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Abstract

The study of autonomous Unmanned Aerial Vehicles (UAVs) has become a promi-
nent sub-field of mobile robotics. Multirotor unmanned helicopters are systems useful
on many levels of research. Multicopters in research serve as a plant for testing new
techniques for feedback control of dynamical systems, as sensor carriers for remote
sensing applications, and as units of multi-robot systems. A considerable amount of
work is also being invested into research of principal sub-systems of multirotor UAVs.
Real-time localization, state estimation, modeling, feedback control, planning, and
navigation are well-established and active research fields, each contributing to mak-
ing UAVs autonomous, robust, and safe. This thesis focuses on remote sensing with
UAV systems. The first part of the thesis is dedicated to development of a novel
UAV control system, designed for real-world testing and evaluation of new methods.
The control and estimation system supports replicable research by allowing realistic
simulations and real-world experiments. The second part of the thesis is motivated
by the challenges of the MBZIRC 2017 and 2020 robotic competitions. Specifically,
we study the applications of groups of UAVs to fulfill the autonomous mission of
collaborative localization and gathering of objects and their delivery to desired loca-
tions. Initially, only small metal disc-shaped objects are gathered by the UAVs into
a large box. Later, the challenge was elevated into a task of autonomous brick wall
construction by a group of UAVs. Furthermore, we study the problem of concluding
a UAV mission by autonomously landing a UAV on a moving ground vehicle. All
the challenges were tackled by developing a complete UAV system and successfully
performing an extensive experimental evaluation, that was finished by winning the
international competitions. The third part of the thesis focuses on a specific remote
sensing field, the localization and mapping of ionizing radiation by UAVs. The ongo-
ing research investigates the use of hybrid pixel radiation sensors from the Timepix
family onboard UAVs for directional and spatial localization of compact radiation
sources.

Keywords Unmanned Aerial Vehicles, Mobile Robotics, Remote Sensing, Ionizing
Radiation, Dosimetry
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Abstrakt

Výzkum na poli autonomńıch bezpilotńıch prostředk̊u (UAV) se stal významným
oborem mobilńı robotiky. Vı́cerotorové bezpilotńı helikoptéry jsou užitečné v mnoha
úrovńıch výzkumu. Vı́cerotorové UAV slouž́ı jako systémy pro testováńı nových tech-
nik v oboru zpětnovazebńıho ř́ızeńı dynamických systémů, jako nosiče senzor̊u pro
vzdálené měřeńı a také jako součásti výzkumu multi-robotických systémů. Značné
úsiĺı věnujeme výzkumu kĺıčových sub-systémů fungováńı v́ıcerotorových UAV.
Systémy lokalizace, estimace stavu, modelováńı, zpětnovazebńı ř́ızeńı, plánováńı po-
hybu, a autonomńı navigace jsou již zavedené a aktivńımi poli výzkumu. Každé
z nich přisṕıvá k bezpečné a robustńı autonomii bezpilotńıch prostředk̊u. Tato
práce se zabývá vzdáleným měřeńım pomoćı autonomńıch bezpilotńıch systémů.
Prvńı část práce je věnovaná vývoji nové ř́ıdićı platformy pro v́ıcerotorové UAV,
která byla navržena za účelem testováńı a vyhodnocováńı nových metod pro UAV
v reálném prostřed́ı. Tento systém pro ř́ızeńı a odhadováńı stav̊u UAV umožňuje
replikovatelný výzkum a poskytuje možnost realistických simulaćı a testováńı na
UAV v reálném prostřed́ı mimo laboratoř. Druhá část této práce je motivována
výzvami mezinárodńıch robotických soutěž́ı MBZIRC 2017 a 2020. Konkrétně zde
představujeme aplikaci skupin autonomńıch UAV miśı pro kolaborativńı sběr ob-
jekt̊u a jejich dopraveńı na zadaná mı́sta. Nejprve jsme se zabývali sběrem malých
kovových disk̊u, které byly pomoćı UAV autonomně dopraveny do sběrného boxu.
Poté byl tento úkol rozš́ı̌ren na automatické stavěńı cihlové zdi pomoćı skupiny
UAV. Dále jsme se zabývali problémem zakončováńı autonomńıch miśı, konkrétně
autonomńım přistáńım UAV na jedoućım vozidle. Všechny tyto výzvy byly vyřešeny
spolu s vývojem kompletńıch bezpilotńıch systémů a jejich experimentálńı evaluace,
která byla završena výhrami v obou mezinárodńıch soutěž́ıch. Třet́ı část této práce
se zaměřuje na specifický podobor vzdáleného měřeńı, a to na lokalizaci a mapováńı
zdroj̊u ionizuj́ıćıho zářeńı pomoćı UAV. Prob́ıhaj́ıćı výzkum se zabývá využit́ım
hybridńıch pixelových senzor̊u radiace z rodiny detektor̊u Timepix. V této práci zk-
oumáme využit́ı detektor̊u Timepix pro určováńı směrové a prostorové informace o
kompaktńıch zdroj́ıch ionizuj́ıćı radiace.

Kĺıčová slova Bezpilotńı Prostředky, Mobilńı Robotika, Vzdálené Měřeńı, Ionizuj́ıćı
Radiace, Dozimetrie
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Chapter 1

Introduction

The emergence of small UAVs has created a new active field of mobile robotics. The
rise of multirotor helicopters spawned revolutionary possibilities of remote sensing and data
gathering. Unlike traditional ground robots, multirotor helicopters combine potentially fast
and agile movement through a 3D environment with the ability to hover in place. Both traits
require overcoming complex technical challenges as well as offering significant advantages over
ground robots. The challenges arise from the inherently unstable dynamics of multirotor he-
licopters [146], [158]. Uninterrupted feedback control actions are required to maintain the
machine in the desired state [160]. Moreover, feedback control of agile UAVs is vitally de-
pendent on a smooth and feasible state estimate. Both the UAV state estimation [65], [125],
[128], [175] and feedback control [103], [127], [168] have been intensively studied during the
past decade and are still very active fields of research. Multirotor helicopters are a versatile
platform for carrying out remote sensing [132], [140], environmental sampling, and providing
technical support and aid in natural disaster rescue operations [121], [137].

Remote sensing, e.g., of an active volcano, can be traditionally performed by a stationary
sensory system [81], an airplane [57], a satellite [50], a remotely controlled robot [120], and of
course, a UAV [47], [89]. In recent years, autonomous robotic remote sensing became available
with the emergence of autonomous systems. Onboard autonomy is used to control a robotics
system when employing a human operator might not be possible, e.g., deep underground [73],
[86] or in a vicinity of a damaged nuclear power plant [76]. However, multi-robotic distributed
sensing is still in its infancy. Although distributing the process offers robustness through
redundancy and a potential increase in information yield, it also poses new challenges in multi-
robotic coordination and sensor fusion. The same applies to the use of multiple multirotor
UAVs with even more challenges. On its own, control of multi-UAV swarms and formations is
a challenging subfield that has direct implications to the field of distributed remote sensing.
One of the most iconic subfields of remote sensing is the remote sensing of ionizing radiation
due to the unusual nature of how it is measured [94], but also due to the danger ionizing
radiation poses to living organisms. Recent advances in semiconductor technologies allow the
fabrication of small semiconductor radiation detectors, which opened up the possibility to
measure ionizing radiation onboard small UAVs. Thanks to onboard autonomy, small UAVs
can be deployed to map ionizing radiation and even localize radioactive sources autonomously.

This thesis focuses on advances in replicable research with autonomous multirotor he-
licopters and their use for remote sensing and the remote sensing of ionizing radiation. The
thesis’s objectives were significantly shaped by the active participation of the Multi-robot Sys-
tems Group (MRS) research group in the 2017 and 2020 rounds of the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC). MBZIRC proposed a set of robotics challenges
that pushed the boundaries of UAV autonomy. The challenges ranged from an autonomous
landing on a moving car by an unmanned helicopter, the collaborative gathering of small
objects by a fleet of UAVs, and to the autonomous brick wall-building by a fleet of UAVs.

CTU in Prague Department of Cybernetics
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Those tasks provided opportunities and conditions to take state-of-the-art techniques outside
of a laboratory and compare the advances directly with the best university teams from around
the world.

Furthermore, interdisciplinary research is being pursued on the localization of ionizing
radiation sources by UAVs. The research closely follows advances in imaging pixel radiation
detectors (initially developed for medical imaging) for remote sensing applications of space
dosimetry and X-ray imaging. The thesis author has made his initial contributions in the field
by developing a radiation remote sensing module for the first Czech CubeSat1, the VZLUSAT-
1. The module houses the Timepix [172] hybrid CMOS detector developed at CERN in order
to measure solar X-rays and background radiation in the Low-Earth Orbit (LEO). One of the
thesis’s goals is to transfer this know-how to the field of small Unmanned Aerial Vehicles.

Experimental verification of novel methods is crucial to provide objective evaluation
and to support new publications. Although the accompanying subfields of cybernetics —
machine learning and computer vision — benefit significantly from evaluating and comparing
new methods on datasets, the same approach can be rarely used in mobile robotics and field
robotics. Even realistic simulation do not fully substitute the testing and verification using a
real UAV equipped with real sensors, most importantly, outside of laboratory conditions (see
Fig. 1.1). However, conducting real-world experiments requires an onboard control platform
that can satisfy the tested method’s needs. Despite the plethora of existing solutions [58], [92],
[111], [122], [124], [154], none provide all the features needed to support the work presented
in the thesis. Not all the platforms support experiments both indoors and outdoors. The
UAV state estimation is often limited to a single localization approach. Mid-air switching of
controllers and control reference generators is also not standard. Finally, the low-level control
output using a desired UAV attitude rate is rarely present.

The objectives of the thesis are summarized as follows:

(1) Development of a control system for real-world deployment of UAVs,
verification of new methods for control, remote sensing, and deployment in indoor and outdoor
environments. Despite many platforms for multirotor UAVs control and deployment being
available, they lack features necessary for real-world testing and deployment of the methods
within the focus of this thesis and the focus of the Multi-robot Systems Group group at Czech
Technical University (CTU) in Prague. Therefore, the author’s first objective and a long-
term effort are to develop a modular UAV control system. The control system should allow
safe indoor and outdoor deployment of multirotor helicopters. The system should also allow
verification of high-level methods for motion planning, multi-UAV swarming, and formation
flying. Finally, the system should also allow basic research on low-level control and stabilization
of the multirotor UAV dynamics.

(2) Research of methods of collaborative remote sensing by a group of Un-
manned Aerial Vehicles in real-world non-laboratory conditions. Collaboratively executing
UAV missions poses challenges on many onboard autonomy levels, e.g., task allocation, esti-
mation, motion planning, and control. Furthermore, mutual communication between the UAVs
might be unreliable or completely unavailable. Therefore, sharing real-time sensor readings to
pursue a common goal might not be possible in all circumstances. Moreover, mutual collisions
between the UAVs can be expected if the UAVs are guided by common goals. The objective
is to explore and push the field of collaborative remote sensing and deployment of UAV in
complex robotics tasks forwards.

1CubeSat is a nanosatellite made up of 1 dm3 cubic modules.

CTU in Prague Department of Cybernetics
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Figure 1.1: Illustration of outcomes of the thesis author’s contributions: deployments of mul-
tirotor UAVs as well as radiation measurements for space applications.

(3) Advancing the field of ionizing radiation dosimetry, mapping, and lo-
calization of compact sources by Unmanned Aerial Vehicles. Ionizing radiation has been
traditionally measured onboard UAVs using dosimeters [114], [133], [155], [161] — sensors
measuring the intensity of incoming radiation. Often, the intensity is utilized only to estimate
the scalar field of radiation intensity. Rarely, direction measurement can be obtained with an
additional device, e.g., the optical collimator or a coded aperture. However, those solutions
are not well-suited for small UAVs due to the heavy weight of the sensor equipment. This
work aims to push the state of the art by utilizing miniature semiconductor pixel detectors
[172], and novel event-based radiation detectors [147] onboard Micro Aerial Vehicles (MAVs).

The rest of the thesis is organized as follows. This thesis is a compilation of 8 included
core publications, referenced as 1c – 8c. Furthermore, the thesis is supported by additional
authored publications, referenced as 9a – 44a. Firstly, the state of the art is summarized in
Chapter 2. Chapter 3 introduces the publications related to the developed UAV platform.
Chapter 4 covers the publications related to the multi-UAV sensing and deployment. Finally,
Chapter 5 presents publications on radiation measurement, localization, and mapping.

CTU in Prague Department of Cybernetics
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Chapter 2

Contributions and Related Work

2.1 Author’s publications and contributions

Figure 2.1 shows a publication graph composed of accepted peer-reviewed publications
and publications that have been submitted in the time of writing this thesis. The publications
are split into four main categories. The first category, a Pre-Ph.D. research, consists of publi-
cations based upon the research done before the author started the pursue of Ph.D. (≤ 2015).
Although, some of these were written and submitted during the author’s Ph.D. studies. The
second category is the research stream marked as UAV platform for research validation and
reliable deployment of novel methods in control, navigation, formation flying, and swarming.
Thirdly, the largest group of the author’s work is from the field of multi-UAV remote sensing,
swarming, and other deployment. Lastly, the fourth category is the research of ionizing radia-
tion dosimetry, imaging, localization and mapping. The author conducts an interdisciplinary
transfer from the space-oriented physics field to the field of Unmanned Aerial Vehicles.

2.2 Multirotor UAV control system

Commercial UAV systems are often closed-source and provide features tailored for pho-
tographers, video makers, and hobby pilots. Autonomous operation of commercial UAVs is
typically limited to a single aerial vehicle flying outdoors under a Global Navigation Satellite
System (GNSS) localization while following a set of waypoints. Therefore, commercial plat-
forms are rarely used for research. If so, then in a field where the UAV is only considered a
sensor carrier, without added onboard autonomy.

Research-focused UAVs are most commonly equipped with a low-level embedded flight
controller. Available flight controllers [82] range from feature-packed open-source systems,
such as Pixhawk, to proprietary commercial units manufactured by DJI. Table 2.1 shows a
comparison of often used solutions. Pixhawk is often used in research projects (including ours),
typically running either of the two open-source firmware: PX4 [131] and ArduPilot1. Although
all of these flight stacks provide sophisticated features up to waypoint tracking and mission
execution, the features are rarely used within real-world applications. Instead, researchers
use other onboard computers to execute a custom localization system, state estimators, and
flight controllers, and only low-level control commands are provided for the embedded flight
controller.

Several comparable UAV systems have been published and released. Table 2.2 compares
existing solution with the system proposed in this publication.

The RotorS [111] simulator is an initial release for the Aeroworks EU project2. It pro-

1http://ardupilot.org
2Aeroworks EU project, http://www.aeroworks2020.eu.

CTU in Prague Department of Cybernetics
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MBZIRC 2017

MBZIRC 2020
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Research stream
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2a Related articles
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44a
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ICUAS 2014
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for UAV control
MMAR 2016
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UAV navigation
JIRS 2016

17a

UAV formations
with migrating
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MMAR 2016

23a
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AuRo 2017
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for VZLUSAT-1
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Cooperative object
gathering by UAVs
JFR 2019
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JFR 2019
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RA-L 2020
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DARPA SubT
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RA-L 2020
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Wildlife firefighting
with UAVs
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Real-time UAV
controller tuning
Sensors 2019
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swarms
B&B 2020
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for research
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7c

Extinguishing of
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Field robotics

26a

Figure 2.1: Diagram of research performed by the thesis author from 2013 to 2020 in the
fields of UAV control, remote sensing and its applications, and the field of ionizing radiation
imaging, dosimetry, mapping and localization. The article numbering reflects the works in the
reference section of this thesis.

CTU in Prague Department of Cybernetics
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vides Gazebo-based simulation of the now discontinued Ascending Technologies UAV system.
The control pipeline features are basic, with little potential for transfer to real-world con-
ditions. The system does not appear to be kept up-to-date, which gradually diminishes its
usability and applicability. Moreover, the latest supported version of ROS is ROS Kinetic,
which potentially provides lower compatibility with newer hardware and software.

OpenUAV3 [92] is a UAV swarm simulation testbed. The system does not appear to
allow transfer to a real-world setting, and is designed only to support prototyping of basic
research in swarming. The UAVs are assumed to be controlled and localized solely using an
embedded flight controller with PX4 firmware. This is comparable hardly with the numerous
sensors and localization systems that our system allows to simulate and to be used in a
real-world scenario.

ReCOPTER4 [124] proposes an open-source multirotor system for research. The avail-
able materials were released as supporting material for the published paper. However, no
software was attached, and the materials have not been updated since. Similarly, a framework
for drone control using the Vicon localization system named MAVwork5 [154] was published
in 2011, but has not been updated since. Although sources were made available, they offered
only basic features that would be difficult to transfer into a real-world scenario.

The XTDrone6 [58] simulation testbed offers many complex functionalities that are
comparable with our proposed system, including simulation of onboard sensors and complex
localization systems. However, the control pipeline relies entirely on the PX4 embedded control
software. This significantly limits any transfer to a custom hardware platform, or even the
ability to simulate realistic conditions using onboard localization systems. Thus, the use of
XTDrone outside laboratory conditions is mostly limited to Global Positioning System (GPS)-
localized flight in a non-cluttered outdoor environment.

The full-stack Aerostack system7 [122], [123] was designed for deployment of multirotor
UAVs. The system is continuously being updated, and it offers an option to transfer to a
real-world platform. According to the preprint [56] where the authors used Aerostack during
the MBZIRC 2020 competition, the system’s real-world deployment is possible. However,
with the used DJI-based flight controller, the control command supplied to the underlying
embedded control layer are limited to desired orientation and thrust. This level of control
limits the potential precision and control authority comparing to our system. Furthermore,
the system lacks the feature of switching between multiple frames of reference, which is one of
our system’s contributions. As it happens, the team of authors of Aerostack did not compete
in the wall-building challenge of MBZIRC 2020, in which we found the feature to be crucial
to precisely collect bricks by a group of UAVs.

Besides the Aerostack system, no other existing platform provides a full-stack system for
a multirotor UAV that is actively being supported and updated. Many publications provide
accompanying software sources that are released without being further updated. By contrast,
we have decided to publish and release our working system with all its components to allow
members of the research community, research teams, and students to engage in UAV research
as effortlessly as possible. We aim to provide a thoroughly-documented open-source system
to allow researchers and students to shorten their initial learning curve and to focus on their

3OpenUAV, http://github.com/Open-UAV
4ReCOPTER, http://github.com/thedinuka/ReCOPTER
5MAVwork, http://github.com/uavster/mavwork
6XTDrone, http://github.com/robin-shaun/XTDrone
7Aerostack, http://github.com/Vision4UAV/Aerostack
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research instead of developing yet another control pipeline.

platform
open
source modular SITL/HITL

outside
lab

rate
input

Pixhawk SW & HW + + + +

DJI - - - (proprietary) + -

Ardupilot SW + + + -

Parrot SW - + - -

Table 2.1: Comparison of commonly-used embedded flight controllers and low-level control
systems. The Pixhawk flight controller was chosen due to several factors: both the hardware
and software is open-source, the controller is modular enough to be used on a variety of custom
multirotor platforms, Pixhawk supports both hardware- and software-in-the-loop simulation,
can be used outside of laboratory conditions, and supports attitude rate input.

platform modular simulation
outside

lab.
multi-frame
localization

rate
output

last
updated reference

MRS UAV system + + + + + 2020 [8c]
Aerostack + + + - - 2020 [122]
XTDrone + + - - - 2020 [58]
RotorS + + - - + 2020 [111]

OpenUAV - + - - - 2020 [92]
ReCOPTER - - - - - 2015 [124]
MAVwork + - - - - 2013 [154]

Table 2.2: Comparison of high-level open-source UAV systems. The proposed system is exten-
sible and modular, comes with an extensive simulation environment, is designed to be used
outside of laboratory conditions, provides the novel multi-frame localization estimator, and
supplies the attitude rate command to the underlying embedded flight controller.

2.3 Remote sensing and data collection by UAVs

Remote sensing by UAVs has been common since the first aerial platforms become
available [132], [140]. Foliage and vegetation monitoring were among the first applications
[162]. In earlier attempts, thermal cameras provided information that was later used to make
educating actions during farming in the scanned field [170]. Also, water status monitoring
within a vineyard [157] can be conducted by multispectral cameras onboard a UAV. Nowadays,
precise agriculture is a promising agricultural technique that utilizes multispectral cameras to
decide upon adjustments within the agriculture processes [49], [51], [59]. However, it is often
conducted by a single UAV dedicated to monitoring the field from a birds-eye perspective or
dedicated to delivering chemicals to precise locations within the field.

Distributing the remote sensing task provides measurements in different places at once.
Multiple UAVs equipped with gimballed cameras can track a ground target more reliable
than a single UAV [148]. The redundancy increases the robustness of the system. Missing
information due to, e.g., image dropouts or target occlusions, can be substituted in real time
by communication with neighboring UAVs [46], [126]. Moreover, distributed state estimation
can be applied in real time [171], [173], [177]. When the states of an aerial target are estimated
in real time, a group of UAVs can pursue the target and intercept its path [109].

CTU in Prague Department of Cybernetics
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A likely application of distributed sensing is during rescue operations and environmental
monitoring of natural disasters [87]. Distributed monitoring of wildfires can provide crucial
real-time information to firefighters [55], [137]. Similarly, monitoring the current state of floods
can aid during rescue operations [52], [121].

Simultaneously deploying multiple UAVs poses challenges on various levels of the on-
board autonomy architecture: automatic control, localization, planning, communication, and
collision avoidance. Multi-UAV path planning and coordination algorithms provide the air-
craft with feasible plans to fulfill the given task. The coordinate principles are often split into
two categories: formation and swarm control. UAV formation control focuses on explicit co-
ordination given either a centralized localization of all the agents or a mutual communication
between the agents [104], [136], [144], [156]. On the other hand, UAV swarms is a bio-inspired
decentralized technique that attempts to overcome the global localization or communication
by applying behavioral rules [70], [108], [163].

We aim at the specific subfield of remote sensing related to autonomous experimental
deployment of aerial robots. In particular, two scenarios were studied in the context of the
MBZIRC 2017 challenge [63]. The first scenario focuses on autonomous localization, trans-
portation, and delivery of objects by a team of UAVs. Furthermore, we investigate the task of
autonomously landing a UAV on a moving vehicle, potentially ending an automated sensing
mission. Before our achievements [2c], [14a], distributed object gathering UAVs has only been
attempted in laboratory conditions, mostly concerning the automatic assembly of structures
[118], [138], [139], [153]. The state-of-the-art work often focused on a subset of tasks needed
for full autonomy, e.g., the autonomous grasping [100], [149] and motion planning [138]. Other
sub-tasks such as onboard detections of the objects, UAV localization, or the full mission au-
tonomy are often omitted. The MBZIRC 2017 challenge forced the research groups to leave
ideal lab conditions, show a fully-integrated robotics system, and provide repeatable results.
Only a handful of the 147 research groups who applied [60]–[62], [68] were able to complete
the task of automatically grasping an object and delivering it to the desired location, with us
winning the challenge [2c]. The second challenge of autonomous landing on a moving car was
also successfully tackled by a handful of groups [66], [69], [95], [96], [98] with only the team
of Beijing Institute of Technology team [66], and us [3c] completing the challenge. Before the
competition, a plethora of research was published on the topic, as described be the review
in [115]. However, as was the case with the first MBZIRC challenge, authors often relax on
essential aspects of the problem and focus on its subproblems. Subproblems such as target
detection and state estimation [105], [110], simulation [101], [116], [129], or use an external
laboratory UAV localization system [112], [151], [159]. Those who attempted to solve the com-
plete automatic landing with onboard detection, estimation, and control either conducted the
maneuver at slow speed [102] or flying along a straight line [97].

Since the 2017 MBZIRC competition, the state of the art in the automatic grasping has
further improved [48], [90]. Moreover, the subsequent MBZIRC 2020 challenge proposed a new
problem with even higher requirements. In the 2020 challenge, a group of UAVs was tasked to
automatically building a wall from bricks, again, using only onboard sensors and computation
resources. The task can be seen as an extension of the 2017 object-gathering challenges with
higher requirements on grasping precision, the object delivery, and overall system robustness.
The 2020 challenge again caught the interest of approx. two hundred research teams from all
over the world. Even though many tried [45], [54], only a few groups managed to automatically
deliver even a single brick to the desired location [53], [54c], [7c]. Our solution [7c], [8c] again
managed to win first place among many prestigious university teams in the world.
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2.4 Measuring ionizing radiation, mapping and localization

This section focuses on interdisciplinary research of ionizing radiation dosimetry and
localization of ionizing radiation sources onboard Unmanned Aerial Vehicles. First, we de-
scribe the author’s first initial involvement and contributions in space radiation dosimetry
and mapping. Then, we cross over to mobile aerial robotics and present the state of the art
and contributions.

2.4.1 Outer space radiation dosimetry and mapping

Ionizing radiation is commonly measured for two reasons in the constrained environment
of space applications. The first one is to assess the radiation dose deposited to crew members
on board and the onboard space electronics. Traditional dosimeters on NASA’s International
Space Station (ISS) are being lately replaced with smart pixel detectors [75], [134], [167],
namely, the Timepix sensor. The Timepix sensor [147], [172] is an hybrid Application-Specific
Integrated Circuit (ASIC) Complementary Metal Oxide Semiconductor (CMOS) chip that can
be bonded to a variety of semiconductor detection materials (Silicon, CdTe, CZT). Despite it
being initially developed for medical imaging [80] and laboratory measurements, the Timepix
has found applications even outside laboratory environments. Timepix pixel detectors are
unique for their capability to measure traces of incoming ionizing particles with the detector.
With those traces, machine learning algorithms can deduce the particle type, the energy of
each particle [5c], [84]. The long-term and large-scale radiation dosimetry capability with
Timepix detectors has also been tested in space outside of the ISS. Several satellites included
the Timepix as their payloads: ESA’s Proba-V [113], [141], British TechDemoSat-2 [83], and
the Japanese RISESat [64].

The second use of radiation detectors in space is dedicated to capturing X-ray/Gamma-
ray photons through a telescope’s focusing device. X-ray observatories can not be deployed on
the Earth’s surface due to the presence of the atmosphere. The state-of-the-art observatories
such as Chandra [178], Swift [176], and Fermi [169] typically use scintillating detectors to mea-
sure the incoming light, or CCD detectors for low-energy X-rays. CMOS detectors are rarely
used in space applications, mainly due to undesired noise characteristics. However, Timepix
detectors operate with an internal mechanism that filters out the dark current through the
detector diodes, and therefore the resulting images are free to the traditional image noise.
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(a) VZLUSAT-1 (b) ISS, courtesy of [134]

Figure 2.2: Ionizing radiation dose measured by the Timepix sensor onboard (a) VZLUSAT-1
(≈ 500 km Sun-synchronous orbit), and (b) the International Space Station (≈ 350 km orbit).
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We add to the list an embedded and lite-weight design of a Timepix payload for the first
Czech CubeSat satellite, the VZLUSAT-1 [37a], [38a]. The payload was dedicated to radia-
tion mapping of Earth’s LEO [4c] and capturing images using the onboard X-Ray telescope
[39a]. The satellite has been operational for more than 3 years. New radiation data are being
processed on a regular basis while being added to an open-source dataset8 that is potentially
useful for the community of future CubeSat designers. Further research led to a design of a
one-time sub-orbital rocket experiment [42a], [40a]. A dedicated payload with two Timepix
sensors were designed and developed based upon the Robot Operating System [15a]. Em-
bedded hardware with Robot Operating System (ROS) automatically managed the recording
of measured data in real time. This crossover of technologies later allowed continuation on
the development of ROS-based Timepix technologies for the use onboard Unmanned Aerial
Vehicles.

2.4.2 Localization and mapping of ionizing radiation sources by UAVs

In radiation sensing, unmanned robotic vehicles offer several advantages over conven-
tional handheld detectors or piloted aircraft. These advantages can be exploited in a wide
variety of applications.

Following the 2011 disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP),
considerable amounts of radioactive material have been released into the plant area. Several
Unmanned Ground Vehicles (UGVs) have been deployed directly inside the damaged reactor
buildings of FDNPP under remote control. Various radiation detection methods have been
tested inside the power plant, including a coded aperture scintillator [165], a semiconductor
digital dosimeter [155], a Compton event camera composed of two scintillators [76], and a
time-of-flight gamma camera [142]. Ground-based robots offer higher payload capacity and
the ability to carry heavier sensory equipment than most aerial vehicles. On the other hand,
these robots tend to be relatively bulky, struggle to navigate the cluttered corridors and
staircases inside the damaged buildings, and generally move slower than a multirotor aircraft.

UAVs have been utilized to map the spread of the radioactive material outside the
power plant. These range from large aircraft weighing more than 90 kg equipped with heavy
scintillation detectors [114], [133], [161] to compact multirotors suitable for flying along a
pre-defined trajectory close to the ground [99], [117], [145]. Outside of Japan, several projects
have employed UAVs for radiation intensity mapping around uranium ore mines [85], [91],
[130].

In [150], multiple fixed-wing UAVs equipped with miniature scintillators are used for
contour analysis of an irradiated area. Trajectory planning and data processing are performed
offline, contrary to our approach, which estimates the source’s position in real time during
the flight. In [119], the contour analysis is tackled using a single multirotor UAV. The contour
analysis uses a Gaussian mixture model to estimate multiple radiation sources’ positions with
overlapping intensity fields. The projects mentioned above utilize unmanned vehicles to deliver
a radiation sensor into a hazardous environment. However, the approaches do not respond to
measured data in real time and thus do not exploit the mobility of UAVs to improve the
measurement.

Active path-planning driven by the onboard measurements has been shown in [161] for
an outdoor environment and in [88] for a GPS-denied indoor environment. Both works rely

8https://github.com/vzlusat
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on a scintillator sensor to estimate the radiation intensity in the UAV’s current position. As
a result, the employed aerial platforms have to be large with a payload capacity exceeding
2 kg. As in [161], the aerial platform is a 90 kg unmanned aerial helicopter, which significantly
limits its deployment conditions due to personal safety and considerable minimum distance
to obstacles in the environment.

The lack of lightweight radiation detectors with immediate readout capability severely
limits the application potential of aerial dosimetry. However, the Timepix pixel detectors are
ideal for the use onboard micro UAVs thanks to their low weight, small size, and the absence of
any active cooling mechanism. We propose a UAV system for outdoor and indoor environments
while utilizing the know-how obtained with the embedded space applications’ work. The ROS
API for Timepix [15a], initially developed for a suborbital rocket experiment [42a], allows the
technology to transfer to the robotics field. However, a new robotic methodology for motion
planning and exploration needed to be developed to accommodate and utilize the proposed
measurement system’s specifics [1c]. Moreover, the Compton camera mechanism [93], is being
utilized to provide the smallest real-time single-sensor Compton camera ever used on a UAVs
[34a].

(a) Visualization of the localization (b) UAV equipped with the Timepix3 sensor

Figure 2.3: Showcase from a radiation localization experiment with the MiniPIX Timepix3
Compton camera onboard a UAV. The visualization shows the ground truth position of the
radiation source (yellow) and the estimated position (red).
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Chapter 3

Research-focused UAV Platform

Our initial work on relatively-localized UAV formations [43a], [44a] led us to create
a custom platform for experimental evaluation. This control system [24a] used an embedded
Model Predictive Control (MPC) controller executed in real time onboard in custom hardware.
This embedded system, in conjunction with the novel relative localization system [143], allowed
us to conduct our first multi-UAV research that was backed up by real-world experiments [16a],
[17a], [22a], [23a].

As the demands for the capabilities of the platform increased, we abandoned the em-
bedded platform and adopted a modular approach of the Robot Operating System. The first
core publication in this thesis, presented at the IEEE IROS 2018 conference, proposes a model
predictive tracking mechanism for fast generation of feasible control references for UAVs.

[6c] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model Predictive
Trajectory Tracking and Collision Avoidance for Reliable Outdoor Deployment
of Unmanned Aerial Vehicles,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2018, pp. 1–8

Obtaining a feasible control reference that satisfies state constraints of the UAV is an essential
requirement for precise feedback control. Moreover, the presented approach utilizes the 8 s
MPC prediction horizon for a mutual UAV collision avoidance, which is especially useful for
the verification of new multi-UAV methods. The presented control technique was partially
responsible for our success in the MBZIRC 2017 robotic competition [2c], [3a], [14a].

The MPC Tracker [6c] is, however, just a small part of complex system for multirotor
UAV experimental evaluation and deployment. With the second core publication in this thesis,
we propose a modular control system for UAV state estimation, trajectory tracking, feedback
control, and flight management. This open-source control system sets up novel paradigms,
such as the multi-frame UAV state estimation, and the heading-based control pipeline, devoid
of Euler and Tait-Bryan angles. Testing new feedback controllers, reference generators, state
estimators, and other parts of the control pipeline are possible thanks to the modular design
and the extensive simulation environment. The MRS UAV System was submitted to the
Journal of Intelligent & Robotic Systems and has been made available as open source1.

[8c] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, et al., “The
MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world
Deployment, and Education with Autonomous Unmanned Aerial Vehicles,” sub-
mitted to JINT, after the 1st revision, Aug. 2020. eprint: arXiv:2008.08050

1https://github.com/ctu-mrs/mrs_uav_system

CTU in Prague Department of Cybernetics

arXiv: 2008.08050
https://github.com/ctu-mrs/mrs_uav_system


Model Predictive Trajectory Tracking and Collision Avoidance for
Reliable Outdoor Deployment of Unmanned Aerial Vehicles

Tomas Baca1, Daniel Hert1, Giuseppe Loianno2, Martin Saska1, and Vijay Kumar3

Abstract— We propose a novel approach for optimal tra-
jectory tracking for unmanned aerial vehicles (UAV), using a
linear model predictive controller (MPC) in combination with
non-linear state feedback. The solution relies on fast onboard
simulation of the translational dynamics of the UAV, which is
guided by a linear MPC. By sampling the states of the virtual
UAV, we create a control command for fast non-linear feedback,
which is capable of performing agile maneuvers with high pre-
cision. In addition, the proposed pipeline provides an interface
for a decentralized collision avoidance system for multi-UAV
scenarios. Our solution makes use of the long prediction horizon
of the linear MPC and allows safe outdoors execution of multi-
UAV experiments without the need for in-advance collision-
free planning. The practicality of the tracking mechanism is
shown in combination with priority-based collision resolution
strategy, which performs sufficiently in experiments with up to
5 UAVs. We present a statistical and experimental evaluation
of the platform in both simulation and real-world examples,
demonstrating the usability of the approach.

I. INTRODUCTION

Robotic aerial systems have been extensively studied by
the scientific community over the past ten years. Nowadays,
the capabilities of a single unmanned aerial vehicle (UAV)
extend from fully autonomous indoor and outdoor operation
[1], [2], via onboard sensor processing and motion planning
[3], to environment scanning and mapping [4]. Coordinated
flight of multiple UAVs is currently under investigation
by many research groups [5], [6]. Autonomous flight with
a group of UAVs promises of faster task execution and
even lower requirements for onboard sensors. A benefit of
the added redundancy is that the task can continue to be
executed even after the failure of one of the units. Numerous
applications cannot be realized using a single UAV [7], [8],
[9], and cooperative flight with small mutual distances is
required. This even increases the demands on the precision
and reliability of the UAV control mechanism (see figure 1
for numerous examples of the deployment of the proposed
system in multi-UAV scenarios).

Research and development of autonomous multi-UAV sys-
tems involves a high risk of a collision between the vehicles.
The mechanism for preventing collisions is often built into
a mission control system, which takes care of safe trajectory
planning in advance. However, high-level mission control

1Authors are with the Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, Prague 6,
{tomas.baca,hertdani,martin.saska}@fel.cvut.cz.

2The author is with the Tandon School of Engineering, New York
University New York, 6 MetroTech Center, 11201 Brooklyn NY, USA,
{kumar}@seas.upenn.edu.

3The author is with the GRASP lab, University of Pennsylvania, USA,
{loiannog}@nyu.edu.

Fig. 1: The versatility of the proposed system is shown in various
scenarios including multi-robotic remote sensing, compact forma-
tion flying, collaborative collecting of objects in a challenging
outdoor environment, and autonomous landing on a moving car.

systems that are a subject of research and development
should be considered unreliable during the first stages of
their development. An independent underlying system for
preventing collisions in real time should therefore be in place
during real-world testing and experiments. According to the
“minimalist modular software development” philosophy1, it
is safer to develop a single transparent collision-preventing
mechanism, which can be used by a high-level layer regard-
less of its purpose or way of operation.

GNSS naturally localizes all vehicles within the same
frame of reference, so the position information can be
directly used for collaboration among UAVs. Global navi-
gation satellite systems (GNSS) such as GPS are standard
for outdoor use, and are the foremost source of position
information for UAVs when flying autonomously. To suc-
cessfully deploy multiple collaborating vehicles, we assume
that they are localized within the same world coordinate
system. Nevertheless, the proposed system can be used with
any positioning system (even onboard) that allows synchro-
nization of the reference frames of individual vehicles within
the team, e.g., [10], [11].

A. State of the art

Several concepts have been proposed for avoiding mutual
collisions when the trajectories of the vehicles are known
in advance. Mutual collision avoidance between robots was
historically studied by [12] within the context of a non-
holonomic ground robotic system. The solution presented
here relies on control law with explicitly incorporated control

1Unix philosophy, Douglas McIlroy, 1994

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018
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action to avoid other robots in the team, when they appear in
a proximity region. This type of technique provides a reliable
solution for slow-moving robots; however, for fast UAVs,
the proximity region would have to be larger than a typical
problem in collaborative multi-UAV would allow.

In [13], the authors propose a mechanism which considers
knowing the future trajectories of the robots in a team.
The strategy avoids collisions by transforming the time
parameter of all the UAV trajectories. By planning in so-
called coordination time-space, the robots find a collision-
free passage that can be converted to a warp of the sampling
rate of the original trajectories. However, this method omits
the dynamical constraints of the vehicles and might result
in an unfeasible reference that would require additional
processing. Moreover, in the case when one of the vehicles
is static, simply resampling the original trajectories in the
time domain requires additional mechanics, e.g., similar to
the mechanics proposed in this manuscript.

A similar approach to [13], which also uses the configu-
ration space, is described in [14]. However, the application
involves ground robots with a centralized mechanism for
planning and for distributing trajectories to the robots. This
kind of solution is not applicable for decentralized reaction-
based avoidance when each vehicle is controlled by onboard
(decentralized) autonomy to fulfill a particular task, which
is typically based on local sensor data. As in [13], this
mechanism also cannot react in situations when one of the
UAVs is stationary.

Mutual collision avoidance for aerial vehicles is tackled
in [3]. A centralized formation planning approach is pro-
posed, which utilizes a cylindrical proximity condition and
a potential field repulsion-based avoidance strategy with an
evasive vertical maneuver. However, the approach has been
validated only in simulations, while real-world experiments
are described by the authors as a challenge for the future.

A decentralized, non-linear model predictive control ap-
proach for the control of multiple UAVs is presented in [15].
The authors present trajectory tracking system, which reacts
to potential future collisions by modifying the user reference.
Both simulation and laboratory experiments show the real
applicability of the solution. However, the solution uses only
a 2 s prediction horizon, which limits the maximum speed
and acceleration of the UAVs at which it can intervene. The
non-linear MPC problem, in which the collision avoidance
is directly integrated in the control problem, introduces sev-
eral computational challenges compared to the linear MPC
utilized in this paper. Moreover, the described optimization
problem scales poorly with increasing number of UAVs
in the group due to having avoidance constraints for each
vehicle, which is not the case with the MPC formulation
utilized here. It therefore allows only slow flight speeds
(approx. 10.0 km/h at 2 m/s2 acceleration) in order to avoid
potential collisions. In comparison, the system presented here
has been tested with a prediction horizon of 8 s, which
allows flight at a speed of over 30 km/h, thanks to the long
prediction horizon, as presented in the Experiments section.

State-of-the-art contributions to the avoidance of mutual

collisions between fast unmanned aerial vehicles in real-time
are scarce. Moreover, a truly decentralized and transparent
system, which could be deployed in real-world outdoor
experiments to serve as a collision safety mechanism, is
virtually non-existent for conventional UAV speeds above
10 km/h. We are therefore aiming beyond the state-of-the-
art, while using current technologies, such as linear model
predictive control and non-linear control [16].

B. Contributions

In this paper, we address a practical approach for optimal
trajectory tracking allowing distributed collision avoidance
for multiple unmanned aerial vehicles sharing the same
workspace. The proposed mechanism can be implemented in
the form of a transparent layer for a UAV control pipeline,
and can be used by an application layer as a trajectory
tracker. By solving linear model predictive control (MPC) for
steering a simulated UAV in real-time onboard the vehicle,
we manage to bring the otherwise impractically difficult task
with very large MPC problem down to MPC with only
the length of the prediction horizon that is necessary to
enable evasive maneuvers. Moreover, by sampling the states
of the simulated UAV, we create a reference for non-linear
state feedback, which is capable of agile maneuvers and
disturbance rejection, both of which are outside the operating
point of linear MPC. If a sufficient reserve in dynamics
is left to the non-linear state feedback, the combination
exhibits the properties of non-linear predictive controller
with a large enough prediction horizon to allow possible
collisions between multiple vehicles flying within the same
workspace to be detected and avoided. The proposed MPC
trajectory tracker provides optimal tracking of arbitrarily
long and potentially unfeasible user trajectories, which might
not be designed given the actual dynamical constraints of
a particular UAV. The proposed system therefore enables
a substantially simpler design and safe testing of high-
level planning systems. It should be noted that a simple
command to fly to certain coordinates or to fly a trajectory
containing step functions is a typical and unfeasible high-
level command. Thanks to the predictive nature of the
tracker, the vehicles conduct adequate feedforward maneu-
vers. Our method is suitable for real-world experiments,
where novel multi-robotic algorithms can be safely tested
without risking a mutual collision, either due to a program
malfunction or due to a user error (see [7], [2], [8] for
a list of multi-robot scenarios tested with the proposed
system). The implementation favors both computational and
communication resources, so it is applicable onboard in non-
laboratory conditions, as presented towards the end of this
paper.

C. Outline

This paper is structured as follows. First, in section II,
we introduce a collision detection and avoidance mechanism,
which operates with known future trajectories of the vehicles
in the group. Section III describes the structure of the
proposed control architecture. The non-linear state feedback
(section III-B), together with linear model predictive control
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(section III-C), form the components of a novel model
predictive tracker, which is further introduced in section (III-
D). Section IV presents an experimental evaluation of the
system in real-world scenarios.

II. COLLISION AVOIDANCE

Deploying multiple UAVs in the same area introduces
potential collisions, not only between the vehicles and the
environment but also between the vehicles themselves. In
this section, we focus on mutual collisions between UAVs
in an open outdoor environment. There are two approaches
to solve the avoidance problem, as we have discussed in
the introduction. One is to incorporate collision-free path
planning into a high-level mission planner. Mission planners
may be designed to conduct remote sensing, environment
exploration or more complex tasks, such as collaborative
object localization and delivery. However, our experience
in the field suggests that is is impractical to include the
avoidance strategy, since it gives the responsibility for safety
to a high-level system, which is often the subject of de-
velopment and testing. It is reasonable to assume that if
the mission planner is unsound and requires an avoidance
mechanism to intervene, then the built-in avoidance may
also not be reliable. Moreover, collision avoidance might
also be required when switching between multiple high-
level planners, or in situations when the UAVs are directly
under control by field operators. Our approach therefore
incorporates the avoidance mechanism as a transparent layer
in the control pipeline (see figure 3).

In situations where the future trajectories of the vehicles
are known in advance, techniques such as rubber banding
[14] or time resampling [13] can be used to alter the
trajectories before they are executed. We will focus on the
specific situation of outdoor flight, where increasing the
height of the trajectory to avoid mutual collision is a viable
and straightforward option. In this section, we assume that
the future trajectories are known and later, in section III-D,
we explain how to obtain them in real-time during flight with
properties such as the length of the planning horizon and the
update rate, which are required by the collision avoidance
technique presented in this section.

A. Shared information

The proposed mechanism relies on mutual communication
between the UAVs and on the exchange of their future
trajectories. Assuming that the trajectories resemble the
actual future movement of the vehicle, potential collisions
are detected by each vehicle individually in a decentralized
way. Along with the predictions, each vehicle broadcasts
a binary flag, which is raised when the vehicle collision
avoidance mechanism is active. The data are shared at 2 Hz,
which was chosen on the basis of the safety margins and the
dynamics of the vehicles used in the experimental parts of
this paper. During the experiments, communication between
UAVs operates without confirmation and repetitions, which
minimizes the communication overhead.

Algorithm 1 The avoidance algorithm reshapes the reference
trajectory rD based on potential collisions found in the predictions
made by the MPC tracker.
1: procedure RESHAPE
2: Input:
3: rD . the original reference trajectory
4: pcurrent . the priority of this UAV
5: ∆z . height offset for avoiding a collision
6: Output:
7: zoffset ← 0 . accumulation of the height offset
8: while find collision () do
9: limit velocities() . set velocity constraints to 1

2 of the nominial
10: if pcollision > pcurrent then . this UAV has lower priority
11: zoffset ← zoffset + ∆z

12: return rnew

1: procedure FIND COLLISION
2: Input:
3: x← prediction for this UAV, offset by zoffset

4: xn ← other UAV predictions
5: m← length of the prediction
6: Output:
7: tcollision ← -1 . the time step when the collision would occur
8: pcollision . priority of the other UAV we collided with
9: for x in xn do . for all predictions of other UAVs

10: for i from 1 to m do
11: if check proximity(x[i],x[i]) then . Eq. (1)
12: tcollision ← i
13: pcollision ← priority of x
14: return True . collision found
15: return False . collision not found

B. Conflict resolution strategy

Given the shared information about the future trajectories
of the UAV, an avoidance strategy can be used to alter the
movement of the UAVs in the group to avoid collisions. Our
aim is not to present a novel conflict resolution strategy,
but rather to show that the proposed pipeline performs
sufficiently, even with the following trivial method. The
proposed framework is easily extensible and readers aiming
to replicate the system can freely introduce a different resolu-
tion strategy (e.g. [17], [18]) with properties appropriate to
their particular application. The showcased method, which
is described in detail in algorithm 1, relies on iteratively
modifying the flight height of the UAVs according to a
hierarchical priority system. A unique number is given to
each aircraft representing its priority in the group (a total
ordering). A collision is detected by a UAV when another
UAV violates the proximity condition at any point along
the prediction horizon. Each UAV performs an avoidance
maneuver when a potential collision with another UAV with
higher priority is detected.

1) Proximity condition: Collisions between any two
UAVs in the future are found by checking the proximity in
space-time within their future trajectories. Since the future
trajectories are considered as lists of points sampled at a
known rate, we can find the violations in proximity by
evaluating the space conditions between all corresponding
points in the future trajectories. Let us consider a cylindrical
area with radius Rp and height Hp around each point xa [i]
in 3D space in the future trajectory of UAV a. A collision
is detected with UAV b, when a corresponding point xb [i]
lies in the cylindrical area. Formally, let xn ∈ Rm×3 be
predicted trajectory of the nth UAV containing m positions
in 3D space. Then a potential collision between two UAVs,
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a and b, is detected when the following conditions are met∣∣∣∣xa1:2 [i]− xb1:2 [i]
∣∣∣∣2

2
≤ Rp,∀i ∈ 1, . . . ,m∣∣∣∣xa3 [i]− xb3 [i]

∣∣∣∣2
2
≤ Hp

2
,∀i ∈ 1, . . . ,m

(1)

where xa1:2 [i] represents the x and y coordinates of the
point, and xa3 [i] represents the z coordinate of the point.
Parameters Rp, Hp and dynamical constraints on the motion
of the vehicle introduced later in sestion III-C determine
safety of the avoidance system. Particular values showed in
table I were obtained using simulations of the system (see
section IV).

2) Avoidance maneuver: The maneuver consists of alter-
ing the reference trajectory of the vehicle by adding an offset
in height. Moreover, by lifting the acceleration constraints
in the vehicle’s tracker, we allow a rate faster than the
nominal rate of change of height, which helps to avoid
ascending UAVs, whose constraints are active. Vehicles with
higher priority, which are being avoided, do not alter the
reference trajectory. However, any vehicle that detects a
potential collision tightens its velocity constraints to mitigate
potentially aggressive maneuvers when flying near other
vehicles, as described in algorithm 1.

III. CONTROL PIPELINE

The architecture of the proposed control system, which
also provides a sufficiently long prediction horizon and
update rate for the collision avoidance mechanism follows
a common multi-layer structure. The schematic in figure 3
depicts the components to which we will refer in this chapter.
The UAV attitude control loop is closed by an embedded
stabilizer, which receives a command in the form of the
desired attitude RD and thrust TD. The surrounding layer is
a non-linear SO(3) state feedback controller, which follows
a control command in the desired position rD, speed ṙD, and
acceleration r̈D, expressed in the world coordinate frame.

A. Embedded attitude control

An attitude controller is an onboard unit responsible for
maintaining the desired attitude R (φ, θ, ψ) ∈ SO(3), where
φ, θ, ψ are the Euler angles corresponding to the yaw, pitch
and roll motions of the UAV. The controller block outputs the
desired motor speeds and accepts the desired orientation RD

and total thrust TD. The UAVs used here are equipped with
the PX4 stack [19] on a PixHawk flight controller. However,
the proposed system is not dependent on the choice of a
particular attitude controller.

B. Non-linear SO(3) controller

The next block in the pipeline is the non-linear SO(3)
state feedback controller, which uses the model

ṙ = v, mv̇ = fRez +mgez,

Ṙ = RΩ̂, JΩ̇ + Ω× JΩ = M,
(2)

where r = [x, y, z]
T is the position, R (φ, θ, ψ) is the

orientation of the UAV in the world coordinate frame with
the basis {e1, e3, e3}, Ω ∈ R3 is the angular velocity in the

body-fixed frame and the hat map ·̂ : R3 → SO(3) is defined
by the condition x̂y = x × y for all x, y ∈ R3. Two forces
act on the vehicle. The magnitude of the gravitational pull is
denoted by g ∈ R, whereas the magnitude of the total thrust
force created by the propellers is denoted by f ∈ R. The
UAV mass is denoted by m ∈ R. The angular velocity of the
UAV in the body frame {b1,b2,b3} is denoted by Ω ∈ R3

and J ∈ R3×3, the inertia matrix. The total moment exerted
by the propellers onto the UAV is M = [M1,M2,M3]

T .
The control is built on the work presented in [16], [20],

with the control inputs f ∈ R and M ∈ R3 chosen as

M =− kReR − kΩeΩ + Ω× JΩ− . . . (3)

. . .− J
(
Ω̂RTRcΩc −RTRcΩ̇c

)
f =− (−kxer − kibR

t∫
0

R(τ)Terdτ − . . . (4)

. . .− kiw
t∫

0

erdτ − kvev −mge3 +mẍd) ·Re3,

where ẍd is the desired acceleration. The control errors in
rotation, position and velocity are denoted by eR, er and
ev , respectively and eΩ = RTRdΩd. The resulting control
action consists of f and RC , which is the orientation com-
mand. A more detailed description of the original controller
extended with additional integral gains can be found in our
recent publication [2].

b2

b1

b3

φ

θ

ψ

e2

e1

e3

r,R

Fig. 2: The world coordinate frame w in which the position and
orientation of the UAV is expressed by translation r = [x, y, z]T

and rotation R (φ, θ, ψ).

C. Linear model predictive control

Model Predictive Control is increasingly popular for con-
trolling the fast dynamics of UAVs, and it is especially
appealing for the collision avoidance scheme proposed here.
Our previous work [21] featured a real-time embedded MPC
on a micro aerial vehicle with a 2.2 s prediction horizon. In
contrast with the previous work, the MPC here is not directly
involved to control of the UAV, as it would traditionally be.
It is part of the proposed trajectory tracker, which serves as
a reference generator for an underlying state feedback. A
linear MPC uses an LTI model with n states and k inputs,
defined as

x[t+1] = Ax[t] + Bu[t]

y[t] = Cx[t] + Du[t],
(5)
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Mission
planner

Collision
avoidance

MPC
tracker

SO(3)
controller

Attitude
controller

UAV
plant

State
observer

desired trajectory
rD, φD

on demand

reshaped trajectory
rR, φR

100 Hz
xD

100 Hz

R (φD, θD, ψD)

TD

100 Hz

motor
control
≈ 1 kHz

predicted
trajectory

2 Hz

predicted
trajectory

of other UAVs
2 Hz

predicted
trajectory

2 Hz

UAV state
estimate
100 Hz

onboard sensor data
≈ 100 Hz

Fig. 3: Diagram of the control pipeline, including the proposed MPC tracker and the collision avoidance mechanism. The original reference
trajectory rD, φD is reshaped by the collision avoidance mechanism to rR, φR. The reshaped reference serves as a setpoint for the MPC
in the MPC tracker, which outputs a command xD, ẋD, ẍD , φD, φ̇D, φ̈D for the non-linear SO(3) controller. The non-linear controller
produces the orientation and thrust reference for the embedded attitude controller.

where x ∈ Rn denotes the state vector and u ∈ Rk denotes
the input vector. Matrices A ∈ Rn×n and B ∈ Rn×k are
the main system matrix and the input matrix, respectively.
In contrast with the traditional full description of the LTI
system, we assume C = I, and D = 0. Therefore y[t] = x[t]

holds.
MPC trajectory tracker

Linear MPC
controller

Linear model
x← Ax + Bu

simulated
control loop

100 Hz

x

u
reference
trajectory

rD, φD

predicted
trajectory

xD

Fig. 4: Diagram of the MPC tracker loop. The reference trajectory
rD ∈ R3×N of length N is supplied to the MPC controller. The
UAV dynamics is simulated in a closed loop with MPC at 100 Hz.
The state x ∈ R9 of the simulated system serves as the command
for the SO(3) controller.

The definition of MPC relies on the notion of a control
error over a future prediction horizon. The control error is
defined as e = x− x̂, where x̂ is the trajectory reference.
To find the control signals by MPC, it is necessary to solve
the optimization problem

min
u[t],x[t]

V (x,u) =
1

2

m−1∑
i=1

(
eT[i]Qe[i] + uT[i]Pu[i]

)
(6)

s.t. x[t+1] = Ax[t] + Bu[t], ∀t ∈ {0, . . . ,m− 1} (7)
x[t] ≤ x max[t], ∀t ∈ {1, . . . ,m} (8)
x[t] ≥ x min[t], ∀t ∈ {1, . . . ,m} (9)

repeatedly, where the quadratic cost function in (6) penalizes
the control error and the input action over a horizon m ∈ Z+

in length. Penalization matrices Q and P are positive semi-
definite. Constraint (7) forces the states to follow model (5),
while constraints (8) and (9) bound the states to a box to

limit the maximum acceleration and velocity.

D. MPC Trajectory tracker

Figure 4 presents a diagram of the MPC tracker shown
as a single block in the pipeline in figure 3. A trajectory
tracker supplies a control command x to the underlying
state feedback. The command is required to be updated
at ≈ 100 Hz. It should also be smooth and feasible con-
cerning the translational dynamics of the UAV. A state space
representation of the translational dynamics in the world
frame can be captured by state vector x as

x[1] = r[1], x[4] = r[2], x[7] = r[3], x[10] = φ,

x[2] = ṙ[1], x[5] = ṙ[2], x[8] = ṙ[3], x[11] = φ̇, (10)

x[3] = r̈[1], x[6] = r̈[2], x[9] = r̈[3], x[12] = φ̈.

The 4 independently controllable states are then expressed as
a differentially flat system with matrices A and B defined as

A(∆t,ar,aφ) =

=

[As(∆t,ar) 0 0 0
0 As(∆t,ar) 0 0
0 0 As(∆t,ar) 0
0 0 0 As(∆t,aφ)

]
(11)

B(∆t,br,bφ) =

[ Bs(∆t,br)
Bs(∆t,br)
Bs(∆t,br)
Bs(∆t,bφ)

]
, (12)

where sub-system matrices As and Bs are defined as

As(∆t,a) =

[
1 ∆t ∆t2

2

0 1 ∆t
0 0 a

]
, Bs(∆t,b) =

[
b∆t2

2

b∆t
b

]
, (13)

with ∆t being the sampling step, and ar, aφ, br, bφ are
constants for the transfer function between the input and the
acceleration states in the system. For the transfer to be a 1st
order system, ar + br = 1 must hold for all the a constants
and b constants.

The control command for SO(3) could theoretically be
found solely with MPC. However, due to the potentially
long reference trajectory and the required density of sampled
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states, that option is not feasible, because the number of
independent parameters of the Hessian of the quadratic
program exhibits approx. quadric growth in the length of the
prediction horizon. For example, with the reference sampled
at 100 Hz, a 60 s user trajectory would require the solution
of MPC with 6000 steps of the prediction horizon. However,
this is unrealistic, given the current technology and the
onboard computational power of today’s UAVs. On the other
hand, the proposed solution requires to repeatedly solve MPC
with only 40 sparsely distributed steps thanks to not being
constrained by the actual dynamics (5) of the UAV. The
number of steps is a design parameter, setting of which
depends on the speed and agility of the flight. Given this
can be solved at 100 Hz in real time onboard the vehicle,
it supports onboard autonomy, which may be changing the
reference trajectory on demand.

We tackle the complexity issue by having a shorter pre-
diction horizon, which does not cover the full length of
the reference, however in control of a real-time simulation
of the transitional dynamics, which is evaluated at 100 Hz
in real-time onboard the vehicle. The MPC is purposefully
tuned to guarantee safe and sound tracking on the known
simulated model. States of the simulated model are then
sampled at 100 Hz, and are given as a control command
to the SO(3) controller, which mirrors the states of the real
vehicle according to the state of the simulated model. This
concept utilizes the best of each of the component. Thanks to
the predictive nature of MPC, the resulting control command
can proactively track even an unfeasible user trajectory,
which violates velocity and acceleration constraints. On the
other hand, the non-linear controller provides tilt and thrust
commands to conduct aggressive maneuvers that would be
outside the operating point for linear MPC. However, the
dynamical constraints of MPC are set to leave a reserve
for SO(3) to handle disturbances. As a result, by having a
known prediction of the movement of the vehicle, we can
efficiently detect potential collisions and avoid them before
they happen. The predictions are transmitted to the other
UAVs in the group. Additionally, a connection is established
between the collision avoidance block and the MPC tracker
block to allow the collision avoidance algorithm modify
the MPC velocity and acceleration limits when collision is
detected.

IV. EVALUATION
Multimedia material related to this work is available on

the website http://mrs.felk.cvut.cz/iros2018mpc.

A. Platform-specific implementation

The experimental platform is built around the DJI F550
frame, which is equipped with in Intel NUC onboard
computer (5th generation Core-i7, 8 GB of RAM). The
Ubuntu 16.04 operating system houses all software except
the attitude controller in PixHawk. PixHawk is an off-the-
shelf and open-source control board, which fuses onboard
inertial sensors with GPS and provides an estimate of the
states of the UAV to the onboard computer. In addition to
the sensors integrated with PixHawk, our basic UAV setup
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Fig. 5: Graphs of the x and y coordinates of MPC tracking a user
reference. The same tracking with predictive capabilities is present
in the remaining z and yaw axes.

utilizes (optionally, according to the application) a precise
RTK GPS and a laser rangefinder to measure the height
of the UAV. Both of these are fused with the PixHawk’s
state estimate. Mutual communication between the vehicles
is covered by a standard Wi-Fi connection. Custom software
is built with the Robot Operating System (ROS), which
provides a painless transition from simulation to the real
hardware. The Gazebo robotic simulator is used in conjunc-
tion with PixHawk’s firmware, which provides a life-like
simulation of the UAV dynamics and the low-level control.
The current implementation of the MPC tracker relies on
the CVXGEN [22] to solve the quadratic program (6–8).
A single iteration of the MPC tracker takes between 2 to
10 ms using only a single core of the Core-i7 processor,
with a maximum of 30 iterations of the CVXGEN solver.
The MPC tracker and collision avoidance have been used
for more than a year with the following parameters (table I,
which may vary according to the application demands:

TABLE I: Parameters for the DJI F550 hexacopter for outdoors.

MPC rate 100 Hz
Computational time 2 to 10 ms
prediction horizon 8.0 s (40 steps)

max. speed 8.3 m/s
max. acceleration 2.5 m/s2

cylinder radius Rp 5 m
cylinder height Hp 5.99 m

height correction ∆z 3 m

B. Statistical evaluation in simulation

Simulations conducted in the Gazebo simulator reflect the
real-world platform in many important aspects. All software
components running in the simulation are identical to the
set used on the real hardware, including the PixHawk’s
embedded firmware. We modeled the F550 frame to match
the physical properties of the vehicle. To test the avoidance
strategy, we first established the baseline without the avoid-
ance. The test scenario consists of 5 UAVs flying in the
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Fig. 6: These two images from the Gazebo simulator show the
avoidance maneuver for three UAVs which would collide above
the coordinate center without the collision avoidance system. The
red paths mark the predicted trajectories that are already corrected
with the avoidance mechanism.

same height level in a square area of 100 × 100 m. Each
UAV conducts a random walk over a sequence of randomly
generated waypoints sampled from an even distribution. A
collision between two UAVs is considered to take place
when their geometric centers come closer together than
1 m. Table II shows the percentiles of the duration of a
scenario before the occurrence of a collision, after which the
experiment was stopped. Over one half of the 495 simulation
trials ended within 2 minutes after takeoff, which indicates
the importance of the proposed system. Simulations with
the collision avoidance system showed that the UAVs flew
without any collisions for a period of 24 h, with 1.21 m
being the minimal measured distance between any of the
vehicles.

TABLE II: Percentiles of the period of time before the first collision
occurred. The results come from 24 h of simulated flights with 5
UAVs, conducting a 2D random walk on an area of 100× 100 m.
A total of 495 collisions were recorded.

percentile 0.5 0.75 0.95 0.99

without avoidance 104 s 152 s 264 s 431 s
with avoidance no collisions

C. Experimental evaluation of system performance

A series of experiments were performed to validate the
system in real-world conditions. Unlike simulations, hard-
ware deployment can reveal design flaws, e.g., due to com-
munication delays and bottlenecks. However, since random-
ized and long-term tests are impractical in the field, the
system was tested on a series of handcrafted trajectories,
which were designed to exploit various forms of mutual
collisions between vehicles in the group. Figure 7 shows
snapshots of one such scenario, in which two UAVs were
ordered to swap their locations through the place where a
third UAV would remain static. Other scenarios had various
priorities of the vehicles, the paths and the initial positions of
the UAVs, in the horizontal axis and also in the vertical axis.
In all cases, the system prevented a collision in advance, and
the vehicles reached their goal positions undamaged.

D. Real-World deployment of the system

The MPC tracker and its ability to follow reference
trajectories optimally with respect to the dynamical model
of the UAV was utilized for verifying of the methods on the
Dubins traveling salesman and orienteering problems [23].
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Fig. 7: Three UAVs follow a collision path, in which vehicles #1 and
#2 exchanged their positions while flying through the location of
vehicle #3, which should remain stationary. A vehicle with a lower
number has higher priority than a vehicle with a higher number.

In addition, the proposed system with collision avoidance
facilitated an experimental verification of novel research
achievements in the field of multi-UAV deployment [7], [24].
Formation flight with 4 UAVs (figure 8d) utilizes migrating
leader planning [24]. The MPC tracker enabled safe exe-
cution of the experiments, in which the UAVs operated in
close proximity. The use of a large-scale sensor network was
investigated in [9], in which multiple UAVs localize radio
and radiation sources using onboard sensors. The UAV was
driven using onboard autonomy, potential malfunctions of
which were covered by the collision avoidance system.

The system, as proposed, was successfully deployed in the
MBZIRC 2017 robotic competition. The authors were part
of the CTU-UPENN-UOL team, which competed in both
of the aerial challenges – autonomous landing on a moving
car, and collaborative collection of objects by a group of
UAVs. Autonomous landing on the moving car, which was
traveling at a speed of 15 km/h, was possible thanks to
optimal tracking of the predictions of the car movement.
The MPC tracker conducted the fastest landing (25.1 s)
among all competitors on the site [25]. The robustness of
the solution was shown throughout the competition, with
successful landings in each of the trials.

The team also scored the highest number of points and
won the challenge for autonomous collection of objects by
3 UAVs. As described in [2], the onboard autonomy that is
necessary to achieve the goals in real time relied on the MPC
tracker and on the collision avoidance system proposed here.
During the competition scenario, which took place on an
area of 60×90 m, the MPC tracker used an 8.0 s prediction
horizon. The UAVs were allowed to fly at up to 8.3 m/s
(competition rules), with acceleration of 2.5 m/s2. Thanks
to collision avoidance, we encountered no UAV incidents
while developing the system for tests conducted in over one
year period with hundreds of experimental flights.
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(a) (b)

(c) (d)
Fig. 8: Photos from real-world use of the system: (a) autonomous
landing on a car [25] and (b) multi-robotic manipulation during
MBZIRC 2017 [2], (c) collaborative carrying of a large object and
(d) 4 UAVs in the formation [24].

V. CONCLUSIONS

This paper presented a novel approach to predictive trajec-
tory tracking with mutual collision avoidance for unmanned
aerial vehicles. We have presented a nested control pipeline
with a non-linear state controller and a novel MPC trajectory
tracker, where the tracker creates an optimal feedforward ref-
erence for the controller. The ability to formulate the tracking
problem using an MPC approach allows to alleviate the
computational problem arising from a classic MPC approach.
Additionally, the system incorporates a priority-based col-
lision avoidance technique, which utilizes a prediction of
the future trajectories of the vehicles in the group to alter
the course of the flight to prevent mutual collisions between
vehicles. The proposed system has been used extensively as
an underlying platform for experimental verification of novel
research methods, and in 2017 it outperformed other teams
in the MBZIRC robotic competition.
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Abstract We present a multirotor Unmanned Aerial
Vehicle (UAV) control and estimation system for sup-

porting replicable research through realistic simulations
and real-world experiments. We propose a unique multi-
frame localization paradigm for estimating the states

of a UAV in various frames of reference using multi-
ple sensors simultaneously. The system enables complex
missions in GNSS and GNSS-denied environments, in-
cluding outdoor-indoor transitions and the execution of

redundant estimators for backing up unreliable local-
ization sources. Two feedback control designs are pre-
sented: one for precise and aggressive maneuvers, and

the other for stable and smooth flight with a noisy state
estimate. The proposed control and estimation pipeline
are constructed without using the Euler/Tait-Bryan an-

gle representation of orientation in 3D. Instead, we rely
on rotation matrices and a novel heading-based con-
vention to represent the one free rotational degree-of-
freedom in 3D of a standard multirotor helicopter. We

provide an actively maintained and well-documented
open-source implementation, including realistic simula-
tion of UAVs, sensors, and localization systems. The

proposed system is the product of years of applied re-
search on multi-robot systems, aerial swarms, aerial
manipulation, motion planning, and remote sensing. All
our results have been supported by real-world system

deployment that subsequently shaped the system into
the form presented here. In addition, the system was
utilized during the participation of our team from the

Czech Technical University in Prague in the prestigious

All authors are with
Multi-Robot Systems group, Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, Technicka 2,
Prague, Czech Republic

∗ corresponding author, E-mail: tomas.baca@fel.cvut.cz

Fig. 1: Multirotor UAV platforms equipped for various sce-
narios carried out by the system presented here.

MBZIRC 2017 and 2020 robotics competitions, and also

in the DARPA Subterranean challenge. Each time, our
team was able to secure top places among the best com-
petitors from all over the world.

Keywords Unmanned Aerial Systems · Multirotor
Helicopters · Control Systems Engineering · Educa-
tional Robotics

1 INTRODUCTION

The field of mobile robotics is steadily advancing to-
wards smart, small and intelligent mobile agents, ca-

pable of autonomously solving complex tasks. Exist-
ing Unmanned Ground Vehicle (UGV) platforms al-
ready offer researchers complex functions (Clearpath
Robotics1, ETH ANYmal2). Ground robotics research

tends to focus on high-level systems such as mission au-
tonomy, robot localization, environment mapping, and
remote sensing. Platforms such as the Boston Dynam-

ics Spot3 are out of the box equipped with automatic
localization, mapping, path tracking, and navigation in

1 http://clearpathrobotics.com
2 http://rsl.ethz.ch/robots-media/anymal
3 http://www.bostondynamics.com/spot
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an environment. However, UAVs, specifically multirotor
helicopters, are still under intensive investigation in a
wide range of research on all levels of their technological
tree. Research in UAVs is still being carried in underly-

ing fields of dynamic system modeling [13], automatic
feedback control [26], and trajectory optimization [61].
These fields are vital for understanding and for realizing

autonomous flying machines capable of supporting re-
search in higher-level sub-systems for autonomous navi-
gation through an environment, for remote sensing, and

for multi-agent systems. Only a handful of UAV plat-
forms are suited for research out of the box, and the
researchers are most often tasked with developing full-
stack UAV control and guidance to support the needs

of these platforms.

Multirotor UAVs are capable of traversing 3D space

and are often chosen for exploration and remote sens-
ing in cluttered environments [14], especially when
ground robots might fail. Their interesting dynamics

makes them still a common choice for demonstrating
novel techniques in control theory [54]. In addition,
their flight properties, most of all the ability to hover,
make them excellent for carrying sensors and for aid-

ing research in distributed and remote sensing. Due
to the inherent instability of multirotor dynamics, a
continuously-updated feedback control loop is neces-

sary to maintain stable flight. This emphasizes the im-
portance of the onboard localization, state estimation,
and control software. Failure of this software threatens

the vehicle itself and its surroundings.

Experimental verification of novel methods for

UAV systems is nowadays becoming a standard in
application-oriented research. However, this comes at
the cost of obtaining and maintaining an experimental
platform, preferably with a realistic simulation envi-

ronment. This task is especially demanding if the plat-
form is intended for use outside laboratory conditions.
Replicating and validating existing research and com-

paring it to novel proposed approaches is a necessary
part of the research process. We argue that novel meth-
ods in applied robotics should be published together

with materials necessary for replicating the results. Al-
though the amount of cutting-edge research published
with enclosed sources is increasing, the situation is not
yet ideal. A positive trend is most prominent in ma-

chine learning, in computer vision, and in Simultaneous
Localization And Mapping systems (SLAMs). Sadly, re-
search groups rarely release all parts of their experimen-

tal and testing systems, making their results difficult
to validate and replicate. Furthermore, research in the
field of UAV control is typically limited to non-realistic
simulations and, in many cases no implementation in a

real UAV exists. To solve this, the robotics community

has been collaborating on developing application frame-

works [23, 17, 73] that unify the way for algorithms of
different origin to interact and form complex robotics
systems. The emergence of such frameworks helps to

create systems that are reusable across research groups.

The Robot Operating System (ROS) [53] is one
of many middleware robotics frameworks [73, 17, 23,
25, 12, 38]. ROS has several features that have raised

it to the most prominent framework among UAV re-
searchers. Renowned sensor manufactures such as Velo-
dyne, Ouster, Terabee, Garmin, MatrixVision and Intel
are making a significant effort to provide ROS drivers

for their products. State-of-the-art research in com-
puter vision and in SLAM algorithms is often accompa-
nied by functioning ROS implementations of the pub-

lished methods [52, 83, 28]. Finally, open-source robotic
simulators such Gazebo4 and CoppeliaSim5 (previously
V-REP) provide integration with ROS. These features

allow researchers to focus their research more nar-
rowly rather than on implementation aspects of a whole
robotics pipeline. However, even with such advances,
many tasks remain unsolved on the way to a real-world

UAV platform for research, especially to platforms that
can perform outside laboratory conditions.

Through this publication, we intend to share our

full-stack UAV platform with all essential capabilities
for research, development, and testing of novel meth-
ods. Our system is a product of many years of de-
velopment in various robotic projects. The proposed

platform has provided support for state-of-the-art re-
search and has resulted in dozens of high-quality pub-
lications in cooperation with several research groups.

These works have focused on particular applications
and on relevant research, but the underlying system
will be thoroughly described and published for the first
time in this manuscript. We offer a modular and ex-

tensible open-source platform, together with a complex
simulation environment. The platform is suited for both
indoor and outdoor use, with an emphasis on onboard

multi-sensor fusion to allow safe execution of experi-
ments outside laboratory conditions (see Fig. 1 for a
showcase of our hardware platforms). We propose a pair

of feedback controllers that satisfy the needs of a wide
range of applications, ranging from fast and aggressive
flight to stable flight using unreliable sensors producing
noisy data.

4 Gazebo simulator, http://gazebosim.org
5 http://www.coppeliarobotics.com
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1.1 State of the art

Research-focused UAVs are most commonly equipped
with a low-level embedded flight controller. Available

flight controllers [16] range from feature-packed open-
source systems, such as Pixhawk, to proprietary com-
mercial units manufactured by DJI. Table 1 shows a

comparison of often used solutions. Pixhawk is often
used in research projects (including our project), typi-
cally running either of the two open-source firmwares:

PX4 [35] and ArduPilot6. Although all of these flight
stacks provide sophisticated features up to waypoint
tracking and mission execution, the features are rarely
used within real-world applications and for real-world

verification of research. As supported by the existence
of many high-level control systems [59, 81, 20, 66, 1, 36],
researchers instead use other onboard companion com-

puters to execute a custom localization system, state es-
timators, and flight controllers, and only low-level con-
trol commands are provided for the embedded flight
controller [27, 52, 21, 39, 61].

Several comparable UAV systems have been pub-
lished and released. Table 2 compares existing solution

with the system proposed in this publication.

The RotorS [20] simulator is an initial release for the
Aeroworks EU project7. It provides Gazebo-based sim-

ulation of the now discontinued Ascending Technolo-
gies UAV system. The control pipeline features are ba-
sic, with little potential for transfer to real-world con-

ditions. The system does not appear to be kept up-
to-date, which gradually diminishes its usability and
applicability. Moreover, the latest supported version of
ROS is ROS Kinetic, which potentially provides lower

compatibility with newer hardware and software.

OpenUAV8 [66] is a UAV swarm simulation testbed.

The system does not appear to allow transfer to a real-
world setting, and is designed only to support proto-
typing of basic research in swarming. The UAVs are
assumed to be controlled and localized solely using an

embedded flight controller with PX4 firmware. This is
comparable hardly with the numerous sensors and lo-
calization systems that our system allows to simulate

and to be used in a real-world scenario.

ReCOPTER9 [1] proposes an open-source multiro-
tor system for research. The available materials were

released as supporting material for the published paper.
However, no software was attached, and the materials
have not been updated since. Similarly, a framework

for drone control using the Vicon localization system

6 http://ardupilot.org
7 Aeroworks EU project, http://www.aeroworks2020.eu.
8 OpenUAV, http://github.com/Open-UAV
9 ReCOPTER, http://github.com/thedinuka/ReCOPTER

named MAVwork10 [36] was published in 2011, but has

not been updated since. Although sources were made
available, they offered only basic features that would
be difficult to transfer into a real-world scenario.

The XTDrone11 [81] simulation testbed offers many
complex functionalities that are comparable with our

proposed system, including simulation of onboard sen-
sors and complex localization systems. However, the
control pipeline relies entirely on the PX4 embedded

control software. This significantly limits any transfer
to a custom hardware platform, or even the ability to
simulate realistic conditions using onboard localization
systems. Thus, the use of XTDrone outside laboratory

conditions is mostly limited to Global Positioning Sys-
tem (GPS)-localized flight in a non-cluttered outdoor
environment.

The full-stack Aerostack system12 [59, 60] was de-
signed for deployment of multirotor UAVs. The system

is continuously being updated, and it offers an option
to transfer to a real-world platform. According to the
preprint[72] where the authors used Aerostack during

the MBZIRC 2020 competition, the system’s real-world
deployment is possible. However, with the used DJI-
based flight controller, the control command supplied

to the underlying embedded control layer are limited to
desired orientation and thrust. This level of control lim-
its the potential precision and control authority com-
paring to our system. Furthermore, the system lacks

the feature of switching between multiple frames of ref-
erence, which is one of our system’s contributions. As it
happens, the team of authors of Aerostack did not com-

pete in the wall-building challenge of MBZIRC 2020, in
which we found the feature to be crucial to precisely
collect bricks by a group of UAVs.

Besides the Aerostack system, no other existing
platform provides a full-stack system for a multiro-

tor UAV that is actively being supported and up-
dated. Many publications provide accompanying soft-
ware sources that are released without being further
updated. By contrast, we have decided to publish and

release our working system with all its components
to allow members of the research community, research
teams, and students to engage in UAV research as ef-

fortlessly as possible. We aim to provide a thoroughly-
documented open-source system to allow researchers
and students to shorten their initial learning curve and

to focus on their research instead of developing yet an-
other control pipeline. In our case, the future continuity
of our system is supported for use in the next 5+ years

10 MAVwork, http://github.com/uavster/mavwork
11 XTDrone, http://github.com/robin-shaun/XTDrone
12 Aerostack, http://github.com/Vision4UAV/Aerostack
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through our numerous activities in projects supported
by European grants13 and by national grants14.

The proposed platform is provided with two con-
trol designs — extended SE(3) geometric tracking [32]

for agile and aggressive flight, and the novel MPC con-
troller for stable flight using a potentially unreliable
state estimate. However, we highlight the modularity
of our platform, which can easily be extended with new

control approaches as needed. The survey of UAV con-
trollers provides a rich list of potentially useful control
techniques [42]. For example, a novel adaptive back-

stepping controller [82, 30] may provide better perfor-
mance during aggressive maneuvers, thanks to the in-
cluded rotor drag compensation. The proposed exten-

sion to geometric tracking on SE(3) [32] can be further
improved with remarks from [33] to provide robust con-
trol to bounded uncertainties. Furthermore, nonlinear
Model Predictive Control (MPC) controllers are becom-

ing popular [41, 47, 27], thanks to their inherent ability
to deal with obstacle avoidance. However, when deal-
ing not just with theoretical work but also with the

deployment of UAVs in real-world conditions, we favor
practicality over complexity. We therefore propose the
use of relatively simple controllers (described further in
Sec. 5), with well tractable performance.

Although the vast majority of existing control sys-
tems (all those mentioned above) and control designs
for UAVs [42] rely on the separation of the attitude and
translational dynamics, methods for full-dynamics con-

trol also exist. Those end-to-end control designs [51, 31]
treat the full dynamics of the multirotor UAV as one
model. Despite the design being cutting-edge, we prefer

splitting the dynamics for many practical reasons. We
prefer the split design aspects for the ability to intro-
spect and limit the inner states if needed. For exam-

ple, limit the maximum acceleration or tilt produced
by the controller, regardless of the outer translational
control loop. Also, the large variance on the input (es-
timator noise) of an end-to-end controller can produce

unbounded control outputs (moments) and states (ac-
celeration, tilt, tilt rate) unless the control design na-
tively supports constraining them. Finally, as will be

discusses in this manuscript, we employ on attitude
controller (geometric force tracking on SO(3)) and sev-
eral outer loop controllers (MPC, SE(3), Speed tracker)
depending on the particular experimental scenario re-

quirements. However, the proposed platform allows for
the use of an end-to-end design, if needed.

13 https://aerial-core.eu, http://rci.cvut.cz
14 http://mrs.felk.cvut.cz

platform
open

source modular SITL/HITL
outside

lab
rate

input

Pixhawk SW & HW + + + +

DJI - - - (proprietary) + -

Ardupilot SW + + + -

Parrot SW - + - -

Table 1: Comparison of commonly-used embedded flight con-
trollers and low-level control systems. The Pixhawk flight con-
troller was chosen due to several factors: both the hardware
and software is open-source, the controller is modular enough
to be used on a variety of custom multirotor platforms, Pix-
hawk supports both hardware- and software-in-the-loop sim-
ulation, can be used outside of laboratory conditions, and
supports attitude rate input.

1.2 Contributions

The proposed system goes beyond existing systems with

– a novel bank-of-filters estimator design that over-
comes challenges with diverse sensory equipment,

– a heading-oriented control design, devoid of ambigu-

ous use of Euler/Tait-Bryan angles,
– a body/world disturbance estimation approach that

does not rely on a specific state estimator design,

– a reliable MPC-based controller with the benefits of
the nonlinear SO(3) force feedback,

– a system that can be employed with a variety of
onboard localization systems and sensors,

– an ability to supply references in coordinate frames,
which differ from the feedback loop reference frame,

– extended trajectory generation mechanism [40] for

generating fast trajectories through waypoints,
– an open-source implementation 15 suitable for large

variety of applications and scenarios,

– a modular design suitable for testing new control
methods allowing them to be hot-swapped in mid-
flight with the provided ones.

The system is not only innovative, but also pro-
vides practical contributions to the community. The

open-source implementation of the proposed platform
has been tested extensively in real-world settings and
in conditions of outdoor fields, in a forest, indoors, in

a factory, in mines, caves and tunnels, during object
manipulation, during fast and aggressive flights, and in
autonomous landing on a moving platform. The system
includes a simulation environment based on the Gazebo

3D simulator with realistic sensors and models that can
be run in real time. The released platform is fully com-
patible with multiple releases of ROS (Melodic, Noetic),

and is being actively used and maintained. The system
is scalable for multiple UAVs and is well suited for re-
search in swarming.

15 http://github.com/ctu-mrs/mrs_uav_system
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platform
open

source modular simulation
outside

laboratory
multi-frame
localization

rate
output

software last
updated reference

MRS UAV system + + + + + + 2020 —
Aerostack + + + + - - 2020 [59]
XTDrone + + + - - - 2020 [81]
RotorS + + + - - + 2020 [20]

OpenUAV + - + - - - 2020 [66]
ReCOPTER + - - - - - 2015 [1]
MAVwork + + - - - - 2013 [36]

Table 2: Comparison of high-level open-source UAV systems. The proposed system is extensible and modular, comes with
an extensive simulation environment, is designed to be used outside of laboratory conditions, provides the novel multi-frame
localization estimator, and supplies the attitude rate command to the underlying embedded flight controller.
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Fig. 2: The image depicts the world frame W = {ê1, ê2, ê3}
in which the 3D position and the orientation of the UAV
body is expressed. The body frame B = {b̂1, b̂2, b̂3} re-
lates to W by the translation r = [x, y, z]ᵀ and by rota-
tion Rᵀ. The UAV heading vector h, which is a projection
of b̂1 to the plane span (ê1, ê2), forms the heading angle
η = atan2

(
b̂ᵀ
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1 ê1

)
= atan2

(
h(2),h(1)

)
.

1.3 System Architecture & Outline

We start with a description of the multirotor UAV

dynamics model (Sec. 2), which is the foundation for
further control design. The proposed platform con-
sists of several interconnected subsystems, as depicted
in Fig. 3. Mission & navigation software supplies the

desired trajectory, i.e., a time-parametrized sequence
of the desired position and heading. The module is spe-
cific to any particular application of the platform (au-

tonomous exploration, swarming, remote sensing) and
is conveyed via the publications presented in Sec. 9.
We will therefore not focus on the module here, as nu-

merous examples in other papers have shown where the
proposed system may be applied. Onboard sensor data
(e.g., position measurements from GPS, velocity mea-
surements from visual odometry) are processed by the

State estimator, which provides the Reference tracker
and the Reference controller with hypotheses of UAV
states in all available frames of reference (Sec. 3). The

block generates estimated states of the translational
dynamics with the UAV orientation, for all considered

world frames of reference. One of the world frames is
always selected as the main frame, in which a feedback
loop is closed by the Feedback controller block. The de-
sired trajectory is processed by a Reference tracker (see

Sec. 4), and is then converted into a feasible, smooth,
and evenly-sampled full-state control reference. The ref-
erence contains the desired position, its derivatives up

to the jerk, the heading16, and the heading rate, sup-
plied at 100 Hz. The reference is used by a Reference
controller (see Sec. 5) to provide feedback control of

the translational dynamics and the orientation of the
UAV. This block creates an attitude rate ωd and a
thrust command Td, which are sent to an embedded
flight controller17. We consider the underlying hard-

ware platform already pre-configured with motors, mo-
tor speed controllers, and a basic embedded flight con-
troller providing Attitude rate control. We rely on the

embedded flight controller for a backup control using a
remote controller in case of a malfunction of the high-
level computer. The flight controller encapsulates the
underlying physical UAV system with motors and mo-

tor Electronic Speed Controllers (ESCs) and creates
4 new controllable degrees-of-freedom (DOFs): the de-
sired angular speed around b̂1, b̂2, b̂3 and the desired

thrust Td ∈ [0, 1] of all propellers. This encapsulation
provides an abstraction that allows us to control any
standard multirotor helicopter regardless of the number

of propellers and the geometry of its fuselage. Section 6
briefly describes a trajectory generation approach used
within our system. Section 7 contains remarks on the
implementation aspects of our system. Section 8 pro-

vides the results of an experimental evaluation of the
control system, with emphasis on a comparison between

16 The heading, as defined later in our paper, removes am-
biguities caused by numerous conventions of the widely-used
Tait-Bryan and Euler angles [15], and provides a user-friendly
representation of the 4th controllable degree of freedom of a
multirotor UAV.
17 The proposed system is compatible with the Pixhawk
flight controller, installed with PX4 firmware.
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IMU
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State
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on demand

full-state reference
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≈1 kHz
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R, ω
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Embedded autopilot

Fig. 3: A diagram of the system architecture: Mission & navigation software supplies the position and heading reference (rd,
ηd) to a reference tracker. Reference tracker creates a smooth and feasible reference χ for the reference feedback controller.
The feedback Reference controller produces the desired thrust and angular velocities (Td, ωd) for the Pixhawk embedded flight
controller. The State estimator fuses data from Onboard sensors and Odometry & localization methods to create an estimate of
the UAV translation and rotation (x, R).

the simulation environment and a real-world counter-
part. Finally, examples of real-world use and applica-

tion of the system for validating research, for educa-
tion, and for competing in robotics competitions are
presented in Sec. 9.

2 Multirotor aerial vehicle dynamics model

The design of a high-performance attitude and position
controller often requires an accurate model of the sys-

tem. Here, we recall the widely-used dynamical model
of a multirotor aerial vehicle [32]. Figure 2 illustrates
the coordinate frames used in this manuscript. For the

sake of brevity, we do not explicitly annotate variables
with their respective coordinate frames, since all vari-
ables with the exception of the angular velocities ω are
expressed in the world coordinate frame. The UAV feed-

back control relies on state variables defined as:

r = [x, y, z]
ᵀ

the position of the center of the

mass of a UAV in the world
frame,

ṙ ∈ R3 the velocity of the center of the
mass of a UAV in the world

frame,
r̈ ∈ R3 the acceleration of the center of

a mass of a UAV in the world

frame,
R ∈ SO(3) ⊆ R3×3 the rotation matrix from the

body frame of a UAV to the
world frame,

det R = 1, Rᵀ = R−1,
ω = [ω1, ω2, ω3]ᵀ the angular velocity in the body

frame of a UAV.

These states are linked by a nonlinear model, which has

a translation part:

mr̈ = fRê3 −mgê3, (1)

and a rotational part

Ṙ = RΩ, (2)

where Ω is the tensor of angular velocity, under the con-
dition Ω v = ω × v,∀v ∈ R3. The vehicle experiences
downwards gravitational acceleration with magnitude
g ∈ R together with the thrust force f created collec-

tively by the propellers in the direction of b̂3. However,
as we are focused on non-aerobatic flight, we separately
consider and estimate the azimuth of the b̂1 axis in

the world as the UAV heading. Under the condition of
|êᵀ

3 b̂1| > 0, we define the heading as

η = atan2
(
b̂ᵀ

1 ê2, b̂
ᵀ
1 ê1

)
. (3)

The heading is a more intuitive alternative to the
widely-used yaw angle as one of the 4 controllable
DOFs. It is possible to use the yaw, but with the as-
sumption that the tilt of the UAV (cos−1 b̂ᵀ

3 ê3) is low,
near horizontal. We advice against the use of the Tait-
Bryan angles (commonly mistaken for Euler angles),
due to the overwhelming number of conventions, which

often lead to misunderstanding. Generally, the widely-
used yaw angle (as in Euler angles, Tait-Bryan angles
[15]) has no direct meaning with respect to the partic-

ular orientation of any of the body axes in any of the
conventions, since the final orientation also depends on
the remaining two rotations (pitch, roll). A user would

need to take the remaining part of the desired orienta-
tion (produced by the controllers) into account in the
Mission & navigation software to properly design the
desired yaw, which leads to a chicken or egg problem.

We therefore, we define the heading vector by the b̂1

axis as

h =
[
R(1,1),R(2,1), 0

]ᵀ
= [bᵀ

1 ê1,b
ᵀ
1 ê2, 0]

ᵀ
(4)

and its normalized form

ĥ =
h

‖h‖ = [cos η, sin η, 0]
ᵀ
. (5)
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x, α vector, pseudo-vector, or tuple
x̂, ω̂ unit vector or unit pseudo-vector
ê1, ê2, ê3 elements of the standard basis
X,Ω matrix
I identity matrix
x = aᵀb inner product of a, b ∈ R3

x = a× b cross product of a, b ∈ R3

x = a ◦ b element-wise product of a, b ∈ R3

x(n) = xᵀên nth vector element (row), x, e ∈ R3

X(a,b) matrix element, (row, column)
xd xd is desired, a reference

ẋ, ẍ, ˙̈x, ¨̈x 1st, 2nd, 3rd, and 4th time derivative of x
x[n] x at the sample n
A,B,x LTI system matrix, input matrix and input vector
Ar,Br translational LTI system and input matrices
Aη,Bη heading LTI system and input matrices
Am,Bm,xm MPC system matrix, input matrix, state vector
Q,S state MPC penalization matrices
xmax, u̇max MPC state and slew rate constraints
p1, p2, p3 parameters of the estimated system
at, bt parameters of a quadratic thrust curve
SO(3) 3D special orthogonal group of rotations
SE(3) SO(3) × R3, special Euclidean group

Ld desired UAV plane subspace spanned by b̂1d, b̂2d

t time, [s]
∆t time difference interval, [s]
B,W body-fixed and world frames of reference
span(•) the smallest vector space containing the vectors •
A < 0 a positive semi-definite matrix

•⊥ orthogonal complement to the vector space •

m, me, ma nominal, estimated and apparent UAV mass, [kg]

g gravitational acceleration, [m s−2]
f total thrust force produced by the propellers, [N]
fd desired thrust force produced by a controller [N]
T thrust, a collective motor speed ∈ [0, 1]
τd desired individual motor speed of all n motors
η UAV heading angle, [rad]
h UAV heading vector
H UAV heading rotation matrix
x estimated state vector
χ feedback controller reference
r UAV position, [m]

ad unbiased desired acceleration, [m s−2]
Ro UAV orientation estimated by Pixhawk
R estimated UAV orientation with heading
Ro
d desired UAV orientation (as in [32])

Rd desired UAV orientation, heading-compliant

ω angular velocity in B, [rad s−1]

ωd desired UAV angular velocity in B, [rad s−1]
Ω tensor of angular velocity

Ṙ UAV rotation matrix derivative
dw estimated world-frame disturbance, [N]
db estimated body-frame disturbance, [N]

cd desired acceleration generated by MPC, [m s−2]
kp,kv position and velocity control gains
kib,kiw body- and world-disturbance control gains
kR orientation control gains
ep, ev, eR position, velocity and orientation control error
e MPC control error
N (µ, σ2) normal distribution, mean µ, variance σ2

Table 3: Mathematical notation, nomenclature and notable symbols.

Figure 2 illustrates the heading vector and the heading
with respect to the UAV body frame.

3 State estimation

While the focus of this section is on estimating r, ṙ, and
r̈, the estimation of R and ω can be solved individually
thanks to the separation of (1) and (2). From a practi-

cal standpoint, the estimation of the sub-model (1) can
be executed on a high-level onboard computer, which
has access to position/velocity measurements from on-

board/external sensors. In contrast, the estimation of
(2) is better suited for an embedded flight controller
with an integrated Inertial Measurement Unit (IMU),
which also handles motor mixing and the attitude rate

feedback loop. Depending on the particular hardware,
the high-level computer may not have access to the IMU
measurements at full rate without delay, and this could

negatively impact the performance of the state esti-
mator. We therefore, we consider the estimates of R
(specifically, the estimate of b̂3) and ω as provided by
an off-the-shelf embedded flight controller18. We rely on

an attitude control loop, closed by the embedded flight
controller.

18 We rely on the Pixhawk flight controller for attitude esti-
mation and attitude rate control, http://pixhawk.com, http:
//px4.io.

3.1 Translational estimator model

Our experience of working with UAV estimators (both
linear and nonlinear, and capable of estimating distur-
bances) has led us to simplify the estimator as much

as possible. The reasons are pragmatic: tuning com-
plex models and the respective estimators becomes im-
practical with increasing model dimensionality, increas-
ing numbers of possible sensor configurations and UAV

types, and due to the range of experimental conditions.
We aimed to simplify the estimation process as much as
possible by leveraging the specific decoupled structure

of the multirotor UAV model and utilizing the ability of
the proposed controllers to estimate disturbances in the
sense of external force acting on the vehicle. We there-
fore, we model the translation dynamics of the UAV as

a point mass in 3D with an additional degree of freedom
in the heading angle, η. The considered state vector x
for the high-level estimation of (1) consists of the com-

ponents of position r, its first two derivatives, and the
heading η with its first derivative as

x = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈, η, η̇]
ᵀ
. (6)

We model the high-level dynamics as a discrete and
decoupled Linear time-invariant (LTI) system

x[t] = Ax[t−1] + Bu[t], (7)
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with 4 independently estimated subsystems expressed
together by matrices A and B as

A(∆t,p1,p2,p3) =

=

[Ar(∆t,p1) 0 0 0
0 Ar(∆t,p1) 0 0
0 0 Ar(∆t,p2) 0
0 0 0 Aη(∆t,p3)

]
, (8)

B(∆t,p1,p2,p3) =

[Br(∆t,1−p1)
Br(∆t,1−p1)
Br(∆t,1−p2)
Bη(∆t,1−p3)

]
. (9)

Matrices Ar and Br are the sub-system matrices for
the translation part of the model:

Ar(∆t,a) =

[
1 ∆t ∆t

2

2

0 1 ∆t
0 0 a

]
, Br(∆t,b) =

[
0
0
b

]
, (10)

and Aη and Bη are the sub-system matrices for the
heading part of the model:

Aη(∆t,a) = [ 1 ∆t
0 a ] , Bη(∆t,b) = [ 0

b ] , (11)

with ∆t being the sampling step of the estimator, and
with p1, p2, p3 being the 1st order transfer parame-

ters for the horizontal, vertical and heading subsystems
respectively. This model has only three free parame-
ters (assuming that both horizontal axes behave iden-

tically), which which simplifies its tuning and allows it
to be reused between various UAV platforms without
changes. The decoupling of the system to (10) and (11)
is used during implementation to speed up the compu-

tations thanks to operations with smaller matrices.

3.1.1 System input

System input u consists of the unbiased desired acceler-
ation ad. As discussed later in Sec. 5.8, the controllers

report on the desired acceleration caused by their con-
trol output. However, the controllers are required to
supply the desired unbiased acceleration, i.e., without
compensation for gravity acceleration, integrated body

and world force disturbances, and the estimated UAV
mass difference. All the biases compensated by our con-
trollers are subtracted from the desired acceleration,

thanks to their physical dimension being convertible
into acceleration. The heading subsystem is left without
an input, since measurement corrections from embed-

ded gyroscopes (see Sec. 3.4) are more than sufficient
to maintain a stable and quickly-converging estimate.

3.1.2 Sources of measurement

We often work with a very diverse set of onboard sen-
sors and localization systems. Some systems directly
provide us with 3D UAV position and heading, e.g.,

3D visual and laser SLAMs [52, 83], which can be
directly fused into the position and heading state of
our filters. When a sensory system provides only a
2D (horizontal) position measurement, e.g., the Global

Navigation Satellite System (GNSS) system or a 2D
laser SLAM [28], we use an additional measurement of
UAV height above the ground provided by down-facing

rangefinder. Some systems may provide us only with a
velocity measurement, e.g., an optic flow algorithm19.
Optic flow measurements can be used for an odome-

try estimate of the position and heading when coupled
with a height sensor. 3D Light Detection and Rang-
ing (LiDAR) SLAM might also provide us with odome-
try velocity measurements (e.g., from a scan-matching

algorithm), and absolute position measurements. Head-
ing estimation fuses measured angular velocity ω sup-
plied by an IMU. The magnetometer is fused when fly-

ing with the use of a GNSS localization system.

3.2 Linear Kalman Filter

The dynamic model is estimated by a recursive discrete
Linear Kalman Filter (LKF). This estimator, coupled
with the model (7), exhibits stable and fast tracking

of the states of the translational dynamics, under the
condition that the reference controller is capable of cal-
culating and compensating for biases such as external
force disturbance or internal input offset (see Sec. 5).

Under these conditions, the use of more complex nonlin-
ear filters, such as the Extended Kalman Filter (EKF)
or the Unscented Kalman Filter (UKF), would not pro-

vide us with the desired computational-cost benefit.

In our experience, it is simpler and more practical to
utilize controllers with this property (potentially using
any source of the UAV state) rather than to build com-

plex (nonlinear) estimators, which would estimate the
biases themselves. With this approach, any source of
the UAV state can be used, even substituting the pro-

posed estimator. The sources of measurements and the
estimators that are used may change from platform to
platform within a laboratory, even to the extent of not
using an onboard estimator at all (e.g., when using the

external motion capture system). For such situations,
force disturbance estimation is provided by our control
pipeline. If the proposed platform were to have relied on

19 http://github.com/ctu-mrs/mrs_optic_flow
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an estimator capable of estimating external force distur-
bances, this substitution would not have been possible.
Thus, this choice keeps the platform more universal.

3.3 Updating the UAV orientation with the estimated

heading

Since we estimate the UAV heading separately, the orig-

inal UAV rotation Ro =
[
b̂1o, b̂2o, b̂3o

]
supplied by

the embedded flight controller is modified by generat-

ing new body frame vectors b̂1, b̂2, and b̂3. For that,
the original heading ηo is firstly calculated as

ηo = atan2
(
b̂ᵀ

1oê2, b̂
ᵀ
1oê1

)
. (12)

Then the difference between the original heading and

the estimated heading is calculated:

∆η = η − ηo, (13)

and the original orientation is rotated around ê3 by the
heading difference:

R =
[ cos∆η −sin∆η 0

sin∆η cos∆η 0
0 0 1

]
Ro. (14)

3.4 Fusing angular rates into the heading rate state

Although ω3 (the yaw rate) is often treated as the head-

ing rate, it is applicable only as an approximation under
small tilts: ∠(b̂3, ê3) / 10◦. In general, all the compo-
nents of an arbitrary angular speed ω contribute to the

resulting heading rate. To obtain the heading rate, we
first apply (2) to obtain Ṙ, the first time derivative of
the rotational matrix. Components Ṙ(1,1), Ṙ(2,1), which

represent the rate of change of b̂1 along ê1, ê2, respec-
tively, are extracted and are used to evaluate the total
differential of atan2() in the current orientation R to

obtain the heading rate:

η̇ =
−R(2,1)

R2
(1,1) + R2

(2,1)

Ṙ(1,1) +
R(1,1)

R2
(1,1) + R2

(2,1)

Ṙ(2,1). (15)

As with most heading-related operations, this operation
is only feasible if |êᵀ

3 b̂1| > 0.

3.5 Bank of filters for multiple hypotheses

With the individual filter structure defined, we now es-
tablish a bank of Kalman filters K = {K1,K2, ...,Kn}.
The bank of filters allows for simultaneous estimation
of the UAV state from various combinations of onboard

sensors, without necessarily combining all the measure-
ments (z ∈ Rm, where m is the number of measured

states) into a single hypothesis. This type of separation
is beneficial for many applications, e.g., for transitions
from one sensory system to another (e.g., GNSS → in-

door SLAM), for running multiple instances of one filter
with different parameters, or for maintaining a backup
estimator to facilitate emergency landing. Each filter
maintains its hypothesis xn, covariance Σn, and is cor-

rected by a different set of measurements zn ⊆ z.
Multiple hypotheses x1,x2, ...,xn with covariances

Σ1,Σ2, ...,Σn are estimated by the respective filters

K1,K2, ...,Kn as depicted in Fig. 4. An arbiter chooses
one of the available hypotheses that is being out-
putted as the current state estimate. The arbiter se-

lects/changes the current filter and its corresponding
hypothesis x∗ with covariance Σ∗ by one of several cri-
teria:

– a request for a particular filter by the Mission &
navigation part of the pipeline,

– the current filter becomes unreliable,

– x∗ = xk = argminx trace (Σk) otherwise.

Whenever the arbiter switches the output, the coordi-

nates of the UAV in the world frame change, although
the physical manifestation of the UAV has not moved.
This switch is treated by the rest of the control pipeline

as a sudden change between frames of reference; the
change in numerical values can be arbitrary. Any inter-
nal states of trackers and controllers are recalculated
to the new frame of reference. Therefore, the switch is

not apparent to an outside observer as the transition is
perfectly smooth.

The use of multiple hypotheses instead of fusing all

measurements in a single filter provided the motivation
for the bank of filters approach. Let us explain the prob-
lem with a practical example: fusing two GNSS signal

sources — a classical GPS, and a differential Real-time
Kinematics (RTK) GPS. Both sources of data localize
the UAV within the same coordinate system. However,
each source has a different level of accuracy (the mea-

surements can differ by several meters), and the RTK
system may not be available all the time due to the
physical limitations of the system. Fusing both systems

into a single hypothesis creates a problem. For example,
when the precise RTK data starts to be fused (possibly
after some time of inaccessibility, or because the RTK

system has just been activated during the flight), the
hypothesis starts getting corrected. The correction step
may introduce an innovation in the order of several me-
ters, which produces state changes within the hypoth-

esis that do not follow the model and do not respect
any state constraints. More importantly, the motion of
the hypothesis does not correspond to any real motion

of the UAVs. This state convergence towards newly-
fused measurements subsequently creates motion of the
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K1 K2 · · · Kn

pred corr pred corr pred corr

u

z

x1,Σ1

x2,Σ2

xn,Σn

Arbiter
x∗

Fig. 4: The bank of filters K = {K1,K2, ...,Kn}. The filters
simultaneously estimate x1,x2, ...,xn. The output hypothesis
is chosen by the arbiter.

UAV due to the increased control error. However, this

UAV motion is unplanned (and undesired), since it is
not governed by feedforward action. In extreme cases,
the sudden control error may even saturate the feed-

back controller and could endanger the UAV, as shown
experimentally in Fig. 13. Any physical motion of the
UAV should be produced by a desired and planned ac-
tion, not by a state estimator suddenly shifting a hy-

pothesis.

In contrast, the same situation is handled here by
a bank of filters. We would consider two separate esti-

mators, one fusing GPS and the other fusing both GPS
and RTK GPS. The control pipeline can be switched
on demand to use any independent hypothesis, to re-

calculate all its inner states from one to another, and
to treat both hypotheses as independent coordinate sys-
tems. Thus when the active estimator is switched, the
UAV does not move in a physical world, but its coordi-

nates (and the coordinates of a control reference) will
jump. It is then for the Mission & navigation part of the
pipeline to decide whether the new coordinates within

the new coordinate should be adjusted by generating a
new control command. However, this multi-hypothesis
structure requires the presence of an arbiter. The ar-

biter needs to switch the system automatically from
the RTK GPS estimator to the GPS estimator when
the RTK corrections become unavailable.

The multiple hypothesis system also handles scenar-
ios where sensors do not appear within the same frame
of reference, e.g., an onboard visual-based SLAM and a
GPS localization system. Moreover, maintaining trans-

formations between all the frames of reference allows
us to close the feedback loop using the best estimator
for control performance while generating references in

other frames of reference.

4 Feedforward tracking and reference
generation

A Reference tracker provides a feedforward control
command and a reference to a Feedback controller
within the pipeline (see Fig. 3). An input to the

Reference tracker might be a 3D position and a
heading reference (rd, ηd), or a reference trajectory
{(rd, ηd)1 , (rd, ηd)2 , . . . , (rd, ηd)k} from the Mission &

navigation block.

4.1 MPC Tracker for normal flight

Feedforward trajectory tracking serves a crucial role in
supplying a smooth and feasible reference for feedback
controllers. The control reference consists of states of

the differentially-flat translational dynamics (position,
velocity, acceleration, jerk) as well as the heading and
the heading rate:

χ =
[
x, ẋ, ẍ, ˙̈x, y, ẏ, ÿ, ˙̈y, z, ż, z̈, ˙̈z, η, η̇

]ᵀ
. (16)

Our trajectory tracking approach, originally published

in [3], utilizes linear MPC for controlling a virtual UAV
model in real time. The linear MPC controls the states
of the virtual model (which behaves ideally). States of
the virtual model are then sampled on demand, and are

given to the feedback controller as a reference. The lin-
ear MPC produces optimal state transients in real time
while satisfying state constraints. The MPC tracker

creates a full-state reference χ at 100 Hz either from a
single 3D reference (rd, ηd) or from a time-parametrized
reference trajectory {(rd, ηd)1 , (rd, ηd)2 , . . . , (rd, ηd)k}
sampled at arbitrary sampling rate.

4.2 Take-off and landing

Take-off and landing can generally be solved by the
same tracker as other situations during a routine flight.
However, we separate the trajectory generation for

take-off and for landing in order to increase safety.
Safety concerns arise in the take-off phase, since the
UAV can get entangled in ground foliage when taking
off outdoors. When such a situation occurs, significant

control errors can arise quickly, forcing the feedback
controller into aggressive actions. We solve this with an
admittance tracking mechanism, which saturates the

movement of the control reference χ beyond a set dis-
tance from the current UAV state x. Automatic land-
ing is performed by setting the altitude coordinate of

the control reference below the estimated altitude of
the UAV, which serves the same purpose and allows
landing even when the altitude of the ground level is
unknown.
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4.3 Speed tracking for aerial swarming

Aerial swarming, which will be briefly introduced in
Sec. 9.5, imposes special requirements on control refer-

ence generation. 2D swarming approaches often require
classical tracking of the desired altitude and heading,
but the horizontal motion may be dictated by the de-
sired velocity or by the desired acceleration. We provide

a specialized tracking approach that allows us to by-
pass desired states within the control reference χ, and
to specify only the states that the swarming mechanism

requires. The controllers, which will be described in the
following section, use only the specified portion of the
control reference to calculate the feedback.

5 Feedback Control

The Feedback controller is a crucial component within

the pipeline (see Fig. 3) for controlling the flight dy-
namics around an unstable equilibrium point of the
UAV system. The task of the controller is to minimize

the control error around the desired control reference
χ (provided by the Reference tracker block) and to
supply low-level control reference to the embedded At-

titude rate controller. The low-level control reference
produced by a controller within our pipeline consists
of the desired intrinsic angular velocities of the UAV
body ωd ∈ R3 and the desired collective motor speed

Td ∈ [0, 1]. This section focuses on the development
of two feedback control approaches. Each of the ap-
proaches serves a particular purpose in various of field

experimentation scenarios. The first purpose is an ex-
tension of the SE(3) geometric state feedback [32]. This
controller is well-suited for fast and agile maneuvers,
as well as for precise control. However, both the UAV

state estimate and the reference need to be continu-
ous, smooth, and are assumed to follow the model. The
second controller that we propose is a combination of

a linear MPC with a nonlinear SO(3) force tracking
feedback. This controller is designed to provide stable
feedback even when the UAV state estimate is noisy

or unreliable, or when state constraints need to be im-
posed on the control level.

As shown in Fig. 3, our architecture is a cascade-
based control loop. Cascade-based control architectures

are based on the singular perturbation theory [57], com-
monly known as the principle of time-scale separation.
This approach assumes that the inner loop (in our case

the attitude control) is exponentially stable and that
the inner loop bandwidth is greater than the dynamics
of the outer loop. So the controller of the outer loop can
be designed without considering the dynamics of the in-

ner loop. This assumption holds, since the attitude rate

control loop within the PX4 firmware is executed at the

utmost rate, with all new data from the embedded IMU.

5.1 SO(3) geometric force tracking

We base our work on the geometric tracking controller
proposed in [32]. Specifically, we utilize the force track-
ing part of their approach. Given a desired force fd to

be acting on the UAV, and a desired heading vector

ĥd = [cos ηd, sin ηd, 0]
ᵀ
, (17)

we define a desired orientation matrix Rd. The origi-

nally published way of constructing Rd is feasible; how-
ever, it does not maintain heading η during maneuvers.
We therefore, we also propose a different approach ex-

plicitly designed to facilitate heading angle control.

5.1.1 Original structure of desired orientation

The matrix

Ro
d =

[
p̂1d, p̂2d, b̂3d

]
, (18)

which is composed of vectors

b̂3d =
fd
‖fd‖

, p̂2d =
b̂3d × ĥd

‖b̂3d × ĥd‖
, p̂1d = p̂2d × b̂3d,

(19)

maintains the desired force vector as the direction of the
b̂3d axis, and finds p̂1d as the orthogonal projection of
ĥd to the subspace

Ld = span
(
b̂3d

)⊥
. (20)

However, the heading is not preserved in this case (the
azimuth of the p̂1d axis is not generally equal to the

azimuth of ĥd).

5.1.2 Heading-compliant desired orientation

We tackle the heading control by constructing the de-
sired orientation matrix as

Rd =
[
b̂1d, b̂2d, b̂3d

]
, (21)

by finding b̂1d as an oblique projection of ĥd in the
direction of ê3 to the subspace Ld. This projection is
constructed as

b1d = O(PᵀO)−1Pᵀ, b̂1d =
b1d

‖b1d‖
, (22)

where O ∈ R3×2 is the orthogonal projector to Ld (con-
structed, e.g., as the first two columns of I − b̂3db̂

ᵀ
3d),
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and P = [ê1, ê2] is the orthogonal basis of the world
xy-plane. The b̂2d axis, is at last constructed as

b̂2d = b̂3d × b̂1d. (23)

Both Rd and Ro
d can be obtained under the assumption

that b̂3d ∦ ĥd. Both options are valid, and their selec-
tion should be carefully considered. We prefer the Ro

d

option, due to the consistency of the resulting reference
with the heading feedforward control described further

in Sec. 5.2, and 5.3.

Given Rd, we express the rotation error according
to [32] as

eR =
1

2
(Rᵀ

dR−RᵀRd) . (24)

Finally, the desired angular rate is obtained as

ωd = −kR ◦ eR + ωj − ωc, (25)

where kR are the rotation control gains, ωj is the feed-

forward attitude rate caused by the desired jerk ˙̈rd, and
ωc is the parasitic heading rate compensation described
further in Sec. 5.3. The feedforward attitude rate is con-
structed as

ωj =
‖fd‖
me

[ê3]
ᵀ
×Rᵀ

d
˙̈rd, (26)

where ‖fd‖/me

[
m s−2

]
is the effective thrust, me [kg]

is the estimated mass of the vehicle, [ê3]× is the cross-

product matrix satisfying the condition [ê3]× v = ê3 ×
v,∀v ∈ R3. The final control output is the desired at-
titude rate ωd and the desired thrust force fd = fᵀd b̂3.

5.2 Applying the reference heading rate as the
feedforward yaw rate

As mentioned in Sec. 4, the reference trackers output
the heading η and its derivative η̇ as a reference. Us-

ing the heading rate for feedforward in (25) requires
converting it to the desired yaw rate ω3d (the yaw rate
is the 4th independently-controllable intrinsic degree-

of-freedom (DOF), which does not influence the trans-
lational dynamics). First, we define the derivative of
heading vector h as

ḣ = [0, 0, η̇]
ᵀ × h. (27)

Then we define the orthogonal projector P on the linear

subspace spanned by ḣ. However, it is vital to define P
even when ḣ = 0. One option is:

P =
(
ê3 × ĥ

)(
ê3 × ĥ

)ᵀ
. (28)

Then we project the orthogonal basis of the subspace
spanned by the derivative of b̂1, which is consequently
b̂2, on the subspace spanned by ḣ:

p = Pb̂2. (29)

Now we find a scaling factor k between ḣ and p

k = sign
(
ḣᵀp

) ‖ḣ‖
‖p‖ , for ‖p‖ 6= 0, (30)

which is applied to recreate the desired derivative of b̂1

as kb̂2. Thus, the angular velocity around b̂3 is

ω3d = k. (31)

5.3 Compensating for the parasitic heading rate

The desired angular rate ωd obtained from the force

tracking approach, can influence the resulting head-
ing rate η̇. This can easily be observed while flying a
dynamic trajectory with a constant desired heading.

The control law (25) inevitably creates angular veloc-
ities around b̂1 and b̂2 that are being reflected in η̇.
These disturbances will be counteracted by the feed-
back. However, feedback corrections are made after a

control error has occurred, and this makes them appear
too late during aggressive maneuvers. We compensate
for them in advance by calculating the parasitic head-

ing rate created by the b̂1 and b̂2 rotations, similarly as
in Sec. 3.4. In addition, as in Sec. 5.2, the heading rate
is converted to the intrinsic yaw rate, ω3c, (the angular

velocity around b̂3), which is then added back to (25)
as ωc = [0, 0, ω3c]

ᵀ
.

5.4 Converting the desired thrust force to thrust

The motor speed is often controlled by dedicated mod-
ules, i.e. by ESCs. The input to an ESC is typically a

desired motor speed scaled linearly between [0, 1], which
represents the range from the minimum speed to the
maximum speed. The desired thrust force fd = ‖fd‖
therefore needs to be converted to the output collective

thrust Td ∈ [0, 1]. The simplest but still effective thrust
model relies on the approximate relationship between
the produced force f and the angular rate ω of a motor:

f ∝ ω2. We therefore model the thrust as

Td = at
√
fd + bt, (32)

where at and bt are parameters of a quadratic thrust
curve. The parameters are obtained empirically by the
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least-square fit on experimentally obtained data — tu-
ples of the thrust and the mass (Th, m) — using equa-
tion (32) as a hover thrust curve

Th = at
√
mg + bt. (33)

The accuracy of the thrust model is important for the

correct calculation of the applied thrust, which has an
influence on the overall control performance. The inver-
sion of (33)

ma =
1

g

(
Td − bt
at

)2

(34)

is also used to deduce the current apparent mass ma

based on the currently-used thrust output Td, namely
during landing for automatic touchdown detection.

5.5 Disturbance estimation

Various effects can cause a steady state control error in

the position of the UAV: ep = r− rd. External distur-
bances that appear to be fixed within the world frame
(e.g. wind) occur together with disturbances that are

tied to the body frame of the UAV, e.g. air drag. Also, a
miscalibrated artificial horizon (accelerometer bias) will
generally cause control errors, which can be observed
and estimated as a steady-state body disturbance.

UAV disturbance estimation is a well-established field
with a prominent use of non-linear state estimators (of-
ten EKF or UKF) [24, 11, 9, 2] with a linear estima-

tor being also suitable, as shown in our prior work [5].
It is common to account for the disturbances as dedi-
cated observable states within the UAV model and use

an observer to estimate them. In this work, we strafe
from the typical disturbance estimation process within
the main state estimator of the UAV. Estimating both
the world and the body disturbances simultaneously

would require a non-linear state estimator (to separate
them within the model [2]). Since we utilize the simpler
LKF, we propose the following disturbance estimation

approach based on the body- and world-frame integra-
tors. The disturbance estimator within our system is
part of the controllers, rather than the UAV state esti-
mator, which opens the possibility to use any UAV state

estimator that does not support disturbance estimation
or even to fly without a state estimator completely, e.g.,
using a precise motion capture system. Although our

disturbance estimator is arguably simple, it does not
require the UAV model. The estimator does not need
to know the UAV mass; even more, it estimates the

mass disturbance. It can be executed regardless of the
type of used UAV estimator.

We continually estimate the world force disturbance

dw [N] and the body force disturbance db [N] simulta-
neously during the flight as

dw =
N∑

n=0

kiw ◦ ep[n]∆t[n],

db = H[N ]

N∑

n=0

kib ◦ (Hᵀ
[n] ep[n])∆t[n],

(35)

where

H[n] =

[
cos η[n] −sin η[n] 0

sin η[n] cos η[n] 0
0 0 1

]
(36)

is the heading rotation matrix at sample n, kiw is the

world integral gain, and kib is the body integral gain.
Until the UAV changes its heading, all estimated distur-
bances are equally split in both dw and db. The phys-

ical interpretation of the x-axis and y-axis components
is the force [N] after we compensate for them by the
feedback in the desired force fd, as described in Sec. 5.6

and Sec. 5.7.

Another undesired effect is the apparent change in

the mass of the UAV that can be deduced from the ap-
plied thrust. This can indeed be a change in the mass
of the UAV, e.g., due to deploying the payload or gath-

ering objects, or it can be an apparent change caused
by a discharge of the battery, contact of a horizontal
surface, and real-time changes in the efficiency of the
propulsion system. Either way, we estimated the ap-

parent mass change by using the z-axis disturbance as
a part of a total estimated mass of the UAV

me = m+ (dw + Hdb)
ᵀ

ê3, (37)

where m stands for the nominal mass obtained by

weighting the UAV. The physical interpretation of
(dw + Hdb)

ᵀ
ê3 is the mass difference [kg] from the

nominal take-off mass, thanks, again, to the total es-

timated mass me being used in the control feedback
loop.

5.6 SE(3) state feedback

The first of our controller variants is the agile con-
troller option. It is based upon the SE(3) geometric
tracking feedback [32] with the addition of disturbance

compensation. To supplement the force tracking from
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section 5.1, we define the desired force as

fd =

position

feedback

︷ ︸︸ ︷
−mekp ◦ ep +

velocity

feedback

︷ ︸︸ ︷
−mekv ◦ ev +

reference

feedforward

︷ ︸︸ ︷
mer̈d +

−megê3︸ ︷︷ ︸
gravity

compensation

+ −dw ◦
[

1
1
0

]

︸ ︷︷ ︸
world disturbance

compensation

+ −db ◦
[

1
1
0

]

︸ ︷︷ ︸
body disturbance

compensation

,

(38)

where dw, db
[
m s−2

]
are the world and body dis-

turbance force terms, me [kg] is the estimated UAV

mass, r̈d
[
m s−2

]
is the desired acceleration, g

[
m s−2

]

is the magnitude of the gravitational acceleration, kp
are the position gains, kv are the velocity gains, and

ev = ṙ− ṙd is the velocity control error. The z-axis com-
ponent of the disturbances is eliminated by the element-
wise product, as it is already compensated for in the
form of the estimated mass me.

5.7 Model Predictive Control Force Feedback

This controller uses a linear MPC approach to gener-
ate a desired acceleration cd ∈ R3. The acceleration is

used while calculating the desired force, similarly to the
previous case:

fd =

reference

feedforward

︷ ︸︸ ︷
mer̈d +

MPC

feedforward

︷ ︸︸ ︷
mecd +

gravity

compensation

︷ ︸︸ ︷
megê3 +

−dw ◦
[

1
1
0

]

︸ ︷︷ ︸
world disturbance

compensation

+ −db ◦
[

1
1
0

]

︸ ︷︷ ︸
body disturbance

compensation

.
(39)

Linear MPC is a robust feedback method for a sys-
tem with a known model. In this case, the MPC con-

troller is formulated such that the control input of its
model is the acceleration of the point-mass translation
dynamics. Thus, the control input is directly used as

cd. Moreover, the MPC approach naturally solves the
control problem optimally subject to given state and
input constraints. This ensures the feasibility and the
smoothness of the acceleration command, bound to sat-

isfy maximum velocity, acceleration, and jerk.

5.7.1 MPC Model

The MPC controller operates with an LTI model, simi-

lar to the model used for estimation. However, the head-
ing is still controlled via the SO(3) feedback, so there

is no need to include it here. For MPC we consider the
following state vector:

xm = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]
ᵀ
. (40)

The model matrices are defined as

Am(∆t) =

[
Ar(∆t,0) 0 0

0 Ar(∆t,0) 0
0 0 Ar(∆t,0)

]
, (41)

Bm(∆t) =

[
Br(∆t,1)
Br(∆t,1)
Br(∆t,1)

]
, (42)

where Ar and Br are the same subsystem matrices (10)

as in the estimator model, with ∆t := 0.05 s. However,
this time we use the free parameters of the model to
apply the system input directly without delay to the

acceleration state (p1 = p2 = 0).

5.7.2 MPC controller

An MPC control error is defined along a prediction hori-
zon of length n as

e[i] = xm[i] − xmd[i],∀i ∈ {1, . . . , n}, (43)

where xm[i] is a state vector and xmd[i] is a reference

at sample i of the prediction. The reference state takes
the form of

xmd[i] = [xd, 0, 0, yd, 0, 0, zd, 0, 0]
ᵀ
,∀i ∈ {1, . . . n}. (44)

The initial condition xm[0] is commonly set to values of
the current state estimate. However, to make the system
more stable even when estimated states violate dynamic

constraints, position derivatives can be substituted with
states of reference vector χ from a feedforward tracker:

xm[0] =

{
[x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]

ᵀ
, if constraints satisfied,

[x, ẋd, ẍd, y, ẏd, ÿd, z, żd, z̈d]
ᵀ
, if violated.

(45)

The MPC is formulated as a quadratic programming
problem

min
u[1:n]

1

2

n−1∑

i=1

(
eᵀ

[i]Qe[i]

)
+ eᵀ

[n]Se[n] (46)
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s.t. xm[i] = Amxm[i−1]+Bmu[i], ∀i ∈ {1, . . . , n}
(47)

xm[i] ≤ xmax, ∀i ∈ {1, . . . , n}
(48)

xm[i] ≥ −xmax, ∀i ∈ {1, . . . , n}
(49)

u[i]−u[i−1] ≤ u̇max∆t, ∀i ∈ {2, . . . , n}
(50)

u[i]−u[i−1] ≥ −u̇max∆t, ∀i ∈ {2, . . . , n}
(51)

where the minimized quadratic cost is the sum of the

squares of the control errors over the prediction horizon
of length n ∈ Z+. Q < 0 is the state error penalization
matrix and S < 0 is the last state error penalization ma-

trix. Constraint (47) forces the states to follow model
(41)–(42), while (48)–(49) bound the states of the dy-
namical system, and (50)–(51) limit the input slew rate,

i.e., the system jerk. Note that we do not penalize the
input action within the cost function. No penalty is nec-
essary, because the slew rate directly limits the jerk.
With the MPC problem solved in every iteration of the

control loop (at 100 Hz), the acceleration reference cd is
extracted directly from u[1], i.e., the first control input
of the MPC.

The particular values of Q and S were found empir-

ically as

Q = diag(500, 100, 100, 500, 100, 100, 100, 10, 10),

S = diag(1000, 300, 300, 1000, 300, 300, 100, 10, 10).

(52)

These values were extensively tested on a variety of
platforms, ranging from 1.5 kg, ≈ 0.5 m DJI f450, to
15 kg, ≈ 1.2 m Tarot t18. We rely on this controller

even for solving emergency situations when the SE(3)
controller fails, since the MPC is designed to be more
stable with respect to sensor noise and is designed to

intrinsically satisfy state constraints. The choice of the
constraints xmax and umax depends on the particular
application scenario. Most of the time, we allow the
controller to reach speeds up to 2 m s−1 with accelera-

tion of 2 m s−2 and jerk 5 m s−3. However, to make the
flight safe, the controller also overrides state constraints
of feedforward trackers, to ensure that they are at most

half the value for the controller.

5.8 Unbiased desired acceleration

The unbiased desired acceleration is created by sub-

tracting the estimated disturbances from the desired

force created by controllers, applied to the current body

orientation:

ad =
fdb̂3 − gê3 + dw ◦

[
1
1
0

]
+ db ◦

[
1
1
0

]

me
. (53)

The acceleration ad then has a zero DC component, al-
though nonzero tilt is produced, e.g., in order to com-

pensate for wind and for a mass disturbance. Both can
be achieved by dividing the compensated force by the
estimated mass me in the denominator.

5.9 Take-off and landing

Take-off and landing can be executed using both of the
proposed controllers without special modification, as in
the case with the reference generation (see Sec. 4.2).

The SE(3) controller is preferred when high control
accuracy is required, but only if the localization sys-
tem provides a smooth enough state estimate. As

later shown experimentally in Sec. 8.3, the MPC con-
troller provides much better estimator noise suppres-
sion, which is desirable during take-off and landing. In
general, the MPC controller is the default choice within

our pipeline.

5.10 Feedforward failsafe controller

Position feedback control cannot be executed when a lo-

calization system is lost in mid-flight. If velocity odom-
etry is present, e.g., in the form of an optical flow sys-
tem, the active state estimator can be switched, and
an emergency landing can be executed. However, the

system cannot continue with flight without any posi-
tion and velocity state estimate. In such a situation, we
employ a feedforward failsafe landing, which relies on

the attitude controller within the installed embedded
flight controller (Pixhawk). The failsafe controller out-
puts the desired orientation to keep the UAV leveled

and to maintain the desired thrust to cause moderate
uncontrolled descent. The initial thrust is calculated
using the hover-thrust curve (33) with the last known
estimated mass me. Then the thrust is decreased by a

fixed rate to cause the UAV to descend. This proce-
dure stops the UAV from accelerating in any direction.
When such an emergency occurs during aggressive ma-

neuvers, it is up to a safety pilot to recognize that there
is a problem and to regain control using a remote con-
troller. However, if this type of situation occurs during

a slow indoor flight at low altitude, the UAV typically
safely reaches the ground before any damage can occur.
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6 Trajectory generation

Generating a reference trajectory from a set of way-

points in real time is an essential step for some
UAV applications. A commonly-adopted approach re-
lies on optimizing a parametrized polynomial func-

tion that is later sampled [37] to obtain a trajec-
tory {(rd, ηd)1 , (rd, ηd)2 , . . . , (rd, ηd)k}. The approach
in [37] was later extended in [55, 10] by solving a non-

linear optimization problem to solve both for the geom-
etry of the path and time sampling within one problem.
We extend the approach in [55] even further. Although
the approach generates trajectories that do not violate

state constraints, they also do not minimize the to-
tal flight time, sometimes resulting in prolonged flight.
We updated the constraint satisfaction mechanism in

[55] by rescaling only the generated trajectory segments
that directly violate the constraints instead of rescaling
the whole trajectory. We also provide lower-bound ini-

tial segment time estimates for each segment. Again,
this modification improves the overall flight time of the
path since the constraint satisfaction mechanism only
prolongs the segment times if necessary but does not

shorten them if possible. Furthermore, we provide an
iterative sub-sectioning mechanism that automatically
satisfies the given maximum distance of the generated

trajectory from the provided waypoint path. Our other
improvements to the method and software provided by
[55] can be found at our GitHub page20 with the rest
of our software.

7 Implementation

Implementation aspects has not often been an integral

part of published reports on control-oriented research.
However, we argue that there is a need for a system-
oriented manuscript that includes software and sources.

In this section, we will discuss implementation and soft-
ware design considerations of our system21 that have
been shaped by the requirements of real-world deploy-

ment. Real-world deployment and verification of novel
UAV methods often require a specific platform config-
uration for the method being verified. The proposed
system is designed to be extensively modular, allowing

hot-swapping of feedback controllers, trajectory track-
ers, state estimators, controller gains, and dynamic con-
straints. These can be changed in mid-flight so that new

methods can benefit from existing and tested systems,
for safely managing the initial take-off and landing, or
for regaining control in the event of unwanted behav-

20 github.com/ctu-mrs/mrs uav trajectory generation
21 github.com/ctu-mrs/mrs uav system

ior of the tested methods. It is very useful to have the
option to switch to a reliable backup system is when
testing new real-time software. The proposed system is
built on ROS22, and is available as open-source with all

the components described within this section. We have
striven to provide a well-documented system to allow
researchers and students to flatten the initial learning

curve and to focus on their particular research instead
of developing yet another control pipeline. This ap-
proach has been shown to be effective, as demonstrated

in Sec. 9 on various examples of real-world use and de-
ployment of the platform. Figure 5 is an implementation
diagram of the system with its modules, which will be
presented in the following sections.

7.1 State Estimator

The state estimator (see Sec. 3) was designed to provide
multi-frame localization. Unlike a generally accepted
approach to fuse all available sensory inputs into a sin-

gle hypothesis, we execute a bank of estimators, each for
a subset of inputs. If, for example, a UAV is provided
with data from a GPS receiver (with a magnetome-
ter), a 2D SLAM and an optic flow algorithm (velocity

relative to the ground plane), we may consider execut-
ing the following estimators simultaneously: GPS, 2D
SLAM, 2D SLAM & optic flow, optic flow. At any time,

all hypotheses are available, and the UAV is simultane-
ously localized within multiple independent world coor-
dinate systems. One estimator (the coordinate system)
is always selected as the primary estimator, which is

used for feedback control at the moment. The primary
estimator can be switched in mid-flight on-demand or
automatically when its hypothesis is deemed unreliable.

Transformations between the coordinate systems are
maintained (using the ROS Transformation library23),
which allows a seamless definition of references in any

of the existing frames of reference. This significantly
increases the overall stability of the system. For exam-
ple, the feedback loop can be closed using an optic flow
odometry estimator when the GPS signal is too inac-

curate for feedback control. However, control references
can still be given in the GPS coordinate frame, without
the need to change the mission & navigation software.

Frequent switching of frames of references can occur,
e.g., when manipulating with the environment using lo-
cal sensor information. In the 2020 MBZIRC competi-

tion, we employed frequent switching between onboard
visual servoing and global GNSS localization. The UAV
was attempting to grasp a brick autonomously while

22 Robot Operating System, http://ros.org
23 ROS tf2, http://wiki.ros.org/tf2
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being localized relative to the object of interest and
transitioning between pickup and place locations using
GNSS localization.

7.2 Control Manager

As demonstrated by the system architecture diagram

in Fig. 3, the two most important parts of the control
system are the feedforward reference tracker and the
feedback reference controllers; for brevity trackers and
controllers. Implementation-wise, various methods are

used for both components, in addition to the methods
presented in Sec. 4 and in Sec. 5. We employ multiple
trackers to fulfill different roles during the flight, and

being able to switch between each of these roles is a ma-
jor software design factor within the system. Trackers
and controllers are implemented as ROS plugins (using

the ROS Pluginlib library), which makes them follow
an interface pre-defined by a central plugin manager,
called the Control Manager. The controller and tracker
interfaces were designed to keep tracker and controller

implementation minimalistic, while the Control man-
ager is responsible for

– loading a defined set of trackers and controllers,
– gathering estimator data,

– synchronizing the active tracker and controller,
– providing all trackers and controllers with current

dynamic constraints,

– providing a unified interface for setting desired tra-
jectories and references,

– providing an Application Programming Interface
(API) to the common libraries used throughout the

plugins,
– outputting the desired attitude rate and thrust com-

mand.

Moreover, all the incoming references and desired tra-

jectories are transformed into the current control frame
before being given to the active tracker. When the cur-
rent control frame changes (when the active estima-

tor is switched), all the loaded controllers and trackers
are synchronously prompted to transform their internal
state from the old frame to the new frame. When a con-

troller or a tracker is switched, the newly activated plu-
gin is given the last state and result of the previously-
active plugin, making the transitions safe and imper-
ceptible. Additionally, the Control manager facilitates

routines for

– handling excessive control errors using emergency
and feedforward failsafe landing,

– the virtual allowed safety area with no-fly zones,

– the virtual reactive obstacle bumper,

– the control bindings to an RC controller (via

Mavros24).

The system is designed with emphasis on sim-

plifying the development and testing of new track-
ers/controllers and on developing new trackers and con-
trollers for use in particular specialized applications.
Thanks to the plugin architecture, a custom tracker and

a controller can be deployed with no software changes
to the proposed platform (except for customization of
the ROS launch and config files). This helps users to

keep the core unchanged and therefore updated and it
simplifies customization for a particular project and ap-
plication, even when a single UAV is shared by multiple
users and projects.

7.3 Reference controllers

The feedback controllers, which are described in Sec. 5,
form part of a bank of controllers loaded by the Con-
trol manager. The SE(3) controller (Sec. 5.6) takes on
the role of an agile and fast controller that is capable

of executing aggressive maneuvers with accelerations
approaching 10 m s−2. The MPC controller (Sec. 5.7)
is almost immune against estimation noise and distur-

bances, and also against reference infeasibilities. Fur-
thermore, we utilize a Failsafe controller, which pro-
vides feed-forward action in situations when feedback

is not computable.

7.4 Reference trackers

The trackers are the reference generators for the con-
trollers. Although we use the MPC tracker [3] most of
the time, there are scenarios where different approaches
are required. We intentionally separated landing and

take-off reference generation to another tracker, called
the Landoff tracker. Landing and take-off do not usually
require fast maneuvers, agility, or tracking of complex

trajectories. In contrast, admittance tracking is used to
mitigate excessive control errors due to the UAV being
trapped on the ground by an unwanted mechanical at-

tachment during take-off. In addition, research on UAV
swarming [63, 65] often requires more direct access to
the desired states of the UAV. For those situations, we
provide the Speed tracker, which allows direct control

of the desired speed and/or acceleration of the UAV,
while maintaining the desired height and heading. In
the Speed tracker, we only constrain the first deriva-

tive of given references by a low-pass filter, which gives

24 Mavros, a ROS interface to the Mavlink protocol and thus
to the Pixhawk flight controller github.com/mavlink/mavros.
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users more hands-on control over the hardware while
still maintaining safety.

7.5 Gain & Constraint Management

Dynamic constraints are supplied and managed glob-
ally for all trackers and controllers by the Constraint
manager. Pre-defined groups of constraints are loaded

during each software startup, allowing users to switch
between them in mid-flight. The following dynamic con-
straints are considered within one group: speed, acceler-

ation, jerk, and snap for horizontal translation, and for
vertical ascending and for vertical descending transla-
tion. For rotations, we consider heading speed, accelera-
tion, jerk and snap, and the intrinsic roll, pitch, and yaw

rates. The group can be designated with a name (e.g.,
slow, medium, fast) and can be assigned to a matrix of
allowed constraints for each type of estimator. A fall-

back option (a default constraint group) is also defined
for each state estimator type. When the estimator type
is switched during a flight, the fallback constraint group
is switched automatically, if the group is missing within

the allowed constraints. The Mission & navigation soft-
ware can switch the constraint groups on demand, but
only if they are within the list of allowed constraints.

The Constraint manager transfers the particular con-
straint values to the Control manager, which distributes
the values to all loaded trackers and controllers.

A similar mechanism is employed to manage the
SE(3) controller gains, since the gains depend on the
particular application and on the type of sensor fusion
that is used. Again, groups of gains are defined (e.g.,

soft, medium, tight) and are assigned to the estima-
tor types. This mechanism is necessary, especially when
the estimators that are used vary significantly in their

noise parameters and therefore require different gains
to make a flight possible.

7.6 UAV Manager

The UAV manager implements essential high-level
state machines for take-off and landing. Both take-off
and landing routines can use a specified tracker and

controller. The selected tracker and controller are also
automatically activated after take-off. The user or the
Mission & navigation software may issue an instruction

to land immediately, or after returning to the last take-
off location, or after flying to particular coordinates.

Control manager MPC tracker

Landoff tracker

Constraint manager

UAV manager

Speed tracker

...

SE(3) controller

MPC controller

Gain manager

Failsafe controller

...

Mavros

Pixhawk

State estimator

Mavros

Pixhawk

Optic flow

Camera

Height sensorRTK GPS SLAM

LIDAR

Fig. 5: An illustration of the implementation diagram of the
proposed UAV system. Onboard sensors and actuator mod-
ules are depicted as grey blocks. The sensor combination
varies depending on the particular UAV task. White blocks
represent ROS components responsible for managing sensors
or for interacting with the actuators (Mavros). Green blocks
stand for feedback controllers (see Sec. 7.3) and red blocks
stand for reference trackers (see Sec. 7.4). Purple blocks rep-
resent high-level components that provide the controllers and
trackers with up-to-date data and maintain the synchronicity
of the events. These include controller, tracker and estimator
switching, gain and constraint scheduling, and take-off and
landing.

7.7 Mission & navigation software

In a typical scenario, the UAV control pipeline is com-
manded by a user directly, using a remote terminal, or

by onboard mission control software. Typically, both
scenarios include supplying the control pipeline with
desired references, trajectories, switching between con-
straints, trackers, and controllers. Although this ele-

ment of the system is essential in practical applications,
it is highly application-specific and it is independent
of the core control pipeline. For examples of practical

applications of the proposed control pipeline, including
references to relevant perception, planning, and mission
control algorithms, see Sec. 9.

7.8 Simulation environment

The simulation software is a crucial tool for robotic re-
search. For this purpose, we have developed our simu-

lation environment, which is also made publicly avail-
able25. It makes use of the open-source Gazebo sim-
ulator and it is set up for multiple different variants
of our hardware UAV platforms (DJI f450, DJI f550,

Tarot 650 sport). It can also easily be extended to a new
hardware setup. All UAV hardware elements, including
the Pixhawk flight controller, the actuators, and vari-

ous sensors are simulated with high fidelity, so there is

25 Simulation, http://github.com/ctu-mrs/simulation
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only a minimal difference between simulated flight and
real-world flight when using the proposed UAV system.
This ensures a smooth transition between simulation
and reality, which significantly accelerates the deploy-

ment of new robotic methods and algorithms.

8 Experimental evaluation

We performed a series of experiments to demonstrate

the control and tracking performance of the proposed
system in various conditions. All experiments were car-
ried out in the real world as and also in the proposed

simulator environment using the Tarot 650 platform
(see Fig. 6). Figure 11 shows photos from the experi-
ments, as described in the following sections. As shown

in the comparative figures within this section, the dy-
namics system behaves almost identically in simulation
as well as in real world. Importantly, the conducted ma-
neuvers were near to the physical limits of the tested

UAV, particularly its maximum thrust.

8.1 Agile tracking of step position references

A step reference with increasing size in the desired po-

sition was supplied to the reference tracker. Figure 7
shows the position, the velocity and the acceleration
of the UAV under a series of step references in a sin-

gle axis. Figure 8 shows the position of the UAV when
commanded with a 3D step reference. Both situations
demonstrate precise and agile control near the lim-
its of the physical capabilities of the UAV given the

state constraints: ẋmax = 9 m s−1, ẍmax = 12 m s−2,
˙̈xmax = 50 m s−3, ¨̈xmax = 50 m s−4.

8.2 Circular trajectory

Tracking a circular trajectory is a challenging task due
to the ever-changing acceleration of the vehicle. Fig-
ures 9 and 10 show the x, y position, and the heading

η of the UAV while tracking a horizontal trajectory
with a radius of 5 m and a speed of 7 m s−1. The UAV
produced centripetal acceleration close to 10 m s−2 to
maintain the circular motion. Figure 9 shows a trajec-

tory with the heading pointing towards the center of
the circle. This is the simplest scenario, for several rea-
sons. The air drag acts on the vehicle from the same

direction throughout the flight, enabling an estimate
to be made using the proposed body disturbance esti-
mator. In addition, this situation does not create any

parasitic heading rate, and the desired heading rate is
completely satisfied with just the ω1 and ω2 angular

velocities. On the other hand, Fig. 10 shows a circular

trajectory with a constant heading in the world. This
is a challenging trajectory to follow, since the air drag
cannot be estimated using the proposed pipeline, and

the motion requires continuous action using the angu-
lar velocity ω3 to produce the feedforward heading rate
motion and to compensate the parasitic heading rate.
However, despite these difficulties, the SE(3) controller

is able to track trajectories of this type with an average
position error of 0.5 m, and 0.1 m for the first case. As
with the step references, these circular trajectories are

near the physical limits of the tested UAV.

8.3 Estimator noise suppression

The proposed MPC controller provides stabilization
and control even with a noisy state estimate. It is vi-

tal to deploy this type of control scheme in scenarios
where the localization system may produce noisy mea-
surements. Tuning a state estimator to smooth out the
noise in the estimated states is not always an option,

as it can increase the transfer delay of the estimator
to such an extent that the estimator can make the
closed loop unstable. We therefore, we prefer to use

a controller that is resistant to excessive noise in the
estimated states. Figure 12 shows a simulation of the
stabilization properties of the MPC controller and the
SE(3) controller, when the estimated position and ve-

locity are increasingly noisy. The performance of the
MPC controller allows the flight to continue even after
a significant noise is present, whereas the SE(3) con-

troller would possibly lead to a premature uncontrolled
landing due to excessive control actions leading to a loss
of onboard localization systems.

8.4 Estimator position jump handling

As in the case of high estimator noise, the MPC con-

troller outperforms the SE(3) controller in terms of
resistance to state estimator infeasibilities. Jumps in
the estimated positions are common problem with on-

board SLAMs. Similarly, jumps in the control reference
may occur when developing and testing new trajectory
tracking approaches. Figure 13 shows a feedback reac-

tion of both controllers to a 5 m jump in the estimated
position. The MPC controller minimizes the control
error smoothly while satisfying its internal state con-
straints (2 m s−1 speed, 2 m s−2 acceleration) and pro-

ducing mild control actions. The SE(3) controller also
stabilizes the UAV. However, the controlled states are
unbounded, leading to excessive tilts and again possibly

to the loss of onboard localization systems.
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Fig. 6: The Tarot 650 UAV platform is modeled with high fidelity within the simulation platform provided here.
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Fig. 8: Comparison of the simulated response and the real response to a step position reference rd in all three translation axes.
The UAV was controlled using the SE(3) controller. The graphs show the x, y and z position of the UAV, in terms of both
the control reference χ and the estimated state x. The MPC tracker operated with the following constraints: ẋmax = 9 m s−1,
ẍmax = 12 m s−2, ˙̈xmax = 50 m s−3, ¨̈xmax = 50 m s−4.

9 Pushing the frontiers of UAV research

The proposed UAV system has been used extensively
for evaluating of basic research outside laboratory con-

ditions, in applied research, and during real-world ver-
ification of novel approaches within robotic challenges
and competitions. The system has been evolving con-

tinuously over the years as we have faced the challenges
of various scenarios described in this section. None of
the previously published papers contains a complete
and up-to-date description of the system, mainly due to

their focus on high-level robotics tasks. This publication
therefore focuses solely on the underlying UAV system,

which has been shaped by the vast number of appli-
cation scenarios that have required different onboard
sensor configurations. One of the main contributions of
this publication resulting from the diverse application

requirements is the creation of a universal system. The
following subsections will briefly discuss the major re-
sults achieved using the proposed architecture.

9.1 UAV mutual detection and localization

The system played an integral role in the ongoing re-
search on relatively-localized UAV swarms and forma-
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Fig. 10: Comparison of the simulated tracking and the real tracking of a horizontal circular reference rd with a 5 m radius,
7 m s−1 speed, constant height, and a constant heading. The UAV was controlled using the SE(3) controller. The graphs show
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(a) (b) (c)

Fig. 11: Photo collage of a UAV performing aggressive testing maneuvers. Figures (a) and (b) depict the UAV performing the
3D step reference, as showcased in Fig. 8. Figure (c) shows a top-down view of the circular trajectory, showcased in Fig. 10
and in Fig. 9. Go to http://mrs.felk.cvut.cz/mrs-uav-system for video material from the experiments.

tions. Onboard marker-less UAV detection and local-
ization were studied in [76, 74]. Two approaches to
UAV detection were proposed, and were experimen-

tally verified with the proposed system: a Convolu-
tional Neural Network-based method, and a system
for processing depth-camera images. Mutual localiza-
tion of UAVs within swarms and formations was pre-

sented in [77, 78, 79, 80]. The system relies on mod-
ulated Ultra-Violet (UV) Light-emitting Diode (LED)
blinkers, which are detected using specialized onboard

cameras (see Fig. 14). This Ultra-Violet Direction And
Ranging (UVDAR) system is also available as open-
source26.

9.2 UAV motion planning

Basic research on optimal planning for data collection

with UAVs was studied in [43, 44, 45, 46, 19]. The plat-

26 UVDAR, http://github.com/ctu-mrs/uvdar
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Fig. 13: Simulated comparison of control reactions to a 5 m jump in the estimated position of the UAV x (e.g., due to a
malfunction of a localization system), x∗ stands for the ground truth. The MPC controller (first row) successfully minimizes
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UV blinkers

UV cameras

(a) (b)

Fig. 14: Mutual localization of UAVs by the UVDAR system
is provided by (a) UV blinkers on the UAV arms and top.
The blinkers are observed by onboard cameras (b) equipped
with UV band pass filters.

form provided real-world verification and showed the
feasibility of the proposed approaches. Coverage opti-

mization for multi-UAV cooperative surveillance was
tackled in [50, 18]. Complex maneuvers and coopera-

tive load-carrying by multiple UAVs were reported on
in [69, 67].

9.3 Automatic control

A system for automatic gain tuning for the SE(3) con-
troller (see Sec. 5.6) was published in [22]. A novel

optimal control design approach for automatic fire ex-
tinguishing is showcased in [58]. The properties of the
SE(3) geometric feedback proved crucial for verifying
the feasibility of the almost-free-fall trajectories de-

signed to dispatch water during extreme maneuvers (see
Fig. 15).

9.4 Data gathering

The system is being used actively in a project working
on indoor aerial inspection of historical buildings and
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(a) (b)

Fig. 15: Novel control approaches can be tested on a real
hardware. Off-the-shelf platforms such as (a) Tarot 650, and
also (b) custom-built airframes, can be equipped with the
proposed system.

(a) (b)

Fig. 16: An inspection of an indoor historical building is con-
ducted (a) to monitor the state of frescoes, and (b) to assess
the state of wall paintings.

monuments [48, 64, 29]. Within this scenario, a UAV is
equipped with a 3D LiDAR sensor and is automatically
guided through an indoor environment, where it cap-
tures detailed imagery of hard-to-reach points of inter-

est (see Fig. 16). In another project27, ionizing radiation
mapping and localization is studied in [8, 4, 71]. Simi-
larly, transmission radio sources were automatically lo-

calized in [75].

9.5 UAV swarms and formations

Basic research in the area of UAV swarming and for-

mation flying was studied in [63, 65, 62]. UAV swarm
control is a relatively new field of research, and its appli-
cations are yet to be explored. One of many possibilities
being explored by the authors is the use of UAVs for

inspecting hard-to-access locations such as power line
towers without putting personnel at risk28. This type
of application requires the swarm coordination to be

flexible, and to move, while minimizing the observed
object estimation error. Flocking capabilities are be-
ing explored within the framework of ongoing projects
with real-world experiments in a field, and also within

a forest environment (see Fig. 17). Interactions between

27 http://mrs.felk.cvut.cz/radron
28 https://aerial-core.eu

(a)
UAVs

(b)

Fig. 17: Swarms of multirotor UAVs testing novel flocking
algorithms while localized (a) by a GNSS system, and (b) by
onboard sensors only within a forest environment.

(a) (b)

Fig. 18: The CTU-UPENN-UoL team during the MBZIRC
2017 competition. The photos show (a) two UAVs while de-
livering ferrous objects, and (b) a UAV during autonomous
landing on a moving car.

UAVs are studied in order to overcome challenging sit-
uations such as GNSS-denied environment navigation.

9.6 MBZIRC 2017 competition

The Mohamed Bin Zayed International Robotics Chal-

lenge (MBZIRC) 201729 aimed at pushing the frontiers
of field robotics. Two tasks out of the three challenges
within the competition were focused solely on aerial ma-
nipulation and UAV control. The competition imposed

real-world constraints in its tasks that forced the par-
ticipating teams to show the current state of the art in
robotics and to perform the tasks within a short time

window and within specified time slots. The first task
— autonomous gathering of colored ferrous objects by
a group of UAVs — was successfully tackled by the

CTU-UPENN-UoL30 team, using the proposed system
[68, 18, 34] (see Fig. 18). We won 1st place among the
best teams from all over the world. The second task of
autonomous landing on a moving car was also tackled

by the proposed system. We achieved the fastest au-
tonomous landing among all the teams, and we took
the 2nd place overall in the competition [7, 70].

29 MBZIRC 2017, http://mbzirc.com/challenge/2017
30 Collaboration of Czech Technical University in Prague,
University of Pennsylvania, and the University of Lincoln.
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(a) (b)

Fig. 19: Unmanned Aerial Vehicles during the DARPA SubT
challenge. The photos depict (a) a UAV exploring an under-
ground mine, and (b) mapping an unfinished nuclear power
plant.

9.7 The DARPA Subterranean (SubT) challenge

The Defense Advanced Research Projects Agency

(DARPA), an agency of the United States Department
of Defense, organizes series of challenges focused on au-
tomatic search & rescue in an underground environ-

ment — the DARPA Subterranean challenge. In the
DARPA Tunnel Circuit, the first round of the challenge,
we deployed autonomous UAVs and semi-autonomous
ground robots to explore underground mine shafts

[49, 56]. Our team deployed autonomous UAVs with the
proposed system (see Fig. 19), which navigated the un-
derground tunnels and returned safely to the entrance

while autonomously localizing objects of interest. We
won the 1st prize among the self-funded teams and the
3rd prize overall. To the best of our knowledge, our

UAVs managed to explore a greater distance into the
tunnels than any of the other teams.

In the DARPA Urban Circuit, the second round of
the challenge, we deployed autonomous UAVs and semi-

autonomous ground robots to explore the infrastruc-
ture of an unfinished nuclear power plant. Our UAVs
managed to explore 2867 m3 of one floor of the reactor
building while automatically navigating up to 100 m in

just 200 s in a completely unknown environment. We
again took 1st place among the self-funded teams, and
3rd place overall. Scientific publications on tasks within

the Urban Circuit are under preparation.

9.8 MBZIRC 2020 competition

The second round of the MBZIRC competition was or-
ganized in 2020. It pushed the current state of the art in
aerial robotics to its limits, with tasks such as organiz-

ing a group of UAVs and a UGV to build a brick wall au-
tonomously, autonomous indoor and outdoor firefight-
ing with UAVs, and autonomously catching a ball car-

ried by a UAV, performed simultaneously with balloon
popping by a group of UAVs (see Fig. 20). All of the

(a) (b) (c)

(d) (e)

Fig. 20: The CTU-UPENN-NYU team during the MBZIRC
2020 competition. The photos depict (a) autonomous wall
building, (b) autonomous ball catching, (c) autonomous fire
extinguishing, (d) autonomous fire blanket deployment, and
(e) autonomous balloon popping.

tasks were solved using the proposed UAV system, and
our participation in the competition helped to consoli-
date many of the platform’s functionalities. The CTU-

UPENN-NYU31 team achieved the highest score of all
the teams for building the brick wall autonomously. We
also took 2nd in the autonomous balloon popping and

ball-catching task. We won the gold medal in the grand
challenge in which all the tasks were tested simulta-
neously. Scientific publications reporting on MBZIRC
2020 are under preparation [6].

9.9 IEEE RAS Summer School on Multi-robot
Systems

The proposed system was used as an educational tool
during the 2019 Institute of Electrical and Electron-
ics Engineers (IEEE) Robotics and Automation So-

ciety (RAS) summer school on multirobot systems32.
More than 70 international students were challenged
to solve a multi-UAV Dubins traveling salesman prob-
lem with neighborhoods during the summer school ex-

ercises. Student solutions were put to test during an
outdoor experimental session.

10 CONCLUSIONS

We have presented a multirotor UAV control and esti-
mation system created with emphasis on realistic sim-

31 Collaboration between the Czech Technical University in
Prague, the University of Pennsylvania, and the New York
University.
32 http://mrs.felk.cvut.cz/summer-school-2019
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ulations and real-world experiments. The system is a
product of years of cutting-edge research on aerial sys-
tems and their use in various branches of autonomous
robotics. The proposed architecture allows reliable de-

ployment of UAVs outside laboratory conditions using
only onboard sensors. The proposed control pipeline
supports fast and agile maneuvers as well as safe flight

even with noisy and unreliable sensors. We have pro-
vided a well-documented and open-source implementa-
tion, which is being actively used by many researchers

in the field. The Multi-robot Systems Group (MRS)
team at CTU in Prague has achieved outstanding re-
sults in robotics challenges and competitions using
this system. The experience gained from the challenges

helped to shape the proposed system into the presented
form.
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Chapter 4

Remote Sensing by UAVs

The author of this thesis has contributed to various subfields of multi-UAV research,
including multi-UAV swarming [27a], [28a], [9a], [12a], search and rescue [25a], [29a], [10a],
[18a], planning and control [11a], [30a], [13a], [107], [23a], and sensing [29a], [1c], [15a]. How-
ever, most of the author’s effort during his studies had been invested in the research scenarios
proposed by the Khalifa University as the 2017 and 2020 MBZIRC robotic challenges1.

The following core publication [3c] in this thesis proposes a UAV system for autonomous
landing on a moving car. This complete system was able to perform the fastest autonomous
landing (25 s) among all the teams competing in the challenge, using onboard sensors and com-
putational power. Onboard computer vision [77] was employed to detect the car in wide Field
of View (FOV) monocular camera images and nonlinear state estimation based on Unscented
Kalman Filter (UKF) was performed to predict the car’s future motion. The car was driving at
the speed of 15 km h−1 in a designated area, following an 8-shaped path. The system was eval-
uated extensively in simulations and various real-world conditions, and the final experiments
were successfully performed in the constrained environment of the competition venue.

[3c] T. Baca, P. Stepan, B. Spurny, D. Hert, R. Penicka, M. Saska, et al., “Au-
tonomous Landing on a Moving Vehicle with an Unmanned Aerial Vehicle,”
Journal of Field Robotics, vol. 36, pp. 874–891, 5 2019

The second challenge in MBZIRC 2017 competition focused on the collaborative gather-
ing of metal objects by a group of UAVs. A team of 3 UAVs was tasked with gathering colored
metal discs that were both stationary and moving (attached to ground mobile robots). The
challenge posed many subproblems, including onboard computer vision [77], sensor fusion,
state estimation, feedback control, motion planning, robot coordination, and mechatronics.
All the subproblems needed to be addressed competently and efficiently to obtain any score
within the competition. The proposed system was tested extensively in simulations and var-
ious outdoor conditions [14a]. It performed consistently as the best solution to the challenge
during the competition trials in Abu Dhabi. The MRS team won the 1st place among pres-
tigious university teams from all over the world. The following core publication presents the
system, its core features, and the experimental results.

[2c] V. Spurny, T. Baca, M. Saska, R. Penicka, T. Krajnik, J. Thomas, et al., “Coop-
erative Autonomous Search, Grasping and Delivering in a Treasure Hunt Scenario
by a Team of UAVs,” Journal of Field Robotics, vol. 36, no. 1, 125–148, 2019

The MBZIRC 2020 challenge inspired the third core publication in this research stream
(submitted to Robotics & Autonomous Systems, after the first revision). The 2nd round of this

1https://mbzirc.com
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competition focused again on Unmanned Aerial Vehicles and extended the 1st 2017 challenge.
The article reports on the system for multi-robotic brick wall construction by a team of UAVs.
Although this task is similar to the 2017 object-gathering challenge, significant advances in
UAV control and state estimation were required to address the problem successfully. Moreover,
a novel multi-frame state estimation framework was proposed for seamless switching between
globally-localized flight and egomotion visual servoing [8c]. This system allowed the use of true
visual servoing to achieve pinpoint accuracy during the autonomous grasping maneuver. The
MRS team again won the 1st place in the competition and showed, by a significant margin,
the best approach for solving the multi-robotic task.

[7c] T. Baca, P. Penicka Robert Stepan, M. Petrlik, V. Spurny, D. Hert, and M.
Saska, “Autonomous Cooperative Wall Building by a Team of Unmanned Aerial
Vehicles in the MBZIRC 2020 Competition,” submitted to Robotics and Au-
tonomous System, Dec. 2020. eprint: arXiv:2012.05946

CTU in Prague Department of Cybernetics
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Abstract

This paper addresses the perception, control, and trajectory planning for an aerial

platform to identify and land on a moving car at 15 km/hr. The hexacopter unmanned

aerial vehicle (UAV), equipped with onboard sensors and a computer, detects the car

using a monocular camera and predicts the car future movement using a nonlinear

motion model. While following the car, the UAV lands on its roof, and it attaches itself

using magnetic legs. The proposed system is fully autonomous from takeoff to landing.

Numerous field tests were conducted throughout the year‐long development and

preparations for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC)

2017 competition, for which the system was designed. We propose a novel control

system in which a model predictive controller is used in real time to generate a reference

trajectory for the UAV, which are then tracked by the nonlinear feedback controller. This

combination allows to track predictions of the car motion with minimal position error.

The evaluation presents three successful autonomous landings during the MBZIRC 2017,

where our system achieved the fastest landing among all competing teams.

K E YWORD S

aerial robotics, control, planning, position estimation

1 | INTRODUCTION

Autonomous takeoff and landing are the key components and also

the most challenging components of all fully autonomous UAV

systems. Precise landing ability is important for autonomous docking

of UAV platforms (mainly micro aerial vehicles—UAVs) into a

recharging station in missions requiring repeated flight operations,

and also in information gathering and delivery applications, where it

is required to reach a precise, desired position and then return to a

base. Even more challenging abilities are required for landing on a

moving platform, especially if the platform may not be equipped with

a precise localization system. Although the use of a moving helipad

introduces uncertainty and a source of possible failures into the UAV

system, it extends the application domain of UAVs and especial of

multirotor helicopters. These platforms benefit from high robustness

and maneuverability. However, they suffer from a short operational

time, and a cooperation with another vehicle is often required. A

UAV system capable of vertical takeoff and landing on a moving

vehicle may be deployed from boats, trains, or cars in areas close to

the target locations of the UAV mission. Short‐term flights of this

kind efficiently exploit the abilities of UAVs, and combining them

with a moving platform extends their operational range.

Hundreds of works dealing with autonomous landing on static and

dynamic helipads have been published in this decade in the robotics

literature describing advanced control and landing pattern detection

algorithms and showing promising simulations and laboratory experi-

ments. However, only a few of these works have demonstrated

deployment in real‐world conditions, and none of them have presented

J Field Robotics. 2019;36:874–891.wileyonlinelibrary.com/journal/rob874 | © 2019 Wiley Periodicals, Inc.
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a reliable performance that enables repeated landing on a fast‐moving

helipad in a demanding outdoor environment. This huge reality gap was

identified by the scientific board of theMohamed Bin Zayed International

Robotics Challenge (MBZIRC) 2017 competition, organized by the

Khalifa University of Science in Abu Dhabi. The aim of this board of

top scientists in robotics was to select tasks on the edge of the current

state of the art to provide a significant impact on the robotic community.

Automatic landing on a fast‐moving vehicle was the first challenge on

their list.

The existence of the reality gap was confirmed in the MBZIRC

competition, where only five teams (out of 142 registered teams

from almost all the best robotic groups worldwide) successfully

landed during the competition on a car moving at a speed of 15 km/hr

and only two teams (CTU‐UPenn‐UoL and the team of the University

of Bonn) landed precisely in both trials of Challenge 1 of the

competition. The CTU‐UPenn‐UoL system is presented here. Most

importantly, the MBZIRC competition can be considered as a

relevant and objective benchmark of this task, which is currently

being investigated by the robotic community, since several compe-

titive solutions were compared in the same experimental setup. The

same car, the same landing pattern, and the same trajectory and

velocity profile of the car were used for all competitors in the same

environment. The criterion for success was the shortest time of

landing. Moreover, the successful teams had to achieve the goal after

only a few minutes of preparation, without the option of postponing

the beginning of their time slot. By standard practice in most

laboratory experiments, no repeated tests were allowed, and

moreover, the system robustness was exhibited in the current

environmental conditions (light and windy), since the teams could not

influence the start of their trial.

The solution described in this paper presented the best reliability

among all teams and it achieved the fastest performance in the entire

competition. Only our system was able to land three times in the

competition, without a failure in autonomous mode (see Table 1). The

fastest time of landing was achieved by the proposed system during

the Grand Challenge, where all MBZIRC challenges were solved

simultaneously. This even increased the demands on system

robustness and immediate deployment without any preparation.

The key components of the system (hardware [HW] and software

[SW]) that provided this high reliability and performance in

comparison with state‐of‐the‐art works are described in the

following paper. A novel UAV state estimation approach is presented

together with a predictive trajectory tracking technique that enables

us to track and predict an estimated position of the landing pattern,

with the necessary precision and maneuverability to be able to follow

the car even in turns of its path. For precise ground vehicle state

estimation, which is crucial information for the landing UAV, fast and

robust visual localization of the landing pattern is proposed. The

detected positions of the car are filtered using an unscented

Kalman filter (UKF)‐based technique with an assumed car‐like model

of the vehicle, while the prediction of the car position in future takes

into account a known profile of the track that is followed by the

moving helipad. The model predictive control (MPC)‐based approach

applied for car tracking using an estimate of its movement in future is

the most important element of the proposed system that enables the

UAV to land precisely on a platform following a speed profile that is

close to the speed limit of the UAVs and on a nonstraight path.

1.1 | State of the art

The academic community has identified great interest in the task of

autonomous landing of unmanned aerial vehicles (UAVs) on ground or

marine vehicles. The survey in Jin, Zhang, Shen, and Li (2016) provides

an overview of techniques used for vision‐based autonomous landing. A

list of various visual markers with the corresponding detection

techniques is referenced, as well as hardware design, control, and

estimation methods for both indoor and outdoor tasks. Similarly,

methods for more general autonomous landing of an unmanned aerial

system are described in Kong, Zhou, Zhang, and Zhang (2014).

Vision‐based estimation of a ground vehicle states using an only

UAV onboard sensors is proposed in Benini, Rutherford, and Valavanis

(2016). Robust marker detection using onboard graphics processing unit

provides precise pose information even in occluded and cluttered

environments. Lin, Garratt, and Lambert (2017) also propose a method

for automatic detection and estimation of a landing marker onboard a

ship deck. They also aim to provide a robust pose estimate when the

marker is partially occluded, or when the scene contains marker

reflections. However, both solutions lack an experimental evaluation

that would test the system during fully autonomous landing.

Fu, Zhang, Yi, and Shi (2016), Ghommam and Saad (2017), W. Jung,

Kim, and Bang (2016), and Y. Jung, Lee, and Bang (2015) deal with

simulations of landing marker detection. They also propose guidance laws

for autonomous landing, but also in simulation. Simulated autonomous

landing on a ship is presented in Tan, Wang, Paw, and Liao (2016).

Many of indoor experiments on autonomous landing on a slow‐
moving target are presented in works by Araar, Aouf, and Vitanov

(2017), Bi and Duan (2013), Ghamry, Dong, Kamel, and Zhang (2016),

and D. Lee, Ryan, and Kim (2012). An indoor solution with a motion

capture system is presented in Ghamry et al. (2016). A ground robot

TABLE 1 Time in seconds of all successful autonomous landing
attempts in the MBZIRC 2017 competition, when the car was moving

at its maximum speed of 15 km/hr

Team Trial 1 Trial 2 Grand 1 Grand 2

Beijing Institute of

Technology

63.4 63.4 NQ NQ

CTU in Prague,

UPENN and UoL

143.2 84.6 25.1 M

University of Bonn 110.5 Not landed 58.6 42.3

University of Catania 134.5 Falling off NQ NQ

Note. Falling off: UAV touched the mobile landing platform but was not

able to fix there; Grand 1 and 2: trials of the MBZIRC Grand Challenge;

M: manual mode applied due to other robots in the arena; MBZIRC:

Mohamed Bin Zayed International Robotics Challenge; not landed: UAV

not landed due to a crash or time limit of 15 min exceeding; NQ: not

qualified for the final challenge; Trial 1 and 2: trials of the MBZIRC

Challenge 1; UAV: unmanned aerial vehicle.
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and a UAV are both controlled by a centralized system to fulfill

missions which include autonomous takeoff and landing of the UAV,

atop the ground vehicle. The system presented in D. Lee et al. (2012)

uses sensors onboard the UAV and relies on the Vicon motion

capture system and external computational unit. Thanks to the

motion capture system, the UAV is able to conduct a patrol search

for the ground vehicle. When the ground vehicle is located, it

switches to relative localization based on visual marker detection.

Similarly, a system for indoor autonomous tracking and landing is

presented in Hui, Yousheng, Xiaokun, and Shing (2013). Camera

images are also processed off board on an external computer.

Multiple works describe systems capable of autonomous outdoor

flight while tracking a static or moving marker. In Masselli, Yang,

Wenzel, and Zell (2014), Yang, Scherer, and Zell (2013), and Yang,

Ying, Lu, and Lu (2015), UAV systems capable of hovering and landing

on a static target are proposed. Autonomous landing on a target

moving at slow speed up to 1m/s is presented in Kim, Jung, Lee, and

Shim (2014) and in H. Lee, Jung, and Shim (2016). Xu and Luo (2016)

present a solution capable of landing on a moving car at speeds of

7m/s. The presented system was tested in scenarios with the ground

vehicle moving along a straight line.

The most similar approach to our work is presented by Borowczyk

et al. (2017) and Hoang, Bayasgalan, Wang, Tsechpenakis, and Panagou

(2017). Borowczyk et al. (2017) propose a system that utilizes a vision‐
based approach combined with inertial and global positioning system

(GPS) measurements from a cell phone placed on the ground vehicle.

Experiments show landings at speeds up to 50 km/hr. However, it is

unclear whether the system is capable of landing during nonlinear

motion of the car. Moreover, precise knowledge of the global position

of the car is an assumption that is problematic in most applications.

Successful landing on a moving vehicle in an outdoor environment is

also described in Hoang et al. (2017). Only onboard sensory data and

computation power are used. The proposed solution is able to track and

land on a car moving at a speed of up to speed 2m/s.

The competitive solutions in the MBZIRC competition were

presented by the team of the Beijing Institute of Technology and by

the team of the University of Bonn (Beul, Houben, Nieuwenhuisen, &

Behnke, 2017). They also landed multiple times, but their systems

have not yet been published. It is therefore not possible to compare

the two systems and to highlight differences. Nevertheless, all three

solutions can be considered as a valuable contribution to the field of

robotics since according to our knowledge no other system exists

that can offer a complete solution to this very demanding and

complex challenge in these outdoor conditions (which was also the

reason why this task was selected by respected leaders in the field of

robotics for the competition).

1.2 | Contributions

This manuscript presents a complete system for automatic detection,

estimation, tracking, and landing on a moving car with an UAV. The

proposed method enables the UAV to detect a landing pattern in

images from a single onboard camera and to calculate the position of

the car relative to the UAV. The computer vision algorithm provides fast

and robust detection of the landing marker using a SuperFisheye

camera lens. Position and velocity of the car are estimated and

predicted in a global frame of reference using a nonlinear motion model

by an UKF. The proposed control architecture is tailored specifically to

the challenge of following fast dynamic objects with a UAV by

leveraging the nonlinear state controller in conjunction with a

novel MPC tracker. Future predictions of the car movement are

reshaped by the MPC tracker into a feasible state reference, which is

reflected on the states of the real UAV by the nonlinear state controller.

The novelty of this approach is in the combination of the state‐of‐the‐
art methods to accomplish a robust execution of the demanding task in

real‐world experimental conditions. Moreover, the novel MPC tracker is

a contribution which allows to track arbitrarily long reference

trajectories without solving an MPC task for the whole reference. The

experimental results show that the UAV can follow a car moving at

15 km/hr autonomously and land on its roof, while attaching itself using

magnetic legs. The system is robust to very challenging outdoor

conditions with a wind speed of up to 10m/s, varying light conditions

and blowing sand in the air. The approach presented in the manuscript

provides precision and repeatability in the landing task, which is a

crucial element for fully autonomous missions (such as periodical

surveillance, reconnaissance, object carrying, and monitoring), for which

UAVs are an especially appealing option.

1.3 | Problem definition

The task, as it is described by the rules of the competition, consists of

an autonomous search and landing on a moving ground vehicle by an

UAV, a multirotor helicopter. The competition takes place in an arena

with dimensions of ×90 60 m, as shown in Figure 1a. A track in the

shape of figure 8 is marked on the ground where the car is supposed

to drive starting at a random place and heading in a random

direction. The landing area is a square with dimensions of ×1.5 1.5 m

with a marker X, as shown in Figure 1b, placed 1.5m above the

ground on the roof of the vehicle. A magnetic or suction gripper can

be used to attach the UAV to the surface, which is made of a ferrous

material. The moving vehicle starts at a constant speed of 15 km/hr.

It reduces the speed to 10 km/hr after 6min and to 5 km/hr after

12min from the start. However, our system was designed to land

independently of the speed level. No human intervention is allowed

in the fully autonomous mode.

2 | EXPERIMENTAL HARDWARE
PLATFORM

The experimental platform was designed from off‐the‐shelf parts,

with the aim to simplify reproducibility and potential maintenance.

The same platform was also successfully used for the treasure hunt

challenge—MBZIRC challenge no. 3 (our team won this challenge, as

described in Spurny et al. (2018), where three UAVs cooperatively

collected small objects). More important, we intended to reuse the
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platform for future research activities, which introduced a need for

simple potential modifications to the system.

The proposed platform is a multirotor vehicle based on a DJI

F550 hexacopter frame equipped with the DJI E310 propulsion

system. Most components were chosen as individual and commer-

cially available parts, to maximize the simplicity of the system,

minimize the cost, and to allow custom modifications if needed for

any particular task. Key components are shown in Figure 2. See

Spurny et al. (2018) for a different configuration of the system,

proposed for the MBZIRC treasure hunt challenge. A flight

controller board is required to allow basic flight capability. The

PixHawk flight controller (Meier et al., 2012) was chosen for its

open‐source firmware and for its well‐documented interface, which

allows us to connect it to a high‐level onboard computer. PixHawk

contains sensors such as gyroscopes, accelerometers, an atmo-

spheric pressure sensor, a magnetometer, and GPS, and it produces

a single position, velocity, and orientation estimate of the UAV in

global world frame by their measurements.

Onboard computations are performed on an Intel NUC‐i7
computer with an Intel i7 processor and 8 GB of RAM. The computer

is installed with Linux Ubuntu 16.04 and the robot operating system

(ROS) in the kinetic version. The ROS is a middleware library for C++

and Python programming languages. It provides a convenient way of

building a complex system of applications with the asynchronous

exchange of messages. An ecosystem of existing programs exists

covering functionalities such as visualization, logging and data

sharing, geometric transformations, and so forth. Sensor drivers are

often found with the ROS interface already integrated, which makes

them simpler to integrate.

To improve the localization accuracy of the UAV in space, we

integrated the PRECIS‐BX305 GNSS RTK BOARD differential GPS

receiver (Tersus‐GNSS 2017). Differential real‐time kinematics (RTK)

GPS uses a ground base station to transmit corrections to the UAV,

which practically eliminates GPS drift. The TeraRanger time‐of‐flight
laser rangefinder (Ruffo et al., 2014) serves two purposes. During a

flight, it measures the distance to the ground, which is used to

improve the estimation of the UAV height. In the landing task, during

touchdown on the ground vehicle, it serves as a trigger for switching

off the propellers. To detect the car, a single matrix‐vision
mvBlueFOX‐MLC200w camera is mounted on a fixed, down‐facing
mount beneath the UAV. A SuperFisheye lens was chosen to

maximize the chance of detection in the final stages of landing when

the landing pattern is close to the camera. Its global shutter provides

images free of the rolling shutter effect.

3 | SYSTEM STRUCTURE

The guidance law presented in this paper is a modular pipeline

consisting of components which are depicted in Figure 3. The following

paragraphs give a list of the components, which are subsequently

described in Sections 4–9.

The first component is the landing pattern detector (presented in

Section 4), which provides measurements of car position in the world

frame coordinate system. Position measurements are processed by

the car state estimator (Section 6), using an UKF. Unmeasured states

such as acceleration and heading are required to fully predict the

future trajectory of the car. The car state predictor calculates the

future trajectory of the car, starting from the latest state estimate

and using the same model and the same nonholonomic model as is

used for the estimation. The predicted future trajectory serves as a

reference for the MPC tracker (Section 8), which minimizes a

quadratic error of UAV future states over a prediction horizon to

F IGURE 1 (a) A schematic image of the

arena, showing the track for the ground
vehicle. (b) The visual marker attached to
the helipad of the ground vehicle, as
described in the rules of the competition

(a) (b)

F IGURE 2 Schematic of individual hardware modules on the
UAV. GPS: global positioning system; UAV: unmanned aerial vehicle
[Color figure can be viewed at wileyonlinelibrary.com]
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fly precisely above the car given the dynamical constraints of the

aircraft. The MPC tracker then outputs desired states (position,

velocity, and acceleration) to the state feedback controller (Section 9).

The state feedback controller, being the last part of the pipeline

implemented in the high‐level computer, produces attitude and

thrust commands for the PixHawk flight controller.

The car state estimator serves two purposes within our pipeline.

First, it filters the incoming signal from the landing pattern detector,

the measurement variance of which is adjusted with respect to the

UAV height. Secondly, it estimates unmeasured states (velocity,

acceleration, heading, and turn curvature), which are required to

predict the car future movement. The resulting estimate is

outputted at 100 Hz. Using the information from the car state

estimator, we predicted the future movement of the car, using the

same dynamic model as during the estimation. The curvature of the

predicted trajectory is biased using a known map of the arena and

the track on which the car was driven. The predicted trajectory is

updated at 30 Hz.

In our pipeline, a trajectory tracker is responsible for generating a

set of desired states of the UAV (position, velocity, and acceleration)

to follow the trajectory generated by the car state estimator. It uses

decoupled, third‐order translational dynamics to simulate a virtual

UAV at 100Hz. The virtual UAV is then controlled by MPC with a 8 s

prediction horizon, also at 100 Hz. States of the virtual UAV are

sampled and are handed out to the state feedback controlled as a

reference. Thanks to the MPC, the tracker provides the necessary

feed‐forward action to follow the known future path. The particular

MPC control approach is based on previous work presented in Baca,

Loianno, and Saska (2016), further extended to support the state

constraints in velocity and acceleration.

4 | VISUAL LOCALIZATION OF THE
LANDING PLATFORM

Robust, precise, and fast detection of the landing pattern is a crucial

ability to achieve reliable landing on moving vehicles. In the system

designed for the MBZIRC 2017 competition, we relied on a color

mvBlueFOX‐MLC200w camera with a global shutter, which is important

for recognizing moving objects from a camera on the fast‐moving UAV.

Another advantage of this light camera is the fast frame rate, 93 images/s,

with resolution ×752 480. Although a color camera was used, the image

analysis was conducted after converting the obtained images to

greyscale, thanks to the landing pattern being black and white. Using a

Sunex DSL215 miniature SuperFisheye lens, the camera provides a

horizontal field of view of ∘185 . It observes the car under the UAV even

in the event of UAV tilting, so it is not necessary to use a gimbal camera

stabilizer. This reduces the complexity and weight of the system. This

scheme provides a very simple, cheap, and robust solution that can be

applied in various landing scenarios beyond the MBZIRC competition.

Let us now briefly describe the image processing algorithm that

was used for landing on the moving helipad in the MBZIRC

competition. In this paper, we focus on general approaches that

could be reused for detecting landing patterns similar to the pattern

used in MBZIRC 2017 to provide a complete system for autonomous

vision‐based landing. For special details on the technique adapted for

localizing the MBZIRC pattern, see Stepan, Krajnik, Petrlik, and Saska

(2018), where all vision approaches used by our team in the MBZIRC

competition are summarized.

As was mentioned above, to ensure outdoor deployment in real

scenarios, the detection procedure has to be robust to various

weather conditions, changes in light intensity, and direct sunshine with

F IGURE 3 Scheme of the software
pipeline for landing on a moving vehicle.

See Section 4 for landing pattern detector,
Section 6 for car state estimator and car
state predictor, Section 7 for UAV state

estimator, Section 8 for MPC trajectory
tracker, and Section 9 for SO(3) state
feedback. The dashed line surrounds the

parts which are controlled by a landing
state machine, later discussed in Section 5.
MPC: model predictive controller;

UAV: unmanned aerial vehicle
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shadows cast by the aircraft and other objects in the environment,

such as the support structure of the MBZIRC arena. Other

requirements are low computational complexity to be able to use

small and simple platforms, fast response, and the use of standard

computer vision libraries, for example, OpenCV, to provide simple

implementation and reproducibility. Mainly the very fast response

(50 frames/s and more) and the availability of low computational

power are contradictory requirements that are hardly achievable by

state‐of‐the‐art computer vision approaches and require the design of

new methods suited for this special application.

In the proposed pattern detection approach, the first step is

adaptive thresholding with a variable box, the size of which depends

on the UAV height and the known parameters of the landing pattern

(e.g., with box size 5 and 11 pixels; see Figure 4b,c, respectively).

During the experiments, the size of the box spanned on the interval

[ ]5, 21 , where it was defined as ∕( ) +w2 12 1, where w stands for the

width of the detected white square of the landing pattern in pixels.

The advantage of the adaptive threshold is its robustness to light

intensity. The contours of the painted pattern (the circle and the lines

in our case) are then simply detected in these segmented images.

An important part of the algorithm is the undistort procedure.

That needs to be applied to compensate the distortion caused by the

SuperFisheye lens. The lens parameters can be identified using

OpenCV and its fish‐eye model. However, the undistort function

provided in the library is too slow, and a new method needs to be

designed. The used approach, which is described in detail in Stepan

et al. (2018), relies on the fact that the distortion coefficients are

known in advance, and the scales required for computing undistorted

coordinates can be precomputed.

Robust detection of the MBZIRC 2017 landing pattern is based on

detecting the outer circle and then the inner cross, to exclude false

positive detections. Based on our experience, this design enables the

pattern to be detected robustly in all phases of the landing approach. We

can recommend it for other projects, where the autonomous UAV landing

is required. A combination of the circle and the inner cross should also be

used, if possible, in designs of landing patterns. In the initial phase of the

approach, where the length of one of the axes of the ellipse (the detected

circle) is shorter than 30pixels, due to the long distance between the

helipad and the UAV, the lines of the cross cannot be detected reliably.

Then the cross is detected using the morphology operation closing and

searching for areas similar in size. Circle detection is positively confirmed

if four closed areas similar in size are found within the circle (see Figure 5

for example).

Later, if the UAV approaches closer to the helipad and the circle

size is 30–150 pixels, the cross can be detected by Guo Hall thinning

(Guo & Hall, 1989), which enables the lines inside the circle to be

detected robustly. Positive detection of the landing pattern is

confirmed if the crossing point of the two biggest lines of the cross

inside the circle is detected near the center of the ellipse. Results of

the landing pattern detection process using the Guo Hall thinning

algorithm are shown in Figure 6.

Finally, if the circle is larger than 150 pixels, the cross is detected

by recognizing its border, that is, by detecting two pairs of parallel

lines (the red and green lines in Figure 7a). This approach provides

robust detection of the landing pattern if the entire circle is not

visible in the image. Figure 7b depicts the pattern reconstructed only

from two visible lines of the cross.

An estimate of the height of the UAV is required to select the proper

approach for pattern detection. In the proposed system, this information

is obtained using the laser rangefinder and its fusion with the

onboard inertial measurement unit to compensate the deviation of the

measurement caused by a vehicle with a variable height profile, when it

appears under the approaching UAV. If the pattern is detected, its known

parameters (the known dimension of the circle and the cross) can be used

to make a precise measurement of the relative distance between the

F IGURE 4 (a) Image taken by the camera, (b) result of the
adaptive threshold with box size of 11 pixels, and (c) adaptive
threshold with box size 5 pixels. The box size is variable and depends

on the thickness of the expected segments in the landing pattern and
decreases with the height of the unmanned aerial vehicle [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Operation of morphological closing was applied
as a part of the recognition pipeline. The original camera images
were cropped, which results in the images with resolution of

×24 24 pixels. (a) Original images of the landing pattern.
(b) The landing pattern after morphological closing

F IGURE 6 (a) Image taken by the camera, (b) application of the
adaptive threshold with box size of 11 pixels, and (c) results of Guo

Hall thinning
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helipad and the UAV. This information is used for estimating the position

of the landing pattern in the global world coordinate system, which is

used as the desired state of the position controller.

5 | LANDING STATE MACHINE

The autonomous task of the UAV is driven by a single‐state machine

from autonomous takeoff to landing. The state machine (Figure 8)

takes control of the UAV after a signal has been given by an operator

or after the start time is reached. After taking off, it moves the UAV

above the center of the map by switching to the fly to waiting point

state. The UAV waits for the car to appear in the field of view, while

it hovers at the height of 8m above the crossing of the two roads.

Several factors have influenced the choice this strategy, for example,

the real speed and acceleration constraints of the UAV and the

known trajectory and velocity profile of the car. This approach

minimizes the complexity of the system and also provides the

shortest mean time for locating the target, given the mentioned

constraints. By using this strategy, we also maximize the possible

quality of the images being captured onboard the UAV since any

movement of the UAV introduces a motion blur, which negatively

influences the initial spotting of the target.

When the target is first spotted, and the covariance of its state

estimate exceeds a defined threshold, the UAV starts to align its

horizontal position with the car while maintaining 8m height (align

horizontally state). The aligning uses an approach strategy, which

exploits the fact that the car velocity vector points towards the center

of the map and thus towards the UAV. The approaching trajectory is

created around a mutual meeting point [ ]M t , which is the closest point of

the current position of the UAV [ ]U t to the predicted trajectory of the

car. The trajectory meets the following properties, where [ ]C t is the

current position of the car and [ ]E t is the last point of the car prediction:

• The portion of the UAV trajectory in between [ ]M t and [ ]E t is found

by sampling the predicted trajectory of the car starting at [ ]M t .
• The other portion of the UAV trajectory in between [ ]U t and [ ]M t

requires creating a trajectory of the same time duration as the

portion of the predicted trajectory of the car from [ ]C t to [ ]M t .
• The resulting trajectory does not require motion (and thus a

control action) in the direction parallel to the current car motion,

which means that the trajectory will not lose it from the field of

view because the onboard camera is tilted away from the car.

In the special case, where [ ]M t does not reside on the predicted

trajectory of the car, the whole prediction is used as a reference for

F IGURE 7 Line detection (a) if the cross is inside the circle and
(b) if only a part of the landing pattern is detected [Color figure can

be viewed at wileyonlinelibrary.com]

F IGURE 8 The autonomous flight, from
takeoff to landing, is controlled by the

landing state machine. The linear passage
from the takeoff state to the landed state
can be divided to three groups of states,

based on the current height above ground
—8 m or higher, between 4 and 8m, and
below 4m. The state ascend and repeat

handles situations when the car was lost
from the field of view of the camera
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the MPC tracker. This situation may occur if the car is first spotted

while driving away from the UAV Figure 9.

After the UAV is aligned with the car horizontally within 1.5m,

the state machine switches to the descend state. While in the descend

state, the height decreases to 4m, the lowest height at which it is still

possible to follow the car continuously given the particular UAV and

camera configuration. Once a height of 4 m is reached, the state

machine transitions to the align for landing state, where it waits for

two conditions to be met to initiate the final landing on the moving

car. First, the UAV has to be aligned horizontally within 0.3 m of the

center of the landing pattern. Second, transition to the land state is

allowed only above the straight parts of the track. Finally, the landing

maneuver is executed, in which a fast descent is made to the roof of

the car. During the landing, the motors are cut off by a signal from

the down‐facing laser rangefinder, or the whole landing is aborted

due to a low height threshold being met (1.5 m above the ground). If

the car is lost from sight during any of the previously mentioned

phases of the landing, the state machine transitions to the ascend and

repeat state. In the ascend and repeat state, the UAV ascends while it

follows the car prediction based solely on the estimate. If the car is

not detected again, the state machines transitions back to the fly to

waiting point state. If the car is detected while in the state ascend and

repeat, the horizontal alignment process is repeated via the state align

horizontally.

6 | GROUND VEHICLE STATE ESTIMATION
AND PREDICTION

Several subproblems have to be solved to follow a moving object

with an autonomous helicopter. The first part of the pipeline, which

provides visual detection of the landing surface, was presented in

Section 4. Motion estimation is necessary to compensate for

inherent flaws in the data that are extracted from camera images.

Information provided by the landing pattern detector is naturally

skewed by phenomena such as signal noise, false positive detections,

irregular detection rate, and time delay. These issues are common for

most real‐world sensors and are usually addressed by filtration and

fusion with other available data. Moreover, since the dynamical

system of the vehicles is known and can be described by a

mathematical model, we can use the knowledge to maximize the

information we gain from camera observations of the car. In

particular, we can estimate unknown states that are difficult or

even impossible to measure directly, namely, velocity, heading, and

curvature of the turn. Estimation of hidden states further allows us

to predict the future movement of the vehicle.

6.1 | LKF with a liner model

The simplest model that can be used to estimate and predict the

motion of the car is a linear model of second‐order translational

dynamics. This model does not impose any constraints on the

holonomy of the system, and therefore lacks an estimate of the

turning radius ( ∕K1 , where K is the turning curvature). States can

easily be estimated using the linear Kalman filter as
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where the state vector is defined as = ( ˙ ˙ )[ ] x x x y y yx , , ¨ , , , ¨n T . Testing
with the linear model demonstrated satisfactory performance during

linear motion of the car, but showed a significant tracking error when

the car was turning. The scenario is showcased in the video http://

mrs.felk.cvut.cz/jfr2018landing‐video1.

6.2 | UKF with a car‐like model

To improve the car state estimation for nonlinear motion, a different

model is required, for example, the nonholonomic car‐like model:
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where = ( )[ ] [ ]x yx ,no nT is the position of the car in the global coordinate

system, ϕ[ ]n is its heading, [ ]K n is the curvature of its turn, [ ]v n is its scalar

velocity, [ ]a n is its scalar acceleration, and Δt is the time difference.

F IGURE 9 Illustration of the approach strategy. Point M
represents the common meeting point of the UAV and the car, U is

the current position of the UAV, C is the current position of the car,
and E marks the final point in the car prediction. The car predicted
trajectory is shown in red, the approach trajectory is marked as

dotted, and the resulting feasible trajectory, optimized by MPC, is
shown in blue. MPC: model predictive control; UAV: unmanned
aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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Car‐like model better reflects the physics of the car motion, thanks to

adding nonholonomic constraints and effectively by coupling the

heading with the curvature of its turn. Estimates of the heading of the

vehicle allow its motion to be tracked while the onboard camera is

oriented properly to maximize successful detection even, while the car

is in turn. The UKF (Wann & van der Merwe, 2000) was used as a

filtration method and as a predictor. In contrast with LKF, UKF utilizes

a general function as a form of model iteration. Covariance of the

estimated hypothesis is transformed as a set of sampled points of the

ellipsoid, which is later reconstructed using the known prior

distribution of the points. Therefore, it is not required to differentiate

the model function, as it would be using nowadays obsolete extended

Kalman filter (EKF), which uses a linear approximation of the model.

Due to the high speed of the car, UKF is needed for its robustness and

better performance, comparing to EKF and LKF.

6.3 | Ground vehicle state prediction

As we will discuss below in Section 8, knowing the future trajectory

of the ground vehicle is a key element in tracking its motion with the

unmanned aircraft. To predict the future trajectory, the same model

as for its state estimation is applied, creating a discrete, time‐
parameterized trajectory in 2D space. The output of the UKF

estimator is directly used as an initial condition for the prediction.

Additionally, thanks to the knowledge of all states of the dynamical

model in Equation (3), the predicted trajectory can be offset to

compensate for the delay in the vision system. The prediction for n
future steps takes form of

∀= ( ) = … −[ + ] [ ]f n nq q , 0, , 1,n n1 (4)

where ()f is the model function according to Equation (3), [ ]q n is a

complete state vector defined as

ϕ= [ ][ ] [ + ] [ + ] [ + ] [ + ] [ + ]K v aq x , , , , ,n no T n n n n T0 1 1 1 1 (5)

and [ ]q 0 is the initial condition provided in real time by the UKF

estimator.

In general, the car can ride with changes in the curvature and

acceleration depending on the driver. However, the competition

rules specify the shape of the track in the arena (see Figure 1), and

also the speed profile, which allows us to bias the estimate or the

prediction to achieve more accurate trajectory tracking.

The first level of biasing the curvature relies solely on the known

curvature in different parts of the track. Knowledge of coordinates of

only a few predefined points is required to identify the curvature for

any given coordinates on the map. To bias the curvature, the arena is

divided into five separate parts. Figure 10a shows the partitioning into

the corner parts L L R R, , ,1 2 1 2, where the curvature of the turn is

∣ ∣ ∕=K r1 , and the center area C, where =K 0. However, the sign of the

curvature depends on the direction in which the car is driving in the

particular part. To solve the estimation of the direction, we designed a

simple state machine (Figure 10b), which describes all possible

transitions between the different parts of the map that correspond to

a change in the curvature. Later, when creating the prediction of the car

using the model (Equation (3)), the initial curvature [ ]K 0 is set based on

the current state of the curvature state machine. Further states of the

prediction undergo the same process with an identical temporary state

machine, to ensure that the curvature is correctly biased throughout the

whole future.

6.4 | Biasing the predicted trajectory
to the measured track

To further improve the performance of the tracking in the particular

scenario of the competition, the predicted trajectory of the car was

biased towards the known global GPS coordinates of the track. The

predicted trajectory of the car is snapped towards the analytically

described track. The snapping is proportional to the covariance of the

predicted points. This leaves space for the car to drive off center of

the track since the initial part of the prediction is close to the

estimate. Figure 11 also illustrates a typical example of a predicted

and snapped trajectory.

7 | UAV STATE ESTIMATION

Autonomous UAV control relies on an estimate of the states of the

UAV dynamical system. Namely, knowledge of position and velocity

(both vertical and horizontal) is required to control the movement for

precise landing on the moving vehicle. Our platform is equipped with

several independent sources of information, which are fused to

obtain a single, reliable, and smooth estimate of the UAV pose. It is

essential to ensure smoothness of the resulting signal since SO(3)

(Section 9) state feedback is sensitive to noise.

(a) (b) F IGURE 10 (a) The competition arena

is divided into five areas. The center area
(C) contains track with zero curvature. The
four corner areas (L L R R, , ,1 2 1 2) contain
track with curvature ∣ ∣ ∕=K r1 . (b) State

machine producing the bias for the
curvature of the car. Inputs to the state
machine are transitions of the car between

the different parts of the arena [Color
figure can be viewed at
wileyonlinelibrary.com]
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The main source of data for both the vertical axis and the

horizontal axis in the proposed system is the PixHawk flight

controller. Its EKF fuses traditional inertial sensors—a three‐axis
accelerometer and a gyroscope with an height pressure sensor and a

GPS receiver. Although the aircraft is already capable of autonomous

flight with this off‐the‐shelf setup, we make use of other sensors, a

time‐of‐flight laser rangefinder (Ruffo et al., 2014), and a differential

GPS receiver, to provide more precise localization,

7.1 | Horizontal position estimation

Position estimation in the lateral axes is based on the estimate provided

by PixHawk, namely, position xp, and velocity ẋp. Although its precision

may be satisfactory locally for short periods of time, it is prone to heavy

drift in time spans of minutes. To correct this drift and thus to ensure

repeatability of the experiments and, for example, locating the dropping

zone, the horizontal position from PixHawk is corrected by differential

RTK GPS. Position measurements from the RTK GPS receiver are fused

using the linear Kalman filter with the model

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =
Δ
Δ

ttA B1 00 1 , , (6)

where = +[ + ] [ ] [ ]x Ax Bune ne n1 is the linear system equation,

= ( )[ ] [ ]x yx ,ne nT is the state vector finally used for control, and [ ]u n is

the system input. According to our experience,

∀ ∈ ∑+ ˙ Δ =[ ]
=

[ ] [ ] [ ]t kx x x ,p
n

k
np n kp0 0

(7)

does not hold for the position and velocity estimate provided by

PixHawk. This is a very useful observation for somebody building

a fully autonomous UAV system using an off‐the‐shelf controller.
The input vector u consists of velocities obtained by integrating

differentiated positions xp, which ensures that our filter does not

introduce any more drift into the resulting estimate when no RTK

GPS corrections are involved. In situations when the position is

not being corrected, the resulting estimate follows the same

relative state trajectory as xp, just shifted according to the latest

correction.

In other words, the position estimate fused by the PixHawk is

used as a main source of information, regardless of whether the RTK

GPS is currently available. The difference is, the PixHawk position

estimated is updated by input

∕( )= − Δ[ ] [ ] [ − ] [ ]tu x x ,k kp kp k1 (8)

which results in position update

( )= + −[ + ] [ ] [ + ] [ ]x x x x ,ke ke kp kp1 1 (9)

that follows the PixHawk estimate when left uncorrected. However,

when the RTK GPS is available, the estimate [ + ]x ke 1 can be freely

corrected by the LKF, effectively adding an offset using the more

precise source of information. By using such approach, the correction

will be still applied even during long outages of the RTK GPS system.

7.2 | Vertical position estimation

UAV state estimation relies less on the PixHawk in the vertical axis than

in the horizontal axis. Height corrections come not only from differential

RTK GPS but also from the down‐facing TeraRanger rangefinder and

from the landing pattern detector, which can provide height data when

flying above the car. The estimator provides an option to switch

between these sources of data, depending on the current state of the

landing state machine. The PixHawk height is fused by the same

technique as in the horizontal system, as denoted by Equation (8).

It is feasible to correct the height using the TeraRanger rangefinder

when flying above uneven ground, but it cannot be used reliably when

the down‐facing sensor is obstructed by the car. However, RTKGPS can

provide precise relative height measurements, but only when RTK FIX

has been established. RTK FIX is one of several precision states of RTK

GPS, which provides the best accuracy and guarantees a correct

position signal. The standard states include RTK FLOAT and DGPS, but

only RTK FIX guarantees the precision need for actually correcting the

built‐in PixHawk GPS. Finally, correcting the height using data from the

landing pattern detectormight bring unexpected steps in the signal due to

false positive detections or signal dropouts. Since none of the additional

sources is completely reliable, we used a safety mechanism for detecting

anomalies, which can toggle off any of the above‐mentioned sensors.

8 | PREDICTIVE TRAJECTORY TRACKING

While the state feedback described in Section 9 provides precise

position and velocity control, it requires a smooth and feasible

reference. The reference consists of all states of the translational

dynamics—position, velocity, and acceleration it is provided at 100Hz,

the same rate as the resulting control signal. There are various ways of

creating the reference. Typically, thanks to the differential flatness of

the UAV dynamical system, quadratic programming (QP) optimization

F IGURE 11 Scheme of the real track, on which the car was
supposed to drive, with the path denoted in the middle of the track,

to which the car prediction was biased. An example of a predicted
(red) and a biased trajectory (blue) is shown [Color figure can be
viewed at wileyonlinelibrary.com]
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can be performed to find a polynomial, given the initial and final state

conditions (Mellinger & Kumar, 2011), which can then be derived and

sampled to create the reference. In our case, we chose to generate the

reference using a MPC approach. The following text describes a

simpler variant of the original approach designed for multiple vehicles,

which was proposed in Baca, Hert, Loianno, Saska, and Kumar (2018).

The MPC tracker uses a QP formulation of the minimal sum‐of‐
squares problem, where the optimal control action u is found for a

future prediction horizon of states = ( ˙ ˙ ˙ )[ ] [ ]x x x y y y z z zx , , ¨ , , , ¨ , , , ¨n nT by

minimizing the function

( )∑( ) = +

≥

≤

[ … − ] [ … − ]
=

−

[ ] [ ] [ ] [ ]

[ … − ]

[ … − ]

x u e Qe u Pu
x xx x

V , 1
2 ,

s.t. ,
,

m m i
m

iT i iT i
m L
m U

0, , 1 0, , 1 1
1

0, , 1
0, , 1

(10)

where ̃= −[ ] [ ] [ ]e x xn n n is the control error, ̃[ ]x n is the setpoint for the

MPC, m is the length of the prediction horizon, and xL and xU
represent box constraints on states. The control error [ ]e n requires

the formation of a general prediction of [ ]x n , which has been

described in Baca et al. (2016). In our case, the optimized control

action is not directly used to control the real UAV. Instead, it controls

a model of the UAV translational dynamics in real‐time simulation.

States of the simulated model are then sampled at 100 Hz to create

the reference for the state feedback.

An important notion is a difference between the trajectory

setpoint x̃ and the reference, which is generated by the MPC tracker.

The trajectory setpoint x̃ is provided by high‐level planning or, in this

case, by the car predictor. No requirements are imposed on x̃ in

general. By contrast, the reference produced by the MPC tracker is

feasible, satisfies UAV dynamics and state constraints, and serves as

a control reference for the SO(3) state feedback (see section 9). The

inherent predictive nature of MPC provides trajectory tracking

optimizing actions over the future, and this makes it ideal for tracking

moving targets.

The simulated model is an LTI system covering the third‐order
translational dynamics of the UAV with the system matrices

⎛
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1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1

,

0 0 00 0 00 00 0 00 0 00 00 0 00 0 00 0

, (11)

where Δ =t 0.01 s. The same matrices are used to formulate the MPC

prediction. In our MPC formulation, Δt is different for the first

iteration (Δ =t 0.01 s) and for all the other iterations (Δ =t 0.2 s). This

allows the simulation to be controlled smoothly if the MPC is

executed at 100Hz, while there is a relatively sparse distribution of

further states. Sparse distribution provides a much longer prediction

horizon than these would normally be with Δt being constant. As in

traditional MPC, only the control action in the first step is used to

control the model in the simulation. Before action from the second

step would be required, a new instance of the optimization task is

formulated and solved, starting from new initial conditions. This

results in a fresh control action for the next simulation step. This

method is valid only if the MPC can be solved repeatedly within the

0.01 s simulation step.

Penalization parameters Q and P in (10) have been found

empirically as

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

=

Q

P

5000 0 0 0 0 0 0 0 00 0 800 0 0 0 0 0 00 800 0 0 0 0 0 0 00 0 0 5000 0 0 0 0 00 0 0 0 0 800 0 0 00 0 0 0 800 0 0 0 00 0 0 0 0 0 5000 0 00 0 0 0 0 0 0 0 8000 0 0 0 0 0 0 800 0

,

500 0 00 500 00 0 500 . (12)

As in our previous work (Baca et al., 2016), we used the move blocking

technique to effectively prolong the prediction horizon while

maintaining the computational complexity. The particular control

action distribution for the MBZIRC competition was

= ( )U 1 1 1 1 1 5 5 5 5 5 10 , (13)

which results in 8 s prediction horizon with only 33 variables in the

optimization task. Without move blocking 120 variables would be

required to solve the control problem.

As defined in Equation (10), MPC handles state constraints as

linear inequalities. We impose maximum acceleration and velocity

box constraints on the UAV to ensure safe and feasible resulting

trajectories. The optimization being solved lies in the family of

linearly constrained quadratic programming, which acquires a global

optimum in a convex polytope. A custom solver based on sequential

closed‐form solution (Algorithm 1) is implemented to ensure

guaranteed real‐time performance, while sacrificing optimality.

According to Rossiter (2003), in control design we should, if possible,

rely on input preshaping rather than more complicated control‐
oriented solutions. Thus in every iteration, a reference trajectory is

first preshaped to satisfy the velocity constraints by a low‐pass filter
as well as to initiate it in the current state of the UAV. Then the

unconstrained problem is solved analytically as in Baca et al. (2016).

Although the resulting trajectory approximately satisfies the velocity

constraints, the acceleration constraints are in general violated. In

the second step, the acceleration part of the optimized trajectory is

again preshaped to satisfy the acceleration constraints. Then we

solved the unconstrained MPC again, however, now with accelera-

tion double‐integrated to serve as the new position reference. The

result of the second MPC step is a solution which, according to our

empirical results, satisfies both acceleration and position constraints

884 | TOMÁŠ ET AL.

CHAPTER 4. REMOTE SENSING BY UAVS 61/171

CTU in Prague Department of Cybernetics



within 10% margin of error, which is a tolerable trade‐off for

complete control over the deterministic execution of the algorithm.

Algorithm 1: Sequential closed‐form MPC

1: procedure ITERATEMPC

2: input:

3: reference ← desired reference

4: current_state ← current state of the UAV

5: max_v ← maximum velocity constraint

6: max_a ← maximum acceleration acceleration

7: execution:

8: # the first iteration of the MPC generates trajectory not

violating velocity constraints

9: reference ← preshapeVelocity (current_state, reference, max_v)

10: ←trajectory control input, _ analyticMPC (current_state, reference)

11:

12: # the second iteration of the MPC generates trajectory not

violating acceleration constraints

13: ←reference preshapeAcceleration (current_state, trajectory, max_a)

14: ←trajectory control input, _ analyticMPC (current_state, reference)

15:

16: return trajectory

MPC‐based trajectory tracking operates in two modes. The

first simple positioning mode, used mainly for short‐distance
position changes, accepts either relative or absolute position

commands and tries to reach a given position in the fastest way

with respect to the MPC scheme. The second trajectory‐following

mode utilized by high‐level trajectory planning uses a precomputed

path plan. It tries to track the trajectory precisely while respecting

the plan waypoints schedule, which is crucial for precise landing

on the moving vehicle.

9 | FEEDBACK CONTROL

The position controller uses the estimated state as feedback to

follow the trajectories given as an output of the high‐level
trajectory planner. In many previous works, a backstepping

approach is used for UAV control, because the attitude dynamics

can be assumed to be faster than the dynamics governing the

position, so linearized controllers are used for both loops (Herissé,

Hamel, Mahony, & Russotto, 2012; Mellinger, Shomin, Michael, &

Kumar, 2013; Weiss, Scaramuzza, & Siegwart, 2011). However, we

need the system to be capable of large deviations from the hover

configuration during operations like fast mapping of objects, or

for heavy wind compensation. We therefore use a nonlinear

controller. Let us consider an inertial reference frame denoted by

[ ]e e e, ,1 2 3 and a body reference frame centered in the center of

mass of the vehicle with an orientation denoted by

= [ ]R b b b, ,1 2 3 , where ∈ ( )R SO 3 . The dynamic model of the

vehicle can be expressed as

̇

̇

̇

̇

Ω

Ω Ω Ω

=

= +

= ˆ

+ × =

m f mg
x vv Re e
R R

J J M

,
,

,
,

3 3
(14)

where ∈ x 3 is the Cartesian position of the vehicle expressed in the

inertial frame, ∈ v 3 is the velocity of the vehicle in the inertial

frame, ∈ m is the mass, ∈ f is the net thrust, ∈ Ω 3 is the

angular velocity in the body‐fixed frame, and ∈ ×J R3 3 is the inertia

matrix with respect to the body frame. The hat symbol ⋅̂ denotes the

skew‐symmetry operator according to ˆ = ×xy x y for all ∈  gx y, ,3
is the standard gravitational acceleration, and ⊤= [ ]e 0 0 13 . The total

moment ∈ M 3, with ⊤= [ ]M M MM 1 2 3 , along all axes of the body‐
fixed frame and the thrust ∈ τ are control inputs of the plant. The

dynamics of the rotors and propellers are neglected, and it is

assumed that the force of each propeller is directly controlled. The

total thrust, = ∑ =f fj j16 , acts in the direction of the z axis of the body‐
fixed frame, which is orthogonal to the plane defined by the centers

of the four propellers. The relationship between a single motor thrust

fj, the net thrust f , and the moments M can be written as
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where ∘ ∘= ( ) = ( )c scos 30 , sin 30 , and d is the distance from the center

of mass to the center of each rotor in the b b,1 2 plane. For nonzero

values of d , Equation (15) can be inverted using the right

pseudoinverse.

For control, we build on the work in T. Lee, Leok, and

McClamroch (2013) and in Mellinger and Kumar (2011) with control

inputs ∈ f and ∈ M 3 chosen as

̇Ω Ω Ω Ω Ω= − − + × − ( ˆ − )Ω Ωk k J J R R R RM e e ,R R T c c T c c (16)

⋅

∫ ∫τ τ τ= −(− − ( ) − −

− + )

f k k R R d k d k
mg m R

e e e e
e x e¨ ,

x x ib t T x iw t x v v
d

0 0
3 3 (17)

with ẍd the desired acceleration and Ωk k k k, , ,x v R positive definite

terms. We extend the referenced controllers by including two

integral terms which accumulate error in the body frame and in the

world frame, respectively. We include both terms to` provide the

opportunity to capture external disturbances (e.g., wind) separately

from internal disturbances (e.g., an inefficient prop or a payload

imbalance), particularly when the vehicle is permitted to yaw or
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rotate about the vertical axis. The thrust and the moments are then

converted to motor rates according to the characteristic of the

proposed vehicle. Subscript C denotes a commanded value, and

= [ ]R b b b, ,C 1 2 3 is calculated as

∣∣ ∣∣ ∣∣ ∣∣
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Note that here we have to define b des2, based on the yaw, instead of

defining b des1, as it was defined in Mellinger and Kumar (2011), due to

a different Euler angle convention (we use the ZYX convention

instead of ZXY). The definition of the tracking errors can be found in

Spurny et al. (2018).

10 | EXPERIMENTAL EVALUATION

The platform was thoroughly tested during all stages of development.

All features were developed and verified in simulation before

experiments on the real hardware. The Gazebo simulator and the

ROS allowed the same instances of software to be implemented and

tested in simulation and also in the field. To ensure safety, all

experiments were performed in unoccupied rural areas, and the UAV

was supervised by a human operator at all times.

10.1 | Experiments before the competition

The initial experiments involved testing the landing pattern detection

and landing on a full‐sized static target, as depicted in Figure 12a. State

estimation based on the linear model of the moving target showed that

following a nonlinear motion requires a more descriptive car‐like model.

Figure 12a,b shows the UAV following a car with the visual marker

attached to its roof. Figure 13 depicts a test using a linear Kalman filter

and a linear motion prediction of the future trajectory of the car. During

numerous test runs, the UAV was able to follow the ground vehicles.

However, a significant position error was observed in turns of the path.

The car‐like model, which was tested later, exhibited significantly better

performance than the linear model for following general trajectories,

which include turning (see Figure 14).

The vision and guidance system were verified without taking of

weather conditions into account. Although it was known that the

competition would be held on concrete surface in summer weather,

we tuned the landing pattern detection algorithm to various surfaces,

including grass, snow, concrete, and asphalt throughout the seasons

to achieve maximal possible reliability and to account for unforeseen

conditions during the competition. Figure 15 shows snapshots from

experiments in winter conditions.

Experiments on autonomous landing, including the landing state

machine (Section 5), are portrayed in Figure 14. Initially, the rate of a

successful landing was 54% out in 22 trials. These experiments

showed the need for a camera equipped with a SuperFisheye lens to

improve pattern detection during the final stage of landing.

10.2 | The competition trials

Each team that participated in the competition in Abu Dhabi had an

option to take part in two rehearsal trials ( ×2 30 min), two competition

trials ( ×2 15 min), and two rounds of the Ground challenge ( ×2 25 min).

Our team competed in autonomous mode in both trials of the first

challenge and the first round of the Grand Challenge. The second round

of the Grand Challenge was performed in manual mode, to allow manual

operation on the ground robot at the same time. A combined manual and

autonomous mode for different robots in the same trial was not allowed.

In both trials of the landing challenge, we experienced a successful

landing. Touchdown during Trial 1 took place 143.2 s after the start. In

Trial 2 it took the UAV 84.6 s to land, which brought us the second place

among all teams in the autonomous landing challenge, just behind the

UAV of Beijing Institute of Technology, with a time of 63.4 s. Figure 16

depicts the autonomous landing using the proposed system during the

first trial of the competition. Table 1 compares our results with these of

other teams.

Independently of the three separate robotic challenges, in the

Grand Challenge, the teams competed in all three challenges

simultaneously. During the Grand Challenge, our system scored the

fastest landing ever performed among all teams in the entire MBZIRC

competition, with 25.1 s time from the start. Figure 19 shows the

F IGURE 12 Photos from the first experiments in the field. (a) a UAV hovering above a static target, (b) a UAV tracking a vehicle moving
along a linear trajectory, and (c) first attempts with tracking a ground vehicle moving in circles. The linear Kalman filter was used to estimate the

states of the ground vehicle during this stage of development. Additional video material documenting these experiments can be found at
http://mrs.felk.cvut.cz/ jfr2018landing‐video1. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 13 An unmanned aerial vehicle following the ground vehicle at a speed of 10 km/hr. The motion of the car was estimated by the
linear Kalman filter. The system was thoroughly tested on general trajectories of the ground vehicle. Video material for this experiment can be
found at http://mrs.felk.cvut. cz/jfr2018landing‐video2 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Experiments aimed at the autonomous following and landing on the ground vehicle using car‐like motion model. Various stages
of the landing state machine (see Section 5) are shown. (a) The UAV tracking the car as it aligns horizontally, (b) the descending phase, (c) the

UAV aligns for the second time before turning off the propellers, and (d) the UAV after the successful landing. Video summary of the
experiments can be found at http://mrs.felk.cvut.cz/jfr2018landing‐video3. UAV: unmanned aerial vehicle [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 15 The performance of the system was tested in all weather conditions. Experiments in snowy and desert environments helped to
fine‐tune the computer vision for various lighting conditions and ground textures. A video showing a landing in a desert car be seen at http://
mrs.felk.cvut.cz/ jfr2018landing‐video4 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 A sequence of images from the second trial during the competition. The whole videos, as well as additional material including
onboard footage, can be found at http://mrs.felk.cvut.cz/jfr2018landing [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F IGURE 17 Top‐down view of all three successful trials: (a) 1:44min flight, (b) 1:28min flight, and (c) 0:25min flight [Color figure can be

viewed at wileyonlinelibrary.com]
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relative position and control error plots from the fastest trial. Figure 17

shows top‐down plots of two trials from the landing challenge, and also

the first trial from the Grand Challenge. The same trials are presented

in Figure 18a–c, with the states of the landing state machine (Section 5)

color‐coded in the trajectory of the UAV (Figure 19).

11 | LESSONS LEARNED

Although the competition results can be considered a major success,

it was not without hurdles, mainly during implementation and testing

of the proposed system. The proposed control pipeline consisting of

estimator, predictor, tracker, and controller showed to be depended

mainly on the performance of the car estimator. Tuning of the

estimator parameters on real data was an essential factor which

influences the overall performance of the remaining components in

the pipeline. Hence we stress the significance of the real‐world

outdoor experiments above simulation, to obtain real sensor data.

Finally, we cannot stress enough how important is the team and the

dedication of the individual members of the team. We value the skill

of getting things done and a capability of delivering performance on

time when it is needed together with the mindset of a scientist. The

(a) (b)

(c)

F IGURE 18 Three‐dimensional plot of positions of the ground vehicle, as detected by the UAV, and the UAV during the (a) first competition
trial, (b) second competition trial, and (c) first Grand Challenge trial. The trajectory of the UAV is color‐coded according to the states of the
landing state machine. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 19 Plots of (a) the relative position of the detected and estimated ground vehicle, and the position of the UAV during the third (the

fastest) landing and (b) the position control error during the flight. (a) Relative position of the car to the UAV and (b) position control error. UAV:
unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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ability to transfer scientific concepts in robotics to a working

prototype is vital for experimental evaluation such as the one in this

competition.

11.1 | Toward a more general solution

Despite our best effort to develop a general solution capable of

autonomous landing on a moving car, couple subsystems have been

tailored specifically to the competition scenario. The computer vision

system was designed to locate and track the landing pattern specified

by the rules of the competition. We can speculate that similar pattern

could be used in practice to mark a landing spot on a vehicle, which is

designed to receive the UAV. In such case, the proposed vision system

would be a viable option. However, in the case of an unmarked and

possibly arbitrary vehicle, a different approach to localization and

tracking would be required, for example, based on nowadays popular

artificial neural networks. Estimation and prediction of the car

movement using a nonlinear car‐like model provide a framework

suitable for tracking and landing on most common vehicles. A more

precise model could be used to better estimate the state of a specific

vehicle. Our approach to bias the prediction of the future car

movement based on the known parameters of the arena is optional

and can be omitted in the case of a general area and car trajectory.

Moreover, all field experiments, before the competition trials, were

performed without particular bias towards the known trajectory of the

car. See Figure 13 for an example of such experiment. The presented

state machine is also designed around the competition scenario;

however, the need to customize it is apparent. Besides those two

cases, the presented approach can be applied to a general scenario of

locating, tracking, and landing on a vehicle in an outdoor environment.

12 | CONCLUSION

We proposed, developed, and experimentally evaluated an unmanned

aerial system for autonomous landing on a fast‐moving vehicle. The

solution described in this paper is a multirotor helicopter platform

equipped with sensors and a computer, capable of onboard image

processing and state estimation of the ground vehicle and also predictive

planning and automatic control. Images from an onboard camera are

processed online to extract the position of the landing marker on top of

the vehicle. States of the car‐like dynamical model are estimated using

the UKF, based on image processing and the known parameters of the

car trajectory. The same model is then used to predict the future

trajectory of the vehicle. The MPC tracker creates an optimal feed‐
forward reference in third‐order dynamics based on the predicted

trajectory. Nonlinear SO(3) state feedback controls the UAV along the

reference. A state machine controls the UAV from takeoff, through

finding the target and tracking it, to finally turning off its propellers during

the touchdown. The proposed system utilizes state‐of‐the‐art techniques
from control engineering in a unique combination to solve the difficult

challenge, which only a handful of teams from all over the world were

able to tackle. The proposed control pipeline relies on the novel MPC

tracker, which was proposed specifically for this challenge (Baca et al.,

2018), to achieve the high accuracy of the autonomous landing. The

system was extensively tested in the course of more than 1 year of

development. The experiments showed that the UAV is capable of

autonomous tracking and landing on a car moving at a speed of 15 km/hr.

In the MBZIRC 2017 challenge, the system proved to be robust by

successfully landing in both trials of the Challenge 1 of the competition.

During the Grand Challenge of the competition, it landed in 25 s, which is

the shortest time among all teams during the entire competition, which

may be considered as a relevant and objective benchmark of this task.
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Abstract

This paper addresses the problem of autonomous cooperative localization, grasping

and delivering of colored ferrous objects by a team of unmanned aerial vehicles

(UAVs). In the proposed scenario, a team of UAVs is required to maximize the reward

by collecting colored objects and delivering them to a predefined location. This task

consists of several subtasks such as cooperative coverage path planning, object

detection and state estimation, UAV self‐localization, precise motion control,

trajectory tracking, aerial grasping and dropping, and decentralized team coordina-

tion. The failure recovery and synchronization job manager is used to integrate all the

presented subtasks together and also to decrease the vulnerability to individual

subtask failures in real‐world conditions. The whole system was developed for the

Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017, where it

achieved the highest score and won Challenge No. 3—Treasure Hunt. This paper does

not only contain results from the MBZIRC 2017 competition but it also evaluates the

system performance in simulations and field tests that were conducted throughout

the year‐long development and preparations for the competition.

K E YWORD S

aerial robotics, cooperative robots, mobile manipulation, planning

1 | INTRODUCTION

Small autonomous unmanned aerial vehicles (UAVs) are widely used

in numerous applications of data collection due to their potential for

rapid deployment and their ability to reach locations inaccessible by

ground robots. While fixed wing UAVs have the advantage of stable

flight at high speeds, long range, and long flight time, rotary wing

UAVs (such as the popular multirotor helicopters) benefit from their

capacity for high manoeuvrability, vertical take off and landing, flight

in cluttered environments in close proximity to obstacles, and

hovering in a desired position in a 3D environment. The ability to

precisely reach a desired 3D position and hover in place is crucial for

long‐term information gathering, and especially for physical interac-

tion with objects in the workspace. Delivery applications composed

of acquisition, transport, and drop‐off provide an example requiring

interaction with the environment during autonomous flight. This is

the topic discussed in our paper.

A multiple cooperative delivery mission (called Treasure Hunt)

was the most complex task in the 2017 Mohamed Bin Zayed

International Robotics Challenge (MBZIRC1). In the competition, the

J Field Robotics. 2019;36:125–148. wileyonlinelibrary.com/journal/rob © 2018 Wiley Periodicals, Inc. | 125

1http://www.mbzirc.com/ ‐ Accessed: July 17, 2018.
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delivery task was solved in its full complexity, including searching for

objects with unknown positions, grasping moving objects, and

cooperation among multiple UAVs working in concert. The deploy-

ment of a team of UAVs was motivated by the limited total mission

time, and by including large objects with weights exceeding the

maximum payload of the individual robots. In the mission, 23 objects

(10 static, 10 dynamic, and 3 large) had to be localized in an outdoor

arena and collected by three UAVs of limited size. While the small

objects (static and dynamic) could be lifted by a single UAV, the large

objects required two UAVs to transport them.

The system that exhibited the best performance among all

participants in the MBZIRC competition in the Treasure Hunt

challenge is presented in this paper2. The system design is driven

by the specific task proposed and precisely specified by the

organizers. The approach is tailored to provide high robustness

and performance to solve the challenging task by modification of

available robotic methods and designing new algorithms where

necessary. Nevertheless, the proposed system is easily reusable in

a large set of multi‐UAV scenarios as shown in Section 1.2. The

core of the system is the failure recovery and synchronization jobs

manager (FSM), which is crucial for managing all subsystems and

for coordinating all UAVs sharing the same workspace. The FSM is

also needed to achieve the reliability required for the deployment

of UAVs in real‐world conditions, which requires the ability to

recover from UAV failures and also from a malfunction of the

localization and communication infrastructure. For example, the

robots can easily collide with the objects being grasped due to a

wind gust which, in combination with the ground effect, can create

a hardly predictable external force on the UAV in the final phase

of the approach to an object. Such a collision could result in a UAV

crash, deadlock, or an overturned object. Moreover, malfunctions

of UAV subsystems such as camera dropouts, incorrect range-

finder measurements, gripper failure or gripper feedback failure,

and imprecise object gripping, can be expected in demanding

outdoor conditions. All these eventualities need to be considered

by the system to enable undisturbed operation of the remaining

robots in the event of a UAV failure, limited operation of a UAV

with a faulty subsystem, or an unsuccessful or interrupted

grasping task. From this point of view, the proposed FSM concept

can be considered as a hierarchical state machine with included

synchronization and failure recovery abilities, which may be

effectively reused in any complex multi‐UAV task involving

environment interaction.

Although the rules of the MBZIRC competition allowed the use

of global navigation satellite system (GNSS) and the even more

precise differential global positioning system (DGPS) for UAV

localization, the availability of these systems was not guaranteed.

For example, GNSS information was available only intermittently,

due to interference with other transmitters located at the

competition site and occlusion of satellites by the surrounding

buildings and infrastructure. The provided Wi‐Fi infrastructure

was even less reliable and therefore the proposed FSM approach

leverages the combination of different modes of the system based

on the availability of Wi‐Fi, GNSS, and DGPS. In addition to the

FSM, a sensor fusion mechanism is presented for combining

information from various onboard sensors (onboard IMU, GPS,

DGPS, rangefinder, and camera) which must be considered as

potentially unreliable at any time. It is vital that the UAV may

continue with the task despite lacking some sensor data (e.g.,

precise measured altitude above ground), because the competition

rules did not allow any human intervention or debugging during

the trials, and which is also the case in most of the real‐world UAV

applications.

Another important subsystem, which is crucial in tasks

requiring interaction with the environment, is relative detection

and estimation of the state of the objects requiring interaction. In

the presented system, the relative localization technique relies on

onboard vision, since the objects in the competition were designed

to support such an approach. The shape and color of the objects

were specified before the mission and a color‐based key was used

to identify the score for collecting the particular object and to

distinguish the object type. Static, dynamic, and long objects were

labeled by different colors, all easily distinguishable from the

background. Therefore, the vision approach is the simplest way to

acquire all data required for the high‐level planning (the score,

type, and position estimate), and also for the visual servoing in the

grasping task (precise relative positions of objects). However, any

alternative relative localization system can be easily integrated

based on the application. State estimation of the object is

necessary mainly for dynamic objects, where a velocity estimate

of the object needs to be taken into account by the UAV control

modules.

Two flight behaviours are required in the Treasure Hunt task:

Trajectory following and precise visual servoing. The trajectory

tracking mode is used to search for the object in the environment, to

approach the vicinity of the object, and to transport the object to the

required location. The most important property of this controller is

rapid and smooth movement along the trajectory provided by the

high‐level planning. The visual servoing applied in the final phase of

grasping can be realized more slowly, but the requirements on

precision are much higher. In the paper, we will present a novel

model predictive control (MPC)‐based approach that allows integra-

tion of the UAV state estimation (including external forces produced

by the wind and ground effect) and target state estimation (a position

and velocity estimate of the currently observed object), enabling our

robots to reach the target with a maximum position error of 8 cm,

which is determined by the diameter of the object and the size of the

gripper.

1.1 | State‐of‐the‐art

Rotorcraft or rotor‐wing UAVs are suitable for tasks with object

manipulation, due to their ability to hover on the spot. Their usage in2http://mrs.felk.cvut.cz/projects/mbzirc ‐ Accessed: July 17, 2018.
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this field has already been investigated in several publications, mainly

for a single UAV, in particular subparts such as gripper or

manipulator design, control techniques, and object detection.

The design of a manipulator for use in industrial applications, for

aerial inspection by contact, and also for aerial manipulation is

described in Fumagalli, Stramigioli, and Carloni (2016). The design of a

multidegree arm manipulator placed on UAVs is presented in Morton

and Toro (2016) and in Korpela, Danko, and Oh (2012). The idea of

using a suction‐based gripper for versatile aerial grasping is presented

and experimentally verified in Kessens, Thomas, Desai, and Kumar

(2016). Other gripper designs are presented in Mellinger, Lindsey,

Shomin, and Kumar (2011) and Pounds, Bersak, and Dollar (2011b).

A study about determining stability bounds, in which the

changing mass‐inertia parameters of the system due to the grasped

object will not destabilize a proportional‐integral‐derivative flight

controller for helicopters, is presented in Pounds, Bersak, and Dollar

(2011a). The authors of Thomas, Loianno, Polin, Sreenath, and Kumar

(2014) introduce a controller and a planner for high‐speed aerial

grasping, using a quadrotor UAV with a claw‐like gripper. Their

approach is used for grasping a cylindrical object relying on feedback

from a monocular camera and an inertial measurement unit onboard

the aerial robot. Images from the camera are used for computing the

desired pitch angle, and the remaining axes (roll and yaw) are

controlled using feedback from the vision motion capture system. In

Ghadiok, Goldin, and Ren (2012), a system for autonomous grasping

of objects using a monocular IR camera is introduced. Detection of

the objects is based on finding an IR beacon, which has to be placed

on the objects. The authors also rely only on onboard sensors, but the

position and yaw estimation is computed offboard on the ground

station. A methodology for controlling a multiarm manipulating aerial

vehicle is presented in Orsag, Korpela, Pekala, and Oh (2013). The

control of a system where the control input is generated for the UAV

and the manipulator joints simultaneously is described in Heredia

et al. (2014), Kamel, Comari, & Siegwart (2016), and Kannan,

Quintanar‐Guzman, Dentler, Olivares‐Mendez, & Voos (2016). The

papers (Kim, Seo, Choi, & Kim, 2016; Lippiello et al., 2016;

Santamaria‐Navarro, Grosch, Lippiello, Sola, & Andrade‐Cetto,
2017) present a vision guidance approach using an image‐based
visual servo for an aerial manipulator. A method for planning a time‐
optimal trajectory for a quadrotor with the goal of grasping a moving

target is introduced in Spica, Franchi, Oriolo, Bülthoff, and Giordano

(2012). However, the solution is presented only by simulations.

Detecting and estimating the object is a challenging task that

needs to be investigated for autonomous grasping. Online detection

of the known object and estimation of its position using features

from images are described in RamonSoria, Arrue, and Ollero (2017).

Another method for onboard object extraction based on stereo vision

for autonomous grasping of objects is presented in RamonSoria,

Bevec, Arrue, Ude, & Ollero (2016). However, the aforementioned

methods rely on stereo or depth sensors, which are not used on our

UAVs. To detect the colored objects, we modified a computationally

efficient method (Krajník et al., 2014), which already proved its

reliability and accuracy in real‐world conditions.

Ways of transporting large objects by multiple UAVs have already

been investigated in Gioioso, Franchi, Salvietti, Scheggi, and Prattichizzo

(2014), Mellinger, Shomin, Michael, and Kumar (2013) and Parra‐Vega,
Sanchez, Izaguirre, Garcia, and Ruiz‐Sanchez (2013). A control scheme

for cooperative simultaneous manipulation of an object by a team of

UAVs is described in Parra‐Vega et al. (2013). The idea of grasping and

manipulating objects by a swarm of UAVs has been also studied in

Gioioso et al. (2014), where the swarm is teleoperated using the free

motion of a human hand. Both these works lack experimental

verification, because the systems were tested only in simulations.

Transport of large objects by multiple UAVs had been achieved in

Mellinger et al. (2013). However, the experiments were done in an

indoor environment under the Vicon3 motion capture system.

Solutions for the Treasure Hunt scenario have already been

presented by two teams participating in the MBZIRC competition

which had worked on this scenario autonomously. The approach

used by the team from ETH Zurich is described in Bähnemann,

Schindler, Kamel, Siegwart, and Nieto (2017), and the approach

used by the team from the University of Bonn is presented in

Nieuwenhuisen et al. (2017). Both teams relied on an electro-

permanent magnetic gripper for grasping ferrous objects, which

are recognized using a color blob detection algorithm. They also

used a similar approach for locating the objects. First, the arena is

cooperatively searched by UAVs to create a map of the objects,

and then an attempt is made to grasp and deliver each object in the

map. However, the solution in Bähnemann et al. (2017) relies on a

Wi‐Fi communication infrastructure, and the authors do not

propose any alternative in the event of communication blackout.

They also do not explain how they solve the problem of multiple

UAVs coordination over the drop‐off zone. In Nieuwenhuisen et al.

(2017), the authors mention a conservative solution for a

disturbed communication network. However, this solution is not

explained in detail, and therefore, their approach cannot be

directly replicated and evaluated. Furthermore, their controller

does not compensate for external factors such as wind, which is a

common disturbance in an outdoor environment.

1.2 | Contribution

The contribution of this paper correlates directly with the expected

contribution of the MBZIRC challenge. A board of respected

scientists4 from leading robotic groups worldwide selected the

Treasure Hunt scenario as the most challenging task in the MBZIRC

event for numerous reasons. This scenario extends state‐of‐the‐art
systems in various ways: Deployment of multiple UAVs in the same

outdoor workspace, multirobot scanning of the environment with no

prior information on the position of objects, online distribution of

tasks to UAVs based on the obtained information, and physical

interaction with the environment. Indeed, physical interaction of

UAVs with objects in an unknown outdoor environment, especially

3http://www.vicon.com/ ‐ Accessed: July 17, 2018

4http://www.mbzirc.com/committee ‐ Accessed: July 17, 2018

SPURNÝ ET AL. | 127

CHAPTER 4. REMOTE SENSING BY UAVS 71/171

CTU in Prague Department of Cybernetics



cooperatively (some objects require the cooperation of multiple

UAVs), is a challenging and innovative task, mainly if it must be

solved in demanding windy environments, such as the MBZIRC 2017

venue in Abu Dhabi. The strong wind gusts present in the location

between the coast and the desert significantly influence the precision

and the stability of the UAV controllers, particularly in the final phase

of object grasping, where they are combined with the ground effect.

Further, the light conditions (e.g., the strong and variable sunshine)

make the vision task more complicated than in a laboratory

environment. The multirobot aspect requires rapid communication

and coordination of UAVs, which seemed to be a bottleneck for the

approaches presented by most of the other teams. Our solution to

the challenges caused by unreliable communication is also a

contribution to robotic research.

The overall contribution of our paper goes beyond the MBZIRC

challenge, as it contains a comprehensive description of all

components of the system that can be used in various collaborative

multi‐UAV missions, including physical interaction of robots and the

environment. Although the system is primarily designed for outdoor

deployment with a GNSS signal available, it can be used in

GNSS‐denied conditions with only a slight modification, since object

grasping is realised by visual servoing, which relies on relative

localisation only. Besides object grasping and delivery tasks, the

system has been successfully deployed in numerous multi‐UAV
applications, including detection of sources of radiation and electro-

magnetic fields (Saska, 2017), inspection and documentation of

historical sites (Saska, Kratky, Spurny, & Baca, 2017), reconnaissance

and surveillance missions (Pěnička, Faigl, Váňa, & Saska, 2017;

Pěnička, Saska, Reymann, & Lacroix, 2017), etc.

Another contribution of this paper for the robotic community

is based on the fact that the next MBZIRC event intends to build

on the achievements of MBZIRC 2017, and to propose even more

challenging tasks that are beyond the current state‐of‐the‐art in

robotics. Although 143 teams applied to participate in the 2017

contest, including the best robotic labs worldwide, only four

groups were able to grasp at least one object autonomously during

the competition. To maximize the impact of future MBZIRC events

and to encourage more competition, which will again push the

limits of robotic systems, it is necessary for more teams to succeed

in solving the challenging scenarios. A logical starting point is to

use, or at least be inspired by, the approach that demonstrated the

best performance in the 2017 MBZIRC, which is presented in this

paper. Moreover, we would like to share and highlight the parts of

the system and the phases in its development that brought added

value in comparison with the systems of our competitors. Our

experience and our solutions to the proposed challenges should be

beneficial in further MBZIRC contests, in other robotic competi-

tions, and also for the design of autonomous UAV systems for

deployment in emergency applications. The rules of the competi-

tion forced teams to design a system for immediate deployment

(the preparation time was only 20 min for the multi‐UAV
challenge) and for operation within a given time, without the

option of postponing the start of the mission. This contrasts with

most robotic experiments presented in the literature, where only

successful trials and demos are presented. Short preparation time

and a successful start on demand, without the possibility of

repeated trials, are required by industry and in emergency

applications, and the MBZIRC competition was designed to force

teams to achieve these requirements.

1.3 | Problem statement

In the MBZIRC 2017 Treasure Hunt challenge, three UAVs (with a

maximum size of 120 cm× 120 cm× 50 cm) must locate, grasp, deliver,

and drop a set of objects into a given box within 20min. The set should

contain 10 moving and 10 stationary small objects, as well as three

stationary large objects, all of which are randomly placed inside the

arena. The small objects were approximately 0.370 kg ferrous disks on a

stationary stand or moving TurtleBot2 robot, as shown in Figure 1b–d.

Different colors of the objects—green, blue, and red for the static

objects, and yellow for the dynamic objects—were associated with

different scores, one, two, three, and five points, respectively. The

nonstationary objects were moving at random velocities not exceeding

5 km/hr. Three large orange objects not exceeding 200 cm in length, and

not exceeding 2 kg in weight, were valued at ten points each on

successful transport and delivery by at least two cooperating UAVs into

the dropping zone depicted in Figure 1a. If a large object was moved

into the dropping zone by a single robot, the team obtained five points.

The small objects could be grasped by a single UAV and dropped into a

box placed inside the dropping zone. The objects could be picked up by

a magnetic gripper, a suction gripper, or another device carried onboard

the UAVs. Before the start of each trial, the three UAVs had to be in the

start location.

2 | HARDWARE

The specifications of the MBZIRC challenge described above influence

the decision on which UAV platform to use. Our intention was to reuse

the platforms and the entire system in our follow‐up research, and to

achieve simple replicability of the system in the future. Therefore, we

tried to maximize the use of commercially available off‐the‐shelf UAV
components, and only a few 3D printed specialized tools (sensor holders

and the gripper). This approach reduced development time, increased

reliability, and now enables our system to be used by other universities

with a minimum overhead for technology transfer. It also increases the

impact of this paper, which can be considered as a comprehensive

manual for building a robust multi‐UAV system, even for research

groups without any experience with UAVs.

The proposed UAV platform is a complex system composed of

integrated active members, computational resources, and sensor

modules, shown in a schematic view of the system in Figure 2. The

main structure of each UAV consists of a DJI hexacopter F550 frame and

E310 DJI motors. This choice satisfies the size limitations of

the MBZIRC event, the flight time, and the payload capability that is

necessary for additional sensors, and also for carrying the objects. The
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system is controlled at the lowest level by a PixHawk flight controller

(Meier et al., 2012) that contains a set of sensors, such as accelerometers,

gyroscopes, and magnetometers, which are necessary for stable UAV

flight. The open‐hardware and open‐software architecture is advanta-

geous for the MBZIRC competition, and also for research on multirobot

systems. An Intel NUC‐i7 PC provides sufficient computation power to

solve all the required onboard image processing tasks, and also UAV

coordination, state estimation, and motion planning in the complex

Treasure Hunt challenge. Transport of messages between the onboard

PC and PixHawk autopilot is performed over a serial line using MAVlink

protocol. Communication between the UAVs, which is important for their

coordination, is provided by the Wi‐Fi module embedded in the PC. A

high‐resolution Mobius ActionCam (2018) camera is used for object

detection, and for relative visual localization.

The rules of the competition allowed the use of GNSS and even

more precise navigation systems for localization. To maximize the

accuracy and to increase reliability, our system uses a combination

of the real‐time kinematic (RTK) satellite, which enhances the

precision of position data derived from satellite‐based positioning

systems (e.g. GPS, GLONASS, Galileo, and BeiDou), and a classical

GNSS module attached to the PixHawk controller. Information on

the position is provided in the RTK system by a PRECIS‐BX305

F IGURE 2 Description of components in our UAV platform. ESC: electronic speed controller; GPS: global positioning system; RTK: real‐time
kinematic; UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

dropping box

starting zone dropping zone

90 m

60 m

Description of the MBZIRC arena. Description of the object used during
the competition.

Photo of a UAV grasping a static object from the stand. Photo of a UAV grasping a dynamic object from a
TurtleBot2 mobile robot.

(a) (b)

(c) (d)

F IGURE 1 Description of the MBZIRC 2017 competition. For more information, visit http://www.mbzirc.com. UAV: unmanned aerial vehicle
[Color figure can be viewed at wileyonlinelibrary.com]
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GNSS RTK BOARD (GPS L1L2/GLONASS G1/BEIDOU B1B3)

(Tersus‐GNSS, 2017), with accuracy of 10 mm ± 1 parts per million

(ppm) horizontally and 15mm ± 1 ppm vertically when the RTK

device is in the most accurate state, RTK FIX. This RTK system

requires a stationary GNSS receiver, called RTK basestation, which

is placed on a known location. The RTK basestation then broadcasts

its position and measurements from all visible satellites (RTK

corrections) to the UAVs using XBee Pro radio modules (Digi

International, 2017). A custom board was designed to provide

communication of the XBee module with the RTK device.

In principle, the vertical position (altitude) provided by the RTK

GPS is measured above the mean sea level. However, the UAV

does not have any information about the ground‐level profile or

the distance to the objects that are to be grasped, based on the

GPS. This information is obtained using the onboard TeraRanger

One laser rangefinder, which is mounted face‐down and is

connected directly to the onboard PC, where its data are filtered

and used for precise height control. Finally, the objects are

grasped using an OpenGrab EPM v3 electropermanent magnet,

which combines the advantages of electro and permanent magnets

and creates a very strong magnetic contact with ferrous objects

(NicaDrone, 2017). Our custom board (previously mentioned for

managing communication from the XBee module into the RTK

device) also provides a low‐level interface between the main

computer and the gripper.

3 | SOFTWARE SYSTEM STRUCTURE

The proposed solution relies on the robot operating system (ROS),

which is an open‐source set of software libraries and tools commonly

used in the robotic community. Using ROS, the complex MBZIRC

tasks can easily be divided into smaller subtasks (nodes). This also

improves and clarifies the structure of the proposed solution.

Furthermore, the Gazebo robotic simulator can be used for

simulation in the loop, together with firmware from PixHawk, which

provides a very realistic testbed and significantly simplifies testing of

the whole system. Using this realistic simulator, hardware experi-

ments could be carried out in a shorter time and in a safer way than if

direct HW is used. Because changes were double‐checked in the

simulator, we did not experience any serious crash during more than

1 year of intensive preparation for the MBZIRC event.

In this section, the subcomponents of the proposed system are

described. The first two parts explain object detection, object

estimation, and motion prediction for dynamic objects. In the next

subsection, the estimation of the UAV state from all available sensors

is introduced, followed by details on communication in the multirobot

network. Further, the nonlinear controller used for UAV control is

explained, together with the novel MPC‐based approach used for

online design of a feasible and smooth reference for the nonlinear

controller. This is followed by details of high‐level planning built upon

MPC‐based trajectory tracking, which is used for UAV coordination

and collision avoidance when the same workspace is shared. Lastly,

the FSM, which is crucial for managing all subsystems and for

coordinating all UAVs sharing the same workspace, is described. All

these subcomponents are executed on the onboard PC Intel NUC‐i7.

3.1 | Object detection

Since the camera that is used to detect the colored objects has a

rolling shutter, vibrations induced by the drone motors cause the

acquired images to be subject to a specific ‘jelly’ or ‘wobble’ effect,

which makes the use of geometry‐based methods for object

detection (e.g., the Hough transform) problematic (Afolabi, Man,

Liang, Guan, & Krilavičius, 2015; see Figure 3). We therefore

designed a computationally efficient ellipse detection algorithm,

which relies on the use of statistics that are robust to this type of

noise (Krajník et al., 2014). However, the original method described

in Krajník et al. (2014), which used adaptive thresholding to detect

black‐and‐white patterns, had to be extended to process the color

information.

Since the perceived colors are influenced by the light conditions,

and the exact colors of the objects were not known until the actual

contest, we created a semiautomatic autocalibration method that can

learn a Gaussian‐mixture‐based model (GMM) of each color during a

short hover over the objects. Once the GMMs are learned, they are

used to create an RGB color map, which allows the image pixels to be

classified rapidly into object candidates and the background.

The color map is then used in the method (Krajník et al., 2014),

which searches for continuous segments of object‐colored pixels,

F IGURE 3 Object detection in onboard camera images affected by the ‘jelly’ or ‘wobble’ effect, which deforms lines (left image), as well as circular

and square objects (right image). The detection results indicate the 3D relative position (top line) and attributes like roundness, eccentricity and type
(1,2,3 for red, green, and blue static objects and 5 for the yellow moving object) [Color figure can be viewed at wileyonlinelibrary.com]
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establishes their bounding box, the number of pixels, the centroid,

convexity, and compactness and uses these statistics to reject segments

that cannot correspond to circular objects. Then, using the known

object size and camera parameters, the method calculates the relative

3D position of the object. This position is then transformed to a global

3D coordinate frame, and objects that do not appear to be close to the

ground plane are rejected as false positives. Finally, global 3D positions

of the detected objects are forwarded to a mapping module, which

integrates multiple detections of the objects into a single 3D

representation, which is then used by the planning system.

The performance of the method during tests and in the contest

itself indicated computational efficiency and robustness to changing

illumination, which was one the key factors in the robustness of the

entire system used in the MBZIRC competition.

3.2 | Object estimation and motion prediction

Localization of targets with onboard cameras tends to provide data

that are inherently embedded with flaws. The data may be skewed by

phenomena such as signal noise, false positive detections, irregular

detection rate, data blackouts, etc. These issues can hardly be mitigated

during the detection, and some of them (e.g., data blackouts) also

depend on the external environment. Moreover, several moving

targets appear in the MBZIRC challenge and so estimates of

unobserved states such as velocities and heading may help to follow

their position precisely. This leads to a need to filter the detected

position of the targets. We also required the filtration system to be

capable of sorting out measurements belonging to targets that have

been marked as unreliable, for example, due to data blackout being too

frequent. Another requirement comes from the multirobot nature of

the task. A UAV should share information about parts of the map that

are currently occupied. Targets in those areas should then be filtered

out in other UAVs to prevent unrequired grasping of the same target

by multiple UAVs.

In the event that there is a single target in the field of view (FOV)

of the UAV, an Unscented Kalman Filter (UKF) is used as a filter and

as a predictor in conjunction with the car‐like motion model
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where = x yx ( , )no nT[ ] [ ] is the position of the object in the global

coordinate system, ϕ n[ ] is its heading, K n[ ] is the curvature of its

turn, v n[ ] is its scalar velocity, a n[ ] is its scalar acceleration, and Δt is
the time difference. An estimate of the target heading allows its

motion to be tracked, while the onboard camera is oriented with

its wider FOV in favor of detecting sudden changes of the object’s

heading.

However, real‐world scenarios might contain several objects in the

FOV, while some of them are moving. In that case, the UAV needs to

track a particular object independently of the movement of all the objects

in the scene. This requires a local map of the objects to be actively

maintained. Our map model was based on Equation (1) for an arbitrary

number of independent objects. Another state has been included to cover

the type of the object (its color and whether it is moving) as well as the

time of its last update and whether it is currently active. Manipulation of

the objects in the map obeys the following principles:

• An object that has not been seen for more than 5 s is deactivated.

Deactivated objects stay in the map, but their movement is no

longer predicted by the UKF.

• Objects that are deactivated for more than 3 s are deleted from

the map.

• Measurements from the object detector (Section 3.1) are paired

with objects in the map using min‐distance bipartite graph

matching, constrained by the color of the objects.

• Objects located outside of the competition arena or in any of the

locally banned areas (near the dropping zone or around other

UAVs) are deleted from the map, and new measurements in these

areas are discarded.

Additionally, it can be anticipated that grasping attempts may not

be successful at all times. The filter allows a temporarily ban on an

area around a particular object, to avoid deadlock in the grasping

state machine. Such a ban is valid for 30 s in a radius of 4 m around

the object.

3.3 | UAV position estimation

Automatic control of UAVs relies on estimates of the states of the

UAV dynamical system. Namely, knowledge of position and velocity

(both vertical and horizontal) is required to coordinate the movement

for precise picking up and delivery of the object. Our platform is

equipped with several independent sources of information, which are

fused to obtain a single, reliable and smooth estimate of the UAV

pose. An important requirement is to ensure smoothness of the

resulting signal, since the SO (3) state feedback is sensitive to noise.

The main source of data for both the vertical and the horizontal

axes is the PixHawk flight controller. Its extended Kalman filter fuses

present‐day inertial sensors—a three‐axis accelerometer and a gyro-

scope with an altitude pressure sensor and a GPS receiver. Although the

aircraft is already capable of autonomous flight with this off‐the‐shelf
setup, we make use of other sensors to provide more precise

localization and thus better precision of object manipulation.

3.3.1 | Horizontal position estimation

The position estimates in the lateral axes are based on the estimate

provided by PixHawk, namely positions xp, and velocities ẋp. Although
the precision of the estimates may be satisfactory locally for short time

intervals, they are prone to significant drift in time spans of minutes.
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To correct this drift, and thus to ensure repeatability of the experiments

and, for example, locating the dropping zone, the horizontal position

from PixHawk is corrected by differential RTK GPS. Position measure-

ments from the RTK GPS receiver are fused using the linear Kalman

filter with the model

= = Δ
Δ( )ttA 1 00 1 , B ,⎜ ⎟⎛

⎝
⎞
⎠ (2)

where = ++x Ax Bune ne n[ 1] [ ] [ ] is the linear system equation,

= x yx ( , )ne nT[ ] [ ] is the state vector finally used for control, and u n[ ] is
the system input. According to our experience,
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does not hold for the position and velocity estimate provided by

PixHawk. This is a very useful observation for somebody building a

fully autonomous UAV system using an off‐the‐shelf controller. The
input vector u consists of velocities obtained as differentiated

positions xp (later integrated by the filter), which ensures that the

proposed filter does not introduce any drift into the resulting

estimate when no RTK GPS corrections are received. In situations

when the position is not being corrected, the resulting estimate

follows the same relative state trajectory as xp, just shifted according

to the latest correction. The final tuning of the filter resulted in

process covariance =Q diag(1, 1) and measurement covariance

= e eR diag(10 3, 10 3). Moreover, the RTK GPS corrections were

saturated to ever impose maximally 0.25m difference from the

internal state of the filter. Such technique limits sudden changes of

the estimated position, which was necessary for safety of the flight.

The multirobotic scenario requires a coordinate space to be shared

among all three UAVs. The base of our Cartesian system is set to

predefined GPS coordinates and its orientation is according to the East‐
North‐Up convention. Therefore, the first, second, and third axis point to

the east, north and upwards, respectively. A point of origin is measured

using the RTK GPS, to which all independent coordinate systems of all

UAVs are then shifted after each of them is powered up. The common

base station of the differential RTK GPS then ensures that all UAV

estimates are corrected to lie within the same global coordinates.

3.3.2 | Vertical position estimation

In contrast with the horizontal position, estimates of the height rely

much less on PixHawk. The linear Kalman filter for the vertical axis

also uses the differentiated PixHawk height in the same manner as

the horizontal axis. However, height corrections come not only from

the differential RTK GPS, but also from the down‐facing TeraRanger

rangefinder and the object detector, which is able to provide an

estimate of the relative distance, when flying above an object. The

estimator provides an option to switch between these sources of

data, depending on the current task and the circumstances.

It is feasible to correct the height using the TeraRanger

rangefinder, when flying above uneven ground, but it cannot be

used reliably when the down‐facing sensor is obstructed, for

example, when carrying an object, or when there might be a foreign

object on the ground, namely the dropping box. RTK GPS can provide

precise relative height measurements, but only when RTK FIX has

been established. This depends on the strength of the GNSS signal

and on the quality of the communication link between the base

station and the UAV. Finally, correcting the altitude using data from

the object detector may bring in unexpected steps in the signal due to

false‐positive detections. Since none of the additional sources is

completely reliable, we implemented a safety mechanism for

detecting anomalies, which can toggle off any of the above‐
mentioned sensors from being fused.

3.4 | Communication between UAVs

In multirobot systems, reliable communication is required mainly if

there is a need for direct cooperation between multiple autono-

mous vehicles, as in the case when large objects are to be carried

cooperatively. However, a reliable communication channel is a

crucial tool even for coordinating the UAV team sharing the same

workspace for grasping small objects individually, as was demon-

strated in the MBZIRC competition. The rules of the MBZIRC

event specified that all teams are obliged to share the same 5 GHz

Wi‐Fi network, the reliability of which was influenced by

interference occurring during transmission. This may easily lead

to packet loss, which can interrupt the connection. Decreased

reliability of the communication link during the entire mission is

not limited to the MBZIRC case. It is a typical feature of most UAV

applications in demanding outdoor conditions. The MBZIRC

contest therefore provided an interesting and realistic evaluation

scenario for multi‐UAV systems, in which it cannot be assumed

that a complete communication network is available at all times. In

our opinion, our system achieved significantly better performance

in the multi‐UAV scenario than the other teams, due to the

following strategy. We attempted to maximize utilization of the

communication channel, if it was available, to achieve optimal

behavior of the system. However, it was important to be able to

degrade into a system not relying on the communication

infrastructure at all. This was done at the cost of decreased

performance, but our system still provided safe flight operation of

multiple UAVs solving the given task. A smooth and possibly

repeated transition between the optimal behavior relying on

communication and the nonoptimal but safe and still working

system without communication, and back, is provided by the FSM

approach described in Section 3.8.

The software part responsible for managing communication

between UAVs is based on the ROS master within the ROS network.

To increase the robustness of the communication net in the event of

a failure of the robot that is the leader in the ROS master scheme, the

proposed method relies on multiple independent ROS masters

assigned to each of the UAVs. The ROS package multimaster_fkie

(Tiderko, 2017) is used to maintain communication between these

ROS masters. This package offers a set of nodes to establish and
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manage a multimaster network, which is necessary for such tasks

with the team of UAVs in the event of an unreliable communication

infrastructure.

To reduce the load of the communication channels managed by

the ROS master network, only selected information (topics) are

exchanged between the team members:

• the actual position of the UAV in the global coordination system,

• the actual state of the high‐level state machine being part of

the FSM,

• the estimated position of the object during grasping,

• the planned trajectory.

These topics are used in nodes for proactive collision‐free
planning, fail‐safe reactive collision avoidance, and object estima-

tion. The bandwidth of the Wi‐Fi network necessary for transmis-

sion of all mentioned information for a single UAV is

approximately 10 kB/s.

3.5 | Low‐level UAV control

The position controller uses the estimated state as feedback to

follow the trajectories given as an output of the high‐level trajectory
planner. In many previous works, a backstepping approach is used for

UAV control, because the attitude dynamics can be assumed to be

faster than the dynamics governing the position, so linearized

controllers are used for both loops (Herissé, Hamel, Mahony, &

Russotto, 2012; Mellinger et al., 2013; Weiss, Scaramuzza, &

Siegwart, 2011). However, we need the system to be capable of

large deviations from the hover configuration during operations like

fast mapping of objects, or for strong wind compensation. We

therefore use a nonlinear controller. Let us consider an inertial

reference frame denoted by e e e[ , , ]1 2 3 and a body reference

frame centered in the center of mass of the vehicle with an

orientation denoted by =R b b b[ , , ]1 2 3 , where SOR (3) . The

dynamic model of the vehicle can be expressed as

Ω
Ω Ω Ω

=
= +
=
+ × =

m f mg
x vv Re e
R R

J J M

˙ ,
˙ ,
˙ ˆ ,
˙ ,

3 3
(4)

where x 3  is the Cartesian position of the vehicle expressed in the

inertial frame, v 3  is the velocity of the vehicle in the inertial frame,

m   is the mass, f   is the net thrust, Ω 3  is the angular

velocity in the body‐fixed frame, and ×J R3 3 is the inertia matrix

with respect to the body frame. The hat symbol ⋅̂ denotes the skew‐
symmetry operator according to = ×xy x yˆ for all x y, 3  , g is the

standard gravitational acceleration, and ⊤=e [0 0 1]3 . The total

momentM 3  , with ⊤= M M MM [ ]1 2 3 , along all axes of the body‐
fixed frame and the thrust τ   are control inputs of the plant. The

dynamics of the rotors and propellers are neglected, and it is assumed

that the force of each propeller is directly controlled. The total thrust,

= =f f∑ j j16 , acts in the direction of the z‐axis of the body‐fixed frame,

which is orthogonal to the plane defined by the centers of the six

propellers. The relationship between a single motor thrust fj, the net

thrust f , and the moments M can be written as

=
− − −
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where = °c cos(30 ), = °s sin(30 ), and d is the distance from the

center of mass to the center of each rotor in the b1, b2 plane. For

nonzero values of d , Equation (5) can be inverted using the right

pseudoinverse.

For control, we build on the work in Lee, Leok and McClamroch

(2013) and in Mellinger and Kumar (2011) with control inputs f  
and M 3  chosen as

Ω Ω Ω Ω Ω= − − + × − −Ω Ωk k J JM e e R R R R( ˆ ˙ ),R R T c c T c c (6)

⋅ ⋅ τ τ τ= − − − − − −

+ =

( ) ∫ ∫f k k d k d k mg
m

e R R e e e e
x Re f Re

( )
¨ ,

x x ib
t T x iw

t
x v v

d
0 0 3

3 3 (7)

with ẍd the desired acceleration, and kiw , kib, kx , kv , kR, Ωk positive

definite terms. We extend the referenced controllers by including

two integral terms which accumulate the error in the body frame and

in the world frame, respectively. We include both terms to provide

the opportunity to capture external disturbances (e.g., wind)

separately from internal disturbances (e.g., an inefficient prop or a

payload imbalance), particularly when the vehicle is permitted to yaw

or rotate about the vertical axis. The thrust and the moments are

then converted to motor rates according to the characteristic of the

proposed vehicle. Subscript C denotes a commanded value, and

=R b b b[ , , ]C C C C1, 2, 3, is calculated as

∣∣ ∣∣
∣∣ ∣∣

⊤ψ ψ= − =

= ×
×

= ×

b b f
f

b b b
b b b b b

[ sin , cos , 0] , ,
, .

des des des C

C des
des C

2, 3,

1, 2, 3
2, 3 2, 3 1 (8)

Note that here we have to define b des2, based on the yaw, instead of

defining b des1, as it was defined in Mellinger and Kumar, 2011, due to

a different Euler angle convention (we use the ZYX convention

instead of ZXY). The quantities

⊤ ⊤ ∨ ⊤Ω Ω= − = −
= − = −

Ωe R R R R e R R
e x x e x x

( ) , ,
, ˙ ˙ ,

R C C C C
x d v d

1
2 (9)

represent the orientation, the angular rate errors, and the translation

errors, respectively. The symbol ∨. represents the vee map→so(3) 3 . If the initial attitude error is less than °90 , the zero

equilibrium of the tracking error is exponentially stable, that

is, ≡⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
Ωe e e e 0 0 0 0[ ] [ ]x v R .
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3.6 | Trajectory tracking

The state feedback, described in Section 3.5, which provides precise

position and velocity control, requires a smooth and feasible

reference. The reference consists of all states of the translational

dynamics—position, velocity, and acceleration—and is provided at

100Hz, the same rate as the resulting control signal. There are

various ways to create the reference. Typically, thanks to the

differential flatness of the UAV dynamical system, a QP optimization

can be solved to find a polynomial given the initial and final state

conditions (Mellinger & Kumar, 2011), which can then be sampled to

create the reference. In our case, we chose to generate the reference

using a MPC approach. MPC ensures that the resulting trajectory

satisfies a given model as well as the dynamical constraints, which are

imposed on the model. As it optimizes control actions over a

prediction horizon, it can react adequately to unfeasible changes in

the reference trajectory, and can also create proper feed‐forward

proactions to minimize the control error in the future.

The MPC tracker uses a QP formulation of a minimal sum‐of‐
squares problem, where the optimal control action u is found for a

future prediction horizon of states = x x x y y y z z zx ( , ˙ , ¨ , , ˙ , ¨ , , ˙, ¨)n nT[ ] [ ] by

minimizing the function

= +… − … −
=
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… −
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2 ,
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(10)

where = − ̃e x xn n n[ ] [ ] [ ] is the control error, x̃ n[ ] is the setpoint for the

MPC, m is the length of the prediction horizon, and xL and xK
represent box constraints on states. The control error e n[ ] requires
the formation of a general prediction of x n[ ], which was described

previously in Baca, Loianno, and Saska (2016). In our case, the

optimized control action is not directly used to control the real UAV.

Instead, it controls a model of the UAV translational dynamics in real‐
time simulation. States of the simulated model are then sampled at

100Hz to create the reference for the state feedback. This is a novel

approach in UAV control, where benefits of both nonlinear control

and linear MPC are used together.

An important notion is the difference between the trajectory

setpoint x̃ and the reference, which is generated by the MPC tracker.

The trajectory setpoint x̃ is provided by an operator or a program. No

requirements are imposed on x̃ . In contrast, the reference produced

by the MPC Tracker is feasible, satisfies the UAV dynamics and state

constraints, and serves as a control reference for the SO (3) state

feedback.

The simulated model is a linear time‐invariant system covering

the third‐order translational dynamics of the UAV with sampling of

Δ =t 0.01 s. In our MPC formulation, Δt is different for the first

iteration (Δ =t 0.01 s) and for all the other iterations (Δ =t 0.2 s). This

allows smooth control of the simulation, if the MPC is executed at

100Hz, while there is a relatively sparse distribution of further

states, which allows us to have a much longer prediction horizon than

there would normally be with Δt being constant. As in traditional

MPC, only the control action in the step is used to control the model

in the simulation. In the meantime, a new instance of the optimization

task is formulated, starting from new initial conditions, which results

in a fresh control action for the next step. This method is valid only if

the MPC can be solved repeatedly within 0.01 s.

The penalization parameters Q and P in Equation (10) were found

empirically. As in our previous work (Baca et al., 2016), we used the

move blocking technique to effectively prolong the prediction horizon

while maintaining the computational complexity. The particular

control action distribution for the MBZIRC competition was as

=U (1 1 1 1 1 5 5 5 5 5 10), (11)

which results in an 8‐s prediction horizon with only 33 variables in

the optimization task.

Creating the control reference for the state feedback with MPC

has several advantages over conventional solutions. It produces a

reference that is feasible according to the specified model, which

makes it safe to execute. If the setpoint for MPC is not feasible, the

resulting reference is feasible with respect to Equation (10). The

inherent predictive nature of MPC provides trajectory tracking

optimizing actions over the future, which makes it ideal for tracking

moving targets, such as the moving objects in the competition.

As defined in Equation (10), MPC handles state constraints as

linear constraints. We impose maximum acceleration and velocity

box constraints on the UAV to ensure safe and feasible resulting

trajectories. The optimization being solved lies in the family of

linearly constrained quadratic programming, which acquires a global

optimum in a convex polytope. A custom solver, based on a

sequential closed‐form solution, has been implemented to ensure

guaranteed real‐time performance.

MPC‐based trajectory tracking operates in two modes, as follows.

The first simple positioning mode, used mainly for short distance

position changes, applies either relative or absolute position

commands, and tries to reach a given position in the fastest way

with respect to the MPC scheme. The second trajectory‐following

mode used by high‐level trajectory planning (Section 3.7) uses a

precomputed path plan, and tries to precisely track the trajectory

while respecting the plan waypoints schedule, which is crucial for

multirobot collision‐free operation.

Having the predictions of the future movement for all UAVs allows

us to extend the capability of the MPC tracker to avoid future collisions.

When communication between the aircraft is established, they

exchange their future trajectory predictions and act according to a

decentralized mechanics, which will alter their courses to avoid the

collision, based on sorting the UAVs by priorities. If there is a potential

collision between two UAVs, the UAV with lower priority will avoid the

other UAV by changing to a higher flight level. The system also allows

priorities to be reassigned dynamically in the following cases:

• UAV should be avoided at all times (its priority is higher by

definition). This may occur when it is currently grasping an object,

or when its avoidance mechanism is accidentally turned off.
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• UAV should avoid the other aircraft even if it has higher priority.

Such a situation occurs when the other machine does not comply

with the mechanics for any reason.

3.7 | High‐level trajectory planning

High‐level trajectory planning is built on top of MPC‐based Trajectory

tracking, which is used for precise tracking of the planned trajectories.

The onboard online trajectory planning mechanism is used in two

main parts of the Treasure Hunt scenario. The first task is Sweeping

of the arena, where the team of UAVs is required to localize the

objects within the arena, and either save their locations to the global

map (at the beginning of the mission) or immediately try to grasp the

first detected object (later in the mission, once all objects detected in

the initial map have been processed, the grasping was successful, or

failed repeatedly). The second online trajectory planning is utilized in

Proactive collision‐free planning, which is involved in cases where

one UAV has to fly into another position. For example, when it holds

the grasped object and wants to drop it into the dropping box.

3.7.1 | Sweeping

Sweeping the arena designed for the MBZIRC Treasure Hunt

challenge involves localizing both dynamic and static objects. The

trajectory planning for so‐called sweeping can be described as

coverage path planning (CPP; Galceran & Carreras, 2013), where for

a given area the CPP should find a path from which the entire

workplace can be scanned with an onboard sensor, in our case an

onboard camera.

The proposed multirobot CPP algorithm is based on simple

area decomposition into three equally large zones that split the

area along the larger side (Figure 4). Each arena zone has one UAV

assigned to localize and pick up the objects from. All UAVs then

plan the coverage path using Boustrophedon coverage (Choset &

Pignon, 1998) in each part of the area separately. Using

Boustrophedon coverage, we create zigzag paths, as shown in

Figure 5, such that the reduced FOV entirely covers the particular

arena zone. The reduced FOV is set based on the required overlap

in the coverage (set to 20% during the competition) and on the real

FOV camera projection to the ground plane with respect to the

sweeping altitude that is used.

To produce smooth trajectories for constant speed object

detection, the Dubins vehicle model (Dubins, 1957) is used to create

the final path between the waypoints. The minimal turning radius∕ρ = v ac2 max of the Dubins vehicle was selected based on the desired

constant velocity vc (~ 3 ms–1) and the maximal acceleration of the

UAV amax (~ 2ms–2), using an equation of circular motion with

constant speed. The sweeping high‐level trajectory planning is

summarized in Figure 6, where the shown trajectories for all three

UAVs were further used in the two following approaches in different

stages of the Treasure Hunt scenario.

In the first approach, called static sweeping, the UAVs follow the

created trajectories at a height (~ 7m) and simultaneously detect the

colored objects while the global map of the static objects is being

created. After this initial coverage, the approximate positions of the

detected static objects are estimated based on multiple detections of

the same object. The second approach, called dynamic sweeping, is

applied later in the schedule of the task, and the UAVs use similar paths

as in the static sweeping. However, the sampled trajectories are used

repeatedly (not just once, as in the static sweeping) and the UAVs do

not create a global map. Instead, each UAV tries to find and estimate

the position of any object while following the sweeping trajectory.

When any object is located, the trajectory following is stopped and the

UAV tries to grasp the object immediately. Either after successful

grasping and dropping of the object, or after a number of unsuccessful

dropping box

starting zone dropping zone

part1 part2 part3

F IGURE 4 Decomposition of the Mohamed Bin Zayed
International Robotics Challenge arena into three equally large

zones [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Boustrophedon coverage of the decomposed
competition arena. FOV: field of view [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 6 Sweeping trajectories based on Boustrophedon
coverage using the Dubins vehicle and decomposition of the arena

into three distinct parts, one for each UAV. UAV: unmanned aerial
vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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grasps, the UAV continues with dynamic sweeping from the last

trajectory sample.

3.7.2 | Proactive collision‐free planning

Our strategy for covering the Treasure Hunt competition arena is based

on decomposition into three equally large zones for each of the UAVs

(Figure 4). Unfortunately, the dropping zone is located in one‐third of

the competition arena. After successful grasping, the UAV in part 1

therefore has to fly through the remaining zones to drop the object.

Because there is a possibility of colliding with another UAV during this

flight through the remaining zones, proactive collision‐free planning has

to be used. The actual positions of the UAVs are known due to

information sharing, as was explained in Section 3.4. However, theWi‐Fi
communication infrastructure is not reliable and, as mentioned, a

multirobot system deployed in real world conditions should be robust to

losing Wi‐Fi communication. Therefore, we decided to use different

flying heights for each of the UAVs, which minimizes the possibility of a

collision, without any additional planning. Unfortunately, while complet-

ing this task the UAVs cannot maintain only these heights during the

mission, as they have to descend for events such as grasping the objects

and then dropping them. These events take most of the overall flight

time, because they require a complicated grasping manoeuvre and

hovering in front of the dropping zone, if it is sharing with other UAVs.

Moreover, the grasping manoeuvre can be repeated several times

before the object is gripped.

The proposed solution for finding a collision‐free trajectory uses

four assumptions derived from the MBZIRC rules, which are,

however, valid for most cooperative transport applications:

• A Collision can occur only if a UAV leaves its dedicated height.

• The position of the UAV in the x‐axis and in the y‐axis does not

alter rapidly in the event that it flies out of its safe altitude (the

grasping and dropping manoeuvres are carried out following

strictly vertical trajectories that accept grasping of dynamic

objects, but where the lateral movement is also minor).

• The shape of the competition workspace is convex.

• At most three UAVs are used in the environment (this assumption is

valid only for the MBZIRC Treasure Hunt task, but an extension of

the approach is straightforward for different numbers of robots).

Thanks to these assumptions, the method for very rapidly computing a

collision‐free trajectory can be simplified to finding a collision‐free

path in 2D (at the dedicated height) between two points, where only

two obstacles can occur. These obstacles are circles centered on the x
and y coordinates of neighboring UAVs with safety radius ra. It is

prohibited to encroach on these circles. The safety radius of the circles

depends on the speed of the UAVs which, for security reasons in the

MBZIRC competition, was restricted to a maximum of 30 km/hr. We

used a detection radius (the relative distance between UAVs in which

the avoidance maneuver is initiated) of 5m radius during the

competition, while the critical radius in which the UAVs are considered

to be in a collision is 0.8m.

Based on the previously realized experimental comparison of

available path planning approaches (Saska, Kulich, & Preucil, 2006), a

visibility graph method (Lozano‐Pérez & Wesley, 1979) was applied

to solve the collision‐free planning problem. The method provides the

shortest path and it is sufficiently fast in simple situations including

limited number of obstacles. Only four possible paths in the graph

consisting of tangent lines to circles, which represent the obstacle,

and the circle segments can be considered as a candidate solution in

our case of two obstacles. The solution can, therefore, be found

analytically in a very short time (possibly in each control step) with

negligible burden on the processor. See examples of trajectories

generated by proactive collision‐free planning in Figure 7a–d.

A collision‐free trajectory exists only for described planning when

the start points or the end points are not inside the safety radius ra of

another UAV. In situations when a UAV is already inside the safety

radius ra of another UAV, the UAV finds a plan into the nearest position

that is not in conflict with a UAV, and the collision‐free planning

procedure is initiated. If the high‐level planning system requires to fly

into a position, which is occupied by another UAV, then a temporary

goal position is set instead. This position is the closest feasible position

to the original goal such that it lies on the original trajectory. The UAV

then waits for up to 1.5min until the goal position is available again. If

the goal position is not freed within this time, it is assumed that the

information about the occupation of the goal position is incorrect.

During the MBZIRC competition, the planning was repeated five times

per second, and in the event of a communication interruption, the last

received states of other UAVs were considered as correct for 5 s.

3.8 | Failure recovery and synchronization jobs
manager

The main core of the system is the FSM concept, which is used for

managing all subsystems. It increases the robustness of the entire

A path without obstacles. A path with one obstacle. A path with two obstacles. A path with two obstacles.

(a) (b) (c) (d)

F IGURE 7 Examples of trajectories generated by fast proactive collision‐free planning. The black circles denote obstacles. The red path shows
the shortest collision‐free trajectory, and the gray paths denote other collision‐free paths [Color figure can be viewed at wileyonlinelibrary.com]
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code structure resolving the remaining few subsystem failure cases

due to wrong sequential and concurrent operations. In the proposed

system, the FSM is designed using SMACH (Bohren, 2017), a ROS‐
independent Python library, and it is fully integrated into the

designed ROS framework.

As was mentioned in the introduction, the entire FSM structure

may be considered as a hierarchical state machine with synchroniza-

tion and failure recovery abilities. For simplicity, we will refer to the

components of the FSM as state machines in this section. In Figures 8,

9, 10, and 12, the internal states of the FSM levels (the so‐called state

machines) are visualized by rectangles, and the nested lower‐level

state machines are visualized by double‐line rectangles, such as the

Treasure Hunt mission state machine introduced in Figure 8a by the

Treasure Hunt mission rectangle, and described in detail in

Figure 8b. Transitions between two states and from one state to a

lower‐level state machine are marked by the arrow with a label of an

outcome describing the transition. Dotted terminal states represent

the transition that is called after returning to a higher level state

machine. The land event is called whenever any state produces an

outcome that means that the UAV cannot continue in its mission.

The diagram of the main state machine is visualized in Figure 8a. In

the first step, the trajectories for static sweeping and also for dynamic

sweeping in the predefined part of the competition arena (see Section

3.7.1) are loaded, and an automatic take off is called. Once the UAV is

(a)

(b)

F IGURE 8 The structure of the FSM tool. FSM: failure recovery and synchronization jobs manager; UAV: unmanned aerial vehicle

Flying static sweeping trajectory

Static sweeping state machine

Create map

Get position of object

Fly above the object

Grasp the object

Fly above the waiting point

Descend to the
waiting point

Wait for available
dropping zone

Drop the object

succeeded

succeeded

succeeded

succeeded

succeeded

succeeded

succeeded

succeeded
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no object

object
not detected
or grasping

was unsuccessful

succeeded

F IGURE 9 Diagram of the static sweeping state machine

Dynamic sweeping state machine

Flying dynamic sweeping trajectory
&

Detection and estimation
of object

Grasp the object

Fly above the waiting point

Descend to the
waiting point

Wait for available
dropping zone

Drop the object

succeeded

succeeded

succeeded
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succeeded
grasping

was unsuccessful
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F IGURE 10 Diagram of the dynamic sweeping state machine
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in the air, the mission state machine is activated (Figure 8b). The

mission is a concurrent state machine that sequentially runs the static

sweeping procedure and the dynamic sweeping procedure, while

simultaneously controlling the voltage of the battery. If the battery is

discharged, the state machine terminates all currently executed tasks

of the UAV, and a land event is called. The level of voltage for battery

discharge was set experimentally for each battery type.

The static sweeping state machine (Figure 9) starts by following

the sweeping trajectory and creating a map with approximate

positions of the static objects. After this initial coverage of the

competition arena, an attempt is made to grasp the nearest estimated

static object in the map. The grasping procedure is shown in Figure 12.

Initially, the state machine starts with the object detection mechanism.

Whenever an object is located, the UAV tries to align itself

horizontally above the estimated position of the object and then to

descend to the grasping height of 1.5m above the ground. Once the

UAV has reached the desired height and it is aligned above the object,

it tries to grasp the object. Whenever the object is lost in the steps

after descending to the grasping height, the UAV ascends and repeats

these steps again. The steps are also repeated if the grasping fails.

Only two attempts are made to grasp the estimated object. If the UAV

was not successful in these attempts, the state machine returns the

UAV to the safe flying height and it is terminated with the outcome

that the grasping was unsuccessful. After a successful grasp, the UAV

also ascends to the safe flying height, but the grasping state machine

outputs that the grasp was successful. The decision as to whether the

UAV is carrying an object is made via a feedback from the Hall effect

sensors that are placed on the gripper. To avoid deadlock, the state

machine is terminated in the first node if the object is not found within

a certain time.

dropping zone

starting zone

uav1

uav3

uav2

Position of the waiting point in the MBZIRC arena.

time [s]

0 10 20 30 40 50

uav1

uav2

uav3

Gantt diagram of the time window for particular
UAVs.

(a) (b)

F IGURE 11 Waiting position around the dropping zone, and a Gantt diagram of the proposed time window strategy. The index of the UAV
indicates to which part of the arena the UAV belongs. (a) Position of the waiting point in the MBZIRC arena. (b) Gantt diagram of the time

window for particular UAVs. MBZIRC: Mohamed Bin Zayed International Robotics Challenge; UAV: unmanned aerial vehicle [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 12 Diagram of the grasping state machine
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The static sweeping state machine reacts to unsuccessful

outcomes from the grasping procedure by selecting a new object

for grasping from the map. When the grasping attempt was

successful and the UAV is carrying the object, the UAV flies at its

safe height to a position above the waiting point. The waiting point

is selected based on the part of the competition arena assigned to

the UAV. During the MBZIRC competition, the safe flying heights

for part 1, part 2, and part 3 were 3, 4, and 5 m, respectively. The

waiting points were located 7 m (measured in x , y plain) from

the center of the dropping box (Figure 11a). Once the UAV reaches

the position above the waiting point at its safe height, it descends

to the dropping height of 1.5 m above the ground. At this waiting

point, the UAV hovers until the moment when the dropping zone is

not occupied by any other UAV, if the communication infrastruc-

ture is available, or until the UAV has access to the dropping zone

based on the time windows, if the communication channel cannot

be used for negotiation and for sharing the status of the

dropping zone.

The negotiation about access to the dropping zone is based on

queries of the current UAV on its waiting position addressed to

neighboring UAVs. The neighboring UAV responds with confirmation

that allows the current UAV to access the zone, but only when the

neighboring UAV is not inside this zone, or if the neighboring UAV

has not been waiting for access for longer than the current UAV. The

current UAV starts with the dropping maneuver only when it

receives confirmations from all neighboring UAVs. The negotiation

about access to the dropping zone is carried out repeatedly until the

UAV receives confirmations.

If communication has been lost for more than a predefined time

during the mission, all UAVs will switch to a strategy with time

windows for accessing the zone to avoid collisions in the dropping

zone. Time windows 10 s in length are used for each UAV. This range

of time windows provides two time intervals for dropping for each

UAV per minute. The UAV in part 1 can be in the restricted area

around the dropping zone in the 0–9 s time interval, the UAV in part 2

can be there in the 10–19 s time interval, and the UAV in the part 3

can be there in the 20–29 s time interval. This strategy is the same for

accessing the dropping area in the second half of the minute, so the

intervals are offset by 30 s (Figure 11b). The UAV can call the dropping

procedure only when it is in the waiting position at the dropping

height, and its time window starts. This strategy is not as effective as

negotiation and sharing of the status of the dropping zone, but it is

safer in the case of a problematic communication network. This

strategy requires the clocks on the UAVs to be initially synchronized

within a few milliseconds using chrony—an implementation of the

network time protocol.

The dropping maneuver is done in sequence: Flying above the

dropping box at the dropping height, dropping the object, and

returning to the UAV safe height above the waiting position. After

dropping the object, the state machine initializes the grasping

procedure with the next estimated object in the map. This is done

until all detected objects have been grasped, or an attempt has been

made to grasp them, in the case of a grasping failure.

In the dynamic sweeping state machine (Figure 10), the UAV flies

the dynamic sweeping trajectory, and when any object is detected

and its position is estimated, the UAV immediately tries to grasp it.

After successful grasping and dropping, the UAV flies back into the

dynamic sweeping trajectory and continues with dynamic sweeping

while simultaneously looking for the remaining objects. This

approach is not as effective as the initial static sweeping procedure,

where the UAVs could fly for another object in the map directly, and

minimize the overall flight time, but it is more robust. In the ideal

case of perfect mapping and grasping procedures, all static objects

are grasped during the static sweeping part, and only the dynamic

objects are hunted during the dynamic sweeping. In the demanding

real‐world conditions of the MBZIRC arena, with changing light

conditions and wind gusts, many objects were not grasped in the first

phase of the mission. This was due to a safety procedure that allowed

a limited number of grasping attempts per object to avoid a deadlock.

These missed objects could be grasped later, in the dynamic

sweeping part, as the local environment conditions changed.

Another interesting property of this approach is the possibility to

exchange the sweeping trajectories, and therefore the operational

zones and waiting positions between the UAVs after a given period

of the mission. This increases the robustness and the performance of

the overall system in the event of a failure or a malfunction of a UAV

subsystem. Even if all components of all UAVs are fully functional as

designed, each UAV in the team behaves differently in different

tasks, and it often happened that a UAV could accomplish a task in

which another team member failed, and vice versa. This is another

useful lesson learned during the MBZIRC event that should be

adapted for designing multirobot systems, if possible. Finally, splitting

the static object grasping in the initial sweeping part and the

subsequent grasping of dynamic objects and the remaining static

objects increases the overall system robustness. There is a much

lower probability of a UAV crash during static object grasping. This

has been shown in numerous realistic complex simulations, and also

during system testing and its deployment in the competition.

4 | EXPERIMENTAL RESULTS

In this section, we present both the experimental results achieved

while preparing for the Treasure Hunt scenario, and also the

performance of the system during the MBZIRC competition. The

remainder of this section is divided into main parts, where we

present the experimental results achieved in the simulator, during

the preparations for the competition in South Bohemia, in the final

tests in a challenging desert environment and in the course of the

MBZIRC competition. A video attachment to this paper is available at

website http://mrs.felk.cvut.cz/jfr2018treasurehunt.

4.1 | Robotic simulator

The system was initially developed using the Gazebo robotic

simulator, which was used as the simulation in the loop, together
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with the PixHawk firmware. Using the robotic simulator, the process

of developing the subsystems and integrating the entire system was

carried out significantly faster and more safely than when using the

real system directly. In addition, by modeling the whole scenario in

the simulator and by testing the behavior of the complex FSM

approach in it, the complete system achieved the necessary level of

reliability for deployment in tasks such as the Treasure Hunt.

The underlying layers of the control pipeline, namely, the UAV

state estimation, control, tracking, and predictive collision avoidance,

were extensively tested using the Gazebo simulator. To show the

system robustness, we conducted 24‐hr simulated flights of five

UAVs in an area of 100× 100m. Each UAV followed an independent

random walk reference in the same height. Without the collision

avoidance technique, the median time of the first collision between

any of the UAVs was 104 s, from total of 495 simulated scenarios

(simulation was always restarted after the first collision). With the

collision avoidance mechanism, there was not a single collision within

the 24 hr of the experiment, while the minimal registered distance

between the UAVs was 1.21m, which is still 50% more than

the collision distance 0.8 m of the used platforms. See Table 1 for the

comparison of percentiles of duration of the experiment before the

first collision occurred.

The results from 20 simulations of the complete MBZIRC 2017

Treasure Hunt scenario are shown in Table 2. Each of these

simulations contained 10 static and 10 dynamic objects, which were

randomly placed in a simulated MBZIRC arena. Snapshots from

simulation are shown in Figure 13. We expected that the dynamic

objects will move according to some motion model that is predictable

and smooth. Therefore, we modeled the movement of the dynamic

objects in simulation using the car‐like motion model, where the

velocity of the object did not exceed 0.3 m/s. Due to the movement

type of dynamic objects being uncertain, the mission was divided into

two parts. The first part is the safe part of the mission, where only

the static objects are attempted to be grasped and delivered. After

this part is finished, the rest of objects will be targeted regardless

of whether they are static or dynamic. Results from the simulations in

Table 2 show that the system is capable of collecting all targets to the

dropping box in the competition time interval of 20min. The best

time of finishing the mission was 12.1 min and the worst was

17.4 min. The average time needed was 13.6 min. Results in Table 2

also show that all static objects were grasped faster than the fastest

dynamic object. Furthermore, thanks to using collision avoidance

methods, there was no collision between members of the team

during the mission. The closest any UAVs got to each other was

1.9m, which only happened in one of the simulations, and in general

the mutual distances were higher than that.

4.2 | Experimental camps in the Czech Republic

Key parts of the proposed system were tested in the course of

experimental camps held in the countryside of South Bohemia in

the Czech Republic throughout the year before the competition

(Figure 14). Repeated experimental verification of key parts of the

proposed system was necessary to test phenomena that are difficult

to simulate, and also to discover issues that were not present in our

previous hardware experiments without physical interaction of the

robot with the real‐world environment. One issue that was

discovered was the influence of the force produced by the propellers

on the carried objects. This exposed the need for a stronger magnetic

gripper, which we then designed. Another discovered issue was the

ground effect caused by the objects. This manifested itself as

turbulence in the last phase of the grasping maneuver.

The most crucial parts of the system were the low‐level UAV

control and the MPC‐based trajectory tracking, used for precise

positioning of the UAV. These were thoroughly tested to obtain the

centimeter precision required for the grasping task. The MPC‐based
trajectory tracking used during the colored object mapping is shown in

Figure 14a. In addition, initial testing of the object detection was

carried out. However, in accordance with the initial specification of the

TABLE 1 Percentiles of duration of the experiment before the
first collision occurred

Percentile 0.5 0.75 0.95 0.99

Without the avoidance 104 s 152 s 264 s 431 s

With the avoidance – – – –

Note. The results were obtained in two 24‐hr simulated flights (one with

and one without the collision avoidance mechanism used) with five UAVs,

conducting a 2D random walk on 100 × 100m area. The total of 495

collisions were recorded if the collision avoidance mechanism was

not used.

TABLE 2 Results from 20 simulations of Challenge 3, in which the

objects (10 static and 10 moving) were randomly placed

Mission
time (min)

Time needed
for grasping

of the static
object (s)

Time needed for
grasping of the

dynamic
object (s)

Smallest
distance

between
UAVs (m)

Min 12.1 23.7 35.0 1.9

Max 17.4 36.4 51.2 3.3

Mean 13.6 30.6 43.6 2.5

Note. UAVs in a distance closer than 0.8 m are colliding in the simulation

as well as in the real system, which never happened in simulations and

real flights if the collision avoidance approach was used.

UAV: unmanned aerial vehicle.

F IGURE 13 Snapshots from the simulation developed for the
Mohamed Bin Zayed International Robotics Challenge competition
[Color figure can be viewed at wileyonlinelibrary.com]
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shape of the object expected in the competition, we designed square

shaped objects with numbers describing the rewards (Figure 14b).

Videos showing initial attempts for grasping and dropping of the

object, and trajectory following are available at http://mrs.felk.cvut.cz/

jfr2018treasurehunt‐video1.
One of the experimentally verified subsystems was the

MPC‐based collision avoidance implemented for reactive avoidance

of collisions between multiple UAVs in the MBZIRC competition.

Using the MPC predictions of the future parts of the trajectory of

other UAVs (discussed in Section 3.6), each UAV can avoid collisions

with other UAVs by a simple change of flight height in potential

collision parts of the future trajectory. It is necessary to employ this

method in scenarios with a problematic communication network. This

is because after reestablishing communication the proactive colli-

sion‐free planning may not be able to deal with a suddenly

discovered imminent collision, or may not even be active in the

current phase. This safety mechanism is implemented on the lowest

level of control in all phases of the mission. Figure 15 shows the

verification of MPC‐based collision avoidance, with two UAVs

exchanging their position and one hovering UAV between the two

positions. A video showing this verification is available at http://mrs.

felk.cvut.cz/jfr2018treasurehunt‐video2. Such collision avoidance

requires only a small number of messages to be shared between

UAVs. These messages contain the MPC future trajectory predictions

of each UAV, and are distributed with a very low frequency of 2 Hz.

Although the proposed collision avoidance technique requires only a

low communication bandwidth (~ 6 kB/s for three UAVs), the

collision avoidance was not always used during the competition,

due to dropouts of communication between UAVs, which was

observed by all teams in the competition.

Another evaluated subsystem was the object detection and

mapping. In particular, the datasets gathered were used to compare

computational efficiency of our object detection method to the

Maximally Stable Extremal Regions (MSER) (Matas, Chum, Urban, &

Pajdla, 2004) and “SimpleBlobDetector” methods included in the

OpenCV library (Bradski, 2000). The results indicated that the

system presented achieved significantly higher frame rates compared

to the aforementioned two methods. This confirmed the experiments

in Krajník et al. (2014), which introduced an algorithm our detection

was based on.

4.3 | Desert testing in the United Arab Emirates

Finally, the complete system was thoroughly tested for a period of

three weeks just before the competition, in the desert near Abu Dhabi

in the United Arab Emirates. The desert environment was challenging,

due to the uneven terrain and the rapidly changing wind conditions. By

tuning the system for such weather and terrain conditions, our system

was better prepared for the environment at the Yas Marina Circuit in

Abu Dhabi, where the competition was held. The rapidly changing

terrain profile in the dunes of the desert also had an influence on the

quality of the communication network. The frequent interruptions of

the connection inspired our solution, which does not rely on the

communication network.

As we have mentioned, several important features of our system

were, in our opinion, the dominant factors that led to our winning

performance in all trials of the Treasure Hunt challenge in the MBZIRC

competition. Most of the other teams did not take into consideration

external disturbances such as wind in their controller. Surprisingly, the

MBZIRC competition arena was not perfectly flat, and some teams had

relied on its flatness. Finally, relying on a robust communication

network was the main bottleneck of the competitive solutions.

Photos from the tests of the system in the desert are shown in

Figure 16. The grasping procedure is captured in the image on the

right, and the dropping maneuver is shown in the image on the left. A

video showing the behavior of the complete system with three UAVs

in this environment is available at http://mrs.felk.cvut.cz/jfr2018trea-

surehunt‐video3. During this testing, the yellow objects were

stationary as opposed to the competition, where they were dynamic.

This means, that in this phase, the system was tested for the static

MPC-based trajectory tracking with low-level UAV control dur-
ing the mapping of the colored objects spread throughout the exper-
imental field.

Object detection and number (reward) recog-
nition of square-shaped colored objects.

(a) (b)

F IGURE 14 Experimental verification of the MPC‐based trajectory tracking method and the object detection algorithm during the
experimental camps in the countryside of South Bohemia in the Czech Republic. http://mrs.felk. cvut.cz/jfr2018treasurehunt‐video1.
MPC: model predictive control; UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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objects only. In addition, the paths traveled by the UAVs during the

experiment presented in the video are shown in Figure 17. In this

figure, the z‐axis denotes the height above the level of the starting

position as measured by the differential RTK GPS. The UAVs were

kept at constant height above the ground and therefore the graph

shows how uneven the terrain was. Furthermore, Figure 17 depicts

the positions and colors of the objects that were collected.

4.4 | Results from the MBZIRC competition

Our system was applied four times in the Treasure Hunt scenario during

the final MBZIRC competition. During the competition, the number of

dynamic (yellow) objects was decreased from announced 10 to 3 for this

scenario for organizational reasons. The results, that is, the number of

colored objects that were collected, are shown in Table 3. The first two
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F IGURE 15 MPC‐based collision avoidance between three drones. Two drones (UAV 1 and UAV 2) exchange their positions, while the third

UAV 3 hovers in a position colliding with their trajectories. Using MPC future trajectory prediction, the UAVs avoid a collision by changing their
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F IGURE 16 Photos from the tests of the proposed system in the desert near Abu Dhabi, United Arab Emirates. The grasping procedure is captured
in the image on the right, and the dropping maneuver is shown in the image on the left. http://mrs.felk.cvut.cz/jfr2018treasurehunt‐video3 [Color figure

can be viewed at wileyonlinelibrary.com]
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attempts, denoted as TRIAL 1 and TRIAL 2, are the results from

Challenge 3, which contained only the Treasure Hunt scenario. The

remaining two trials (GRAND 1 and GRAND 2) were a part of the Grand

Challenge, where the Treasure Hunt scenario was undertaken simulta-

neously with the scenario of landing on a moving ground vehicle

(Challenge 1), and the scenario where a ground robot had to locate and

reach a panel, and further physically operate a valve located on the panel

(Challenge 2). During these four trials within the competition, 25 objects

overall were successfully placed into the dropping zone. The best

performance according to the number of grasped and placed objects was

achieved during the second trial of the Grand Challenge, when eight

objects, including a nonstationary object were brought into the dropping

zone. The system described in this paper won first place in Challenge 3,

and contributed to our third place in the Grand Challenge. A video

showing results from the MBZIRC competition is available at http://mrs.

felk.cvut.cz/jfr2018treasurehunt‐video4.
One part of the system for the Treasure Hunt scenario involved

localizing objects using sweeping trajectories (described in Section 3.7.1).

The static sweeping paths traveled by UAVs in the trials of Challenge 3

are shown in Figures 18 and 19. The flight time of the described UAV

platform with fully charged four cell batteries with 6,750mAh capacity is

up to 15min, which is less than allowed time per trial. The organizers

allowed to change the batteries during the trial without any penalization.

The trajectories before changing the batteries are labeled in the graphs

as part 1, and after the batteries are changed, they are labeled as part 2.

Furthermore, on these graphs, the colored points denote the detections

of the objects that were observed, and the larger circles denote the

estimated positions of these objects. After processing the data from the

first trial, we decided to decrease the sweeping trajectory height from

7 to 6.5m. This modification made objects more visible in camera

images, which improved object detection. A disadvantage of this change

F IGURE 17 The paths traveled by individual UAVs during the desert experiment. The colored points denotes the positions of the objects
that were collected. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Numbers of the objects collected in the Treasure Hunt
scenario during the MBZIRC 2017 competition

Placed into

the box

Placed outside the box but

inside the dropping area

TRIAL 1 2R, 2G 1G

TRIAL 2 2R, 3G

GRAND 1 1R, 1G, 2B, 1Y 1G, 1B

GRAND 2 2R, 3G, 1B, 1Y 1G

Note. B: blue static object; G: green static object; GRAND 1 and 2: trials of

the MBZIRC Grand Challenge; R: red static object; TRIAL 1 and 2: trials of

MBZIRC Challenge 3; Y: yellow nonstationary object.

F IGURE 18 Mapping sweep during the first trial of Challenge 3. The colored points denote the detections of the objects that were observed, and
the larger circles denote the estimated positions of these objects. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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was that it prolonged the trajectories, because the condition of at least

20% of overlap in the coverage could not be satisfied by following the

same trajectory (in the xy plane). For this reason, the sweeping

trajectories differ between these two trials.

Another important part of described system is the grasping capability,

where the UAV has to grasp a ferrous object. The overall grasping

approach has been presented in Section 3.8, where the grasping state

machine is depicted in Figure 12. Switching of the phases of the grasping

state machine is shown in Figure 20, where an attempt at grasping was

repeated after being aborted once. For a visualization of the transition

between these phases, the resolution of the graph in Fig. 20a is 0.05m in

the x‐axis and in the y‐axis. In addition, detections of the object in three

parts, which are indicated by dotted arrows, are shown in Figure 20b–d.

The dropping approach for delivering the grasped objects into the

dropping box has been described in Section 3.8. Switching the phases of

the dropping state machine is shown in Figure 21a, where the dropping

procedure was carried out by two UAVs. Objects were dropped by each

UAV at a different time, and thus there was no collision between them.

Figure 21b,c show snapshots from the onboard cameras on the UAVs

during the dropping maneuver.

F IGURE 19 Mapping sweep during the
second trial of Challenge 3. The colored
points denote the detections of the objects

that were observed, and the larger circles
denote the estimated positions of these
objects. UAV: unmanned aerial vehicle

[Color figure can be viewed at
wileyonlinelibrary.com]
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Photos from the competition are shown in Figure 24. The upper

image shows the UAV following the static sweeping trajectory. The

images in the middle row and the image on the left in the lower part of

the figure capture moments when the UAVs were grasping objects. The

remaining image shows an object being dropped into the dropping box. In

addition, the paths traveled by the UAVs during the first trial of

Challenge 3 are shown in Figure 22, and the paths traveled in the second

trial of the same challenge are shown in Figure 23. Furthermore, in these

graphs, the colored points denote the positions of the objects that were

collected.

5 | LESSONS LEARNED

Although the competition results can be considered a major

success, it was not without hurdles, mainly during implementation,

testing and tuning of the proposed system. From the implementa-

tion part, it was convenient to develop the system compatible with

the ROS, which allows to divide the system into independent

components that were implemented separately by different

research groups. Furthermore, their testing were significantly

simplified by employing the Gazebo robotic simulator together
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with the firmware from PixHawk, which speeds up the overall

progress of the development.

The required usage of more vehicles simultaneously even increased

the complexity of the task. Every UAV is equipped with several sensors

that could be a source of unreliability. By testing the behavior of the

proposed system in desert near Abu Dhabi in the United Arab Emirates,

our system was well prepared for the environment at the Yas Marina

Circuit in Abu Dhabi, where the competition was held. The system was

tuned to properly react to strong wind, decreased visibility due to sand,

and to problems occurring by intensive light from sun. Hence we stress

the significance of the real‐world outdoor experiments above simula-

tion, to obtain real sensor data.

5.1 | Toward a more general solution

Despite our best effort to develop a general solution capable of

autonomous searching, picking, and placing objects, several sub-

systems have been tailored specifically to the competition scenario.

The vision system was designed to locate the objects with colors and

shapes specified by the rules of the competition. In the case of an

object of more difficult shape and color patterns, a different

approach for its localization would be required, for example, based

F IGURE 24 Photos from the MBZIRC competition. The upper
image shows the UAV while following the static sweeping trajectory.
The images in the middle row and the left on the lower part of the

figure capture the moments when the UAVs were grasping objects.
The remaining image shows an object being dropped into the
dropping box. During four trials within the competition (two for

Challenge 3 and two for the Grand Challenge), 25 objects overall
were placed into the dropping zone (Table 3). http://mrs.felk.cvut.cz/
jfr2018treasurehunt‐video4. MBZIRC: Mohamed Bin Zayed
International Robotics Challenge; UAV: unmanned aerial vehicle

[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 25 Team members that were involved in the MBZIRC
competition in Abu Dhabi, United Arab Emirates. MBZIRC:

Mohamed Bin Zayed International Robotics Challenge [Color figure
can be viewed at wileyonlinelibrary.com]
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on artificial neural networks. Further, estimation and prediction of

the object movement using a car‐like model provide a framework

suitable for tracking the most common ground vehicles. A more

precise model could be used to better estimate state of a specific

vehicle (e.g. with differential drive model, or if capable of 3D motion).

The presented proactive collision‐free planning, using different flying

heights and the visibility graph method, has been selected due to

simple scenario with three UAVs. A requirement of a higher number

of independent flying heights would occur with higher number of

deployed UAVs. Then, a different splitting of the arena would be

required since it is not efficient to often ascend and descend for the

UAV. In this case, each individual UAV will be resolving a possible

collision only with other UAVs, that are assigned to arena parts

through which the UAV will need to fly. Taking these observations,

the presented approach can be applied to various outdoor multirobot

scenarios, as shown in our consequent research after the competition

listed in Section 1.2.

6 | CONCLUSIONS

A system designed for Challenge 3 of the MBZIRC competition has

been described in this paper. The paper has focused on the

properties of the design that in our opinion were the most important

factors leading to the best performance of the system in all trials in

the 7 Treasure Hunt challenge. The system is able to solve object

manipulation tasks in demanding outdoor environments, and to do so

cooperatively in a team of three UAVs.

While many of the methods described here do not represent the

bleeding edge of robotics research, they were designed to be

versatile and substitutable. This allowed their easy integration into a

complex modular system, which enabled efficient testing of the

individual modules, making us aware of these modules deficiencies

and possible faults during their deployment in real conditions. Our

knowledge of the faults encountered during the field tests was

reflected in the design of the core module of our system, the FSM.

This module ensured that occasional faulty behaviour of the

individual modules did not result in a critical failure or system

deadlock. Still, the development of this complex system led to

numerous significant contributions beyond the state‐of‐the‐art in

robotics, which could facilitate the deployment of multi‐UAV
platforms in challenging scenarios motivated by current needs of

the industry. This was the main motivation for our paper and also for

the MBZIRC competition itself.

The results shown in numerous realistic simulations in Gazebo and in

experiments in a demanding desert environment have been presented in

this paper following by analysis of necessary improvements of the system

towards more general applications, which go beyond the MBZIRC 2017

competition. However, the most meaningful and credible verification of

the performance and the reliability of the system was achieved in the

MBZIRC competition, where our approach won the first place Challenge

3, on the basis of achieving the best score among 17 finalists selected

from 142 registered teams.
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Abstract

This paper presents a system for autonomous cooperative wall building with a team of Unmanned Aerial Vehicles (UAVs). The
system was developed for Challenge 2 of the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020. The wall
building scenario of Challenge 2 featured an initial stack of bricks and wall structure where the individual bricks had to be placed
by a team of three UAVs. The objective of the task was to maximize collected points for placing the bricks within the restricted
construction time while following the prescribed wall pattern. The proposed approach uses initial scanning to find a priori unknown
locations of the bricks and the wall structure. Each UAV is then assigned to individual bricks and wall placing locations and
further perform grasping and placement using onboard resources only. The developed system consists of methods for scanning a
given area, RGB-D detection of bricks and wall placement locations, precise grasping and placing of bricks, and coordination of
multiple UAVs. The paper describes the overall system, individual components, experimental verification in demanding outdoor
conditions, the achieved results in the competition, and lessons learned. The presented CTU-UPenn-NYU approach achieved the
overall best performance among all participants to won the MBZIRC competition by collecting the highest number of points by
correct placement of a high number of bricks.

1. Introduction

UAVs belong to one of the most studied topics in the field
of robotics due to the numerous possible applications. One
of the possible areas of the UAV deployment is in construc-
tion [1] where the UAVs can, for example, visually inspect ex-
isting construction sites, survey areas before construction starts,
or monitor security and safety of the sites [2, 3]. This paper
goes beyond these works to present a fully autonomous sys-
tem enabling physical interaction and not only inspection. The
UAVs directly take part in the construction and are used for
building walls. The proposed multi-robot system is designed
in order to autonomously build walls with only a little a priori
knowledge of the construction site. The system uses onboard
detection of bricks and wall structure locations using carried
camera and depth sensors. An initial scan of the construction
area is conducted using one UAV to find the locations of the
brick stack and of the wall building site. Afterwards, each UAV
is assigned to a particular stack part and wall segment to then
cooperatively build the wall according to a given wall pattern.
During the building process, each UAV repeatedly attempts to
grasp a brick from the assigned stack, delivers the brick above
the designated segment of the wall, and then precisely places
the brick on the wall. Figure 1 illustrates the scanning, grasp-
ing, and placing subtasks of the wall building.

The proposed system was developed by the joint CTU-
UPenn-NYU1 team for the participation in Challenge 2 of the

1Collaboration of the Czech Technical University in Prague, University of

MBZIRC 2020 [4]. Challenge 2 consisted of the wall build-
ing task where three UAVs and one Unmanned Ground Vehi-
cle (UGV) were assigned to autonomously build two walls —
one by the UGV and one by the UAVs. This paper presents
details of the system used for the UAV part of the challenge.
The challenge featured brick stacking for the UAVs contain-
ing 46 bricks, each with ferromagnetic plate on top to facilitate
grasping. Four types of bricks were present, each with differ-
ent color, weight, length, and earned points for placement. The
future wall structure for the UAVs consisted of four segments
arranged in a ‘W’ letter shape located 1.7 m above ground, ca-
pable of containing all the bricks from the stack in only two
layers. The goal of the challenge was to maximize collecting
points by autonomously placing the bricks on the wall accord-
ing to a given wall pattern in a given time limit.

The wall building approach by the CTU-UPenn-NYU team
exhibited the best performance among all participants of the
MBZIRC 2020 Challenge 2. During the two competition trials,
each with a duration of 25 minutes, the UAVs were able to grasp
a total number of 17 bricks and successfully place ten of them.
The UGV helped by placing one brick to fulfill the requirements
for winning the challenge. The CTU-UPenn-NYU team was
thus able to place the most bricks among the participants to
achieve a score of 8.24- far higher than the second best team
with a score of 1.33 points.

The solution proposed for the wall building task consists of
three main autonomous capabilities of the UAVs. The first is

Pennsylvania, and New York University.
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(a) (b) (c)

Figure 1: Illustration of the proposed UAV system for the wall building task showing images captured from the onboard camera during scanning
(a) and photos of UAV during brick grasping (b) and placing (c).

the scanning of the arena to find locations of the brick stack and
the wall. All detections from the one UAV performing the scan-
ning are used to create a topological map of the arena which is
created by employing statistical analysis of the detections using
known sizes and shapes of the brick stack and the wall seg-
ments. Distribution of the wall building task is then based on
sharing the topological map among the UAVs using Wi-Fi com-
munication and deterministic assignment of the brick stack and
wall parts to individual UAVs. Each UAV then creates a plan to
grasp and place according to a given wall pattern and assigned
part, and afterward repeats grasping and placing until battery
depletion or plan fulfillment.

The second primary capability is for brick grasping, which
requires precise navigation of the UAV to the center of the brick
marked by a white ferromagnetic plate. The most essential
part of ensuring precise grasping is robust and fast brick de-
tection. The color and Red-Green-Blue-Depth (RGB-D) cam-
eras provide sufficient information about brick position from
altitudes above the bricks and their fusion improves the robust-
ness of detection. The duration of brick detection for grasp-
ing was no longer than 7 ms and thus allowed the use of a vi-
sual servoing technique during the final approach to increase
grasping precision. A grasping state machine is used to gov-
ern various stages of approaching the brick, e.g., decides when
to switch from Global Positioning System (GPS) localization
to visual servoing. Finally, both the UAV estimated mass and
attitude are checked during grasping by the UAV control sys-
tem to abort grasping in close brick interactions when, e.g., the
brick is grasped far from the center of mass or the UAV mass is
transferred to the ground by its landing gear.

The last main autonomous capability is the placement of
a brick to a desired position on the wall structure. This task
is challenging as the grasped brick may influence wall detec-
tion due to the sensors possibly being obscured by the brick.
The brick may further influence the UAV control system as ad-
ditional brick mass could generate torque to the UAV if not
grasped exactly above the center of mass. The brick concealing
a significant amount both sensors’ views is compensated im-
mediately after successful grasping by removing such parts of
sensory data during consequent placing. As only the dimen-
sions of the wall structure were known a priori and not its po-
sition or orientation, the RGB-D camera alone is used for wall

detection. The wall detection and computation of the placing
position on the wall takes up to 10 ms. The brick placing uses
its own dedicated state machine to manage various placement
stages and considers that, e.g, only a part of the wall segment
can be visible and the placement is planned to be on the leftmost
free position on the wall.

The visual detection for autonomous wall building with
drones has to be robust, fast, and with minimal computation
demands. Detection during the scanning of the arena (i.e. look-
ing for both bricks and walls) takes up to 15 ms, detection of
brick with known color takes up to 5 ms, and the computation
of brick placement on the wall takes up to 10 ms. The wall
detection pipeline first detects the ground in the RGB-D data
by creating a histogram of measured distances to ground plane
transformed from RGB-D data using measurements from the
Inertial Measurement Unit (IMU). A number of highest dis-
tance values in the histogram are used as altitude measured by
the RGB-D sensor. Thresholding of the distances to ground
plane using the measured altitude is then used to a create a bi-
nary image with possible wall detections. Finally, the wall seg-
ments are verified by examining contour lines of the possible
detections to be parallel and in distance approximately equal to
wall width. Visual recognition of the bricks is mainly based on
white plate detection using color segmentation applied to Hue,
Saturation, Value (HSV) image from the color camera. The
contours of white segments are transformed to a plane paral-
lel to the ground plane in altitude equal to brick height. Such
transformed contours are then checked for the size of the white
plates. Finally, additional color thresholding of the HSV image
is used to identify different types of the bricks. All detection
functions take only one thread on the onboard computer, and
therefore allow enough computation power for the rest of the
system, e.g., control algorithms.

Automatic control of the UAV motion is vital for the pre-
cise grasping and placing of bricks. We build upon our success
from the first MBZIRC 2017 challenge for which we developed
a hybrid Model Predictive Control (MPC) tracking controller
[5]. An MPC feedforward tracker is coupled with the geomet-
ric tracking controller [6] to minimize a control error around the
pre-planned differentially flat dynamics and to provide us with
attitude tracking. The tracking controller is part of the provided
open-source UAV system [7]. The UAV system allows the use

2
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a visual servoing technique to estimate the states of the UAV
directly using observations of an object, i.e., the brick. With the
visual servoing, the control feedback loop is closed using only
the camera-based data and the onboard IMU. The visual ser-
voing removes the inaccurate GPS localization from the loop
for the duration of the grasping manoeuvre, significantly in-
creasing the accuracy of the grasping manoeuvre to an order
of centimeters. We empirically verified that relying on a tradi-
tional GPS introduces a significant localization position drift.
The potential GPS drift impacts the UAV control performance
to the extent of making a precise grasping manoeuvre an unfa-
vorable probabilistic event. Furthermore, we employed a real-
time scheduling of controller gains and dynamic constraints to
satisfy the varying conditions during the various stages of the
mission. This was especially important during the transitions
between the GPS and visual servoing stages of the flight where
the UAV feedback loop exhibited different properties, mainly
due to changing noise and delay characteristics of the UAV state
estimate.

In this paper, we present the overall approach and system
that won, by a significant margin, Challenge 2 of the MBZIRC
2020 in autonomously placing the most bricks on the wall. The
vision techniques for brick and wall detection that allowed for
precise vision-based grasping and placing have been detailed in
this paper. Description of the UAV control used in a closed-loop
with the visual detection of the bricks and the wall is given. The
multi-UAV cooperative wall building approach is described as
well, including the state machine of individual UAVs, creation
of a topological map of the arena, and the deterministic distribu-
tion of the multi-robot task. The whole system is open-sourced2

to allow the community to further build on our successful sys-
tem. Finally, the results from the competition along the lessons
learned are described.

The remainder of this work is organized as follows — the
rest of this section begins with an overview of related literature
works and then details the MBZIRC Challenge 2. Section 2 in-
troduces the hardware platform used for the wall building task.
The UAV control system is presented in Sec. 3.1. The overall
approach used for the task is then described in Sec. 4. Sec-
tions 5, 6, and 7 describe, in this order, the three most cru-
cial parts of the wall building system: the arena scanning, brick
grasping, and brick placing. Results achieved during the com-
petition are discussed in Sec. 8 and conclusions are drawn in
Section 9.

1.1. Related work

UAVs can be deployed in various scenarios in the field of
construction [1]. Visual inspection of construction sites, area
surveying prior to construction, and security and safety mon-
itoring are examples of such tasks [3]. Inspection of existing
structures, such as bridges [8], can also be considered among
these scenarios. Nowadays, each of these tasks can be per-
formed by considerably small UAVs that are manually piloted
or semi-autonomous. However, UAVs participating directly in

2https://github.com/ctu-mrs/mbzirc_2020_wall_building

physical construction and operating autonomously are still be-
ing considered, mainly in lab-controlled environments.

Authors of [9] proposed a system for building cubic truss-
like structures from simple nodes by a team of UAVs. The sys-
tem relies on a motion tracking system. Additional work on the
assembly of truss structures has been explored by the authors
in [10]. The main focus is on a distributed construction algo-
rithm to build a truss according to a given blueprint using a team
of UAVs. An approach for building tensile structures, such as
structures from ropes, using UAVs is presented in [11]. The
paper focuses on creating trajectories for UAVs with respect to
a built structure and on the UAV control required for building
elements with tension forces. Building bridges with cooperat-
ing UAVs using the tensile ropes is further described in [12].
Trajectory planning for UAVs for assembly and structure con-
struction is proposed in [13]. The authors focus on collision-
free planning for multiple UAVs performing the construction
task. In [14], a group of four UAVs are used to build a tower
from foam bricks. The paper describes the indoor application
where the positions of bricks for grasping are predefined and
UAVs rely solely on a motion capture system. The system is
thus very informed about its environment and serves as proof
of the concept of building structure from bricks by UAVs.

Research of UAVs for assembly and construction with a
main focus being on multi-robot cooperative aspects was part
of the ARCAS project [15]. An important capability of the
UAVs for direct participation in construction is the aerial ma-
nipulation and physical interaction with structures being built.
We refer to a thorough survey on the aerial manipulation [16].
In [17], control of aerial robots interacting with other objects
is examined for cases such as UAVs equipped with an arm
manipulator which could perhaps be used for building more
complex structures. In [18], an autonomous aerial helicopter
is also equipped with an industrial manipulator. A controller
with kinematic coupling is proposed to improve operation with
the manipulator onboard the UAV. Fully-actuated UAVs [19]
can also be considered for construction tasks due to having
higher stability during physical interaction from various tilt an-
gles. Authors of [20] propose a planning approach for struc-
ture construction with multiple UAVs equipped with a robotic
arm. The approach is addressed by consecutive assembly plan-
ning, task allocation planning, and action planning. In contrast
with the approach proposed in this paper, none of the state-
of-the art publications solve all the sub-problems required for
fully-autonomous operation, i.e., visual brick detection and lo-
calization, autonomous detection of the pickup and placement
locations, mission scheduling for multiple UAVs, control, state
estimation, and motion planning.

The herein presented grasping approach uses the visual ser-
voing technique that was previously mentioned for gasping
in [21]. The approach in [21] simplified the task to a one dimen-
sional problem with an external motion capture system control-
ling other dimensions. Such simplification is not possible for a
real outdoor experiment. The detection of an object for manip-
ulation with a robotic arm is discussed in [22]. In this work, a
stereo camera system is used for object detection in an outdoor
environment without a motion capture system. The speed of
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object detection is slow, taking up to 1 s and unusable for UAV
control and visual servoing. The presented work does not deal
with object placing and presents only preliminary results.

In [23], an autonomous aerial pickup and delivery is ap-
proached by using a magnetic gripper. The paper focuses on a
grasping device employing Electro Permanent Magnet (EPM)
and on visual servoing for precise object grasping. The work is
motivated by MBZIRC 2017. Similarly, the work [24] focuses
on object pickup and delivery. However, both the pickup loca-
tion and the delivery location are known and marked. There-
fore, this task is similar to the gathering of ferrous objects in
the MBZIRC 2017. The approach presented in this paper covers
full visual servoing in all three dimensions. Furthermore, we do
not rely on Global Navigation Satellite System (GNSS) Real-
time Kinematics (RTK) thanks to our robust picking mecha-
nism that can compensate for real-world phenomenons.

Related to the previously discussed Challenge 2 of the
MBZIRC 2020 is Challenge 3 (Ch3) of the MBZIRC 2017
which featured a treasure hunt scenario where metallic disk-
shaped objects were searched for in an arena by three UAVs
and collected to a common box. In contrast to the treasure
hunt scenario, the wall building task requires additional precise
placement on a wall and also features a UGV within the chal-
lenge. However, grasping with a magnetic gripper [25] and re-
quired cooperation of the UAV team are the same for both chal-
lenges. The team lead by Czech Technical University (CTU)
won the treasure hunt scenario of the MBZIRC 2017 [26]. The
approach [26] also contains initial scanning of the arena. How-
ever, the grasping in [26] does not use the herein employed vi-
sual servoing and instead uses a more precise RTK GPS. Most
importantly, the collection box in the Ch3 of the MBZIRC 2017
was in an a priori known location and of decent size.

The proposed system for the MBZIRC 2017 Ch3 by Uni-
versity of Seville [27] uses a search phase where the arena is
divided and cooperatively scanned. A centralized Ground Con-
trol Station (GCS) is used for object detection stochastic fil-
tering and further heuristic cooperative planning is used to as-
sign individual UAVs to collect particular detected objects. The
GCS also resolves potential conflicts and minimizes probability
of collision. The object detection uses color segmentation and
clustering, while the grasping employs a visual-based controller
to precisely hit the target. The drop is done using the priori
known position of the dropping box. The employed UAV plat-
form uses standard GPS and IMU localization while the pickup
mechanism uses EPM [28].

Team from ETH Zurich [29] for Ch3 of the MBZIRC 2017
used an approach with repeated switching between exploration
and greedy pickup of the closest detected object with conse-
quent delivery. The exploration uses a predefined zig-zag path
during the scanning of an assigned arena part and switches to
pickup/delivery mode once a valid target is detected. The sys-
tem is decentralized with minimal data sharing of odometry for
collision avoidance and drop box semaphore for dropping syn-
chronization. The object detection is based on color threshold-
ing and a blob detector with consequent classification of blob
geometrical shape features for filtering. The detected objects
are further tracked and used for pose-based visual servoing. The

Nonlinear Model Predictive Controller (NMPC) [30] is used for
trajectory control. The localization is based on a combination of
RTK GPS and visual-inertial odometry. The grasping employs
EPM [28] gripper with Hall effect sensors grasp feedback.

Approach of the University of Bonn [31] for the Ch3 of
the MBZIRC 2017 divided the arena into sectors with one for
each drone. Each UAV broadcasts its position, navigation tar-
get, flight state, and detected objects outside of its own sector.
Exploration of each sector is done with one UAV using a spiral
pattern with random start. Object detection defines the likeli-
hood of pixels belonging to colored object to be used further in
the blob detector. The detected blobs are filtered based on blob
shape and color parameters. The approach uses visual detection
of the drop box in contrast to other teams. A variant of MPC
based on precise trajectory generation [32] is used for control-
ling the UAVs. The UAV platform uses standard GPS and IMU,
and the grasping device uses an electromagnet on a telescopic
rod with a ball joint.

The above presented systems addressing the MBZIRC 2017
challenge [29, 31, 27] including the winning solution [26] do
not provide sufficient mechanisms for solving the 2020 chal-
lenge, despite being state-of-the-art in the field. The aforemen-
tioned solutions require delivery of much larger objects that
pose more difficult requirements on the precision of grasping
and control. The placement of the objects is a key factor, which
did not need to be solved in the previous installment of the chal-
lenge. The 2020 challenge requires precise placement of the
bricks in 3D environment, which is even more challenging due
to implied higher risk for the UAV since the UAV is required to
fly nearby a complex 3D structure.

Overall, the presented wall building task of MBZIRC 2020
featured a very challenging scenario that required both au-
tonomous outdoor grasping and placing using onboard sensors
only. So far, such construction tasks were restricted mostly
to controlled lab environments with motion capture systems or
were not entirely autonomous. Furthermore, Challenge 2 of the
MBZIRC 2020 is more complex than the former Ch3 of the
MBZIRC 2017. The wall in MBZIRC 2020 has to be localized
automatically due to its arbitrary position in each round and the
brick placement has to be very precise for a brick to stay on the
wall after placement.

1.2. Problem overview
Challenge 2 of the MBZIRC 2020 featured a wall build-

ing task carried out by three UAVs and one UGV. Different
wall placement areas and stacks of bricks with which to build
were assigned for the UGV and for the UAVs. The layout of
the wall building arena, with size of 40 × 50 × 20 m, can be
seen in Fig. 7. This paper concerns the UAV part of the Chal-
lenge 2, therefore we will further focus on the challenge de-
tails concerning this part. A total of four colored brick types
— RED, GREEN, BLUE, and ORANGE — were available for
possible placement on a wall, each with different weight, shape,
and points for placing. Table 2 summarizes length, weight, and
scoring of each brick type.

The ORANGE brick could be carried and place by a sin-
gle UAV or by a group of UAVs. However, the UAV size was

4

CHAPTER 4. REMOTE SENSING BY UAVS 96/171

CTU in Prague Department of Cybernetics



Brick color Length/m Weight/kg Score
RED 0.3 1.0 6

GREEN 0.6 1.0 8
BLUE 1.2 1.5 10

ORANGE 1.8 2.0 20

(a) Brick sizes, weights, and score points.

(b) Illustration of the bricks’ visuals.

Figure 2: Parameters of the bricks present in Challenge 2 of the
MBZIRC competition [4].

penalized if it exceeded a dimension limit, so a collaborative
approach was encouraged. Each brick was also equipped with
a ferromagnetic white plate in the middle (and additionally to
the sides of the orange brick) to be grasped by a magnetic grip-
per allowing for multi-robot grasping. Initial layout of the brick
stack for the UAVs was in 8 × 4 m area with six rows of bricks
where two were reserved for 24 RED bricks, two for 12 GREEN
bricks, one for six BLUE bricks, and one for four ORANGE
bricks. The UGV had a different brick stack area that was dis-
tinguishable from the UAV stack by its properties, as later dis-
cussed in Sec. 5.

The wall for UAVs had a shape of the letter ‘W’ and con-
sisted of four segments. Each segment was 4 m long and placed
on a 1.7 m high base. Convex U-shaped channels with trans-
parent sides were attached to the top of the segments to sim-
plify placement and to support the already placed bricks in case
of wind. The order in which the bricks were supposed to be
placed on the wall was given just before the trials in order to
build a wall in a given pattern. The given wall pattern consisted
of randomly ordered 4 RED, 2 GREEN and 1 BLUE brick for
each layer of the first three segments. The last channel was
reserved for ORANGE bricks and can fit two such bricks per
layer. Each UAV channel could contain two layers. The final
score was based on reward of placed bricks and was further de-
creased based on number of mistakes in the given wall pattern
using a rather complicated formula not relevant to the approach
description. Therefore, the goal of Challenge 2 was to build as
many bricks as possible according to the wall pattern within 25
minutes of the challenge trial.

2. Hardware platform

This section describes the UAV platform shown in Fig. 3
which was used for all UAVs deployed by the CTU-UPenn-
NYU team in Challenge 2 of the MBZIRC 2020.

The utilized UAV quadrotor platform is composed of only
commercial off-the-shelf (COTS) parts and rather inexpensive
components and sensors. The brick and wall detection relies
on one fish-eye color camera and one RGB-D camera. The
global localization of the UAVs in the arena is based on a stan-
dard GPS receiver accompanied by Light Detection and Rang-
ing (LiDAR) sensor for measuring altitude. The grasping was
done using an in-house designed electromagnetic gripper with
grasp feedback sensors. Finally, the basic stability of the plat-
form was controlled by COTS flight controller governed by an
onboard miniature computer that was used for all computations
and autonomy during the wall building task.

The platform is based on the Tarot 650 Sport quadrotor
frame with four Tarot 4114 320Kv motors, each connected to
BLheli32 51A electronic speed controller and equipped with a
15-inch carbon fiber propeller. The thrust of individual motors,
and thus the lowest-level control of the platform, is governed by
the PixHawk 4 flight controller which receives angular rate and
total thrust commands from the control pipeline running on the
onboard computer. The primary localization system is based on
the ublox Neo-M8N GPS receiver connected to the flight con-
troller. Intel NUC Kit NUC8i7BEH with Intel i7-8559U proces-
sor and 8 GB of RAM are used for onboard high-level compu-
tations including calculation of control commands, high-level
planning, brick and wall detection, and others. Ubuntu 18.04
LTS operating system is installed along with Robot Operating
System (ROS) [33] Melodic flavor which integrates the whole
UAV software system.

Apart from the GPS-based localization, the Garmin LI-
DAR Lite v3 distance sensor is used to measure the UAV alti-
tude above ground. Brick detection, primarily during grasping,
uses the RGB mvBlueFOX-200w camera with global shutter,
752 × 480 px resolution, and up to 93 frames per second (fps).
The fish-eye camera lens Sunex DSL215 is used to significantly
enlarge the footprint of the camera on the ground. The camera
is set to 20 fps, which is a sufficient value for visual servoing
during grasping. To avoid obstruction of both the LiDAR and
the mvBlueFOX camera by the grasped brick, both sensors are
placed on the left side of the platform using a custom holder.
Figure 3 shows the placement of the individual sensors on the
platform. Down-facing Intel RealSense D435 RGB-D camera,
with depth Field-of-View (FOV) of ≈ 90◦×58◦ and range of up
to 10 m, is primarily used for the wall detection. Depth resolu-
tion of the RealSense is up to 1280 × 720 px with a frame rate
up to 90 fps. For this challenge, the resolution 848 × 480 px is
used with 30 fps. The RealSense camera is mounted under one
of the motors and rotated towards the geometric center of the
UAV. The mounting points of both RealSense and mvBlueFOX
cameras enable navigation close above the walls and bricks.

Grasping of the bricks is done using two YJ-40/20 electro-
magnets, each with up to a 25 kg equivalent of holding force.
The magnets are connected to a common rod equipped with a
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Figure 3: UAV platform for the brick challenge.

spring mechanism along the z-axis for dampening the shocks
when landing on a brick gripper-first. Each magnet is equipped
with an integrated Hall effect sensor to verify proper attachment
of the ferromagnetic part of the brick to the magnet. The elec-
tromagnets are rated to operate at 12 V, however, operation at
24 V is selected instead to further increase the grasping force at
the cost of higher power consumption and heating.

3. Preliminaries

3.1. UAV control system

Multirotor UAVs are notable for their inherently unstable
dynamics. Continual corrections to their flight need to be sup-
plied by a feedback controller at a rate of approximately 100 Hz
to maintain stable flight. Moreover, automatic feedback con-
trol requires an accurate estimate of the UAV dynamical sys-
tem states. The tasks of state estimation and feedback control
are complemented by several others, such as automatic feed-
back reference generation, trajectory following, take-off, land-
ing, and more. All these vital subsystems are encapsulated in
the MRS UAV System [7], an open-source3 standalone and gen-
eral control pipeline (see Fig. 4). The MRS UAV System was
used by the CTU-UPenn-NYU team in all the challenges of the
MBZIRC 2020 competition. The provided framework aids de-
ployment of autonomous UAVs, allowing focus mainly on the
diverse scenarios of the competition. It relies on the PixHawk
embedded flight controller to control the UAV attitude rate ω
and thrust T , while the rest of the pipeline is executed on an
onboard high-level computer. The Mission & navigation block,
which is the core topic of this manuscript, provides the MRS
UAV System with desired trajectory references to fulfill the ob-
jectives of the challenge.

3.2. UAV state estimation

The state estimation part of the MRS UAV System fuses data
from onboard sensors into multiple independent hypotheses of
the UAV state. In context of this particular challenge, the UAV

3http://github.com/ctu-mrs/mrs_uav_system

state is estimated using three individual estimators: a GPS-
based localization, an optic-flow odometry, and visual servo-
ing relative to an observed brick. These three sources of local-
ization can be used independently depending on the particular
situation. Transitions between the stack of bricks and the wall
area is made using the GPS-based estimation and the grasping
of a brick is achieved via the visual servoing. The optic-flow
estimator is used as a backup in case the visual servoing fails.
The MRS UAV System provides a state estimate consisting of
the UAV body frame (B) position rB,W and orientation RB,W
within a world frame (W). Figure 5 depicts the coordinate
frames used within the control pipeline. The absolute position
of the world frame depends on the actively used state estimator.
When the state estimator is changed, the control pipeline syn-
chronizes a virtual jump between the old and new coordinate
frame, such that it is not noticeable to an outside observer.

3.3. UAV feedback control and tracking
The tracking controller, as depicted in Fig. 4, encapsulates

a MPC feed-forward tracking approach [5] for generating a
smooth control reference and a geometric tracking controller on
SE(3) for tracking the control reference [6]. We also utilize an
alternative MPC-based feedback controller [7], when the state
estimate provided by the onboard estimator might be unreliable
(e.g., while grasping a brick). The input to the control pipeline,
supplied from the Mission & navigation block, can be a 3D
position and heading reference (rd, ηd) or a time-parametrized
reference trajectory

{
(rd, ηd)1 , (rd, ηd)2 , . . . , (rd, ηd)k

}
. (1)

4. Autonomous multi-UAV wall building

This section describes the proposed high level approach for
the wall building task, the state machine of individual UAVs,
and the approaches used for the multi-robot coordination of the
task. The proposed approach for wall building is designed to
distribute the task among the three UAVs as much as possi-
ble while mitigating possible mutual collisions. Furthermore,
we refer to the individual UAVs as UAV1, UAV2, and UAV3.
The task starts with UAV1 scanning the arena in order to find
the positions of the wall and the stack of bricks for the UAVs.
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Figure 4: A diagram of the system architecture. The Mission & navigation part supplies position and heading reference (rd, ηd) to a tracking
controller. The Tracking controller encapsulates feed-forward tracking and feedback control techniques to produce desired thrust and angular
velocities (Td, ωd) for the Pixhawk embedded flight controller. The State estimator fuses data from onboard sensors to create an estimate of the
UAV translation and rotation (x, R). The Nimbro network manages communication between the UAVs and allows execution of a coordinated
multi-robot scenario.
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Figure 5: The image depicts the world frame W = {ê1, ê2, ê3}
in which the 3D position and orientation of the UAV body is ex-
pressed. The body frame B = {b̂1, b̂2, b̂3} relates toW by translation
rB,W =

[
x, y, z

]ᵀ and rotation RB,Wᵀ, respectively. The UAV heading
vector h, which is a projection of b̂1 to the plane span(ê1, ê2), forms
the heading angle η = atan2

(
b̂ᵀ

1 ê2, b̂ᵀ
1 ê1

)
= atan2

(
h(2),h(1)

)
.

The scanning process is described in detail Sec. 5. After scan-
ning, the positions of mapped wall channels and the individ-
ual brick type stacks are shared to the other UAVs (UAV2 and
UAV3). Each UAV is then assigned to one of the three first
(non-ORANGE) channels to build the bricks sequentially from
one side according to the given pattern for individual channels.
The brick stack area is also divided along the longer side, such
that UAV1 and UAV3 are grasping from the sides and gradually
progressing to the middle of the area with each grasped brick,
while UAV2 is grasping from the middle part of the area. How-
ever, due to the UAV stack area being a size of 8 × 4 m, only
UAV1 and UAV3 were flown simultaneously in the competi-
tion while UAV2 waited till the others have finished their mis-
sion to increase safeness. The task then proceeds with grasp-
ing and placing according to the wall pattern assigned to each
individual UAVs. The sensor connection and battery state are
checked before each grasping begins and the UAV lands after
task completion or in the case of battery depletion. The used
state machine is further described in the next section while the
multi-robot aspects are detailed in Sec. 4.2.

4.1. UAV state machine

The state machine used onboard each UAV to solve the wall
building task is depicted in Fig. 6. It is implemented in FlexBE
Behavior Engine [34] based on the state machine framework
SMACH [35]. The whole system is integrated in the ROS.

The state machine starts by the Prepare UAV and wait for
start procedure [S1] that initializes all UAV system parts, arms
the UAVs, and awaits trigger from remote control to start wall
building task. The scanning UAV1 then preforms Take-off [S2]

immediately after the task starts. Meanwhile, both UAV2 and
the UAV3 are in the Wait for map state [S3] where they wait for
arena map shared from UAV1. UAV1 scans the arena (Scanning
procedure [S5]) detailed in Sec. 5 then shares the four mapped
wall channels and brick stack designed for the UAVs. When
the map is received by UAV3, it continues with Take-off [S2] as
it is used with UAV1 for simultaneous wall building. UAV2
waits for the other two drones to land (Wait for finish state [S4])
before continuing with the Take-off and further building of the
wall. The wall building then continues with Assign wall and
bricks plan state [S6] that contains the deterministic method that
assigns different wall channels, flight altitude, and grasping po-
sitions above the brick stack to each UAV. This state creates a
plan of individual grasping and placement attempts according
to assigned channel pattern. It is discussed more in the follow-
ing Multi-robot coordination section. The UAVs then proceed
with Assign next brick state [S7] that selects the next brick ac-
cording to the plan (assuming there are still bricks in the plan
to be placed). If not, the UAV switches to Land procedure [S8]

and lands at the UAV take off position. Before attempting the
actual grasping, the Check UAV state [S9] makes sure that the
sensors necessary for the grasping and placing tasks are con-
nected. Furthermore, the battery state is checked and if both
the sensors and the battery are in ready-to-fly conditions, the
UAV proceeds with grasping. Otherwise, the UAV switches to
the Land procedure. In the Grasping procedure [S10], the UAV
initially flies to the mapped grasping position for the current
brick type in the stack that is assigned to the particular UAV.
Afterwards, the procedure continues to the lower-level grasp-
ing state machine that includes, e.g., visual brick servoing for
precise relative positioning of the UAV above the brick, as is
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Figure 6: UAV state machine for the wall building task.

described in Sec. 6. In case of grasping failure, the UAV contin-
ues with assigning the next brick from the plan in order to try,
e.g., a different brick type or brick closer to the middle stack
area in case of side UAVs. When the grasping is successful, the
Placing procedure [S12] starts with flying (with a heading min-
imizing the brick air resistance) to a designated wait position
next to wall using the assigned flight altitude. It then flies to the
fixed altitude above the mapped position of the assigned wall
channel where a lower-level placing state machine begins. Dur-
ing the placing procedure, the brick is checked for having been
dropped or being badly placed. In both cases, the same brick is
assigned in Assign current brick state [S11] and the UAV proceed
with check and grasping. In case of successful placement, the
wall building continues to the next brick in the plan [S7]. Notice
that all states [S5], [S6], [S7], [S9], and [S12] can result in failure that
would switch the UAV to landing at take-off position. How-
ever, almost all states contain an additional hard failure mode
in which the UAV performs an emergency landing at its current
place.

4.2. Multi-robot coordination

The multi-robot coordination with three UAVs for the wall
building task was proposed on two levels: the first being based
on communication and the second utilizing known arena prop-
erties and thus mitigating possible UAV collisions.

The communication between UAVs is based on 5 GHz Wi-
Fi network together with the NimbroNetwork [36] ROS package
that handles sharing certain messages over Wi-Fi. The contin-
uously shared messages are the predicted trajectories and diag-
nostics of the used onboard MPC [5]. The predicted trajecto-
ries are mainly used for collision avoidance purposes while the
diagnostics is used as a “heartbeat” of the flying UAVs to be
used, e.g., for triggering UAV2 take-off after other UAVs finish
or stop responding. Furthermore, the current drone positions
and the arena map are shared among the UAV team. The arena
map is shared from the scanning UAV1 once the scanning is
finished and is used to proceed from the Wait for map state [S3].
The map itself contains position and rotation (x, y, heading) of

all four wall channels and line segments along the individual
brick types.

The arena properties that are used to mitigate collisions are
the possible partitioning of the UAV wall into four channels
and the division of the brick stack area to three parts along the
longer side. Only the first three wall channels (non-ORANGE)
are handled, each by different UAV and filled sequentially from
one side according to the given wall pattern (i.e., from the
left in the case of Fig. 7). Each UAV has its own brick stack
part where the grasping maneuver of selected brick type starts
at the mapped line of that particular brick type (see Fig. 7a).
UAV1 and UAV3 begin grasping initially on the outside of their
brick stack parts and gradually progress to the middle. UAV2
starts the grasping maneuver in the middle of its part. Fur-
thermore, the stack part of UAV1 and UAV3 are optionally
swapped, minimizing the distance between a particular chan-
nel and stack part. Finally, each UAV has its own flight altitude
(z ∈ {3.0, 4.0, 5.0}m) that is used between the assigned stack
part and wall channel. See Fig. 7a for the arena layout and par-
titioning of the individual wall channels and brick stack among
the UAVs.

5. Scanning for bricks and wall placement

The proposed approach begins with scanning the arena as
the brick stack and wall channel locations are initially unknown.
The scanning task as described throughout this section includes
planning of the scanning path, detection of both the bricks and
wall channels, filtering and tracking of the detections, and, fi-
nally, in creation of the topological map of the brick stack and
wall channels.

5.1. Path planning for scanning the arena

The path planning for scanning of the arena is a task of cov-
erage path planning [37] where the entire arena has to be be
covered with both the RGB BlueFOX camera and the RGB-D
RealSense sensors. The whole task is handled by one UAV as
topological map creation from multiple UAVs would require
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(a) Illustration of the wall building challenge arena layout (b) Photo of the UAV arena

Figure 7: Wall building challenge arena layout (a) and photo from the competition (b).

a high-bandwidth network and synchronization of all detec-
tions. The path is composed of classical zig-zag primitives with
smooth curvature constrained by turning radius ρ computed as
ρ = v2

t /amax. The used turning velocity vt and maximal accel-
eration amax are 1.5 m s−1 and 2 m s−2, respectively. Scanning
speed is however 3 m s−1, meaning that the scanning UAV is
accelerating and decelerating after and before turns. The final
zig-zag path, as shown in Fig. 21 in the Sec. 8, is then calculated
with respect to the ≈90◦ RealSense horizontal FOV (which is
smaller than the BlueFOX camera lens), and also with respect
to the set scanning altitude of 4.5 m (due to limitations of the
RealSense distance measurements quality).

5.2. Wall detection

The wall detection method uses the onboard RealSense
D435 sensor. As mentioned in [38], the accuracy of this sen-
sor depends on the selected resolution and parameters of the
sensor. The RealSense was dedicated for the improvement of
brick detection primarily from short distances. Therefore, the
image resolution was set to 848× 480 px with a minimal detec-
tion distance of 0.175 m. The selected resolution has a further
influence on depth accuracy. Therefore, while scanning from
altitude 4.5 m, the root mean square (RMS) error of the dis-
tance measurements is ≈ 0.6 m. Such measurement error is for
the worst case scenario in an outdoor environment where it also
depends highly on the target’s texture.

The first step of the wall detection method is to find the
ground plane. As the UAV orientation is known, it only seeks
to find the UAV height above the ground. The arena for Chal-
lenge 2 had an almost flat surface with the brick height at 0.2 m,
the pillar of bricks for UGV with 0.6–0.8 m height, and a wall
height of 1.7 m. The UAV is equipped with down-pointing
Garmin LiDAR lite v3 sensor to measure UAV height, but the
sensor can also point to an obstacle. The LiDAR height mea-
surement was not used during the grasping or placing of a brick.
Instead, we used a ground plane distance estimated from the
RealSense stereo camera. The orientation of the UAV is esti-
mated using the onboard IMU (tilt) and magnetometer (head-
ing).

To speed up the detection, the input depth data with resolu-
tion 848×480 px are reduced to resolution 106×60 px by select-
ing minimal valid value (greater than zero) from each 8 × 8 px
sub-image. The minimal value filter is used to reduce the size
of the input data and to simultaneously remove outliers with in-
valid data of zero or measurements that are higher than actually
possible.

The measured sensor data are then rotated to the world co-
ordinate system. The depth measurement d = d (x, y) represents
a 3D point

p =

[
d · x − cx

fx
, d · y − cy

fy
, d

]ᵀ
, (2)

where cx, cy, fx, fy are parameters of the RealSense camera re-
ceived from factory calibration. Firstly, we transform the mea-
surements pS from the sensor frame S to the UAV body frame
B as

pB = RS,BpS + rS,B, (3)

where RS,B is the rotation fromS toB and rS,B is the translation
from S to B. We then similarly transform the measurement
from the body frame B to the world frameW:

pW = RB,WpB + rB,W. (4)

Therefore, the final transformation is written as

pW = RB,W
(
RS,BpS + rS,B

)
+ rB,W

= RB,WRS,BpS + RB,WrS,B + rB,W,

to obtain pW =
[
pWx , pWy , pWz

]ᵀ
. However, for object detection

only the z component pWz is important and RB,WrS,B + rB,W
is constant for one measurement. The altitude of the point rep-
resenting depth measurement d = d (x, y) at pixel coordinates[
x, y

]
is defined as

pWz = d · Rz

[
x − cx

fx
,

y − cy

fy
, 1

]ᵀ
+ r, (5)
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where Rz ∈ R3 is the last row of the rotation matrix R =

RB,WRS,B and r is a constant value for one measurement. This
simplification speeds up computation by 3 times.

The altitude of the UAV is then computed from a histogram
of altitudes of all points in the reduced 106×60 px image. Based
on the experimental evaluations in desert environment prior to
the competition, altitude of the UAV is estimated as a value for
which more than 1000 px have a larger or equal measurement.
If the detected distance is bigger than 3.5 m, the accuracy of the
RealSense sensor decreases and the UAV altitude combines the
Garmin LiDAR measurement and RealSense measurement.

The next step is to create a binary image Ithr by thresholding
all pixels with an altitude higher than 1 m above the ground (the
height of the wall is 1.7 m and the accuracy of the RealSense
sensor from an altitude of 5 m is 0.6 m). The following steps in
the Alg. 1 use the OpenCV functions [39].

Algorithm 1: Wall detection
Input: Ithr − thresholdedimage
Output: (x, y, α) — center of the wall segment with α wall

rotation
Iclo = morphology close(Ithr) // OpenCV functions

erode, dilate

Contours = f indContours(Iclo) // OpenCV functions

findContours

Contourstrans f orm = ∅
for p ∈ Contours do

if p is not at border then
Add R · p into list Contourstrans f orm

Linesapprox = approxPolyDP(Contourstrans f orm) // OpenCV

functions approxPolyDP

for l1, l2 ∈ Linesapprox do
if |l1 × l2| < thr1 then // l1 is parralel to l2

if |l1 − l2| ≈ wall width then // distance l1 to

l2 is correct
output (x, y, α) — (x, y) is center between l1 and

l2, α — is l1, l2 orientation

The functions morphology close, f indContours, and
approxPolyDP are from OpenCV library. The last step of
the Alg. 1 is testing for whether the distance between two
lines is correct. This test compares the distance of endpoints
of one line from the second line and vice versa, but this test
does not recognize whether the lines are parallel and opposite
to each other. To test this feature, the minimal rectangle that
contains all endpoints of both lines is created. The length of
this rectangle has to be less than a 0.8 sum of both lines and
the width of this rectangle should be approximately equal to
wall width, 0.25–0.40 m. Positions of the lines with respect to
minimal rectangle is shown in Fig. 8.

The results and various stages of the wall detection method
are depicted in Fig. 9.

5.3. Brick detection

Detection of the bricks using the mvBlueFOX color camera
is based on the white plate detection in the center of each brick.

Figure 8: Positions of the wall border lines in a minimal containing
rectangle. Wrong position of the parallel lines is show on the left and
the correct position on the right.

Table 1: HSV ranges for color segmentation.

Hue Saturation Value

min max min max min max
White 0 180 0 60 180 255
Red1 0 8 70 255 80 255
Red2 160 180 70 255 80 255
Green 44 80 60 255 60 255
Blue 80 130 60 255 60 255

The position of a brick in global world is based on known alti-
tude and orientation of UAV and the known brick height. The
white detection is based on simple color segmentation using
OpenCV function inRange() applied to a HSV image. The HSV
image is created by function cvtColor (for color space conver-
sion) from the original color camera data. The HSV image is
further used for red, green, and blue detection. The parameters
for white, red, green, and blue segmentation are listed in Ta-
ble 1, where hue is from interval 〈0, 180〉, with saturation and
value from interval 〈0, 255〉.

The method that finds a white plate in the segmented im-
age is described in Alg. 2. After segmentation, the image is
processed by morphological closing operation and the contours
are computed by OpenCV findContours() function with chain
simple approximation. All points on contours are then undis-
torted and transformed into a plane parallel to the ground plane
with height equal to the brick height of 0.2 m. The lenses used
for the color camera are very wide with a horizontal FOV of
185◦; therefore we use the Ocam toolbox [40] for omnidirec-
tional cameras. The undistortion operation is done simultane-
ously with the rotational transformation to the global coordinate
system in order to speed up the computation. Finally, a convex
hull of points in the global coordinate system is found and used
for brick classification.

If the entire white segment is inside the camera image, then
the correctness of detection depends only on the size of the min-
imal rectangle area that contains the border of white segment
transformed into the world coordinate frame. If the UAV is
close to the brick, the white segment can cross the border of
the image, so that the entire white plate is not in the camera
image. If the white segment forms a U shape (i.e. shape from
two parallel lines and one perpendicular line) then the center of
the brick can be calculated not as the center of the transformed
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(a) (b) (c) (d) (e)

Figure 9: Original depth data (a) used for computing the result of the wall detection (b). The depth data are first filtered to lower resolution (c),
then thresholded using wall height (d), and applied with the morphological closing operation (e).

area, but as a point with correct distance from the transformed
border.

The results of the brick detection algorithm from the scan-
ning altitude 4.5 m are depicted in Fig. 10. Details of trans-
formed points to a global coordinate system with illustrated
brick detection is shown in Fig. 11. The better and more ac-
curate detection from a lower altitude is depicted in Fig. 12.
In results from brick grasping (see Fig. 13), it can be noticed
that only part of the white plate is visible and the correct brick
position has to be calculated from the border shape.

5.4. Brick and wall filtering

Each detected brick and wall segment is filtered and placed
in a map. The map consists of a bank of Linear Kalman Fil-
ters (LKFs) that maintains a smooth hypotheses of each object
and provides stable references during grasping and placing at-
tempts. Upon detection, each object is first checked for a series
of preconditions to be later fused in the map:

• the object is excluded, if its coordinates are within 5 m
from other UAV target,

• objects situated outside of the designated challenge area
are excluded,

• bricks whose attempt to grasp was previously unsuccess-
ful is excluded,

• wall segments outside the expected height range
[1.0, 2.3] m are excluded.

The objects which pass the preconditions are matched with their
nearest neighbour in the map. In the case of a brick, a stan-
dard correction to the LKF is formed, containing the brick’s x,
y, z world coordinates and heading. The wall segments also
contain their length, which is an important factor for match-
ing the measurements to the map. The wall segment detections
are projected orthogonally to a candidate hypothesis to obtain a
measure for evaluating the similarity of the segments. When no
match is found for the detected object, a new instance of LKFs
is created and placed in the map. Each hypothesis in the map
maintains a counter for the number of corrections that were ap-
plied to the instance of the LKF.

Post-processing of the map is applied periodically during
flight to merge nearby hypotheses by combining their states in
the ratio of the number of corrections in each hypothesis. This
is required due to the drift of the GPS localization system which
causes the objects to drift even in the time span of a single flight.

The post-processed detection map is later used to obtain a topo-
logical estimate of important sectors in the map (e.g. UAV wall
area, UGV wall area, UAV brick area, and UGV brick area).

5.5. Topological map creation

The wall and brick detections are saved and filtered in the
detection map during the entire scanning flight in order to cre-
ate the topological map of the arena. It is essential to precisely
map positions of the wall channels and the individual brick type
stacks (as shown in Fig. 7a), to determine wall building plans
for individual UAVs. Map creation had to manage possible
wrong detections, filter out the UGV bricks present in the arena,
and correctly decide the order of wall channels to follow for the
prescribed wall pattern. Figure 22 in the results section shows
an example of the mapped wall channels and bricks.

The brick and wall detections received from the detection
map are handled separately as they were placed independently
in the arena. Initially, all bricks with a low number of cor-
rections (empirically set to 6 corrections) are filtered out and
considered detection noise. Next, a Gaussian Mixture Model
(GMM) [41] for two clusters is estimated using the detections’
(x, y) position in order to separate UAV and UGV brick stacks.
Only the detections which are close (within 6 m) to one of the
two cluster means are kept and a Principal Component Anal-
ysis (PCA) [42] with two components (due to the data being
two-dimensional in (x, y)) is applied to both clusters. The PCA
returns two variances for each cluster effectively proportional
to width and height of the arbitrarily rotated UAV and UGV
brick stacks. The UAV stack is then selected as the one with
the larger width. A median filter together with outlier removal
(bricks farther than 8 m from the median) is then iteratively used
for the UAV stack until the median converges, or for a limited
number of iterations. The line segments along the brick types
(see Fig. 7a and Fig. 22b) are formed from the brick (x, y) mean
position of individual brick types and from the median heading
of all remaining bricks.

The walls from the detection map are also first filtered out in
case of no corrections of the particular wall. The iterative me-
dian filter with outlier removal (of wall centers farther than 10 m
from the median), similar to the one for the brick detections,
is then used to find the most perspective location of the ‘W’
letter-shaped wall segments (see Fig. 7a). After the median fil-
tering, the remaining wall segments are clustered together such
that each detection is assigned to a cluster with horizontal dis-
tance within 3 m and heading distance within 0.5 rad. The av-
erage position and rotation of the clusters are then assumed to
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(a) (b) (c) (d) (e) (f)

Figure 10: Brick detection based on an original color camera image (a) with consequent white color segmentation (b) and contour detection (c).
The segmentation results are shown for red (d), green (e), and blue (f) colors.

Figure 11: Detail of contours and brick detection results from Fig. 10
including the incorrect orientation of several bricks from scanning al-
titude.

(a) (b)

(c)

Figure 12: An original image from the color camera, white color seg-
mentation result, and the contours and brick detection results.

be the individual wall channels. Line intersections of such wall
channels are used to decide the order of wall channels in the
‘W’ letter shape while only intersections within short distance
(≤ 6 m) from channel centers and with rather perpendicular mu-
tual heading angle (≥ 0.7 rad) are further used. A channel with
only one intersection is then used as the first in the string of
the ‘W’ shape. Alternatively, an intersection with the highest
sum of distances from wall centers is iteratively removed until
a wall with one intersection exists. Afterwards, the other wall
channels are added to the selected first channel according to the
remaining intersections, and if more options exist, by select-
ing the intersection with shortest distances from wall centers.
Finally, the channel centers, lengths, and headings are deter-
mined (see Fig. 22b) based on the intersections of the formed
‘W’ shape wall structure.

6. Brick grasping

Brick grasping is the second primary capability for the wall
building task. The proposed approach for grasping uses a fu-
sion of color and depth camera sensors for brick detection and
visual servoing for precise control during grasping attempts.
The grasping state machine is used to govern various stages
of grasping with UAV mass and attitude being checked during
grasping to abort in case of, e.g., a grasp far from the brick
center of mass.

6.1. Brick detection and localization
Brick grasping is based on fast and robust brick detection.

A fusion of detections from the color camera and from the
depth RealSense sensor is used to improve the robustness. The
method of brick detection from the color camera is the same
as is used during the scanning (described in Sec. 5.3). Brick
detection from the RealSense sensor is similar to the wall de-
tection from the RealSense as described in Sec. 5.2. The alti-
tude of measured points is computed for each pixel of the depth
reduced image. Similarly to the wall detection, the brick de-
tection uses altitude thresholding with the threshold value of
0.15 m. Figure 14 shows the result of the thresholding (14c),
boundary pixels transformed to UAV coordinate system, and
their line approximations (14d - points and dashed lines). The
final brick detection is the same as for the color brick detection
from Sec. 5.3.

The final data fusion uses a weighted average of the color
and depth detections where the weights depend on the quality of
the detections. The best quality detection weight 1 is in case of
the whole brick contour being visible by the sensor. Supposing
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Figure 13: An original image from the color camera, white color segmentation result, and the contours and brick detection results.

three perpendiculars lines represent the contour then the weight
0.5 is used. In case of only two perpendicular lines, the weight
0.25 is used. Example of data fusion is depicted in Fig. 14.

6.2. UAV visual servoing

For precise grasping, we employ a visual servoing tech-
nique where the position of the UAV is computed in the co-
ordinate system of the brick that is being grasped. The main
challenge of such visual servoing is the ambiguity of the brick’s
coordinate system (see Fig. 15 with two possible axis place-
ments). The z axis of the brick frame is parallel to the world
frame z axis, and therefore the z coordinate is only a shift of the
z coordinate in world frame by the brick’s height. The brick co-
ordinate system is defined by brick position in world frame bW
and brick orientation ηb in x, y the axis plane of world frame as
seen in Fig. 15. The computation of UAV position within the
brick coordinate system must remember the last brick orienta-
tion, and thus the choice of initial axis placement. The ambi-
guity of the brick coordinate system is caused by inaccuracy of
brick orientation that can change as the UAV moves closer to
the brick.

The detection algorithm finds bricks from actual data in a
temporarily created map for data fusion. The last brick orien-
tation is used to select a new brick orientation. The selection
is based on the angle difference between orientation of the last
brick ηmap

b and the newly detected brick ηnew
b . The selection can

be expressed as

ηb =


ηnew

b , if 〈ηmap
b − ηnew

b 〉 < 〈ηmap
b − ηnew

b − Π〉,
ηnew

b + Π, otherwise.
(6)

The equation uses angle difference 〈a−b〉 which is the absolute
value difference between angle a and angle b, with result in
interval < 0,Π >.

The position of the UAV in world frame system is denoted
rW. The UAV position rO within the coordinate frame O of the
brick is expressed as

rO =


cos ηb − sin ηb 0
sin ηb cos ηb 0

0 0 1

 ·

rWx − bWx
rWy − bWy
rWz − 0.2

 , (7)

where 0.2 represents height of the brick that is used as a shift in
the z axis.

6.3. UAV-brick interaction and control

Interaction of a multirotor UAV with the environment is
a complex challenge. Small objects, such as the ones being
collected during the MBZIRC 2017 challenge [26], posed lit-
tle to no challenge for common UAVs to carry. However, the
much larger and heavier bricks impose torque on the UAV if
not grasped in line with the center of mass of the object. More-
over, the grasping event poses a threat to the UAV by possibly
limiting the controllable degrees of freedom (DOFs) of the UAV
due to mechanical contact.

The first challenge of carrying a sizeable elongated object
was solved by designing the underlying UAV control architec-
ture. The control pipeline executes a real-time weight estimator
that allows the UAV to not only detect an increase of its weight
if an object was grasped, but also to detect a decrease when the
UAV rests upon the brick during the grasping maneuver. The
estimated mass is used throughout the control pipeline to pro-
vide adequate feed-forward control terms and scale the control
gains of the employed SE(3) geometric feedback controller [6].
With such measures, our UAVs were able to repeatedly carry
all the brick types while performing moderately aggressive ma-
neuvers. It is worth noting our team’s UAVs were the smallest
vehicles of all teams, which conducted the task autonomously
with an approximate 3:1 ratio of UAV mass to brick mass.

The task of grasping a brick requires automatic safety mea-
sures to abort the action when the UAV becomes uncontrollable.
Such a situation often occurs if the UAV transfers its weight un-
evenly through its landing gear to the ground during the last mo-
ments of the grasping maneuver. This state needs to be detected
automatically by measuring the attitude control error and apply-
ing acceleration upwards to mitigate the effect quickly. On the
other hand, a false positive grasping event can occur when the
magnetic gripper fails to attach. This situation is detected as
a significant decrease in the estimated mass due to the transfer
of the UAV weight thought the gripper to the brick. In both
cases, the maneuver is aborted and repeated before a collision
can occur.

6.4. Brick grasping state machine

The action of grasping a brick by the UAV was governed
by a state machine closely resembling the prize-winning vari-
ant from our last success during the MBZIRC 2017 challenge
[26]. Figure 16 depicts the states of the grasping state machine.
The UAV is expected to be located at the vicinity of the de-
sired brick (such that the brick is visible in the camera) when
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(a) (b) (c) (d)

Figure 14: Fusion of data for brick detection using color-based (a) and depth-based (b) detection. Thresholded depth data are shown in (c), while
the fused data are in (d) showing detections from the color camera as solid line, and from depth camera as dashed line.
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Figure 15: Brick coordinate with two possible axis placements.
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Figure 16: UAV state machine for grasping a particular brick. This
whole state machine corresponds to state [S10] within Fig. 6. The white
state represents situations when the UAV was localized by the GPS,
while in the green state, the states of the UAV were estimated using
only the visual detection of the brick for increased precision.

the first state is activated. When a brick is detected, the UAV
first aligns itself horizontally with the closest brick of the de-
sired color. After the horizontal alignment distance is lower
than 0.2 m, the UAV slowly descends to the height of 0.8 m
while actively maintaining the alignment. If the alignment is
broken, the UAV ascends and attempts to realign with the brick
to repeat the process. The process is repeated a maximum of
only twice after which the brick is abandoned and its location is
temporarily banned to prevent deadlocks. Conversely, when the
UAV successfully descends to the height of 0.8 m, it switches
its localization system to the direct brick visual servoing (the
green states within Fig. 16). The UAV then realigns itself again
using only the detected brick as a source of the state estimate.
This second alignment starts with 3 cm alignment criterion and
relaxes the distance with time. This ensures that the UAV even-
tually attempts to grasp the brick even if the control accuracy
is low. The final grasping maneuver is also performed using
the visual localization of the UAV relative to the brick. The
process of adaptive and repeated switching from GNSS-based
control into visual servoing and back is the main contribution of
this part for general object manipulation in demanding outdoor
conditions.

7. Brick placing

7.1. Placing location detection

Place detection uses a similar approach as wall detection
(see Sec. 5.2). However, there are three main challenges for
detection of locations for where to place the next brick. The top
surface of the wall is tiled with a repetitive pattern (see Fig. 17)
that makes the stereo camera detection difficult. This problem
is solved mainly by filtering minimal distances by reduction of
the depth image size. Additionally, the second solution uses a
morphological closing operation after thresholding. The second
challenging aspect is that the view of onboard camera to the
wall is partially blocked by the brick attached to the gripper.
This problem is solved by applying an automatically created
mask after successfully grasping the brick. An example of such
a mask is depicted in Fig. 17.

The last challenge is the transparent channel wings that
were used to facilitate placement of bricks. These transparent
acrylic borders are rather randomly visible on depth measure-
ments and may occasionally appear as a place free for placing
a brick. The proposed solution is to detect the free end of the
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Algorithm 2: White plate detection
Input: Ithr − thresholdedimage
Output: (x, y, α) — center of the white plate with α plate

rotation
Iclo = morphology close(Ithr) // OpenCV functions

erode, dilate

Contours = f indContours(Iclo) // OpenCV functions

findContours

for Contour ∈ Contours do
Points = ∅
for p ∈ Contour do

v = undistort(p) // v is vector pointing in

undistorted direction

v′ = R · v // R is the rotation matrix from

sensor to world frame

koe f = UAVpos(2) − brick height // UAVpos(2)
is altitude of the UAV

p′ = UAVpos + v′ · koe f
Add p′ into list Points

Convex = convexHull(Points) // OpenCV functions

convexHull

if Contour is not at border then
box = minAreaRect(Convex) // OpenCV

functions minAreaRect

if box has correct size then
output (x, y, α) – (x, y) is box center, α — is box

orientation

else
Lines = approxPolyDP(Convex) // only for

detection from discance less than 1.5 m
if Lines forms U shape and size of U shape is

correct then
find middle parallel line inside U shape and

found expected brick center (x, y)
output (x, y, α) — α — is middle line

orientation

wall by detecting the leftmost border point of the thresholded
image (see Fig. 18).

The method for detecting the placing spot on the wall as-
sumes the wall segment is already aligned with the wider axis
of the camera image. The alignment is initially governed by
the global planner which operates with necessary information
obtained during the initial sweep. The size of the brick be-
ing placed is known since the grasping procedure, and thus the
method detects a place on the free wall at a correct distance
from the leftmost border of the detected wall segment within
the image. As two layers of bricks can be built on the wall, the
free area on the wall depends on the currently active layer. In
many cases, such free space contains a transparent acrylic bor-
der of the wall. This border is removed from the detected wall
by morphological erosion.

The leftmost place on the wall is selected and if the left
border of the wall is not visible, the UAV moves to the leftmost
part of a visible wall to find the correct edge. The results of this
algorithm are depicted in Fig. 18.

(a)

(b) (c)

Figure 17: Original data from the color camera (a) and original depth
data (b). The mask (c) for the depth data is used to remove the carried
brick and the UAV leg in the top part of the mask.

7.2. Placing state machine
The action of placing a brick on the wall is governed by

the state machine depicted in Fig. 19. This lower-level state
machine is responsible for guiding the UAV above the spot des-
ignated for placement and controlling the descent to a desired
height above the wall. Since the outcome of placing a brick
can rarely be influenced after releasing the brick from the mag-
netic gripper, we do not consider any actions in case of fail-
ure. Moreover, numerous bricks are available in the grasping
area, so grasping a misplaced brick or even repairing the wall
is forfeit over continuing for a fresh brick. Therefore, the plac-
ing state machine sequentially follows the actions of aligning
horizontally with the wall and descending while aiming for the
designated spot. If anything fails, the held brick is dropped and
the UAV continues above the brick area to obtain a new brick.
This was chosen so as to not counteract any potential failure
states, such as sudden misalignment (e.g., caused by localiza-
tion drift). A simpler yet capable approach was chosen due
to the added complexity and less-deterministic execution of a
more failure-proof solution.

8. Experimental results

This section describes the results achieved during the
MBZIRC Challenge 2 competition trials using the proposed
system. The herein system for wall building by UAVs, devel-
oped as detailed above by the CTU-UPenn-NYU team, was
able to win Challenge 2 by placing the far most number of
bricks, mostly with the UAVs. However, the UGV deployed in
the challenge also contributed by autonomously placing a brick
during the second competition trial as described in [43]. The
CTU-UPenn-NYU team won by scoring 8.24 points, while the
second Nimbro Team (University of Bonn) scored 1.33 points,
and the third (Technical University of Denmark) 0.89 points.
Figure 26 depicts the team at the winner stand.

Prior to the competition, the team dedicated over a month
for preparation and experimental evaluation in a desert near
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(a) (b) (c)

Figure 18: Thresholded depth data (a) and thresholded data after applying the morphological closing operation (b). The result of place detection
(c) where the red line demonstrates shift from the center of the wall to the leftmost position of the brick.

Waiting for a wall
n← 0

Align horizontally
in 3.5 m height

Dropping brick

wall detected

Aligned wall lost

timeout
reached

Figure 19: UAV state machine for placing a brick on the wall. This
state machine corresponds to state [S12] within Fig. 6.

Abu Dhabi. Real world experiments could not be conducted
in the Czech Republic in the final months of preparations due
to the winter weather conditions. Therefore, the team decided
to conduct final preparation near the competition venue, de-
spite the unforgiving high temperatures, sand, and wind con-
ditions of the coastal United Arab Emirates. This preparation
phase proved to be crucial in securing first place in the compe-
tition just as it was in 2017. Figure 20 depicts photos from the
desert experiments. Videos from the experiments are available
at http://mrs.felk.cvut.cz/mbzirc-2020-uav-wall.

Table 2 shows the overall performance of the system during
the two competition trials, each lasting 25 minutes. It shows the
types of bricks, denoted as ‘R’ for RED and ‘G’ for GREEN,
in the order they were grasped during the individual trials. The
grasping of BLUE bricks was not attempted during the compe-
tition trials, although the UAVs were capable of carrying them,
mainly due a significantly higher detachment probability of a
grasped brick caused by the pendulum effect of the longer and
heavier BLUE brick. The grasping of ORANGE bricks was
also not attempted for similar reasons and difficulty of cooper-
ative carrying. The competition did not require delivering any
ORANGE bricks to qualify for obtaining points. The grasped
bricks are further displayed per individual restarts within the tri-
als, where the restart had the possibility of keeping the already
placed bricks and running the system again with all robots in
their initial positions.

Table 2 shows all grasped bricks, although not all were suc-
cessfully placed on a wall. The bricks denoted with ‘b’ index
did not have successful placement, which in most cases was due
to the brick bouncing off the wall after release. The single case
of a placed RED brick during the fourth restart of the first trial,
denoted with ‘s’ index, is a placement into the second layer of

Table 2: Grasped bricks during the two competition trials of Challenge
2.

Trial Restart UAV1 UAV3

one

1 Rb, R, G, Gb G
2 R, R, Gb R, Gb

3 Rb, Rb R, R
4 G Rs, Rb

two 1 G, G, Rb, Rb, R –

a particular channel which was also not achieved by any other
team.

Notice that only UAV1 and UAV3 were used for wall build-
ing during the competition trials. The strategy of having UAV2
wait for a collision or battery depletion of another UAV was
not required during the competition. However, this reliable
multi-UAV strategy was successfully tested during the pre-
competition trials.

Ten bricks were successfully placed on the wall during the
first trial consisting of seven RED and three GREEN bricks.
Seven bricks bounced off the wall during the same trial. The
main focus of the CTU-UPenn-NYU team during the second
trial was to autonomously place at least one brick using the
UGV as was required for winning the challenge. Therefore,
many restarts were done to ensure this goal and only before the
first restart were the UAVs used to grasp and place bricks as
shown in Table 2. In the rest of this section, we focus on the
individual (i.e. scanning, grasping, placing) wall building sub-
tasks and the overall performance achieved during the first trial,
in which UAVs were used throughout the entire trial.

8.1. Scanning for bricks and wall placement

Scanning of the arena was the first subtask of the proposed
UAV wall building approach performed in order to find the loca-
tion of the brick stack and wall position designed for the UAVs.
The arena scanning was planned using a zig-zag path within
the predefined arena space (defined by arena corners and safety
area) as described in Sec. 5.1.

Figure 21 shows all brick detections (RED, GREEN and
BLUE- ORANGE bricks were not considered) as well as the
detections of the wall channels. The zig-zag scanning path is
shown within the arena boundaries as recorded by the onboard
GPS. The employed brick detection using the onboard RGB
camera was able to detect bricks in the range of ≈ 10 m × 5 m
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Figure 20: Photos from preparation in the Abu Dhabi desert. Videos are available at http://mrs.felk.cvut.cz/mbzirc-2020-uav-wall.

Figure 21: Path of UAV1 while scanning the arena and detections of
the bricks and UAV wall channels.

in x × y coordinates of the camera when flying at the scan-
ning 4.5 m height. However, robust detections of bricks were
obtained in range of ≈ 5 m × 3 m of x × y coordinates. This
required an overlapping camera field of view while following
the zig-zag pattern path.

Figure 21 clearly shows the ‘W’ letter shape of the four wall
channels created by the wall detections. The brick detections
form two large clusters being the UGV and UAV brick stacks.
The UAV stack being wider was further used for the PCA anal-
ysis. Figure 21 also features a set of false positive brick detec-
tions between the two brick stacks corresponding to the position
of waiting UAV2 and the starting takeoff area marked as a white
rectangle on the ground.

After completion of the scanning path, the wall and brick
detections are processed to create a topological map of the
arena. The map contains positions of the individual wall chan-
nels ordered in a ‘W’ letter chain as well as lines along the par-
ticular brick types that can be deterministically divided among
the three UAVs. Figure 22 shows the brick and wall detections
already filtered out by the number of reoccurrences during the
scanning. Figure Fig. 22a shows all the wall detections and
the two bricks GMM clusters with corresponding PCA com-
ponent variances proportional to width and height of the two
brick stacks. Figure Fig. 22b features only the UAV stack to-
gether with the topological map consisting of ‘wall 0’–‘wall 3’
and the red and green brick lines. The positions of the mapped
walls and brick lines are then shared among UAVs and used
to distribute the wall building task, as was detailed before in
Sec. 4.2.

By comparing Fig. 21 and Fig. 22, it can been seen that the
initial reoccurrences-based filter removes the false positive de-

(a) All wall detections and brick
clusters with PCA analysis.

(b) Mapped UAV
walls and

bricks.

Figure 22: Topological map based on scanning of the arena.

tections present in the takeoff area. However, the blue bricks
present in the Fig. 21 are also filtered out and are instead in-
correctly labeled as green bricks in most detections. The PCA
analysis indeed selects the correct brick stack for UAVs hav-
ing the larger width, with the smaller variance component be-
ing larger for the UAV stack. Figure 22b shows that the wall
detections are correctly recognized as ‘wall 0’–‘wall 3’ based
on the intersections of line approximations of the wall detec-
tions. Moreover, the wall detection and mapping shows a great
performance by creating the individual channels of almost the
same size based only on the detections and analysis of the in-
tersections. Finally, by comparing the raw wall detections and
the mapped walls, we can see a shadow effect of the wall de-
tection in 1.7 m when projected to the ground plane due to the
left-to-right scanning trajectory above the wall.

8.2. Brick grasping

The brick grasping is another key capability required for
competing in the wall building task. The grasping proce-
dure [S10] consists of the lower-level grasping state machine de-
scribed in Sec. 6.4. Figure 23 shows the evolution of the grasp-
ing states with respect to the UAV position for the first success-
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(a) Descending start (b) Align 2 start

(c) Grasp point (d) Grasping end

Figure 23: Grasping of a red brick with color indicated stages of the grasping procedure.

ful grasp of the red brick with UAV1 during the second restart
of first trial.

Figure 23 also features the images taken by the mvBlueFOX
camera that used for RGB detection of the bricks during vari-
ous stages of the grasping state machine. The brick detections
are shown as measured during the grasping. The rest of the de-
tections have a mean position for x, y, heading being 3.022 m,
−3.215 m, 2.825 rad, respectively, and a corresponding standard
deviation of 0.029 m, 0.077 m , 0.077 rad, respectively. How-
ever, the absolute localization of the grasped brick is only rele-
vant within the first two stages of the grasping manoeuvre (the
first alignment and descent), where the UAV is guided using
these estimated GPS coordinates of the brick. The later stages
use direct visual servoing to estimate the UAV states using the
brick detections which outperforms the accuracy of standard
GPS by an order of magnitude. Our UAVs were able to tar-
get the magnetic plates on the bricks reliably within centimeter
precision.

8.3. Brick placement
Brick placement together with grasping is one of the most

important wall building capabilities. Figure 24 depicts the suc-
cessful placement of the same brick being grasped in Fig. 23.
After successful grasping, the UAV flies above its assigned wall
channel and switches to the lower-level placement state ma-
chine using place detection (both described in Sec. 7) to guide
the UAV above the release point on the appropriate location of
the wall. Note that the pattern (i.e. sequence of bricks in both
layers) forming individual channels was given for each trial.
The brick building sequence was planed as a consecutive place-
ment of a brick into the next unoccupied position in the wall
segment — either the leftmost position in the completely-free
segment or neighbouring position to the rightmost brick on the
segment. Figure 24 shows the stages of the lower-level place-
ment state machine together with the UAV positions and detec-
tions of the wall channel during alignment and placing states.
Additionally, the images from both the RGB mvBlueFOX cam-
era and the depth images from the RealSense camera are show
in various stages of placement.

In Fig. 24, it can be seen that placement starts at approx-
imately the middle of the assigned wall channel. During the
alignment state, the UAV moves along the channel to the left-
most position on the empty wall. The wall detections are clearly
shown to be of various lengths as the smaller portion of the wall
is visible once descending during the placing state. However,
the left corner of the wall is measured during the detections
with a mean position for x, y, heading being 5.374 m, 9.790 m,
−1.110 rad, respectively, with corresponding standard deviation
of 0.139 m, 0.093 m, 0.113 rad, respectively.

The brick placing state machine is comparably simpler than
the grasping state machine, since the grasping state machine
needs to cover various failure stages during the grasping pro-
cess. This was required to deal with failures in the grasping
stage, because the UAV adds no value to the mission outcome if
it does not succeed with grasping. Moreover, the grasping ma-
noeuvre is sensitive to control accuracy and timing while also
being more dangerous for the UAV. On the other hand, placing
allows for a significant slack in the control of the UAV thanks to
the width of the wall channel and the possibility of dropping the
brick from a higher height without any physical interaction with
the wall. The wall detection also worked more reliably thanks
to more prominent features in sensory input as the UAV rarely
lost the wall from its field of vision during testing. Lastly, we
did not consider any possible correcting action for instances of
improperly placed bricks.

8.4. Wall building performance

Finally, the performance of the wall building stage using the
proposed system is depicted in Fig. 25 showing the recorded
positions of both the UAV1 and UAV3 throughout the first trial
with four performed restarts. All 17 grasped bricks are shown
with their respective release positions, however only ten bricks
stayed on the wall without bouncing off as detailed in Table 2.
The recorded positions of the UAVs shown do not include the
initial scanning of UAV1 already discussed in the Sec. 8.1. In-
stead, the positions of the UAVs once carrying bricks is high-
lighted. The mapped wall and brick locations are based on the
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(a) Align start (b) Placing start

(c) Release point (d) Placement end

(e) Align start (f) Placing start (g) Release point (h) Placement end

Figure 24: Placement of a red brick on the beginning of the first wall channel shown with placement stages and wall detections, together with
images from the RGB camera (a)–(d) and depth camera (e)–(h). Videos from experimental testing and from the competition are available at
http://mrs.felk.cvut.cz/mbzirc-2020-uav-wall.

scanning in the second restart as already shown in Fig. 21 and
Fig. 22.

See video of the CTU-UPenn-NYU team https://

youtu.be/1-aRtSarYz4 with summary of the preparations in
the Abu Dhabi desert, of competition rehearsals, and of the ac-
tual Challenge 2 MBZIRC 2020 competition trials.

8.5. Lessons learned

The most important factor driving development was the
need for safety and reliability of the multi-UAV system. In-
teraction with the environment during grasping and placing is
potentially dangerous and can easily damage the UAV. The
use of real-time weight and force estimation for the detection
of potentially dangerous situations was of significant benefit. A
common approach of relying solely on UAV position estimation
to drive the decision-making process would not be sufficient.

One of the tunable parameters of the grasping/placing ma-
neuvers was the speed of the descent. Speed too slow increases
the overall duration of the UAV being in a potentially dangerous
location and allows the ground effect to build up (aerodynamic
effects caused by the rotor downwash close to a ground). Al-
ternatively, too fast of speed increases the risk of damaging the
UAV due to the sudden bump caused by interaction with the
brick, the wall, or the ground. On several occasions during our
preparations, we experienced a complete stall of motors due to
the sudden impact at higher speed, which subsequently caused a
loss of onboard power and an uncontrollable, unstoppable tum-
bling of the UAV. Therefore, we advise caution when working
with UAVs if sharp acceleration spikes may be transmitted to

the UAV body. Finally, we settled on the descending speed of
0.25 m s−1 which showed to be the most reliable and rewarding.

This proposed wall building system depends on successful
arena scanning and creation of a topological map used for plan-
ning further brick pickup and placement. As such, the brick
and wall detections need to be robust and without excessive
false positives that could influence the topological map creation
based on statistical analysis of detections. The task was fur-
ther challenging due to the stack of UGV bricks present that
could not be used safely by UAVs and thus had to be recognized
among the detections. During the preparations, a rather high
number of false detections forced implementing significant de-
tection filtering during scanning, requiring a minimal number
of corrections in the detection map and used the iterative me-
dian filtering of detections to remove outliers. However, during
the competition rehearsals, the creation of the topological map
had to be further fine-tuned to, e.g., filter out already placed
bricks from previous restarts.

Finally, the GPS drift significantly influenced the entire sys-
tem deployment as arena borders were defined in GPS coordi-
nates, with either the brick stack or the wall channels possibly
placed too close to the borders. This prevented UAVs from fly-
ing too close to the net-protected borders and suggests that an
additional LiDAR or camera-based detection of the border (or
even sensor-based fix of the GPS drift) would significantly im-
prove deployment robustness in similar competitions. An RTK-
based localization is technically a possible solution to this prob-
lem, but it was not used by the team due to the penalization of
RTK in scoring. However, after discussion with potential in-
dustrial partners, a solution using both the RTK GPS and the
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Figure 25: Visualization of wall building performance during the first trial with shown grasping/placing positions and highlighted UAV trajectories
by the thicker lines when carrying a brick.

onboard local sensors would be preferred. Important construc-
tion locations could be pre-measured using the RTK (as it is
nowadays common on construction sites). Combining this with
the proposed onboard sensor capabilities would yield a robust
cognitive system capable of reacting to changes in the environ-
ment.

The execution time of brick detection for visual servoing is
critical for smooth real-time UAV control and navigation. The
Intel NUC computer, by its design similar to laptop hardware,
had a power-saving mode that caused irregular execution times
of our methods. This problem was detected before the com-
petition and resolving it improved the robustness of the whole
system significantly.

9. Conclusions

In this paper, an autonomous system developed by CTU-
UPenn-NYU team for wall building with a team of UAVs was
introduced. The examined task was part of Challenge 2 of
the MBZIRC 2020 where three UAVs were assigned to find,
pickup, and place color-typed bricks on a prepared wall struc-
ture. The goal of the task was to maximize collected points for
placing the bricks while following the prescribed wall pattern.
This paper presents the key parts of the UAV system devel-
oped for the competition, including the UAV control system,
the algorithms for brick and wall detection, the single robot
state machine, and the multi-robot distributed approach for the
task. The core autonomous capabilities of scanning the arena
for wall/brick locations, autonomous grasping using visual ser-
voing technique, and precise placement of bricks on the wall
structure are described in detail. We further report the experi-
mental results achieved during the competition trials showing
the performance of the core autonomous capabilities and of
the entire system. The proposed approach performed the best
among all participants with 22 successfully grasped bricks in
which 13 of these bricks were successfully placed during the

Figure 26: CTU-UPenn-NYU team after winning the wall building
Challenge 2 of MBZIRC 2020.

two trials of the Challenge 2 MBZIRC competition. The en-
tire system for the wall building task is open-sourced for the
community to be used for possible deployment and future de-
velopment. It can also serve as a useful reference for future
robotic challenges, such as the MBZIRC that indeed serves as
a great verification of robotic research.

Acknowledgements

We thank the University of Pennsylvania and the New York
University for the collaboration as the members of the CTU-
UPenn-NYU team (see Fig. 26). This work would not have
been possible without the tireless dedication of all the team
members and support and patience from their families. The
presented work has been supported by Khalifa University and
by CTU grant no. SGS20/174/OHK3/3T/13.

References

[1] M. C. Tatum, J. Liu, Unmanned aircraft system applications in construc-
tion, Procedia Engineering 196 (2017) 167–175.

[2] Y. Ham, K. K. Han, J. J. Lin, M. Golparvar-Fard, Visual monitoring of
civil infrastructure systems via camera-equipped Unmanned Aerial Vehi-
cles (UAVs): a review of related works 4 (1) (2016) 1–8.

20

CHAPTER 4. REMOTE SENSING BY UAVS 112/171

CTU in Prague Department of Cybernetics



[3] J. Howard, V. Murashov, C. M. Branche, Unmanned aerial vehicles in
construction and worker safety, American Journal of Industrial Medicine
61 (1) (2018) 3–10. doi:10.1002/ajim.22782.

[4] Khalifa University, Mohamed bin zayed international robotics challenge
2020, available online, https://www.mbzirc.com/challenge/2020,
accessed on, citied on 2020/11/16.

[5] T. Baca, D. Hert, et al., Model Predictive Trajectory Tracking and Col-
lision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial
Vehicles, in: 2018 IEEE/RSJ IROS, IEEE, 2018, pp. 1–8.

[6] T. Lee, M. Leoky, et al., Geometric tracking control of a quadrotor UAV
on SE(3), in: 2010 IEEE CDC, IEEE, 2010, pp. 5420–5425.

[7] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, M. Saska,
The MRS UAV System: Pushing the Frontiers of Reproducible Research,
Real-world Deployment, and Education with Autonomous Unmanned
Aerial Vehicles, submitted to JINT (8 2020). arXiv:2008.08050v2.

[8] J. Zink, B. Lovelace, Unmanned aerial vehicle bridge inspection demon-
stration project, Tech. rep. (2015).

[9] Q. Lindsey, D. Mellinger, V. Kumar, Construction of cubic structures with
quadrotor teams, Proc. Robotics: Science & Systems VII (2011).

[10] Q. Lindsey, et al., Distributed construction of truss structures, in: Algo-
rithmic Foundations of Robotics X, Springer, 2013, pp. 209–225.

[11] F. Augugliaro, A. Mirjan, et al., Building tensile structures with flying
machines, in: 2013 IEEE/RSJ IROS, IEEE, 2013, pp. 3487–3492.

[12] A. Mirjan, F. Augugliaro, R. D’Andrea, F. Gramazio, M. Kohler, Building
a bridge with flying robots, in: Robotic Fabrication in Architecture, Art
and Design 2016, Springer, 2016, pp. 34–47.

[13] D. Alejo, J. A. Cobano, et al., Collision-Free 4D Trajectory Planning
in Unmanned Aerial Vehicles for Assembly and Structure Construction,
Journal of Intelligent & Robotic Systems 73 (1) (2014) 783–795.

[14] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller,
J. S. Willmann, et al., The flight assembled architecture installation: Co-
operative construction with flying machines, IEEE Control Systems Mag-
azine 34 (4) (2014) 46–64.

[15] Aerial Robotics Cooperative Assembly system, retrieved from http://

www.arcas-project.eu, 2020/08/28 (2020).
[16] F. Ruggiero, V. Lippiello, A. Ollero, Aerial manipulation: A literature

review, IEEE Robotics and Automation Letters 3 (3) (2018) 1957–1964.
[17] K. Kondak, K. Krieger, A. Albu-Schaeffer, M. Schwarzbach, M. La-

iacker, I. Maza, et al., Closed-Loop Behavior of an Autonomous Heli-
copter Equipped with a Robotic Arm for Aerial Manipulation Tasks, In-
ternational Journal of Advanced Robotic Systems 10 (2) (2013) 145–154.

[18] K. Kondak, F. Huber, M. Schwarzbach, M. Laiacker, et al., Aerial ma-
nipulation robot composed of an autonomous helicopter and a 7 degrees
of freedom industrial manipulator, in: 2014 IEEE ICRA, IEEE, 2014, pp.
2107–2112.

[19] M. Ryll, G. Muscio, F. Pierri, E. Cataldi, G. Antonelli, F. Caccavale,
A. Franchi, 6D physical interaction with a fully actuated aerial robot, in:
2017 IEEE ICRA, IEEE, 2017, pp. 5190–5195.

[20] J. Munoz-Morera, I. Maza, C. J. Fernandez-Aguera, F. Caballero,
A. Ollero, Assembly planning for the construction of structures with mul-
tiple UAS equipped with robotic arms, in: 2015 IEEE ICUAS, IEEE,
2015, pp. 1049–1058.

[21] J. Thomas, G. Loianno, et al., Toward image based visual servoing for
aerial grasping and perching, in: 2014 IEEE ICRA, IEEE, 2014, pp.
2113–2118.

[22] P. Ramon Soria, B. C. Arrue, A. Ollero, Detection, location and grasping
objects using a stereo sensor on UAV in outdoor environments, Sensors
17 (1) (2017) 103.

[23] A. Gawel, M. Kamel, T. Novkovic, J. Widauer, D. Schindler, B. P. Von Al-
tishofen, R. Siegwart, J. Nieto, Aerial picking and delivery of magnetic
objects with MAVs, in: 2017 IEEE ICRA, IEEE, 2017, pp. 5746–5752.

[24] K. Feng, W. Li, S. Ge, F. Pan, Packages delivery based on marker detec-
tion for UAVs, in: 2020 IEEE CCDC, IEEE, 2020, pp. 2094–2099.

[25] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert,
R. Penicka, T. Krajnik, A. Zhou, A. Cho, M. Saska, et al., Localization,
Grasping, and Transportation of Magnetic Objects by a team of MAVs in
Challenging Desert like Environments, IEEE Robotics and Automation
Letters 3 (3) (2018) 1576–1583.

[26] V. Spurny, T. Baca, M. Saska, R. Penicka, T. Krajnik, J. Thomas,
D. Thakur, G. Loianno, et al., Cooperative Autonomous Search, Grasping
and Delivering in a Treasure Hunt Scenario by a Team of UAVs, Journal

of Field Robotics 36 (1) (2019) 125–148.
[27] A. R. Castano, F. Real, P. Ramon-Soria, J. Capitan, V. Vega, B. C. Arrue,

et al., Al-Robotics team: A cooperative multi-unmanned aerial vehicle
approach for the Mohamed Bin Zayed International Robotic Challenge,
Journal of Field Robotics 36 (1) (2019) 104–124.

[28] NicaDrone, Electro Permanent Magnet OpenGrab EPM V3, retrieved Au-
gust 22, 2020, from https://nicadrone.com/products/epm-v3 (2020).

[29] R. Bahnemann, M. Pantic, M. Popovic, D. Schindler, M. Tranzatto,
M. Kamel, M. Grimm, J. Widauer, R. Siegwart, J. Nieto, The ETH-
MAV Team in the MBZ International Robotics Challenge, Journal of
Field Robotics 36 (1) (2019) 78–103.

[30] M. Kamel, J. Alonso-Mora, R. Siegwart, J. Nieto, Robust Collision
Avoidance for Multiple Micro Aerial Vehicles Using Nonlinear Model
Predictive Control, in: 2017 IEEE/RSJ IROS, IEEE, 2017, pp. 236–243.

[31] M. Beul, M. Nieuwenhuisen, J. Quenzel, R. A. Rosu, J. Horn,
D. Pavlichenko, S. Houben, S. Behnke, Team NimbRo at MBZIRC 2017:
Fast landing on a moving target and treasure hunting with a team of micro
aerial vehicles, Journal of Field Robotics 36 (1) (2019) 204–229.

[32] M. Beul, S. Behnke, Fast full state trajectory generation for multirotors,
in: 2017 IEEE ICUAS, IEEE, 2017, pp. 408–416.

[33] Open Robotics, Robotic Operating System, retrieved July 22, 2020, from
https://www.ros.org (2020).

[34] P. Schillinger, S. Kohlbrecher, O. von Stryk, Human-robot collaborative
high-level control with application to rescue robotics, in: 2016 IEEE
ICRA, IEEE, 2016, pp. 2796–2802.

[35] J. Bohren, S. Cousins, The smach high-level executive [ros news], IEEE
Robotics Automation Magazine 17 (4) (2010) 18–20.

[36] M. Schwarz, nimbro network - ros transport for high-latency, low-
quality networks, available online, https://github.com/AIS-Bonn/
nimbro_network, accessed on 2020/11/16.

[37] E. Galceran, M. Carreras, A survey on coverage path planning for
robotics, Robotics and Autonomous Systems 61 (12) (2013) 1258–1276.

[38] A. Grunnet-Jepsen, J. N. Sweetser, J. Woodfill, Best-Known-Methods for
Tuning Intel® RealSense™ D400 Depth Cameras for Best Performance,
Tech. rep., Intel Corporation: Satan Clara, CA, USA (2018).

[39] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools
(2000).

[40] D. Scaramuzza, A. Martinelli, R. Siegwart, A toolbox for easily calibrat-
ing omnidirectional cameras, in: 2006 IEEE/RSJ IROS, IEEE, 2006, pp.
5695–5701.

[41] D. Reynolds, Gaussian mixture models, Encyclopedia of Biometrics 741
(2009) 659–663.

[42] I. Jolliffe, Principal Component Analysis, 2011, pp. 1094–1096.
[43] P. Stibinger, G. Broughton, F. Majer, Z. Rozsypalek, A. Wang, K. Jindal,

A. Zhou, D. Thakur, G. Loianno, T. Krajnik, M. Saska, Mobile Manip-
ulator for Autonomous Localization, Grasping and Precise Placement of
Construction Material in a Semi-structured Environment, Submitted to
Robotics and Automation Letters (2020). arXiv:2011.07972.

21

CHAPTER 4. REMOTE SENSING BY UAVS 113/171

CTU in Prague Department of Cybernetics



CHAPTER 5. IONIZING RADIATION SOURCES LOCALIZATION 114/171

Chapter 5

Radiation Dosimetry by UAVs

The first core publication related to ionizing radiation dosimetry presents the results
from the first year of the VZLUSAT-1 nanosatellite operation. The satellite [38a] was launched
in June 2017 [37a]. It carried, among other scientific instruments, a miniaturized X-ray tele-
scope with the Timepix particle detector [39a]. The author carried out the design, develop-
ment, and commissioning of the satellite’s payload and manages ongoing data acquisition and
processing. This research represents the author’s first step into the particle imaging and radi-
ation dosimetry community. Without these contributions and gained know-how, the following
work on radiation localization and mapping by UAVs would have likely not been possible.
Furthermore, one of the tangents of this outer space research is the author’s involvement in
one of NASA’s suborbital sounding rocket flights [78], [40a], [106]. The thesis author designed
a hardware readout interface and software, based on the Robot Operating System [15a], for
two Timepix detectors onboard a sub-orbital rocket [42a]. The following article shows results
of one year of orbital measurements onboard the VZLUSAT-1 satellite using the Timepix
sensor.

[4c] T. Baca, M. Jilek, I. Vertat, M. Urban, O. Nentvich, R. Filgas, et al., “Timepix
in LEO Orbit onboard the VZLUSAT-1 Nanosatellite: 1-year of Space Radi-
ation Dosimetry Measurements,” Journal of Instrumentation, vol. 13, no. 11,
p. C11010, 2018

The second core publication in this field provides an overview of the potential use of
Timepix particle imaging detectors onboard UAVs. The article discusses the detector’s critical
properties and their relation to various methods of obtaining a directional measurement of a
radiation source, such as pinhole apertures, X-ray optics, and collimators. A method for real-
time classification of the measured particle tracks is proposed and developed. Existing particle
track classifiers are either not available (NASA [164], ESA [113], [141]), built into laboratory
software [135], [166], [174], or not suited for real-time applications [83]. Therefore, an open-
source classifier and ROS drivers for the Timepix detector is proposed. Labeled datasets1

are also provided that can be used for training of new classifiers. Furthermore, it presents
a real-time Monte-Carlo simulation model for the Compton camera and concludes that the
Compton camera principle shows promising properties.

[5c] T. Baca, M. Jilek, P. Manek, P. Stibinger, V. Linhart, J. Jakubek, et al.,
“Timepix Radiation Detector for Autonomous Radiation Localization and Map-
ping by Micro Unmanned Vehicles,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2019, pp. 1–8

1https://github.com/vzlusat
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The next core publication in this field focuses on distributed localization of ionizing
radiation sources using multiple UAVs equipped with the Timepix sensor. This work presents
real-time radiation source localization and estimation methods for UAVs equipped with the
Timepix sensors. A path planning approach that exploits the asymmetrical intensity mea-
surement response of the Timepix detector was proposed. The approach uses multiple UAVs
and their ability to vary the orientation of the sensor in space to estimate the direction to
the radiation source. Moreover, the work presents verification of real-world measurements on-
board a UAV against the proposed real-time Monte-Carlo ray-tracing simulation model of the
Timepix sensor. Realistic simulations in the Gazebo/ROS robotic simulator demonstrate the
feasibility of the method.

[1c] P. Stibinger, T. Baca, and M. Saska, “Localization of Ionizing Radiation Sources
by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time,” IEEE
Robotics and Automation Letters, vol. 5, pp. 3634–3641, 2 Apr. 2020, issn: 2377-
3766
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Abstract: The VZLUSAT-1 satellite, the first Czech CubeSat, was successfully launched on June
23, 2017, to a 510 km Sun-synchronous low-Earth orbit. It carries several scientific payloads
including a Timepix detector as focal plane imager for the X-Ray telescope onboard. The Timepix
detector contributes significantly to the satellite data collection, with more than 25 000 sampling
acquisitions in the first year of deployment. Despite limitations of the satellite attitude control
system, necessary for capturing X-Ray images of the Sun, the Timepix detector allows measuring
the space radiation environment along the satellite orbit. As of September 2018, we conducted 33
whole-Earth mappings, recording radiation doses around the planet. Further, we show data from
scans of the South Atlantic Anomaly and polar radiation horns, where the location and acquisition
time were tailored to minimize event pile-up and particle track overlap. Since October 2017,
the optics segment of the onboard X-Ray telescope was deployed, which exposed the Timepix
detector unshielded to free open space. This change produced entirely new observations namely
of low energy charged particles and a significant increase of measured particle flux. We also
registered the effects of exposing the sensor to direct intense sunlight. We will summarize on the
actual performance of the custom readout interface, which exceeds expectations in the constrained
environment of the low-cost and low-powered CubeSat nanosatellite.

Keywords: On-board space electronics; Particle detectors; Space instrumentation; X-ray detectors
and telescopes
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1 Introduction

We present a successful utilization of the Timepix sensor onboard VZLUSAT-1, a low-powered and
low-cost CubeSat satellite. We provide information and know-how regarding the operation of the
sensor in the constrained environment of the probe. A novel data were gathered allowing analysis
of the density of various ionizing particle types in the low-Earth orbit (LEO).

The Timepix detector has been previously launched to LEO orbit onboard the International
Space Station (ISS) [1] and onboard satellites [2, 3]. The crew of the ISS uses Timepix detectors
with USB Lite interfaces as online quantum imaging dosimeters to precisely measure the dose
rate in wide dynamic range. In all cases, Timepix detectors were deployed either in significantly
larger satellites than VZLUSAT-1 or in the atmosphere onboard the ISS. The ISS occupies the LEO
with altitude in 405 km and inclination 51.6◦. The ESA’s Probe-V satellite carries the SATRAM
experiment [2] in 820 km Sun-synchronous orbit. SATRAM contains the Timepix detectors as a
spacecraft payload for minisatellites conducting a pre-programmed loop of acquisition with 0.2 s,
2 s and 20 s acquisition times. The LUCID experiment utilizes five Timepix sensors onboard
the British satellite TechDemoSat-1. The satellite orbited Earth for over two years continuously
collecting data. Results from LUCID were published showing data comparable to those presented
in this manuscript [3].

1.1 VZLUSAT-1 nanosatellite
The VZLUSAT-1 is a 2U CubeSat nanosatellite developed by the Czech Aerospace Research
Centre (VZLU) as a technology platform demonstrator. The two-unit CubeSat with dimensions
10 × 10 × 34 cm3 (after deploying external modules) was launched to Sun-synchronous low-Earth
orbit (LEO) on June 23rd, 2017. The LEO orbit of 510 km altitude and inclination of 97.4◦

allows the satellite to interact with the South-Atlantic Anomaly (SAA) as well as the Southern and
Northern radiation belts. The satellite serves as a technological demonstrator for novel sensors and
materials which were designed specifically for space radiation applications. The full description of
the satellite and its payloads can be found in [4]. The main payload, the miniaturized lobster-eye
X-Ray telescope, incorporates the Timepix detector as a focal plane imager [5].

– 1 –
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(a) The VZLUSAT-1 satellite. (b)The Timepix payload board in CubeSat standard with the USB
Lite interface.

Figure 1. The flight model of VZLUSAT-1 (a) with all its onboard modules deployed. One of the payloads
is the Timepix sensor board (b) which is responsible for readout and pre-processing of measured data [5].

2 Timepix payload, commissioning and constraints

The satellite payload [5], is a standalone module, capable of image acquisition, readout, pre-
processing, and compression directly onboard the satellite. It is crucial to have a complete processing
pipeline onboard, due to minimal communication capabilities of the satellite [6]. Having a complete
onboard processing pipeline is unique when comparing to the related projects [2, 3], which do not
introduce onboard processing. Table 1 summarizes the parameters and capabilities of the Timepix
payload.

Table 1. List of the Timepix payload parameters and capabilities.

Detector Timepix
Sensor 300 µm silicon, aluminum-coated

Cooling passive convection
Shielding backside 0.5 mm tungsten
Readout Customized USB Lite interface

Processing unit ATxMega127a4u + 256kB FRAM
Min. acquisition time 0.001 s
Max. acquisition time not limited

Acquisition time overhead 15 s including equalization upload and readout
Frame processing time 3 to 60 s depending on the pixel occupancy

onboard processing Binning, energy histogram, track filtering
Max. readout rate once per 90 s

VZLUSAT-1 storage size 4 MB shared between payloads
VZLUSAT-1 down link approx. 30 kB/day

Acquisition control remote (manual) and onboard (script-driven)

– 2 –

CHAPTER 5. IONIZING RADIATION SOURCES LOCALIZATION 118/171

CTU in Prague Department of Cybernetics



2
0
1
8
 
J
I
N
S
T
 
1
3
 
C
1
1
0
1
0

Commissioning: was conducted after communication with the satellite was established. Systems
and payloads were tested individually, and their state was examined for potential damage. The
Timepix detector responded correctly to all inputs. Exposures were acquired to test the noise edge
given the sensor equalization loaded in the satellite read-only memory. The obtained data in the
new environmental conditions required adjustment of the detector settings by increasing per-pixel
signal threshold to 5 keV. After the first year of operation, the detector threshold was shifted once
more, to approx. 6 keV, due to new noise near the bonding edge of the sensor. Close to the end of
the first year of operation, just 3 pixels appear to be damaged, requiring masking.

Up till now, the satellite’s attitude determination and control system (ADCS) could not be fully
operated. Due to a malfunction, the 3D orientation of the satellite along its orbit is uncontrollable.
Thus the optical axis of the telescope cannot be pointed in the desired direction. This condition
limits the capability of the onboard X-Ray telescope to perform long exposures while being pointed
at astronomical objects. Nevertheless, short automated exposures of the Sun can be still performed
using the onboard ultra-violet (UV) trigger [7].

3 Operation modes

Since its commissioning, the Timepix payload has been operated in 3 distinct modes of operation.

UV-triggered Solar imaging: uses an autonomous UV trigger to expose the Sun using Timepix
and the X-Ray optics. Without the functioning ADCS system, the opportunity of pointing directly to
Sun is low. Although the system gathered over 100 images, most of them carry no direct observation
of the Solar disc. Some data suggest that the Solar disc went across the field-of-view of the optics
during the acquisition. However, due to long exposures (3.0 sec, later 0.1 s) the observation of the
focused solar disc cannot be confirmed. Moreover, images taken after the optics deployment (refer
to [4, 5] for detail information) show intense direct visible light illuminating the Timepix sensor.
The illumination is likely to happen due to the lack of baffle in the telescope. Exposures of direct
sunlight suggest that most of the observations were taken with the Solar disc being approx. 6 deg
outside of the field-of-view of the X-Ray telescope. Images in figure 2 show a sample of typical
data taken with the UV-trigger.

Binned sampling, frequent scanning: is conducted approx. once per fortnight. It gathers post-
processed data during a 24 h session, taking an image every 90 s. The data contain original images
(figure 3a) binned to 16 × 16 px resolution (figure 3b) and a histogram of pixel values across the
whole image (figure 3c). The binning was designed for the X-Ray telescope, where the background
radiation would be filtered out, leaving only the tracks of X-Ray photons. The use of such methods
of compression for data containing background radiation is not optimal. However, even with
such compression, information about the track types can be partially reconstructed, as shown in
the section 4. Parameters of the acquisition are fixed for every image during the high-frequency
scanning. Notably, the acquisition time is set to 0.05 s, which provides images free of saturated
pixels. Figure 4a shows an example of an interpolated radiation intensity map with highlighted
measurement locations.

– 3 –
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(a) 3 s acquisition of Solar X-Ray radiation. (b) 0.1 s acquisition of direct sunlight.

Figure 2. Sample of data acquired by Timepix using the automatic Solar UV-trigger of the X-Ray telescope.

(a) Full-resolution image (b) Binning of the active pixels 16 × 16. (c) Energy histogram.

Figure 3. Full resolution images acquired by Timepix are converted from the original full-resolution (a) to
binned images (b) and computed energy histograms (c). For high-frequency planetary scanning, only (b) and
(c) are stored due to limited onboard data storage and low downlink data transfer capacity.

Full-resolution sampling: of polar belts and SAAutilizes a scriptingmechanismof theVZLUSAT-
1, which allows iterating over a predefined list of commands. The scripts are planned on Earth using
the historical data gathered by the satellite and are uploaded regularly from the ground segment.
See figure 4b for an example of a scanning plan. The measurement position on the orbit and the
parameters of the acquisition are optimized to enable registration of full resolution images (figure 3a)
and to minimize event pileup and allow particle track classification. Such measures are necessary
to allow further processing since the intensity of radiation varies by up to 8 orders of magnitude
across the entire orbit. Processed results of the full-resolution scanning are presented in section 4.

4 Overview of orbital data

The satellite conducted a total of 26 212 image acquisitions, from which 1 608 were retrieved in
full-resolution. A total of 33 full-day, high-frequency scanning sessions and eight full-resolution
scanning of polar belts and South-Atlantic anomaly produced valuable data, which help us to

– 4 –
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(a) Radiation intensity map obtained from post-
processed binned data in a single day. Circles mark
the actual points of measurement.

(b) Plan of full-resolution scanning using historical
data. Black dots mark the pre-planed points of mea-
surement within a predicted orbit.

Figure 4. Background radiation in LEO is being scanned in two modes: (a) frequent scanning producing
post-processed binned data, (b) full-resolution sparse scanning using planned scripts.

understand the space radiation environment in LEO. The ground segment downloaded 34 MB of
data, which contain all the acquisitions mentioned above.

In the first months of operation, the Timepix payload focused on capturing an image of the Sun
using the X-Ray telescope. The initial phase of observations was conducted with the telescope’s
optics retracted inside the satellite, where the optics functions as a collimator. Nineteen images
were taken, before the optics were deployed on October 4th, 2017. After deploying the optics an
additional 88 images were taken. However, thanks to a free motion of the satellite due to the
malfunction of the ADCS system, no sharp image of the Sun was captured. We can only estimate
that the telescope observed solar X-Ray photons which were evenly distributed across the sensor due
to the motion of the Sun across the field-of-view during several of the 3 s exposures (see figure 2).

(a)Radiation intensitymap before optics deployment. (b) Radiation intensity map after optics deployment.

Figure 5. Earth maps of radiation intensity registered by Timepix before and after deployment of the X-Ray
telescope optics. After deployment, the Timepix detector is partially exposed to free open space, which leads
to an increase of the recorded radiation intensity by up to 2 orders of magnitude.

Meanwhile, the deployment of the optics partially exposed the Timepix detector to open free
space. Since then the perceived level of background radiation significantly increased by up to 2
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(a) August 30-31th, 2017 (b) September 7-8th, 2017 (c) September 9-10th, 2017

(d) Effects of solar flare in SAA. (e) Effects of solar flare above North pole.

Figure 6. Top row: radiation maps captured (a) before, (b) during and (c) after effects of the X9.3 Solar
flare on September 6th, 2017. The effects were observable up to several days after the event. Bottom row:
Timepix frames characteristic for specific locations along the satellite orbit.

orders of magnitude. The additional signal is caused by low-energy charged particles, which are
previously blocked by the satellite thin housing. Figure 5 shows the levels of perceived radiation
before and after optics deployment. Additionally, the effects of direct sunlight can be seen as well
(figure 2b) despite the aluminum coating of the detector. We do not observe any degradation of the
detector due to sunlight exposure.

The X9.2 Solar flare: on September 6th, 2017 was the strongest coronal mass ejection event in a
decade. Additional measurement time was dedicated to examining the effects of the flare on the in
orbit radiation. As depicted in figure 6, the effect consists of increased radiation intensity farther
from the polar regions and the SAA, as well as above Central America. Moreover, the composition
of the added radiation shows increased intensity of heavy charged particles (protons) (figures 6d
and 6e). Equivalent data have not been captured ever since the event.

Full-resolution images: allow to perform detailed single particle track analysis. Particle tracks
were classified into morphological classes [8] using a custom random forest classifier [9]. Blobs,
which are generally taken for tracks of protons and ions, can be seen mostly in the area of the
so-called south-Atlantic anomaly. Figure 7 shows the map for each of the classes.

Particle track reconstruction: was performed on the post-processed binned data (figures 3b
and 3c), this was conducted using a random forest regression model [9], developed for the recon-
struction of compressed data. The results, shown in figure 8, suggest that machine learning methods
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(a) dots (b) blobs (c) straight tracks

(d) curly tracks (e) low resolution tracks (f) track examples

Figure 7. Measurements and interpolation of particle track type flux for (a) dots, (b) blobs, (c) straight
tracks, (d) curly tracks and (e) low resolution tracks. Examples of track shapes are shown in (f). The maps
were constructed out of 1030 full-resolution images captured between June 23rd, 2017 and November 4th,
2018. The positions of the measurements are represented by dots. Data were interpolated using k-NN.

(a) dots (b) blobs (c) straight tracks

(d) curly tracks (e) low resolution tracks (f) track examples

Figure 8. Regression of particle track type flux for (a) dots, (b) blobs, (c) straight tracks, (d) curly tracks and
(e) low resolution tracks. Examples of track shapes are shown in (f). The maps were reconstructed using 16
877 post-processed images recorded between June 23rd, 2017 and September 17th, 2018.

allow estimating track types in lossy-compressed data, which is likely with resources constrained
missions as VZLUSAT-1.

5 Conclusions

The VZLUSAT-1 CubeSat nanosatellite has successfully passed its first year of operation. Using the
Timepix detector, it gathered data of in-orbit radiation at 510 km Sun-synchronous low-Earth orbit.

– 7 –
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After deploying the X-Ray optics, the onboard configuration becomes the first partial exposure of
Timepix to free open space as well as the first to utilize Timepix by a CubeSat satellite. Machine
learning methods were used to analyze compressed and binned data to obtain estimates radiation
intensity distributions across satellite orbit. Future work includes detailed physics-based data
analysis according to particle-type classification [10]. Earth-wide radiation maps are produced
including track-type classification. The Timepix payload brings direct in orbit data valuable for
environmental and radiation effects studies as well as for potential future missions aiming at LEO
X-Ray astronomical imaging using pixel detectors.
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Timepix Radiation Detector for Autonomous Radiation Localization
and Mapping by Micro Unmanned Vehicles

Tomas Baca1, Martin Jilek1, Petr Manek2, Petr Stibinger1, Vladimir Linhart3, Jan Jakubek4 and Martin Saska1

Abstract— A system for measuring radiation intensity and
for radiation mapping by a micro unmanned robot using the
Timepix detector is presented in this paper. Timepix detectors
are extremely small, but powerful 14×14 mm, 256×256 px
CMOS hybrid pixel detectors, capable of measuring ionizing
alpha, beta, gamma radiation, and heaving ions. The detectors,
developed at CERN, produce an image free of any digital
noise thanks to per-pixel calibration and signal digitization.
Traces of individual ionizing particles passing through the
sensors can be resolved in the detector images. Particle type
and energy estimates can be extracted automatically using
machine learning algorithms. This opens unique possibilities in
the task of flexible radiation detection by very small unmanned
robotic platforms. The detectors are well suited for the use
of mobile robots thanks to their small size, lightweight, and
minimal power consumption. This sensor is especially appealing
for micro aerial vehicles due to their high maneuverability,
which can increase the range and resolution of such novel
sensory system. We present a ROS-based readout software
and real-time image processing pipeline and review options
for 3-D localization of radiation sources using pixel detectors.
The provided software supports off-the-shelf FITPix, USB Lite
readout electronics with Timepix detectors.

I. INTRODUCTION

Before remotely controlled and autonomous mobile robots
become available, human presence was required for any in
situ measurement. Be it at the bottom of a sea or outside
of the Earth’s atmosphere, sensing in unreachable places
was impossible. Nowadays, terrestrial sensing is not short on
utilizing robotic platforms in hazardous environments. Since
the widespread of Unmanned Aerial Vehicles (UAVs), often
called drones, much effort was directed towards creating
flying platforms capable of sensing the environment [1].
Aircraft can traverse ground obstacles and move quickly
to the desired location when compared to ground robots.
Although, the presented system is designed for use with
any mobile platform, including even satellites, where it was
successfully deployed [2], [3], let us put this paper into the
context of MAVs, with their highest applicability,

Micro Aerial Vehicles (MAVs) are small UAVs which can
be handled by a single person. Multirotor helicopters are
popular MAVs due to their simple construction and low
maintenance. As the technology of small and intelligent

1Authors are with the Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, Prague 6,
tomas.baca@fel.cvut.cz.

2Author is with the Institute of Experimental and Applied Physics, Czech
Technical University in Prague, Husova 240/5, Prague 1.

3Author is with the Faculty of Nuclear Sciences and Physical Engineer-
ing, Czech Technical University in Prague, Brehova 7, Prague 1.

4Author is with the Advacam s.r.o., Prague, Czech Republic, U Perga-
menky 12, Prague 7.

aircraft became available, many fields started to utilize new
options for carrying sensor equipment. Security and rescue
forces utilize camera equipment and often thermal imaging
cameras to assist ground forces during environmental dis-
asters like earthquakes and floods [4], [5]. In research and
science, unmanned aircraft have various roles, from testbeds
for control algorithms to autonomous sensor carriers. This
paper will focus on a novel sensor setups for autonomous
ionizing radiation mapping and localization by UAVs.

Demand for UAV platforms capable of localizing an
unknown radiation source is increasing. Early attempts to
design a radiation detection module for a UAV was presented
in [6]. Fixed-wing aircraft, equipped with Kromek 1 cm3

gamma-ray spectrometer, was used to scan legacy mines in
England [7]. Area of the size of 300 m × 400 m was covered
during the total of 5 hours of flight, and a radiation map was
created ex-post. A solution suited for a search for compact
sources of radiation was presented in [8], [9]. The system
utilizes 5 cm3 scintillator with an air sampler, which takes
measurement of counts per second in 1 s intervals. Authors
tested that the aircraft can detect presence of 137Cs (activity
2.3 GBq) and 60Co (activity 1.1 GBq) from a distance up
to 50 m, while flying at 70 km/h. The plane followed a path
designed by a human operator. Another remotely controlled
aircraft system is proposed in [10].

Since Fukushima Daiichi nuclear power plant (FDNPP)
incident, research groups aim to prepare aircraft, that would
remotely scan the affected area without endangering human
workers [11], [12], [7], [13], [14], [15], [16]. Authors of
[14] present an aerial solution equipped with two gamma-
ray spectrometers. Data would be transmitted to a ground
station over a data link during the flight. In [16] a multi-UAV
approach was taken to enhance the potential yield of informa-
tion gain from onboard sensors. Three formation types and
trajectory schemes for three fixed-wing aircraft are proposed
in a scenario with simulated sensor scanning. A multirotor
MAV was used in [11] to carry lightweight CdZnTe Kromek
spectrometer with 1 cm3 of detection material. Real-world
experiments, situated in 20 m2 area, showed a process of
creating a radiation map where several uranium samples were
located. During the flight, the unmanned vehicle followed a
flight plan with a set of waypoints. Scanning of 1 km2 area
was also conducted using the Kromek detector, near FDNPP
[12], [7]. The fixed-wing plane carried a laser rangefinder,
which was later used to create a 3-D map of the radiation
above the affected area. The plane was controlled remotely
or flew according to a pre-fabricated flight plan.

A multitude of published work relies on Kromek spec-

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019
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(a) Timepix chip [17] (b) Structure of the Timepix chip

Fig. 1: The Timepix (a) wire-bonded on a chipboard. The detector
(b) is a combination of a sensor material, which is bump-bonded
to the CMOS ASIC chip.

trometer, which measures the counts per second, i.e., the
number of ionizing particles that interacted with the detector
[16], [11], [12], [7]. Others use scintillating detectors [13],
[15]. Scintillators are large and heavy, compared to other
sensors, and require a large aircraft. A 94 kg UAV conducted
flights around FDNPP [13] and a radiation map of the
area was estimated. The UAV was flying a preprogrammed
path through waypoints. The only exhibit of an algorithmic
approach to locating an unknown radiation source in real-
time was presented in [15].

A. Detection of ionizing radiation

Ionizing radiation is imperceivable by the human senses.
However, the effects of interaction of the radiation with
matter can be measured. Processing of electrical and optical
signals is common since the results can be obtained in
real time in contrast to measuring the chemical effects of
radiation.

1) Scintillating detectors: Scintillation is an effect of
visible light production (luminescence) in transparent ma-
terials by the passage of an ionizing particle. The radiation
excites electrons in the material that releases light in the
visible/UV line spectrum. The light is gathered and measured
using a photo-multiplier. Scintillating detectors were used on
UAVs [8], [9], [13], [15]. However, due to their size and
weight, their use is limited to large vehicles, e.g., unmanned
airplanes.

2) Semiconductor pixel detectors: Ionizing radiation in-
teracts in many ways with materials. Depending on the en-
ergy, X-Ray photons can cause photoelectric effect, Compton
scattering and electron-positron pair and triplet production.
Charged particles interact directly by the Coulomb force. A
piece of semiconductor material (a diode) is used directly
as a sensor by convert newly produced electron-hole pairs
to electric current. A single pin-diode is often made of Si,
CdTe and GaAs and can be as large as 1 cm3.

A special class of a semiconductor detector is a pixel
detector which is composed of a matrix of detectors. The
Timepix detectors (figure 1), developed at CERN (European
Organization for Nuclear Research) by the Medipix collabo-
ration [17], [20] are low-powered pixel detectors, commonly
used for medical imaging and radiography. Timepix uses a
single piece of a semiconductor sensor material, which is
bump-bonded to an ASIC (Application Specific Integrated

(a) USB Lite interface [18]. (b) FITPix interface [19].

Fig. 2: USB interfaces supported by the proposed Rospix software.
The USB Lite interface (a) has a very small form factor while the
FITPix (b) supports multiple Timepix chips in a stack.

Circuit) CMOS (Complementary Metal-Oxide Semiconduc-
tor) readout electronics. Each pixel is individually configured
and calibrated to produce a signal only when the measured
energy exceeds a pre-set threshold, which can be as low as
3 keV. The detector does not require cooling. Each pixel
of the Timepix detector is an individual dosimeter, capable
of measuring in one of three modes. In Time-over-Threshold
(ToT) mode, the pixel integrates energy deposited in the pixel
during the acquisition time. Time-of-Arrival (ToA) mode
measures the time of the first over-the-threshold event to
the end of the acquisition. The Medipix mode counts the
number of events during the acquisition. Timepix detector
has a resolution of 256×256 px with each pixel being 55 µm
large. Timepix has an external trigger mechanism that can
control the electronic shutter to achieve arbitrary acquisition
time. Acquisitions with the length of minutes are possible
if the detector is calibrated correctly. On the other hand, a
continuous stream of short exposures can deliver, e.g., up to
80 frames per second in the case of FITPix USB interface.

Recently, a newer version of the Timepix detector was
introduced, the Timepix3 [20]. In contrast with Timepix,
which reads out complete frames regardless of the recorded
information, Timepix3 is an event-driven camera. Event-
driven cameras output a continuous stream of data that is
generated by the active (hit) pixels. A similar trend emerged
in the visible-light camera field [21]. Similarly, as in the case
of event-based cameras that indicated a new research stream
mainly related to micro aerial vehicles, Timepix3 promises
a similar impact in the field of aerial radiation detection, as
its key properties are perfectly suited for dynamically flying
MAVs.

The power of Pixel detectors resides in the capability
to show the type and direction of the incoming radiation.
Similarly to a bubble chamber, particles leave different traces
in the image depending o their type, energy, and direction.
The information can be obtained onboard and in real time
from the recorded data by methods of computer vision and
machine learning. This requires completely new approaches
to radiation mapping and source of radiation detection. The
ability to estimate position and matter of the source of
radiation in real-time enables to control MAVs and even
groups of MAVs based on the obtained information. Agile
movement towards the estimated source increases the gain of
the sensors and enables to exploit the potential of Timepix
sensor fully.
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B. Contributions
We present a novel system for acquisition flexible online

radiation mapping and dynamic localization of a radiation
source using Timepix radiation detectors on Robot Operating
System. We present a ROS-based interface to the detectors,
which allows direct integration to various robotic platforms.
We provide an open source package for interfacing common
Timepix electronic boards. Moreover, we include a particle
track classification pipeline, for estimating the observed type
of radiation in real time. The proposed system is novel in
its applicability onboard mobile robotics, which could not
be done so far due to the lab-focused nature of the current
control software for Timepix pixel detectors. The proposed
unique combination of Timepix detector and mobile robots,
especially flexible MAVs, significantly improves measuring
capabilities of this novel sensor and enlarges application
potential on mobile robots in radiation detection scenarios.
The main objective of the paper is to offer this unique
and fully functional tool for real-time onboard radiation
measurement to the robotics community and to motivate
consequent research in the fields of homeland security and
nuclear disaster mitigation. To facilitate the initial steps of
the research, we provide a model of the Timepix sensor for
Gazebo simulator under ROS, which enables verification of
robotic algorithms.

II. LOCALIZATION OF IONIZING RADIATION
SOURCES

Localizing a radiation source can utilize several physical
principles, that can yield information on the direction to the
source. Unlike with visible light, ionizing radiation cannot
be redirected by an optical lens. Heavy electrons and ions
do not change their heading in matter as visible light does
in glass. X-Ray photons exhibit reflective properties, which
can be exploited in X-Ray reflective optics. However, the
use of optics in the atmosphere is limited; the reflectance
decreases with the increase in photon energy; however, only
high energy photons can penetrate large portions of the
atmosphere. Following paragraphs will provide an overview
of different options of estimating direction to the radiation
source with the use of Timepix detectors.

A. Intensity mapping and estimation
As with the event-counting detectors, Timepix can also be

used to estimate the intensity of a source by measuring the
particle flux. When the spectrum of the source is known or
estimated on the fly, the event originating from the natural
radiation background can be filtered by an image processing
algorithm, e.g., the one presented in section III-A.

B. Pinhole camera aperture
As with the visible light camera, a pinhole aperture (fig-

ure 3a) is used to restrict the direction of an incoming particle
to a specific point on the detector. This method works for
both photons and charged particles and is especially useful
for an environment with significant particle flux since the
aperture shield blocks most of the incoming radiation [22].
An extension of the pinhole aperture is a coded mask. A

(a) Pinhole aperture (b) Stacked detector

(c) Particle colimator (d) Compton camera

detectors
absorber

with pinhole

incoming
particles

scattered
photon

Fig. 3: Showcase of the different detector configurations (detectors
are showed in blue color). The pinhole aperture (a) is the simplest
solution to estimate the direction. The stacked detector (b) provides
a feasible solution for heavy charged particles. The particle colli-
mator (c) is feasible when sensor mass is not a constraint. Compton
camera (d) uses the Compton effect to estimate the direction to a
gamma radiation source.

deconvolution is then used to re-project the image using the
mask’s point-spread function.

C. Multi-detector stack

Multiple Timepix detectors are combined in multi-detector
setup by stacking them on top of each other (figure 3b) [23].
Coincidences in all detectors are extracted by synchronizing
the exposures and utilizing the ToA mode of the detector.
Charged particles that intersect multiple detectors will leave
tracks, which are matched and the path of the particle is
reconstructed. Stacked detectors are useful for observing
heavy ions and electrons that give a portion of their energy
to each of the detectors while maintaining the original path.

D. X-Ray collimator

A collimator (figure 3c) performs similarly to the pinhole
camera. Each place on a detector is dedicated to capturing
information on particles in a particular direction. Collimators
can have better angular resolution than pinhole apertures;
however, their use on flying platforms is limited due to
their significant mass. When the collimator has reflective
surfaces in its inner tubes, an increase in gathering gain can
be observed. Such collimators are called X-Ray optics, and
they are often used in laboratory or space cameras [24], [25].

E. Compton effect camera

Compton camera [26] utilizes the Compton scattering
effect, during which a photon is scattered in a scattering
detector while producing a new electron. Both the scat-
tered photon and the new electron are measured using two
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(a) Image from the Timepix detector.

(b) dot (c) blob

(d) drop (e) track

Fig. 4: A showcase of a single image (a) from the Timepix detector
with a variety of particle tracks. Tracks corresponding to photons
are typically small dots (blue – (b)), ions and protons leave larger
blobs and drops (red – (c),(d)) and electrons leave straight and curly
tracks (yellow – (e)).

synchronized detectors (figure 3d). The angle of scattering
is calculated from the measured energy signatures of the
particles according to the Compton ratio formula

Er (θ,E0) =
Es (θ,E0)

E0
=

1

1 + E0

mec2
(1− cos θ)

, (1)

where Es and E0 [J] are the energies of the scattered and
incoming photon, θ ∈ [−π, π] is the scattering angle, me ≈
9.10 · 10−31 kg is the invariant mass of the electron, c ≈
2.99 · 108 m s−1 is the speed of light in vacuum. A cone
of possible directions to the source is constructed using the
known coordinates of the events in the two detectors.

The intensity mapping approach using a single Timepix
detector was simulated in Gazebo simulator as well as
deployed given the currently available detectors and inter-
faces, see section V. The Compton effect camera is part
of the prepared simulation plugin for the Gazebo simulator.
However, the experimental hardware, which requires two
Timepix3 detectors and powerful onboard processing of the
data-driven detectors, is still in development. The approaches
relying on detection of heavy ions were not simulated, due
to their low applicability due to the high particle attenuation
by the atmosphere. Nevertheless, the simulation model can
be extended to include those types of radiation.

III. DETECTOR READOUT AND PROCESSING
PIPELINE

Reading out data from Timepix requires providing power
and low-level communication to the detector. Readout in-
terfaces are electronics boards, which allow connecting the
detector to a computer via USB or Ethernet. Interfaces such
as the USB Lite [18] and FITPix [19] were developed for
laboratory use, however, they can be utilized on a mobile
robot as well. See figure 2 for showcase of the interfaces. The
software Pixelman [27], which is licensed with the interfaces,
is a graphical program that does not support work on a
mobile robot or an MAV. For that reason, we proposed the

Rospix1 software, which allows connecting USB Lite, FITPix
and in the future Katherine interfaces to Robot Operating
System.

The complete pipeline (figure 5) consists of the Timepix
detector, which is mounted on or connected to a readout
interface. The readout interface communicates with the on-
board computer of the MAV via the Rospix [3] software.
Unprocessed image frames are published to the ROS ecosys-
tem, where they are picked up by the track classifier and
acquisition time controller. Lastly, a radiation source state
estimator uses the processed data and provides feedback for
the MAV controller.

A. Particle track segmentation and classification

Connecting a detector interface into the ROS ecosys-
tem is facilitated by the proposed Rospix software. Rospix
configures the Timepix detectors and handles the measure-
ment parameters such as exposure time, bias voltage, pixel
equalization, and low-level analog signals. Controls of the
connected detectors are provided using ROS services, and
the measured data are presented via ROS topics. Rospix is
designed to provide a robust connection to the hardware,
even when the communication may be corrupted, which
is a common theme on mobile robots. The commercial
programs such as Pixelman or Pixet tend to work poorly
in such conditions. The robustness was well tested during
a suborbital rocket flight, where two FITPix devices were
continuously measuring while connected to Odroid XU4
microcomputer [3].

Ionizing particles create characteristic tracks in the detec-
tor images. By classifying the tracks into geometric classes,
we can estimate the type of radiation that caused them.
Particle tracks classification can be done using the propri-
etary Pixelman software [27], however, only offline. Also,
the solution [28] is too slow for dynamical and real-time
use, and it requires a dedicated CUDA capable graphics card
since it uses a neural network. Thus we propose and provide
a particle track classification pipeline, which is capable of
running in real time onboard a mobile robot.

The tracks are classified into the following basic classes
(see figure 4), which are based on track geometry and
morphology:

• dot: 1–2 active pixels (photons or fast electrons),
• blob small-to-large clusters of pixels with higher energy

pixels in the center (ions)
• straight track: straight or curly lines (electrons, high-

energy ions under shallow angle)
• drop: elongated blobs with deltoid (drop-like) shape

(low energy ions, protons),
The shape and size of the track is closely related to the form
of interaction of the ionizing particle with the matter of the
detector is influenced by the particle energy, the material
of the detector and the measurement parameters, such as
the voltage applied to the detection diode. The proposed
classifier and classes were learned on data from Low-Earth

1http://github.com/rospix/rospix
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Proposed ROS pipeline

Timepix USB interface
Rospix Track classification

Target estimation UAV
feedback
control

acquisition control

Fig. 5: The diagram of the data pipeline with the FITPix USB interface, which can be used onboard a mobile robot.

orbit [2], recorded with 300 µm Si sensor, which provides
very rich family of particle tracks. Thus the full list of
classes contains also minor class variants: blob branched,
blob small, blob big, track straight, track curly and track
lowres. Further labeling into the actual physical particle types
is very challenging and often requires additional information,
e.g., prior knowledge of the radiation spectrum or the angle
of incidence with the detector [29], [30].

First, the image is segmented into the individual clus-
ters (particle tracks). This process is straightforward if the
amount of particles is low. The lack of any digital noise in
the Timepix images implies that the tracks can be separated
cleanly. However, the particle tracks can overlap during high
event pileup. Rather than to solve this issue algorithmically
which is challenging, we set the acquisition time in real-time
to minimize this effect. Following features are extracted for
the track classification:

1) Area and occupancy of a convex hull: occupancy is
ohull = nactive/nhull, where nactive is the number of
nonzero pixels of the track and nhull is the number of pixels
forming its convex hull.

2) Linearity: given the eigenvalues e1, e2 of the point
cloud formed by the active pixels in the track, the linearity
is defined as linearity = max (e1, e2) / (e1 + e2).

3) Number of crossings: after skeletonization of the bi-
narized particle cluster, the skeleton is converted to a graph,
where each node represents a pixel, edges are created be-
tween 8-connected pixels. Cycles in the graph are removed,
its edges are weighted (diagonal ones are penalized) and a
minimum spanning tree (MST) is found. The sum of node
degrees of the MST larger than 2 is the number of crossing
in the trace.

4) Skeleton to hull area ratio (SKHR): The feature is
calculated as SKHR = nskeleton/nhull, where nskeleton
is the number of pixels of the cluster skeleton and nhull is
the number of pixels in its convex hull.

5) Tortuosity: the ratio t = lcurve/lends is a measure of a
curliness of a curve, where lcurve is the length of the curve
and lends is the distance between its start and end. In our
case, the longest path in the skeleton of the cluster is used
to calculate tortuosity.

6) Distance transform measures: the mean and std. devi-
ation of distances from each pixel to the edge of the cluster
was used as features.

7) Boxiness: blob branched class often contains isolated
clusters of pixels, which are connected with a thin line.

Morphological erosion is applied to disconnect the clusters
and the number of connected components in the pixel graph
is the boxines feature.

8) Foreground connectivity with background: three fea-
tures, which represent the number of pixels that are facing
the background with 1, 2 and three edges.

9) Diagonality and straightness: an image I1 is created
from the original image I0 as I1 = (I0 − (I0 ◦ s1)) ◦ s2.
s1 is structuring element for morphological opening, s2 is
structuring element with two horizontally and two diagonally
placed pixels for straightness and diagonality respectively.
s2 is applied two times with different orientation to obtain
features in arbitrary direction. The features are calculated
by summing the pixels in the resulting images for both
operations.

10) Basic features: area: number of nonzero pixels in the
cluster, energy: sum of values of pixels in the cluster, energy
per pixel: ratio of area and energy, energetic quartiles: lower
decile, upper decile and median of energies of pixels in the
cluster, width and height of the rectangular hull of the cluster.

Support Vector Machines (SVM), logistic regression and
random forest classifiers were trained on human-labeled
data using the previously defined features. Implementation
of the classifiers relied on the Python scikit-learn library.
After hyperparameter search (see table I) and evaluation, the
random forest classifier was chosen after having the best
Mathews Correlation Coefficient (MCC) on testing data set.
The random forest performed with test MCC = 0.7905. It
was followed by the support vector machine with MCC =
0.7689 and the logistic regression with MCC = 0.7438.
The confusion matrix in figure 6 shows that the classifier
performance is very good for particles of types Dot (0),
Track small (1) and Blob big (2). The classifier often confuses
classes Blob branched (3) and Track curly (5). However, Blob
branched is not very common in terrestrial measurements,
since it is caused by very high energy ions such as cosmic
rays. The branching is caused by a complex interaction of
the ion with the sensor while producing additional particles
– delta electrons. The classes Drop and Track lowres are
problematic since the training data set did not contain enough
data. The particle classification pipeline is available in ROS
as a Python scikit implementation2.

2http://github.com/rospix/classification
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Part of the pipeline Variants Parameters

scaling standardization
to N (0, 1)

-

multiclass extension not needed -
number of estimators 240

hyperparameters maximum tree depth ∞
min. samples per split 5
min. samples per leaf 1

TABLE I: Optimized parameters of random forest.

IV. DETECTOR SIMULATION MODEL

Together with the Rospix driver, we provide a simulation
package for the Gazebo-ROS simulator to facilitate research
of MAV control and planning algorithms with this new sen-
sory system in feedback. Ray tracing method was developed
to simulate gamma rays and their interaction with simulated
Pixel detectors. Our focus is in localizing weak radiation
sources, located in greater distance (>50 m). It has an
important implication on the expected incoming radiation
since most of any potential ions and beta radiation would
be blocked by the atmosphere. High energy gamma photons
(>500 keV) still have a high chance to penetrate even
hundreds of meters of air. Such radiation can originate from
materials that are commonly used in proton therapy: 60Co,
137Cs and 90Sr, which can be possible lost and misused.
Search for those sources is the main interest of homeland
security departments and therefore motivates our research the
most. We aim to develop the Compton camera specifically for
MAVs. Photo-electric effect and the Compton scattering are
the key effects in the Compton camera. Following sections
present the simulation model used to model these effects in
the detectors.

1) Differential cross section: The properties of non-elastic
scattering from scattering center and particle collisions are
described by a differential cross section. A total cross section
characterizes an effective area of an event (collision, scatter-
ing). Let us have a particle on an incident trajectory with the
scattering object. The impact parameter b is the displacement
of the particle from the path to the scattering center; the

(a) confusion matrix

Class
0. Dot 705
1. Blob small 383
2. Blob big 288
3. Blob branched 448
4. Track straight 332
5. Track curly 473
6. Drop 49
7. Track lowres 134
8. Other 93

Fig. 6: Confusion matrix of the random forest classifier, generated
with the use of 10-fold cross validation from testing part (25%) of
the dataset.

dσ
b

θ

φ

dΩ

(a) Differential cross section. (b) Compton scattering likeli-
hood.

Fig. 7: (a) Showcase of solid angle dΩ and the differential size of
the impact plane dσ for θ = 60 deg and (b) the plots of likelihood
P (θ | E0), integrated over azimuthal angle φ for various energies.

radial angle of scattering is denoted by θ. The total area of
the impact parameter is the impact cross section σ, which
is obtained by integrating the impact parameter b over all
possible azimuthal angles φ. In a case where the scattering
is not a function of φ (axially symmetrical case), the impact
cross section takes the form

σ (b) =

∫
Φ

b dφ =
b2

2
2π = π b2. (2)

Such relaxation is viable for Compton scattering, since
the scattering bodies (electrons) are spherically symmetrical
objects. The differential of the impact cross section is

dσ (b) =
∂σ

∂b
db = 2π b db. (3)

The solid angle on a unit sphere under the angle θ < Θ is
obtained by the integration:

Ω (r,Θ) =

∫ Θ

0

2πr cos θ r dθ = 2πr2 − 2πr2 cos Θ. (4)

The differential of the solid angle is

dΩ (θ) = −4πr cos θ dr + 4πr dr + 2πr2 sin θ dθ. (5)

In the case of a unit sphere, the differential of the area is
simplified to

dΩ(θ) = 2πr2 sin θ dθ. (6)

The total cross section σ is obtained by integrating the
differential cross section over the area of a unit sphere:

σ =

∮
4π

dσ

dΩ
dΩ =

∫ 2π

0

∫ π

0

dσ

dΩ
sin θ dθ dφ. (7)

The decrease of the intensity dΦ of an incident beam with
original flux Φ

[
s−1
]

is described as

dΦ

dz
= −nσΦ, (8)

where dz [m] is the thickness of the material, n
[
m−3

]
is

the particle density of the material and σ
[
m2
]

is the total
cross section of the interaction. By solving the differential
equation, we obtain a relationship between the initial flux
Φ and the remaining flux Φout behind the object with the
thickness z:

Φout = Φe−nσz. (9)
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scattering detector

absorbing detector

radiation source

Fig. 8: Simulation of Compton camera which consists of two
Timepix detectors. Possible directions to the radiation source are
showed by semi-transparent cones originating from the pixels in
the scattering detector.

The probability of an event (E) is modeled as

P (E) = 1− e−nσz. (10)

2) Photoelectric effect: Photoelectric effect describes a
total absorption of a photon by an electron. A portion of
the energy is responsible for releasing the electron from
the atomic orbital; the rest is converted to kinetic energy
of the electron. Photon energy can be expressed using its
wavelength λ [m] or frequency ν [Hz] as

Eγ =
hc

λ
= hν, (11)

where h ≈ 6.62 · 10−34 m2 kg s−1 is the Planck constant
and c ≈ 2.99 · 108 m s−1 is the speed of light in a vacuum.
k = Eγ/Ee is the ratio between the photon energy Eγ =
hν [eV] and the electron rest mass energy Ee = mec

2 ≈
5.11 ·105 eV. According to [31], the simplified Gavrila-Pratt
[32] cross section for the photoelectric effect is

σph =
16

3

√
2πr2

eα
4 Z

5

k3.5
, (12)

where re ≈ 2.81 · 10−15 m is the classical electron radius,
α ≈ 1/137.04 is the fine structure constant and Z is the
atomic number of the element. The accuracy of (12) is
relatively low even in the energy range, where it should be
valid (≈ 1 to 1000 keV), since (12) expresses the cross
section for a free electron, not an electron bound in an
orbital. Attenuation coefficients from NASA NIST3 can be
interpolated and resampled to achieve better accuracy.

3) Compton scattering: Compton scattering occurs when
a photon transfers a portion of its energy to an electron.
During this interaction, the photon is deflected from its
original path by the radial angle θ and azimuthal angle φ. The
Klein-Nishina formula [33] describes the differential cross
section dσ/dΩ [m2/sr] for the incident and scattered beam:

dσ

dΩ
=

1

2
r2
e E

2
r

(
Er +

1

Er
− sin2 θ

)
, (13)

where Er is the Compton ratio (1), re ≈ 2.81 · 10−15 m
is the classical electron radius. The prior probability of the

3http://physics.nist.gov/PhysRefData/FFast/html/
form.html

(a) 2-D map of X-Ray photon event
count measured with the MAV.

(b) 2-D map of natural background
radiation event count.

Fig. 9: Maps of the radiation intensity during a flight with the
Timepix detector (300 µm Si) above a 241Am radiation source
(≈ 500 MBq). Photon events (a) can be distinguished from the
background radiation (b) by analyzing the particle tracks in the
gathered images.

scattering in a material with thickness z is computed as:

P (Ecs) = 1− e−nσcsz. (14)

However, as well as with the photoelectric effect, the ac-
curacy of the prior is low, since the Klein-Nishina formula
describes the cross section for a free electron. Empirical-
based probability distributions should be used to obtain more
precise results. The value of likelihood probability density for
the event Ecs of a single photon with initial energy Eo [eV]
being scattered by the angle θ is calculated as

P (θ | Ecs) =

∫ 2π

0
dσ
dΩ sin θ dφ

σcs
, (15)

where σcs is the total cross section for Compton scattering
obtained from (13). Figure 7 depicts an illustration of dσ/dΩ
and the likelihood of scattering by the angle θ calculated for
1 mm of silicon for various energies.

V. EXPERIMENTS
Proof of concept experiments that showcase the Timepix

detector on an MAV was conducted with 241Am source
with activity ≈ 500 MBq. This radiation source produces
gamma radiation with energy 59.5 keV. A small MAV was
equipped with FITPix interface and Timepix detector with
300 µm Si sensor. The MAV was built upon the DJI F450
frame and equipped with Intel NUC i7 computer, and the
FITPix was connected via USB. Robot Operating System
control pipeline [34] was used to guide the MAV along a pre-
planned trajectory while being localized by GPS and optic
flow. Figure 9 shows the resulting radiation maps for photon
events and for the radiation background, which was separated
using the classifier. Data gathered during the experiment and
the classification pipeline can be accessed at
http://mrs.felk.cvut.cz/iros2019timepix.

rad. source

MAV

Fig. 10: Photo of the autonomous MAV while mapping the radiation
environment using the Timepix detector.
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VI. CONCLUSIONS AND FUTURE WORK
We present a system based on Timepix detectors for real-

time localization of radiation sources by a mobile robot. The
proposed solution consists of the Rospix software interface
for Robot Operating System. The solution includes a fast
particle track classifier, which is a feature that was up to
now part of proprietary laboratory software only. Mobile
robots can use our system to perceive and interpret the
measured data in real time including estimating the posi-
tion of a source and the type of incoming radiation. We
demonstrate the system in an experiment with a Micro Aerial
Vehicle and 241Am radiation source. The Timepix sensor
and the Compton effect camera assembly is provided in
the form of a plugin for Gazebo-ROS simulator. Thanks to
the onboard radiation data processing, the proposed pipeline
will enable automatic control of MAVs with the radiation
sensor in control feedback. This will allow fully autonomous
localization of radiation sources thanks to the high mobility
of the MAVs. Currently, our group focuses on the Compton
camera principle for localizing weak gamma-ray sources
using Timepix3 detectors. With this physical principle the
concept should be sufficient for localization of faint compact
gamma sources (tens of GBq) at a distance of approx 100 m.
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Localization of Ionizing Radiation Sources by
Cooperating Micro Aerial Vehicles with Pixel

Detectors in Real-Time
Petr Štibinger1 , Tomáš Báča and Martin Saska

Abstract—We provide a complex software package allowing
the user to deploy multiple ionizing radiation sources and
detectors modeled after the Timepix miniature pixel detector. The
software is provided to the community as open-source, and allows
preliminary testing and method development even without a pixel
detector or radiation sources. Our simulation model utilizes ray-
tracing and Monte Carlo methods to resolve interactions of ioniz-
ing radiation with the detector, obstacles and the atmosphere. An
open-source implementation is provided as a plugin for Gazebo,
a simulator popular within the robotics community. The plugin is
capable of simulating radiation sources with activities in the order
of GBq2 in real-time with a conventional PC. We also provide
a ROS interface, which allows full integration of the Timepix
pixel detector into a robotic system. The credibility and the
precision of the simulator plugin were confirmed via a real-world
experiment with a micro aerial vehicle (MAV) equipped with a
Timepix detector mapping the radiation intensity of an Am-241
sample. Finally, we present a method for cooperative localization
of a source of ionizing radiation by a group of autonomous MAVs
in an environment with obstacles.

Aerial Systems: Applications, Environment Monitoring and
Management, Computational Geometry

I. INTRODUCTION

W ITH recent advances in mobile robotics, exploration
of hazardous environments no longer requires direct

human presence. An unmanned vehicle equipped with radi-
ation detectors can safely perform measurements for longer
periods of time and closer to the radiation source than a
human worker. This provides a way to collect more data and
to localize sources of radiation more precisely. Unmanned
vehicles can assist in surveying sites of nuclear accidents,
uranium ore mines or spent fuel storage facilities. Another
major research topic related to this paper is a rapid response
to the public safety threat, that can occur as a result of
mishandled radiotherapy equipment or an imminent act of
terrorism. Currently, a heavy pickup truck equipped with
powerful radiation sensors and protective shielding for the
crew has to be dispatched to the threatened area.

Manuscript received: September, 10, 2019; Revised January, 3, 2020; Ac-
cepted February, 9, 2020.
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Engineering, Czech Technical University in Prague, Czech Republic
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2Bq (Becquerel) = 1 particle emission per second

Several research projects have been dealing with localization
of ionizing radiation sources by unmanned robotic vehicles.
Most of these projects consider a ground robot, which will
be controlled remotely by a human operator, or an aerial
robot following a predefined trajectory. In some scenarios,
however, remote control is rendered impossible due to strong
wireless signal absorption or electromagnetic interference.
Moreover, in an environment with an unknown obstacle layout,
a trajectory cannot be prepared in advance. For these reasons,
the community has recently been focusing on developing
autonomous systems, that utilize additional onboard sensors
and decision-making algorithms to complete the task without
external guidance in real-time.

Developing of autonomous systems is a complex process,
and a proper simulation environment is often used in all
stages of development. Highly realistic simulators of ionizing
radiation and its interactions with matter, such as GEANT4 [1],
CASINO [2] or FLUKA [3], have been developed for the
purposes of nuclear science and medicine. However, it may
be far too difficult to interface these programs with the
simulation software commonly used in robotics, such as V-
REP [4], Gazebo [5], Actin [6] or Webots [7], and to perform
the simulation in real-time. Simulated radiation using custom-
built software is presented in [8], [9], while most projects are
evaluated through real experiments instead [10]–[15].

Fig. 1: An experiment with a MAV (red) equipped with a Timepix
detector creating a map of radiation intensity. The radioactive source
(green) was a sample of 241Am with intensity of 0.5 GBq. The same
setup as during the experiment was simulated in Gazebo using the
novel radiation plugin.
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With this paper, we aim to present our radiation sim-
ulator to the community as open-source3, and to motivate
further development in autonomous localization of radioactive
sources for nuclear and homeland security applications. For
the community, we offer a complete software package, which
enables seamless transition from a realistic simulator into a
real deployment of robots equipped with Timepix sensors.
Special interest is taken in the use of Timepix in a direct
feedback for autonomous methods for localizing radiation
sources by micro aerial vehicles (MAVs). Semiconductor pixel
detectors, such as Timepix, are well suited for a setup with
small and agile MAVs, due to their low weight, low power
consumption and fast readout rate.

II. RELATED WORK AND PRELIMINARIES
Several contributions have been made in the area of radia-

tion mapping and source localization over the past ten years.
Since the Fukushima Daiichi nuclear power plant accident in
2011, the site has been under surveillance by multiple robotic
missions. Unmanned aerial vehicles (UAV) have been used
to monitor radiation levels from the air while following a
predefined trajectory in [16]–[20]. Unmanned ground vehicles
(UGV) have been used under remote control in [13], [14].

The system presented in [21] employs multiple UAVs for
contour analysis of an irradiated area. The UAVs move along
a predefined series of waypoints, and measurements are trans-
mitted to a ground station for processing. In [9], a contour
analysis is presented for localization of multiple sources with
overlapping radiation fields. A simulation in [8] demonstrates
a control algorithm for multiple robots to cooperatively explore
an area containing multiple radiation sources. In [22], a 90 kg
UAV is shown actively searching for unknown sources of
radiation while making real-time adjustments to its trajectory
based on onboard measurements by a NaI scintillator. To the
best of our knowledge, this is so far the only project to employ
an autonomous active search for a radiation source with an
aerial platform.

Related projects utilize heavy robotic platforms, either
ground vehicles or multirotor helicopters with a payload
capacity of more than 1 kg, capable of carrying radiation
detectors which are bulky or require a cooling mechanism.
Non-use of radiation detectors as sensors in a feedback loop
for active source detection and precise localization may be
caused by unavailability of devices with a real-time response
and the possibility of direct onboard processing.

A. RADIATION DETECTION
Before mobile robots became available, handheld detectors

had to be used, since human bodies lack the ability to sense
ionizing radiation on their own. This chapter summarizes the
commonly used types of radiation sensors.

Ionization chambers consist of a gas-filled tube with an
electric field introduced by a voltage source. Radiation passing
through the tube causes the gas to ionize, and creates measur-
able disruptions in the electric field. The main advantage of
these detectors is their low cost. However, small sized sensors

3Source code repository: https://github.com/rospix
Multimedia: http://mrs.felk.cvut.cz/radiation2020ral

of this type often lack the sensitivity necessary for detecting
comparatively weak sources, due to low density of the atoms
in the gases. Use of ionization chamber detectors in robotics
has been shown in [23], [24].

Scintillation detectors utilize the emission of visible or UV
light, generated by radiation passing through certain materials.
Since the wavelength of the emitted light depends on the ra-
diation energy, these detectors can also determine the spectral
properties of the radiation. Mobile robots equipped with scin-
tillators have been presented in [10], [25]. Due to indirect con-
version of radiation energy to an electrical signal, and the need
to employ additional electronics for visible light processing,
these detectors are often heavier than other types of detectors.
A miniature detector Kromek using a 1 cm3 CdZnTe scintil-
lator weighing 0.5 kg was used onboard UAVs in [16]–[18].

Semiconductor detectors rely on the presence of charge
carriers in the form of electrons and holes in their atomic
lattice. Similarly to ionization chambers, radiation passing
through a semiconductor can cause the generation of new
charge carriers. Using a P-N junction, this event can be directly
transformed into an electrical signal. The main advantage of
semiconductor detectors is low ionization energy – radiation
energy necessary for creating new charge carriers. This
property makes semiconductor detectors very sensitive, even
capable of detecting individual particles. A small lightweight
semiconductor detector is used in [13], mounted to a remotely
controlled ground vehicle. The most recent trend is to stack
two semiconductor pixel detectors to form a Compton camera
[26], which utilizes the kinematics of Compton scattering to
provide additional information about direction of incoming
radiation. Compton cameras mounted onto mobile robots have
been used to create 3D radiation maps in [12], [14], [15].
The additional spatial information provided by the Compton
camera offers great volumetric mapping potential. However
no real-time onboard processing of the output data has been
demonstrated, as the output data complexity and volume is
much higher than with other detectors.

Timepix belongs to a group of semiconductor detectors
called pixel detectors. It consists of a matrix of 256 × 256
pixels, which are tiled onto a single block of semiconductor
material, such as Si, GeAs or CdTe. The inner structure of
one pixel is shown in Fig. 2a. The area of the chip is only
14.08 × 14.08 mm and the thickness can be selected from
100 µm to 1 mm. In the smallest commercially available
configuration, called MiniPIX [27] (Fig. 2b), the device only
weighs 50 g and it is comparable in size with a USB flash
drive. The device is connected to a computer through a
USB 2.0 interface, which serves both as a data channel and
as a power source. Compared to other types of detectors,
Timepix is extremely lightweight, compact and capable of a
high data readout rate (up to 100 frames per second). It is
also incredibly sensitive, even capable of counting individual
high-energy photons. Although these properties offer great
application potential in mobile robotics, especially for robots
with limited payload capacity, such as small-sized MAVs,
Timepix has never been used onboard aerial robots, to the
best of our knowledge.
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B. SIMULATED RADIOACTIVITY

Most robotic systems designed for operation in radioactive
environment are tested via real world experiments. A radiation
model, implemented in MATLAB, is presented in [8]. It is
based on the decrease of radiation intensity with a square
of distance. The model represents a coarse approximation,
and does not consider environment losses and obstacles. The
simulator presented in [9] uses a Gaussian mixture model
(GMM) to approximate the radiation field from multiple
sources. The intensity map is constructed by overlaying indi-
vidual Gaussian distributions centered around point sources.
This approach allows for simulation of a more widespread
pollution, and the variance of the Gaussian curve can be used
to model different strengths of radiation penetration in the
atmosphere. Obstacles are not considered in [9].

In this paper, we focus solely on gamma radiation, as alpha
and beta particles are usually absorbed by the atmosphere after
only a few decimeters.

(a) Inner pixel structure [28] (b) MiniPIX [27]

Fig. 2: The Timepix chip consists of 256 × 256 individual pixels
(a), which all act as miniature radiation detectors. A very com-
pact Timepix-based radiation camera is commercially available as
MiniPIX (b). The device is comparable in size with a USB flash
drive. The metallic Timepix chip is visible in the upper section of
the sensor.

III. CONTRIBUTION

1) We present a novel method for realistic simulation of X-
ray/gamma sources. The model utilizes the principles of high
energy photon physics to achieve realistic results. Ray-tracing
algorithms are used to simulate the ionizing radiation on the
level of individual photons. Given the substantial amount of
particles emitted by real radioactive materials, we also present
methods for reduction of necessary calculations, which signifi-
cantly speed up the process. We provide our implementation of
the model as an open-source plugin for Gazebo. The realistic
properties of the simulation were experimentally evaluated by
a comparison with real-world measurements taken by a micro
aerial platform shown in Fig. 1. We also provide a ROS1

interface for the Timepix detector, which allows a seamless
integration of the sensor into existing robotic platforms.

2) A new approach to the use of multiple MAVs for fast
detection and localization of ionizing radiation sources was
designed to demonstrate the abilities of the system. This first
attempt at using cooperating MAVs for active real-time local-
ization of radiation sources has clearly shown the advantage
of such a lightweight system in comparison with conventional
radiation detection methods.

1Robot Operating System [29]

This system aspires to be an enabling technique for using
micro-sized aerial vehicles in tasks of radiation monitoring and
localization of radiation sources. Exploiting the mobility and
maneuverability of MAVs together with the unique properties
of the Timepix pixel detector, which has not been used with
MAVs so far, opens new perspectives and application domains
in the fields of nuclear safety and civil protection.

IV. SIMULATION PIPELINE

In this section, we outline the core principles and algorithms
used for the simulation of ionizing radiation. The mathematical
model is derived from well known interactions between matter
and high energy photons [30].

A. MATHEMATICAL MODEL

The direction of emission cannot be predicted in advance
for any photon released by a real radiation source. On a large
scale, however, the spatial distribution of photon directions is
considered uniform. The output of a radiation source is defined
by activity, which is calculated as follows:

A =
m

ma
NA

ln(2)

t1/2
, (1)

where m is mass of the source in grams, ma is mass of one
atom of the isotope in grams, NA is the Avogadro constant,
and t1/2 is the half-life of the isotope in seconds. Activity
defines the average number of decay events (in our case
photon emissions) per second. For our model, the activity of
a source serves as a constant frequency.

Two assumptions were made. Firstly, the radioactive ma-
terial is considered to be an omnidirectional point source.
Secondly, the velocity of emitted photons is assumed to be
infinite. The intended world scale of use for the model is
under a hundred meters in diameter, and the highest readout
frequency of the sensor is 100 Hz. Therefore, the time of
flight can be safely omitted, and each photon is considered to
be detectable at the time of its emission.

In a lossless environment, the total photon output of a
radiation source is equal to the sum of photons intersecting the
surface of a sphere centered around the source. Let us denote
the solid angle on a sphere Ω, and the probability density
function f(Ω). The surface area S of a unit sphere is equal to
4π, therefore a uniform distribution of points on its surface is
given as:

f(Ω) =

{
1

4π , for 0 ≤ Ω ≤ 4π,

0, otherwise ,

∫∫
S

f(Ω) dΩ = 1 .

(2)
Let us now denote the probability P (Ω), that a point lies

on a part of spherical surface SΩ < S corresponding to the
solid angle Ω:

P (Ω) =

∫∫
SΩ

f(Ω) dΩ =
Ω

4π
. (3)

We define an apparent activity Aapp as the total amount of
particles hitting the specific portion of the spherical surface:

Aapp(Ω) = AP (Ω) = A
Ω

4π
. (4)
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This allows us to compute the amount of detectable photons,
by projecting individual sides of the detector on the surface
of the unit sphere. Let us consider a “triangle” drawn onto
the surface of a sphere. It consists of three vertices, which are
connected by the shortest possible paths on the surface, the
orthodromes. The solid angle for the surface of this triangle is
equal to a spherical excess E, which is calculated as follows:

E = A+B + C − π, (5)

where A,B,C are the angles between the orthodromes. The
angles can be obtained from Equation 6, which is derived from
the law of haversines:

C = archav

(
hav(c)− hav(a− b)

sin(a) sin(b)

)
. (6)

In this equation, central angles a, b, c for the corresponding
orthodromes are used. The trigonometric function haversine
used in this equation is defined as:

hav(θ) = sin2

(
θ

2

)
=

1− cos(θ)

2
. (7)

The central angle θ between any two points on a spherical
surface is calculated using the known coordinates of the
spherical center (world position of the radiation source) and
the world coordinates of the two points. The two points are
projections of the detector vertices onto the sphere. However,
the central angle remains the same, if we use the coordinates
of the vertices directly, as the angular calculations are invariant
to the radius of the sphere. Therefore, the central angle θ for
coordinate vectors ~u,~v is calculated as:

θ = arccos

(
~u · ~v
|~u| · |~v|

)
. (8)

By far the most common type of interaction of a pho-
ton with other matter (detector, obstacles, air) is absorption.
Photon absorption may be caused by one of three processes:
the photoelectric effect, the Compton scattering or the pair
production. For a single photon, it is nearly impossible to
predict the exact outcome of the interaction. On a large scale,
however, absorption percentages can be measured.

In the proposed model, the detection of a photon only occurs
as a result of the photoelectric effect, as this is the predominant
interaction for photons at the energy levels produced by
natural radioactive decay. According to [30], the photoelectric
absorption percentage is calculated as:

Pe = 1− e−(µen/ρ)ρl , (9)

where ρ is the density of the absorber material and l is the
length of a photon track through the absorber. The mass-energy
attenuation coefficient µen/ρ depends on the energy of the
photon, and the corresponding value is obtained by a cubic
spline interpolation of the data provided by the NIST2 Stan-
dard Reference Database 126 [30]. The absorption in obstacles
is analogous, only the absorption coefficient is replaced by the
total attenuation coefficient µ/ρ, which encompasses all three
types of absorption.

2National Institute of Standards and Technology

Algorithm 1 Radiation raytracer

1: PhotonCounter ← 0
2: N ← Aapp · Texp · Lenv # ray count to be simulated
3:
4: # simulate the rays hitting one SensorSide
5: procedure SIMULATIONSTEP(SensorSide, N )
6: for N do
7: p1← SensorSide.RandomPoint
8: r ← Raycast(RadSource, p1)
9: p2← Intersect(r,OtherSides)

10: track ← Distance(p2, p1)
11: Pe ← PhotoelAbsorptionProb . Equation (9)
12: if random(0,1) < Pe then . hit detected
13: PhotonCounter ← PhotonCounter + 1
14: end if
15: end for
16: TimepixMessage← PhotonCounter, Texp
17: ROS.Publish(TimepixMessage)
18: end procedure

B. IMPLEMENTATION DETAILS

The implementation utilizes a common rendering technique,
where rays are cast from the camera towards the scene, rather
than the other way around. In our model, the rays are
cast from the detector towards the radiation source. This
significantly reduces the computational complexity, as only
detectable photons are simulated. Since the detector has
a cuboid shape, up to three sides can be exposed to the
radiation source every simulation step. As mentioned before,
the directional distribution of photons emitted by the source is
uniform, thus the origin of each ray is selected by uniformly
sampling the exposed detector sides. The number of samples
is given by the apparent activity for each of the sides.

The rays tend to form a compact bundle, as the detector
is extremely small. Therefore, it is not necessary to detect
collisions with all obstacles along the line of each ray. Instead,
the environment loss Lenv is computed once per simulation
step by casting a ray from the center of the detector towards
the radiation source:

Lenv = Lair(ds −
N∑
i=1

di)
N∏
i=1

Li(di) , (10)

where Lair = 1−Pair is the loss induced by air absorption, ds
is the Euclidean distance between the source and the detector,
di is the distance a photon has to travel through i-th obstacle,
Li is the loss caused by absorption in the obstacle and N
is the number of obstacles intersected by the ray. The result
is used to decrease the apparent activity of a source, and all
subsequently simulated photons are treated as if they were in
a lossless environment.

For each photon, a pseudorandom number in the range
[ 0, 1 ] is generated. If the number is lower than Pe, the
photon is detected. This step preserves the stochastic nature of
radiation sources. The process is visualized in Fig. 3, which
shows an outline of the detector and individual rays originating
from two different sources. The complete simulation loop
is presented in Algorithm 1. The frequency of the loop is
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determined by the readout rate of the simulated sensor, and
the number of particles to be simulated in one step is derived
from the apparent activity of the source and the environment
loss.

The proposed model also supports simultaneous use of mul-
tiple sensors and radiation sources. The unique environment
loss and apparent activity have to be computed separately for
each source-detector pair. Multiple sources may be used to
counteract the point source approximation in order to model
a widespread contamination.

Fig. 3: Visualization of one simulation step. The Timepix semicon-
ductor block is shown as a black box. The gamma radiation from
two sources is being simulated. Red rays represent photons, which
pass through the detector undetected. Green rays are absorbed and
detected. The tracks of absorbed photons inside the detector are
highlighted in blue color. The probability of detection is affected by
the length of the track, the detector material and the photon energy.

C. ROSPIX

To allow seamless transition from simulations into real
deployment of robots, a ROS interface for Timepix sensors
has been developed [31]. This powerful tool enables direct
streaming of the Timepix output in the form of ROS messages,
a dynamic configuration of sensor parameters (such as
acquisition time or bias voltage) via ROS services, automatic
communication recovery, and also processing of measured
data in real-time, directly onboard the robotic platform. This
step is crucial for active localization of radiation sources. The
Rospix tool also includes a built-in image processing pipeline,
which is capable of distinguishing different particle types in
real-time based on the shape of the track created along the
detector surface [32]. This allows the system to filter out
natural radiation background. Reliability of the Rospix driver
has already been proven during a sub-orbital rocket launch as
a part of the Rocket EXperiment (REX), which carried two
Timepix sensors as a part of its payload [33].

V. SIMULATION RESULTS

A simple scenario with one MAV and one radiation source is
presented for a baseline performance evaluation of the simula-
tor. The MAV follows a desired path at a fixed height of 1.5 m
with a fixed orientation, so that the Timepix is always pointed
in the direction of the map Y-axis. The MAV continually col-
lects measurements from the onboard Timepix detector. A map
of radiation intensity, with resolution of 0.5 m is built in real-
time from the measurements. The path shown in Fig. 6 was
generated so that each cell of the map is explored by the MAV.

Fig. 4 shows examples of maps, which were created by
the MAV in the simulated environment of Gazebo. The
stochastic nature of the radiation source causes the results
to look different in each iteration. A quantitative analysis
was performed by launching the simulation 100 times with
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Fig. 4: Examples of radiation maps created in the simulated en-
vironment. The parameters of the simulation were identical to the
parameters of the real experiment. The MAV moved at a fixed height
of 1.5 m with a fixed orientation. A sample of 241Am with activity
of 0.5 GBq was placed in the origin of the coordinate system. The
differences in the maps are introduced by the randomized photon
detection events.
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(a) Simulation result
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(b) Theoretical expectation

Fig. 5: Mean average radiation intensity map (a) generated as a result
of 100 consecutive simulations. The measurements were obtained
at a fixed height of 1.5 m with a fixed orientation of the sensor
pointed in the direction of Y-axis. A sample of 241Am with the
activity of 0.5 GBq was placed at the origin of the coordinate
system for all iterations. The map shows strong agreement with a
theoretical expectation (b) generated from the mathematical model
after removing the stochastic element.

the same parameters. The mean average distribution of the
measured radiation intensity across all 100 mapping iterations
is shown in Fig. 5a. On a large scale, the distribution of the
radiation intensity resembles an overlay of two multivariate
Gaussian distributions. Replacing the final stochastic step of
the simulation by the probability of absorption in the detector,
an ideal map of radiation intensity can be plotted as a function
of position. The map shown in Fig. 5b represents the theoret-
ical expectation based on the previously described physical
principles of our model. The measured intensity decreases
around the true position of the source due to the orientation
of the detector. Directly above the source, the largest side of
the detector is not exposed to any photons.

VI. COOPERATIVE LOCALIZATION

For large areas, the mapping approach may be too time-
consuming, and a different approach is necessary. However, it
may not be possible to determine the position of a radiation
source from the measured intensity, without fully covering the
area. In an obstacle-free area, a gradient-following approach
may be used to navigate a MAV towards a radiation source.
However, in an environment with obstacles that attenuate the
radiation intensity, only a local maximum will be reached.

The uneven shape of the detector can be exploited to make
a crude estimate of the direction of incoming radiation even
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Fig. 6: (Left) A space-filling path generated for the MAV to follow
in order to obtain measurements in all cells of the map.
(Right) Simulated changes of radiation intensity in relation to the
orientation of the detector. The MAV and the radiation source were
placed 5 meters apart and this distance did not change during the
simulation. The yaw of the MAV was incremented by π

20
rad after

each 10000 measurements. The prominent minimum in the measured
radiation intensity can be exploited for an estimate of the radiation
direction.

with a single-chip device. Rotating the detector around its axis
causes measurable changes in particle flux, as it affects the
size of the detector surface exposed to the radiation. This is
illustrated in Fig. 6, where a significant decrease in measured
radiation intensity occurs. This is a result of the largest detector
side being parallel to the direction of the incoming photons.

Mounting the sensor as in Fig. 7 allows for changes of
sensor orientation by increasing the yaw of the MAV. The
position of the radiation source can be estimated as the
intersection of the directional estimates taken at multiple
positions in the area. The measurements can be taken by a
single MAV. However, employing multiple MAVs significantly
decreases the time required to find the radiation source, as
multiple measurements are taken simultaneously. This also
greatly increases the localization precision and provides the
option to track moving radiation sources.

The MAV remains in one position while changing its yaw.
This allows the method to be environment-invariant, as the
obstacle attenuation does not change while performing the
estimation. The Timepix can therefore be considered a crude
sensor of radiation direction, and the source position can be
estimated as an intersection of multiple direction measure-
ments taken in different positions. Simulations have shown,
that the accuracy of the direction estimate with this method
is approximately ±9 degrees. To improve the precision, we
can formulate the localization problem as a superresolution
task. This approach is typically used for detail improvement
and noise suppression in imaging techniques, by combining
multiple lower resolution images [34]. Related projects employ
multiple signal classification (MUSIC) algorithm for localiza-
tion of radio transmitters [35], or targets in radar measurements
[36]. Variants of the Kalman filter have also been used to
improve resolution of images [37], [38] and depth images
[39]. In this work, we employ a Linear Kalman filter to
fuse direction estimates taken by the MAVs to improve the
precision of radiation source localization.

In the following section, operator ·̂ is used to denote an
estimate rather than the actual value. The state vector x =
(sx, sy)

T is the position of the radiation source in the world
coordinate system, P is the covariance of the position estimate,
Q is the measurement covariance and k is the iteration index.

Fig. 7: The DJI F450 quadrotor with a FITPix device mounted to the
front of the frame. The 14× 14 mm Silicon surface of the Timepix
detector is visible as a silver square.

For a single, static radiation source, the prediction step of the
filter is reduced to:

x̂k+1|k = x̂k|k , (11)
Pk+1|k = Pk|k + Q . (12)

The direction estimate is introduced as a new state obser-
vation y with a known observation covariance R, which is
calculated in the camera coordinate frame (X – forward, Z
– up), with Timepix representing the camera. The covariance
ellipsoid is extremely enlarged in the forward direction, as
the distance between the source and the detector cannot be
determined without knowing the activity of the source in
advance. The ellipsoid is then transformed into the world
coordinate frame, assuming the MAV pose in the world frame
is known. This provides an estimate of the position of the
radiation source in the world coordinates. Then, a correction
step is performed by computing the Kalman gain K and
updating the estimate:

K = Pk|k−1

(
Pk|k−1 + R

)−1
, (13)

x̂k|k = x̂k|k−1 + K (yk − x̂k) , (14)
Pk|k = (I−K)Pk|k−1 . (15)

To obtain measurements in multiple locations, the entire
area of interest is uniformly sampled, and the MAVs are
assigned a predefined number of waypoints, in which the
direction estimate is performed. The sensor is turned off while
moving to a new waypoint.

Fig. 8: The simulated environment with obstacles shown in ROS
visualization tool (top) with transparent obstacles, and in Gazebo
(bottom) with obstacles textured according to the simulated materials
(concrete, wood).

A series of simulations was performed to evaluate the
efficiency of the active localization approach. Two MAVs
were deployed in an area with obstacles of different materials
(concrete, wood) shown in Fig. 8. The layout of all obstacles
was known by the MAVs in advance, and a radiation source
was placed in an unknown position within the area. Each MAV
followed a cyclic routine shown in Fig. 9. The localization
process is illustrated in Fig. 10 with four snapshots from
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simulation showing iterative improvements with additional
direction estimations by the MAVs.
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Fig. 9: A diagram illustrating the routine of individual MAVs during
the cooperative localization process. The measurements from all
MAVs are transmitted via WiFi to a central node (either one of the
MAVs or a ground station), which fuses the data and estimates the
position of the source.

Fig. 10: A sequence of images showing the iterative improvement
in precision of source localization with additional measurements.
Orange and blue ellipsoids represent the latest directional estimates
obtained by the MAVs. Actual position of the radiation source is
represented by a black marker, while the estimated position of the
source is represented by a green marker. Covariance of the estimate
is represented by a purple ellipsoid.

VII. EXPERIMENTS

A series of experiments was performed with one MAV in
an outdoor environment. In order to validate the credibility
of the simulator, the conditions of the real experiment were
identical to the simulation with one MAV presented earlier.

A single source of gamma photons was placed in an area
without obstacles. The source was a sample of Americium-241
with activity of 0.5 GBq. The energy of the photons produced
by this isotope is 59.5 keV. A quadrotor built on the DJI F450
frame, with a Pixhawk flight controller and an Intel NUCi7
onboard computer, was used as the robotic platform. Timepix
with a 300 µm Silicon chip was used as a radiation detector.
The detector was connected to the onboard PC via a FITPix
USB 2.0 interface [40] and the Rospix driver [31] was used
to stream measurements into ROS as messages. The detector
was mounted to the front of the MAV, as shown in Fig. 7.
The position of the MAV was determined by fusing data from
a uBlox GPS module with a compass. The optic flow was
provided by a downward-facing mvBlueFOX camera, and the
distance from ground was provided by a Garmin LIDAR-Lite
v3 laser rangefinder.

The MAV followed the path shown in Fig. 6 at a fixed
height above ground and maintained a fixed heading. The
horizontal velocity of the MAV was limited to 1 m/s, and
the exposure time of Timepix was set to 0.1 s. The images
were processed by an image classification pipeline [32], to
filter out natural background radiation other than the gamma
photons. The resulting gamma radiation intensity was stored
in a grid with resolution of 0.5 m2. Maps created during the
experiments are shown in Fig. 11 for flights at 1.5 m above
ground and in Fig. 12 for flights at 3 m above ground.
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Fig. 11: Radiation maps created by the MAV moving at a height of
1.5 m above ground. The true position of the sample of 241Am with
activity 0.5 GBq is marked by a black dot.
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Fig. 12: Radiation maps created by the MAV moving at a height
of 3 m above ground. Despite a comparatively low activity of the
radiation source (0.5 GBq), Timepix was still capable of detecting
the emitted gamma photons. The photon flux was, however, too low
for the passive mapping to determine the position of the source
accurately. The need to localize the radiation source with more preci-
sion motivates the development of more advanced active localization
methods.

The experiments have proven, that a single MAV equipped
with one Timepix detector is capable of estimating the
position of a relatively weak radiation source while flying at
1.5 m above ground. Increasing the MAV height resulted in
insufficient amount of photons captured in each grid cell, and
the resulting is not guaranteed to show a clear peak in the
radiation intensity. The results may be improved by lowering
the horizontal velocity of the MAV to allow the detector to
collect more photons, but this would result in significantly
longer flight duration. Using an active localization approach
with multiple MAVs would significantly reduce the time
requirements.

VIII. CONCLUSION AND FUTURE WORK

We have presented a complete open-source software
package for the development of autonomous robotic systems
dealing with detection and localization of radioactive sources.
A novel ray-tracing based simulator, which allows users
to create realistic simulations with multiple radioactive
sources and Timepix detectors has been developed, and our
implementation in the form of a plugin for Gazebo is available

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2020.2978456

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

CHAPTER 5. IONIZING RADIATION SOURCES LOCALIZATION 139/171

CTU in Prague Department of Cybernetics



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

as open-source. We have also presented a ROS interface for the
Timepix detector, which allows full integration of the powerful
and compact sensor into an existing robotic system1. The
properties of the simulated environment have been statistically
evaluated and the credibility and the accuracy of the simulation
were evaluated by a series of real-world experiments. During
the experiments, a MAV equipped with a Timepix radiation
detector onboard created a map of the gamma radiation
intensity released by a sample of Americium-241 in real-time.

Our efforts are further focused on developing an au-
tonomous system for fast and precise localization of radiation
sources by cooperating micro aerial vehicles. We especially
focus on exploring GPS-denied environments with obstacles,
e.g. underground parking areas or former Uranium ore mines.
With this system, we aim to provide a significant contribu-
tion to routine nuclear safety surveying as well as to rapid
homeland security response systems.
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Chapter 6

Discussion and Results

In this chapter, the contributions presented in the core articles are summarized. Fur-
thermore, a discussion in context with the remainder of the author’s work is provided. Lastly,
future work in the context of the three research streams is suggested.

6.1 Research-focused UAV System

The proposed UAV system [8c], [6c] provides students and researchers the means to
develop and test new methods in the field of feedback control, tracking, estimation, and
planning. The system is modular and allows its users to add new components that can be
safely tested in simulations, and even during a real-world flight. Moreover, the system can be
used without changes for testing of high-level localization methods, mapping, planning, and
multi-robot coordination.

The first of these contributions is the Model Predictive Control tracker [6c]. Even now,
more than four years after it was first developed, a viable substitute for the tracking mecha-
nism has not yet been found. The MPC tracker provides a mechanism for real-time generation
of feasible and smooth feedforward control reference from any time-parametrized input tra-
jectory. The tracker’s output satisfies UAV constraints even when the input trajectory is not
feasible. The real-time tracking shows near-optimal results of minimizing the square error from
the input trajectory due to the linear MPC problem formulation. Moreover, the integrated mu-
tual collision avoidance mechanism allows the safe deployment of multiple Unmanned Aerial
Vehicle in outdoor conditions.

The MRS UAV system [8c] comes with two controller designs — extended SE(3) geo-
metric tracking [168] for agile and aggressive flight and the novel MPC controller for stable
flight in case of potentially unreliable UAV state estimate. However, the system can be easily
extended with new control approaches as needed thanks to its modularity. UAV controllers’
survey provides a rich list of potentially useful control techniques [72]. For example, a novel
adaptive backstepping controller [67], [79] may provide better performance during aggressive
maneuvers due to the included rotor drag compensation. The proposed extension to geometric
tracking on SE(3) [168] can be further improved with remarks from [152] to provide robust
control to bounded uncertainties. Furthermore, nonlinear MPC controllers are becoming popu-
lar [71], [74], [103] thanks to their inherent ability to cope with complex constraints. However,
when dealing with theoretical work and experimental deployment in real-world conditions,
practicality over complexity is favored. Therefore, relatively simple controllers [8c] with well-
tractable inner mechanisms are utilized. Moreover, we still find even relatively old concepts
[168] to be worth improving by incremental and implementation ways, as described in [8c].

The proposed control system has the following key properties:

� bank-of-filters estimator that overcomes challenges with diverse sensory equipment,
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� heading-oriented control design, devoid of ambiguous use of Euler/Tait-Bryan angles,
� body/world disturbance estimation that does not rely on specific state estimator design,
� reliable MPC-based controller with the benefits of the nonlinear SO(3) force feedback,
� system for utilizing a variety of onboard localization systems and sensors,
� input in any coordinate frame, which may differ from the feedback loop reference frame,
� built upon the MPC tracker for control reference generation [6c].

The system has been used not only for research testing and evaluation, but also for
education and teaching. The system was utilized for practical exercises during the 2019 and
2020 IEEE RAS Summer School on Multi-Robot Systems1. Over a hundred students used the
system while solving the tasks of the multi-UAV traveling salesman problem with neighbor-
hoods (2019) and relatively-localized leader-follower flight with two UAVs (2020). Both tasks
were finished with field experiments where the student’s code was tested (see Fig. 6.1a).

The future work on the MRS UAV system is currently foreseen as mostly implementation
improvements, including the transition to ROS2 and continuous improvement of the system’s
documentation. However, some research topics remain. The heading-based control approach
should be generalized to allow the user to specify a vector in the UAV’s body frame that
represents the UAV front, other than the currently-used principle x-axis. The azimuth of this
vector should be considered as the heading. This would allow precise tracking and control of
the heading with respect to, e.g., an arbitrary optical axis of a camera mounted on the UAV.
Without such a mechanism, the heading control relative to other than the UAV body’s x-
axis can be achieved only approximately and with notable errors, especially during aggressive
maneuvers. However, this mechanism needs to be incorporated in both control and reference
generation. The mechanism must also guarantee smooth control references and control actions
even when the definition of the UAV’s front changes in mid-flight.

6.2 Advances in remote sensing by UAVs

The UAV tasks tackled within the core publications in this thesis were on the edge of
field robotics at their time. We successfully showed a multi-robotic system for autonomous
object gathering [2c] and autonomous wall construction [7c] by UAVs. Both systems were put
to the test during the MBZIRC 2017 and MBZIRC 2020 robotics competitions where both
achieved first place among respected university teams from all over the world (see Figures 6.1b,
and 6.1c). The task of autonomous landing with a UAV on top of a moving car [3c] was also
investigated, contributing to the second place in the competition and the fastest autonomous
landing time among all the competing teams. In the future, this robotics problem may be
part of automatic remote sensing applications with UAVs being deployed and recovered by a
car. Each of the three problems brought us further in understanding the caveats of onboard
state estimation, computer vision, control, and planning. The important lesson learned about
robotics from these endeavors is the danger of overly focusing on one or a few specializations.
UAV autonomy is a complex cybernetics field that encompasses many interconnected subfields.
We found that researchers often focus too narrowly on one of the subfields while ignoring the
influence between other components of autonomous systems. This can make the approaches
narrow-minded, detached from reality, and potentially not applicable to a real-world robotics
system.

Although the particular problems solved in [7c], [2c], [3c] are probably not going to be

1http://mrs.felk.cvut.cz/summer-school-2020
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(a) 2019 IEEE RAS Summer School (b) MBZIRC 2017 Award Ceremony.

(c) Team members during the MBZIRC 2020 Award Ceremony.

pursued in the future by our team, the acquired know-how and knowledge are transferable
to other applications. For example, we also pursue the Defense Advanced Research Projects
Agency (DARPA) Subterranean competition on multi-robotic autonomous localization of ob-
jects and people in underground environments [29a], [10a], [18a]. Furthermore, the primary
research on relatively-localized multi-UAV swarms [27a], [28a], [9a], [12a] benefits significantly
from the systems and expertise we obtained in experimental field robotics. Finally, the fol-
lowing section discusses our current and future work in the remote sensing subfield of ionizing
radiation sources.

6.3 Ionizing radiation sources localization

We have come to the field of ionizing radiation detection from a different direction
and using a different perspective than the rest of the UAV community, specifically from
the constrained environment of miniature space technologies [4c], [39a]. Where the rest of
the community often attempts to mount as large radiation detectors as possible to a UAV
(to maximize measured counts-per-second), we strive towards miniaturizing both the sensor
and the UAV to deploy the UAV in tightly constraint environments. The distance to the
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radiation source even in a cluttered environment can be closed, and therefore obtain even more
information due to the inverse square law of radiation intensity over distance. The concept of
obtaining as much information as possible using large detectors is prominent throughout the
state of the art. However, multiple factors should be considered when building an autonomous
aerial system for radiation source localization. We identified the following four factors:

� detector size,
� aircraft size,
� environmental constraints,
� localization strategy.

As depicted in Figure 6.1, these four factors influence each other in a loop. With a larger sensor
comes a higher event count rate, which is understandably preferred by physicists. However,
large and heavy sensors require larger aircraft with higher payload capacity. The aircraft size
dictates its motion constraints through an environment; larger aircraft fly higher above the
terrain and need increased safety distance from obstacles. Those constraints determine the
search strategy that, in turn, typically favors sensors with higher sensitivity, and therefore
sensors with a larger mass. The current state of the art does not break from this cycle in
more than a couple of factors. On the contrary, the state of the art mostly utilizes UAVs just
as a sensor carrier and there is little incentive for real-time onboard autonomy. However, we
conjecture that all four factors need to be adjusted simultaneously to show a breakthrough in
the field. In other words, the system needs to be developed while focusing on the specifics of
sensors and the UAVs autonomy simultaneously.

Making the sensor smaller will lower its weight as well as the raw count-per-second
information yield. However, miniature sensors can be mounted on an MAV that can safely
fly much closer to environmental obstacles. Flying close to obstacles requires more intelligent
onboard autonomy, that can sense the obstacles and plan the UAV motion with respect to the
environment. Proximity to obstacles opens new possibilities for search strategies which can
utilize the abilities of today’s autonomous systems and the potential to close the distance to
the radiation sources autonomously. We aim to make such a breakthrough in both research
fields.

We have made contributions that allow us to employ the innovative Timepix sensors
and Timepix3 event cameras onboard UAVs, and proposed the Rospix2 interface [15a] for
the Robot Operating System together with a particle classification pipeline [5c]. The tradi-
tional software and tools available for the Timepix family of detectors are dedicated solely
for laboratory use and often expect a human input while conducting measurements. Also, the
data processing is commonly done only after all the data were measured. Any specific appli-
cation outside of the intended use requires specific hardware and software to be developed
in collaboration with the sensor interface manufacturer, as it was, e.g., for the VZLUSAT-1
nanosatellite [24a]. The ROS tools provided through Rospix allow full automation using stan-
dard tools within the robotics community. Moreover, the particle classification pipeline is the
first available to be executable during the data acquisition and is available as open source. The
classification pipeline was trained using diverse radiation data3 gathered by the VZLUSAT-1
nanosatellite mission [4c].

Our first contributions related to the radiation dosimetry onboard UAVs consist of the
review of radiation localization options for Unmanned Aerial Vehicle, the particle classifi-
cation pipeline, and a real-time Monte Carlo ray-tracing model for a dual-sensor Compton

2https://github.com/rospix
3https://github.com/vzlusat
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Figure 6.1: The four interconnected factors of an autonomous aircraft system for localization
of ionizing radiation sources. All four factors need to be adjusted simultaneously to introduce
a breakthrough in the field (the smaller red cycle).

camera [5c]. Furthermore, the use of the bare Timepix sensor for multi-robotic localization
of compact radiation sources [1c] without a specialized mechanism to deduce a direction to
the source is investigated. We show the approach’s potential using realistic robotic simula-
tions and a real-time Monte Carlo ray-tracing model of gamma radiation. The previously
mentioned contributions were motivation and a precursor for the project proposal for the
Technology Agency of the Czech Republic. Such interdisciplinary tasks as the localization of
ionizing radiation sources can be challenging to accomplish by an institution specializing in
either field. Therefore, the thesis author co-wrote a project proposal, together with Advacam,
s.r.o. and the Czech Metrology Institute, that would allow focusing on the topic and dedicate
more resources to the research. Project no. FW01010317 (2020 – 2022, 8th of 396 submit-
ted for the call4) is called “RADRON: Localization of ionizing radiation sources using small
unmanned helicopters equipped with a Compton camera detector”. The project focuses on uti-
lizing the unique properties of the Timepix3 [147] event cameras for real-time localization and
tracking of compact radiation sources. The first project results, submitted to IEEE ICRA
[34a], show the Timepix3 event camera used as a single-detector Compton camera onboard a
UAV. Experiments using an autonomous UAV being localized by LiDAR SLAM are showed
first. The system was able to localize a relatively weak gamma source using only onboard
sensors.

[34a] T. Baca, P. Stibinger, D. Doubravova, D. Turecek, J. Solc, J. Rusnak, et al.,
“Gamma Radiation Source Localization for Micro Aerial Vehicles with a Minia-
ture Single-Detector Compton Event Camera,” submitted to IEEE ICRA, 2020.
eprint: arXiv:2011.03356

The future work in this research field is co-aligned with the project goals. We focus
on developing an MAV equipped with a Compton camera based on the Timepix3 technology
and aim to combine the Compton camera principle [34a] for localization of compact gamma

4https://www.tacr.cz/soutez/program-trend/prvni-verejna-soutez-trend
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sources, together with the count-based system [1c] that can be utilized for ionizing charged
particles.

6.4 Summary

The contributions and achievements of the submitted doctoral thesis and the related
publications are summarized as:

� An MPC trajectory tracking approach was proposed which allows fast and precise track-
ing of desired trajectories. The tracker also provides distributed collision avoidance for
multiple UAVs sharing the same outdoor workspace.

� A control architecture that integrates the MPC tracking approach in conjunction with
a modified non-linear geometric tracking controller was proposed.

� The proposed control architecture is integrated into the provided open-source ROS con-
trol system. The system has been utilized during research, education, and experimental
activities of the MRS group at CTU in Prague and has been made available to the
public in further support of open research and experimental validation.

� The problems of multi-UAV collaborative missions for autonomous object manipulation
and delivery were studied in the context of the MBZIRC 2017 and 2020 missions. During
the objective experimental evaluation of the competition, the proposed systems focusing
on visual servoing demonstrated the best results among all other teams.

� The problem of autonomous UAV visual servoing of a moving car and subsequently
landing on the car was also studied in the context of the MBZIRC 2017 competition.
The proposed solution showed excellent performance during the evaluation, while also
achieving the fastest landing among competing teams.

� Remote sensing of the 500 km low Earth orbit’s radiation background had been con-
ducted using the novel pixel detector Timepix since 2017. The data (shared openly)
provide valuable information on radiation doses by the various present particle types.

� A system for the radiation dosimetry using Timepix sensors onboard UAVs was pro-
posed. The system consists of a real-time Monte-Carlo ray-tracing simulator, software
for integrating Timepix sensors onboard a UAV, and a pipeline for real-time track clas-
sification. Simulations were conducted showing the potential of the approach.

� A Compton camera sensor, based on the Timepix3 event camera, on a UAV was first
proposed and tested onboard as the first step in an ongoing project regarding localization
of compact sources of ionizing radiation by UAVs.
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Chapter 7

Conclusion

This thesis addressed collaborative remote sensing by a group of Unmanned Aerial Ve-
hicles. First, we focused on developing a UAV control system for experimental evaluation of
new methods in realistic real-world conditions. The proposed system utilizes an MPC tracking
approach for generating feedforward control reference provides a modular control pipeline. A
novel feedback controller design combining an MPC with geometric tracking controller on
SO(3) was proposed, together with a heading-based orientation system that is devoid of the
convention of Euler and Tait-Bryan angles. The control system has been extensively tested
throughout the years and provided the means for other research to be conducted. One of the
many uses of the system was during the 2017 and 2020 MBZIRC robotics competitions. We
tackled several problems on the edge of the state of the art in field robotics at the time. Our
solutions to the problems of multi-UAV object gathering and multi-UAV brick wall construc-
tion proved to be the best in the world, with our solution to the autonomous landing of a UAV
on a moving car performing the fastest landing among the competitors. This thesis’s collection
of core publications reports on complex cybernetics problems of feedback control, estimation,
sensor fusion, computer vision, planning, and mechatronics subfields of aerial robotics. Finally,
contributions in the field of aerial localization of ionizing radiation sources were presented. We
have made the first steps into adopting the Timepix family of CMOS hybrid semiconductor
sensors to be used onboard a mobile robot. The sensors’ properties have been shown, providing
essential tools for their use onboard a robot, and a methodology for their application has been
suggested. First experiments were conducted with the Timepix and Timepix3 sensors onboard
a UAV. Our latest results — the first results of an ongoing project — showed successful use of
the Timepix3 event camera in the form of Compton camera onboard a UAV for localization
of a compact gamma radiation source.
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