5 %, což odpovídá poznatkům studií v první části této práce. Jediné dva modely tento profil nemají – samokřídlo Soli s křídlem rovné desky a přizvednutou odtokovou hranou a model Ice Cream s depronovým křídlem.

3.3.2 Křídlo a plošné zatížení

Parametry křídel a plošného zatížení jsou uvedeny v tabulce 3.9. První v tabulce, halový větroň G-Quirl, vykazuje typické parametry kluzáku pro vyšší Re -větší štíhlost křídla a nízké plošné zatížení. V této oblasti aerodynamiky ($Re \sim 10^4$) je však vliv štíhlosti na celkový odpor křídla velmi malý, o čemž bylo pojednáno již v sekci 2.5.

U menších letadel na gumový pohon je rozmezí plochy křídla 2,3–3,0 dm² a plošného zatížení 0,69–1,30 g.dm⁻². Nejnižší plošné zatížení z této skupiny vykazuje samokřídlo Soli.

3. Přehled a statistika modelů 🔹 🔹 💼

Pravidla F1M-L omezují maximální promítnuté rozpětí na 460 mm a maximální hloubku křídla na 150 mm. Tím je definovaná plocha křídla modelu Penny. Soutěžní model jednoznačně vyniká v nejnižším plošném zatížením ze všech porovnávaných letadel.

U rádiem řízených modelů je porovnání velmi obtížné. Modely si nejsou tak podobné a každý slouží jinému účelu. Model Night Vapor je komerčně prodávaný hotový model pro širokou veřejnost vhodný i pro začátečníky. Musí být dostatečně robustní, aby vydržel pády a nárazy v hale. Podobně je na tom model Ice Cream, který je navíc mnohem menší, čemuž odpovídá i vyšší plošné zatížení. Oproti tomu model RC Quirl 150 % Johna Stennarda je stavěn zkušeným modelářem z lehké balsy za účelem co nejnižší hmotnosti a rychlosti letu, což znovu dokládá plošné zatížení, které je ze zkoumaných RC modelů nejnižší. Také Sans fin má jasný cíl, kterým je dlouhá doba letu. Je tomu kompletně podřízena konstrukce letadla z uhlíkových kompozitů a lehké potahové fólie doplněná akumulátorem s velkou kapacitou.

Název modelu	Plocha křídla S [dm ²]	Štíhlost křídla λ [–]	Plošné zatížení W/S [g dm ⁻²]
		<u> </u>	W/S [g.uiii]
G-Quirl	3,6	$5,\!2$	$0,\!69\!-\!0,\!83$
Quirl	2,3	3,2	1,08–1,30
Quix	3,0	3,3	$0,\!83\!-\!1,\!00$
Sino II	2,8	3,1	$0,\!89\!\!-\!\!1,\!07$
Soli	2,9	2,9	od 0,69
Penny	6,9	3,2	$0,\!51\!-\!0,\!65$
Night Vapor	4,8	2,7	3,4
Ice Cream	1,5	3,4	4,13–4,53
RC Quirl 150 $\%$	6,9	3,8	2,68
Sans fin	12,0	6,7	3,25

Tabulka 3.9. Parametry křídel modelů.

3.3.3 Mohutnosti ocasních ploch a podélná stabilita

Z parametrů ocasních ploch v tabulce 3.10 je zřejmé, že štíhlost VOP se mezi volnými a rádiem řízenými modely výrazně neliší. Hodnoty volných modelů na gumu jsou v rozmezí 2,3–2,7, zatímco u rádiem řízených modelů se pohybují v rozmezí 2,2–3,2.

	Štíhlost VOP	Mohutnost VOP	Mohutnost SOP
Název modelu	λ_{VOP} [-]	A_{VOP} [-]	A_{SOP} [-]
G-Quirl	3,4	1,34	0,24
Quirl	2,3	0,94	0,32
Quix	2,9	1,12	0,18
Sino II	2,5	1,09	0,19
Soli	_	_	$0,\!075$
Penny	2,7	1,13	$0,\!13$
Night Vapor	2,8	0,51	0,19
Ice Cream	2,2	0,47	0,16
Sans fin	3,2	0,67	$0,\!23$

Tabulka 3.10. Parametry ocasních ploch.
Mezi mohutnostmi VOP je patrný větší rozdíl. Volné modely s gumovým pohonem vykazují hodnoty mohutnosti VOP mnohem výšší v rozmezí 0,94–1,13. U RC modelů jsou hodnoty prakticky poloviční v rozmezí 0,47–0,67. Mohutnosti SOP jsou pro všechny zkoumané modely srovnatelné, výjimku tvoří pouze model Quirl s větší mohutností 0,32 a samokřídlo Soli s malou svislou ocasní plochou o mohutnosti 0,075. Halový kluzák G-Quirl vykazuje vyšší hodnoty jak u štíhlosti VOP, tak i u mohutností obou ocasních ploch. K příčné a směrové stabilitě přispívají i další prvky modelu, zejména vzepětí křídel a winglety.

Výpočet průběhu klopivého momentu v závislosti na úhlu náběhu byl proveden v programu XFLR5. Bylo uvažováno pouze křídlo s VOP a SOP, vliv trupu byl zanedbán. V případě modelů s prohnutým profilem byl pro účely výpočtu uvažován profil NACA 4402, v případě rovné desky pak profil NACA 0002. Poloha aerodynamického středu křídla s VOP a SOP byla nalezena posunutím těžiště do bodu, kde byla splněna podmínka nulové derivace klopivého momentu podle úhlu náběhu dle rovnice

$$C_{m\alpha} = \frac{\partial C_m}{\partial \alpha} = 0. \tag{3.1}$$

Výsledky pro modely, u kterých byly dostupné potřebné parametry, jsou zobrazeny v tabulce 3.11. Polohy těžiště a aerodynamického středu jsou měřeny od náběžné hrany u kořene křídla.

U modelu Sino II se hodnota polohy těžiště uvedená v jednotlivých zdrojích liší. V plánku na konci knihy [9] je těžiště označeno ve 40 % kořenového žebra. Ve stavebním postupu k modelu [19] je však popsáno, že je těžiště umístěno v 55 % kořenového žebra a navíc je uvedeno, že je model stabilní i s polohou těžiště v 60 % kořenového žebra. Hodnoty v tabulce 3.11 jsou zobrazeny pro polohu těžiště v 55 % kořenového žebra.

	Sklon	Poloha	Poloha	Těžištní
Název modelu	moment. čáry	těžiště	aerodyn. středu	zásoba
	$C_{m\alpha} [\mathrm{rad}^{-1}]$	$x_T \ [\% \ b_{root}]$	$x_{AC} \ [\% \ b_{root}]$	$x_c \ [\% \ b_{SAT}]$
G-Quirl	-0,877	61,1	77,8	16,7
Quirl	-0,329	47,1	55,3	8,2
Quix	-0,315	72,0	79,0	7,3
Sino II	-0,743	55,0	71,0	16,6
Soli	-0,556	9,1	16,4	7,6
Penny	-0,115	105	109,5	3,0
Night Vapor	-0,607	36,7	52,0	16,5

Tabulka 3.11. Charakteristiky podélné stability vybraných modelů.

Nejnižší hodnoty ovlivňující podélnou stabilitu vykazuje model Penny s těžištní zásobou 3 % b_{SAT} . Jak již bylo zmíněno, jedná se o soutěžní model kategorie F1M-L a polohu těžistě hodně vzadu lze vysvětlit snahou létat pomalu, na velkém úhlu náběhu, v oblasti minimálního opadání a nízkého potřebného výkonu.

Ostatní volné modely uvedené v tabulce vykazují těžištní zásobu v rozmezí 7,3– 16,6 % b_{SAT} . U modelu Sino II by v případě posunu těžiště na hodnotu 60 % b_{root} vycházel sklon momentové čáry $C_{m\alpha} = -0,503$ a těžištní zásoba 11,4 % b_{SAT} .

RC model Night Vapor vykazuje jednu z nejvyšších těžištních zásob zobrazených modelů, přes 16 % b_{SAT} .

Pro návrh nového modelu letadla je nutné nejprve stanovit jeho hmotnost. Ta se odvíjí jak od konstrukce modelu, tak i od použitého vybavení. Letoun bude řízen rádiově pomocí vysílače. V modelu musí být přijímač, serva, elektromotor s regulátorem a pohonný akumulátor.

4.1 Serva

V případě modelů s malou hmotností se používají 3 různé typy serv.

1. Microserva

Jedná se o nejmenší verzi standardně používaných serv mezi modeláři. Stejnosměrný elektromotor je propojen s řídící elektronikou, která vyhodnocuje vstupní signál od přijímače a řídí motor. Na hřídeli elektromotoru je ozubené kolo, které přes další ozubení přenáší rotační pohyb až na výstupní páku umístěnou mimo plastovou krabičku. Hmotnost těchto serv používaných pro halová letadla se pohybuje v rozmezí 1,7–5 g.

Obrázek 4.1. Microservo 1,7 g. [20]

2. Lineární serva

Další možností jak převést povel z přijímače na řídící plochu spočívá v použití lineárních serv. Princip lineárního serva je podobný pohybovému šroubu. Stejnosměrný motor je přes ozubená kola spojen se závitovou tyčí, která je umístěná v ložiskách plastového domku. Ten vytváří mechanický doraz a zabraňuje vyšroubování páky ze závitové tyče. Uvnitř domku je na hřídeli umístěn plastový jezdec s vnitřním závitem, který slouží jako páka pro táhlo k ovládacím plochám. Pokud se hřídel motoru začne otáčet, je rotační pohyb závitové tyče přenesen na lineární pohyb páky serva. Příklad tohoto typu serva je zobrazen na obrázku 4.2. Hmotnost lineárního serva se pohybuje v rozmezí 1,5–3 g.

.

Obrázek 4.2. Lineární servo H2040L. [21]

3. Magnetický aktuátor

Nejlehčí metodou přenosu je magnetický aktuátor. Princip je založený na vzájemné interakci cívky a magnetu. Většinou je magnet součástí pohyblivé plochy a je vložen volně do cívky, která je pevně spojena s nepohyblivou částí letadla. Elektrický proud procházející cívkou vyvolá magnetické pole, které interaguje s polem magnetu a vytváří sílu, která hýbe s pohyblivou plochou. Na stranu cívky se lepí slabý magnet, který vytváří stabilní magnetické pole a zajišťuje neutrální polohu pohyblivé plochy.

Magnetický aktuátor je možné pořídit v několika variantách. Buď jako samostatný člen nebo jako součást plastového pantu. Díky jednoduchosti konstrukce není problém si aktuátor vyrobit z tenkého drátu a malého neodymového magnetu. Hmotnostně se magnetický aktuátor pohybuje v rozmezí 0,07-1,2 g.

Obrázek 4.3. Možnosti umístění magnetického aktuátoru. [22]

Obrázek 4.4. Ukázka reálné aplikace magnetického aktuátoru. [23]

4.2 Elektromotor

Nejčastěji se pro pohon malých modelů používají stejnosměrné motory. Ty se nabízí v různých průměrech a délkách. Vnější průměr je nejčastěji 4–7 mm a délka v rozmezí 10–21 mm. V některých aplikacích je stejnosměrný motor doplněn převodovkou, pro použití vrtulí s větším průměrem. Například 6 mm typ dosahuje maximální účinnosti 50 % a celková účinnost včetně vrtule a převodovky je kolem 20 %. [9]

Střídavé motory jsou pro malé dlouho létající modely méně vhodné zejména kvůli vyšší spotřebě (vyšším proudům). [9] Díky velkému rozmachu stále menších koptér se

4. Elektronika

	1	[
Rozměr motoru	Hmotnost	Průměr	Elektrický	Maximální tah
(průměr x délka)	motoru	vrtule	proud	(při 4,0 V)
[mm]	[g]	[mm]	[A]	[g]
d 4 == 19	0.00	20	0,13	2,2
Ø4 X 12	0,82	32	$0,\!25$	2,8
.0 15	1 17 4	32	0,69	9,5
Ø0 X 15	1,74	50	1,21	16
.7 10	0.0	32	1,05	13
Ø7 X 10	2,9	46	$2,\!48$	27
		32	0,66	11
		50	$1,\!54$	23
ø7 x 20	3,2	46	$1,\!97$	29
	Í	57	2,43	32
		55	$2,\!25$	34

Tabulka 4.1. Parametry stejnosměrných motorů. (Hodnoty převzaty z [24].)

i střídavé motory výrazně zmenšují. U letadel se však využívají spíše u modelů s vyšší hmotností.

4.3 Přijímač

V dnešní době je masově rozšířený přenos signálu mezi vysílačem a modelem pomocí frekvence 2,4 GHz. U větších modelů se volba přijímače odvíjí zejména od radiového systému, který je daným pilotem používaný. Renomovaní výrobci běžně nabízejí PPM přijímače s hmotností od 3,5 g. U ultralehkých aplikací je nutné se systémem přizpůsobit nejlehčím komponentům na trhu. MA-RX42-D je příkladem klasického 4 kanálového přijímače s vestavěným 5 A regulátorem stejnosměrných motorů. Je vhodný pro připojení klasických nebo lineárních serv přes konektory. Hmotnost přijímače je 0,9 g bez konektoru pro akumulátor (1,45 g s konektorem), rozměry 19 x 12 x 6 mm a pracovní napětí v rozmezí 3-5 V. Přijímač je kompatibilní s DSMX/DSM2 systémy.

Obrázek 4.5. Přijímač MA-RX42-D. [25]

Zřejmě nejlehčí verzí přijímače je model DT Rx43d od firmy DelTang se dvěma vestavěnými 2 A regulátory stejnosměrných motorů s možností mixu pro zatáčení pomocí motorů. K přijímači je možné připojit 3 aktuátory nebo 4 serva, což umožňuje širokou škálu použití. Pracovní napětí se pohybuje v rozmezí 3–6 V, rozměry jsou 13 x 12 x 2,2 mm a hmotnost 0,34 g. Přijímač nemá žádné konektory, připojení komponent vyžaduje pájení přímo na vývody plošných spojů. Přijímač je různě programovatelný a kompatibilní se systémy DSM2.

Obrázek 4.6. Přijímač DT Rx43d. [26]

Další možností je použití přijímače, který je spolu se servy a regulátorem integrován na jednu desku tištěného spoje. Příkladem je 6-kanálový přijímač 24R6CLV11 se dvěma lineárními servy a 2 A regulátorem. Jedná se o kompaktní variantu elektroniky s hmotností 4 g. Rozměry přijímače jsou 28 x 26,4 x 7,7 mm. Přijímač je kompatibilní se systémem DSM2.

Obrázek 4.7. Přijímač 24R6CLV11. [27]

4.4 Regulátor otáček motoru (ESC)

Regulátory otáček motoru se dělí podle typu elektromotoru na stejnosměrné a střídavé. Ke stejnosměrným motorům je výhodné použít přijímač s již zabudovaným stejnosměrným regulátorem. V případě střídavého motoru je většinou nutné použít další elektroniku. Běžně se používají 3 A regulátory s krátkodobou špičkou 4–5 A. Jejich hmotnost se pohybuje v rozmezí 0,4–0,8 g bez konektorů a kabeláže.

4.5 Akumulátor

Nejpoužívanějším zdrojem elektrické energie u modelů letadel jsou LiPo akumulátory. Velká škála nabízených kapacit jednotlivých článků umožňuje pohodlný výběr vhodné velikosti. Pro halové modely se běžně používají akumulátory s jedním (1S, 3,7 V) nebo dvěma (2S, 7,4 V) články zapojenými sériově. Pro použití v pokojových ultralehkých

4. Elektronika

Kapacita	Rozměry	Hmotnost
[mAh]	[mm]	[g]
10	12 x 12 x 2,6	0,48
28	16 x 11 x 3,0	1,0
50	17 x 13 x 5,7	1,5
130	$25 \ge 20 \ge 5,0$	3,3
240	$30 \ge 19 \ge 5,2$	5,2
250	$34,5 \ge 19 \ge 5,0$	5,5
300	$34,5 \ge 22 \ge 5,0$	7,0
400	$34,5 \ge 22 \ge 6,0$	8,0
450	$37,5 \ge 21 \ge 6,8$	9,0
600	49,5 x 30 x 5,0	14,0

. . . .

Tabulka 4.2. Parametry LiPo akumulátorů. (Hodnoty převzaty z [28], [29], [30].)

modelech se využívají výhradně 1S akumulátory. V tabulce 4.2 jsou zobrazeny rozměry a hmotnost jednotlivých článků (bez konektorů) v závislosti na kapacitě.

U volných halových modelů poháněných elektromotorem se pro napájení používají také kondenzátory. Ty však nejsou vhodné pro rádiem řízené modely.

Kapitola 5 Konstrukce modelů a stavební materiály

Jak vyplývá ze statistiky modelů zpracované výše, konstrukce lehkých halových letadel může být značně rozdílná. Hlavním rozdílem je použitý materiál. Nejčastěji se jedná o balsu, uhlíkový kompozit ve formě tyčového či trubkového polotovaru nebo Depron.

5.1 Balsa

Balsa je nejlehčí dřevo a běžně používaný materiál v leteckém modelářství. Její hustota se pohybuje v rozmezí $0,06-0,25 \text{ g.cm}^{-3}$. U halových modelů se používá lehká balsa s hustotou $0,06-0,12 \text{ g.cm}^{-3}$. Struktura a mechanické vlastnosti balsového prkénka jsou ovlivněny úhlem řezu vůči létům a na základě toho se rozděluje do 3 skupin: A-grain – tangenciální řez (tečně k letokruhům), C-grain – radiální řez (kolmo na letokruhy) a B-grain – zkosený řez (úhel mezi rovinami A a C). Z hlediska mechanických vlastností je typ A-grain velmi pružný, zatímco C-grain je tuhý.

Část letadla	Hustota $[g.cm^{-3}]$	Typ balsy
Nosník křídla	0,08–0,09	A/B
Žebra	0,08-0,09	С
List vrtule	0,08	C (může být i A, B)
$\mathrm{Trup}-\mathrm{ty}\check{\mathrm{c}}$	0,08	A/B/C
Zadní část trupu – tyč	0,07	A/B
Konzoly křídla	0,10-0,12	A/B
Střed vrtule	0,12	A/B
Přední část trupu – trubka	0,08	С
Zadní část trupu – trubka	0,065-0,075	С

Tabulka 5.1. Použití jednotlivých typů balsy na různé části volných halových modelů. [9]

Z převzaté tabulky 5.1 je patrné, že pro další výpočty hmotnosti konstrukce motorového modelu je možné použít hustotu balsy $\rho = 0.09 \text{ g.cm}^{-3}$.

5.2 Uhlíkové kompozity

Uhlíkové polotovary ve tvaru tyčí nebo trubek jsou hojně využívané pro stavbu kostry lehkých halových letadel. Tyče se používají od průměru 0,25 mm a typická délka polotovaru je jeden metr. Trubky jsou méně využívané, lze je použít na trup nebo na náběžnou a odtokovou hranu křídla u letadel s velkým rozpětím. Příkladem může být model Sans fin, u kterého byly použity uhlíkové trubky o vnějším průměru 2,2 mm. Soupis hmotností, hustot a možností ohybu uhlíkových tyčí jsou zobrazeny v tabulce 5.2.

Průměr tyče	Lineární hustota	Hustota	Minimální doporučený poloměr ohybu
[mm]	$[g.m^{-1}]$	$[g.cm^{-3}]$	[mm]
0,25	0,10	2,04	12,5
0,50	0,36	1,83	17,5
0,60	0,40	1,41	20
0,70	$0,\!58$	1,51	25
0,80	$0,\!65$	1,29	30
0,90	0,69	1,08	35
1,00	1,18	1,50	35

Tabulka 5.2. Vlastnosti uhlíkových tyčí. (Hodnoty převzaty z [31], [32].)

5.3 Potahové materiály

Pro modely větších rozměrů je typická potahová fólie, popřípadě potahový papír. Obě možnosti jsou však pro použití na malých letadlech příliš těžké. V minulosti se používal mikrofilm připravený ze směsi napínacího nitro laku, acetonu a éterických olejů na vodní hladině. Výsledkem byl film o tloušťce desetin mikrometru. [9]

Dnes se jako potahový materiál lehkých halových letadel používají zejména polyesterové fólie. Tloušťky těch komerčně dostupných se pohybují v rozmezí 0,5–1,4 μ m. Jejich hustota je přibližně 1,4 g.cm⁻³, což znamená, že fólie s tloušťkou 1 μ m váží 1,4 g.m⁻². Lepení na konstrukci se provádí pomocí lepidel ve spreji. [9]

5.4 Depron

Dalším vhodným materiálem pro tvorbu halových modelů je Depron. Jedná se o extrudovaný polystyren prodávaný ve formě tenkých desek různých formátů. Vyniká svou vysokou pevností, díky které dokáže držet tvar i při malých tlouštkách. Modely z Depronu tak nemají klasickou konstrukci kostra–potah jako tomu je u balsy nebo uhlíku. Vhodný je tak například na křídla bez větších podpor a vzpěr. Navíc je jej možné tvarovat horkou vodou. Nevýhodou je jeho vyšší hmotnost.

Obrázek 5.1. Depronové desky. [33]

Obrázek 5.2. Depron tvarovaný teplou vodou. [34]

Jak je patrné z tabulky 5.3, nejčastěji se Depron dodává v bílé barvě, ale je možné pořídit i šedý s nižší plošnou hustotou a menší tuhostí.

Tloušťka	Тур	Plošná hustota
[mm]		$[g.m^{-2}]$
1,2	bílý	49,70
1,5	bílý	58,47
2,0	bílý	94,73
3,0	bílý	141,39
3,0	šedý	89,87
6,0	bílý	226,39
6,0	šedý	180,06

.

Tabulka 5.3. Plošné hustoty Depronových desek. (Hodnoty převzaty z [35].)

Kapitola **6** Návrh různých koncepcí UAV

6.1 Požadavky na model

Pro samotný návrh konstrukce a stanovení sledovaných parametrů je nutné prvně definovat vlastnosti, které by měl letoun mít. Cílem návrhu je rádiem řízené motorové UAV, které by bylo schopné létat ve větších vnitřních prostorech. Příkladem takových prostor by mohl být skleněný vestibul na Fakultě strojní ČVUT na Karlově náměstí. Velikost tohoto prostoru je odhadem 10 x 18 m a výška stropu 6 metrů.

Další požadavek je kladen na vytrvalost modelu. Model by měl mít malý potřebný výkon, který by v kombinaci s dostatečně velkou kapacitou akumulátoru, zajišťoval dlouhou dobu letu.

Aby však let modelu diváky po krátké chvíli neomrzel, bylo by vhodné, aby měl motor dostatečný přebytek výkonu a bylo možné provést pár svižnějších průletů, či základní prvky akrobacie, jako je například přemet. V případě zajištění dostatečného tahu motoru, který by převyšoval tíhu modelu, by bylo možné s modelem provádět i vertikální vis na vrtuli.

Takto navržený model by mohl sloužit k propagaci Ústavu letadlové techniky, popřípadě celé Fakulty strojní ČVUT. Bylo by možné ho využít v rámci dnů otevřených dveří FS ČVUT nebo na veletrzích vysokých škol.

6.2 Navržené koncepce

První z uvažovaných koncepcí je jednoplošník, se kterým se v praxi halového létání setkáváme nejčastěji. Tomu odpovídá i jeho zastoupení v dříve uvedeném přehledu modelů. U volných halových modelů s gumovým pohonem je podmínka jedné nosné plochy často zanesena v pravidlech dané kategorie, rádiem řízené modely takto omezeny nebývají.

Druhou zvolenou koncepcí je dvouplošník. V modelářské praxi se s těmito modely lze setkat spíše zřídka a zejména v podobě maket velkých letadel. I tato koncepce by však mohla mít své výhody, které je nutné prozkoumat. Díky dvojici nosných ploch by rozpětí modelu mohlo být menší a model obratnější. To dokládá i populární akrobatický letoun Pitts Special. V malém uzavřeném prostoru se výhody těchto vlastností ještě umocňují. Na druhou stranu je potřeba počítat s tím, že vzájemné ovlivnění nosných ploch bude mít negativní vliv na vztlak i odpor.

Za úvahu stojí i koncepce samokřídla. Absence ocasních ploch a zadní části trupu by mohla mít pozitivní vliv na celkový odpor modelu. Nevýhodou s tím spjatou je však potřeba zajistit dostatečnou podélnou stabilitu. Ta musí být řešena použitím vhodného profilu, geometrického či aerodynamického kroucení nebo většího úhlu šípu na křídle. Na základě těchto úprav však dochází ke snížení vztlaku a zvýšení odporu na křídle.

Neobvyklým řešením této koncepce může být například model Drenalyn, který je zobrazen na obrázku 6.1. Jedná se o samokřídlo s malou štíhlostí($\lambda \sim 1$) a tenkým autostabilním profilem. Malá štíhlost znamená delší tětivu profilu a zvýšení Reynoldsova

čísla, které zesiluje vliv štíhlosti na odpor křídla. Výhodou této koncepce je její rozměrová kompaktnost a umístění kormidel ve vrtulovém proudu, čímž se zvyšuje jejich účinnost a celková obratnosti modelu.

Posledním zkoumaným konceptem je samokřídlo s větší štíhlostí. Pro zachování vysoké obratnosti by bylo vhodné umístit na náběžnou hranu 2 elektromotory v oblasti elevonů. Směrové kormidlo nahradí na sobě nezávislá regulace tahu každého z motorů, čímž zůstane zajištěna směrová řiditelnost. Pro zachování směrové a příčné stability budou na koncích křídel umístěny svislé plochy. Modelů s touto koncepcí lze na internetu dohledat několik, avšak nebyl nalezen žádný s malou velikostí a hmotností. Na obrázku 6.2 je pro ilustraci zobrazen model X-VERT od firmy E-flite, který váží 200 gramů a je navíc doplněn stabilizační elektronikou.

Obrázek 6.1. Model Drenalyn. [36]

Obrázek 6.2. E-flite X-VERT VTOL 0,5 m. [37]

Celkem tedy byly vybrány čtyři koncepce:

- jednoplošník,
- dvouplošník,
- samokřídlo s malou štíhlostí ($\lambda \sim 1$),
- samokřídlo s větší štíhlostí ($\lambda > 1$).

Každá z nich bude dále rozpracována, budou parametrizovány různé geometrické charakteristiky a jednotlivé varianty podrobeny analýze.

Kapitola **7** Metoda výpočtu aerodynamických charakteristik

Aby bylo možné mezi sebou jednotlivé koncepce porovnávat, je potřeba stanovit jakým způsobem budou určeny aerodynamické charakteristiky.

7.1 Metoda výpočtu

Výpočtovým programem byl zvolen volně dostupný software XFLR5 ve verzi 6.47. Jedná se o nástroj vhodný k analýze profilů, křídel a modelů na nízkých Reynoldsových číslech. V rámci analýzy profilů je do programu implementován XFoil. V rámci analýzy geometrií je možné volit mezi různými metodami výpočtu. Pro účely této diplomové práce byla používána panelová metoda VLM2, která umožňuje analyzovat i šípovitá křídla a plochy malých štíhlostí. Autoři programu nedoporučují využívat XFLR5 pro stanovení charakteristik modelu včetně trupu. Pro výpočet by byl nutný mnohem složi-tější aparát, zahrnující vzájemné ovlivnění jednotlivých ploch. Program však umožňuje nahrání přídavných odporů ve formě součinitele odporu s jeho vztažnou plochou. Odpor trupu bude zahrnut právě tímto způsobem. Více informací o XFLR5 lze dohledat v manuálu k programu [38].

Použití samotného programu však pro účely této diplomové práce nestačí. Problém spočívá v tom, že XFLR5 negeneruje aerodynamické charakteristiky pro vyvážené stavy modelů, ale pouze pro jedno konkrétní nastavení. Bohužel neumožňuje ani automatizovat změnu úhlu nastavení VOP, křídla ani parametrizaci geometrie.

Aby bylo možné sestavit grafy aerodynamických charakteristik ve vyvážených stavech modelu, bylo nutné u každého modelu variovat nastavení VOP. To zajišťuje skript napsaný v Pythonu, který prochází vzorové xml modelu a analýzy vyexportované z XFLR5, mění úhel nastavení VOP a ukládá nová xml. V případě samokřídel byl místo úhlu nastavení VOP variován profil s proměnlivým úhlem klapky.

Tyto nové xml soubory musí být následně nahrány do XFLR5, provedena analýza pro každý model s jiným nastavením VOP a vyexportovány csv soubory s aerodynamickými charakteristikami. Ty jsou následně importovány do skriptu psaném v Matlabu. Ten vyhledává takové aerodynamické charakteristiky, které odpovídají vyváženému stavu modelu ($C_{m\alpha} = 0$). V případě potřebného výkonu jsou hodnoty ještě upraveny součinitelem zohledňující vliv vrtule. Poté je již možné vykreslit žádané grafy aerodynamických charakteristik modelu, které odpovídají vyváženým stavům modelu.

7.2 Výpočet modelu Sans fin

Díky dostupnosti základních informací k modelu Sans fin bylo možné provést zkušební výpočty, které ověří, zda výsledky získané výše zmíněnou metodou výpočtu budou srovnatelné s hodnotami, které deklaruje konstruktér v knize [9].

Obrázek 7.1. Výpočetní geometrie modelu Sans fin v XFLR5. [13]

Geometrie křídla a ocasních ploch byla oměřena z dostupného plánku v knize[9]. Na křídlo byl pro simulaci použit profil NACA 4402, na ocasní plochy symetrický profil NACA 0002. Hmotnost modelu je 39 g.

Vzhledem k odlišnosti trupu (soustava uhlíkových tyček a elektronických součástek) od trupů větších modelů a velkých letadel, není možné využít většinu dostupných přístupů pro výpočet jeho odporu. Pro odhad byl nakonec použit výpočet dle postupu uvedeném v [39]. Prvním zahrnutým součinitelem je součinitel odporu povrchového tření. Ten byl na základě Reynoldsova čísla trupu stanoven $C_{fe} = 0,008$. Omočená plocha $S_{wet_{tr}} = 1,4 \text{ dm}^2$ byla vypočtena z dílčích částí trupu, jak je uvedeno v tabulce 7.1. Druhým uvažovaným součinitelem je tvarový součinitel odporu a byl vzhledem ke složitosti tvaru trupu odhadnut $C_{Dtvar} = 0,5$. Maximální průřez trupu je v oblasti akumulátoru $S_{Dtr} = 0,026 \text{ dm}^2$.

Část trupu	Rozměry [mm]	Omočená plocha [mm ²]
Přední část trupu – tyč	ø2 x 220	1 400
Zadní část trupu – tyč	ø2 x 500	3 500
Stojny pod křídlem $(2x)$	ø2 x 35	á 110
Táhla (2x)	ø0,6 x 280	á 530
Akumuátor LiPo	60 x 32 x 8	5 300
Elektromotor	ø7 x 15	500
RC vybavení	15 x 35 x 8	1 850
	Celkem	13 960

Tabulka 7.1. Odhad omočených ploch částí trupu modelu Sans fin. (Vypočteno z hodnot v [9], [40].)

Vliv vrtule byl zohledněn pomocí SBAC (Society of British Aircraft Constructors) metody dle vzorce

$$\frac{\eta_{P_{effective}}}{\eta_P} = 1 - \frac{1,558}{D_{prop}^2} \frac{\rho}{\rho_0} \sum \left(C_{fe} S_{wet} \right)_{washed},\tag{7.1}$$

který je obsažen v [41]. Tento vztah snižuje účinnost vrtule na základě částí letadla, které jsou ve vrtulovém proudu.

Průměr vrtule modelu Sans fin je $D_{prop} = 180$ mm. Poměr hustot ρ/ρ_0 je v tomto případě 1, koeficient tření C_{fe} je uvažován stejný jako pro výpočet vlivu trupu a omočená plocha $S_{wet} = 11,92$ dm² je složena ze všech částí letadla, které jsou ve vrtulovém proudu. Po dosazení hodnot vychází

$$\frac{\eta_{P_{effective}}}{\eta_P} = 1 - \frac{1,558}{0,18^2} \ 0,008 \cdot 0,1192 = 0,9541.$$
(7.2)

Byl proveden numerický výpočet pro 3 konfigurace – křídlo s ocasními plochami (zobrazeno na obrázku 7.1), celý model včetně trupu a celý model včetně trupu se zohledněním vlivu vrtule dle výpočtu v rovnici (7.2).

7.2.1 Výsledky a srovnání

V publikaci [9] nebyla uvedena poloha těžiště modelu. Proto byly stanoveny křivky potřebného výkonu vyvážených stavů, zobrazené v grafu na obrázku 7.2, pro tři polohy těžiště. Ty byly určeny na základě obvyklé těžištní zásoby ze statistiky v rozmezí 5–15 %.

Obrázek 7.2. Potřebný výkon modelu Sans fin v závislosti na rychlosti letu pro tři různé polohy těžiště při uvažování odporu trupu i vlivu vrtule.

Graf na obrázku 7.3 zobrazuje vliv jednotlivých výpočtových konfigurací pro těžištní zásobu $x_c = 10$ %. Nejnižší hodnoty vykazuje konfigurace křídlo+VOP+SOP. Druhá křivka zahrnuje navíc i odpor trupu. Je zjevné, že ten se významněji projevuje při vyšších rychlostech letu. V oblasti nejnižšího potřebného výkonu je nárůst do 3 %. Korekce vlivu vrtule je aplikována až na konfiguraci s trupem a dle výpočtu v rovnici (7.2) je nárůst necelých 5 %. Celkový nárůst potřebného výkonu celého modelu i s uvažováním vlivu vrtule je oproti konfiguraci křídlo s VOP a SOP 7,5 %.

Efektivní výkon dodávaný vrtulí u modelu Sans fin se dle [9] pohybuje okolo 0,1 W. To potvrzují i výsledky. Letadlo by mělo být schopné letět s tímto výkonem obzvláště při nižší těžištní zásobě v rozumném rozmezí rychlostí letu.

Obrázek 7.3. Vliv jednotlivých částí modelu na celkový potřebný výkon.

Dále je v knize uvedeno, že je model schopný letět rychlostí od 1,5 m.s⁻¹. Minimální rychlost horizontálního letu vypočtená pomocí XFLR5 vychází pro nejnižší statickou zásobu $v_x = 2,31 \text{ m.s}^{-1}$ a je tedy výrazně vyšší než deklarovaná hodnota. Ta je však při dané hmotnosti a ploše křídla nerealizovatelná. Po dosazení této rychlosti do upravené rovnice vztlaku pro výpočet součinitele vztlaku vychází

$$C_L = \frac{mg}{\frac{1}{2}\rho v^2 S} = \frac{0,039 \cdot 9,81}{\frac{1}{2} \cdot 1,225 \cdot 1,5^2 \cdot 0,12} = 2,3.$$
(7.3)

Taková hodnota součinitele vztlaku je pro křídlo na nízkých Reynoldsových číslech kolem 15 000 příliš vysoká.

Kapitola **8** Analýza navržených koncepcí

V této kapitole budou podrobněji rozpracovány jednotlivé koncepce z hlediska geometrie a hmotnosti. Následně bude provedena analýza koncepcí a zkoumán vliv změn geometrie na aerodynamické charakteristiky.

8.1 Analýza jednoplošníku

8.1.1 Návrh hmotnosti jednoplošníku

Hmotnost hraje při konstrukci letadla kritickou roli. Zachovat co nejnižší hmotnost je v aerodynamice nízkých Re kvůli nižším poměrům L/D ještě důležitější.

Pro prvotní návrh bylo vybráno vybavení zobrazené v tabulce 8.1. Přijímač byl zvolen nejlehčí možný z přehledu elektroniky. Na ovládání výškového a směrového kormidla byly použity závěsové aktuátory, které zároveň slouží jako závěs kormidla. Odpadá tedy potřeba táhel. Pro ovládání křidélek byl vybrán jeden robustnější aktuátor s dvouramennou pákou. Zvolený motor s převodovkou by při napětí 3,7 V a proudu v rozmezí 0,58–0,65 A měl vykazovat tah 13,4–15,6 g v závislosti na použité vrtuli. Bylo by možné použít i akumulátor s menší kapacitu (50–70 mAh), ale vzhledem k požadavku na delší dobu letu a zároveň i větší odběr při visu byla zvolena vyšší kapacita (130 mAh). Dále jsou v tabulce uvedeny kabely k motoru a vrtule. Nejsou zde uvedené lakované dráty k aktuátorům o průměru 0,025–0,05 mm, protože je jejich hmotnost zanedbatelná. Celková hmotnost vybavení vychází na 7,2 g.

Část	Тур	Hmotnost [g]
Přijímač+ESC	Deltang RC43d	0,34
Aktuátor – křidélka	Actuator Dual Arm 100 Ohm	0,47
Aktuátory – VK, SK	Actuator Premium Hinge Micro 60 Ohm	2x 0,17
Motor s převodovkou	Motor 6x15 (převodový poměr 9:42)	2,02
Akumulátor	Lipo 1S 130 mAh	3,30
Kabely aku-přijímač	$\emptyset 0,25~\mathrm{mm}$ s bužírkou (2x100~mm)	0,04
Kabely ESC-motor	$\emptyset 0,25~\mathrm{mm}$ s bužírkou (2x100~mm)	0,04
Konektor aku, pájení	Nano Connector $(1,27 \text{ mm})$	0,16
Vrtule	ø120 mm	0,49
	Celkem	7,20

Tabulka 8.1. Zvolené vybavení navrhovaného modelu. (Hodnoty převzaty z [42].)

Dalším krokem je odhad hmotnosti draku. Na základě známých hustot uhlíkových kompozitů, balsy a potahových materiálů lze u modelů, ke kterým jsou dostupné údaje o hmotnosti a stavební plán odhadnout hmotnost jednotlivých částí draku.

Modely uvedené v přehledu pokrývají širokou škálu. Za spodní hranici lze považovat drak modelů na gumový pohon. Například hmotnost draku modelu Sino 2 (bez vrtule)

je 1,1 g. Modely jsou však uzpůsobené k volnému letu, nízkým rychlostem a jsou křehké. Proto se pro stanovení hmotnosti draku jednoplošníku nabízejí zejména RC modely – RC Quirl a Vapor.

V případě RC Quirlů jsou dostupné pouze celkové hmotnosti modelů připravených k letu. Nejsou dostupné přesné specifikace vybavení, pomocí kterých by bylo možné odhadnout hmotnost draku. U Vaporu je situace jiná. Již v předchozí části byly uvedeny hmotnosti draku dvou verzí. Drak Mini Vapora o rozpětí 220 mm váží 2,47 g, u větší verze (375 mm) pak 5,59 g. Je pravděpodobné, že se hmotnost draku navrhovaného modelu bude pohybovat právě v těchto mezích.

	Vypočtená	Vypočtená	Podíl na
Část draku	hmotnost	hmotnost $\cdot 1,3$	hmotnosti draku
	[g]	[g]	[%]
Trup (uhlíkový hranol)	0,68	0,81	14,5~%
Křídlo (konstrukce+potah+pilony)	1,94	2,33	41,5~%
VOP (konstrukce+potah)	0,47	0,56	10,0~%
SOP (konstrukce+potah)	0,19	0,23	4,0 %
Plastové díly (spojení, držáky)	0,50	0,60	10,8~%
Podvozek (přední+ostruha)	0,60	0,72	12,8~%
Táhla k VOP, SOP	0,30	0,36	6,5~%
Celkem	4,67	5,60	

Tabulka 8.2. Hmotnost a podíl jednotlivých částí draku modelu Vapor.

Vapor první generace se od Night Vaporu příliš neliší, proto mohly být stanoveny hmotnosti jednotlivých částí draku, přes hustoty, znalost použitých materiálů a celkové hmotnosti draku. Vypočtené hmotnosti musely být korigovány faktorem 1,3, aby suma jednotlivých částí odpovídala reálné hmotnosti draku. Výsledky jsou zobrazeny v tabulce 8.2.

	Uvažovaná	Podíl na
Část draku	hmotnost	hmotnosti draku
	[g]	[%]
Trup	0,75	18,8 %
Křídlo (konstrukce+potah+pilony)	2,00	50,0~%
VOP (konstrukce+potah)	0,50	12,5~%
SOP (konstrukce+potah)	0,25	6,3~%
Spojení částí	0,30	7,5 %
Táhla ke křidélkům	0,20	5,0~%
Celkem	4,00	

Tabulka 8.3. Uvažovaná hmotnost jednotlivých částí draku pro model navrhovaného jedno-
plošníku.

Konstrukce modelu Vapor je značně předimenzována a uzpůsobena pro vyšší odolnost a sériovou výrobu modelu. Lze tedy uvažovat, že tato hmotnost je horní hranicí hmotnosti draku navrhovaného modelu. V zájmu její další redukce nebude na navrženém modelu podvozek (model může startovat a přistávat z ruky nebo na břicho), nebudou použity nadbytečné plastové díly (například masivní držák akumulátoru), které nejsou třeba ani ke spojení jednotlivých částí trupu – je možné je nahradit například lehkou balsou. Vzhledem k použití aktuátorů přímo u výškového a směrového kormidla nebudou potřeba táhla k VOP a SOP. Přibudou táhla ke křidélkům, která však budou výrazně kratší. Na základě těchto úvah byla stanovena hmotnost draku navrhovaného jednoplošníku na 4 g. Celková hmotnost navrhovaného modelu vychází 11,2 g.

8.1.2 Stanovení geometrie jednoplošníku

Plocha křídla byla vypočtena z plošného zatížení a navržené hmotnosti. Plošné zatížení bylo na základě statistiky stanoveno na 2,8 g.dm⁻². Po dosazení vychází

$$S = \frac{m}{\frac{W}{S}} = \frac{11.2}{2.8} = 4 \text{ dm}^2.$$
(8.1)

Pro porovnání a zjištění, jaký vliv na potřebný výkon mají různé změny geometrie křídla byl vytvořen model v XFLR5 s přímým křídlem a plochou $S = 4 \text{ dm}^2$. Velikost ocasních ploch byla stanovena na základě statistiky – $S_{VOP} = 0.9 \text{ dm}^2$, $\lambda_{VOP} = 2.5$, $A_{VOP} = 0.5$, $S_{SOP} = 0.45 \text{ dm}^2$, $\lambda_{SOP} = 2.5$ a $A_{SOP} = 0.25$. Vliv odporu trupu byl stanoven stejným postupem jako tomu bylo pro model Sans fin, hodnoty koeficientu odporu zůstávají stejné – $C_{fe} = 0.008$, $C_{Dtvar} = 0.5$. Hodnota omočené plochy trupu a největšího průřezu byla upravena podle použitých komponent, číselně tedy – $S_{wetr} = 0.9 \text{ dm}^2$, $S_{Dtr} = 0.012 \text{ dm}^2$. Ve výpočtech byl zohledněn i vliv vrtule (ø125 mm), podle rovnice (7.1).

8.1.3 Výběr profilu

Na modelu byly nejdříve vyzkoušeny různé profily nosné plochy. Na základě poznatků získaných v teoretické části byly testovány NACA profily s prohnutím 3 %, 4 % a 5 % umístěným ve 40 %, 50 % a 60 %. Tloušťka profilu byla ve všech případech uvažována 2 %, ta představuje tenký mylarový potah na horní straně konstrukce. Žádný z profilů nevykazoval extrémní odchylku od ostatních. Nejlepší kombinaci vlastností vykazoval profil NACA 4402. Disponuje nejnižším potřebný výkonem a zároveň vykazuje plošší dno křivky potřebného výkonu než profily s vyšším prohnutím. Ty sice dosahují nižší rychlosti letu, ale mají vyšší potřebný výkon a také strmější nárůst potřebného výkonu v závislosti na rychlosti. Dosažení a zejména udržení minimální hodnoty potřebného výkonu lze dosáhnout ve větším rozmezí rychlostí. Oproti profilu NACA 4402 je u NACA 3402 vyšší minimální potřebný výkon posunut k vyšším rychlostem letu, což je nežádoucí. Pro samotnou analýzu koncepce byl zvolen profil NACA 0002.

8.1.4 Vliv štíhlosti

Prvním porovnávaným parametrem je štíhlost obdélníkových křídel. Z grafu 8.1 je patrné, že vyšší štíhlost vykazuje výrazně nižší potřebný výkon. Největší rozdíly najdeme u nižších štíhlostí. U vyšších hodnot ($\lambda = 6$ a 8) už není rozdíl tak výrazný. Důvodem snižujícího se zlepšení je i posun do oblasti $Re \sim 10~000$, kde se výrazně zhoršuje poměr L/D.

Z grafu lze dále vyčíst, že se zvyšující se štíhlostí se sice snižuje minimální potřebný výkon, ale v tomto bodě je například pro $\lambda = 8$ křivka velmi ostrá a potřebný výkon s rychlostí rychle narůstá. Úplným opakem je $\lambda = 2$, kde se od pádové rychlosti, až po rychlost 3,25 m.s⁻¹ pohybuje potřebný výkon v rozmezí 3 mW.

Dobrým kompromisem mezi výše uvedenými vlastnostmi se jeví $\lambda = 3$ a $\lambda = 4$.

Obrázek 8.1. Jednoplošník – vliv různých štíhlostí na potřebný výkon.

8.1.5 Vliv zúžení

Vliv zúžení je pro $\lambda = 4$ zobrazen v grafu 8.2. Zúžení nemá takový vliv na potřebný výkon jako štíhlost křídla. Se snižujícím se zúžením je zde minimální posun k nižším minimálním hodnotám potřebného výkonu a rychlosti letu. Nejhorší hodnoty vykazuje zúžení 0,4, a to proto, že hloubka profilu na konci křídla je velmi malá $b_{tip} = 57$ mm a při nízkých rychlostech zde Reynoldsovo číslo klesá pod 10 000. Toto vysvětlení potvrzuje i fakt, že při vyšších rychlostech od 2,8 m.s⁻¹ je potřebný výkon srovnatelný s ostatními hodnotami zúžení.

Obrázek 8.2. Jednoplošník – vliv různých zúžení na potřebný výkon pro $\lambda = 4$.

8.2 Analýza dvouplošníku

8.2.1 Stanovení hmotnosti a geometrie dvouplošníku

Dalším z navrhovaných konceptů UAV je model dvouplošníku. Elektronika i profily byly použity stejné jako u jednoplošníku. Plocha křídla dvouplošníku byla stanovena, jako 1,5 násobek plochy navrhovaného jednoplošníku, tedy $S = 6 \text{ dm}^2$. Důvodem je vzájemné ovlivnění nosných ploch. Obě křídla jsou uvažována jako samonosná, není tedy třeba je doplňovat žádnými výztuhami spojujícími křídla na koncích, popřípadě úhlopříčnými lany/tyčemi, které by zachycovaly síly od ohybu křídel. Na základě toho byla hmotnost křídel dvojplošníku zvětšena o stejný násobek, jako plocha. Uvažovaná hmotnost celého dvouplošníku se tak oproti jednoplošníku zvýší o 1 g na 12,2 g.

Geometrické charakteristiky ocasních ploch modelu dvouplošníku, na kterém budou provedeny další výpočty, musí být také zvětšeny, protože křídlo dvouplošníku bude generovat větší klopivý moment. Mohutnost VOP byla zvětšena v poměru součinitele podélné stability křídla jednoplošníku a křídel dvouplošníku. Křídlo jednoplošníku s plochou 4 dm² a štíhlostí 3,5 vykazuje $C_{m0} = -0,12$, zatímco křídla dvouplošníku s celkovou plochou 6 dm², štíhlostí 3,5 umístěné přímo nad sebou ve vzdálenosti 50 mm vykazují $C_{m0} = -0,18$. Mohutnost VOP bude zvětšena také v poměru 1,5, tedy na $A_{VOP} = 0,75$. Mohutnost SOP, odpor trupu a vliv vrtule jsou ponechány stejné jako u jednoplošníku.

8.2.2 Vliv štíhlosti a svislé vzdálenosti nosních ploch

Pro analýzu vlivu štíhlosti a vzdálenosti nosných ploch byl použit model se dvěma obdélníkovými křídly o stejné štíhlosti ($\lambda = \{2, 3, 4\}$) umístěnými nad sebou se svislou vzdáleností mezi nosnými plochami $\Delta z = \{50 \text{ mm}, 100 \text{ mm}, 150 \text{ mm}\}.$

Výsledky potřebného výkonu ve vyvážených stavech modelu s uvažováním přídavného odporu trupu i vlivu vrtule jsou zobrazeny v grafu na obrázku 8.3. Stejně jako u jednoplošníku se se zvyšující štíhlostí snižuje potřebný výkon a minimální rychlost. Větší svislá vzdálenost nosných ploch snižuje vzájemné ovlivnění křídel a dále zlepšuje výkony modelu.

Obrázek 8.3. Dvouplošník – vliv různých štíhlostí a svislé vzdálenosti nosných ploch na potřebný výkon.

8.2.3 Vliv stupnění nosných ploch

Stupnění nosných ploch (anglicky stagger) řeší geometrickou polohu křídel vůči sobě ve směru osy x. Kladná hodnota definuje, že horní křídlo je před spodním.

Z výsledků zobrazených v grafu na obrázku 8.4 je patrné, že kladné i záporné stupnění posouvá závislost potřebného výkonu na rychlosti k vyšším hodnotám na obou osách. Největší posun je zřetelný pro $\Delta z = 50$ mm, s rostoucí svislou vzdáleností nosných ploch se vliv stupnění snižuje. Pro $\Delta z = 150$ mm jsou křivky potřebného výkonu pro různá Δx prakticky totožné. Konfigurace s nulovým stupněním vykazují v rámci stejné svislé vzdálenosti nejnižší hodnoty pádové rychlosti i minimálního potřebného výkonu.

Obrázek 8.4. Dvouplošník – vliv stupnění křídel Δx na potřebný výkon pro $\lambda = 3$ a různá Δz .

8.2.4 Vliv rozdílné velikosti nosných ploch

Posledním zkoumaným parametrem je rozdílná velikosti nosných ploch pro stejnou polohu křídel vůči sobě. Výsledky jsou zobrazeny v grafu na obrázku 8.5, hodnoty ploch křídel dvouplošníku zobrazené v legendě jsou definované jako plocha horního křídla + plocha spodního křídla. Stejná velikost nosných ploch ($S = 3 + 3 \text{ dm}^2$) vykazuje nejnižší minimální rychlost a zároveň nejnižší rychlost minimálního potřebného výkonu. Samotná hodnota $P_{p,prop}$ je však pro tuto konfiguraci nejvyšší ze všech zkoumaných konfigurací. Nezvyklý tvar ostatních křivek v grafu je dán zejména nižšími Re na menším křídle. Z grafu dále plyne, že větší horní nosná plocha oproti spodní vykazuje lepší výsledky. Nejnižší hodnoty potřebného výkonu $P_{p,prop} = 0,372 \text{ W z 5 porovnávaných konfigurací dosahuje konfigurace <math>S = 5+1 \text{ dm}^2$. Je však otázkou, zda taková konfigurace dává smysl a nebylo by výhodnější použít jednoplošník s větší plochou křídla.

Kompletní výsledky i pro $\Delta z = 100 \mbox{ mm}$ jsou uvedeny v přílohách.

Obrázek 8.5. Dvouplošník – vliv velikosti nosných ploch (S = horni + dolni) na potřebný výkon pro $\lambda = 4$ a $\Delta z = 150$ mm.

8.3 Analýza samokřídla s malou štíhlostí

8.3.1 Stanovení hmotnosti a základní geometrie

Aby byla zajištěna porovnatelnost s ostatními koncepcemi, je pro samokřídlo s malou štíhlostí uvažována stejná plocha jako pro jednoplošník $S = 4 \text{ dm}^2$. Oproti předchozím koncepcím jsou řízena pouze 3 kormidla – dva elevony a jedno směrové kormidlo. Vybavení modelu se oproti jednoplošníku liší pouze v hmotnosti aktuátorů – jsou použity tři závěsové aktuátory o hmotnosti 0,17 g. Výsledná hmotnost vybavení bude tedy o 0,3 g nižší než hmotnost uvedená v tabulce 8.1. Hmotnost draku modelu je menší o hmotnost VOP a zadní část trupu. Křídlo malé štíhlosti však vyžaduje dlouhá žebra (~200 mm), popřípadě další nosník než předchozí koncepce. Tyto úpravy by ve výsledku mohly mít na hmotnost větší vliv než absence VOP. Proto je počítáno se stejnou hmotností draku jako u jednoplošníku. Celková uvažovaná hmotnost koncepce samokřídla s malou štíhlostí je tedy 10,9 g.

Omočená plocha trupu je pro tuto koncepci menší než u jednoplošníku, zejména kvůli absenci zadní části trupu. I přesto zde musí část trupu pod křídlem zůstat nejen pro zajištění pevnosti a tuhosti modelu, ale i pro přidělání elektroniky. Hodnoty koeficientu odporu zůstávají stejné – $C_{fe} = 0,008$, $C_{Dtvar} = 0,5$, stejně tak hodnota největšího průřezu trupu – $S_{Dtr} = 0,012$ dm². Hodnota omočené plochy trupu této koncepce vychází $S_{wet_{tr}} = 0,7$ dm². Stejně jako v předchozích případech, je uvažován i vliv vrtule.

8.3.2 Vliv profilu

Použitím souměrného profilu NACA 0002 simulující kostru potaženou Myralonem tvaru rovné desky, bylo dosaženo vysoké hodnoty potřebného výkonu $P_{p_prop} \sim 0.09$ W a vysoké minimální rychlosti $v_{min} = 3.05 \text{ m.s}^{-1}$ v porovnání s ostatními koncepcemi.

V úvahu připadá použití autostabilního profilu. Vzhledem k parametrům a využití navrhovaného modelu není vhodné použít standardní autostabilní profil s větší tloušťkou, jak z hlediska špatných aerodynamických charakteristik na nízkých Re, tak i z hle-

diska konstrukčního řešení modelu. Za tímto účelem byl vytvořen autostabilní profil, který vznikl úpravou zadní části profilu NACA 3402. Oba profily jsou pro porovnání zobrazeny na obrázku 8.6.

Obrázek 8.6. Porovnání autostabilního profilu s profilem NACA 3402.

Použitím autostabilního profilu došlo ke snížení potřebného výkonu i minimální rychlosti. Stále jsou však velmi vzdálené od hodnot ostatních koncepcí. Minimální hodnota potřebného výkonu je $P_{p-prop} = 0.0722$ W a minimální rychlost $v_{min} = 2.65$ m.s⁻¹.

Vzhledem k přesně definované ploše křídla a štíhlosti, nebylo možné pomocí změny geometrie výrazně zlepšit aerodynamické charakteristiky, proto nebude koncept dále rozvíjen a zkoumán.

8.4 Analýza samokřídla s větší štíhlostí

8.4.1 Stanovení hmotnosti a základní geometrie

Plocha samokřídla bude uvažována totožná s plochou nosné plochy jednoplošníku $S = 4 \text{ dm}^2$ a rovnou odtokovou hranou po celém rozpětí. Protože se tato koncepce vybavením i drakem výrazně liší od všech předchozích, je nutné provést nový hmotnostní odhad.

Zvolené vybavení je zobrazeno v tabulce 8.4. Přijímač s vestavěným regulátorem Deltang RC43d umožňuje připojení a samostatnou regulaci dvou stejnosměrných motorů. Aktuátory pro elevony byly použity stejné jako pro ocasní plochy jednoplošníku. Motory byly vybírány podle dosažitelného tahu. Zvolený motor ø4x12 mm s převodovkou dokáže (dle [43]) v kombinaci s uhlíkovou vrtulí ø100 mm vyvinout tah 7,1 g, celkem tedy 14,2 g při použití dvou motorů. Akumulátor byl ponechán stejný, zvýšila se délka potřebných kabelů mezi přijímačem a motory, změněna byla i vrtule. Hmotnost vybavení byla stanovena na 7,1 g.

Část	Тур	Hmotnost [g]
Přijímač+ESC	Deltang RC43d	0,34
Aktuátory – elevony	Actuator Premium Hinge Micro 60 Ohm	2x 0,17
Motory s převodovkou	Motor $4x12$ (převodový poměr $8:46$)	2x 1,10
Akumulátor	Lipo 1S 130 mAh	3,30
Kabely aku-přijímač	$\emptyset 0,25 \text{ mm s bužírkou (2x100 mm)}$	0,04
Kabely ESC-motor	$\emptyset 0,25~\mathrm{mm}$ s bužírkou (4x250 mm)	0,20
Konektor aku, pájení	Nano Connector $(1,27 \text{ mm})$	0,20
Vrtule	ø100 mm	2x 0,24
	Celkem	7,10

Tabulka 8.4. Zvolené vybavení samokřídla s větší štíhlostí. (Hodnoty převzaty z [42].)

	Uvažovaná	Podíl na
Část draku	hmotnost	hmotnosti draku
	[g]	[%]
Trup	0,30	9,1~%
Křídlo (konstrukce+potah)	2,00	60,6~%
Boční winglety (konstrukce+potah)	0,50	15,2~%
Spojení částí	0,30	9,1~%
Tyčky k motorům	0,20	6,1~%
Celkem	3,30	

Tabulka 8.5. Uvažovaná hmotnost jednotlivých částí draku pro model samokřídla s větší štíhlostí.

Hmotnost draku modelu byla také upravena. Snížila se hmotnost trupu, odpadla potřeba VOP, SOP byla nahrazena dvěma winglety. Hmotnost draku byla stanovena na 3,3 g. Celková hmotnost koncepce samokřídla byla stanovena na 10,4 g.

Přídavný odpor ve formě trupu je u této koncepce výrazně nižší. Je však nutné započítat i druhý motor a tyčky spojující motory se zbytkem draku. Součinitele odporu zůstávají stejné jako u předchozích koncepcí, oblast maximálního průřezu trupu také – $S_{Dtr} = 0.012 \text{ dm}^2$. Omočená plocha trupu a všech komponent vychází $S_{wet_{tr}} = 0.5 \text{ dm}^2$.

Porovnávány budou různé štíhlosti při zúžení 0,8. To je ideálním kompromisem mezi nežádoucím rozložením vztlaku na křídle a dosaženými výkony. Ve výpočtech je zohledněn i vliv vrtule o průměru 120 mm.

8.4.2 Vliv štíhlosti

Z grafu na obrázku 8.7 je patrné, že z hlediska potřebného výkonu je samokřídlo velmi úsporné. Problém je s vyššími rychlostmi, na kterých je minimálních hodnot potřebného výkonu dosahováno. Tomu by bylo možné předejít zvětšením nosné plochy.

Obrázek 8.7. Samokřídlo – vliv různých štíhlostí na potřebný výkon.

8.4.3 Vliv zvětšené plochy samokřídla

V rámci dalšího srovnání bude zvětšena plocha samokřídla v takovém poměru, aby bylo dosaženo stejné minimální rychlosti, jako u jednoplošníku. S poměrem plochy bude zvýšena i hmotnost křídla. Výpočet vychází z rovnic

$$L_1 = \frac{1}{2}\rho v_1^2 \cdot S_1 \cdot C_L = m_1 \cdot g, \qquad (8.2)$$

$$L_2 = \frac{1}{2}\rho v_2^2 \cdot S_2 \cdot C_L = m_2 \cdot g, \qquad (8.3)$$

$$m_2 = m_1 + \left(\frac{S_2}{S_1} - 1\right) \cdot m_{k\check{\mathbf{r}}}.$$
 (8.4)

Hodnoty s indexem 2 odpovídají zvětšenému modelu samokřídla, index 1 naopak původnímu modelu samokřídla.

Po úpravě výše uvedených rovnic získáme konečnou podobu pro poměr ploch sa-mokřídel

$$\frac{S_2}{S_1} = \frac{m_1 \cdot v_1^2 - m_{k\check{\mathbf{r}}} \cdot v_1^2}{m_1 \cdot v_2^2 - m_{k\check{\mathbf{r}}} \cdot v_1^2}.$$
(8.5)

Požadovaná rychlost $v_2 = 2,4 \text{ m.s}^{-1}$ odpovídá rychlosti při minimálním potřebném výkonu jednoplošníku ($\lambda = 4$), viz graf na obrázku 8.1. Pro samokřídlo ($\lambda = 4$) je rychlost minimálního potřebného výkonu $v_1 = 2,68 \text{ m.s}^{-1}$ (viz obrázek 8.7). Po dosazení do rovnice (8.5) vychází

$$\frac{S_2}{S_1} = \frac{10.4 \cdot 2.68^2 - 2 \cdot 2.68^2}{10.4 \cdot 2.4^2 - 2 \cdot 2.68^2} = 1,32.$$
(8.6)

Zvětšená plocha samokřídla následně vychází

$$S_2 = \frac{S_2}{S_1} \cdot S_1 = 1,32 \cdot 4 = 5,3 \text{ dm}^2.$$
(8.7)

Nyní už je potřeba stanovit pouze hmotnost většího samokřídla dle rovnice

$$m_2 = m_1 + \left(\frac{S_2}{S_1} - 1\right) \cdot m_{k\check{r}} = 10.4 + (1.32 - 1) \cdot 2 = 11.05 \text{ g.}$$
 (8.8)

Plocha zvětšeného samokřídla je $5,3 \text{ dm}^2$ a hmotnost 11,05 g.

Potřebný výkon zvětšeného samokřídla s uvažovaným vlivem obou vrtulí je zobrazen na obrázku 8.8. Tato varianta dosahuje požadované nižší rychlosti a zároveň došlo i ke snížení potřebného výkonu. Srovnání s ostatními koncepty bude provedeno v další části práce. 8. Analýza navržených koncepcí

. .

Obrázek 8.8. Samokřídlo – zvětšená plocha, vliv různých štíhlostí na potřebný výkon.

Kapitola 9 Porovnání navržených koncepcí a výběr optimální varianty

V předchozích částech byly navrženy a analyzovány různé varianty UAV pro velmi nízká Reynoldsova čísla. Nejhůře na tom z hlediska výkonů byla koncepce samokřídla s nízkou štíhlostí. Rychlostně i potřebným výkonem byla posunuta k mnohem vyšším hodnotám, než jakákoli z ostatních koncepcí. V rámci dalšího srovnání nebude tato koncepce uvažována.

Na obrázku 9.1 jsou zobrazeny křivky potřebného výkonu pro zkoumané koncepce pro $\lambda = 4$. Modely s menší štíhlostí dosahují výrazně horších výkonů. Naopak vyšší štíhlost se výrazně projevuje na větším rozpětí, což zvyšuje nároky na dimenzování křídla, velikost přepravního boxu pro model i na velikost prostoru, ve kterém se bude letoun pohybovat.

Obrázek 9.1. Porovnání potřebného výkonu v závislosti na rychlosti letu mezi jednotlivými koncepcemi pro $\lambda=4.$

Velmi slibně se od samého začátku zkoumání jevil dvouplošník. I přes vyšší letovou hmotnost bylo možné zajistit nejnižší minimální rychlost oproti ostatním koncepcím. Potřebný výkon se však ani různými dalšími geometrickými změnami nepodařilo výrazně snížit.

Koncepce jednoplošníku je nejčastěji používaná, a to jak u halových, tak u větších modelů. Dobré výkonnostní charakteristiky potvrzují i provedené analýzy. Jedná se o spolehlivý koncept, ke kterému lze dohledat mnoho konstrukčních podkladů.

Samokřídlo o stejné ploše jako jednoplošník vykazuje díky nižší hmotnosti srovnatelné hodnoty potřebného výkonu, avšak na vyšších rychlostech. V případě samokřídla se

zvětšenou plochou bylo dosaženo nejnižších hodnot potřebného výkonu v rámci všech zkoumaných koncepcí na stejné rychlosti, jako u jednoplošníku. Další snížení rychlosti až k hodnotám dosahovaných dvouplošníky by vyžadovalo enormní nárůst plochy, který by vyžadoval i změny v použitém vybavení a konstrukci.

Je možné, že by jednoplošník po zvětšení plochy křídla dosahoval srovnatelných výkonů (zvýšení vztlaku, ale za cenu vyšší hmotnosti), než zvětšené samokřídlo s větší štíhlostí. Koncepce samokřídla s větší štíhlostí má však vzhledem k cíli práce další výhody, díky kterým se jeví jako vhodnější. Díky bočním stabilizátorům a výkonným motorům, může samokřídlo startovat a přistávat vertikálně ze země. V neposlední řadě je tato neobvyklá koncepce na první pohled zajímavější oproti koncepci jednoplošníku.

Samokřídlo se dvěma motory, řiditelnými elevony a bez řiditelného směrového kormidla bylo vybráno jako optimální varianta UAV pro použití na velmi nízkých Reynoldsových číslech.

Kapitola **10** Navržený model samokřídla

Za optimální variantu modelu bylo zvoleno samokřídlo o ploše 5,3 dm² a štíhlosti 4 s rovnou odtokovou hranou. Na křídle byl použit autostabilní profil, který vznikl úpravou profilu NACA 3402. Podrobné parametry modelu jsou zobrazeny v tabulce 10.1.

Konstrukce modelu je navržena jako kombinace balsy, uhlíkových tyček a potahové mylarové fólie. Elevony s aktuátory jsou umístěny na koncích křídel. Středová část křídla je pevná s přizvednutou odtokovou hranou tak, aby zajišťovala stabilitu modelu. Žebra jsou balsová, náběžná hrana je z uhlíkové tyčky, čímž je zajištěna vyšší odolnost v případě nárazu. Konstrukce svislých bočnic je navržena z balsových lišt potažených z jedné strany mylarovou fólií.

Motory s převodovkami jsou umístěny ve čtvrtinách křídla na uhlíkové tyčce, která je připevněna zespodu balsového žebra. Akumulátor a přijímač jsou umístěny zespodu kořenového žebra a jejich posunem lze dosáhnout správného vyvážení modelu.

Profil křídla [–]	autostabilní
Délka [mm]	160
Rozpětí [mm]	460
Plocha křídla [dm ²]	5,3
Štíhlost křídla [–]	4,0
Zúžení křídla [–]	0,8
Hloubka křídla – u kořene [mm]	128
Hloubka křídla – na konci [mm]	102
Střední aerodynamická tětiva [mm]	115,5
Předpokládaná hmotnost [g]	11,05
Předpokládané plošné zatížení $[g.dm^{-2}]$	2,08

Tabulka 10.1. Specifikace navrženého modelu samokřídla.

Pomocí potřebného výkonu, kapacity akumulátoru, účinnosti pohonu a spotřeby elektroniky je možné odhadnout vytrvalost modelu. Minimální potřebný výkon pro navržené samokřídlo odpovídá $P_{p_prop} = 0,034$ W. Účinnost pohonu byla stanovena na 20 %(vrtule – akumulátor). Spotřebu použitých aktuátorů a přijímače výrobci neuvádějí. Na základě údajů jiných výrobců byla odhadnuta na 30 mA (hodnota převzata z [44]). Kapacita použitého akumulátoru je 130 mAh.

Určení celkové spotřeby modelu spočívá v součtu elektrických proudů. U motorů vychází z rovnice pro elektrický výkon. Celková spotřeba modelu je

$$I = \frac{P_{p_prop}}{\eta_{pohon}} \frac{1}{U} + I_{elektronika} = \frac{0.034}{0.2} \frac{1}{3.7} + 0.030 = 0.076 \text{ A.}$$
(10.1)

Vytrvalost modelu následně vychází

$$T = \frac{C}{I} = \frac{0.130}{0.076} = 1 \text{ hod}, \ 43 \text{ min.}$$
 (10.2)

Obrázek 10.1. Potřebný výkon v závislosti na rychlosti letu navrženého samokřídla.

Obrázek 10.2. Polára navrženého samokřídla.

. . .

. .

Obrázek 10.3. Rychlostní polára navrženého samokřídla.

Obrázek 10.4. 3D model navrženého samokřídla

. . . .

Obrázek 10.5. Navržené samokřídlo – tři pohledy

Cílem této diplomové práce bylo navrhnout rádiem řízený model UAV pro velmi nízká Reynoldsova čísla. Na základě poznatků získaných z publikovaných studií zabývajících se aerodynamikou nízkých Reynoldsových čísel bylo možné přistupovat k problému s jistým teoretickým základem a vyhnout se zkoumání velkého množství různých profilů. Přehled modelů, dostupné elektroniky a materiálů umožnil zjistit, jaké typy konstrukcí jsou obvykle pro malé modely používány a podal podklad pro určení hmotnosti jednotlivých částí navrhovaných koncepcí.

Následně byl naprogramován skript, který umožnil zautomatizování procesu tvorby modelů a analýz, které slouží jako vstup do programu XFLR5. Po provedení analýzy byly pro každý letoun z XFLR5 exportovány data s aerodynamickými hodnotami. Ty sloužily jako podklad pro skript psaný v Matlabu, který ze všech vypočítaných polár vybral pouze vyvážené stavy a vykreslil potřebné grafy. Tento postup byl odzkoušen na modelu Sans fin, u kterého bylo možné porovnat získané hodnoty z programu s deklarovanými hodnotami potřebného výkonu uvedenými konstruktérem.

Poté byly zvoleny celkem čtyři koncepce – jednoplošník, dvouplošník, samokřídlo s velmi malou štíhlostí ($\lambda \sim 1$) a samokřídlo s větší štíhlostí ($\lambda > 1$). Ty byly dále rozpracovány, parametrizovány a podrobeny analýze pomocí XFLR5. Zkoumán byl například vliv profilů, štíhlostí a zúžení. U dvojplošníku dále svislá vzdálenost ploch i stupnění křídel. Výsledky byly následně porovnány mezi sebou na základě potřebného výkonu a rychlosti letu.

Nakonec byla jako optimální zvolena koncepce samokřídla s autostabilním profilem, který vznikl úpravou profilu NACA 3402. Kostra křídla je kombinací balsy a uhlíkových tyček, která je potažena mylarovou fólií. Plocha křídla je 5,3 dm² a štíhlost 4. Model je poháněn dvěma motory umístěnými před náběžnou hranou křídla, které lze ovládat nezávisle na sobě. Rozdílným tahem lze generovat zatáčivý moment bez potřeby směrového kormidla. Boční stabilizátory a dostatečný tah motorů by měly zajistit vertikální start ze země a zároveň umožnit vis na vrtuli. Klopení a klonění je řízeno pomocí dvou elevonů na odtokové hraně křídla.

Navržené letadlo by mělo dosahovat minimálního potřebného výkonu 0,034 W, což se zvoleným akumulátorem odpovídá maximální délce letu 1 hod, 43 min.

Literatura

- BROŽ, Václav. Aerodynamika nízkých rychlostí. 3. Praha: České vysoké učení technické v Praze, 1990. ISBN 80-01-00198-9.
- [2] HAZRA, Subhendu Bikash a Anthony JAMESON. Aerodynamic shape optimization of airfoils in ultra-low Reynolds number flow using simultaneous pseudotime stepping. Aerospace Computing Lab (ACL) report. 2007, 4.
- [3] MUELLER, T. J. Fixed and flapping wing aerodynamics for micro air vehicle applications. Reston, Va.: American Institute of Aeronautics and Astronautics, 2001. ISBN 1-56347-517-0.
- [4] PETROSYAN, A., B. GALPERIN, S. E. LARSEN, et al. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER. *Reviews of Geophysics* [online]. 2011, 49(3) [cit. 2020-06-25]. DOI: 10.1029/2010RG000351. ISSN 8755-1209. Dostupné z: http://doi.wiley.com/10.1029/2010RG000351
- [5] Mars helicopter. Mars.nasa.gov [online]. [cit. 2020-06-25]. Dostupné z: https:// mars.nasa.gov/technology/helicopter/
- [6] VERITASIUM. First Flight on Another Planet! [YouTube video]. 2019 [cit. 2020-06-25]. Dostupné z: https://www.youtube.com/watch?v=GhsZUZmJvaM
- [7] WINSLOW, Justin, Hikaru OTSUKA, Bharath GOVINDARAJAN a Inderjit CHOPRA. Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104—105). Journal of Aircraft. 2018, 55(3), 1050-1061. DOI: 10.2514/1.C034415. ISSN 0021-8669. Dostupné také z: https://arc.aiaa.org/ doi/10.2514/1.C034415
- [8] SUNADA, Shigeru, Akitoshi SAKAGUCHI a Keiji KAWACHI. Airfoil Section Characteristics at a Low Reynolds Number. Journal of Fluids Engineering. 1997, 119(1), 129-135. DOI: 10.1115/1.2819098. ISSN 0098-2202. Dostupné také z: https://asmedigitalcollection.asme.org/fluidsengineering/article/119/1/ 129/411876/Airfoil-Section-Characteristics-at-a-Low-Reynolds
- [9] EDER, Hanz. Alles über Saalflug: Vom Gummiantrieb bis zum Micro-RC-Modell. Verlag für Technik und Handwerk neue Medien, 2014. ISBN 978-3-88180-455-4.
- [10] Quirl-CM (fotka). Rc-network.de [online]. [cit. 2020-11-16]. Dostupné z: https:// www.rc-network.de/attachments/quirl_kl-jpg.9685359/
- [11] STENNARD, John. Heim-spiele: Mikro- und Nano-Modelle. Flugmodell und Technik: Die führende Fachzeitschrift. Baden-Baden: Verlag für Technik und Handwerk neue Medien, 2020, 69(09), 98-102. ISSN 1864-0222.
- [12] Night Vapor 0.4m BNF (fotka). Astramodel.cz [online]. [cit. 2020-10-19]. Dostupné
 z: https://www.astramodel.cz/cz/katalog/parkzone/night-vapor-0-4m-bnf-p17648.html
- [13] Night Vapor (obrázek). Astramodel.cz [online]. [cit. 2020-10-19]. Dostupné z: https://www.astramodel.cz/images/parkzone/800x600/PKZU1180.jpg?v=-HWX

[14] Dancing Wings Hobby Ice Cream E2306-B50 226mm Wingspan Ultra-light Indoor Mini RC Airplane Beginner With Battery BNF. Banggood.com [online]. [cit. 2020-11-12]. Dostupné z: https://www.banggood.com/Dancing-Wings-Hobby-Ice-Cream-E2306-B50-226mm-Wingspan-Ultra-light-Indoor-Mini-RC-Airplane-Beginner-With-Battery-BNF-p-1559352.html

- [15] Ice Cream (fotka). Imgaz3.staticbg.com [online]. [cit. 2020-10-25]. Dostupné z: https://imgaz3.staticbg.com/thumb/large/oaupload/ser1/banggood/images/0C/ 3A/bdda8340-a4d9-4efa-8391-a1d86e7ecbb5.jpg
- [16] RC Quirl (fotka). Shop.vth.de [online]. [cit. 2020-11-17]. Dostupné z: https:// shop.vth.de/media/catalog/product/cache/8954f5eea3aed417c3f131de6f59c892/ B/U/BU-3201505-0-01-VTH-GR-3_4.JPG
- [17] Carbon Butterfly Complete Set. Microflight.com [online]. [cit. 2020-10-14]. Dostupné z: http://microflight.com/airplanes/carbon-butterfly.html
- [18] Carbon Butterfly with hand (fotka). Microflight.com [online]. [cit. 2020-10-14]. Dostupné z: http://microflight.com//media/catalog/product/cache/3/image/ 700x700 / 17f82f742ffe127f42dca9de82fb58b1 / p / p / pp-carbon-butterfly-withhand.jpg
- [19] Alfred Klinck: Sino II (stavební manuál). Thermiksense.de [online]. [cit. 2020-11-18]. Dostupné z: https://www.thermiksense.de/wp-content/uploads/2018/05/Bauanleitung_SINO-II.pdf
- [20] Micro Digital Servo 1,7 g (obrázek). Banggood.com [online]. [cit. 2020-09-30]. Dostupné z: https://imgaz.staticbg.com/thumb/large/oaupload/banggood/images/ 0A/77/7c9ca356-2d25-4b94-9b10-53b7d84728cd.jpg
- [21] Spektrum servo H2040L 2.9g linear long throw (obrázek). Astramodel.cz [online]. [cit. 2020-09-30]. Dostupné z: https://www.astramodel.cz/cz/katalog/spektrum/ spektrum-servo-h20401-2-9g-linear-long-throw-p27074.html
- [22] Control surface mounted actuator configurations (obrázek). Rcgroups.com [online]. [cit. 2020-09-30]. Dostupné z: https://www.rcgroups.com/articles/ezonemag/ 2003/jan/inside/surfacemounted.jpg
- [23] Magnetic actuators (obrázek). *Rcgroups.com* [online]. [cit. 2020-09-30]. Dostupné z: https://www.rcgroups.com/articles/ezonemag/2003/jan/inside/dualremote.jpg
- [24] Motors. *Micronwings.com* [online]. [cit. 2020-10-19]. Dostupné z: https://micronwings.com/Products/SectionMotors/index.shtml
- [25] Receiver MA-RX42-D DSMX Brushed 5A ESC (obrázek). Micronwings.com [online]. [cit. 2020-10-12]. Dostupné z: https://micronwings.com/Products/ ReceiverMA-RX42-DDSMXBrushed5AESC/image01.jpg
- [26] DT Receiver Rx43d (obrázek). Deltang.co.uk [online]. [cit. 2020-10-13]. Dostupné z: http://deltang.co.uk/rx43d-1.jpg
- [27] Receiver 24R6CLV11 (obrázek). Micronwings.com [online]. [cit. 2020-10-12]. Dostupné z: https://micronwings.com/Products/Receiver24R6CLV11DSM2Compatible Linear5ChBrick/image01.jpg
- [28] Batteries and chargers. *Microflight.com* [online]. [cit. 2020-10-12]. Dostupné z: http://microflight.com/radio-systems/batteries-and-chargers.html
- [29] Lipo Batteries and Accessories. Micronwings.com [online]. [cit. 2020-10-12]. Dostupné z: https://micronwings.com/Products/SectionBatteryAndAccessory/ index.shtml

- [30] Lipo Battery Size Chart: Dimensions, Parameters and Weight. Blog.ampow.com [online]. [cit. 2020-10-12]. Dostupné z: https://blog.ampow.com/lipo-batterysize-chart/
- [31] Building and Construction: Foam Glues Carbon Ply Wood Piano Wire - Tapes. Micronwings.com [online]. [cit. 2020-10-21]. Dostupné z: https:// micronwings.com/Products/SectionBuilding/index.shtml
- [32] Bending Carbon: A simple guide to how tight you can bend various thicknesses of carbon rod. *Micronwings.com* [online]. [cit. 2020-10-21]. Dostupné z: https:// micronwings.com/HintsAndTips/CarbonFlyer/CarbonBending.shtml
- [33] Depron box and sheets (fotka). Micronwings.com [online]. [cit. 2020-10-25]. Dostupné z: https://micronwings.com/Products/SectionDepronLarge/BoxAndSheets. jpg
- [34] Heat formed Depron (fotka). Micronwings.com [online]. [cit. 2020-10-25]. Dostupné
 z: https://micronwings.com/Products/SectionDepron/HeatForming.jpg
- [35] Depron vs Modelling Foam Comparison. Micronwings.com [online]. [cit. 2020-10-25]. Dostupné z: https://micronwings.com/Products/SectionDepron/Depron Comparisons.shtml
- [36] Drenalyn 360 mm (fotka). Lecun.org [online]. [cit. 2021-01-13]. Dostupné z: http://www.lecun.org/gallery/libhob/20020425-drenalyn360/dsc01500-h.jpg
- [37] E-flite X-VERT VTOL 0,5 m. Astramodel.cz [online]. [cit. 2021-01-06]. Dostupné
 z: https://www.astramodel.cz/fotogalerie/eflite/efl1800_x-vert/800x600/E FLITE-X-Vert-VTOL-094EFL1850_01.jpg
- [38] XFLR5 Guidelines. *Sourceforge.net* [online]. [cit. 2021-01-14]. Dostupné z: https://sourceforge.net/projects/xflr5/files/Guidelines.pdf/download
- [39] MUSIL, Miroslav. Aerodynamika moderních leteckých modelů. Praha: Naše vojsko, 1978.
- [40] Profuse 1S 3,7V 1050 Mah LiPo Cell Battery. Jsumo.com [online]. [cit. 2020-10-28]. Dostupné z: https://www.jsumo.com/profuse-1s-37v-1050-mah-lipo-cell-battery
- [41] RAYMER, Daniel P. Aircraft Design: A Conceptual Approach. Fourth edition. Washington: American Institute of Aeronautics and Astronautics, 2006. ISBN 1563478293.
- [42] Micronwings (Eshop). *Micronwings.com* [online]. [cit. 2020-12-01]. Dostupné z: https://micronwings.com/
- [43] Gearbox 4mm 8 to 46 Ratio with Connector. Micronwings.com [online]. [cit. 2021-01-06]. Dostupné z: https://micronwings.com/Products/Gearbox4mm8to46Ratio WithConnector/index.shtml
- [44] Duplex R7 nano EX. Jetimodel.com [online]. [cit. 2021-01-14]. Dostupné z: http://www.jetimodel.com/cs/katalog/Duplex-2-4-EX/Prijimace-EX/Sesnizenym-dosahem/@produkt/Duplex-R7-nano-EX/

Obrázek A.1. Potřebný výkon jednoplošníků bez uvažování vlivu vrtule – vliv štíhlosti.

Obrázek A.2. Potřebný výkon jednoplošníků s vlivem vrtule – vliv štíhlosti.

. . . .

Obrázek A.3. Rychlostní poláry jednoplošníků – vliv štíhlosti.

Obrázek A.4. Poláry jednoplošníků – vliv štíhlosti.

. . . .

Obrázek A.5. Potřebný výkon jednoplošníků bez uvažování vlivu vrtule – vliv zúžení pro $\lambda=4.$

Obrázek A.6. Potřebný výkon jednoplošníků s vlivem vrtule – vliv zúžení pro $\lambda = 4$.

Obrázek A.8. Poláry jednoplošníků – vliv zúžení pro $\lambda = 4$.

		P_p		P_{p-prop}		C_L/C_D
Název	min	$v = 2,5 \text{ m.s}^{-1}$	min	$v = 2,5 {\rm ~m.s^{-1}}$	max	$v = 2,5 {\rm ~m.s^{-1}}$
	[W]	[W]	[W]	[M]		
Jednoplošník – $\lambda = 2, \eta = 1$	0,0487	0,0488	0,0516	0,0518	6,86	5,53
Jednoplošník – $\lambda = 3, \eta = 1$	0,0394	0,0395	0,0416	0,0416	7,65	6,88
Jednoplošník – $\lambda = 4$, $\eta = 1$	0,0350	0,0355	0,0368	0,0373	8,04	7,68
Jednoplošník – $\lambda = 6, \eta = 1$	0,0308	0,0315	0,0323	0,0330	8,85	8,66
Jednoplošník – $\lambda = 8, \eta = 1$	0,0288	0,0303	0,0301	0,0316	9,17	9,02
Jednoplošník – $\lambda = 4, \eta = 0,4$	0,0354	0,0361	0,0374	0,0382	8,14	7,54
Jednoplošník – $\lambda = 4, \eta = 0,6$	0,0347	0,0356	0,0366	0,0376	8,15	7,64
Jednoplošník – $\lambda = 4, \eta = 0, 8$	0,0348	0,0356	0,0367	0,0375	8,07	7,64
Jednoplošník – $\lambda = 4, \eta = 1,0$	0,0350	0,0355	0,0368	0,0373	8,04	7,68

.

Tabulka A.1. Charakteristiky jednoplošníků.

Obrázek B.9. Potřebný výkon dvouplošníků bez uvažování vlivu vrtule – vliv štíhlosti a svislé vzdálenosti nosných ploch Δz .

Obrázek B.10. Potřebný výkon dvouplošníků s vlivem vrtule – vliv štíhlosti a svislé vzdálenosti nosných ploch Δz .

Obrázek B.11. Rychlostní poláry dvouplošníků – vliv štíhlosti a svislé vzdálenosti nosných ploch Δz .

Obrázek B.12. Poláry dvouplošníků – vliv štíhlosti a svislé vzdálenosti nosných ploch Δz .

Obrázek B.13. Potřebný výkon dvouplošníků bez uvažování vlivu vrtule – vliv stupnění křídel Δx pro $\lambda = 3$ a různá Δz .

Obrázek B.14. Potřebný výkon dvouplošníků s vlivem vrtule – vliv stupnění křídel Δx pro $\lambda = 3$ a různá Δz .

.

Obrázek B.15. Rychlostní poláry dvouplošníků – vliv stupnění křídel Δx pro $\lambda = 3$ a různá Δz .

Obrázek B.16. Poláry dvouplošníků – vliv stupnění křídel Δx pro $\lambda = 3$ a různá Δz .

.

Obrázek B.17. Potřebný výkon dvouplošníků bez uvažování vlivu vrtule – vliv velikosti ploch křídel (S = horní + dolní) pro $\lambda = 4$ a různá Δz .

Obrázek B.18. Potřebný výkon dvouplošníků s vlivem vrtule – vliv velikosti ploch křídel (S = horni + dolni) pro $\lambda = 4$ a různá Δz .

Obrázek B.19. Rychlostní poláry dvouplošníků – vliv velikosti ploch křídel (S = horní + dolní) pro $\lambda = 4$ a různá Δz .

Obrázek B.20. Poláry dvouplošníků – vliv velikosti ploch křídel (S = horní + dolní) pro $\lambda = 4$ a různá Δz .

		P_p		P_{p-prop}		C_L/C_D
Název	min	$v = 2,5 \text{ m.s}^{-1}$	min	$v = 2,5 \text{ m.s}^{-1}$	max	$v = 2,5 \text{ m.s}^{-1}$
	[W]	[W]	[W]	[W]		
Dvouplošník – $\lambda = 2, \Delta z = 50 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0598	0,0598	0,0625	0,0625	5,54	4,90
Dvouplošník – $\lambda = 2, \Delta z = 100 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0547	0,0552	0,0577	0,0582	5,82	5,32
Dvouplošník – $\lambda = 2, \Delta z = 150 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0512	0,0522	0,0528	0,0538	6,03	5,64
Dvouplošník – $\lambda = 3$, $\Delta z = 50$ mm, $\Delta x = 0$ mm	0,0484	0,0500	0,0505	0,0521	6,20	5,90
Dvouplošník – $\lambda = 3, \Delta z = 100 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0451	0,0474	0,0473	0,0498	6,47	6,23
Dvouplošník – $\lambda = 3, \Delta z = 150 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0428	0,0456	0,0441	0,0469	6,67	6,49
Dvouplošník – $\lambda = 4, \Delta z = 50 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0430	0,0452	0,0447	0,0471	6,71	6,54
Dvouplošník – $\lambda = 4, \Delta z = 100 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0408	0,0436	0,0427	0,0456	6,94	6,79
Dvouplošník – $\lambda = 4, \Delta z = 150 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0392	0,0423	0,0403	0,0436	7,12	7,00
Dvouplošník – $\lambda = 3$, $\Delta z = 50 \text{ mm}$, $\Delta x = 0 \text{ mm}$	0,0484	0,0500	0,0508	0,0524	6,20	5,90
Dvouplošník – $\lambda = 3$, $\Delta z = 50$ mm, $\Delta x = -50$ mm	0,0491	0,0507	0,0515	0,0532	6,06	5,82
Dvouplošník – $\lambda = 3, \Delta z = 50 \text{ mm}, \Delta x = +50 \text{ mm}$	0,0498	0,0511	0,0522	0,0536	5,98	5,77
Dvouplošník – $\lambda = 3, \Delta z = 100 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0451	0,0474	0,0470	0,0494	6,47	6,23
Dvouplošník – $\lambda = 3, \Delta z = 100 \text{ mm}, \Delta x = -50 \text{ mm}$	0,0454	0,0476	0,0473	0,0496	6,43	6,21
Dvouplošník – $\lambda = 3, \Delta z = 100 \text{ mm}, \Delta x = +50 \text{ mm}$	0,0456	0,0476	0,0475	0,0497	6,41	6,20
Dvouplošník – $\lambda = 3, \Delta z = 150 \text{ mm}, \Delta x = 0 \text{ mm}$	0,0428	0,0456	0,0441	0,0469	6,67	6,49
Dvouplošník – $\lambda = 3$, $\Delta z = 150 \text{ mm}$, $\Delta x = -50 \text{ mm}$	0,0430	0,0457	0,0442	0,0470	6,65	6,47
Dvouplošník – $\lambda = 3, \Delta z = 150 \text{ mm}, \Delta x = +50 \text{ mm}$	0,0431	0,0457	0,0444	0,0471	6,65	6,47
Dvouplošník – $S = 1 + 5 \text{ dm}^2$, $\lambda = 4$, $\Delta z = 100 \text{ mm}$, $\Delta x = 0 \text{ mm}$	0,0375	0,0415	0,0394	0,0436	7,25	7,14
Dvouplošník – $S = 1 + 5 \text{ dm}^2$, $\lambda = 4$, $\Delta z = 150 \text{ mm}$, $\Delta x = 0 \text{ mm}$	0,0375	0,0411	0,0386	0,0423	7,30	7,21
Dvouplošník – $S = 2 + 4 \text{ dm}^2$, $\lambda = 4$, $\Delta z = 100 \text{ mm}$, $\Delta x = 0 \text{ mm}$	0,0399	0,0433	0,0419	0,0456	6,96	6,83
Dvouplošník – $S = 2 + 4$ dm ² , $\lambda = 4$, $\Delta z = 150$ mm, $\Delta x = 0$ mm	0,0388	0,0425	0,0399	0,0437	7,07	6,97
Dvouplošník – $S = 4 + 2$ dm ² , $\lambda = 4$, $\Delta z = 100$ mm, $\Delta x = 0$ mm	0,0390	0,0423	0,0410	0,0445	7,11	7,00
Dvouplošník – $S = 4 + 2 \text{ dm}^2$, $\lambda = 4$, $\Delta z = 150 \text{ mm}$, $\Delta x = 0 \text{ mm}$	0,0385	0,0419	0,0397	0,0432	7,17	7,07
Dvouplošník – $S = 5 + 1$ dm ² , $\lambda = 4$, $\Delta z = 100$ mm, $\Delta x = 0$ mm	0,0365	0,0406	0,0384	0,0427	7,41	7,30
Dvouplošník – $S = 5 + 1$ dm ² , $\lambda = 4$, $\Delta z = 150$ mm, $\Delta x = 0$ mm	0,0361	0,0397	0,0372	0,0409	7,55	7,46

B Výsledky – dvouplošník

Tabulka B.2. Charakteristiky dvouplošníků.

Obrázek C.21. Potřebný výkon samokřídel bez uvažování vlivu vrtule – vliv štíhlosti.

Obrázek C.22. Potřebný výkon samokřídel s vlivem vrtule – vliv štíhlosti.

Obrázek C.23. Rychlostní poláry samokřídel – vliv štíhlosti.

Obrázek C.24. Poláry samokřídel – vliv štíhlosti.

. . . .

Obrázek C.25. Potřebný výkon samokřídel bez uvažování vlivu vrtule – $S=5,3~{\rm dm^2},$ vliv štíhlosti.

Obrázek C.26. Potřebný výkon samokřídel s vlivem vrtule – $S = 5,3 \text{ dm}^2$, vliv štíhlosti.

Obrázek C.28. Poláry samokřídel – $S = 5.3 \text{ dm}^2$, vliv štíhlosti.

	-	P_p		P_{p_prop}		C_L/C_D
Název	min	$v = 3,0 \text{ m.s}^{-1}$	min	$v = 3,0 \text{ m.s}^{-1}$	max	$v = 3,0 \text{ m.s}^{-1}$
	[W]	[M]	[M]	[W]		
Samokřídlo – $S = 4 \text{ dm}^2$, $\lambda = 3$	0,0375	0,0393	0,0394	0,0412	7,74	7,73
Samokřídlo – $S = 4 \text{ dm}^2$, $\lambda = 4$	0,0349	0,0369	0,0364	0,0385	8,30	8,24
Samokřídlo – $S = 4 \text{ dm}^2$, $\lambda = 5$	0,0330	0,0362	0,0343	0,0376	8,44	8,41
		P_p		P_{p_prop}		C_L/C_D
Název	min	$v = 2,5 {\rm ~m.s^{-1}}$	min	$v = 2,5 {\rm ~m.s^{-1}}$	max	$v = 2,5 { m ~m.s^{-1}}$
	[W]	[W]	[W]	[W]		[-]
Samokřídlo – $S = 5,3 \text{ dm}^2, \lambda = 3$	0,0349	0,0349	0,0370	0,0369	7,97	7,69
Samokřídlo – $S = 5,3 \text{ dm}^2, \lambda = 4$	0,0324	0,0324	0,0340	0,0341	8,58	8,29
Samokřídlo – $S = 5,3 \text{ dm}^2, \lambda = 5$	0,0308	0,0312	0,0321	0,0326	8,77	8,62

.

Příloha **D** Souřadnice autostabilního profilu

Souřadnice autostabilního profilu navrženého samokřídla.

Х	Y	Х	Y	Х	Y	Х	Y
0,9994	0,02101	0,48452	0,03686	0,00288	-0,00094	0,53358	0,01662
0,9924	$0,\!02064$	0,46681	$0,\!03784$	0,00804	-0,00107	0,55128	0,01527
0,97843	$0,\!01986$	0,44909	$0,\!03867$	0,02036	-0,00038	0,56898	0,01384
0,96124	$0,\!01888$	0,43137	0,03934	0,03759	0,00106	0,58669	0,01237
0,94369	$0,\!01783$	0,41364	0,03986	0,05525	0,0027	0,6044	0,01088
0,92602	$0,\!01673$	0,39591	0,04021	0,07294	0,0044	0,6221	0,0094
0,9083	$0,\!01558$	0,37818	0,04038	0,09063	0,00608	0,6398	0,00799
0,89058	0,0144	0,36045	$0,\!04038$	0,10832	$0,\!00773$	$0,\!6575$	0,00668
0,87285	$0,\!01318$	0,34272	0,04021	0,12601	0,00932	0,67521	0,00549
0,85512	$0,\!01195$	0,32499	$0,\!03987$	0,1437	0,01084	0,69292	0,00441
0,83739	$0,\!0107$	0,30726	0,03936	0,1614	0,01228	0,71064	0,00344
0,81966	$0,\!00945$	0,28954	$0,\!03871$	0,1791	$0,\!01363$	0,72837	0,0026
0,80194	$0,\!00823$	0,27182	$0,\!03789$	0,19681	$0,\!01491$	0,7461	0,00187
0,79994	$0,\!0081$	0,25411	0,03693	0,21452	0,01609	0,76383	0,00126
0,7846	$0,\!00871$	0,23641	$0,\!03582$	0,23224	$0,\!01719$	0,78157	0,00076
0,76688	$0,\!00952$	0,21871	$0,\!03457$	0,24997	$0,\!01821$	0,79932	0,00037
0,74918	$0,\!0105$	0,20103	$0,\!03316$	0,2677	$0,\!01912$	0,80206	0,00053
0,73152	$0,\!01172$	$0,\!18336$	$0,\!0316$	0,28543	$0,\!01994$	0,80809	0,00104
0,71388	$0,\!01322$	0,16571	0,02988	0,30316	0,02066	0,8174	0,0019
0,69626	$0,\!01499$	0,14808	0,028	0,3209	0,02126	0,83508	0,00358
0,67864	0,01698	0,13047	$0,\!02595$	0,33864	$0,\!02175$	0,85274	0,00536
0,66103	$0,\!01915$	0,11288	0,02371	0,35637	0,0221	0,87041	0,0072
0,64341	0,02139	0,09532	0,02129	0,37411	0,02232	0,88807	0,00909
0,62579	0,02364	0,0778	$0,\!01865$	0,39185	0,02238	0,90574	0,01101
0,60817	0,0258	0,06033	$0,\!01578$	0,40957	0,02227	0,92341	0,01294
0,59055	0,02784	0,04294	0,0126	0,4273	$0,\!02197$	0,94108	0,01486
0,57292	$0,\!02972$	0,02579	0,00902	0,44502	0,02148	0,95873	0,01675
0,55526	$0,\!03144$	0,01116	0,00524	0,46274	0,02082	0,97628	0,01861
0,5376	$0,\!03302$	0,00416	0,00281	0,48046	0,01998	0,99209	0,02026
0,51992	$0,\!03444$	0,001	0,00117	0,49817	0,019	0,9994	0,02101
0,50222	$0,\!03572$	0,00028	-0,00037	0,51587	$0,\!01787$		