ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra betonových a zděných konstrukcí

DIPLOMOVÁ PRÁCE

Optimalizace návrhu letmo betonovaného dálničního mostu

Optimisation of design of highway balanced cantilevers bridge

Bc. Jiří Keclík

Studijní program:

Studijní obor:

Vedoucí diplomové práce:

Stavební inženýrství

Konstrukce a dopravní stavby

Doc. Ing. Lukáš Vráblík, PhD.

Praha 2021

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE				
Příjmení: <u>Keclík</u>	Jméno	o: Jiří	Osobní číslo: 458574	
Zadávající katedra: K133 - Kate	edra betonových a zd	ěných konstrukcí		
Studijní program: <u>(N3607) Stav</u>	vební inženýrství			
Studijní obor: <u>(3607T009) Kon</u>	strukce a dopravní s	tavby		
II. ÚDAJE K DIPLOMOVÉ PRÁC	I			
Název diplomové práce: Optima	alizace návrhu letmo	betonovaného dá	Ilničního mostu	
Název diplomové práce anglicky:	Optimisation of dea	sign of highway b	alanced cantilevers bridge	
Pokyny pro vypracování:				
 Základní návrh konstrukčního řešení mostní konstrukce; Vytvoření algoritmu optimalizace dle dílčích kritérií; Statický výpočet konstrukce - posouzení dle MSP a MSÚ; Základní výkresová dokumentace; 				
Seznam doporučené literatury: -				
Jméno vedoucího diplomové práce: Doc. Ing. Lukáš Vráblík, Ph.D.				
Datum zadání diplomové práce:	5.10.2020	Termín odevzdání Údaj uveďte v souladu	diplomové práce: 3.1.2021 s datem v časovém plánu příslušného ak. roku	
Podpis vedoucího p	ráce		Podpis vedoucího katedry	

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT "Jak psát vysokoškolské závěrečné práce" a metodickým pokynem ČVUT "O dodržování etických principů při přípravě vysokoškolských závěrečných prací".

Datum převzetí zadání

Podpis studenta(ky)

Prohlášení autora

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a že jsem uvedl veškeré informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu zákona § 60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne

.....

Poděkování

Děkuji vedoucímu diplomové práce Doc. Ing. Lukášovi Vráblíkovi, PhD., FEng. za jeho vstřícnost, trpělivost a předávané zkušenosti během konzultací. Zároveň děkuji Ing. Vladimíru Příbramskému za rady a ochotu při tvorbě procesu optimalizace v prostředí výpočetního programu SCIA Engineer.

Poděkování patří také mé rodině za poskytovanou podporu a zázemí během celého mého studia.

Abstrakt

Diplomová práce se zabývá návrhem letmo betonovaného mostu na dálnici D11 v úseku Trutnov – státní hranice ČR/Polsko. První část se věnuje popisu problematiky letmo betonovaných konstrukcí a tématu optimalizace. Další tři části se věnují návrhu konstrukce.

Hlavní část se zabývá optimalizací konstrukce s důrazem na redukci celkové hmoty a jejím vyhodnocením na základě různých parametrů. Statický výpočet na základě platných evropských norem ověřuje spolehlivost výsledné varianty mostu z optimalizačního procesu. Cílem je nalézt konstrukci s geometrií, která bude nejekonomičtější a zároveň splní podmínky MSP a MSÚ.

Klíčová slova

Letmá betonáž, betonové mosty, předpjatý beton, parametrizace, optimalizace

Abstract

The diploma thesis deals with design of balanced cantilever method build bridge at highway D11 in the section Trutnov – state border Czech Republic/Poland. The first part describes problematics of balanced cantilever construction and optimisation. The other three parts are focused on the design of the structure.

The main part is dedicated to optimisation of the structure with emphasis on material reduction and its evaluation based on various parameters. The static calculation evaluates the final iteration of the bridge from the optimisation process according to applicable EN standards. The goal of the thesis is to find such a construction that will have the ideal geometry, be the most economical and meet the SLS and ULS conditions.

Keywords

Free cantilever method, concrete bridges, prestressed concrete, parametrization, optimisation

Součásti diplomové práce

Část A1: Úvod, rešerše Část A2: Výkresová dokumentace variantního řešení Část B: Technická zpráva Část C: Optimalizace Část D1: Statický výpočet Část D2: Výkresová dokumentace

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební

Katedra betonových a zděných konstrukcí

DIPLOMOVÁ PRÁCE

Optimalizace návrhu letmo betonovaného dálničního mostu

Optimisation of design of highway balanced cantilevers bridge

Část A1: Úvod, rešerše

Bc. Jiří Keclík

Studijní program:

Studijní obor:

Stavební inženýrství Konstrukce a dopravní stavby

Vedoucí bakalářské práce:

Doc. Ing. Lukáš Vráblík, PhD.

Praha 2021

Klíčo [.] Keyw	vá slova /ords	5 5
1.	ÚVOD	8
2.	LETMO BETONOVANÉ KONSTRUKCE	9
2.1.	Způsoby výstavby	
2.2.	Betonážní vozíky	
2.3.	Předpětí	12
2.4.	Stabilita konzoly a spodní stavba	
2.5.	Numerická analýza	15
2.6.	Reologie betonu	17
3.	PARAMETRIZACE V MODELOVÁNÍ	19
3.1.	Současné trendy v numerickém modelování konstrukcí	19
3.2.	Praktické možnosti využití	20
3.3.	Výhled do budoucnosti	20
4.	VARIANTNÍ ŘEŠENÍ MOSTU D11 TRUTNOV – STÁTNÍ HRANICE SO 216	21
4.1.	VARIANTA 1: Jeden most betonovaný na výsuvné skruži	21
4.2.	VARIANTA 2: Dvojice letmo betonovaných mostů	22
4.3.	Zhodnocení variant	22
5.	SEZNAM OBRÁZKŮ	24
6.	BIBLIOGRAFIE	25

Obsah

1.Úvod

Historie technologie výstavby letmou betonáží, jak ji známe dnes, sahá do první poloviny 20. století. Zdroje uvádějí, že první letmo betonovaný železobetonový most vznikl podle návrhu německého inženýra E. H. Baumgarta mezi roky 1929 až 1931 v Brazílii s rozpětím hlavního pole 68 metrů. Od té doby zaznamenaly letmo betonované mosty ve světě rozmach. Díky rozvoji předpjatého betonu, které do stavebnictví přinesl a propagoval Eugene Freyssinet, v druhé polovině 20. století vzniklo mnoho letmo betonovaných mostů. Jejich stavba proběhla především ve Francii a Německu, pozadu ovšem nezůstala ani Jižní Amerika nebo ostatní evropské státy. S rozšířením metody v kombinaci s předpjatým betonem se podařilo získat možnost překonat velká rozpětí a nepřístupné oblasti betonovými mosty a nabídnout pro tyto případy alternativu k ocelovým mostům.

Práce shrnuje problematiku letmo betonovaných mostů a krátce se věnuje současným trendům v oblasti parametrizace a optimalizace konstrukcí. V praktické části jsou zhodnoceny možné varianty přemostění širokého údolí Lampertického potoka, které je součástí připravované stavby D11 v úseku Trutnov – státní hranice ČR/Polsko.

Hlavním cílem práce je provést komentovanou optimalizaci návrhu konstrukce s velkým rozpětím a redukovat její hmotu v maximální možné míře. Výsledky jsou následně shrnuty a porovnány na základě různých ukazatelů. Vybraná varianta je ověřena statickým výpočtem na podmínky MSP a MSÚ a je pro ni zpracována výkresová dokumentace.

2. Letmo betonované konstrukce

Metoda letmé betonáže je dnes již osvědčeným a bezpečným způsobem výstavby mostů. Efektivní je u mostů středních až velkých rozpětí (70 až 250 metrů), kde by výška díla nebo topografie terénu činila použití konvenčního bednění a skruže velmi nehospodárnými, ne-li nerealizovatelnými. Své využití zároveň nachází i u realizace obloukových nebo zavěšených mostů.

Obrázek 1 Most přes údolí Chomutovky, Velemyšleves [1]

2.1. Způsoby výstavby

Letmá betonáž je způsob výstavby, při kterém se konstrukce betonuje po jednotlivých záběrech, takzvaných lamelách. Tyto lamely jsou betonovány do bednění podpíraného betonářským vozíkem přikotveným k předchozí, již předepnuté, lamele. Ta se po vytvrdnutí betonu připne k lamele předchozí, betonářský vozík se následně přesune do nové polohy a proces se opakuje. Příčný řez letmo betonovaných konstrukcí je obvykle komorový a vzhledem k průběhu konzolového momentu je téměř vždy opatřen výraznými náběhy směrem k podporám. [2]

V případě jednopolových konstrukcí se betonuje směrem od opěr do středu mostu. Konstrukce v takovém případě musí být v místě opěr kotvena do podloží, aby nedošlo k překlopení vznikající konzoly. Po dosažení středu rozpětí jsou sousední konzoly či vahadla rozepřeny hydraulickými lisy, čímž se docílí finální úpravě geometrického tvaru konstrukce. Následně je provedeno finální spojení obou konzol klavážní¹ spárou a konstrukce je definitivně předepnuta kabely spojitosti.

Obrázek 2 Letmá betonáž jednopolového mostu [3]

U vícepolových konstrukcí se používá nejčastější postup letmé betonáže, kdy se staví směrem od vnitřních podpěr ke středu mostu. Jako statický systém bývá volen sdružený rám. Nejdříve se zhotoví spodní stavba, kterou obvykle tvoří dvojice rámových stojek, na

¹ Nebo také uzavírací.

nich je následně realizován zárodek o délce 10 až 15 metrů a poté jsou betonovány symetricky jednotlivé lamely. Pokud to terén pod mostem dovolí, z ekonomických důvodů jsou krajní pole betonovány na skruži. [3]

Obrázek 3 Schéma možností letmé betonáže vícepolové konstrukce [4]

V některých případech může být nutné použití i jiných, méně obvyklých postupů. V obtížně přístupném terénu je možné použít postupného vyvěšování jednotlivých lamel k provizornímu pylonu, aby bylo dosaženo redukce statických účinků na konstrukci ve stavební fázi. Vyvěšování se využívá i pro realizaci obloukových mostů. [2]

Obrázek 4 Schéma výstavby mostu přes řeku Gouritz (JAR) s postupným vyvěšováním lamel k provizorním pylonům [2]

2.2. Betonážní vozíky

Obrázek 5 Práce na betonážním vozíku

Lamely jsou běžně navrhovány o délce 3 až 6 metrů, a to především s ohledem na vyrovnanou hmotnost vozíku po dobu výstavby. Takt betonáží je obvykle nastaven na 5 až 10 dní v závislosti na možnostech zhotovitele i složitosti konstrukce. Lamely jsou nejčastěji betonovány tak, že se nejdříve vybetonuje spodní deska a stěny, následně horní deska. Bednění lamel je podporováno takzvaným betonážním vozíkem. Jedná se o ocelovou příhradovou konstrukcí, která je tyčemi, např. CPS², kotvená k již hotové betonové konstrukci. Aby se vyloučily trhliny mezi jednotlivými segmenty mostu, je nutné, aby byl vozík dostatečně tuhý. To se projeví především v jeho hmotnosti, která běžně činí 60 až 150 tun. Toto zatížení je proto nezanedbatelné při analýze montážních fází. Hmotnost lamely včetně vozíku dosahuje obvykle do 400 tun. Konstrukce vozíku nabízí dvě varianty. Může být umístěn nad mostovkou (*obrázek 6a*) nebo pod ní (*obrázek 6b*). [2]

² Celozávitový předpínací systém

Obrázek 6 Možnosti řešení betonážního vozíku [3]

Obrázek 7 Vizualizace vozíku umístěného nad mostovkou - výrobce ULMA, prvkový systém MECCANO [5]

Obrázek 8 Harmonogram pětidenního cyklu betonáží symetrické letmé betonáže [4]

2.3. Předpětí

Předpětí v letmo betonových konstrukcí se realizuje ve třech druzích kabelů s odlišnou funkcí. Rozlišujeme takzvané záporné (konzolové, vahadlové) kabely, kladné kabely a

kabely spojitosti. Záporné kabely jsou situované v desce mostovky a napínají se vždy po dosažení předepsané pevnosti betonu každé dílčí lamely. V případě symetrické letmé betonáže probíhají od konce jedné konzoly ke konci druhé. Jejich účelem je vyrovnat, respektive omezit, účinky konzolových momentů. Jakmile je vybetonována střední spára, napnou se kabely ve střední části rozpětí, zvané kladné kabely, které bývají téměř přímé. Jejich účelem je vyrovnat účinky nahodilých zatížení, především dopravy. V poslední fázi se napnou kabely spojitosti, tzn. průběžně zvedané kabely, které jsou nejčastěji vedeny přes jedno pole s kotvením za nadpodporovými příčníky. Kabely spojitosti jsou navrhovány tak, aby vyrovnali účinky stálých zatížení. [6] Kabely spojitosti mohou být navrženy buď jako vnitřní kabely se soudržností, které jsou vedeny skrze stěny, případně jako volné kabely vedené tubusem komorové konstrukce usměrněné pomocí deviátorů. Jako ekonomicky výhodnější vychází vnitřní kabely se soudržností, a to zhruba v poměru 1,0:1,3. [2] Z hlediska předpětí komorové konstrukce je dále potřeba pamatovat, že mezinárodní doporučení požadují možnost konstrukci v budoucnosti zesílit prostřednictvím předepnutí volnými kabely, pro které je nutné v konstrukci navrhnout deviátory a kabelové kanálky skrze podporové příčníky. [6]

Obrázek 9 Uspořádání předpínacích kabelů – a) schéma druhů kabelů, b) půdorys, c) podélný řez [6]

2.4. Stabilita konzoly a spodní stavba

Pro konzolová stadia výstavby je nutné kromě základních statických požadavků nutné posoudit konstrukci také z hlediska stability. Pokud je podepření relativně subtilní v kombinaci se složitým zakládáním, je vhodné využít výpočetní software respektující materiálovou i geometrickou nelinearitu. [7] Nastat mohou například tyto návrhové situace:

- Nerovnoměrné zatížení od betonovaní lamely
- Nerovnoměrné rozložení hmoty
- Zatížení větrem
- Koncentrace nahodilého zatížení na jedné straně konstrukce
- Utržení a následný pád vozíku

Jelikož nerovnoměrné zatížení konstrukce může dosahovat vysokých hodnot, přistupuje se někdy k návrhu nesymetrického zárodku, případně k montážnímu podepření na jedné ze stran konstrukce. Dále je navržen postup realizace symetrických lamel s tím, že nejprve se vybetonuje lamela na kratší straně zárodku, následně na delší. Neobvyklým postupem pro zajištění stability není ani použití kompenzačních protizávaží. [6]

Nutnost zajistit stabilitu konstrukce se projevuje především do konstrukčního řešení letmo betonovaných mostů. V úvahu připadá použití jednoho ložiska, dvojicí ložisek, případně rámové spojení s ohybově tuhou podpěrou nebo dvojicí listů podpěry.

Podepření ložisky se nejvíce uplatňuje u nízkých mostů na štíhlých podporách. Zároveň není neobvyklé i použití pouze jednoho ložiska u vysokých mostů. Toto řešení během výstavby obnáší montážní připnutí zárodku k pilíři, které je provedeno prostřednictvím betonových bloků. Po dokončení uzavírací spáry včetně předepnutí se toto montážní připnutí odstraní a veškeré zatížení začne přenášet ložisko. [6]

Obrázek 10 Schéma montážního připnutí zárodku uloženého na jednom ložisku [6]

V západní Evropě se s oblibou využívá podepření dvojicí elastomerových ložisek. Ty zajišťují pružné vetknutí konstrukce do podpěr, zároveň však umožňují vodorovné posuny vyvolané objemovými změnami. Stejně jako při použití jednoho ložiska je nutné během výstavby montážně zárodek připnout ke spodní stavbě a "vypodložit" betonovými bloky.

Obrázek 11 Podepření dvojicí ložisek [6]

Realizace rámového spojení konstrukce s pilíři je poměrně obtížná, neboť je nutné jejich tuhost pečlivě volit, aby pilíře zajistili jak dostatečnou stabilitu při realizaci, tak za provozu umožnili konstrukci se vodorovně deformovat od objemových změn. Rámové spojení dostává přednost především u konstrukcí v seismických oblastech. Častým průřezem pilíře pro seismické oblasti je komorový tvořený čtveřicí sloupů spojených stěnami.

Velmi elegantním řešením bývá rámové spojení mostovky s dvojicí štíhlých stěn, listů, podpěry. Ty velmi efektivně umožňují vetknutí pilířů do mostovky a zároveň není nijak výrazně bráněno vodorovným posunům vyvolaným objemovými změnami. Častokrát ovšem tyto velmi subtilní stojky vůči rozměrům mohutné mostovky působí nepřirozeně. Tomu se dá zabránit vhodným půdorysným zakřivením stojek. Zároveň se při vhodném návrhu tuhosti podpěry dá zajistit zachování všech výhod takového řešení a zároveň eliminovat potřebu montážního ztužení stojek ocelovou konstrukcí. [6]

2.5. Numerická analýza

Z hlediska podrobnosti analýzy chování konstrukcí metodou konečných prvků se naskýtá několik možností jejího použití:

- Prutový model bez zohlednění smykových deformací stěn
- Prutový model včetně zohlednění smykových deformací stěn
- Desko-stěnový model
- Modely založené na prostorových objemových (ne nutně krychlových) konečných prvcích

Při modelování konstrukcí realizovaných metodou letmé betonáže se nejčastěji uplatní kombinace výše uvedených způsobů. Pro zohlednění smykového ochabnutí po šíři konstrukce se obvykle vytvoří podrobný desko-stěnový model v konfiguraci provozní fáze zatížený jen jedním nebo několika málo zatěžovacími stavy sloužícími k porovnání chování s prutovým modelem. Dále je vytvořen prutový model, který respektuje smyková ochabnutí stěn. Prutový model je tvořen již ve skutečných fázích výstavby, a to jak z hlediska fází změn průřezu, tak i postupu betonáže a předpínání v podélném směru. Prutový model s fázemi pro globální analýzu je volen především kvůli zohlednění časově závislých jevů v betonu, které jsou v současnosti analyzovány pomocí TDA, tedy časově závislé analýzy. [8] Pomocí ní je možné efektivně vyčíslit projevy dotvarování i

smršťování, které jsou velmi významné pro správnou analýzu chování konstrukce a korektní stanovení nadvýšení pro jednotlivé postupy betonáže. Omezující podmínkou TDA jsou především limity výpočetních software, kdy mnoho z nich v tuto chvíli umí tento typ analýzy provést pouze pro prutové konstrukce. [9]

V některých případech, mezi které patří například posouzení stability vahadla, je účelné využít modelu s objemovými prvky díky nimž je možné chování konstrukce analyzovat geometricky a fyzikálně nelineárně. [7]

Průřezy jsou zpravidla modelovány jako fázované, a to minimálně ze dvou, případně více, fází. Tyto fáze přesně respektují vznik průřezu z hlediska postupu výstavby. Kromě toho je průřez doplněn o dvojici tenkých ocelových pásků jejichž funkce bude rozebrána dále. Tyto pásky se volí s plochou odpovídající ploše betonářské výztuže v přilehlé desce. [8]

Pro vystižení správné geometrie v podélném směru lze zvolit dva způsoby modelování. Buď může být zvolen způsob betonáže "do tečny" nebo do "správné nivelety". Mezi sebou se liší v zobrazení výsledných průhybů, na vnitřní síly nemá vliv.

Modelování betonáže do správné nivelety je ve své podstatě velmi jednoduché pro způsob své samotné tvorby. Tvůrce v tomto případě uvažuje, že na stavbě bude betonážní vozík dodatečně nastavován tak, že v každém dalším záběru bude vyrovnávat jak průhyb konzoly, tak chyby a nepřesnosti vzniklé samotnou výstavbou. Dle této logiky by mělo být po betonáži čelo vozíku přesně v předepsané niveletě. Výsledné průhyby jsou tvořeny přírůstky deformací od času betonáže. Výsledkem modelování do správné nivelety je průhybová čára se zlomy v místě napojení segmentů. Takové modelování už od počátku působí nelogicky a jeho aplikace je reálná pouze při modelování a zhotovování segmentových mostů.

Obrázek 12 Průhyby při modelování betonáže do správné nivelety [10]

Opakem předchozího je modelování betonáže do tečny. To znamená, že betonážní vozík je nastaven tak, aby nová lamela v okamžiku její betonáže byla tečná ke směru průhybové čáry již hotové konstrukce. Výhodou takového způsobu modelování je především vznik plynulé průhybové čáry ve všech montážních i provozních stavech. To dovoluje možnost konstrukci správně nadvýšit pro získání teoreticky nulového průhybu v konkrétním čase. [10] Pro správné modelování betonáže do tečny je využito výše zmíněných ocelových pásků, aplikovaných na letmo betonovanou část konstrukce aplikovaných ve stejné fázi společně s předpětím zárodků, s prakticky nulovou ohybovou tuhostí a nulovou vlastní tíhou. [8]

Obrázek 13 Průhyby při modelování betonáže do správné nivelety [10]

2.6. Reologie betonu

Reologické projevy betonu jsou při modelování tohoto typu konstrukcí velmi důležité jak z hlediska zohlednění významného namáhání, které do konstrukce vnáší, tak i pro správné určení nadvýšení konstrukce a zachování projektem stanovené nivelety.

Ve světě bychom mohli najít mnoho případů, kdy právě vlivy dlouhodobého chování betonu některé konstrukce výrazně "proslavily". Příkladem za všechny ostatní může být most spojující ostrovy Koror a Babeldaob, u kterého se záhy po otevření začaly projevovat neduhy poukazující na vady jak návrhu, tak realizace. Most se začal uprostřed rozpětí nepěkně prohýbat a 23 let po svém otevření, v roce 1990, dosáhl průhyb 1,2 metru. Most byl následně v roce 1996 zesílen a o 3 měsíce později zkolaboval. Paradoxně za zřícením stojí právě samotné zesílení mostu. Přesný důvod kolapsu ovšem nebyl stanoven, ale mnohé odborné posudky udávají, že největší ránu mostu zasadilo odstranění původní betonové vozovky. [11]

Pro příklad nemusíme ale ani tak daleko. V ČR je několik mostů, které z různých důvodů trpí výrazným nárůstem průhybů od dotvarování. Patří mezi ně most v Mělníku, Děčíně nebo zvíkovské mosty.

Dotvarování betonu je fenomén způsobený dotlačováním materiálu a projevující se nárůstem průhybů. U letmo betonovaných mostů, které jsou běžně realizovány na velké rozpětí a často jsou spojovány konzoly různých stáří, se jedná o nezanedbatelný jev. V případě, že jsou konzoly spojeny kloubově, můžeme očekávat pouze nárůst deformací. V případě, že konzoly spojíme pevně, vetknutím, musíme počítat i s nárůstem namáhání konstrukce, jelikož bude volné deformaci bráněno. Vzhledem k charakteru dotvarování je také nutné uvažovat s redistribucí vnitřních sil, jejíž velikost je dána kapacitou dotvarování. Kapacita dotvarování závisí na stáří spojovaných částí.

Smršťování betonu by nemělo být zanedbáno u žádné betonové konstrukce především s ohledem na vznik tahových namáhání konstrukce, které může vést k vzniku trhlin a jejich rozvoji. V případě letmo betonovaných mostů, jejichž průřez je komorový, je významný také jev diferenčního smršťování. Vzniká v důsledku různých rozměrů, zejména tlouštěk, horní a spodní desky. V první fázi výrazně rychleji smršťuje horní deska, která bývá výrazně tenčí. Kromě toho je během výstavby vystavena slunečnímu svitu. Během výstavby je nakonec zakryta izolací dalším mostním vybavením a smršťování se tedy výrazně zpomalí. Díky rychlejšímu smršťování dochází především k vzniku "falešného nadvýšení", kdy se konec zvedá nahoru. Smršťování spodní desky ovšem postupně dohání smršťování horní desky a v období, kdy se již předpokládá, že valná většina účinků dotvarování a smršťování proběhla, začne docházet k nárůstu průhybů. Při pevném spojení ve středu rozpětí je stejně jako u vlivu dotvarování bráněno volné deformaci a dochází k vzniku dodatečného namáhání konstrukce, které není zanedbatelné.

Pro analýzu výše zmíněných jevů se používá modulu TDA, který je zpracovaný pro použití na 2D rámových konstrukcích. TDA je založená na postupném výpočtu. Časový interval je rozdělen na dílčí podintervaly na jejichž okrajových bodech jsou vytvořeny časové uzly. V každém takovém časovém uzlu je konstrukce vyřešena pomocí metody konečných prvků za předpokladů teorie visko-elasticity se stárnutím. Pro výpočet účinků tedy využívá obecné přírůstkové metody. [12]

Obrázek 14 Obecná přírustková metoda používaná pro výpočet dotvarování modulem TDA [12]

3. Parametrizace v modelování

3.1. Současné trendy v numerickém modelování konstrukcí

Parametrizace jakožto nástroj k hledání optimálního řešení konstrukce je v současné době velice diskutovaným a aktuálním tématem. Neexistuje tedy snad jediný dodavatel výpočetních software, který by nepracoval na implementaci alespoň nějakých parametrizačních modulů do svých produktů ať už explicitně pro všechny uživatele nebo ve spolupráci se statikem na jeho konkrétním problému.

S využitím parametrizace lze především efektivně měnit geometrii a s ní provázané zatížení samotného numerického modelu. Další úrovní, která je ještě aktuálnější, je propojení parametrizačního modulu nebo programu, kde volíme především geometrii a zatížení, s výpočetním softwarem. Nejvyšší úrovní takovéto parametrizace lze pak rozumět pouhé zadání okrajových podmínek, následnou automatickou optimalizaci a hledání řešení pomocí software, který nejčastěji používá genetických algoritmů, a ve finální fázi pouze kontrolu programem stanoveného optimálního řešení a případné posouzení jednotlivých prvků.

Obrázek 15 Schéma optimalizačního procesu při návrhu konstrukce parametricky včetně její optimalizace [13]

V současné době je nejsklonovanější právě implementace parametrického modelování v Grasshopperu do FEM programů. Pomocí sestavení "schématu" parametrů v něm je totiž možné výrazně zefektivnit zdlouhavý proces tvorby geometrie modelu pro globální

analýzu. To následně umožní, že z jednoho naprogramovaného schématu je možné opakovaně vytvořit libovolné množství modelů konstrukcí, které jsou si velice podobné (například typem konstrukce – obloukový most), pouze se o liší svou geometrií. [14]

3.2. Praktické možnosti využití

Jak již bylo zmíněno výše, možností, jak model parametrizovat, se v současnosti otevírá více. Jedná se o velice efektivní postup především v okamžicích, kdy je nutné návrh pečlivě optimalizovat. V takovém případě by ruční změny geometrie v jednotlivých iteracích byly velmi neefektivní a těžkopádné, kdežto v případě vhodného nastavení základních proměnných lze během relativně krátké doby vytvořit zcela novou geometrii, a to včetně zatížení. Nejvíce se takto pečlivá optimalizace projeví u velkorozponových konstrukcí, kde je hmota samotné konstrukce veliká a každý její úbytek znamená výraznou ekonomickou úsporu nejen materiálovou, ale i časovou. S těmito úsporami se pak pojí i menší potřeba nasazení kapacit a redukuje se uhlíková stopa konstrukce. Pro práci na RDS v kooperaci s realizační firmou může být proto takový přístup k výpočtu velmi výhodný pro všechny zúčastněné subjekty.

3.3. Výhled do budoucnosti

Z hlediska výhledu do možná nepříliš vzdálené budoucnosti lze očekávat přiklonění k probírané variantě optimalizace konstrukcí pomocí genetických algoritmů. V optimálním případě by to znamenalo "pouze" definovat okrajové podmínky a následně by algoritmus sám postupně iteroval řešení, kdy by posouval jednotlivé uzly, přidával nebo odebíral materiál a kontroval, zda napětí nepřesahují stanovené meze. Při správném zadání okrajových podmínek se dá očekávat, že skutečně nalezne to nejlepší možné řešení z hlediska rozložení napětí a úspory materiálu. Je ovšem nutné pamatovat, že po automatickém návrhu bude muset i tak statik provést důslednou kontrolu výsledků a konstrukci na namáhání standardně posoudit. Z mého pohledu lze také očekávat, že algoritmická optimalizace stěží postihne konstrukční zásady a možnosti realizace. Ačkoliv tedy uspoří určité množství materiálu, nemusí to nutně vést k zvýšení ekonomičnosti, neboť se v určitých detailech stane konstrukce velmi obtížně realizovatelná. Je tedy diskutabilní nakolik bude taková optimalizace účinná a jak velká míra úprav bude následně od statika nutná. [15]

4. Variantní řešení mostu D11 Trutnov – státní hranice SO 216

Úkolem bylo zpracovat možné varianty řešení přemostění údolí Lampertického potoka. Vzhledem k tomu, že se jedná o mostní objekt překonávající slabě zastavěnou oblast obce Lampertice, existují omezení týkající se možností umístění spodní stavby s ohledem na existenci budov a sítí. Základním zadáním je most o třech polích s rozpětím 90+150+90 m. Jedna z variant tato rozpětí nerespektuje, nicméně neomezuje okolní zástavbu, sítě ani komunikace.

Most se nachází v podhůří Krkonoš a tomu odpovídají i relativně dobré základové podmínky, které jsou podrobněji popsány v části C: Technická zpráva.

V rámci předběžných úvah o možnostech byly porovnávány dvě varianty.

4.1. VARIANTA 1: Jeden most betonovaný na výsuvné skruži

První zvažovanou variantou je most realizovaný technologií výsuvné skruže. To je možné vzhledem k tomu, že most je pouze ve velmi velkém směrovém oblouku. Je navržen komorový průřez s konstantní výškou průřezu 5,5 metrů, a se střechovitým sklonem převádějící oba jízdní pásy dálnice v režimu 2+2. Po délce mostu je proměnná tloušťka stěn a desky. Tyto tloušťky se mění skokově vzhledem k nárokům na způsob bednění takové konstrukce.

S přihlédnutím k šířce mostu se předpokládá nejprve realizace komory, dále osazení prefabrikovaných vzpěr, jejich připnutí k hotové komoře a v poslední fázi dobetonování konzol. Vzhledem k tomu, že největší současné výsuvné skruže dodávané španělskou firmou BERD dovolují realizace rozpětí do 100 až 110 metrů, jsou tyto hodnoty brány jako limitní. V návaznosti na to byla zvolena úprava spodní stavby a rozpětí oproti původnímu zadání bylo navrženo na 2x62 + 82 + 2x62 metrů, které respektují jak prostor pod mostem, tak limity zvažované technologie.

V POLI

NAD PODPOROU

Obrázek 16 Schématický příčný řez variantou 1

4.2. VARIANTA 2: Dvojice letmo betonovaných mostů

Druhou zvažovanou variantou je rozdělení přemostění na dvě samostatné nosné konstrukce realizované metodou letmé betonáže. Konstrukce je navržena jako komorová s parabolickými náběhy a proměnnou tloušťkou spodní desky. V místech zárodků jsou pilíře, tvořené vždy dvojicí stojek, vetknuty do mostovky, na opěrách je nosná konstrukce uložená na ložiscích. Založení podpěr je navrženo na velkoprůměrových pilotách vetknutých do skalního podloží.

4.3. Zhodnocení variant

Kromě zvažovaných variant by v úvahu mohl přicházet i výsun ocelového komorového mostu. Taková varianta by ovšem byla ještě méně ekonomicky výhodná než předchozí. Zároveň by výsun výrazně znesnadnil práce na tělese dálnice před mostem kvůli nutnosti zhotovení poměrně rozsáhlé montážní plošiny.

V případě první varianty je voleno řešení jedním mostem pro oba jízdní směry. Zároveň není dodržen požadavek na konfiguraci spodní stavby, ačkoliv respektuje ostatní okrajové podmínky. Pro samotnou realizaci by byl nutný zhotovitel disponující výsuvnou skruží M1-90-S od firmy BERD, případně jinou obdobnou, neboť vzhledem k výšce konstrukce je použití mezilehlých dočasných bárek takřka nemyslitelné. Tato varianta je díky výše uvedeným argumentům méně výhodnou a zcela jistě by byla dražší.

Obrázek 17 Vizualizace výsuvné skruže M1-90-S [16]

Varianta dvojice letmo betonovaných mostů je vzhledem k požadovanému rozpětí, výšce mostu a tvaru terénu nejoptimálnější možností překlenutí údolí Lampertického potoka. Zároveň se jedná o ekonomičtější z realizovatelných možností. Proto bude dále posuzován tento návrh.

5.Seznam obrázků

Obrázek 1 Most přes údolí Chomutovky, Velemyšleves [1]9
Obrázek 2 Letmá betonáž jednopolového mostu [3]9
Obrázek 3 Schéma možností letmé betonáže vícepolové konstrukce [4] 10
Obrázek 4 Schéma výstavby mostu přes řeku Gouritz (JAR) s postupným vyvěšováním
lamel k provizorním pylonům [2]10
Obrázek 5 Práce na betonážním vozíku11
Obrázek 6 Možnosti řešení betonážního vozíku [3]12
Obrázek 7 Vizualizace vozíku umístěného nad mostovkou - výrobce ULMA, prvkový
systém MECCANO [5]12
Obrázek 8 Harmonogram pětidenního cyklu betonáží symetrické letmé betonáže [4] 12
Obrázek 9 Uspořádání předpínacích kabelů – a) schéma druhů kabelů, b) půdorys, c)
podélný řez [6]
Obrázek 10 Schéma montážního připnutí zárodku uloženého na jednom ložisku [6]14
Obrázek 11 Podepření dvojicí ložisek [6]15
Obrázek 12 Průhyby při modelování betonáže do správné nivelety [10]16
Obrázek 13 Průhyby při modelování betonáže do správné nivelety [10]17
Obrázek 14 Obecná přírustková metoda používaná pro výpočet dotvarování modulem
TDA [12]
Obrázek 15 Schéma optimalizačního procesu při návrhu konstrukce parametricky včetně
její optimalizace [13]19
Obrázek 16 Schématický příčný řez variantou 122
Obrázek 17 Vizualizace výsuvné skruže M1-90-S [16]23

6. Bibliografie

- ULMA. Most přes údolí Chomutovky, Velemyšleves [online]. In: . [cit. 2020-04-30].
 Dostupné z: http://www.ulma.cz/?q=cs/node/542
- [2] ŠAFÁŘ, Roman. *Betonové mosty 2: přednášky*. V Praze: České vysoké učení technické, 2014, s. 193-219. ISBN 978-80-01-05543-4.
- [3] STRÁSKÝ, Jiří a Radim NEČAS. *Betonové mosty II: Modul M01 Technologie výstavby mostů*. Brno, 2007.
- [4] VSL SYSTEMS LTD. Letmá betonáž [online]. In: . [cit. 2020-05-01]. Dostupné z: http://www.vsl.cz/letma-betonaz/
- [5] ULMA. Vizualizace vozíku umístěného nad mostovkou výrobce ULMA, prvkový systém MECCANO [online]. In: . [cit. 2020-05-01]. Dostupné z: https://www.ulmaconstruction.com/en/formwork/bridge-formwork/balancedcantilever-formwork-carriage-cvs
- [6] STRÁSKÝ, Jiří a Radim NEČAS. *Betonové mosty II Modul M03: Vybrané problémy navrhování mostů*. Brno, 2007, s. 52-65.
- [7] VRÁBLÍK, Lukáš, Jakub HEŘMAN a Petr HARAZIM. I/27 Velemyšleves Most přes údolí Chomutovky. *Beton TKS*. 2016(4), 8-13.
- [8] VRÁBLÍK, Lukáš. Betonové konstrukce 4K (přednáška): Základní filosofie tvorby výpočetních modelů betonových mostních konstrukcí.
- [9] SCIA CZ, S.R.O. *Stručný úvod do TDA* [online]. [cit. 2020-05-11]. Dostupné z: https://help.scia.net/17.0/cs/rb/tda/brief_introduction_to_tda.htm
- [10] NAVRÁTIL, Jaroslav. POUŽITÍ MODULU TDA PRO ANALÝZU POSTUPNĚ BUDOVANÝCH MOSTŮ [online]. In: . Ústav betonových a zděných konstrukcí, VUT v Brně [cit. 2020-05-11]. Dostupné z: https://www.fce.vutbr.cz/bzk/navratil.j/Modelovani/pdf/Pouziti%20modulu%20 TDA.pdf
- [11] BURGOYNE, Chris a Richard SCANTLEBURY. Why did Palau Bridge collapse?. *The Structural Engineer*. 2006, (6), 30-37.
- [12] SCIA CZ, S.R.O. Časově závislá analýza (TDA) popis modulu [online]. In: . [cit. 2020-06-05]. Dostupné z: https://resources.scia.net/download/cs/fs/Analyzer_TDA_csy.pdf

- [13] KARAMBA 3D. *Vierendeel House* [online]. [cit. 2020-06-10]. Dostupné z: https://www.karamba3d.com/projects/vierendeel-house/
- [14] Rozhovor s Vladimírem PŘÍBRAMSKÝM, Product manager SCIA CZ a student doktorského studia na FSv ČVUT. Praha, 2020.
- [15] PETŘÍK, Martin. Poruchy a rekonstrukce betonových konstrukcí (Přednáška): Prezentace projektu Dílna 2.0 a tématu optimalizace. Praha, 2019.
- [16] BERD. *MOVABLE SCAFFOLDING SYSTEM M1-90-S* [online]. [cit. 2020-06-16]. Dostupné z: http://www.berd.eu/en/produtos/movable-scaffolding-system/

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební

Katedra betonových a zděných konstrukcí

DIPLOMOVÁ PRÁCE

Optimalizace návrhu letmo betonovaného dálničního mostu

Optimisation of design of highway balanced cantilevers bridge

Část B: Technická zpráva

Bc. Jiří Keclík

Studijní program:

Studijní obor:

Stavební inženýrství

Konstrukce a dopravní stavby

Vedoucí diplomové práce:

Doc. Ing. Lukáš Vráblík, PhD.

Praha 2021

1.	IDENTIFIKAČNÍ ÚDAJE STAVBY	2
2.	ZÁKLADNÍ ÚDAJE O MOSTĚ	2
3. 3.1. 3.2. 3.3. 3.4.	ÚČEL MOSTU Převáděná komunikace Překračované překážky Geotechnické podmínky Korozní podmínky, bludné proudy	3 3 4 4
3.5.	Stálá zařízení	4
4. 4.1. 4.2. 4.3. 4.3 4.3 4.3 4.4 4.4 4.4 4.4	TECHNICKÉ ŘEŠENÍ MOSTU Založení Spodní stavba Nosná konstrukce 3.1. Hlavní nosná konstrukce 3.2. Ložiska 3.3. Mostní závěry Mostní svršek a vybavení mostu 4.1. Izolace a ochrana povrchu nosné konstrukce 4.2. Vozovka na mostě 4.3. Římsy 4.4. Svodidla, protiblukové stěny	4 4 5 5 5 5 6 6 6 6
4.4	4.5. Odvodnění	6
5. 5.1. 5.2. 5.3.	POUŽITÉ MATERIÁLY Beton Betonářská výztuž Předpínací výztuž	7 7 7 7
6. 6.1. 6.2.	POSTUP VÝSTAVBY Přípravné práce Výstavba vahadel	8 8 8
6.3. 6.4. 6.5.	Výstavba na skruži Spojení částí nosné konstrukce Příslušenství a vybavení mostu	9 9 9

Obsah

1. Identifikační údaje stavby

Stavba:	D11 Trutnov – Státní hranice	
Název objektu:	SO 216 – Most na D11 přes Lampertice	
Kraj:	Královéhradecký	
Okres:	Trutnov	
Katastrální území:	Lampertice	
Druh převáděné komunikace:	Dálnice D11	
Překážky:	Silnice III/30022 – km 4,00000	
-	Lampertický potok – řkm neznámý	

2. Základní údaje o mostě

Jednokomorový most o třech polích s proměnnou výškou průřezu. Nosná konstrukce je tvořena dodatečně předpjatým betonem. Je vetknuta do pilířů, na opěrách uložena na ložiscích. Konstrukce je budována metodou letmé betonáže, část krajních polích je realizována na pevné skruži.

Zatřídění dle ČSN 73 6200

Podle druhu přev komunikace:	áděné	pozemní komunikace	
Podle překračované překážky:		přes řeku, pozemní komunikace, zastavěnou oblast	
Podle počtu polí:		o třech polích	
Podle počtu mostovkových po	odlaží:	jednopodlažní	
Podle výškové polohy mostov	ky:	s horní mostovkou	
Podle měnitelnosti základní polohy:		nepohyblivý	
Podle plánované doby trvání:		trvalý	
Podle průběhu trasy na mostě:		v oblouku	
Podle situačního uspořádání:		kolmý	
Podle hmotné podstaty:		masivní	
Podle členitosti konstrukce:		plnostěnný	
Podle statické funkce konstrukce:		rámový	
Podle uspořádání příčného řezu:		otevřeně uspořádaný	
Podle omezené volné výšky:		s neomezenou volnou výškou	

Návrhové charakteristiky mostu

Délka přemostění:	328,00 m
Délka mostu:	354,00 m
Délka nosné konstrukce:	332,0 m

Rozpětí polí:	90,0 + 150,0 + 90,0 m
Šikmost mostu:	90°
Volná šířka mostu:	9,75 m
Šířka nosné konstrukce:	11,85 m
Výška mostu:	42,162 m
Volná výška pod mostem (střední pole):	37,425 m
Stavební výška:	7,685 m (nad pilířem) - 3,635 m (v poli)
Plocha nosné konstrukce:	11,85*332,0 = 3934,2 m ²

Staničení podpěr mostu

Staničení podpěr je vztaženo k osám ložisek a k osám pilířů v souladu se staničením komunikace D11. Uvedeno je i lokální staničení mostu.

Označení		Globální	staničení	D11	Lokální staničení [m]
		[km]			
Čelo NK		149,259 0	00		-1,000
01		149,260 000			0,000
P2		149,350 000			90,000
	P2a	149,346 000			86,000
	P2b	149,354 000			94,000
P3		149,500 000			240,000
	P3a	149,496 000			236,000
	P3b	149,504 000			254,000
04		149,5900	00		330,000
Čelo NK		149,591 0	00		331,000

3. Účel mostu

Most převádí pravou polovinu směrově rozdělené dálniční komunikace o čtyřech pruzích na D11. Komunikace je tvořena dvěma souběžnými samostatnými mosty.

3.1. Převáděná komunikace

Označení:	D11	
Návrhová kategorie:	D 27,5/120	
Směrové poměry:	Oblouk R = 2000 m v ose dálnice (délka 44,35 m)	
	Přechodnice A=734,85 (délka 270,00 m)	
	Přechodnice A=500,00 (délka 16,00 m)	
Příčný sklon:	Jednostranný 2,50 %	
Výškové poměry:	Podélný sklon +2,50 %	

3.2. Překračované překážky

Most překračuje silnici III/30022 – km 4,00000 a Lampertický potok. Zároveň překonává slabě zastavěné území obce Lampertice.

3.3. Geotechnické podmínky

Pro účely DÚR byl zpracovaných geotechnický průzkum.

V místě navrženého mostu je terén svažitý s výškovým rozdílem až zhruba 39,00 m. Geologický profil se v podélné ose mostu mění.

Ověřená mocnost kvartérního pokryvu je 0,10 – 3,50 m. Kvartérní pokryv je reprezentován hlavně deluviálními hlinito-písčitými sedimenty. Místy jsou deluviální zeminy s nepravidelnými polohami úlomků pískovce a slepence.

Předkvartérní podklad je budován karbonskými sedimentárními horninami – aleuropelity, polohy slepenců, pískovců. Při povrchu jsou horniny buď zcela nebo silně zvětralé. Zcela zvětralé horniny mají charakter zemin. V oblasti mostu se nacházejí horniny třídy R5, R4 a R3.

Podle výsledků geofyzikálních prací se existence zlomů očekává jak v údolí, tak i ve svazích nad údolím. Předpokládá se vliv tektoniky na proudění podzemní vody. V databázi České geologické služby nejsou v prostoru mostu evidovány svahové nestability.

Podzemní voda v prostoru objektu se ustálila zhruba 1,00 – 10,30 m pod terénem.

3.4. Korozní podmínky, bludné proudy

Předpokládá se provedení opatření dle TP 124 ve stupni 3.

3.5. Stálá zařízení

Rozhodnutím ministra dopravy dne 1.7.2006 pozbyla Směrnice pro budování stálého zařízení k ničení na pozemních komunikacích, č.j. 01015-25-81, platnosti. Stálé zařízení **nebude osazeno**.

4. Technické řešení mostu

4.1. Založení

Podpěry jsou založeny hlubině na velkoprůměrových pilotách s průměrem 1,20 m vetknutých do skalního podloží třídy R3.

4.2. Spodní stavba

Opěry jsou tvořeny základem o tloušťce 1,50 m spojeným s pilotami. Dřík opěry vystupující ze základu je tloušťky 3,70 m. Úložný práh je ve sklonu 4 % ve směru k závěrné zdi zakončený odvodňovacím žlábkem dle VL 204.03. Na úložném prahu jsou umístěny podložiskové bloky. Závěrná zeď je tloušťky 0,90 m a ve své horní části se rozšiřuje pro umístění mostního závěru. Na závěrnou zeď je dále umístěna přechodová deska o rozměrech 6,00 x 9,50 x 0,40 m na opěrách 01 a 04. Pilíře P2 a P3 jsou tvořeny dvojicemi štíhlých stěn, v osové vzdálenosti 8,00 m, vetknutých do základové bloku o rozměrech 2,30 x 13,00 x 10,00 m. Dříky tvoří stěna o šířce 6,30 m a tloušťce 1,80 m. Stěny jsou tvořeny průřezem písmene I. Během výstavby budou stěny propojeny ztužující ocelovou konstrukcí. Nosná konstrukce je vetknuta do pilířů, které dosahují až k její horní desce. Výška pilíře P2 je 19,44 m a pilíře P3 28,44 m.

4.3. Nosná konstrukce

4.3.1. Hlavní nosná konstrukce

Nosná konstrukce je tvořena komorovým průřezem se svislými stěnami s proměnnou výškou. Je tvořena předpjatým betonem a vyztužena betonářskou výztuží. V ose mostu je dlouhá 332,00 m. U opěr je výška průřezu 3,50 m a po délce 21,00 m má konstantní výšku, následně plynule přechází k pilířům P2, respektive P3, na výšku 7,55 m. Uprostřed rozpětí hlavního pole je výška nosné konstrukce 3,50 m. Šířka komory činí 5,80 m, vyložení konzol je 3,025 m.

Horní deska má po celé délce mostu konstantní tloušťku 0,30 m. V místech spojení stěn a horní desky jsou vytvořeny náběhy. Tloušťka spodní desky je plynule proměnná a činí 0,27 m až 0,95 m. Tloušťka stěn je taktéž plynule proměnná a její tloušťka nabývá hodnot 0,55 m až 0,80 m.

V místech opěr a pilířů jsou uvnitř komory příčníky v nichž se nachází otvor umožňující pohyb osob.

Horní deska je po celé délce v příčném sklonu 2,50 % s úžlabím na pravé konzole mostu. Spád konzoly k úžlabí činí 4,00 %. Nosná konstrukce je v podélném sklonu 2,50 %. Půdorysně je konstrukce vedena v oblouku s poloměrem 2000,000 m a přechodnicích.

4.3.2. Ložiska

Na opěrách O1 a O4 jsou umístěny dvojice hrncových ložisek orientovaných ve směru tečny mostu. Konstrukce tedy bude dilatovat ve směru své osy. V příčném směru je jedno ložisko pevné a druhé posuvné, v podélném směru jsou všechna ložiska posuvná. Požadavky na kapacitu a únosnost ložisek jsou uvedeny v části D: Statický výpočet.

4.3.3. Mostní závěry

Na opěře O1 je umístěn lamelový mostní závěr s pohybem ±150 mm. Na opěře O4 je umístěn lamelový mostní závěr s pohybem ±200 mm. Vzhledem k orientaci ložisek musí závěry umožnit pouze podélný posun. Závěry budou osazeny do připravených kapes na závěrných zdech a horní desce nosné konstrukce.

4.4. Mostní svršek a vybavení mostu

4.4.1. Izolace a ochrana povrchu nosné konstrukce

Je navržena celoplošná izolace z natavovaných asfaltových izolačních pásů na pečetící vrstvu. Ochrana izolace pod vozovkou bude provedena modifikovaným litým asfaltem MA v tloušťce 40 mm. Pod monolitickými římsami bude izolace chráněna přídavným izolačním pásem s výztužnou vložkou. Betonový povrch pod izolačními pásy bude opatřen penetračně adhezním nátěrem.

Boky konzol budou ošetřeny izolačním epoxidovým nátěrem S2.

4.4.2. Vozovka na mostě

Na mostě je v souladu s ČSN 73 6242 navržena třívrstvá vozovka se skladbou o tloušťce 135 mm.

Asfaltový koherec mastivový	SMA 11 S	40 mm
Asiallovy Robelec mastrixovy	JHA TI J	40 11111
Asfaltový beton pro ložní vrstvu	ACL 16 S	50 mm
Ochranná vrstva z litého asfaltu	MA 11 IV	40 mm
Hydroizolace	NAIP	5 mm
Pečetící vrstva		-
Celková tloušťka vozovky		135 mm

4.4.3. Římsy

Římsy jsou navrženy jako železobetonové monolitické. Na levé římse s příčným sklonem 4,00 % směrem k vozovce šířky 1150 mm je umístěno pouze mostní svodidlo. Na pravé římse s příčným sklonem 4,00 % a šířky 1500 mm je umístěno mostní svodidlo, servisní chodník šířky 750 mm a protihluková stěna.

V římsách budou provedeny smršťovací spáry dle VL 402.23 s přerušenou i nepřerušenou výztuží. Všechna výztuž procházející skrz smršťovací spáry bude opatřena epoxidovým nátěrem min. 50 mm na obě strany od místa spáry. Spáry budou utěsněny v rozsahu dle VL 402.21.

4.4.4. Svodidla, protihlukové stěny

Do obou říms jsou kotvena mostní svodidla s úrovní zadržení H2. Na pravé římse svodidlo odděluje vozovku od servisního chodníku. Po celé délce pravé římsy je umístěna protihluková stěna výšky 2,00 m.

4.4.5. Odvodnění

Odvodnění mostovky je zajištěno příčným sklonem povrchu vozovky (2,00%), říms (4,00%) a podélným sklonem vozovky (2,50%). Voda z vozovky je odváděna úžlabím v ose odvodnění podél pravé římsy (1800mm od kraje nosné konstrukce) k nejbližšímu mostnímu odvodňovači. Navrženy jsou vozovkové odvodňovače po 15,00 m. Voda z odvodňovačů je svedena do podélného svodu z nekorodujícího materiálu umístěného v komoře. Odvodnění izolace je navrženo pomocí trubiček, které jsou napojeny do podélného svodu odvodnění.

5. Použité materiály

5.1. Beton

Pro výstavbu konstrukcí je použit beton třídy dle následující tabulky:

Konstrukční část	Třída betonu	Stupeň vlivu prostředí
Piloty	C 30/37	XC2, XA1
Podkladní beton	C 12/15	XO
Základy	C 30/37	XC2, XF1, XA1
Opěry 01, 04	C 30/37	XC4, XF2, XD1
Pilíře P2, P3	C 30/37	XC4, XF2, XD1
Přechodové desky	C 25/30	XC4, XF2, XD1
Nosná konstrukce	C 45/55	XC4, XF2, XD1
Římsy	C 30/37	XC4, XF4, XD3

5.2. Betonářská výztuž

Jako betonářská výztuž je pro nosnou konstrukci, spodní stavbu i příslušenství použita betonářská ocel kvality B500B (10 505 – R).

5.3. Předpínací výztuž

Jsou použity kabely ze splétaných sedmidrátových lan s velmi nízkou relaxací Y1860-S7-15,7. Předpínací výztuž je vedena v ocelových korugovaných kanálcích.

6. Postup výstavby

Popsán je postup výstavby A, který byl navržen a posouzen statickým výpočtem. Výkresová dokumentace postupu výstavby obsahuje i alternativní postup B, který odstraňuje betonáž na pevné skruži. Pokud by tento postup byl vybrán, konstrukci by bylo nutné znovu posoudit, případně navrhnout další předpínací a betonářskou výztuž.

6.1. Přípravné práce

V první fázi výstavby bude provedeno sejmutí ornice a její uložení na deponii. Budou zřízeny staveništní cesty a další součásti zařízení staveniště (buňkoviště, jeřáby). Stavbou ani přípravnými pracemi nelze plně uzavřít silnici III/30022. Ve fázi přípravných prací se předpokládá částečná uzavírka silnice s kyvadlovým řízením dopravy. Následně dojde k zahájení zemních prací jak pro výkopy stavebních jam pro zřízení základů mostu, tak i realizace násypových těles dálnice D11. Stavební jámy pro pilíře P2 a P3 jsou navrženy jako kombinace pažených a svahovaných. Ve stavební jámě pro realizaci pilíře P2 lze předpokládat přítok podzemní vody do jámy, bude z ní proto nutné kontinuálně čerpat vodu. Piloty budou prováděny z úrovně základové spáry vrtáním. Piloty jsou navrženy jako vetknuté do skalního podloží. Po odbourání hlav pilot bude proveden podkladní beton, na němž budou zhotoveny základy.

6.2. Výstavba vahadel

Po provedení základů začne výstavba stěn pilířů P2 a P3. Výstavba těchto pilířů bude probíhat současně. Jakmile budou stěny pilířů nad původním terénem, budou stavební jámy zasypány. Jednotlivé betonážní záběry pilířů se budou pohybovat okolo 4 m. Pilíře budou v horní třetině ztuženy dočasnou ocelovou konstrukcí. U pilířů budou zhotoveny výstupové věže kotvené k hotovým pilířům.

Po dokončení pilířů dojde k realizaci zárodků vahadel. Jejich výstavba bude probíhat na konzolách kotvených k pilířům. Po dokončení zárodků bude sestavena čtveřice betonážních vozíků pro letmou betonáž a začne realizace jednotlivých lamel. Každá lamela bude realizována ve stejném taktu:

- 1. Armování a betonáž spodní desky a stěn
- 2. Armování a betonáž horní desky
- 3. Předepnutí

Po dokončení cyklu bude betonážní vozík přestaven na novou pozici a cyklus se zopakuje. V průběhu výstavby vahadel bude konstrukce geodeticky sledována a výsledky sledování budou předávány projektantovi RDS. Na
základě vyhodnocení naměřených dat budou předávány informace pro nastavení betonážních vozíků.

V hlavním poli se nacházejí na dolní desce nálitky pro předpínací kabely. Pro jejich armování je možné buď výztuž vlepovat do vrtů nebo použít vylamovací výztuž.

Betonáže pilířů, zárodků i jednotlivých lamel budou probíhat stacionárními čerpadly případně koši na beton zavěšenými na věžových jeřábech.

6.3. Výstavba na skruži

V průběhu výstavby vahadel dojde k založení a zhotovení opěr O1 a O4. V prostoru před opěrami bude namontována pevná skruž. Betonáž části krajních polí proběhne tak, aby došlo k dokončení konstrukce a vahadel v přibližně stejném čase. Předpokládá se, že část konstrukce na pevné skruži bude vybetonována ve dvou záběrech (dolní deska + stěny, horní deska).

6.4. Spojení částí nosné konstrukce

Po předpětí posledních lamel budou vahadla od sebe rozepřena, aby bylo dosaženo vyrovnání deformace pilířů od vlivu smršťování a dotvarování betonu. Po rozepření bude vybetonována uzavírací spára v poli 2. Následně budou předepnuty kladné kabely. Poté bude přistoupeno k betonáži uzavíracích spár spojujících krajní části na pevné skruži a spojená vahadla. Nakonec bude přistoupeno k předepnutí kabelů spojitosti v hlavním a krajních polích. Spojením vznikne spojitý nosník na celou délku mostu. Následně je možné přistoupit k odstranění pevné skruže.

6.5. Příslušenství a vybavení mostu

Po dokončení nosné konstrukce bude přistoupeno k úpravě svahů okolo opěr, realizaci revizních schodišť, dlažeb z lomového kamene. Dále budou provedeny izolace, vozovky a příslušenství mostu. Před uvedením konstrukce do provozu bude provedena statická zatěžovací zkouška.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební

Katedra betonových a zděných konstrukcí

DIPLOMOVÁ PRÁCE

Optimalizace návrhu letmo betonovaného dálničního mostu

Optimisation of design of highway balanced cantilevers bridge

Část C: Optimalizace

Bc. Jiří Keclík

Studijní program:

Studijní obor:

Stavební inženýrství Konstrukce a dopravní stavby

Vedoucí diplomové práce:

Doc. Ing. Lukáš Vráblík, PhD.

Praha 2021

Obsah

 1.1. 1.2. 1.3. 1.4. 	ÚVOD Postup výpočtu Předpoklady výpočtu Časová linie Použitý software	2 3 6 7 9
2.	MATERIÁLY	9
3. 3.1. 3.2.	VÝPOČETNÍ MODELY Prutový model Desko-stěnový model	10 10 12
4.	ZATÍŽENÍ	14
5. 1. 5.2. 5.3. 5.4. 5.5.	ODHAD ZATÍŽENÍ SPODNÍ STAVBY Geometrické imperfekce Vnitřní síly Vzpěrná délka Metoda jmenovité tuhosti Posouzení	14 14 15 16 16 19
6.	SROVNÁNÍ VÝPOČETNÍCH MODELŮ	20
7.	ITERACE 0	23
8.	ITERACE 1	28
9.	ITERACE 2	32
10.	ITERACE 3	36
11.	ITERACE 4	41
12.	SHRNUTÍ	46
13.	SEZNAM OBRÁZKŮ	50
14.	SEZNAM TABULEK	51
15.	SEZNAM GRAFŮ	52

1. Úvod

Jak již bylo nastíněno v Části A, jeví se jako vhodné u mostních konstrukcí velkých rozpětí přistoupit k optimalizaci návrhu konstrukce. Dálniční most přes Lampertice s rozpětími 90,0 + 150,0 + 90,0 se mezi takové konstrukce řadí. Ačkoliv by jistě šlo tuto konstrukci řešit zvýšením počtu polí o menších rozpětích, jedná se o dobrý vzor pro použití automatizace v iterativním procesu návrhu mostu. I když by se mohlo zdát, že v České republice není mnoho příležitostí najít mosty velkých rozpětí, není tomu tak. V případě, že by začala výstavba VRT na území ČR, by bylo právě využití podobné optimalizace více než vhodné, neboť mosty pro VRT musí splňovat významně přísnější požadavky na deformace než běžné železniční nebo silniční mosty. Zároveň jsou mnohem masivnější než silniční mosty. Nalézt se dají i příklady konstrukcí, které neleží zakryté oparem pochyb, kdy se na jejich realizaci dostane. V této době je připravováno a projektováno několik mostů s velkým rozpětím, které byť jsou obloukové, mohl by u nich proběhnout obdobný proces. Mezi takové mosty patří připravovaný železniční most přes Orlík s rozpětím oblouku 156 metrů, 496 metrů dlouhý silniční obloukový most na silnici I/27 u Plas nebo přemostění obce Žíželice na silnici I/27 soutěžené formou Design&Build. Již velmi dlouho diskutovaným zástupcem mostů na velké rozpětí v ČR je součást SOKP (stavba 519). Jedná se o Suchdolský most, kde by jednou z variant mohl být letmo betonovaný most s rozpětím hlavního pole překonávajícího Vltavu okolo 190 metrů. Vedlejší pole by rozpětím nezaostávala, neboť lze předpokládat konfiguraci rozpětí zhruba 60,0 + 110,0 + 190,0 + 110,0 + 60,0 metrů. Z těchto hledisek se jeví takový přístup k výpočtu jako velice aktuální a podporuje ho i stále větší tlak na snižování uhlíkové stopy staveb.

Obrázek 1 Most na silnice I/27 u Plas, Zdroj: ŘSD ČR

Cílem bylo ukázat, že proces optimalizace jde provést prakticky jen s použitím všem dostupného Excelu a jednoho z velmi rozšířených

statických software, kterým je SCIA Engineer. Výhodné je, že pro tuto formu optimalizace, není potřebná téměř žádná znalost programování, přestože v některých krocích dochází k úpravě skriptů definujících samotný projekt ve výpočetním software.

Původním cílem bylo veškeré entity a jejich vlastnosti zadávat pomocí tabulkového zadávání. Bohužel tento způsob importu je velmi omezený a zdaleka nepostihuje potřeby výpočtu letmo betonované konstrukce s proměnnou výškou a fázemi výstavby. Po obsáhlé konzultaci se zástupci vývojářů SCIA bylo doporučeno využít exportu projektu do souboru XML, což dovolí úpravu libovolných dat modelu. Formát XML ukládá data do struktury, která je zároveň čitelná strojově i člověkem. Jelikož soubory ve formátu XML jsou formátovány jako textové dokumenty s řádkovou strukturou, není problém je upravovat v textových editorech. Právě řádková struktura napomáhá použití v Excelu, který také funguje v řádcích. Vygenerovaný skript proto jde základními funkcemi naparametrizovat, aby se měnil podle zadaných vstupních dat.

1.1. Postup výpočtu

Soubor se vstupy má poměrně jasnou strukturu, rozdělenou do listů, která byla postupně laděna a kontrolována dílčími výpočty tak, aby byly generovány entity správně a geometrie odpovídala zadání. Generuje dva, respektive tři, modely, které byly využity jak pro optimalizaci, tak i finální statický výpočet. Pro každou iteraci byl vytvořen desko-stěnový model, prutový model bez předpínací výztuže a ocelového pásku a prutový model s předpínací výztuží a ocelovým páskem. První dva modely sloužily pro porovnání napětí a stanovení vlivu smykového ochabnutí. Třetí model byl používán pro analýzu modelem TDA.

Struktura vstupního Excelu byla zvolena následující:

- Základní údaje Tento list obsahuje veškeré základní vstupní údaje týkající se podélné geometrie konstrukce, rozměrů průřezů a materiálů.
- Seznam řezů V listu jsou stanoveny konkrétní rozměry a průřezové charakteristiky v řezech po 1,0 m na konstrukci. Z průřezových charakteristik je kromě toho vypočítáno i zatížení čerstvým betonem a hmotnost jednotlivých lamel.
- Zatížení V listu jsou tabulkově shrnuta jednotlivá stálá zatížení a připravena pro vytvoření bodových a liniových zatížení v dalších listech.
- 4. **Fáze** Definuje jednotlivé fáze výstavby název, čas, příslušné zatěžovací stavy.

- 5. Desko-stěnový model Z předchozích dat vytváří všechny entity příslušící desko-stěnovému modelu uzly, desky, podpory a zatížení. Import do SCIA Engineer v případě tohoto modelu probíhá Tabulkovým vstupem, neboť je tento model velmi jednoduchý.
- 6. Prutový model Obdobně jako pro desko-stěnový model jsou zde vygenerovány všechny entity tak, jak jsou k vidění v Tabulkovém vstupu. Zároveň jsou všechny entity jedinečně očíslovány tak, aby je bylo snadné přiřadit v XML.
- 7. **Předpětí** List sloužící pouze k propočtu potřebných vahadlových kabelů.
- 8. XML V tomto listu byl naimportován samotný soubor XML. XML soubor byl získán tak, že část projektu¹ byla připravena nahrubo ručně tak, aby obsahoval připravené parametrické průřezy (pouze vytvořené, nemusí odpovídat číselně) a fáze výstavby. Po exportu vybraných částí projektu byly jednotlivé řádky skriptu zavzorcovány na údaje z listu "Prutový model". Řádky je možné filtrovat dle typu entity, například na materiály, průřezy, zatěžovací stavy a podobně. Přepsání samostatného XML probíhá stisknutím tlačítka s makrem.
- 9. Porovnání napětí V listu se vyplňují údaje o namáhání pro porovnání desko-stěnového a prutového modelu. Z prutového modelu se vyplní momenty ve zkoumaných řezech a desko-stěnového modelu se vyplní normálová napětí. Průřezové charakteristiky jsou automaticky aktualizovány z dat v listu "Seznam řezů". Na základě těchto dat jsou stanoveny koeficienty, kterými je násobeno napětí stanovené na prutovém modelu.
- 10. Vyhodnocení namáhání List obsahuje vnitřní síly ve vybraných fázích výstavby provozu. Vnitřní síly jsou aktualizovány tlačítkem s makrem z tabulkového souboru s hodnotami vnitřních sil ze SCIA Engineer. V listu jsou rovnou vypočítány hodnoty napětí v jednotlivých řezech konstrukce bez a s vlivem smykového ochabnutí.
- 11. **Grafy namáhání** Poslední list obsahuje grafy s vykreslením napětí v horních a dolních vláknech průřezu po délce konstrukce. Na základě těchto grafů bylo posuzováno namáhání konstrukce.

¹ Projektem je ve SCIA rozuměn samotný výpočetní model.

Obrázek 2 Struktura vstupního Excelu

Úprava projektu souborem XML probíhala po změně parametrů funkcionalitou aktualizace projektu (Soubor \rightarrow Aktualizovat \rightarrow XML soubor). Provedení úpravy tímto způsobem zaručilo, že budou změněny jen potřebné entity a nedojde k obměně celého projektu.

Jednotlivé iterace probíhaly od poměrně robustní konstrukce směrem ubírání materiálu z konstrukce. Zároveň každou tuto iteraci doprovázelo několik úprav předpětí. V každé iteraci byl také stanovován vliv smykového ochabnutí. Podle původních předpokladů se potvrdilo, že se u konstrukce během iterací vliv smykového ochabnutí téměř nemění.

Obrázek 3 Cyklus optimalizace

Jednotlivé iterace byly ověřovány na základě dvou kritérií:

- Omezení napětí Napětí od kvazistálé kombinace stálého zatížení nepřekračuje v žádné fázi výstavby (0,45 f_{ck}; f_{ctk,0.05}) a provozu limitní hodnoty. Dále bylo cílem navrhnout konstrukci, která bude na konci životnosti při působení kvazistálé kombinace od stálého zatížení plně předpjatá. Použití pouze stálých zatížení je logickým vyústěním toho, že u konstrukce s velkým rozpětím má stálé zatížení dominantní roli.
- Průhyb hlavního pole Byl sledován rozdíl průhybu uprostřed rozpětí hlavního pole mezi uvedením do provozu a koncem životnosti. Průhyb během výstavby sledován nebyl, neboť není rozhodující a dá se eliminovat vhodným návrhem nadvýšení.

1.2. Předpoklady výpočtu

Z důvodu úspory výpočetní paměti, zkrácení výpočtu, potřeby optimalizace a limitů software SCIA Engineer byla přijata zjednodušení. Tyto zjednodušení jsou pro účely diplomové práce přijatelná.

 Výpočet je proveden pro pravý most (směr státní hranice). Levý most je identický.

- Konstrukce je modelována prutově ve 2D. V jiném případě by nebylo možné použít modul TDA.
- Opěry 1 a 4 jsou modelovány bodovým podepřením.
- Pilíře P2 a P3 jsou modelovány svým skutečným průřezem a výškou. Jsou připojeny k horní desce a ve své patě jsou vetknuté (piloty jsou vetknuty do horniny).
- Jednotlivé skupiny kabelů jsou sloučeny do "ideálního kabelu".
- Je zanedbán podélný sklon nosné konstrukce a příčný sklon horní desky komory.
- Půdorysné zakřivení je zanedbáno.
- Je zanedbáno postupné betonování průřezu, průřez je tedy modelován jednou fází. Ocelový pásek a průřez mostovky jsou dílčí pruty.
- Dílce uvažovány o délce 1 metr.
- Nastavení sítě jsou dva prvky na prutu (minimální podmínka TDA).
- Délce dílců je uzpůsobena i délka lamel, tedy s krokem po 1,0 m.
 Z toho s ohledem na geometrii vyplývá jedno rozumné řešení rozdělení lamel.
- Tloušťky a výška prvků jsou na jednotlivých dílcích konstantní, stanovené zprůměrováním hodnoty začátku a konce. Uprostřed dílce odpovídá jeho těžišťová osa reálné těžišťové ose mostu.
- Rozpětí jsou volena jako pevný parametr.
- Rozměry jednotlivých průřezů jsou volné parametry.
- Předpětí je ve větší míře dané vybranou technologií výstavby, proto lze optimalizovat především vnášenou předpínací sílu.

1.3. Časová linie

Fáze výpočtu jsou rozděleny dle následující tabulky. Pro vznik lamely jsou obecně používány tři fáze. Předpínání kabelů je sdružováno pro snížení počtu výsledných kombinací v optimalizačním procesu.

Přidaný prvek	Přidané zatížení	Odebrané zatížení	Čas fáze [dny]	Poznámka
Pilíře, zárodky	Předpětí vahadel		0	ST1
	Vozík lamel 1		8	ST2
	Čer. beton 1		13	ST3
Lamely 1	Před. lamel 1	Čer. beton 1	15	ST4
	Vozík lamel 2	Vozík lamel 1	16	ST5
	Čer. beton 2		21	ST6
Lamely 2	Před. lamel 2	Čer. beton 2	23	ST7
	Vozík lamel 3	Vozík lamel 2	24	ST8
	Čer. beton 3		29	ST9
Lamely 3	Před. lamel 3	Čer. beton 3	31	ST10
	Vozík lamel 4	Vozík lamel 3	32	ST11

Přidaný prvek	Přidané zatížení	Odebrané zatížení	Čas fáze [dny]	Poznámka
	Čer. beton 4		37	ST12
Lamely 4	Před. lamel 4	Čer. beton 4	39	ST13
	Vozík lamel 5	Vozík lamel 4	40	ST14
	Čer. beton 5		45	ST15
Lamely 5	Před. lamel 5	Čer. beton 5	47	ST16
	Vozík lamel 6	Vozík lamel 5	48	ST17
	Čer. beton 6		53	ST18
Lamely 6	Před. lamel 6	Čer. beton 6	55	ST19
	Vozík lamel 7	Vozík lamel 6	56	ST20
	Čer. beton 7		61	ST21
Lamely 7	Před. lamel 7	Čer. beton 7	63	ST22
	Vozík lamel 8	Vozík lamel 7	64	ST23
	Čer. beton 8		69	ST24
Lamely 8	Před. lamel 8	Čer. beton 8	71	ST25
	Vozík lamel 9	Vozík lamel 8	72	ST26
	Čer. beton 9		77	ST27
Lamely 9	Před. lamel 9	Čer. beton 9	79	ST28
	Vozík lamel 10	Vozík lamel 9	80	ST29
	Čer. beton 10		85	ST30
Lamely 10	Před. lamel 10	Čer. beton 10	87	ST31
	Vozík lamel 11	Vozík lamel 10	88	ST32
	Čer. beton 11		93	ST33
Lamely 11	Před. lamel 11	Čer. beton 11	95	ST34
	Vozík lamel 12	Vozík lamel 11	96	ST35
	Čer. beton 12		101	ST36
Lamely 12	Před. lamel 12	Čer. beton 12	103	ST37
	Vozík lamel 13	Vozík lamel 12	104	ST38
	Čer. beton 13		109	ST39
Lamely 13	Před. lamel 13	Čer. beton 13	111	ST40
	Vozík lamel 14	Vozík lamel 13	112	ST41
	Čer. beton 14		117	ST42
Lamely 14	Před. lamel 14	Čer. beton 14	119	ST43
	Vozík lamel 15	Vozík lamel 14	120	ST44
	Čer. beton 15		125	ST45
Lamely 15	Před. lamel 15	Čer. beton 15	127	ST46
	Vozík lamel 16	Vozík lamel 15	128	ST47
	Čer. beton 16		133	ST48
Lamely 16	Před. lamel 16	Čer. beton 16	135	ST49
	Vozík uzavírací spára	Vozík lamel 15	136	ST50

Přidaný prvek	Přidané zatížení	Odebrané zatížení	Čas fáze [dny]	Poznámka
	Čer. beton - uzavírací spára		141	ST51
Uzavírací spára Část na skruži	VI. tíha	Čer. beton - uzavírací spára	145	ST52
		Vozík uzavírací spára	147	ST53
	Kabely spojitosti, kladné kabely		160	ST54
	Ostatní stálé		200	ST55
			230	ST56 - UP
			267	ST57 - 0,1 roku
			413	ST58 - 0,5 roku
			595	ST59 - 1 rok
			960	ST60 - 2 roky
			2055	ST61 - 5 let
			3880	ST62 - 10 let
			7530	ST63 - 20 let
			18480	ST64 - 50 let
			27605	ST65 - 75 let
			36500	ST66 - KŽ

1.4. Použitý software

Pro zpracování statického výpočtu byly použity následující software:

- SCIA Engineer 20.0 Trial verze, SCIA CZ s.r.o.
- Autodesk AutoCAD 2021 studentská licence, Autodesk spol. s r.o.
- Microsoft Word 365, Microsoft, s.r.o.
- o Microsoft Excel 365, Microsoft, s.r.o.
- o IDEA StatiCa RCS studentská licence, IDEA StatiCa s.r.o.

2. Materiály

Použité materiály jsou popsány podrobně v Části D: Statický výpočet.

3. Výpočetní modely 3.1. Prutový model

Obrázek 4 Schéma modelu konstrukce – systémové osy

Jedná se o 2D model ve kterém je tudíž zanedbáno půdorysné zakřivení. Zároveň je zanedbán i podélný a příčný sklon nosné konstrukce. Vzhledem k tomu, že má nosná konstrukce proměnný průřez, jsou prvky zadány s excentricitou podle vrchní hrany průřezu. Vzhledem k potřebám a omezením parametrické studie jsou nosná konstrukce i pilíře děleny na dílce o délce 1,0 m. V případě nosné konstrukce jsou tyto dílce vždy o konstantní výšce.

Obrázek 5 Detail řešení průřezů - drátový model

Pilíře P2 a P3 byly modelovány jejich reálnými rozměry dle projektové dokumentace a v místě jejich spojení se základem jsou vetknuty. V místech opěr O1 a O4 je nosná konstrukce podepřena bodově podélně posuvnými klouby.

Výpočtový model respektuje navržený postup výstavby, tedy postupnou realizaci vahadel, následné spojení vahadel s krajními poli, předpětí kabely spojitosti a aplikaci ostatního stálého zatížení. Samotné fáze výstavby jsou popsány již dříve v kapitole Časová linie. Dále jsou modelovány fáze pro uvedení do provozu a konec životnosti. Mezi tyto dvě fáze je vloženo ještě několik dílčích fází pro možnost sledování časového vývoje deformací a redistribuce namáhání.

Obrázek 6 Renderovaný pohled na pole 1

Obrázek 8 Schéma rozhodujících řezů

3.2. Desko-stěnový model

Desko-stěnový model definitivní konstrukce byl vytvořen pro účely sledování a zohlednění účinků smykového ochabnutí. Model byl zatížen zatížením o velikosti 10 kN/m² a následně byly vykresleny napětí získané z lineárního výpočtu ve vybraných průřezech a porovnány s napětími z prutového modelu.

Obrázek 9 Celkový pohled na desko-stěnový model

Během verifikace modelů porovnáním průhybu hlavního pole na desko-stěnovém a prutovém modelu bylo zjištěno, že rozdíl průhybů je nepřijatelný. Průhyb desko-stěnového modelu byl o zhruba 10 % menší než průhyb stanovený na prutovém modelu. Po kontrole všech nastavení a správnosti funkce modelů na statickém schématu oboustranně vetknutého nosníku, jsem došel k závěru, že rozdíl bude tvořen především rozdílnou tuhostí modelů. Tento rozdíl tuhosti vznikl díky způsobu, jakým byl tvořen průřez komory desko-stěnového modelu. Vzhledem k tomu, že tabulkový vstup neumožňuje přidávat tuhá ramena, dochází v modelu k zdvojení ploch desek v místě styku stěn a desek, viz Obrázek 11. Rozdíl v momentu setrvačnosti průřezu v oblasti zárodku činil 7,46 % a u mezipodporového průřezu pouze 0,05 %. Zanedbatelný rozdíl u mezipodporového průřezu ale není podstatný, protože průhyb náběhované letmo betonované konstrukce je dán především možností natočení zárodku. Zbylý rozdíl průhybu byl přisouzen tomu, jakým způsobem byly modelovány pilíře. Ty byly původně modelovány od místa vetknutí v patě až k připojení v horní desce. Následně byly upraveny tak, aby byly připojeny pouze k dolní desce komory. V komoře jsou vymodelovány příčníky jejich reálným rozměrem. Na základě zjištění byl redukován modul pružnosti *E* materiálu mostovky do takové míry, aby průhyby desko-stěnového a prutového modelu byly shodné. Vyrovnáním průhybů bylo dosaženo i reálného poměru napětí získaných z obou modelů a uvedených v kapitole 6. Srovnání výpočetních modelů.

Obrázek 10 Provedení pilířů - renderovaný desko-stěnový model

Obrázek 11 Detail průřezu - renderovaný desko-stěnový model

4. Zatížení

Použitá zatížení jsou podrobně rozebrána vČásti D: Statický výpočet. V rámci optimalizačního procesu byla na konstrukci aplikována zatížení během výstavby a stálá zatížení. Výsledky z optimalizačního výpočtu tvoří kvazistálou kombinaci od stálých zatížení.

Výjimku tvoří část odhadu spodní stavby, kdy stanovena kombinace 6.10a od stálých a proměnných zatížení.

5. Odhad zatížení spodní stavby

Pro "nultý krok" parametrické studie je potřebné mít startovací stav – geometrii. Proto v počátku je proveden odhad zatížení a dimenzí spodní stavby, rámových stojek, na jednoduchém prutovém modelu. Tyto rámové stojky tvoří pilíře P2 a P3. Jako nosná konstrukce je zvolen konstantní průřez o výšce 1/15 rozpětí hlavního pole, tedy komora o výšce 10,0 m.

Obrázek 12 Schéma průřezu nosné konstrukce pro odhad zatížení spodní stavby

Pro odhad spodní stavby byl zvolen pilíř P3a, neboť přilehá hlavnímu poli, a tedy bude zatíženější než pilíř P3b. Zároveň je vyšší než pilíř P2b, tedy je štíhlejší, což je jedna z rozhodujících vlastností.

5.1. Geometrické imperfekce

Pro pilíř je stanovena geometrická imperfekce, kterou se zvětšil ohybový moment z výpočetního modelu. Tato hodnota je vstupem do výpočtu metodou jmenovité tuhosti.

Dle ČSN EN 1992-2 lze imperfekci sloupu vyjádřit sklonem θ_{i} :

 $\begin{array}{l} \theta_l = \theta_0 \alpha_h \\ \text{kde} \quad \theta_0 = \frac{1}{200} \, \text{je doporučenou hodnotou základního odklonu sloupu} \\ \alpha_h = \frac{2}{\sqrt{l}} \text{a zároveň } \alpha_h \leq 1 \, \text{je redukční součinitel, který zohledňuje výšku} \\ \text{pilíře.} \end{array}$

Tento výsledný odklon je využit pro výpočet excentricity $e_i = \frac{\theta_l l_0}{2}$.

Vypočtenou excentricitou je následně zvětšen návrhový ohybový moment podle vztahu

$$M_{0Ed} = N_{Ed} \left(\frac{M_{mod}}{N_{ed}} + e_i \right),$$

kde M_{mod} je hodnota ohybového momentu z výpočetního modelu.

Výpočet hodnoty geometrické imperfekce

5.2. Vnitřní síly

Pro odhad zatížení spodní stavby jsou kromě stálých zatížení aplikována, podélným větrem a rovnoměrnou změnou teploty, která jsou předpokládána jako zásadní pro namáhání spodní stavby.

Z prutového modelu byly získány vnitřní síly v hlavě pilíře, které jsou uvedeny v následující tabulce:

	VI. tíha	Ost. stálé	Vítr	Oteplení	Ochlazení
	(1)	(2)	(3)	(4)	(5)
N [kN]	-89056,7	-6696,0	48,0	637,9	-735,2
M _y [kNm]	10512,4	789,5	1129,7	11710,4	-13496,8

Tabulka 1 Vnitřní síly v hlavě pilíře

Ze získaných vnitřních sil je evidentní, že ohybový moment od stálého zatížení je kladný. Proto bylo v následujících kombinacích pracováno s proměnnými zatíženími, které mají shodnou orientaci momentu (vítr, rovnoměrné oteplení). Kombinace jsou stanoveny podle vztahu 6.10a neboť je zřejmé, že pro tento typ konstrukce je rozhodující stálé zatížení, které kombinace neredukuje. Zároveň je vypočtena kvazistálá kombinace, neboť je potřebná pro výpočet metodou jmenovité tuhosti.

	MSÚ- 6.10a	Kvazistálá
	(6) 1,35(1)+1,35(2)+1,5*0,6(3)+1,5*0,6(4)	(7) (1)+(2)+0,5(4)
N [kN]	-128648,9	-95433,8
M _y [kNm]	26813,7	17157,1

Tabulka 2 Výsledné vnitřní síly v hlavě pilíře

Analogicky jsou získány vnitřní síly pro průřez v patě pilíře:

	Vlastní tíha	Ost. stálé	Vítr	Oteplení	Ochlazení
	(1)	(2)	(3)	(4)	(5)
N [kN]	-100744,3	-6696,0	48,0	637,9	-735,2
M _y [kNm]	-4691,6	-352,3	-4153,6	-11795,2	13594,5

Tabulka 3 Vnitřní síly v patě pilíře

U získaných vnitřních sil lze sledovat, že ohybový moment od stálého zatížení je záporný. Proto bylo v následujících kombinacích pracováno s proměnnými zatíženími, které mají shodnou orientaci momentu (vítr, rovnoměrné oteplení). Kombinace jsou obdobně jako u průřezu v hlavě pilíře stanoveny podle vztahu 6.10a. Opět je vypočtena i kvazistálá kombinace.

	MSÚ- 6.10a	Kvazistálá
	(6) 1,35(1)+1,35(2)+1,5*0,6(3)+1,5*0,6(4)	(7) (1)+(2)+0,5(4)
N [kN]	-144427,1	-107121,3
M _y [kNm]	-21163,1	-10941,4

Tabulka 4 Výsledné vnitřní síly v patě pilíře

5.3. Vzpěrná délka

Vzpěrná délka leží v tomto případě, kdy je pilíř vetknutý do tuhého základu a "polotuhé" nosné konstrukce, v intervalu $<0,5L_p;L_p>$. Vzhledem k povaze posudku je zjednodušeně uvažováno se střední hodnotou $L_{cr}=0,75L_p$.

 $L_p = 28,0 \text{ m}$ $L_{cr} = 21,0 \text{ m}$

5.4. Metoda jmenovité tuhosti

Pro zohlednění účinků vzpěru je použita zjednodušená metoda jmenovité tuhosti dle normy ČSN EN 1992-1-1. Je použita pro průřez v patě a hlavě pilíře. Ve výpočtu se objevují tyto veličiny:

 $M_{0,eqp}$ ohybový moment prvního řádu z kvazistálé kombinace (MSP), $M_{0,Ed}$ ohybový moment prvního řádu od návrhové kombinace (MSÚ), N_{Ed} normálová síla z návrhové kombinace (MSÚ),

- l_c moment setrvačnosti betonu,
- A_c plocha betonu,
- L_{cr} vzpěrná délka pilíře,
- $\varphi_{\scriptscriptstyle{(\infty,t0)}}$ konečný součinitel dotvarování dle ČSN EN 1992-1-1,
- E_{cm} střední hodnota modulu pružnosti betonu,
- $f_{ck} \qquad charakteristická válcová pevnost betonu v tlaku, \\$
- f_{cd} návrhová válcová pevnost betonu v tlaku.

Použití konečného součinitele dotvarování pro metodu jmenovité tuhosti je spjato s namáháním pilíře, respektive s ohybovými momenty, které vzhledem k technologii výstavby dosahují výraznějších hodnot až po uplynutí delšího časového intervalu. Z toho důvodu je uvažováno zatížení ve 30 dnech po vybetonování (t₀ = 30 dní). S ohledem na prostředí umístění pilíře je uvažována relativní vlhkost 60 %. S těmito parametry je součinitel dotvarování $\phi_{(\infty,t0)} = 1,2$.

Z předchozích hodnot je určeno:

štíhlost pilíře
$$\lambda = \frac{L_{cr}}{\sqrt{\frac{I_c}{A_c}}}$$

účinný součinitel dotvarování $\varphi_{ef} = \varphi_{(\infty;t_0)} \frac{M_{0,Eqp}}{M_{0,Ed}}$

poměrná normálová síla $n = \frac{N_{Ed}}{A_{cf_{cd}}}$.

Jmenovitá tuhost je určena dle vztahu:

 $EI = K_c E_{cd} I_c + K_s E_s I_s,$

kde K_c je součinitel zohledňující vliv dotvarování, trhlin atd., a je určen vztahem:

$$K_c = \frac{k_1 k_2}{1 + \varphi_{ef}}.$$

Součinitelé k_1, k_2 jsou určeny:

součinitel závisející na pevnosti betonu $k_1 = \sqrt{f_{ck}/20}$

součinitel závisející na poměrné normálové síle a štíhlosti

$$k_2 = \frac{n\lambda}{170} \le 0.2$$

 E_{cd} je návrhová hodnota modulu pružnosti, která je vypočítána:

 $E_{cd} = E_{cm}/\gamma_{CE}$, kde $\gamma_{CE} = 1,2$

 K_s je součinitel vlivu výztuže a je uvažován hodnotou K_s = 1,0 neboť $\rho \geq 0{,}002$

I₅ je modul setrvačnosti výztuže. Vzhledem k tomu, že momenty setrvačnosti jednotlivých prutů jsou zanedbatelné, je vypočítán pouze ze Steinerových doplňků. Vztah pro určení je proto:

 $I_s = \sum A_{s,i} r_i^2$, kde $A_{s,i}$ je plocha dílčí vrstvy výztuže a r_i je rameno těžiště vrstvy výztuže vůči těžišti průřezu pilíře.

Dále je určeno vzpěrné břemeno ze vztahu:

$$N_B = \frac{\pi^2}{L_{cr}^2} EI.$$

Pro stanovení celkové návrhové hodnoty momentu od zatížení s vlivem druhého řádu je použito výrazu:

$$M_{Ed} = \frac{M_{0,Ed}}{1 - \frac{N_{Ed}}{N_B}}.$$

Výpočet metodou jmenovité tuhosti – průřez v hlavě pilíře

N _{Ed} =	-128648,9	kN
$M_{0,Eqp} =$	17157,1	kNm
$M_{0,Ed} =$	26813,7	kNm
$A_c =$	12,880	m²
I _c =	2,906	m ⁴
L _{cr} =	21	m
E _{cm} =	32000	MPa
$E_{cd} =$	26666,7	MPa
E _s =	200000	MPa
$\phi_{(\infty,t0)} =$	1,2	
f _{ck} =	30	MPa
$f_{cd} =$	20	MPa
$\phi_{ef} =$	0,768	
λ=	44,212	
n=	0,499	
K _c =	0,090	
k ₁ =	1,225	
k ₂ =	0,130	
K _s =	1,000	
l _s =	0,031	m ⁴

Betonářská výztuž						
	Profil	Ks		$A_{s,i}\left[m^2 ight]$	r _i [m]	
1. řada	25		28	0,01374	0,843	
2. řada	25		2	0,00098	0,743	
3. řada	25		26	0,01276	0,643	

symetricky výztuž na druhé straně průřezu

M _{Ed} =	47,48	MNm
$N_B =$	295,58	MN
EI=	13207,18	MNm ²

Obdobně je výpočet proveden i pro průřez v patě pilíře. Dále jsou uvedeny výsledné vnitřní síly s vlivem druhého řádu od obou výpočtů:

	Hlava	Pata
N [kN]	-128648,9	-144427,1
M _y [kNm]	47478,5	-37575,9

Tabulka 5 Návrhové vnitřní síly na pilíři s vlivem druhého řádu

5.5. Posouzení

Průřez byl posouzen v programu Idea StatiCa RCS. Níže je zobrazen příčný řez pilířem, který je shodný v hlavě i patě. Je navržena výztuž ø25/150 u obou povrchů. Tato výztuž je navržena jako hlavní výztuž a v průřezu by bylo více betonářské výztuže (smyková, konstrukční).

Obrázek 13 Řez pilířem včetně betonářské výztuže

Graf 1 Interakční diagram pilíře

Zatížení z tabulky výše je v diagramu vyznačeno a leží uvnitř něj. Průřez vyhovuje.

6. Srovnání výpočetních modelů

V několika prvních iteracích bylo provedeno porovnání chování desko-stěnového a prutového modelu pro vystižení vlivu ochabnutí smykem. Výsledná napětí v řezech na desko-stěnovém modelu odpovídala předpokladům tvaru napětí způsobeného klasickým smykovým ochabnutím. Zároveň se potvrdil předpoklad, že změny geometrie průřezu (změna jeho výšky, tloušťky spodní desky) nebudou mít zásadní vliv na poměr napětí mezi desko-stěnovým a prutovým modelem. Rozdíly byly v setinách až desetinách procent, a proto byly v jednotlivých iteracích používány koeficienty stanovené v první iteraci.

Byly porovnávány hodnoty v horních a dolních vláknech průřezu. Na desko-stěnovém modelu byly hodnoty přímo vykresleny v zadaných řezech a na prutovém modelu byla normálová napětí stanovena z ohybového momentu.

Vliv smykového ochabnutí byl vzhledem k symetrii konstrukce stanoven celkem ve třech reprezentativních řezech:

- Řez A nachází se ve 40% rozpětí prvního pole,
- Řez B 0,5 m od osy pilíře směrem do hlavního pole,
- Řez C střed rozpětí hlavního pole.

Pro výpočty napětí v optimalizačním procesu i statickém výpočtu byly stanoveny zvětšující koeficienty, kterými byly násobeny hodnoty napětí stanovené z prutového modelu. Součinitele byly stanoveny dle vztahů:

Obrázek 14 Schéma polohy bodů pro porovnání napětí

Řez A

V následující tabulce je stanovení koeficientů pro jednotlivé body řezu A. Dle předpokladů jsou největší napětí v oblasti spojení stěn a desek komory.

Bod	1	2	3	4	5	6	7	8
M _y [kNm]		-	-	137	52,3	-	-	-
l _y [m⁴]		41,524						
Z _t [m]		2,086						
σ _{prut} [MPa]			-0,691				1,033	
σ _{D-s} [MPa]	-0,698	-0,732	-0,732	-0,732	-0,698	1,126	1,115	1,126
k h,i	1,01	1,06	1,06	1,06	1,01			
k _{d,i}						1,09	1,08	1,09

Tabulka 6 Stanovení zvětšujících koeficientů napětí pro řez A

Graf 2 Napětí v horní a dolní desce v řezu A

Řez B

V následující tabulce je stanovení koeficientů pro jednotlivé body řezu B. Dle předpokladů jsou největší napětí v oblasti spojení stěn a desek komory. Splněn je i předpoklad výrazného ovlivnění smykovým ochabnutím v blízkosti podpory.

Bod	1	2	3	4	5	6	7	8
M _y [kNm]	-222028,14							
l _y [m⁴]		211,260						
Z _t [m]		4,407						
σ_{prut} [MPa]			4,632			-4,301		
σ _{D-S} [MPa]	5,743	6,855	5,049	6,855	5,743	-6,151	-6,022	-6,151
k h,i	1,24	1,48	1,09	1,48	1,24			
k d,i						1,43	1,40	1,43

Tabulka 7 Stanovení zvětšujících koeficientů napětí pro řez B

Graf 3 Napětí v horní a dolní desce v řezu B

Řez C

V následující tabulce je stanovení koeficientů pro jednotlivé body řezu C. Dle předpokladů jsou největší napětí v oblasti spojení stěn a desek komory. Dále je zřetelné, že ovlivnění rozdělení normálových napětí smykovým ochabnutím uprostřed rozpětí hlavního pole je minimální. To je způsobeno téměř nulovou posouvající silou. Uprostřed rozpětí hlavního pole byl zároveň porovnán průhyb desko-stěnového a prutového modelu. Vzhledem k tomu, že oba modely nezanedbávají smykové deformace stěn, je průhyb modelů totožný. To napovídá, že oba modely pracují správně.

Bod	1	2	3	4	5	6	7	8
M _y [kNm]				6078	5,53			
I _y [m⁴]				26,	060			
Z _t [m]				1,6	90			
σ _{prut} [MPa]			-3,941			6,088		
σ _{D-S} [MPa]	-3,863	-3,981	-3,941	-3,981	-3,863	6,331	6,271	6,332
k h,i	0,98	1,01	1,00	1,01	0,98			
k _{d,i}						1,04	1,03	1,04
w _{prut} [mm]	65,8							
w _{D-s} [mm]	65,7							
Δw [mm]				-0	,1			

Tabulka 8 Stanovení zvětšujících koeficientů napětí pro řez C

Graf 4 Napětí v horní a dolní desce v řezu C

Graf 5 Rozdělení zvětšujících koeficientů napětí po délce konstrukce

7. Iterace 0

Startovací stav iteračního procesu byl zvolen rozměry danými z empirie. U těch lze předpokládat, že by byly využívány pro návrh konstrukce, protože je u nich vysoká míra pravděpodobnosti, že taková konstrukce podmínkám MSP a MSÚ vyhoví. Celkový objem betonu nosné konstrukce v této variantě činí 4688 m³.

	Výška průřezu [mm]	Tloušťka stěn [mm]	Tloušťka dolní desky [mm]	Tloušťka horní desky komory [mm]
Zárodek	8500	800	1200	200
Střed rozpětí	4300	550	300	500

Tabulka 9 Základní rozměry průřezů v iteraci 0

Z hlediska tvaru náběhů je známý ideální tvar udávaný vztahem $y = a \cdot x^{1,6}$. Uvedeného vztahu bylo využito a vzhledem k tomu, že pro všechny iterace byla uvažována přímá (o stejné výšce) střední část v hlavním poli o délce 21,0 m, jedinou proměnnou v tomto ohledu byla výška průřezu v poli a v nadpodporové oblasti. Náběhy stěn byly ve všech iteracích uvažovány parabolické podle stejného vztahu jako pro průběh výškových náběhů. Změna tlouštěk dolní desky a stěn probíhala ve všech iteracích po délce devíti lamel, tedy 32,0 m od zárodku.

Graf 6 Schéma příčného řezu konstrukce v iteraci 0 (vlevo nad pilířem, vpravo v poli)

Graf 7 Plocha průřezu po délce mostu v iteraci 0

Graf 8 Vzdálenost těžiště od horní hrany průřezu v iteraci 0

Graf 9 Moment setrvačnosti po délce mostu v iteraci 0

Z grafů výše je zřetelné typické rozložení hmoty pro letmo betonovanou konstrukci s náběhy. Většina hmoty je koncentrována v nadpilířových oblastech, kde je namáhání značné. Naopak v mezipodporových průřezech je snaha o minimalizaci hmoty a tím i vlastní tíhy. V zárodku se těžiště nachází 4,407 m od horní hrany průřezu, což je zhruba uprostřed průřezu, naopak uprostřed rozpětí činí vzdálenost těžiště od horní jen 1,609 m a blíží se více horním vláknům.

Název kabelů	Počet kabelů	Lan v kabelu	Napínací napětí [MPa]
Vahadlové	17x2	19	1300
Spojitosti – pole 1 a 3	8	19	1350
Spojitosti – pole 2	12	19	1473
Kladné	4	19	1473

Tabulka 10 Předpínací výztuž v iteraci 0

Graf 10 Napětí v horních vláknech během výstavby vahadla v iteraci 0

Graf 11 Napětí v dolních vláknech během výstavby vahadla v iteraci 0

Z hlediska namáhání konstrukce během výstavby vahadla lze z vykreslení napětí v horních a dolních vláknech konstatovat, že konstrukce splňuje kritéria mezního stavu použitelnosti. Během výstavby v betonu vznikají tahy, které nepřekračují hodnotu f_{ctk,0.05}. Nasvědčuje to tomu, že záporné kabely nejsou zbytečně předimenzované.

Graf 12 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 0

Graf 13 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 0

Z grafů je patrné, že konstrukce s velkou rezervou splní podmínky MSP pro kvazistálou kombinaci. Konstrukce je od kvazistálé kombinace od stálého zatížení na konci životnosti plně předpjatá, a proto vyhovuje požadavkům. Je zjevné, že konstrukce s rozměry stanovenými z empirie je velmi robustní a dává prostor pro její optimalizaci.

Z hlediska omezení průhybů konstrukce vyhovuje, rozdíl mezi uvedením do provozu a koncem životnosti činí 56,5 mm.

8. Iterace 1

Oproti předchozí variantě byla snížena pouze výška průřezu v zárodku i ve středu rozpětí.

	Výška průřezu [mm]	Tloušťka stěn [mm]	Tloušťka dolní desky [mm]	Tloušťka horní desky komory [mm]
Zárodek	8000	800	1200	200
Střed rozpětí	4000	550	300	500

Tabulka 11 Základní rozměry průřezů v iteraci 1

Jak již bylo předesláno v předchozí iteraci. Náběhy a rozměry částí s konstantní výškou nebyly měněny, přesto došlo k redukci objemu betonu nosné konstrukce o zhruba 150 m³.

Graf 14 Schéma příčného řezu konstrukce v iteraci 1 (vlevo nad pilířem, vpravo v poli)

Graf 15 Plocha průřezu po délce mostu v iteraci 1

Graf 16 Vzdálenost těžiště od horní hrany průřezu v iteraci 1

Graf 17 Moment setrvačnosti po délce mostu v iteraci 1

Porovnáním grafů výše vůči iteraci 0 je vidět úbytek hmoty průřezu z něhož vyplývá jak snížení zatížení, tak i redukce tuhosti mostovky. Poloha těžiště se nadále pohybuje ve podobné oblasti, jako tomu bylo v předchozím kroku.

V tomto kroku nedošlo ke změnám předpětí s výjimkou úpravy jeho geometrie, která je dána posunutím maximálních excentricit a navýšení předpínacího napětí ve vahadlových kabelech o 50 MPa.

Název kabelů	Počet kabelů	Lan v kabelu	Napínací napětí [MPa]
Vahadlové	17x2	19	1350
Spojitosti – pole 1 a 3	8	19	1350
Spojitosti – pole 2	12	19	1473
Kladné	4	19	1473

Tabulka 12 Předpínací výztuž v iteraci 1

Graf 18 Napětí v horních vláknech během výstavby vahadla v iteraci 1

Graf 19 Napětí v dolních vláknech během výstavby vahadla v iteraci 1

Napjatost konstrukce se během výstavby oproti iteraci 0 téměř nezměnila, to lze připisovat tomu, že ačkoliv se snížila tuhost konzoly, došlo zároveň ke zmenšení zatížení a drobnému navýšení předpínací síly ve vahadlových kabelech. Dle grafů nejsou tlaková napětí limitující. Pozornost si zaslouží pouze hraniční hodnota tahu v poli 1, kterou by bylo možné redukovat úpravou předpětí. Vzhledem k tomu, že se nejedná o finální iteraci tomu ovšem nebyla věnována nadměrná pozornost.

Graf 20 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 1

Podmínky pro napětí v horních vláknech jsou splněny s velkou rezervou. Konstrukce se ani ve stavebních stádiích nedostává v oblasti horních vláknech do tahových napětí. Na konci životnosti je konstrukce od kvazistálé kombinace stálého zatížení plně předpjatá.

Graf 21 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 1

Podmínky pro napětí od kvazistálé kombinace jsou s rezervou splněny i pro dolní vlákna průřezu. V oblasti pilířů došlo k drobnému zvýšení napětí, které lze přisuzovat snížení výšky a tuhosti průřezu při shodné předpínací síle.

Dle očekávání došlo k nárůstu průhybů konstrukce. Rozdíl mezi uvedením do provozu a koncem životnosti je 64,5 mm.

9. Iterace 2

V druhé iteraci jsem opět snížil výšku průřezu jak v zárodku, tak uprostřed rozpětí. Zároveň byla redukována tloušťka dolní desky, a to jak z důvodu posunu těžišťové osy, tak pro redukci hmoty průřezu. Tloušťka dolní desky mezipodporového průřezu se touto redukcí dostala na své technologické minimum. Minimální technologicky reálnou tloušťku mají rovněž stěny a horní deska, a proto jejich redukce nebyla zvažována.

	Výška průřezu [mm]	Tloušťka stěn [mm]	Tloušťka dolní desky [mm]	Tloušťka horní desky komory [mm]
Zárodek	7900	800	980	200
Střed rozpětí	3850	550	270	500

Tabulka 13 Základní rozměry průřezů v iteraci 2

Druhý iterační krok přinesl výraznější skok v objemu nosné konstrukce, která se tím snížila na 4339 m³ betonu. Rozdíl oproti nultému kroku je tedy 349 m³.

Graf 22 Schéma příčného řezu konstrukce v iteraci 2 (vlevo nad pilířem, vpravo v poli)

Graf 23 Plocha průřezu po délce mostu v iteraci 2

Graf 24 Vzdálenost těžiště od horní hrany průřezu v iteraci 2

Graf 25 Moment setrvačnosti po délce mostu v iteraci 2

Oproti nulté iteraci je již znatelný pokles momentu setrvačnosti (23 % v zárodku) i plochy (7 %).

Návrh předpětí tentokrát proběhl ve dvou krocích. Nejprve byla stanovena napjatost s předpínací výztuží shodnou z iterace 1, která byla již

vyhodnocena jako nevyhovující. Proto bylo přistoupeno k úpravě, která si vyžádala zvýšení množství předpínací výztuže kabelů spojitosti. Nejedná se však o nijak výrazné zvětšení množství, které by svědčilo o nevhodnosti další optimalizace.

Název kabelů	Počet kabelů	Lan v kabelu	Napínací napětí [MPa]
Vahadlové	17x2	19	1350
Spojitosti – pole 1 a 3	10	19	1400
Spojitosti – pole 2	14	19	1473
Kladné	4	19	1473

Tabulka 14 Předpínací výztuž v iteraci 2

Graf 26 Napětí v horních vláknech během výstavby vahadla v iteraci 2

Napětí v horních vláknech splňuje veškeré podmínky MSP pro kvazistálou kombinaci během výstavby. Tlaková ani tahová napětí nedosahují vysokých hodnot. Oproti minulému iteračnímu kroku je znatelný nárůst namáhání.

Graf 27 Napětí v dolních vláknech během výstavby vahadla v iteraci 2

Napětí v dolních vláknech průřezu v konzolovém stadiu jsou přijatelná a splňují podmínky MSP. Fáze po spojení vahadel v poli 1 hraničí s podmínkou omezení trhlin MSP dané hodnotou f_{ctk,0.05}, ale splňuje ji. Tlak v místě zárodku dosahuje hodnoty téměř 19 MPa. Nárůst namáhání oproti předchozí iteraci je proto znatelný stejně jako u horních vláken průřezu.

Graf 28 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 2

Nárůst tlaku oproti minulé iteraci v nadpodporových oblastech je ve větší míře způsoben přidáním kabelů spojitosti. S každým dalším krokem lze sledovat, že v oblasti zárodků vzniká největší tlakové napětí ve fázi přidání

kabelů spojitosti a v dalších iteračních krocích půjde o rozhodující fázi pro horní vlákna průřezu.

Graf 29 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 2

Ve vykreslení napětí v dolních vláknech v iteraci 2 je velmi málo odlišností oproti iteraci 1. Znatelnou odlišností je pouze zvýšení tlakové rezervy v poli 2. Zachování přibližně stejného napětí v dolních vláknech průřezu je zajištěno přidáním kabelů spojitosti. Tlakové napětí v dolních vláknech průřezu dosahuje značných hodnot a možnost jeho omezení bude v dalších krocích zásadní.

Z hlediska průhybů konstrukce přineslo přidání předpínací výztuže očekávaný pozitivní vliv. Průhyb za dobu životnosti konstrukce naroste o 64,3 mm, což je srovnatelná hodnota s minulou iterací.

10. Iterace 3

Třetí iterace je ve skutečnosti již mou šestou iterací z hlediska změn geometrie průřezu. Mezilehlé iterace nejsou zobrazeny pro redukci množství podobných výsledků, ve kterých pouze pokračuje trend nárůstu napětí v dolních vláknech průřezu v oblasti zárodku, u nichž se potvrdilo, že budou limitující. Objem betonu mostovky je 4179 m³.

	Výška průřezu [mm]	Tloušťka stěn [mm]	Tloušťka dolní desky [mm]	Tloušťka horní desky komory [mm]
Zárodek	7550 800		950	200
Střed rozpětí	3500	550	270	500

Tabulka 15 Základní rozměry průřezů v iteraci 2

Graf 30 Schéma příčného řezu konstrukce v iteraci 3 (vlevo nad pilířem, vpravo v poli)

Graf 32 Vzdálenost těžiště od horní hrany průřezu v iteraci 3

Graf 33 Moment setrvačnosti po délce mostu v iteraci 3

Oproti předchozí prezentované iteraci je vidět další výrazný pokles momentu setrvačnosti v zárodcích přibližně o 20 m⁴, pokles uprostřed rozpětí je neznatelný. V ploše průřezu nastává taktéž pokles, ale není tolik znatelný jako je tomu u momentu setrvačnosti.

Oproti předchozí iteraci není množství předpínací výztuže ani napětí změněno.

Název kabelů	Počet kabelů	Lan v kabelu	Napínací napětí [MPa]
Vahadlové	17x2	19	1350
Spojitosti – pole 1 a 3	10	19	1400
Spojitosti – pole 2	14	19	1473
Kladné	4	19	1473

Tabulka 16 Předpínací výztuž v iteraci 3

Graf 34 Napětí v horních vláknech během výstavby vahadla v iteraci 3

Graf 35 Napětí v dolních vláknech během výstavby vahadla v iteraci 3

Graf 36 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 3

Napětí v horních vláknech je nejvyšší v čase vnesení předpětí kabely spojitosti. Následně po aplikaci ostatního stálého zatížení klesá na přijatelnou hodnotu a není limitující. Bohužel tlaková napětí v horních vláknech jsou limitem i pro dolní vlákna. Přidáním dalších kabelů spojitosti, které by redukovaly tlak ve spodních vláknech, by mohlo v zárodku dojít k nepřípustnému tlakovému namáhání horních vláken, a to ve fázi 54, kdy je do konstrukce vneseno předpětí kabely spojitosti.

Graf 37 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 3

Napětí v dolních vláknech splňuje podmínky MSP pro kvazistálou kombinaci a poskytuje přijatelnou rezervu pro proměnná zatížení jak v místech pilířů P2 a P3, tak uprostřed rozpětí. Při dalším zmenšení průřezu je nutné zachovat minimálně stejnou rezervu pro proměnná zatížení.

Dlouhodobý průhyb mostu od stálého zatížení splňuje podmínku omezení průhybu a nabývá hodnoty 70,8 mm.

11. Iterace 4

Závěrečnou iterací byla snížena výška průřezu zárodku o 150 mm a tloušťka dolní desky redukována o 50 mm. Oproti předchozí iteraci to znamená pouze malé zmenšení objemu betonu.

	Výška průřezu [mm]	Tloušťka stěn [mm]	Tloušťka dolní desky [mm]	Tloušťka horní desky komory [mm]
Zárodek	7400	800	900	200
Střed rozpětí	3500	550	270	500

Tabulka 17 Základní rozměry průřezů v iteraci 4

Graf 38 Schéma příčného řezu konstrukce v iteraci 4 (vlevo nad pilířem, vpravo v poli)

Graf 39 Plocha průřezu po délce mostu v iteraci 4

Graf 41 Moment setrvačnosti po délce mostu v iteraci 4

Průřezové charakteristiky se o mnoho neliší od předcházející iterace. Oproti nulté iteraci je moment setrvačnosti téměř o 75 m⁴ menší v průřezu zárodku. Plocha v identickém řezu byla oproti nulté iteraci snížena přibližně o 3,5 m². Z hlediska úprav předpětí bylo v této iteraci provedeno celkem šest iterací pro optimalizaci napjatosti. Snahou bylo především redukovat tlakové namáhání spodních vláken zárodku přidáním dalších kabelů spojitosti i vahadlových kabelů. Zvětšením množství předpínací výztuže sice bylo dosaženo redukce tlaku v dolních vláknech, zároveň se ovšem nepřípustně zvýšilo tlakové namáhání horních vláken. To nasvědčuje tomu, že průřez začíná "docházet" a další předpínací výztuž stav nevylepší. Nejpřijatelnější napětí vycházela při použití stejného množství předpínací výztuže jako v předchozí iteraci. Upraveny byly hodnoty napínacích napětí.

Název kabelů	Počet kabelů	Lan v kabelu	Napínací napětí [MPa]
Vahadlové	17x2	19	1410
Spojitosti – pole 1 a 3	10	19	1473
Spojitosti – pole 2	14	19	1473
Kladné	4	19	1473

Tabulka 18 Předpínací výztuž v iteraci 4

Graf 42 Napětí v horních vláknech během výstavby vahadla v iteraci 4

Graf 43 Napětí v dolních vláknech během výstavby vahadla v iteraci 4

Stejně jako tomu bylo v minulých iteracích, není napětí v horních vláknech pro výstavbu vahadla rozhodující. Naopak je tomu u dolních vláknech, tlaková napětí v nich dosahující s rostoucí konzolou značných hodnot. Ve fázi spojení vahadel dosahuje maximální napětí hodnoty -20,07 MPa. Blíží se tedy hodnotě 0,45f_{ck} = 20,25 MPa. Nabízelo by se řešení zvětšením předpínací síly ve vahadlových kabelech, nicméně takové řešení by způsobilo další problémy ve fázích po spojení vahadla.

Graf 44 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 4

Graf 45 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 4

Napětí v dolních vláknech průřezu dosahuje na konci životnosti hodnoty -19,06 MPa, zbývá tedy velmi malá rezerva pro proměnná zatížení a je pravděpodobné, že by proto nebyla splněna podmínka pro omezení napětí v kvazistálé kombinaci. Napětí v horních vláknech je sice přijatelné, ale nedovoluje přidání dalších předpínacích kabelů. Z těchto důvodů je konstrukce v této iteraci již nepřijatelná pro další posouzení a další redukce průřezu nemají smysl.

Z hlediska dlouhodobých průhybů konstrukce vyhovuje s hodnotou 70,8 mm.

Číslo iterace	Množstv	í betonu	Srovnaná výška průřezu	Mno: předp výzt	žství pínací :uže	Dlouh prů	odobý hyb
	[m³]	[%]	[m ³ /m ²]	[t] [%]		[mm]	[%]
0	4688	100,0	1,192	193,586	100,0	56,5	100,0
1	4527	96,6	1,151	193,024	99,7	64,5	114,16
2	4339	92,6	1,103	209,231	108,1	64,3	113,81
3	4179	89,1	1,062	209,218	108,1	70,8	125,3
4	4153	88,6	1,056	209,203	108,1	72,8	128,85

12. Shrnutí

Tabulka 19 Souhrn iteračních kroků

Jak je tomu patrné ze souhrnu v tabulce i z popisu iterací, pro další posouzení byla vybrána iterace 3. Ze srovnané výšky průřezu stanovené jako poměr mezi objemem konstrukce a její celkovou plochou je zřetelná narůstající efektivita využití průřezu.

Postupnou iterací se podařilo snížit objem mostovky o 10,9 %, respektive o 509 m³. Toto snížení má dopad na celkovou cenu díla nejen z hlediska ceny materiálu, ale i na množství lidské práce, potřeby nasazení mechanizace, ale i spotřebu měkké výztuže. Zároveň lze hovořit o pozitivnímu kroku vůči životnímu prostředí, a to jak z hlediska uhlíkové stopy, tak i samotnému čerpání neobnovitelných zdrojů. Ačkoliv došlo k navýšení množství předpínací výztuže o 8,1 %, jedná se o množství, které bylo předpokládáno již v počátečních úvahách o konstrukci. Zároveň navýšení množství předpínací výztuže nezpůsobí takový nárůst ceny díla, že by překonal význam úspory betonu a betonářské výztuže. Pro prokázání tohoto tvrzení byl z expertních cen OTSKP 2019 vytvořen jednoduchý propočet finanční úspory způsobené optimalizací konstrukce. Množství betonářské výztuže bylo uvažováno v množství 200 kg/m³ betonu.

Kód položky	Název položky	MJ	JC
423336	MOSTNÍ NOSNÉ KOMOROVÉ KONSTR Z PŘEDPJ BET DO C40/50 ²	М3	14 400,00 Kč
423365	VÝZTUŽ MOSTNÍ KOMOROVÉ KONSTRUKCE Z OCELI 10505, B500B	Т	26 200,00 Kč
426371	VÝZTUŽ MOST NOS KOMOR KONSTR PŘEDP Z LAN PRO VNITŘ PŘEDPJ	Т	99 900,00 Kč

Tabulka 20 Položky z OTSKP 2019

² Pro beton C45/55 není v OTSKP položka a musela by na ní být provedena individuální kalkulace. Byla proto použita oceněná položka s nejvyšší třídou betonu.

Č.	Beton a beto	nářská výztuž	Předpína	Celkový rozdíl	
	Cena	Rozdíl oproti O	Cena	Rozdíl oproti O	102011
0	92 072 320,00 Kč	0,00 Kč	19 339 241,40 Kč	0,00 Kč	0,00 Kč
1	88 910 280,00 Kč	-3 162 040,00 Kč	19 283 097,60 Kč	-56 143,80 Kč	-3 218 183,80 Kč
2	85 217 960,00 Kč	-6 854 360,00 Kč	20 902 176,90 Kč	1 562 935,50 Kč	-5 291 424,50 Kč
3	82 075 560,00 Kč	-9 996 760,00 Kč	20 900 878,20 Kč	1 561 636,80 Kč	-8 435 123,20 Kč
4	81 564 920,00 Kč	-10 507 400,00 Kč	20 899 379,70 Kč	-8 947 261,70 Kč	

Tabulka 21 Propočet finanční úspory

Dle propočtu byla optimalizací získána úspora zhruba 8,4 milionu Kč na jediné konstrukci. Vzhledem k tomu, že se jedná o dvojici dálničních mostů, jedná se celkově o 16,8 milionu Kč. Zároveň je nutné si uvědomit, že ceny OTSKP nejsou zdaleka limitní a nabídky realizačních firem je obvykle převyšují. Finanční úspora by proto byla ještě vyšší. Zvětšení finanční úspory by bylo vyšší i z optimalizací snížených nároků na dimenze spodní stavby a založení, které zde není vyčísleno. Ačkoliv se jedná o nemalou finanční úsporu, lze zároveň konstatovat, že u menších konstrukcí by taková míra snahy mohla být nerentabilní a návrh rozměrů především z empirie by měl opodstatnění.

Zmínku si zaslouží i fakt, že v českých podmínkách by měla optimalizace význam především pro investora, respektive stavebníka. V případě, že by se jednalo o PDPS³ veškerá úspora by samozřejmě byla investora, neboť by vznikla na jeho požadavek. Dá se hovořit o tom, že se jedná i úsporu společnosti, protože státní organizace jsou financovány ze státního rozpočtu, případně evropských dotací. Jinak je tomu ovšem při tvorbě realizační dokumentace stavby, u které by optimalizaci inicioval zhotovitel. Dopravní stavby v ČR jsou stále téměř výhradně měřené kontrakty se smluvními podmínkami podle Red Book FIDIC, který sice uvádí, že v případě úspory navržené zhotovitelem se úspora dělí mezi investora a zhotovitele v poměru 50:50, ale státní instituce pro takový případla opět investoru, případně by zhotovitel musel vykázat menší slevu, než by byla skutečná. Ve výsledku by tedy zhotovitel uspořil pouze na ceně betonážního vozíku, který by mohl být lehčí, a době nasazení mechanizace.

Jinak by tomu bylo v případě kontraktu na principu Design & Build, který by se řídil smluvními podmínkami dle Yellow Book FIDIC. V takovém případě je zhotovitelem nabídnutá cena pevná. Optimalizace prováděcí dokumentace je v takovém případě žádoucí, protože všechny úspory přísluší zhotoviteli.

³ Projektová dokumentace pro stavební povolení

Vzhledem k tomu, že zmenšením rozměrů nosné konstrukce došlo také k snížení vlastní tíhy, bylo by možné navrhnout také menší betonážní vozík. V nulté iteraci byla maximální suma hmotnosti lamely a vozíku přibližně 450 tun. Ve zvolené iteraci 3 již hmotnost stejné lamely a vozíku činila 400 tun.

Graf 46 Hmotnost betonážního vozíku a čerstvého betonu

Dále bylo vyčísleno množství emisí CO₂ podle GWP⁴ pro jednotlivé materiály. Zároveň byly stanoveny produkce CO₂ od mechanizace nutné pro betonáže. Jeřáby nejsou zahrnuty, protože by jejich nasazení trvalo stejně dlouho. Vybranou iterací je dosaženo snížení emise CO₂ o 292 tun na nosné konstrukci. Ekvivalentem této hodnoty produkce oxidu uhličitého je objetí 50,46 objetí Země po rovníku v osobním vozidle Škoda Fabia 1.4 TDI nebo 1037 nepřetržitého provozu druhé největší výletní lodě Harmony of Seas. Zdroje uvádějí, že průměrný strom vstřebá za svůj život (100 let) 1 tunu CO₂. Optimalizací by proto bylo "ušetřeno" 3104 stromů, čemuž odpovídá přibližně 2400 m² hustého lesního porostu.

Č.	Bet	on	Beto vý:	nářská ztuž	Předp výzt	ínací tuž	Dopra beto	ava nu	Stacio čerpa	nární adlo	GWP c	elkem
0.	[tun]	GWP	[tun]	GWP	[kg]	GWP	[km]	GWP	[hod]	GWP	[t CO ₂]	[%]
0	11720,0	1523,6	937,6	1389,5	193,6	405	19338,0	18,2	1490,0	60,2	3396,5	100,0
1	11317,5	1471,2	905,4	1341,8	193,0	404	18673,9	17,5	1438,8	58,1	3292,6	96,9
2	10847,5	1410,1	867,8	1286,1	209,2	438	17898,4	16,8	1379,1	55,7	3206,6	94,4
3	10447,5	1358,1	835,8	1238,7	209,2	438	17238,4	16,2	1328,2	53,7	3104,4	91,4
4	10382,5	1349,7	830,6	1230,9	209,2	438	17131,1	16,1	1320,0	53,3	3087,8	90,9

Tabulka 22 Velikost uhlíkové stopy nosné konstrukce

⁴ Global Warming Potencial = Potenciál globálního oteplování je měřítkem toho, kolik tepla v atmosféře zachytí skleníkový plyn v určitém časovém horizontu ve vztahu k oxidu uhličitému.

Dlouhodobý průhyb se zvýšil o 25,3 % vůči nulté iteraci, stále však s velkou rezervou splňuje omezení průhybu a lze vyrovnat správným návrhem nadvýšení s uvážením dlouhodobého chování konstrukce.

13. Seznam obrázků

Obrázek 1 Most na silnice I/27 u Plas, Zdroj: ŘSD ČR	2
Obrázek 2 Struktura vstupního Excelu	5
Obrázek 3 Cyklus optimalizace	6
Obrázek 4 Schéma modelu konstrukce – systémové osy	10
Obrázek 5 Detail řešení průřezů - drátový model	10
Obrázek 6 Renderovaný pohled na pole 1	11
Obrázek 7 Tvorba prutového modelu	11
Obrázek 8 Schéma rozhodujících řezů	12
Obrázek 9 Celkový pohled na desko-stěnový model	12
Obrázek 10 Provedení pilířů - renderovaný desko-stěnový model	13
Obrázek 11 Detail průřezu - renderovaný desko-stěnový model	13
Obrázek 12 Schéma průřezu nosné konstrukce pro odhad zatíže	ní spodní
stavby	14
Obrázek 13 Řez pilířem včetně betonářské výztuže	19
Obrázek 14 Schéma polohy bodů pro porovnání napětí	20

14. Seznam tabulek

Tabulka 1 Vnitřní síly v hlavě pilíře	15
Tabulka 2 Výsledné vnitřní síly v hlavě pilíře	16
Tabulka 3 Vnitřní síly v patě pilíře	16
Tabulka 4 Výsledné vnitřní síly v patě pilíře	16
Tabulka 5 Návrhové vnitřní síly na pilíři s vlivem druhého řádu	19
Tabulka 6 Stanovení zvětšujících koeficientů napětí pro řez A	21
Tabulka 7 Stanovení zvětšujících koeficientů napětí pro řez B	21
Tabulka 8 Stanovení zvětšujících koeficientů napětí pro řez C	22
Tabulka 9 Základní rozměry průřezů v iteraci 0	23
Tabulka 10 Předpínací výztuž v iteraci 0	25
Tabulka 11 Základní rozměry průřezů v iteraci 1	28
Tabulka 12 Předpínací výztuž v iteraci 1	29
Tabulka 13 Základní rozměry průřezů v iteraci 2	32
Tabulka 14 Předpínací výztuž v iteraci 2	34
Tabulka 15 Základní rozměry průřezů v iteraci 2	36
Tabulka 16 Předpínací výztuž v iteraci 3	38
Tabulka 17 Základní rozměry průřezů v iteraci 4	41
Tabulka 18 Předpínací výztuž v iteraci 4	43
Tabulka 19 Souhrn iteračních kroků	46
Tabulka 20 Položky z OTSKP 2019	46
Tabulka 21 Propočet finanční úspory	47
Tabulka 22 Velikost uhlíkové stopy nosné konstrukce	48

15. Seznam grafů

Graf 1 Interakční diagram pilíře	19
Graf 2 Napětí v horní a dolní desce v řezu A	21
Graf 3 Napětí v horní a dolní desce v řezu B	22
Graf 4 Napětí v horní a dolní desce v řezu C	23
Graf 5 Rozdělení zvětšujících koeficientů napětí po délce konstrukce	23
Graf 6 Schéma příčného řezu konstrukce viteraci 0 (vlevo nad pilíře	m,
vpravo v poli)	24
Graf 7 Plocha průřezu po délce mostu v iteraci 0	24
Graf 8 Vzdálenost těžiště od horní hrany průřezu v iteraci 0	25
Graf 9 Moment setrvačnosti po délce mostu v iteraci 0	25
Graf 10 Napětí v horních vláknech během výstavby vahadla v iteraci 0	26
Graf 11 Napětí v dolních vláknech během výstavby vahadla v iteraci 0	26
Graf 12 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 0	27
Graf 13 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 0	27
Graf 14 Schéma příčného řezu konstrukce v iteraci 1 (vlevo nad pilíře	m,
vpravo v poli)	28
Graf 15 Plocha průřezu po délce mostu v iteraci 1	28
Graf 16 Vzdálenost těžiště od horní hrany průřezu v iteraci 1	29
Graf 17 Moment setrvačnosti po délce mostu v iteraci 1	29
Graf 18 Napětí v horních vláknech během výstavby vahadla v iteraci 1	30
Graf 19 Napětí v dolních vláknech během výstavby vahadla v iteraci 1	30
Graf 20 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 1	31
Graf 21 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 1	31
Graf 22 Schéma příčného řezu konstrukce v iteraci 2 (vlevo nad pilíře	m,
vpravo v poli)	32
Graf 23 Plocha průřezu po délce mostu v iteraci 2	33
Graf 24 Vzdálenost těžiště od horní hrany průřezu v iteraci 2	33
Graf 25 Moment setrvačnosti po délce mostu v iteraci 2	33
Graf 26 Napětí v horních vláknech během výstavby vahadla v iteraci 2	34
Graf 27 Napětí v dolních vláknech během výstavby vahadla v iteraci 2	35
Graf 28 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 2	35
Graf 29 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 2	36
Graf 30 Schéma příčného řezu konstrukce v iteraci 3 (vlevo nad pilíře	m,
vpravo v poli)	37
Graf 31 Plocha průřezu po délce mostu v iteraci 3	37
Graf 32 Vzdálenost těžiště od horní hrany průřezu v iteraci 3	37
Graf 33 Moment setrvačnosti po délce mostu v iteraci 3	38
Graf 34 Napětí v horních vláknech během výstavby vahadla v iteraci 3	39
Graf 35 Napětí v dolních vláknech během výstavby vahadla v iteraci 3	39

Graf 36 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 340
Graf 37 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 340
Graf 38 Schéma příčného řezu konstrukce v iteraci 4 (vlevo nad pilířem
vpravo v poli)41
Graf 39 Plocha průřezu po délce mostu v iteraci 442
Graf 40 Vzdálenost těžiště od horní hrany průřezu v iteraci 442
Graf 41 Moment setrvačnosti po délce mostu v iteraci 442
Graf 42 Napětí v horních vláknech během výstavby vahadla v iteraci 443
Graf 43 Napětí v dolních vláknech během výstavby vahadla v iteraci 444
Graf 44 Napětí v horních vláknech průřezu po spojení vahadel v iteraci 444
Graf 45 Napětí v dolních vláknech průřezu po spojení vahadel v iteraci 445
Graf 46 Hmotnost betonážního vozíku a čerstvého betonu48

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební

Katedra betonových a zděných konstrukcí

DIPLOMOVÁ PRÁCE

Optimalizace návrhu letmo betonovaného dálničního mostu

Optimisation of design of highway balanced cantilevers bridge

Část D1: Statický výpočet

Bc. Jiří Keclík

Studijní program:

Studijní obor:

Stavební inženýrství Konstrukce a dopravní stavby

Vedoucí diplomové práce:

Doc. Ing. Lukáš Vráblík, PhD.

Praha 2021

	,		
1.	ÚVOD		3
1.1.	Časová	linie	3
1.2.	Předpol	klady výpočtu	3
1.3.	Použitý	software	3
2	ΜΔΤΕΒΙΆ		3
2 . 2 1	Beton		ייייי ס ר
2.1.	1 1 Beto	n C45/55	 א
2.	1.1. Beto 1.2 Beto	n C30/37	
22	Betonář	r cso, c , i , i , i , i , i , i , i , i , i	5
2.3.	Předpín	ací výztuž	
	/ . x	· · · ·	
3.	VÝPOČET	NI MODELY	7
Λ	7ΔΤίŽΕΝΙ		7
ч. л 1		+/ðaní	/
4.1. 1	Stald Za	nizeni	/ ح
4. 1	1.1. Vidši 1.2 Octav	111 UIId	/ م
4. 1	1.2. Usla	till stale zatizeni	99 م
4. 1 2	1.3. POKIE Dromčn	esy podpor	9 0
4.2.	Promen 2 1 Zotíž	nid zdużeni	9
4.	2.1. ZdllZ 2.2 Zot(ž	en phire podenym vetrem	9
4. 1	2.2. Zduz	eni uopravou	9 11
4. 1	2.5. RUVII 2.4 Noro	nomerna zmena tepioty	11 11
4. 1	2.4. Neru 2.5. Souč	whome ma słożka teploty	11 11
4.	2.5. 30uc 7atížoní	asile působění tovnomerne a nerovnomerne složky teploty	11 12
4.5. 1	Zduzeni 2 1 75+íž	aní batanářským vozíkom a čerstvým batanom	۲۲ 12
4.	5.1. Zauz		12
5.	KOMBIN	ACE ZATÍŽENÍ	13
5.1.	Kombin	ace pro MSÚ	13
5.2.	Kombin	ace pro MSP	13
5.3.	Součinit	tele zatížení	14
c			14
б.	SRUVINAI		14
7.	NÁVRH P	ŘEDPĚTÍ	14
Q		ΞΝΙ ΜΩ	16
0. Q 1	1 0500Zi		16
0.1. Q	UVUU 1 1 Stan	ovení nanětí	10 16
0. Q	1.1. Stan 1.2 Omo	zující podmínky posouzení	10
0.	2121 Onie	Mazní stav omezení nanětí	10 16
	8 1 2 2	Mezní stav omezení trhlin	10
	8 1 2 3	Mezní stav omezení nrůhvhů	17
0 2	0.1.2.J.	niezni stav omezeni pronybu	/ ۱
0.2. g	2 1 Výst:	avha vahadel	10 18
0. Q	2.1. Vysla 2.2. Stavu	ební fáze no snoiení vahadel	01 10
0. Q	2.2. 3.000		وبر مرد
0.	8231	Kvazistálá kombinace	20 ∩¢
	8232	Častá kombinace	20 21
	0.2.0.2.		21

Obsah

	8233	Charakteristická kombinace	22
83	0.2.3.3. Omozo	ní průhyhů	
0.J. 8	3.1 Průk	ny prohybo	
0. 8	3.1. 1101 3.7 Drůk	nyb od stálých zatížení	23 24
0.	J.Z. 1101		
9.	POSOUZ	ENÍ MSÚ	26
9.1.	Ohyb a	normálová síla	
9.	1.1. Průř	ez nad pilířem P2 (betonáž uzavíracích spár)	
9.	1.2. Přeł	ıled výsledků	
9.2.	Smyk		
9.	2.1. Pos	ouzení	
10			24
10.	NAVRH 2		
10.1.	Návrh :	založení pilíře P2	
10.2.	Návrh :	založení pilíře P3	
10.3.	Shrnuti	i	
11.	NÁVRH I	_OŽISEK	40
12.	NÁVRH I	MOSTNÍCH DILATAČNÍCH ZÁVĚRŮ	42
13.	ZÁVĚR		43
		/ B	
14.	SEZNAM	OBRAZKÚ	44
15.	SEZNAM	TABULEK	45
16.	SEZNAM	GRAFŮ	46
17.	POUŽITÉ	NORMY	47

1. Úvod

Statický výpočet posuzuje a ověřuje pravý most SO 216 stavby D11 Trutnov - Státní hranice s rozměry iterace 3 uvedenými v části C: Optimalizace.

1.1. Časová linie

Časová linie je uvedena v části C: Optimalizace.

1.2. Předpoklady výpočtu

Předpoklady výpočtu jsou uvedeny v části C: Optimalizace

1.3. Použitý software

Pro zpracování statického výpočtu byly použity následující software:

- SCIA Engineer 20.0 Trial verze, SCIA CZ s.r.o.
- Autodesk AutoCAD 2021 studentská licence, Autodesk spol. s r.o.
- Microsoft Word 365, Microsoft, s.r.o.
- Microsoft Excel 365, Microsoft, s.r.o.
- GEO5 2020, Fine spol. s r.o.

2. Materiály

2.1. Beton

2.1.1. Beton C45/55

Komora je navržena z betonu C45/55. Vlastnosti betonu stáří 28 dní a více jsou následující:

- \circ charakteristická pevnost betonu v tlaku f_{ck} = 45,0 MPa,
- \circ průměrná hodnota válcové pevnosti v tlaku f_{cm} = 53,0 MPa,
- $\circ \quad dílčí \ součinitel \ pro \ MSÚ \ \gamma_c = 1,5,$
- $\circ \alpha_{cc} = 0,90,$
- o návrhová pevnost betonu v tlaku

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.9 \cdot \frac{45}{1.5} = 27.0 MPa,$$

- \circ dolní hodnota char. pevnosti betonu v tahu f_{ctk,0.05} = 2,7 MPa,
- \circ horní hodnota char. pevnosti betonu v tahu f_{ctk,0.95} = 4,9 MPa,
- \circ průměrná hodnota char. pevnosti betonu v tahu f_{ctm} = 3,8 MPa,
- \circ sečnový modul pružnosti betonu E_{cm} = 36,0 GPa,
- o omezení napětí v betonu v kvaz. kombinaci $\sigma_{c,lim,kv} = 0,45f_{ck} = 0,45\cdot45 = 20,25$ MPa,
- $\circ \quad omezení \quad napětí \quad v \quad betonu \quad v \quad char. \quad kombinaci \\ \sigma_{c,lim,char} = 0,60 f_{ck} = 0,60 \cdot 45 = 27,0 \ \text{MPa}.$

Pro stanovení vlastností v betonu se používá součinitel

$$\beta_{cc}(t) = \exp\left(s\left(1 - \left(\frac{28}{t}\right)^{\frac{1}{2}}\right)\right),$$

kde *s* je součinitel závislý na třídě cementu. Jelikož byla uvažována třída R, s = 0,2.

Pomocí součinitele se spočítá průměrná pevnost betonu v čase dle vztahu $f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm}$.

Z toho lze získat charakteristickou válcovou pevnost betonu v čase a zároveň i limitní hodnoty napětí pro kvazistálou kombinace v čase $\sigma_{c,lim,kv}(t) = 0,45 f_{ck}(t)$. Tyto hodnoty jsou vyneseny v následujícím grafu.

Graf 1 Vývoj pevnosti betonu C45/55 v čase

2.1.2. Beton C30/37

Komora je navržena z betonu C30/37. Vlastnosti betonu stáří 28 dní a více jsou následující:

- \circ charakteristická pevnost betonu v tlaku f_{ck} = 30,0 MPa,
- o průměrná hodnota válcové pevnosti v tlaku f_{cm} = 38,0 MPa,
- o dílčí součinitel pro MSÚ $\gamma_c = 1,5$,
- $\circ \alpha_{cc} = 0,90,$
- o návrhová pevnost betonu v tlaku

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.9 \cdot \frac{30}{1.5} = 18.0 MPa,$$

 \circ dolní hodnota char. pevnosti betonu v tahu f_{ctk,0.05} = 2,0 MPa,

- o horní hodnota char. pevnosti betonu v tahu f_{ctk,0.95} = 3,8 MPa,
- o průměrná hodnota char. pevnosti betonu v tahu f_{ctm} = 2,9 MPa,
- sečnový modul pružnosti betonu E_{cm} = 32,0 GPa,
- o omezení napětí v betonu v kvaz. kombinaci $\sigma_{c,lim,kv} = 0,45f_{ck} = 0,45\cdot30 = 13,5$ MPa,
- o omezení napětí v betonu v char. kombinaci $\sigma_{c,lim,char} = 0,60f_{ck} = 0,60\cdot30 = 18,0$ MPa.

Pro stanovení vlastností v betonu se používá součinitel

$$\beta_{cc}(t) = \exp\left(s\left(1 - \left(\frac{28}{t}\right)^{\frac{1}{2}}\right)\right),$$

kde *s* je součinitel závislý na třídě cementu. Jelikož byla uvažována třída R, s = 0,2.

Pomocí součinitele se spočítá průměrná pevnost betonu v čase dle vztahu $f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm}$.

Z toho lze získat charakteristickou válcovou pevnost betonu v čase a zároveň i limitní hodnoty napětí pro kvazistálou kombinace v čase $\sigma_{c,lim,kv}(t) = 0,45 f_{ck}(t)$. Tyto hodnoty jsou vyneseny v následujícím grafu.

Graf 2 Vývoj pevnosti betonu C30/37 v čase

2.2. Betonářská výztuž

Je zvolena betonářská výztuž B500B. Její návrhové parametry jsou:

f_{yk} = 500 MPa

Graf 3 Návrhový pracovní diagram betonářské výztuže

2.3. Předpínací výztuž

Všechny předpínací kabely jsou tvořeny z lan Y1860 S7 - 15,7 s velmi nízkou relaxací. Plocha lana je A = 150 mm² a průměr Ø = 15,7 mm. Její návrhové parametry jsou:

$f_{p0,1k}$	=	1636,8	MPa
\mathbf{f}_{pk}	=	1860,0	MPa
$f_{\text{p0,1d}}$	=	1423,3	MPa
\mathbf{f}_{pd}	=	1617,4	MPa
Ep	=	195000	MPa
f_{pd}/E_p	=	0,73	%
ε _{uk}	=	2,22	%
ϵ_{ud}	=	2,00	%
σ_{ud}	=	1588,5	MPa

Graf 4 Návrhový pracovní diagram předpínací výztuže

Maximální napínací napětí je dáno jako:

 $\sigma_{p,max} = \min(k_1 \cdot f_{pk}; k_2 \cdot f_{p0,1k}) = \min(0,8 \cdot 1860; 0,9 \cdot 1636,8) = 1473,12 MPa$

Ztráty předpětí byly počítány automaticky programem SCIA Engineer 20.0. Pro jejich výpočet byly zadány následující vstupní údaje o předpínacím systému s plechovými kanálky:

- o pokluz v kotvě 6 mm,
- o součinitel tření $\mu = 0,2,$
- součinitel tření nezamýšleným úhlovým posunem K = 0,005 m⁻¹,
- \circ doba podržení napětí t = 300 s.

3. Výpočetní modely

Výpočetní modely jsou podrobně popsány v části C: Optimalizace. Pro statický výpočet bylo využito shodných modelů.

4. Zatížení

Veškeré uvedené hodnoty zatížení jsou charakteristické dle aktuálně platné soustavy norem EN.

4.1. Stálá zatížení

4.1.1. Vlastní tíha

Zatížení vlastní tíhou bylo na konstrukci aplikováno v okamžiku přidání dílce spojitým lichoběžníkovým zatížením.

Fáze O: Posun betonážního vozíku z lamely 3 na pozici pro betonáž lamely 4

 $t_{REL} = 0 dni$

Fáze 1: Betonáž lamely 4

 $t_{\text{REL}} = 5 \; dni$

Fáze 2: Předepnutí a odbednění lamely 4, přidání prutů lamely (s definovaným stářím), aplikace vlastní tíhy. Odstranění zatížení čerstvým betonem.

 $t_{\text{REL}} = 7 \; dni$

Fáze 3: Posun betonážního vozíku z lamely 4 na pozici pro betonáž lamely 5.

 $t_{\text{REL}} = 8 \, dni$

Obrázek 1 Cyklus aplikace zatížení během výstavby vahadel

8

4.1.2. Ostatní stálé zatížení

Mezi ostatní stálé zatížení bylo započítáno vozovkové souvrství, římsy, svodidla a protihluková stěna. Vzhledem k tomu, že má uvažování horního a dolního kvantilu tloušťky vozovky zanedbatelný význam oproti ostatním zatížením, bylo zanedbáno.

Vozovka + izolace tl. 135 mm	0,135×9,75×22=	28,96 kN/m
Levá římsa (u zrcadla)	0,30×1,15×25=	8,63 kN/m
Pravá římsa	0,30×1,55×25=	11,63 kN/m
Svodidla – odhad	2×0,5=	1,0 kN/m
PHS - odhad	1,5=	1,5 kN/m
Celkem		51,72 kN/m

4.1.3. Poklesy podpor

Na všechny podpory byl postupně aplikován svislý pokles 10 mm. Z těchto zatěžovacích stavů byla vytvořena obálka.

4.2. Proměnná zatížení

4.2.1. Zatížení pilíře podélným větrem

Zatížení podélným větrem bylo uvažováno pro odhad výpočet odhadu spodní stavby. Stanovení proběhlo pro pilíř P3, který je nejvyšší.

Kategorie terénu: II $V_{b,0} = 25,0 \text{ m/s}$ Výška pilíře I = 28 m Odhad rozměrů jednoho dříku pilíře: 8,0 x 1,8 m Pro I \geq 50 m: $\lambda = 1,4*28/8 = 4,9$ Pro I \leq 15 m: $\lambda = 2*28/8 = 7,0$ Interpolací $\lambda = 7,0$ -(2,1/35*13,0) = 6,22 Součinitel plnosti $\phi = 1$ $\psi_{\lambda} = 0,67$ d/b = 1,8/8,0 = 0,23 $C_{f,0} = 2,1$ Součinitel síly $C_f = C_{f,0} * \psi_r * \psi_{\lambda} = 2,1 * 1,0 * 0,67 = 1,41$ Součinitel expozice $C_e = 3,0$ $C = C_e^*C_f = 3,0^*1,41 = 4,23$ $f_w = \frac{1}{2} * \rho * v_b^2 * C * b_{ref} = \frac{1}{2} * 1,25 * 25^2 * 4,23 * 8,0 = 13,22 kN/m$

4.2.2. Zatížení dopravou

Pro zatížení dopravou byly ze software SCIA vyexportovány příčinkové čáry ohybového momentu. Následně se pro vyvození extrémního namáhání ve vybraných průřezech zatížení dopravou aplikovalo podle příčinkových čar.

Graf 5 Příčinkové čáry ohybového momentu

LM1

Jelikož se jedná o most delší než 200 m, lze aplikovat plné zatížení dopravou pouze na úsek o délce 200 m (rozhodující délka pro extrémní účinek). Na zbylou část konstrukce se má aplikovat zatížení 2,5 kN/m² na celou šířku vozovky. Vozovka je rozdělena na tři zatěžovací pruhy o šířce 3,0 m a zbývající plochu o šířce 0,75 m.

Prub	Šířka [m]	TS Dvojnápravy		UDL Plošné		UDL Liniové
rrun		Q _{ik} [kN]	$\alpha_{\rm Qi}$	q _{ik} [kN/m²]	α_{qi}	[kN/m]
1	3	300	1	9	1	27
2	3	200	1	2,5	2,4	18
3	3	100	1	2,5	2,4	18
Zbýv. pl.	0,75	-	-	2,5	1,2	2,25
Celkem liniové zatížení						65,25

Tabulka 1 Zatížení modelem LM1

Obrázek 2 Rozdělení na zatěžovací pruhy LM1

4.2.3. Rovnoměrná změna teploty

Mostní objekt se nachází v obci Lampertice. Výchozí teplota $T_{\rm 0}$ byla uvažována +10°C.

maximální teplota vzduchu ve stínu v místě stavby T_{max} =38°C minimální teplota vzduchu ve stínu v místě stavby T_{min} =-32°C

Dle ČSN EN 1991-1-5 spadá betonový komorový nosník do 3. typu:

maximální teplota nosné konstrukce $T_{e,max} = T_{max}+1,5^{\circ}C = 38,0+1,5 = 39,5^{\circ}C$

minimální teplota nosné konstrukce $T_{e,min} = T_{min} + 8^{\circ}C = -32,0+8,0 = -24^{\circ}C$

Ve výpočtu bylo uvažováno:

 $\Delta T_{N,con} = -T_0 + T_{e,min} = -10 - 24 = -34^{\circ}C$

 $\Delta T_{N,exp} = -T_0 + T_{e,max} = -10 + 39,5 = +29,5^{\circ}C$

4.2.4. Nerovnoměrná složka teploty

Pro výpočet byl dle normy zvolen postup 1. Ten využívá lineárně proměnný průběh teploty po výšce průřezu. Použití zjednodušeného průběhu je pro komorovou konstrukci přijatelné, protože účinky složitějšího průběhu teploty nevyvolávají větší účinek než zjednodušený lineární průběh. Pro tento typ konstrukce se dle normy uvažovaly dvě varianty zatížení nerovnoměrnou složkou teploty:

horní povrch je teplejší než dolní, ΔT_{M,heat}=10°C,

dolní povrch je teplejší než horní, $\Delta T_{M,cool}=5^{\circ}C$.

Výše uvedené hodnoty teplot jsou platné pro tloušťku mostního svršku 50 mm. Pro odlišnou tloušťku mostního svršku, zde 135 mm, je nutné teploty vynásobit součinitelem k_{sur} . V případě teplejšího horního povrchu než dolního je potřebné interpolovat mezi hodnotami k_{sur} =0,7, platné pro tloušťku vozovky 100 mm, a k_{sur} =0,5, platné pro vozovku tloušťky 150 mm. Hodnota k_{sur} je tedy:

$$k_{sur} = 0.5 + \frac{0.7 - 0.5}{100 - 150} (100 - 135) = 0.64.$$

Pro variantu, kdy je dolní povrch teplejší než horní, platí, že je hodnota součinitele k_{sur} =1,0 pro tloušťku vozovky 150 mm i 100 mm. Proto pro tloušťku vozovky 135 mm byla uvažována hodnota součinitele k_{sur} =1,0.

4.2.5. Současné působení rovnoměrné a nerovnoměrné složky teploty

Dle normy ČSN EN 1991-1-5 může být uvažováno současné působení rovnoměrné a rozdílové složky teploty dle následujících vztahů $\Delta T_{M,heat} (nebo \Delta T_{M,cool}) + \omega_N \Delta T_{N,exp} (nebo \Delta T_{N,con})$ nebo $\omega_M \Delta T_{M,heat} (nebo \Delta T_{M,cool}) + \Delta T_{N,exp} (nebo \Delta T_{N,con}),$

kde $\omega_N = 0,35$ a $\omega_M = 0,65$.

Zvolit se má ten, který dává nejnepříznivější účinek. S těmito vztahy bylo uvažováno při tvoření obálek od zatížení teplotou.

4.3. Zatížení během provádění

4.3.1. Zatížení betonářským vozíkem a čerstvým betonem

Aplikace zatížení betonářským vozíkem a čerstvým betonem byla shodná. Byla zanedbána postupná betonáž částí průřezu, a proto bylo celé zatížení lamely čerstvým betonem aplikováno v jednom okamžiku. Zatížení čerstvým betonem a betonářským vozíkem je reprezentováno svislou silou a osamělým momentem umístěným na konec předchozí lamely. Způsob aplikace zatížení je zřejmý z obrázku níže. V okamžiku předepnutí lamely byla tato zatížení odebrána. Hmotnost betonážního vozíku byla uvažována 70 tun.

V tabulce Tabulka 2 jsou uvedeny použité hodnoty zatížení v průběhu letmé betonáže.

Pořadí lamely	Délka [m] ⁽¹⁾	F _{voz} [kN] (2)	M _{VOZ} [kNm] (3) (1).(2)/2	F _{čB} [kN] (4)	M _{čB} [kNm] (5) (1).(4)/2
1	3	700	1050	1504	2256
2	3	700	1050	1454	2181
3	3	700	1050	1397	2095
4	3	700	1050	1335	2002
5	4	700	1400	1678	3355
6	4	700	1400	1555	3111
7	4	700	1400	1428	2856
8	4	700	1400	1297	2594
9	4	700	1400	1163	2325
10	5	700	1750	1329	3322
11	5	700	1750	1287	3219
12	5	700	1750	1251	3129
13	5	700	1750	1221	3053
14	5	700	1750	1198	2994
15	5	700	1750	1182	2956
16	5	700	1750	1178	2946
Uzavírací spáry	2	700	700	236	236

Tabulka 2 Použité hodnoty zatížení během výstavby vahadla

Obrázek 3 Schéma aplikace zatížení betonářským vozíkem a čerstvým betonem

5. Kombinace zatížení

Kombinace vnitřních sil jsou sestaveny v Excelu z výsledků jednotlivých zatěžovacích stavů vypočítaných na prutovém modelu ve SCIA Engineer. Jako hlavní proměnná zatížení jsou uvažována zatížení od dopravy gr1a a zatížení teplotou.

5.1. Kombinace pro MSÚ

Kombinace 6.10:

$$\Sigma \gamma_{G,j} G_{k,j}$$
 "+" $\gamma_{P} P$ "+" $\gamma_{Q,1} Q_{k,1}$ "+" $\Sigma \gamma_{Q,i} \psi_{O,i} Q_{k,i}$

Kombinace 6.10a a 6.10b:

 $\Sigma \gamma_{G,j} G_{k,j}$ "+" $\gamma_{P} P$ "+" $\gamma_{Q,1} \psi_{0,1} Q_{k,1}$ "+" $\Sigma \gamma_{Q,i} \psi_{0,i} Q_{k,i}$

 $\Sigma \xi_{j} \gamma_{G,j} G_{k,j} "+" \gamma_{P} P "+" \gamma_{Q,1} Q_{k,1} "+" \Sigma \gamma_{Q,i} \psi_{O,i} Q_{k,i}$

5.2. Kombinace pro MSP

Charakteristická kombinace:

$$\Sigma G_{k,j}$$
 "+" P "+" $Q_{k,1}$ "+" $\Sigma \psi_{0,i} Q_{k,i}$

Častá kombinace:

$$\Sigma G_{k,j}$$
 "+" P "+" $\psi_{1,1}Q_{k,1}$ "+" $\Sigma \psi_{2,i}Q_{k,i}$

Kvazistálá kombinace:

$$\Sigma G_{k,j}$$
 "+" P "+" $\Sigma \psi_{2,i} Q_{k,j}$

5.3. Součinitele zatížení

V kombinacích byly použity následující součinitele zatížení:

Stálá zatížení						
nepříznivá	γGsup	1,35				
příznivá	γGinf	1,00				
redukční součinitel	ξ	0,85				
	Poklesy podpor					
nepříznivá	γGset	1,20				
příznivá	∕Gset	0,00				
Zatížení dopravou						
nepříznivá	γo	1,35				
příznivá	γq	0,00				
Ostatní proměnná zatížení						
nepříznivá	γq	1,50				
příznivá	γo	0,00				

Tabulka 3 Použité součinitele zatížení

Zatížení	Značka		ψο	ψ1	Ψ2
Zatížení	ar1 a	TS	0,75	0,75	0,00
dopravou	grīa	UDL	0,40	0,40	0,00
Teplota	T _k		0,60	0,60	0,50
Staveništní	Qc		1,00	-	1,00
Zatížení větrem F _w		0,60	0,20	0,00	

Tabulka 4 Použité kombinační součinitele

6. Srovnání výpočetních modelů

Srovnání výpočetních modelů a stanovení zvětšujících součinitelů bylo provedeno v části C: Optimalizace.

7. Návrh předpětí

Celkem byly navrženy tři druhy kabelů – vahadlové, spojitosti a kladné.

Název	Označení	Počet kabelů	Lan v kabelu	Napínací napětí
Vahadlové kabely (pilíř 2)	ZA	17x2	19	1410 MPa
Vahadlové kabely (pilíř 3)	ZB	17x2	19	1410 MPa
Kabely spojitosti v poli 1	SA	10	19	1473 MPa
Kabely spojitosti v poli 2	SB	14	19	1473 MPa
Kabely spojitosti v poli 3	SC	10	19	1473 MPa
Kladné kabely v poli 2	КВ	6	19	1473 MPa

Tabulka 5 Přehled navržené předpínací výztuže

Vstupní hodnoty pro výpočet předpětí a jeho modelování je popsáno v části C: Optimalizace. Ztráty předpětí byly stanoveny výpočetním softwarem. Zkreslena je pouze ztráta postupným předpínáním, protože předepnutí kabelů spojitosti a kladných kabelů je modelováno v jedné fázi. Tím bylo dosaženo podstatného urychlení jednotlivých iterací z části C.

8. Posouzení MSP

8.1. Úvod

Z hlediska MSP byla konstrukce posouzena na mezní stav omezení napětí, omezení trhlin a omezení průhybů. Stanovení a posouzení napětí v betonu bylo provedeno ve všech řezech a fázích výstavby. Posouzení proběhlo graficky. Vykresleny jsou pouze rozhodující fáze výstavby a jsou řazeny chronologicky.

8.1.1. Stanovení napětí

Napětí bylo stanoveno na betonovém průřezu. Jedná se o zjednodušení, které by v případě potřeby bylo možné zpřesnit výpočtem na ideálním průřezu s uvážením betonářské a předpínací výztuže. Napětí bylo stanoveno vztahy:

$$\sigma_{c,i}^{h} = \left(\frac{M_{i}}{W_{h,i}} + \frac{N_{i}}{A_{c,i}}\right) \cdot k_{h,i},$$
$$\sigma_{c,i}^{d} = \left(\frac{M_{i}}{W_{d,i}} + \frac{N_{i}}{A_{c,i}}\right) \cdot k_{d,i},$$

M_i, N_ijsou hodnoty vnitřních sil od zatížení z příslušných kombinací,

 $k_{h,i}$, $k_{d,i}$ jsou zvětšující součinitele napětí pro horní a dolní desku stanovené v části C: Optimalizace.

Tahová normálová síla	+
Tlaková normálová síla	-
Moment způsobující tah v dolních vláknech	+
Moment způsobující tah v horních vláknech	-
Dolní průřezový modul	+
Horní průřezový modul	_

Tabulka 6 Znaménková konvence pro stanovení napětí

8.1.2. Omezující podmínky posouzení

8.1.2.1. Mezní stav omezení napětí

Z důvodu vyloučení vzniku podélných trhlin a nadměrného dotvarování nesmí tlakové napětí v betonu překročit při charakteristické kombinaci hodnotu:

 $0.6f_{ck} = 0.6 \cdot 45 = 27,00 MPa$ pro t > 28 dní,

 $0,6f_{ck}(t)$ pro t < 28 dní,

kde *t* je časový rozdíl mezi časem betonáže a časem posouzení.
Pro uvažování lineárního dotvarování nesmí hodnota tlakového napětí v betonu při kvazistálé kombinaci překročit hodnotu:

 $0,45f_{ck} = 0,45 \cdot 45 = 20,25 MPa$ pro t > 28 dní,

 $0,45f_{ck}(t)$ pro t < 28 dní.

S ohledem na to, že výpočet vlivu dotvarování je stanoven modulem TDA, který využívá obecné přírůstkové metody, není bezpodmínečně nutné tuto podmínku splnit. Vzhledem k tomu, že při překročení podmínky dochází taktéž k riziku rozvoje mikrotrhlin v betonu, byla snaha tuto podmínku dodržet jak v části C: Optimalizace, tak i v části D: Statický výpočet.

8.1.2.2. Mezní stav omezení trhlin

Z hlediska mezního stavu omezení trhlin jsou stanoveny požadavky na velikost tahových napětí. Ty nesmí překročit hodnotu při kvazistálé kombinaci:

0,00 MPa v provozních stavech (dekomprese, resp. plné předpětí),

 $f_{ctk,0.05} = 2,70 MPa$ ve stavebních stavech pro t > 28 dní,

 $f_{ctk,0.05}(t)$ pro t < 28 dní.

Při časté kombinaci nesmí tahová napětí překročit hodnotu:

0,00 MPa (dekomprese, resp. plné předpětí).

Při charakteristické kombinaci nesmí tahová napětí překročit hodnotu:

 $f_{ctk,0.05} = 2,70 MPa$ v provozních stavech,

 $f_{ctk,0.05} = 2,70 MPa$ ve stavebních stavech pro t > 28 dní,

 $f_{ctk,0.05}(t)$ pro t < 28 dní.

8.1.2.3. Mezní stav omezení průhybů

Požadavky na omezení průhybů stanovují mezní hodnotu pro deformaci od zatížení modelem LM1. Ta nesmí překročit hodnotu L/600, kde L je rozpětí pole.

	L [m]	w _{lim} [mm]
Pole 1	90,00	150
Pole 2	150,00	250
Pole 3	90,00	150

Tabulka 7 Hodnoty limitního průhybu od modelu LM1

8.2. Omezení napětí a trhlin

8.2.1. Výstavba vahadel

Jsou vykresleny rozhodující fáze pro výstavbu vahadla. Aplikována jsou stálá zatížení a prováděcí zatížení. Kombinace pro MSP z toho důvodu udávají identická napětí.

Graf 6 Napětí v horních vláknech během výstavby vahadla

Graf 7 Napětí v dolních vláknech během výstavby vahadla

Z grafů je patrné, že konstrukce během výstavby vyhovuje z hlediska omezení napětí a trhlin. V poli 1 se blíží tahové napětí v dolních vláknech hodnotě f_{ctm,0.05}, ale nepřekračuje jí.

8.2.2. Stavební fáze po spojení vahadel

Jelikož se jedná o stavební fáze, platí tvrzení z předchozí podkapitoly.

Graf 8 Napětí v horních vláknech po spojení vahadel

Graf 9 Napětí v dolních vláknech po spojení vahadel

Jak již bylo viditelné v grafech znázorňujících napětí při výstavbě vahadel, je namáhání dolních vláken průřezu ve stavebních fázích značné. Napětí v žádném místě konstrukce nepřesahuje stanovené limity, konstrukce ve stavebních stádiích po spojení vahadel vyhovuje.

Provozní fáze 8.2.3.

Graf 10 Napětí v horních vláknech v provozních fázích - kvazistálá kombinace

Graf 11 Napětí dolních vláknech v provozních fázích - kvazistálá kombinace

Graf 12 Napětí v horních vláknech v provozních fázích - častá kombinace

Graf 13 Napětí v dolních vláknech v provozních fázích - častá kombinace

Napětí způsobená častou kombinací v horních vláknech splňují podmínky MSP s dostatečnou rezervou. U dolních vláken lze pozorovat výrazný vliv relaxace. Uprostřed rozpětí hlavního pole konstrukce splňuje podmínku dekomprese, je plně předpjatá. Jako problematická oblast se jeví dolních vlákna v oblasti pilířů, kde překračují podmínku lineárního dotvarování 0,45f_{ck}. Jak již bylo naznačeno dříve, modul TDA počítá vliv dotvarování přírůstkovou metodu. Dále by mohlo být použito pokročilých modelů pro predikci dotvarování. Se zohledněním těchto hledisek lze prohlásit, že konstrukce v časté kombinaci zatížení **vyhovuje.**

8.2.3.3. Charakteristická kombinace

Napětí od charakteristické kombinace v žádném bodě konstrukce nepřesahují omezení MSP. V případě horních vláknech jsou podmínky splněny s velkou rezervou. U dolních vláken je rezerva u vláken v oblasti pilířů relativně velká (2,5 MPa), uprostřed rozpětí hlavního pole dosahují napětí na konci životnosti k hranici f_{ctm,0.05}, ale nepřekračují ji. Požadavkům MSP v charakteristické kombinaci konstrukce **vyhovuje.**

Graf 14 Napětí v horních vláknech v provozních fázích - charakteristická kombinace

Graf 15 Napětí v dolních vláknech v provozních fázích - charakteristická kombinace

8.3. Omezení průhybů

Průhyb od dopravy 8.3.1.

Graf 16 Maximální průhyby pro jednotlivá pole od modelu LM1

Z grafu je zřejmé, že průhyb od dopravy způsobený modelem LM1 vyhovuje podmínkám MSP.

	Průhyb od LM1 [mm]	Limitní průhyb [mm]	Posudek
Pole 1	31,7	150,0	VYHOVUJE
Pole 2	77,8	250,0	VYHOVUJE
Pole 3	32,9	150,0	VYHOVUJE

Tabulka 8 Přehled maximálních průhybů od modelu LM1

8.3.2. Průhyb od stálých zatížení

U letmo betonovaných konstrukcí není zatížení dopravou a jí způsobený průhyb rozhodující. Pro tuto konstrukci je dominantní zatížení vlastní tíhou a zvětšování průhybu vlivem reologie betonu, proto je nutné se věnovat především jejich vlivu. Pro konstrukci by bylo nutné se věnovat správnému návrhu nadvýšení jednotlivých lamel během výstavby. Principem návrhu nadvýšení je snaha, aby vahadlo mělo na konci výstavby geometrii takovou, aby respektovala navrženou niveletu. Z toho důvodu je obvyklé, že je konstrukce během výstavby monitorována a výsledky měření jsou porovnávány s navrženými nadvýšeními. Na základě těchto porovnání dochází k jejich úpravám. Zároveň je při návrhu nadvýšení nutné zohlednit dlouhodobý nárůst průhybu. Proto je křivka nadvýšení upravována i na základě toho, jak budou deformace narůstat. Úvahy projektanta by měly směřovat k tomu, aby nejdříve v 50 letech provozu byla niveleta ve správné poloze.

Graf 17 Vývoj průhybu mostu v čase

Graf 17 je sestrojen s předpokladem, že v čase uvedení do provozu bude niveleta přesně v projektované poloze. Jeho průběh ukazuje, že většina dlouhodobého průhybu způsobeného dotvarováním proběhne do stáří konstrukce 50 let a tím potvrzuje předchozí tvrzení. Ještě lépe toto jde demonstrovat sestrojením grafů pro časový průběh průhybu pro střed rozpětí hlavního pole v normálním a logaritmickém měřítku.

Graf 18 Vývoj průhybu hlavního pole v čase v normálním měřítku

Graf 19 Vývoj průhybu hlavního pole v čase v logaritmickém měřítku

9. Posouzení MSÚ

9.1. Ohyb a normálová síla

Posouzení mezního stavu únosnosti pro kombinaci ohybového momentu a normálové síly bylo provedeno podle teorie mezních přetvoření se stanovením počáteční napjatosti. V potaz bylo bráno přetvoření průřezu a jeho dílčích materiálů v příslušných fázích. Výchozím stavem bylo uvažováno napětí a přetvoření od stálého zatížení bez vlivu smykového ochabnutí (napětí rovnoměrné po šířce průřezu). K výchozímu stavu se následně stanovil přírůstek přetvoření v rozhodujících vláknech tak, aby bylo dosaženo mezní hodnoty přetvoření a tím porušení průřezu. Jako rozhodující stav připadalo porušení drcením betonu nebo přetržením předpínací výztuže. Přírůstek přetvoření byl hledán iterováním polohy neutrální osy.

Obrázek 4 Schéma výpočtu M_{Rd}

Vzhledem k tomu, že kombinace zatížení obsahují veškerá zatížení včetně předpětí, bylo nutné odečíst od M_{Ed} hodnotu primárního momentu od předpětí stanovený jako síla od předpětí na excentricitě vůči těžišti průřezu. Primární moment bylo nutné odečíst z toho důvodu, že je považován za "vlastnost průřezu" a tudíž je obsažen již v momentu únosnosti M_{Rd} . Opačně je na tom sekundární moment od předpětí, který tedy nebylo nutné stanovit a je součástí upravené hodnoty návrhového ohybového momentu M_{Ed} .

Pro demonstraci použité proužkové metody je ukázáno podrobnější shrnutí výsledků metody pro řez u pilíře P2 ve stavební fázi ST51 (betonáž uzavíracích spár). Jednotlivé tabulky popisující jednotlivé "proužky" a jejich přetvoření nejsou prezentovány pro jejich rozsáhlost. Pro další fáze a řezy je provedeno tabulkové shrnutí posudků.

Přetvoření průřezu a síly na mezi únosnosti

Pro MSÚ ro	zhoduje poru	išení:	Drcení beto	onu			
Beton C35/	45						
max ϵ_c =	12,016	. 10 ⁻³	$\leq \epsilon_{c,max} =$	100,000	. 10 ⁻³	VYHOVUJI	E
min ϵ_c =	-3,500	. 10 ⁻³	$\leq \epsilon_{c,min} =$	-3,500	. 10 ⁻³	VYHOVUJ	E
F _{cu} =	-157,1	MN					
M _{cu} =	134,6	MNm					
Betonářská	výztuž B500	В					
max ε _s =	11,887	. 10 ⁻³	$\leq \epsilon_{s,max} =$	45,000	. 10 ⁻³	VYHOVUJI	E
F _{su} =	4,7	MN					
M _{su} =	55,0	MNm					
Předpínací	výztuž						
max ε_p =	18,38164	. 10 ⁻³	$\leq \epsilon_{p,max}$ =	20,000	. 10 ⁻³	VYHOVUJI	E
F _{pu} =	152,4	MN					
M _{pu} =	917,3	MNm					
M _{p,prim} =	449,4	MNm					
M _{CELK} =M _{Ed} -I	M _{p,prim} =	-794,8	MNm				
Kontrola ro	vnováhy						
F _{pu} =	0,00000	MN					
Moment úr	nosnosti						
M _{Rd} =	1106,9	MNm	≥	M _{Ed} =	794,787	MNm	VYHOVUJE

Využití 71,8%.

	ST51 - Betonáž uzavíracích spár					
Řez	M _{Rd} [MNm]	M _{p,prim.} [MNm]	M _{Ed} [MNm]	M _{celk} . [MNm]	Využití	Posouzení
Pilíř	1106,9	449,4	-345,3	-794,8	71,8 %	VYHOVUJE
		ST56 -	Uvedení do p	rovozu		
Řez	M _{Rd} [MNm]	M _{p,prim.} [MNm]	M _{Ed} [MNm]	M _{celk.} [MNm]	Využití	Posouzení
Pole 1	145,2	-48,1	43,5	91,6	63,1 %	VYHOVUJE
Pilíř 2	1459,9	679,6	-418,1	-1097,6	75,2 %	VYHOVUJE
Pole 2	266,2	-123,7	40,1	163,7	61,5 %	VYHOVUJE
	ST66 - Konec životnosti					
Řez	M _{Rd} [MNm]	M _{p,prim.} [MNm]	M _{Ed} [MNm]	M _{celk.} [MNm]	Využití	Posouzení
Pole 1	145,3	-45,0	60,3	105,4	72,5 %	VYHOVUJE
Pilíř 2	1453,1	640,5	-435,8	-1076,3	74,1 %	VYHOVUJE
Pole 2	266,2	-115,9	85,6	201,5	75,7 %	VYHOVUJE

9.1.2. Přehled výsledků

Tabulka 9 Výsledky posouzení kombinace M+N

V posudcích platilo, že v řezech u pilíře rozhodovalo drcení betonu a řezech v poli rozhodovalo přetržení předpínací výztuže. V kombinaci ohybového momentu a normálové síly konstrukce v rozhodujících průřezech **vyhovuje**.

9.2. Smyk

Pro posouzení smyku bylo nutné určit z kombinace posouvající síly V_{Ed} a kroutícího momentu T_{Ed} celkovou posouvající sílu. Účinek kroutícího momentu byl stanoven na prutovém modelu převedeném do 3D se zadáním zatížení s patřičnými příčnými excentricitami. Smyková síla ve stěně od kroutícího momentu se stanoví ze vztahu:

$$V_{T,Ed} = \frac{T_{Ed}}{2A_k} \cdot z_{st}.$$

Hodnota posouvající síly v jedné stěně má hodnotu:

$$V_{Ed,CELK} = V_{T,Ed} + \frac{V_{Ed}}{2}.$$

Ve vztazích pro určení vnitřních sil a posouzení se nacházejí následující symboly se známými hodnotami:

A_k je plocha vymezená střednicemi spojených stěn průřezu,

 z_{st} je délka střednice stěny

b_w je minimální tloušťka stěny – odečtena polovina průměru kanálků,

z je rameno vnitřních sil při ohybu (0,9d),

 θ je sklon tlačené diagonály,

 σ_{cp} je průměrné normálové napětí v průřezu.

Posouzení bylo provedeno podle normy s využitím postupu pro návrh prvků vyžadujících smykovou výztuž. Nejprve byl určen redukční součinitel tlakové pevnosti betonu při porušení smykem:

$$\nu_1 = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right).$$

Dále byla určena a posouzena únosnost tlačené diagonály:

$$V_{Rd,max} = \frac{\alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot f_{cd}}{\cot\theta + \tan\theta} \le V_{Ed,CELK},$$

kde α_{cw} je součinitel zohledňující stav napětí v tlačeném pásu:

1,0 pro nepředpjaté konstrukce,

 $(1 + \sigma_{cp} / f_{cd})$ pro 0 < $\sigma_{cp} \le 0.25 f_{cd}$,

1,25 pro 0,25 $f_{cd} < \sigma_{cp} \leq 0,5~f_{cd},$

$$2,5(1-\sigma_{cp}/f_{cd})$$
 pro 0,5 f_{cd} < σ_{cp} < 1,0 f_{cd}.

Jako poslední krok byla určena a posouzena únosnost průřezu se smykovou výztuží:

$$V_{Rd,s} = \frac{A_{SW}}{s} \cdot z \cdot f_{yd} \cdot \cot\theta \le V_{Ed,CELK},$$

kde s je vzdálenost třmínků,

A_{sw} je plocha navržené smykové výztuže.

9.2.1. Posouzení

Vzhledem ke konfiguraci konstrukce je posouzen jeden rozhodující průřez, kterým je průřez ve vzdálenosti *d*¹ od pilíře P2.

rozměry průřezu				
výška	h =	7,550	m	
min. šírka	b _w =	0,680	m	

beton				
char. pevnost	f _{dk} =	45,0	MPa	
součinitel materiálu	γ _c =	1,5		
red. součinitel tlaku	α _{cc} =	0,9		
návrhová pevnost	f _{cd} =	27,0	MPa	
souč. smyk. pevnosti	v _{cc} =	0,49		
souč. napjatosti TD	α _{cw} =	1,250		

ohybová výztuž				
krytí výztuže	c =	0,050	m	
profil výztuže	φ _s =	16	mm	
počet prutů výztuže	n =	96	ks	
statická výška	d =	7,492	m	
rameno vnitřních sil	z =	6,743	m	

smyková výztuž				
profil výztuže	φ _{sw} =	16	mm	
střižnost	n =	4		
vzdálenost	s =	0,150	m	

ocel			
mez kluzu	f _{yk} =	500,0	MPa
součinitel materiálu	$\gamma_s =$	1,15	
návrhová mez kluzu	f _{yd} =	434,8	MPa

tlačené diagonály				
sklon TD	cotg θ =	1,25		
průměrné napětí				
napětí v betonu	σ _{cp} =	8,70	MPa	

únosnost tlačené diagonály			
$V_{Rd,max} = 42,30$ MN $\ge V_{Ed} = 16,17$ MN	VYHOVUJE		

únosnost průřezu	bez smykové výztuže
$V_{Rd,c,1} = \left[C_{Rd,c} k (100 \rho_1 f_{ck})^{1/3} + k_1 \sigma_p \right] b_w d$	$V_{Rd,c,min} = (v_{min} + k_1 \sigma_p) b_w d$
$C_{Rd,c} = 0.18 / \gamma_c = 0.12$	v _{min} = 0,035 . k ^{3/2} . f _{ck} ^{1/2} = 0,29 M Pa
$k = 1 + (200 / d)^{1/2} = 1,16$	k ₁ = 0,15
$\rho_1 = A_s / (b_w \cdot d) = 0,0038$	
V _{Rd,c,1} = 8,48 MN	V _{Rd,c,min} = 8,15 MN
V _{Rd,c} = 8,48 MN	≥ V _{Ed} = 16,17 MN

Je nutné navrhnout smykovou výztuž.

únosnost průřezu se smykovou výztuží							
V _{Rd,s} = 21,83 MN ≥ V _{Ed} = 16,17 kN	VYHOVUJE						

Kontrola konstrukčních zásad								
minimální plocha výztuže $\rho_{sw} = 0,00788$ $\rho_{sw,min} = 0,00107$								
maximální vzdálenost třmínků	s= 0,150 m	s _{max} = 0,400 m	SPLNĚNO					

¹ Účinná výška průřezu. Dle normy je prvním průřez pro posouzení smykového namáhání právě ve vzdálenosti *d* od podpory.

10. Návrh založení

Návrh založení byl proveden v posudkovém software GEO5 – Skupina pilot. Piloty jsou navrženy jako vetknuté a bylo uvažováno kloubové spojení se základovou deskou. Výpočet byl proveden pružinovou metodou. Návrh byl proveden pro pilíře P2 a P3. Parametry zemin a hornin byly převzaty z geologického průzkumu. Založení opěr je zachováno podle DÚR.

[GEO5 - Skupina pilot (demoverze) | verze 5:2020.25.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved (www.fine.cz)

Poisso Obj.tih Typ ze	novo číslo : a sat.zeminy : miny :	ν = _{Ysat} = soudrž	0,40 21,00 kN/m ³ ná	
Konst	rukce			
Šířka z	ákladové desky b	x = 13,50 m		
Průmě Počet	rpiloty d pilot n	y = 10,00 m x = 1,00 m x = 5 y = 5)
Osová	vzdálenost s s	x = 2,70 m y = 1,90 m		
Geom	etrie			
Hloubk Vysaze Tloušti Délka	a založení ení piloty ka základové desk pilot	$h_z = 3,50$ h = 0,00 t = 2,30 I = 14,00		
Materi	ál konstrukce		$\left(\right) $	
Objem Výpoče	ová tíha γ = 25,00 et betonových kon:	kN/m ³ strukcí provede	en podle normy EN 1992-1-1 (EC2)	
Beton Válcov Pevnos Modul Modul Ocel p Mez kli	: C 30/37 á pevnost v tlaku st v tahu pružnosti pružnosti ve smyk odélná : B500 uzu	u	f _{ck} = 30,00 MPa f _{ctm} = 2,90 MPa E _{cm} = 33000,00 MPa G = 13750,00 MPa f _{vk} = 500,00 MPa	
Ocel p Mez kl	říčná: B500 uzu		f _{vk} = 500,00 MPa	
Geolo	gický profil a přiř	azení zemin		
Číslo	Mocnost vrstvy t [m]	Hloubka z [m]	Přiřazená zemina	Vzorek
1	2,00	0,00 . 2,00	Třída F1, konzistence tuhá	1/1/
2	5,60	2,00 7,60	R5	0 °
3	0,70	7,60 8,30	R4	U M U M

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Copyright © 2020 Fine spoil s r.o. All Rights Reserved | www.fine.cz]

0,90 8,30 ... 9,20 R5

0,30 9,20 .. 9,50 R3

1,00 9,50 .. 10,50 R5

0,90 10,50 .. 11,40 R4

0,60 11,40 .. 12,00 R5

4

5

6

7

8

0 °

 $\chi/\chi/$

00

0

Čís	slo	Mocnost vrstvy t [m]	Hloubka z [m]	Přiřazená zemina	Vzorek
ę	9	2,30	12,00 14,30	R4	
1	0	0,70	14,30 15,00	R4	<u> </u>
1	1	-	15,00 ∞	R4	С×С ч
Zat	íže	ní			

Zatižení

Čielo	Zat	ižení	Νάτον	Two	N	M _x	My	H _x	Hy	Mz
Cialo	nové	změna	TTALEY	тур	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]
1	Ano		Zatižení č. 1	Návrhové	104300,00	0,00	565690,00	6000,00	0,00	0,00
2	Ano		Zatižení č. 2	Užitné	98700,00	0,00	503800,00	4000,00	0,00	0,00

Hladina podzemní vody

Hladina podzemní vody je v hloubce 4,00 m od původního terénu.

Celkové nastavení výpočtu

Typ výpočtu : pružinová metoda Uložení pilot v patě : piloty vetknuté do nestlačitelného podloží Připojení pilot k desce : kloub Modul reakce podloží : podle ČSN 73 1004

Výsledky výpočtu

Maximální vnitřní síly (všechna zatížení)

Maximální	tlaková síla	=	-12971,77	kN
Maximální	tahová síla	=	3789,42	kN
Maximální	moment	=	425,32	kNm
Maximální	posouvající síla	=	415,64	kN

Maximální deformace (jen užitná zatížení)

Maximální sednutí 7,0 mm Maximální vodorovný posun deský = 2,6 mm Maximální natočení desky = 3,9E-02

Posouzení čís. 1

Vstupni data pro dimenzaci piloty

Výpočet proveden s automatickým výběrem nejnepříznivější kombinace. Výztuž navržena pro všechny piloty ve skupině.

Posouzení na tlak a ohyb

Vyztuženi - 18 ks profil 30,0 mm; kryti 35,0 mm Typ konstrukce (stupně vyztužení) : pilota Stupeň vyztužení p = 1,620 % > 0,318 % = pmin Zatiženi : NEd = 3789,42 kN (tah) ; MEd = 425,32 kNm Únosnost : N_{Rd} = 4472,76 kN; M_{Rd} = 502,02 kNm Navržená výztuž piloty VYHOVUJE

Posouzení na smyk

Smyková výztuž - 2 ks profil 20,0 mm; vzdálenost 200,0 mm Asw = 3141,6 mm²

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Copyright © 2020 Fine spoil s r.o. All Rights Reserved | www:fine.cz]

Posouvající síla na mezi únosnosti: V_{Rd} = 2458,64 kN > 415,64 kN = V_{Ed} Průřez VYHOVUJE.

Průběhy vnitřních sil po konstrukci

Hloubka	Posouvající síla	Ohyb. moment	Normálová síla	Normálová síla
[m]	Q [kN]	M [kNm]	N [kN] (tah)	N [kN] (tlak)
0.00	415.64	0.00	3789,42	-12971.77
1.40	128.84	362.98	3789 42	-12971.77
2.80	23.06	425.32	3789.42	-12971.77
4.20	84.27	342.80	3789,42	-12971.77
5.60	95.67	212.98	3789.42	-12971.77
7.00	69.83	140.49	3789.42	-12971.77
8.40	41.56	88.20	3789.42	-12971.77
9.80	24.11	46.94	3789.42	-12971.77
11.20	13.68	20.77	3789.42	-12971.77
12.60	7.36	11.22	3789.42	-12971.77
14.00	8.30	0.00	3789.42	-12971.77

Schéma vyztužení

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved [www.fine.cz]

10.2. Návrh založení pilíře P3

Posouzení skupiny pilot

Vstupní data

Projekt

Datum : 25.11.2020

Nastavení Standardní - EN 1997 - DA2 Materiály a normy

EN 1992-1-1 (EC2) Betonové konstrukce Součinitele EN 1992-1-1 : standardní Ocelové konstrukce : EN 1993-1-1 (EC3) Dílčí součinitel únosnosti ocelového průřezu : YMO = 1,00

γ

γ

ν

Parametry zemin

Třída F3, konzistence tuhá

Objemová tíha : Úhel vnitřního tření : Soudržnost zeminy : Modul přetvárnosti : Poissonovo číslo : Obj.tiha sat.zeminy : Typ zeminy :

R5

Objemová tíha : Úhel vnitřního tření : Soudržnost zeminy : Modul přetvárnosti : Poissonovo číslo : Obj.tiha sat.zeminy : Typ zeminy :

R4

Objemová tíha : Úhel vnitřního tření : Soudržnost zeminy : Modul přetvárnosti : Poissonovo číslo : Obj.tiha sat.zeminy : Typ zeminy :

R3

Objemová tíha: = 25,80 kN/m3 γ Úhel vnitřního tření : 38.00 S Φef Soudržnost zeminy : = 60.00 kPa Cef Modul přetvárnosti : 600,00 MPa Edef = Poissonovo číslo: 0,15 = ν γ_{sat} = Obj.tiha sat.zeminy : 27.00 kN/m3 Typ zeminy : soudržná R6 Objemová tíha : 20,50 kN/m3 = γ Úhel vnitřního tření : = 25,00 ° Φef Soudržnost zeminy : = 8,00 kPa Cef

18.50 kN/m3 = φef = 27,00° c_{ef} = 6,00 kPa 4,00 MPa E_{def} = 0.35 = v γ_{sat} = 18,50 kN/m3 soudržná

22,00 kN/m3/ = γ φef = 30,00 20,00 kPa c_{ef} = 100,00 MPa E_{def} = v = 0,25 γ_{sat} = 23,00 kN/m3 soudržná

```
24,90 kN/m3
    5
φef =
          34,00°
          40,00 kPa
c<sub>ef</sub> =
         300,00 MPa
Edef =
           0,20
          26,00 kN/m3
Ysat 5
soudržná
```

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Capyright © 2020 Fine spoil, s.r.o. All Rights Reserved [www.fine.cz]

Modul y Poisso Obj.tiha Typ zei	přetvárno novo čísl a sat.zen miny :	osti : o : niny :	E _{def} = ν = γ _{sat} = soudržr	8,00 MPa 0,40 21,00 kN/m ³ ná	8					
Konstr	ukce									
Šiřka z	Šířka základové desky $b_x = 13,50 \text{ m}$ $b_y = 10,00 \text{ m}$									
Průmě Počet p	Průměr piloty $d = 1,00 \text{ m}$ Počet pilot $n_x = 5$									
Osová	vzdáleno	ost s s	, = 2,70 m y = 1,90 m				$\Delta \Lambda$			
Geome	etrie					_				
Hloubk Vysaze Tloušťk Délka p	Hloubka založení $h_z = 3,50 \text{ m}$ Vysazení piloty $h = 0,00 \text{ m}$ Tloušťka základové desky $t = 2,30 \text{ m}$ Délka pilot $l = 4,00 \text{ m}$									
Materia	ál konsti	rukce			(
Objemo Výpoče	ová tíha _l et betono	r = 25,00 vých kons	kN/m ³ strukcí provede	n podle norm	y EN 1992-1-	1 (EC2).	\mathcal{I}			
Beton : C 30/37 $f_{ck} = 30,00 \text{ MPa}$ Válcová pevnost v tlaku $f_{ck} = 30,00 \text{ MPa}$ Pevnost v tahu $f_{cm} = 2,90 \text{ MPa}$ Modul pružnosti $E_{cm} = 33000,00 \text{ MPa}$ Modul pružnosti ve smyku $G = 13750,00 \text{ MPa}$ Ocel podélná : B500 $f_{yk} = 500,00 \text{ MPa}$ Ocel přičná: B500 $f_{yk} = 500,00 \text{ MPa}$										
Geolog	леку рго	turetur	Azeni zemin	11	7					
Číslo	t[i	m]	z [m]		Přiřa	zená zen	nina		V	/zorek
1		0,70	0,00 0,70 T	rida F3, konz	istence tuhá				E	[]]
2		1,10	0,70 1,80 F	76						
3		3,90	1,80 5,70 F	34						<u> </u>
4		12,30	5,70 . 18,00 F	₹3					λ	(χ)
5	5 - 18,00 ∞ R3						(X)			
Zatižer	ní									
Čísla	Zat	iženi	Názou	Turn	N	M _x	My	H _x	Hy	Mz
CISIO	nové	změna	Nazev	Typ	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]
1	Ano		Zatižení č. 1	Návrhové	106200,00	0,00	589690,00	6000,00	0,00	0,00
2	Ano		Zatižení č. 2	Užitné	101700,00	0,00	530800,00	4000,00	0,00	0,00

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Copyright © 2020 Fine spoil s r.o. All Rights Reserved | www.fine.cz]

Hladina podzemni vody

Hladina podzemní vody je v hloubce 9,00 m od původního terénu.

Celkové nastavení výpočtu

Typ výpočtu : pružinová metoda Uložení pilot v patě : piloty vetknuté do nestlačitelného podloží Připojení pilot k desce : kloub Modul reakce podloží : podle ČSN 73 1004

Výsledky výpočtu

Maximální vnitřní síly (všechna zatížení)

Maximální tlaková síla	=	-13403,32	kΝ
Maximální tahová síla	=	4068,97	kN
Maximální moment	=	333,54	kNm
Maximální posouvající síla	=	454,12	kN

Maximální deformace (jen užitná zatížení)

Maximální sednutí = 2,0 mm Maximální vodorovný posun desky = 1,3 mm Maximální natočení desky = 1,1E-02 °

Posouzení čís. 1

Vstupni data pro dimenzaci piloty

Výpočet proveden s automatickým výběrem nejnepříznívější kombinace. Výztuž navržena pro všechny piloty ve skupině.

Posouzení na tlak a ohyb

Vyztužení – 18 ks profil 30,0 mm; krytí 35,0 mm Typ konstrukce (stupně vyztužení) : pilota Stupeň vyztužení ρ = 1,620 % > 0,318 % = ρ_{min} Zatižení : N_{Ed} = 4068,97 kN (tah) ; M_{Ed} = 333,54 kNm Únosnost : N_{Rd} = 4757,02 kN; M_{Rd} = 389,94 kNm Navržená výztuž piloty VYHOVUJE

Posouzení na smyk

Smyková výztuž - 2 ks profil 20,0 mm; vzdálenosť 200,0 mm A_{sw} = 3141,6 mm² Posouvající síla na mezi únosnosti: V_{Rd} = 2458,64 kN > 454,12 kN = V_{Ed} Průřez VYHOVUJE.

Průběhy vnitřních sil po konstrukci

Hloubka	Posouvajici sila	Ohyb. moment	Normálová síla	Normálová síla
[m]	Q [kN]	M [kNm]	N [kN] (tah)	N [kN] (tlak)
0.00	454.12	0.00	4068.97	-13403.32
0.40	311.81	152.37	4068.97	-13403.32
0.80	193.55	252.66	4068.97	-13403.32
1.20	97.73	310.20	4068.97	-13403.32
1.60	22.13	333.54	4068.97	-13403.32
2.00	35.80	330.26	4068.97	-13403.32
2.40	100.12	302.39	4068.97	-13403.32
2.80	160.77	249.46	4068.97	-13403.32
3.20	200.68	176.54	4068.97	-13403.32
				3
				3

[GEO5 - Skupina pilot (demoverze) | verze 5.2020.25.0 | Copyright © 2020 Fine spol. s r.o. All Rights Reserved |www.fine.cz]

10.3. Shrnutí

Pro pilíř P2 a P3 byla navržena shodné základové desky s rozměry 13,50x10,00x2,70 m. Oba pilíře jsou založeny na 25 vrtaných pilotách o průměru 1200 mm. Piloty pilíře P2 jsou o délce 14,00 m. Piloty pilíře P3 mají délku 4,00 m. Finální založení pilíře P3 by bylo k diskusi, neboť využití pilot o délce 4,00 m není optimální. Alternativně by bylo možné navrhnout založení na studni (šachtě), mikropilotách případně provést sanaci horninového podloží a založit pilíř plošně. V této práci pro zjednodušené uvažování vetknutí v patě pilíře bylo využito právě vrtaných velkoprůměrových pilot.

11. Návrh ložisek

Návrh ložisek byl proveden na rozhodující kombinace zatížení. Pro stanovení kapacity ložisek byly stanoveny účinky dotvarování a smršťování. Do stanovení kapacity ložisek byl zároveň vypočten i vliv teploty, který nebyl zvětšený podle požadavků normy ČSN EN 1991-1-5. Namísto zvýšení teploty o 10°C byly deformace násobeny součinitelem o velikosti 1,3, který přibližně odpovídá normovému zvýšení teploty a je bezpečný. Účinky teploty a dotvarování byly vztaženy k pevnému bodu konstrukce.

Návrhové hodnoty posunů (dle ČSN, _{Yr} = 1.3)		jednosměmě posumé	všesměrně posuvné	jednosměmě posumé	všesměrně posuvné	
PODPORA		0	P1	0	OP4	
POZICE LOŽISKA		vlevo	vpravo	vlevo	vpravo	
ČÍSLO / OZNAČENÍ LOŽISKA		OP1_L	OP1_P	OP8_L	OP8_P	
Staničení	km	0,00	1000	0,33	1000	
Vzdálenost od pevného bodu	m	145	,000	185	,000	
Modul pružnosti betonu	MPa	36	000	36	000	
Začátek působení dotvarování	dny	2	20	2	20	
Začátek působení smršťování	dny		7		7	
Sledovaný okamžik	dny	36	500	36	500	
Průměrné napětí v průřezu	MPa	-{	5,0	-4	,9	
Součinitel dotvarování	-	2,17	2547	2,17	2547	
Zkrácení od dotvarování a předpětí	mm		43	-55		
Součinitel smrštění		-0,000192		-0,000192		
Zkrácení od smršťování	mm	-28		-36		
UCINKY REOLOGICKYCH ZMEN	mm	-1	71	-91		
DEF. OD OTEPLENI + 30 ℃	mm		51	65		
DEF. OD OCHLAZENI - 34 °C	mm	-59		-75		
CELK. DEFORMACE-PODELNY SMER	mm	236		301		
CELK. DEFORMACE-PRICNY SMER	mm	- Néusbaué al	10	- Néurhaué al	10	
		Navmove 2	zo	Navmove 2	kraceni (mmj	
		-1 Másaba sá as	10	-Z	10	
		Navno ve pr	otazeni (nini)	Navnove pr	otazeni (mmj	
		Kanacita k	vžiska (mml	Kanacita k	vžiska (mml	
		2	40	3	05	
		Přednastav	ení "e" [mm]	Přednastav	ení "e" (mm)	
		4	52	-(66	
		Kapacita zł	trácení [mm]	Kapacita zk	rácení [mm]	
		-1	72	-2	19	
		Bezpe čnos	tzkrácení [-]	Bezpečnos	tzkrácení [-]	
		1,0	014	1,0	011	
		Kapacita protažení [mm]		Kapacita pro	otažení [mm]	
		6	8	87		
		Bezpečnost	t protažení [-]	Bezpečnost	t protažení [-]	
		1,0	019	1.0	016	

Tabulka 10 Stanovení kapacity ložisek

Charakteristické Návrhové hodno	jednosměrně posuvné	všesměrně posuvné	jednosměrně posuvné	všesměrně posuvné		
PODPORA			0	P1	0	P4
POZICE LOŽISK	A		vlevo	vpravo	vlevo	vpravo
ČÍSLO / OZNAČE	ENÍ LOŽISKA		OP1_L	OP1_P	OP4_L	OP4_P
SVISLÁ SÍLA	MAX	A	5 000	5 000	5 000	5 000
charakteristická	MIN	KN	-	-	-	-
SVISLÁ SÍLA	MAX	KN	6 500	6 500	6 500	6 500
návrhová	MIN	KN	-	-	-	-
ρορέι Νά είι Α	charakteristická	٨N	0	0	0	0
PODELINA SILA	návrhová	٨N	0	0	0	0
ΠΡ ΙζΝΆ ΕΊΙΑ	charakteristická	٨N	200	0	200	0
PRICINA SILA	návrhová	٨N	300	0	300	0
CELK. DEFORMACE-PODÉLNÝ SMĚR mm		2	36	3	01	
CELK. DEFORM	ACE-PŘÍČNÝ SMĚR	mm	-	10	-	10

Tabulka 11 Přehled výsledných hodnot pro návrh ložisek

Sestavením kombinací zatížení bylo zjištěno, že vzhledem k významnému zatížení vlastní tíhou v ložiscích nevznikají tahové síly. Na základě hodnot v tabulkách výše byla navržena hrncová ložiska s vypočtenou kapacitou a únosností.

12. Návrh mostních dilatačních závěrů

Návrh dilatačních závěrů byl proveden na účinky dotvarování, smršťování a teploty ve vztahu k pevnému bodu konstrukce. Účinky dotvarování a smršťování byly stanoveny s využitím součinitele dotvarování, respektive smršťování.

Návrhové hodnoty posunů (γ⊧=1.3)	krajní opěra	krajní opěra	
PODPORA		OP1	OP4
POLOHA MOSTNÍHO Staničení	km	0,001000	0,331000
ZÁVĚ RU Vzd. od pev. bodu	m	145,000	185,000
Modul pružnosti betonu	MPa	36000	38 000
Za čátek působení dotvarování	dny	190	190
Začátek působení smršťování	dny	190	190
Sledovaný okamžik	dny	36500	38 500
Průměrné napětí v průřezu	MPa	-5,2	-5,2
Součinitel dotvarování	-	1,132234	1,132234
Zkrácení od dotvarování	mm	-24	-30
Součinitel smrštění		-0,000085	-0,000085
Zkrácení od smršťování	mm	-12	-16
ÚČINKY REOLOGICKÝCH ZMĚN	mm	-36	-46
DEF. OD OTEPLENÍ + 40 °C	mm	69	88
DEF. OD OCHLAZENÍ - 44 °C	mm	-77	-98
CELK. DEFORMACE-PODÉLNÝ SMĚR ×1.3	mm	236	301
Návrhové zkrácení (mm)		-148	-187
Návrhové protažení [mm]		89	114
		236	301

Tabulka 12 Návrh mostních dilatačních závěrů

Vzhledem k výsledným hodnotám byl pro opěru O1 navržen lamelový mostní závěr s posunem ± 150 mm. Na opěře O4 byl navržen lamelový mostní závěr s posunem ± 200 mm.

13. Závěr

Cílem práce bylo najít optimální řešení nosné konstrukce stavěné metodou letmé betonáže.

V prvotní fázi byla vypracována rešerše problematiky letmo betonovaných mostů a byly navrženy dvě varianty řešení mostu, které byly zhodnoceny. Z těchto řešení byla vybrána varianta dvojice letmo betonovaných mostů, která byla optimalizována na základě dílčích kritérií. Podrobné shrnutí a výběr iterace je na závěru části C: Optimalizace.

Vybraná iterace byla následně podrobně posouzena na základě mezních stavů únosnosti a použitelnosti. Byla použita veškerá standardní zatížení a navrhnuty a posouzeny hlavní prvky mostu. Konstrukci lze proto vyhodnotit jako bezpečně vyhovující.

Součástí této diplomové práce je také technická zpráva a výkresová dokumentace.

14. Seznam obrázků

Obrázek 1 Cyklus aplikace zatížení během výstavby vahadel	8
Obrázek 2 Rozdělení na zatěžovací pruhy LM1	10
Obrázek 3 Schéma aplikace zatížení betonářským vozíkem a	čerstvým
betonem	13
Obrázek 4 Schéma výpočtu M _{Rd}	26

15. Seznam tabulek

Tabulka 1 Zatížení modelem LM1	10
Tabulka 2 Použité hodnoty zatížení během výstavby vahadla	12
Tabulka 3 Použité součinitele zatížení	14
Tabulka 4 Použité kombinační součinitele	14
Tabulka 5 Přehled navržené předpínací výztuže	14
Tabulka 6 Znaménková konvence pro stanovení napětí	16
Tabulka 7 Hodnoty limitního průhybu od modelu LM1	17
Tabulka 8 Přehled maximálních průhybů od modelu LM1	23
Tabulka 9 Výsledky posouzení kombinace M+N	28
Tabulka 10 Stanovení kapacity ložisek	40
Tabulka 11 Přehled výsledných hodnot pro návrh ložisek	41
Tabulka 12 Návrh mostních dilatačních závěrů	42

16. Seznam grafů

Graf 1 Vývoj pevnosti betonu C45/55 v čase	4
Graf 2 Vývoj pevnosti betonu C30/37 v čase	5
Graf 3 Návrhový pracovní diagram betonářské výztuže	6
Graf 4 Návrhový pracovní diagram předpínací výztuže	7
Graf 5 Příčinkové čáry ohybového momentu	10
Graf 6 Napětí v horních vláknech během výstavby vahadla	18
Graf 7 Napětí v dolních vláknech během výstavby vahadla	18
Graf 8 Napětí v horních vláknech po spojení vahadel	19
Graf 9 Napětí v dolních vláknech po spojení vahadel	19
Graf 10 Napětí v horních vláknech v provozních fázích - kvaz	istálá
kombinace	20
Graf 11 Napětí dolních vláknech v provozních fázích - kvazistálá komb	inace
	20
Graf 12 Napětí v horních vláknech v provozních fázích - častá kombina	ce.21
Graf 13 Napětí v dolních vláknech v provozních fázích - častá kombinad	ce.21
Graf 14 Napětí v horních vláknech v provozních fázích - charakteris	stická
kombinace	22
Graf 15 Napětí v dolních vláknech v provozních fázích - charakteris	stická
kombinace	23
Graf 16 Maximální průhyby pro jednotlivá pole od modelu LM1	23
Graf 17 Vývoj průhybu mostu v čase	24
Graf 18 Vývoj průhybu hlavního pole v čase v normálním měřítku	25
Graf 19 Vývoj průhybu hlavního pole v čase v logaritmickém měřítku	25

17. Použité normy

- [1] ČSN EN 1990 ed. 2, Eurokód. *Zásady navrhováni konstrukcí*. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011.
- [2] ČSN EN 1991-1-1, Eurokód 1. Zatížení konstrukcí Část 1-1: Obecná zatížení – Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: Český normalizační institut, 2004.
- [3] ČSN EN 1991-1-5, Eurokód 1. Zatížení konstrukcí Část 1-5: Obecná zatížení Zatížení teplotou. Praha: Český normalizační institut, 2005.
- [4] ČSN EN 1991-1-6, Eurokód 1. Zatížení konstrukcí Část 1-6: Obecná zatížení – Zatížení během provádění. Praha: Český normalizační institut, 2006.
- [5] ČSN EN 1991-2 ed. 2, Eurokód 1. Zatížení konstrukcí Část 2: Zatížení mostů dopravou. Praha: Český normalizační institut, 2015.
- [6] ČSN EN 1992-2, Eurokód 2. Navrhování betonových konstrukcí Část 2: Betonové mosty – Navrhování a konstrukční zásady. Praha: Český normalizační institut, 2007.
- [7] ČSN 73 6214. Navrhování betonových mostních konstrukcí. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2014.

 \vee POLI

NAD PODPOROU

Výškový systém Bpv Polohopisný systém S-JTSK

N N N N N N N N N N N N N N N N N N N	ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE	ČESKÉ VY Katedra	SOKÉ UČENÍ TECHNICKÉ Fakulta stavební i betonových a zděných kons	V PRAZE strukcí	studijní program: Stavební inženýrství studijní obor: Konstrukce a dopravní stavby
Předmět: Diplomová práce - Optimalizace návrhu letmo betonovaného dálničního mostu				datum: 6/2020 formát:	
název přílohy:				6xA4	
VAR. I - Most betonovaný na výsuvné skruži				měřítko:	
Vzorový příčný řez				1:50	
vedoucí práce:		vypracoval: čís		číslo přílohy:	
Doc. Ing. Lukáš Vráblík, Ph.D.			Bc. Jiří Keclík	A2.01	

ORENO VE STUDENTSKE VERZI PRODUKTU AUTOD

PODÉLNÝ ŘEZ

M 1:500

POHLED M 1:500

ΥΥΤΥΟRENO VE STUDENTSKE VERZI PRODUKTU AUTODESK

STUDENTSKE VERZI PRODUKTU AUTC

Výškový systém Bpv Polohopisný systém S-JTSK

Předmět: datum: Diplomová práce - Optimalizace návrhu letmo betonovaného dálničního mostu 7/202 formát: 8xA4 název přílohy: 8xA4 VAR. I - Most betonovaný na výsuvné skruži měřítko: Podélný řez/pohled 1:500 vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	S S S S S S S S S S S S S S S S S S S	ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE	ČESKÉ VY Katedra	SOKÉ UČENÍ TECHN Fakulta stavební a betonových a zděnýcł	ICKÉ V PRAZE	studijní progra Stavebn studijní obor: k dop	m: í inženýrství Konstrukce a ravní stavby
Diplomová práce - Optimalizace návrhu letmo betonovaného dálničního mostu 7/202 formát: 8xA4 název přílohy: 8xA4 VAR. I - Most betonovaný na výsuvné skruži měřítko: Podélný řez/pohled 1:500 vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	Předmět:					datum:	
název přílohy: formát: název přílohy: 8xA4 VAR. I - Most betonovaný na výsuvné skruži měřítko: Podélný řez/pohled 1:500 vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	Diplomová práce - Optimalizace návrhu letmo betonovaného dálničního mostu				7/2020		
název přílohy: VAR. I - Most betonovaný na výsuvné skruži Podélný řez/pohled vedoucí práce: Doc. Ing. Lukáš Vráblík, Ph.D. Vypracoval: Bc. Jiří Keclík Bc. Jiří Keclík				formát:			
VAR. I - Most betonovaný na výsuvné skruži měřítko: Podélný řez/pohled 1:500 vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	název přílohy:				8xA4		
Podélný řez/pohled 1:500 vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	VAR. I - Most betonovaný na výsuvné skruži			měřítko:			
vedoucí práce: vypracoval: číslo přílohy: Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	Podélný řez/pohled					1:500	
Doc. Ing. Lukáš Vráblík, Ph.D. Bc. Jiří Keclík A2.02	vedoucí práce:		vypracoval:		číslo přílohy:		
, , , , , , , , , , , , , , , , , , , ,	Doc. Ing. Lukáš Vráblík, Ph.D.			Bc. Jiří Keclík		A2.02	

MATERIÁLY BETON DLE TKP 18

PILOTY: PODKLADNÍ BETON: ZÁKLADY: OPĚRY 01, 04: PILÍŘE P2, P3: PŘECHODOVÉ DESKY: NOSNÁ KONSTRUKCE: ŘÍMSY: C 30/37 - XC2, XA2 C 12/15 - X0 C 30/37 - XC2, XF1, XA1 C 30/37 - XC4, XF2, XD1 C 30/37 - XC4, XF2, XD1 C 25/30 - XC4, XF2, XD1 C 45/55 - XC4, XF2, XD1 C 30/37 - XC4, XF4, XD3

BETONÁŘSKÁ VÝZTUŽ ^{B500 B} PŘEDPÍNACÍ VÝZTUŽ V1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ

Výškový systém Bpv Polohopisný systém S-JTSK

K K K K K K K K K K K K K K K K K K K	ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE	ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRA Fakulta stavební Katedra betonových a zděných konstrukcí	studijní program: Stavební inženýrství studijní obor: Konstrukce a dopravní stavby
Předmět: Diplomová práce - Optimalizace letmo betonovaného dálničního mostu			datum: 12/2020
název přílohy:			8xA4 měřítko:
vedoucí práce:		vypracoval:	1:500 číslo přílohy:
D	oc. Ing. Lukáš Vrá	blík, Ph.D.	Bc. Jiří Keclík D2.01

Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ

ČVUT ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE	ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra betonových a zděných konstrukcí	studijní program: Stavební inženýrství studijní obor: Konstrukce a dopravní stavby	
Předmět:	Předmět:		
Diplomová práce - Optima	12/2020		
		formát:	
název přílohy:	8xA4		
Podélný řez		měřítko:	
	1:500		
vedoucí práce:	vypracoval:	číslo přílohy:	
Doc. Ing. Lukáš Vr	áblík, Ph.D. Bc. Jiří Keclí	D2.02	

MATERIÁLY **BETON DLE TKP 18** PILÍŘE P2, P3: NOSNÁ KONSTRUKCE: ŘÍMSY: BETONÁŘSKÁ VÝZTUŽ B500 B PŘEDPÍNACÍ VÝZTUŽ Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ

C 30/37 - XC4, XF2, XD1 C 45/55 - XC4, XF2, XD1 C 30/37 - XC4, XF4, XD3 Výškový systém Bpv Polohopisný systém S-JTSK

ČESKÉ VYSOKÉ UČEN Fakulta Katedra betonových

Předmět:

Diplomová práce - Optimalizace letmo betonovaného

název přílohy:

Vzorový příčný řez

vedoucí práce:

vypracoval:

Doc. Ing. Lukáš Vráblík, Ph.D.

- MOSTNÍ SVODIDLO ÚROVEŇ ZADRŽENÍ H2 ~PROTIHLUKOVÁ STĚNA VÝŠKY 2,0 M 2000 7351
- MOSTNÍ ODVODŇOVAČ

	studijní program:	
IÍ TECHNICKÉ V PRAZE	Stavební inženýrství	
Slavenin	studijní obor:	
a zděných konstrukcí	Konstrukce a dopravní stavby	
	datum:	
dálničního mostu	12/2020	
	formát:	
	2xA4	
	měřítko:	
	1:100	
	číslo přílohy:	
Bc. Jiří Keclík	D2.03	

vedoucí práce:

vypracoval:

Doc. Ing. Lukáš Vráblík, Ph.D.

C 30/37 - XC2, XA2 C 12/15 - X0 C 30/37 - XC2, XF1, XA1 C 30/37 - XC4, XF2, XD1 C 45/55 - XC4, XF2, XD1 C 30/37 - XC4, XF4, XD3

	studijní program:
(É UČENÍ TECHNICKÉ V PRAZE Fakulta stavobní	Stavební inženýrství
	studijní obor:
onových a zděných konstrukcí	Konstrukce a dopravní stavby
	datum:
vaného dálničního mostu	12/2020
	formát:
	2xA4
	měřítko:
	1:200
racoval:	číslo přílohy:
Bc. Jiří Keclík	D2.04

PŘEDPĚTÍ VAHADLA A

PODÉLNÝ ŘEZ M 1:250/125

-	0.00	00																- 1				-	(P2)																		0.	000	
																							 																7				
E																																											
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·																																						
• • • •	• • •	· · ·	· · ·		· · · · · · · · · · · · · · · · · · ·			· · ·		· · ·										\rightarrow														· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · ·		
	• • •				· · · · · · · · · · · · · · · · · · ·	• • •		· · ·		· · ·			•	· · ·	• • •	· · ·	• • •											· · ·					•	· · ·		· · · · · · · · · · · · · · · · · · ·	• • •				· · ·		
Υ 01	0.00	· · · · · · · · · · · · · · · · · · ·		000				000			000	· · · · · · · · · · · · · · · · · · ·	000		000			000	0 0 0 0 0 0	000	000					0000	000	.000.	.000.	000	0000	000	. 000.	000		· · · · · · · · · · · · · · · · · · ·	000.6	000	000	000	. 0000.	000	. 000.
	Z 18.	V 21.	V 26. V 28.	⊂ 31.	$\overline{\mathbf{Z}}$ 33.	<u> </u>		☑ 43.	∠ 46. √ 48.	₹ 51.	∇ 53.	∑ 55. ∑ 58.	09	Z 62.		X 70	Z.72. √74	☑ 75.	区 77 区 78	⊠ 81.	☑ 84.	ļ				区 103 104	区 106	区 109 区 111	Z 113	Z 115 Z 117	□ 119	<u>М</u> 121	V 125	K 129	∑ 1 <u>3</u> 2	∇ 137	☑ 139	区 .142 区 .144	$\square 147$	∇ 152	Z 154 Z 157	<u> </u>	∑.162
					· · ·	•			•	· · ·			•	· · ·	•		•	· · ·	· · ·	-0	.410 .410	V	/A 01P. VA 01L	7.000	-0.410				•		•	· · ·	•	· · ·			•						•
								· · ·		· · · ·								· · ·		00				<u>,</u>									•										· · ·
										· · · ·					•			· · ·	-0.4	0: 0: 0: 0: 0: 0: 410		V	/A 02P, VA 02L	L	100.0	0.410																	
										· · ·							-	· · ·	00		• • •		 		<u></u> ~																		
										· · · ·								-0.	0 82 410			V	/A 03P, VA 03L	L		103.0	410 : :																
		· · ·			· · ·			· · ·		· · ·			•	· · ·		· · ·		00	┌─∕╱ -·· ○				-0.410				 00						•	· · · · · · · · · · · · · · · · · · ·							· · ·		
					· · · · · · · · · · · · · · · · · · ·			· · ·		· · ·				· · ·		· · ·	-0.4	075.0	777.0(V	/A_04P, VA_04L	L		104.0	√ 1000.0	10				· · ·	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•				· · ·		
	•				· · ·	• • •				· · ·						· · ·	000						_0.210					000.6						· · · · · · · · · · · · · · · · · · ·			• • •						•
						• • •				· · ·			•		• • •	-0.4	10 10 17 14				· <u> </u>	V	/A_05P, VA_05L	L			107	0.41 -0.41)				•	· · · · · · · · · · · · · · · · · · ·							· · ·		-
					· · ·	•		· · ·		· · ·			•			000.0		· · ·					-0.210			· · · · · · · · · · · · · · · · · · ·		1.000	13.00		•		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•				· · ·		
					· · · · · · · · · · · · · · · · · · ·	•		· · ·		· · ·				0	-0.410			· · · ·				V	/A_06P, VA_06L	·						10 2							•				· · ·		
										· · ·				00 64.00	96,00 <u>0</u>			· · ·				V	/A_07P, VA_07L	L						115.0C	0.410												
					· · ·			· · ·	• •	· · ·					· ·								 							-4-5	000	000	•	· · · · · · · · · · · · · · · · · · ·							· · ·		
_					· · · · · · · · · · · · · · · · · · ·			· · ·	• •	· · ·		-0.	410	0.292								V	/A_08P, VA_08L	L							119.0	-0.410	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · ·		
	•				· · ·			· · ·		· · ·		0000				· · ·		· · ·	· · ·	-			-0.210				· · · · · · · · · · · · · · · · · · ·						5.000	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• • •						
			· · ·		· · ·		• • •	· · ·		· · · · · · · · · · · · · · · · · · ·	-0.41	V-58										V	/A_09P, VA_09L	L					. <u>.</u>		·	12.	-0.4	10		· · ·	• • •				· · ·		
			· · ·		· · ·	• • •	- - - -	· · ·		51.000	3.000		• • •	· · ·		· · · · · · · · · · · · · · · · · · ·		· · ·	· · · · · · · · · · · · · · · · · · ·			, i	-0.210				· · · · · · · · · · · · · · · · · · ·					· · ·		29.00		· · · · · · · · · · · · · · · · · · ·	• • •				· · ·		
					· · ·	•		· · ·	0.0	-0.410	S A											V	-0.210												.410 : ☐ 0; 0		•				· · ·		
					· · · · · · · · · · · · · · · · · · ·	•	· · ·		48.00	· · · ·			•		•			· · ·	· · ·			V	/A_11P, VA_11L	L		· · ·					• • •			· · · · · · · · · · · · · · · · · · ·	132.0	-0 410	•						
							. 000	000		• •					• • •		• — • — • •						_0.210							_	•						000						
							-0.410	43.0		• • •												V	/A_12P, VA_12L	L												137.	1 -0.4	10					
						000.0				· · ·								· · ·					-0.210										•					2.000					
•	-			0	-0.4					• • •			· · · _				•	· · · ·				V	/A_13P, VA_13L	L							•).410		· · ·		
	-			31.000	3.000			· · ·		· · · ·		· · ·						· · ·	· · ·	•			-0.210											· · ·				v	47.00(· · ·		
			· · · · · · · · · · · · · · · · · · ·	-0.410						· · ·			· · <u>·</u> · -					· · ·				v	-0.210											· · · · · · · · · · · · · · · · · · ·						-0.410			
- - - - -			28.000		· · · · · · · · · · · · · · · · · · ·	• • •		· · ·		· · · ·	· · ·		• • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · ·	· · · · · · · · · · · · · · · · · · ·			V	/A_15P, VA_15L	L			· · ·			· · ·				· · · · · · · · · · · · · · · · · · ·	- - - -	· · · · · · · · · · · · · · · · · · ·	• • •	· · ·		152.00	- - - - - - - - - - - - - -	• • • •	
										· · · · · · · · · · · · · · · · · · ·								• • • • • •					 0.210																			00	
	- -0.41	723.0								· · · · · · · · · · · · · · · · · · ·					-							V	/A_16P, VA_16L	L		· · ·									:						157.0	4 <u>65</u> -0.4	10 :
000	- C																	· · ·				_ •	-0.210																				2.000.
-0.410	18					•				· · · · · · · · · · · · · · · · · · ·			· <u> </u>					· · · · · · · · · · · · · · · · · · ·				V	/A_17P, VA_17L	L							· ;				· _ · _ · _						· · · · · · · · · · · · · · · · · · ·		162
 /		· ·			· ·	:	•				 					· ·					•		-0.210		· .				•			· ·	:		•	· ·							

PŘÍČNÝ ŘEZ V OSE PILÍŘE P2 M 1:100

PŘÍČNÝ ŘEZ V OSE PILÍŘE P2 - DETAIL M 1:20

<u>Poznámky</u>

Výškové kóty jsou vztaženy k výšce horní desky v ose pravého mostu. Kabely vahadla B (VB) jsou symetrické, nejsou proto vykresleny.

<u>MATERIÁLY</u>

BETON DLE TKP 18 NOSNÁ KONSTRUKCE:

BETONÁŘSKÁ VÝZTUŽ B500 B

PŘEDPÍNACÍ VÝZTUŽ

19 LANOVÉ KABELY Z LAN Z OCELI Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ NAPÍNACÍ NAPĚTÍ: - KABELY VA, VB - 1410 MPa KABELOVÉ CHRÁNIČKY: OCELOVÉ KORUGOVANÉ TRUBKY

C 45/55 - XC4, XF2, XD1

Diplomová práce - Optimalizace letmo betonovaného dálr

vypracoval:

název přílohy:

Předpětí vahadel

vedoucí práce: Doc. Ing. Lukáš Vráblík, Ph.D.

	studijní program:						
ECHNICKÉ V PRAZE	Stavební inženýrství						
	studijní obor:						
déných konstrukci	Konstrukce a						
	dopravní stavby						
	datum:						
ničního mostu	12/2020						
	formát:						
	10xA4						
	měřítko:						
	1:250/125						
	číslo přílohy:						
Bc. Jiří Keclík	D2.05						

PŘEDPĚTÍ POLE 1

Poznámky

Výškové kóty jsou vztaženy ke dnu bednění v ose pravého mostu. Předpětí pole 3 kabely spojitosti (SC) je symetrické, není proto vykresleno. Příčný řez v ose pilíře je vykreslen v příloze D2.05.

MATERIÁLY **BETON DLE TKP 18**

NOSNÁ KONSTRUKCE:

BETONÁŘSKÁ VÝZTUŽ B500 B

PŘEDPÍNACÍ VÝZTUŽ

NAPÍNACÍ NAPĚTÍ:

- KABELY VA - 1410 MPa - KABELY SA - 1473 MPa - KABELY SB - 1473 MPa KABELOVÉ CHRÁNIČKY: OCELOVÉ KORUGOVANÉ TRUBKY

C 45/55 - XC4, XF2, XD1

19 LANOVÉ KABELY Z LAN Z OCELI Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ

PŘEDPĚTÍ POLE 2

PODÉLNÝ ŘEZ M 1:250/125

$\frac{P \check{R} \check{I} \check{C} N \check{Y} \check{R} E Z A A}{M 1:100}$

PŘÍČNÝ ŘEZ A-A - DETAIL

Poznámky

Výškové kóty jsou vztaženy výšce horní desky v ose pravého mostu. Příčný řez v ose pilíře je vykreslen v příloze D2.05.

MATERIÁLY

BETON DLE TKP 18 NOSNÁ KONSTRUKCE:

C 45/55 - XC4, XF2, XD1

BETONÁŘSKÁ VÝZTUŽ

B500 B

PŘEDPÍNACÍ VÝZTUŽ

19 LANOVÉ KABELY Z LAN Z OCELI Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ NAPÍNACÍ NAPĚTÍ:

- KABELY VA, VB - 1410 MPa - KABELY SA - 1473 MPa

- KABELY SB - 1473 MPa

- KABELY KB - 1473 MPa KABELOVÉ CHRÁNIČKY: OCELOVÉ KORUGOVANÉ TRUBKY

	ČVUT české vysoké učení technické v praze	ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra betonových a zděných konstrukcí	studijní program: Stavební inženýrství studijní obor: Konstrukce a dopravní stavby
Předmět: Diplomová p	datum: 12/2020 formát:		
název přílohy: Kabely spoji	8xA4 měřítko: 1:250/125		
vedoucí práce:		vypracoval:	číslo přílohy:
E	Doc. Ing. Lukáš Vrábl	ík, Ph.D. Bc. Jiří Keclí	D2.07

PŘEDPĚTÍ POLE 2

PODÉLNÝ ŘEZ M 1:250/125

Poznámky

Výškové kóty jsou vztaženy k výšce horní desky v ose pravého mostu. Příčný řez ve středu rozpětí pole 2 je vykreslen v příloze D2.07.

MATERIÁLY BETON DLE TKP 18

NOSNÁ KONSTRUKCE:

C 45/55 - XC4, XF2, XD1

BETONÁŘSKÁ VÝZTUŽ

B500 B

PŘEDPÍNACÍ VÝZTUŽ

19 LANOVÉ KABELY Z LAN Z OCELI Y1860 S7-15.7 S VELMI NÍZKOU RELAXACÍ NAPÍNACÍ NAPĚTÍ:

- KABELY VA, VB - 1410 MPa - KABELY SB - 1473 MPa - KABELY KB - 1473 MPa KABELOVÉ CHRÁNIČKY: OCELOVÉ KORUGOVANÉ TRUBKY

ČESKÉ VYSOKÉ UČEN Fakulta s Katedra betonových s

Předmět:

Diplomová práce - Optimalizace letmo betonovaného

název přílohy:

Kladné kabely v poli 2

vedoucí práce:

vypracoval:

Doc. Ing. Lukáš Vráblík, Ph.D.

-

NI TECHNICKE V PRAZE	Stavební inženýrství							
	studijní obor:							
i a zdených konstrukci	Konstrukce a dopravní stavby							
	datum:							
dálničního mostu	12/2020							
	formát:							
	2xA4							
	měřítko:							
	1:250/125							
	číslo přílohy:							
Bc. Jiří Keclík	D2.08							

studijní program:

POSTUP VÝSTAVBY A:

Postup výstavby A byl posouzen statickým výpočtem a v RDS by byl pouze

- Sejmutí ornice, výstavba staveništních cest, výkopové práce. - Realizace násypů předpolí za O1 a O4. - Realizace založení a betonáž pilířů P2 a P3. - Montáž dočasného ztužení pilířů P2 a P3

- Založení a betonáž opěr O1 a O4. - Zásypy před dříky opěr O1 a O4.

3A. - Postupná betonáž a předpínání lamel vahadel A a B. - Montáž pevné skruže v poli 1 a 3.

- Zásypy za opěrami O1 a O4, realizace přechodových desek.

4A. - Rozepření vahadel a následné spojení v poli 2.
- Betonáž uzavíracích spár v polích 1 a 3.

- Předepnutí konstrukce kabely spojitosti a kladnými kabely.

5A. - Demontáž pevné skruže v krajních polích.

- Terénní úpravy, realizace schodišť, dlažeb z lomového kamene apod. - Realizace izolace, říms, vozovek, montáž příslušenství.

POSTUP VÝSTAVBY B:

Postup výstavby B nebyl posouzen statickým výpočtem a jedná se o alternativní postup výstavby, který odstraňuje použití pevné skruže. Pro použití tohoto postupu výstavby by bylo nutné upravit vedení předpínací výztuže a znovu posoudit veškeré prvky konstrukce.

1.-2. Shodné s postupem výstavby A.

- 3B. Postupná betonáž a předpínání lamel vahadel A a B. - Zásypy za opěrami O1 a O4, realizace přechodových desek.
- 04 STÁTNÍ HRANICE ČR/PL
- 04) STÁTNÍ HRANICE ČR/PL

ČR/PL

- 4B. Rozepření vahadel a následné spojení v poli 2. Kterým bude dosaženo dostatečného ztužení konstrukce.
- Demontáž betonážních vozíků v poli 2.
- Předepnutí konstrukce v poli 2 kabely spojitosti a kladnými kabely.
- Terénní úpravy, realizace schodišť, dlažeb z lomového kamene apod.

- 5B. Postupná betonáž krajních částí polí 1 a 3. Případné předpínání vahadlových kabelů v poli 1 a 3. Koncové části a příčníky nad ložisky bedněny tesařsky. 04) státní hranice
 - Demontáž betonážních vozíků v poli 1 a 3.
 - Osazení a betonáž MDZ.
 - Demontáž ztužení pilířů.
 - Terénní úpravy
 - Realizace izolace, říms, vozovek, montáž příslušenství.
 - Statická zatěžovací zkouška.

	ČVUT České vysoké učení technické v praze	ČESKÉ VY Katedra	SOKÉ UČENÍ TECHNICKÉ V PI Fakulta stavební a betonových a zděných konstruk	RAZE Cí	studijní progran Stavebn studijní obor: k dopu	m: í inženýrství construkce a ravní stavby
Předmět:					datum:	
Diplomová p	12/202					
	formát:					
název přílohy:		4xA4				
Postup výsta	měřítko:					
						1:1500
vedoucí práce:			vypracoval:		číslo přílohy:	
D	oc. Ing. Lukáš Vráblíl	k, Ph.D.		Bc. Jiří Keclík		D2.09