METODY MĚŘENÍ PÓROVÉHO TLAKU
V BETONU VYSTAVENÉM VYSOKÝM
TEPLOTÁM

METHODS OF MEASUREMENT OF PORE PRESSURE IN CONCRETE
EXPOSED TO HIGH TEMPERATURES

Autor: Bc. Jan TOMÁŠ
Vedoucí práce: Ing. Radek ŠTEFAN, Ph.D.
Ing. Roman CHYLÍK

2021
Obsah

Úvod ... 7
Motivace .. 7
Stanovení výzkumné otázky ... 7
Cíle práce ... 7
1 Současný stav poznání .. 8
 1.1 Beton za zvýšených teplot .. 8
 1.2 Vlhkost v betonu ... 9
2 Pórový tlak .. 10
 2.1 Vznik pórového tlaku .. 10
 2.2 Faktory ovlivňující velikost pórového tlaku ... 11
 2.3 Snížení pórového tlaku ... 12
 2.3.1 Vláknobeton .. 12
 2.3.2 Provzdušněný beton ... 12
 2.3.3 Hybridní beton .. 12
 2.4 Stanovení pórového tlaku v betonu ... 13
 2.4.1 Výpočtem .. 13
 2.4.2 Měřením ... 14
 2.5 Experiment Ye Li ... 17
3 Experimentální část ... 20
 3.1 Měřiče a jejich specifikace .. 20
 3.1.1 Termočlánky ... 20
 3.1.2 Vlhkoměr .. 22
 3.1.3 Korozivzdorná trubička ... 23
 3.1.4 Silikonový olej ... 24
 3.1.5 Manometr ... 24
 3.1.6 Topné těleso ... 25
 3.2 Výroba vzorků a rozmístění měřičů ... 26
 3.3 Měření ... 35
 3.3.1 Příprava vzorku .. 35
 3.3.2 Měření .. 39
 3.4 Vyhodnocení experimentu .. 40
 3.4.1 Teplota ... 40
 3.4.2 Pórový tlak .. 41
4 Závěr a návaznost na diplomovou práci .. 43
ČESKÉ VYŠKOVÉ UČENÍ TECHNICKÉ V PRAZE
Fakulta stavební
Thákurova 7, 166 29 Praha 6

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: Tomáš
Jméno: Jan
Osobní číslo: 460427

Zadávající katedra: K133 - Katedra betonových a zdivních konstrukcí
Studijní program: Stavební inženýrství
Studijní obor: Integrální bezpečnost staveb

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce: Metody měření pórového tlaku v betonu vystaveném vysokým teplotám
Název diplomové práce anglicky: Methods of measurement of pore pressure in concrete exposed to high temperatures

Pokyny pro vypracování:
Rešerše literatury
Analýza dostupných metod měření pórového tlaku v betonu vystaveném vysokým teplotám
Experiment
Vyhodnocení
Závěr

Seznam doporučené literatury:
KALIFA, Pierre. Spalling and pore pressure in HPC at high temperatures. B.m.: Centre scientifique et T.
MUGUME RODGERS BANGI. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. B.m.: Hokkaido University, Japan.

Jméno vedoucího diplomové práce: Ing. Radek Štefan Ph.D.

Datum zadání diplomové práce: 28.9.2020

Termín odevzdání diplomové práce: 3.1.2021

Údaj uveďte v souladu s datem učebního roků předchozího ak. roku

Podpis vedoucího práce

Podpis vedoucího katedry

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez číli pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT „Jak psát vysokoškolské závěrečné práce“ a metodickým pokynem ČVUT „O dodržování etických principů při přípravě vysokoškolských závěrečných prací“.

Datum převzetí zadání

Podpis studenta(ky)
Prohlášení

Prohlašuji, že jsem diplomovou prací vypracoval samostatně a že jsem uvedl veškeré užité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

........................

V Praze dne 23. 5. 2019

Bc. Jan Tomáš
Poděkování

Rád bych poděkoval svým vedoucím diplomové práce panu Ing. Radku Štefanovi, Ph.D. a panu Ing. Romanu Chylíkovi za odborné konzultace, vedení práce výrobě vzorků i provedení experimentu. V neposlední řadě bych chtěl poděkovat své rodině, která mě podporovala po celou dobu studia.
Abstrakt

Práce je věnována pórovému tlaku v betonu a jeho měřením při vysokých teplotách. V první kapitole jsou představeny vlastnosti a chování betonu za vysokých teplot. Druhá kapitola je dále věnována samotnému pórovému tlaku v betonu a teoretickému základu tohoto tématu.

Koncepcí měření pórového tlaku v betonu při zvýšených teplotách je vyvedení tlaku z vyhřátého vzorku ven. Realizace experimentu je založena na použití duté trubičky zabetonované do specifické hloubky materiálu, kde na druhý konec je upevněno měřící zařízení. Trubička může být vyplněna ocelovou tyčí, olejem, nebo vzduchem. Na konec trubičky může být navařen kalíšek se slinutým porézním kovem, který shromažďuje větší množství pórového tlaku a rovnoměrně ho rozptyluje do trubičky.

Experiment provedený v této práci má za úkol změření pórového tlaku v betonových vzorcích o velikosti 150 x 300 x 120 mm pomocí manometru a dutých trubiček naplněných silikonovým olejem ve vzdálenosti 20 mm od exponovaného povrchu. Zároveň s měřením pórového tlaku je ve shodné hloubce měřena i teplota a vlhkost.

Klíčová slova

beton; vlhkost; pórový tlak; měření; vysoká teplota; odštěpování; tlakoměr; požár; experiment
Abstract

The thesis deals with the pore pressure in concrete and its measurement at high temperatures. In the first chapter the properties and behaviour of concrete at high temperatures is summarized. The second chapter is further dealing with the pore pressure in concrete itself and the theoretical basics of this topic.

Concrete is generally non-flammable material, but high temperatures have high impact on its properties. At increased temperatures, the mechanical and physical properties of concrete are changing. Thesis introduction is focused on the issue of the behaviour of concrete at high temperatures, where the pore pressure increases and effect the stress in the concrete. The thesis summarizes the formation of pressure in the pores and its prevention, or how the pressure can be eliminated it and what are the consequences in structure. In the further chapters, the thesis is dealing with the pressure reduction methods and the methodology of measuring pressure used in previous literature, where current literature did not reliable results.

Measurement method of pore pressure in concrete at elevated temperatures is carried out by the pressure from the heated sample. Experiment is based on the use of a hollow tubes fixed in concrete in the certain depth. Measuring device is attached to the other side of the tube, which can be filled with a steel rod, oil or air. Specific pressure support tooling can be welded to the end of the tube, which can increase the pore pressure

The goal of this thesis experiment is to measure the pore pressure in concrete samples of 150 x 300 x 120 mm with using a manometer and hollow tubes filled with silicone oil at a distance of 20 mm from the exposed surface. Simultaneously with the measurement of the pore pressure, the temperature and humidity are also measured at the same depth.

Keywords

cement; pore pressure; measurement; high temperature; spalling; pressure gauge; fire; experiment
Úvod

Motivace

Pórový tlak je parametr, který výrazně ovlivňuje požární odolnost betonu za zvýšených teplot. Tato fyzikální veličina má za následek explozivní odštěpování betonu. Při odštěpení betonu dochází k obnažení výztuže a tím k jejímu přímému vystavení požáru. Ocel, jak je známo, při vysokých teplotách ztrácí svoji pevnost, konstrukce se tak stávají nestabilními a dochází ke kolapsu celých konstrukcí. Druhý negativní účinek odštěpování betonu je ohrožení zasahujících složek IZS. Odlupované kusy mohou dosáhnout až rychlostí vystřelení projektilu.

Stanovení výzkumné otázky

V této práci se budeme zabývat principem, jakým správně a efektivně měřit pórový tlak v betonu vystaveném vysokým teplotám.

Cíle práce

Hlavní cíle práce:

1) Rešeře metod měření pórového tlaku v betonu za zvýšených teplot ve světě
2) Stanovení nejefektivnější metody měření pórového tlaku v betonu za zvýšených teplot
3) Experiment měření pórového tlaku v betonu za zvýšených teplot dle zvolené metody
1 Současný stav poznání

Beton, jakožto velmi často používaný stavební materiál, je nehořlavý, avšak je značně ovlivňován zvýšenými teplotami, vznikajícími při požáru. Při požáru dochází v betonu k dočasným nebo trvalým změnám jeho mechanických a fyzikálních vlastností.

Z pohledu požární odolnosti je možno betonové směsi rozdělit na dva typy. Beton prvního typu má objemovou hmotnost $\gamma \leq 1800$ kg/m3. Jeho směs je tvořena z umělého či přírodního pórivitého kameniva. Druhý typ betonu s objemovou hmotností $\gamma > 1800$ kg/m3 je směs z hutného kameniva. Žáruvzdorný beton zvládne odolávat teplotám do 1580 ºC, přičemž si zachovává své základní fyzikálně-mechanické vlastnosti. Dále tepelně izolační beton, tj. beton s vysokým tepelným odporem dosahovaným vylehčením betonu rovnoměrně rozloženými póry a dutinami. [1]

1.1 Beton za zvýšených teplot

Při nárůstu teplot v betonu dochází k chemickým dějům v betonové struktuře a dochází tak k významným přeměnám fyzikálních a mechanických vlastností. Postupná fáze rozkladu betonu za zvyšování teploty je znázorněna v tab. 1. [2]

<table>
<thead>
<tr>
<th>Teplota 0 ºC</th>
<th>Procesy přeměny betonu při vystavení vysokých teplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-100</td>
<td>Dochází k hydrataci. Vznik CSH a Ca(OH)$_2$.</td>
</tr>
<tr>
<td>100</td>
<td>Začíná dehydratace cementového tmelu – uvolňování volné vody za současného rozkladu hydrátů.</td>
</tr>
<tr>
<td>150</td>
<td>Vrcholí první fáze rozkladu CSH.</td>
</tr>
<tr>
<td>200+</td>
<td>Dochází k uvolňování vázané vody.</td>
</tr>
<tr>
<td>300+</td>
<td>Pokračuje rozklad CSH a Ca(OH)$_2$ za výrazného vzniku mikrotrhlin. Začíná se porušovat kamenivo, nejdříve se porušuje křemičité kamenivo.</td>
</tr>
<tr>
<td>550-560</td>
<td>Dochází k fázové změně křemene. Vlivem rozdílné roztažnosti dochází k narušování vazeb mezi kamenivem a cementovým tmelem.</td>
</tr>
<tr>
<td>700-750</td>
<td>Vrcholí druhá fáze rozkladu CSH.</td>
</tr>
<tr>
<td>800+</td>
<td>Hydraulické vazby v cementovém tmelu přecházejí ve vazby keramické. Dochází k dekarbonizaci vápencového kameniva, při které vzniká CO$_2$.</td>
</tr>
<tr>
<td>900</td>
<td>Totální dekompozice cementového tmelu.</td>
</tr>
<tr>
<td>1000+</td>
<td>Začíná tavení některých složek betonu.</td>
</tr>
<tr>
<td>1200+</td>
<td>Celkové tavení betonu.</td>
</tr>
</tbody>
</table>

tab. 1 - Přeměna betonu za zvýšených teplot [2]
1.2 Vlhkost v betonu

Vlhkost je fyzikální veličina obsažena za běžným podmínk v každém betonu, která ovlivňuje jeho vlastnosti. Voda se v betonu vyskytuje od výroby, kdy ji do cementové směsi záměrně přidáváme kvůli hydrataci směsi. Dále se voda může v betonu vyskytovat z okolního prostředí během jeho životnosti. Přítomnost vody ovlivňuje řadu vlastností a hraje důležitou roli v mnoha procesech. Na poškození betonu se nejvíce projevují dvě základní fázové změny vody, jimiž jsou mrznutí a vypařování se.

Při požárech, kdy se betonové stěny a stropy v budovách nebo jiných stavbách zahřejí vysoko nad 100 °C (až k 1200 °C) se vlhkost z betonu začne vypařovat ven směrem k zahřívanému povrchu. Beton je velice nízkopropustný materiál, a tak při zahřívání dochází k vytváření vysokých tlaků. Kombinace vysokých tlaků, tepelného namáhání a oslabení porézní matrice dehydratací může způsobit odprýskávání betonu. [3]
2 Pórový tlak

Pórový tlak v betonu vznikající při teplotním namáhání může mít velmi negativní vliv na konstrukce. Při nárůstu teplot může v betonu dojít k explozivnímu odštěpení betonu, které má za následek snížení požární odolnosti betonových konstrukcí. Explozivní odštěpování také velmi ohrožuje zasahující hasiče při činnosti hašení požáru. Odlupované kusy betonu mohou dosahovat rychlosti vystřelení projektilu.

Betony s vysokou pevností jsou výrazně citlivější na vliv vysokých teplot z důvodu nízké propustnosti vodní páry. V těchto betonech při vysokých teplotách nastává značný pórový tlak při odpařování vody ze struktury betonu.

2.1 Vznik pórového tlaku

![Obr. 1 - Vznik pórového tlaku v betonu](2)

Tento termohydrální proces je spojen s přenosem hmoty (voda v kapalné a parní fázi a vzduch), jak je znázorněno na obr. 2. S rostoucí teplotou se voda částečně odpařuje, a právě toto odpařování vytváří tlak v porézní struktuře. Gradient tlaku je hlavní hnací silou pro přenos hmoty.
Kapitola 2: Pórový tlak

Pára a vzduch se částečně přesouvají k vyhřívanému povrchu, ale také se přesouvají do středu prvku, kde vlivem nižší teploty páry opět kondenzují na vodu, jakmile jsou splněny termodynamické podmínky. V důsledku toho se vytváří kvazi nasycená vrstva. Po určité době betonový prvek obsahuje od strany vyhřívaného povrchu suchou a dehydratovanou zónu, sušicí a dehydratační zónu a kvazi nasycenou vrstvu, která působí jako nepropustná stěna pro putující plyny. Zbytek prvku se nezmění. Vrchol tlaku je umístěn v nasycené vrstvě. Čím nižší je propustnost materiálu, tím dříve (a blíže k zahřátému povrchu) vzniká toto ucpávání vlhkostí, vyšší tlak a teplotní gradient.[4]

Vlivem tlakového gradientu se voda vypařená v zóně blízko vyhřívané plochy transportuje nejen směrem ven, ale také dovnitř betonového prvku při nižší teplotě. Znovu kondenzuje a téměř nasycená vrstva se postupně formuje, což brání další hmotě v transportu ve vnitřním směru [4]

![Diagram tlakového gradientu](image)

obr. 2 - Proces vytváření tlaku. [4]

2.2 Faktory ovlivňující velikost pórového tlaku

Velikost pórového tlaku ovlivňuje několik faktorů [5].

1) **Vlhkost**

 - Tento faktor nejvíce ovlivňuje pórový tlak v betonu. V betonech s vysokou vlhkostí se při zahřátí vytvoří větší množství vodní páry, která způsobuje napětí v povrchové části prvku.

2) **Mikrostruktura betonu**

 - Betony s vysokým vodním součinitelem obsahují velké množství kapilárních pórů, které umožňují transportní procesy uvnitř materiálu. V otevřenější mikrostrukturu betonu se vytvořené vodní páry mohou dostat z prvku lépe a rychleji, což má za následek nižší pórové tlaky. Naopak při hutnější mikrostrukturu betonu se pára nedostane z prvku ven a tlak dosahuje vysokých hodnot. Toto nastává především u vysokopevnostních betonů, které mají vysokou hustotu.
Další možným výskytem pórů v materiálu jsou technologické póry, které vznikají při betonáži z důvodu tlaku provzdušňovacího přísadu. [6]

3) Rychlost nárůstu teploty

– Čím rychleji narůstá teplota v betonu, tím výrazněji se zvyšuje pórový tlak v betonu.

2.3 Snížení pórového tlaku

2.3.1 Vláknobeton

Na historicky první vláknobeton se používaly ocelové drátky. Drátky použité v betonu se vyrábí z oceli různých pevností a různých tvarů. Dále se do betonu používají další typy vláken, jako například skleněné, syntetické nebo přírodní. Vlákná se do betonu obvykle přidávají v množství 2 kg/m³. [7]

2.3.2 Provzdušněný beton

Provzdušněný beton lze získat pomocí provzdušňovacích přísad, které mají za následek vyšší porovnitost a lepší zpracování betonové směsi. Hlavní důvod provzdušňování betonu však spočívá ve vyšší odolnosti proti působení mrazu v kombinaci s chemickými rozmrazovacími látkami. Vyšší porovnitost provzdušněného betonu má dále za následek menší nárůst pórových tlaků. Velikost póru v provzdušněném betonu bývá okolo 100–300 μm. Hodnoty porozity neprovzdušněného betonu bývají okolo 3,5 %, hodnoty provzdušněného betonu dvojnásobně, tedy okolo 6,5 %. [8]

2.3.3 Hybridní beton

Jedná se o beton s různými typy rozptýlených vláken v betonovém kompozitu, například o kombinaci ocelových a polypropylenových vláken.
2.4 Stanovení pórového tlaku v betonu

Pórový tlak v betonu můžeme zjistit dvěma způsoby. Jedním z nich je početní metoda, kde stačí znát dvě ze tří veličin, kterými jsou teplota a vlhkost, přičemž poslední neznámou (pórový tlak) dopočítáme. Druhá metoda se zabývá přímým měřením pórového tlaku pomocí měřicích přístrojů.

Přestože požární reakce betonových konstrukcí je zkoumána již delší dobu, experimentální studie chování materiálu nad 100 °C jsou relativně nedávná. Racionální fyzikální matematický model pro zvýšení pórového tlaku a pohyb vlhkosti v zahřátém betonu byl obecně formulován v roce 1975 a podrobná teorie byla vyvinuta až v roce 1978. [9]

2.4.1 Výpočtem

Stupeň nasycení kapaliny porézní pevné látky může být spojen nasáváním (kapilární tlak) a teplotou, která závisí na struktuře a velikosti pórů. Kelvinova rovnice stanovuje spojení mezi kapilárním tlakem a relativní vlhkostí pórů (za předpokladu, že pórový tlak je přibližný atmosférickému tlaku, nebo alespoň zanedbatelný ve srovnání s kapilárním tlakem). Stupeň nasycení zároveň souvisí s obsahem odpařitelné vody (hmotnost odpařitelné vody na jednotku objemu porézního materiálu [kg/m³]). Hmotnostní hustotou kapalné vody lze považovat za konstantní. Hmotnostní hustotou vodní páry lze vyjádřit pomocí relativní vlhkosti a teploty pórů kombinací stavové rovnice s definicí relativní vlhkosti. Bylo zjištěno, že maximální pórový tlak je mnohem vyšší u rychlého než u pomalého zahřívání. Pohyb vlhkosti v oblastech, kde je tlakový gradient opačný než teplotní gradient, je shledán spíše nepravidelný a vykazuje oscilace. Teorie předpovídá na základě testů jev „vlhkostní bariéry“, který navrhl Hermathy. [9–12]

Při konstantní teplotě je vztah mezi obsahem odpařitelné vody a relativní vlhkostí pórů znám jako sorpční izoterna. Přesněji řečeno, desorpční izoterna nám popisuje funkci snižování obsahu vody, zatímco adsorpční izoterna (též nazývána jen sorpční izoterna) platí pro zvyšování obsahu vody.[12]

Na obr. 3 můžeme vidět sorpční izotermu, kde je vyjádřen vztah mezi poměrem volné vody s cementem a relativním tlakem par při různých teplotách. Hustota betonu = 2300 kg/m³, obsah cementu = 300 kg/m³, obsah volné vody w = 100 kg/m³.
2.4.2 Měřením

Měření pórového tlaku v betonu je velice důležité pro ověřování výpočtů a matematických modelů. Doposud bylo ve světě zkoumáno a zkoušeno měření pórového tlaku pomocí několika způsobů [4, 5, 13, 14]. Techniky měření pórového tlaku používané různými vědci se však příliš neshodují. Nejaktuálnější popis všech doposud použitých měřicích technik experimentálního nastavení popsal ve svém článku Ye Li. [14]

Aby se předcházelo poškození snímačů tlaku vysokou teplotou, bylo základní koncepcí přenášet pórový tlak ven ze zahřátého betonového vzorku. Do betonových vzorků byly proto zabetonovány korozivzdorné trubičky pro přenos tlaku do měřicího zařízení vně vzorku.

2.4.2.1 Zakončení přenosové trubičky

Zakončení trubičky lze zajistit několika způsoby. Nejjednodušším zakončením přenosové trubičky je ponechání samotné trubičky bez jakýchkoliv úprav. Druhou možností je navaření na konec trubičky korozivzdorný kalíšek, který sbírá tlak z větší plochy. Poslední možnou úpravou je do kalíšku vložit porézní slinutý kov, který shromažďuje větší množství par a rozkládá je rovnoměrně do trubičky (obr. 4). Nevýhodou porézního slinutého kovu je, že může změnit vlastnosti betonové matrice a vnést volný objem vzduchu do vzorku. Volný objem vzduchu při zahřívání usnadňuje odpařování vodních par a zpomaluje hromadění pórového tlaku.
2.4.2.1 Výplň přenosové trubičky
Dalším zdrojem volného objemu vzduchu je trubička, jejíchž duté jádro je také vyplněno vzduchem. Možností, jak se zbavit volného objemu vzduchu v trubičce je například vložení ocelové tyče, která funguje v trubičce jako píst. Druhá možnost je naplnit trubičku silikonovým, nebo ropným olejem. Tepelná roztažnost oleje může však také měnit přesnost měření pórového tlaku. Do trubiček byly také vkládány termočlánky, pro snížení volného objemu vzduchu v trubičkách, jako při vložení ocelové tyče.

2.4.2.2 Možné nastavení měřicích sestav

Na obr. 5 jsou znázorněny veškeré vyzkoušené nastavení měřicích sestav s maximálním naměřeným pórovým tlakem. Nelze však porovnávat hodnoty naměřených tlaků, kde jsou rozdílná měřidla umístěna v různých vzdálenostech od exponovaného povrchu, různé složení, vlhkost,
rýchlost zahřívání betonové směsi atd. Zmíněné proměnné parametry znatelně ovlivní výsledky naměřených hodnot. Vývoj pórového tlaku byl porovnán s teoretickým tlakem nasycených par (SVP), který představuje maximální tlak v zahřátém stavu, aby se vyhodnotilo, zda měřený tlak je skutečně přesný a spolehlivý. Měřené tlaky, kde byl v betonu počáteční obsah vlhkosti nízký, jsou nižší než SVP a pokud byl porézní tlak v suchém uzavřeném pórobetonu nasycený vodou, naměřené tlaky budou vyšší než SVP.

<table>
<thead>
<tr>
<th>No.</th>
<th>Design of pressure gage</th>
<th>Type of gage head</th>
<th>Placemnt od thermocouple</th>
<th>Inner diameter of tube (mm)</th>
<th>Free cross section (mm²)</th>
<th>Maximum pressure (MPa)</th>
<th>Agreement with SVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tube</td>
<td>External</td>
<td>unknown</td>
<td>Red</td>
<td>unknown</td>
<td>0.76</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td>2</td>
<td>Tube</td>
<td>External</td>
<td>1</td>
<td>Air</td>
<td>0.785</td>
<td>3.1</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td>3</td>
<td>Tube</td>
<td>External</td>
<td>4</td>
<td>Air</td>
<td>12.56</td>
<td>0.49</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td>4</td>
<td>Tube</td>
<td>External</td>
<td>2</td>
<td>Diameter 1.5 mm rod</td>
<td>1.37</td>
<td>3.5</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td>5</td>
<td>Tube</td>
<td>External</td>
<td>2</td>
<td>Hydraulic jack oil</td>
<td>0</td>
<td>8.4</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silicon oil</td>
<td>0.5 or 0.8</td>
<td>4.7</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.35</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td>6</td>
<td>Sintered metal plate</td>
<td>Internal</td>
<td>1.6</td>
<td>Diameter 1.5 mm thermocou</td>
<td>0.24</td>
<td>1.3</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uplo</td>
<td></td>
<td>1.4</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.75</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td>7</td>
<td>Sintered metal plate</td>
<td>External</td>
<td>1.5</td>
<td>Silicon oil</td>
<td>0</td>
<td>5.0</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>Higher than SVP</td>
</tr>
<tr>
<td>8</td>
<td>Sintered metal plate</td>
<td>Internal</td>
<td>2</td>
<td>Diameter 1.5 mm thermocou</td>
<td>1.37</td>
<td>0.25</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uplo</td>
<td></td>
<td>2.3</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td>9</td>
<td>Sintered metal</td>
<td>External</td>
<td>2</td>
<td>Silicone oil</td>
<td>0</td>
<td>1.2</td>
<td>Equal to SVP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.53</td>
<td>Unknown</td>
</tr>
<tr>
<td>10</td>
<td>Sintered metal plate</td>
<td>External</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
<td>Lower than SVP</td>
</tr>
<tr>
<td>11</td>
<td>Spherical sintered</td>
<td>Internal</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.32</td>
<td>Higher than SVP</td>
</tr>
</tbody>
</table>

obr. 5 - Různé nastavení měřicích sestav pro měření pórového tlaku v betonu vystaveném vysokým teplotám s maximálními naměřenými pórovými tlaky [14]

obr. 6 - Legenda k návrhovým tlakovým měřičům [14]
2.5 **Experiment Ye Li** [14]

Vzorky pro měření byly vybetonovány ze směsi portlandského cementu ASIA CEM I 52,5 N, přírodních říčních píseků s maximálním průměrem zrna 600 μm, mikrosilikátové písky se střední velikostí částic do 130 mm a různých příměsí a přísad. Poměr vody k cementu byl držen pouze na hodnotě 0,2. Zabíhání probíhalo otvorem v elektrické topné peci o rychlosti zabíhání 10 °C/min. Po stranách byly vzorky izolovány minerální vatou, aby docházelo pouze k jednosměrnému zabíhání vzorku. Po dosažení teploty 600 °C byla udržována konstantní teplota, dokud neklesli měření tlak ve vzorku na nízké hodnoty. Při experimentu se také monitorovala teplota ve vzorku termočlánkem umístěném 20 mm od vyhřívaného povrhu. Na obr. 7 se nachází schéma experimentálního nastavení s umístěním měřicích hlav v betonovém vzorku.

![Schéma experimentální nastavení s umístěním měřicích hlav](image)

obr. 7 - (a) schéma experimentální nastavení, (b) umístění měřicích hlav [14]

obr. 8 ukazuje všech 12 konfigurací experimentálního uspořádání s rozdílem typu měřicích hlav, umístění termočlánku, nebo náplní trubky olejem.
Z obr. 9 je patrné, že nejvyšší tlaky byly zaznamenány v měřicích sestavách s olejovou náplní. Důvod je takový, že vyplnění trubky tyčí, nebo pouze vzduchem zanechá značný prostor pro hromadění vlhkosti.

![Diagram maximálních pórových tlaků použitých tlakoměrných sestav](image)

obr. 9 - Maximální pórové tlaky použitých tlakoměrných sestav [14]

![Diagram Log Worth faktorů na maximální změřený pórový tlak](image)

obr. 10 - Vliv faktorů na maximální změřený pórový tlak [14]
3 Experimentální část

Tato část diplomové práce bude zaměřena na vytvoření vzorku k experimentálnímu měření pórového tlaku v betonu vystaveném vysokým teplotám. Ve vzorku bude dále měřena vlhkost a teplota při iniciaci tepelným zdrojem. Experiment bude prováděn na Fakultě stavební ČVUT v Praze.

Cílem tohoto experimentu je provést měření pórového tlaku ve vzorku ve vzdálenosti 20 mm od zahřívaného povrchu. Při tomto měření bude také ve vzorcích měřena teplota a vlhkost. Pro experiment bylo vyrobeno 6 vzorků. Tři vzorky byly vyrobeny z kameniva, cementu a chemických příměsí, druhá polovina vzorků navíc obsahuje PP vlákna.

Vzorky o velikosti 150 x 300 x 120 mm (š x d x v) budou vystaveny tepelnému záření z keramické podložky. Pro prováděný experiment bude zdroj tepla dostačující k zahřívání zkoušeného vzorku. Při zahřívání se bude příběžně měřit proměnná hodnota pórového tlaku v závislosti na teplotě a vlhkosti. Současně budou ve vzorku umístěny termočlánky pro měření teplot. Dále se ve vzorku bude nacházet vlhkoměr Hygropin, pro měření vlhkosti.

Rozměry betonového vzorku byly voleny na základě rozměru keramické topné dečky tak, aby byly přibližně stejné a nedocházelo k velkému uvolňování tepla do okolí. Pórový tlak ve vzorku se měřil pomocí měřiče, který se skládal z korozivzdorné trubičky, manometru a oleje (viz kapitola 2.4.2).

3.1 Měřiče a jejich specifikace

Pro experiment bylo použito více měřících zařízení. Pro měření teploty byl použit pláštový a kabelový termočlánek. Vlhkost byla naměřena pomocí vlhkoměru a pórový tlak byl měřen pomocí trubiček a manometru.

3.1.1 Termočlánky

Pro měření teploty uvnitř vzorku byly použity kabelové termočlánky MTC 12 typu K, které mají deklarovaný měřicí rozsah teplot až 600 °C. Ve skutečnosti ale umí měřit i více °C. Vedení GHGH z keramického vlákna s vnějším rozměrem 2 x 0,5 mm, měřicí konec bez keramického korálku, provedení studeného konce: miniaturní konektor MTCK-MM-K. Jedná se o jednoduchý kabelový termočlánek s neizolovaným měřicím spojem. Na konci je termočlánek opatřen speciálním zakončením. [16] Viz. obr. 12.
Dalším použitým termočlánkem v experimentu byl plášťový termočlánek, který byl vložen při realizaci experimentu mezi keramickou topnou dečku a vzorek pro měření teplot na povrchu betonového vzorku. Plášťový termočlánek je trubka z korozivzdorné oceli, v jejímž jádru se nachází termoelektrické vodiče, které jsou izolovány minerální izolací. Vnější průměr článků bývá v rozmezí od 0,1 do 8 mm. Jestliže je teplota jednoho spoje rozdílná od teploty druhého spoje, vzniká termoelektrické napětí a obvodem prochází termoelektrický proud. Jeden z uzlů je přitom měřicí a druhý srovnávací. [17]

Na obr. 13 se nachází 1 – měřicí spoj, 2 – srovnávací spoj a 3 – kompenzační obvod αA; αB – dva vodiče s nízkým termoelektrickým součinitelem.
3.1.2 Vlhkoměr [19]

![Diagram](image1)

Obr. 13 - Konstrukce termočlánku [18]

Do betonu se zabetonuje plastové pouzdro, což je plastová dutá trubička s průměrem 8 mm. Na konci je pouzdro opatřeno límcem, který zabraňuje přílišnému vnoření do betonu. Při betonáži se do pouzdra se vloží plastová ucpávací tyčinka, která zabraňuje mokrému betonu natečení do pouzdra. Po vytvrzení betonu se tyčinka z pouzdra vyjme a do pouzdra se vloží in-site sonda, která je kabelem připojena k přístroji. [3]
3.1.3 Korozivzdorná trubička [20]

Trubička byla vyrobená z korozivzdorné oceli s označením 1.4541 – odolná vůči agresivním kyselinám. Materiál je nemagnetický, nekalitelný, obtížně leštitelný a dobře svařitelný. Trubička o vnějším průměru 8 mm, tloušťkou stěny 2 mm a délky 1,8 m. Trubička byla zakrášlena na délku 300 mm, tj. bylo vyrobeno celkem 6 kusů. Na jeden konec trubičky byl navařen dutý obrobek šestiúhelníkového průřezu s vnitřním závitem s označením G 1/4“. Závit byl volen takový, aby byl shodný se závitem na manometru.

obr. 15 - Plastové pouzdro hygropinu

obr. 16 - Plastové pouzdro hygropinu + ucpávací tyčinka

obr. 17 - Korozivzdorná trubička s navařeným vnitřním závitem.
3.1.4 Silikonový olej [21]

Pro tento experiment byl vybrán jako nejvhodnější olej metyl silikonový, a to z důvodu nízké teplotní roztažnosti. Konkrétně byl vybrán olej Lukosiol M 350 značky Ekolube. Tento olej se vyznačuje vysokou tepelnou stabilitou v oblasti vysokých a nízkých teplot, malou změnou viskozity v závislosti na teplotě a téměř neměnnou hustotou (970 kg/m3) v širokém rozmezí viskozit.

obr. 18 - Silikonový olej Ekolube

3.1.5 Manometr [22]

Korozivzdorný manometr značky WIKA pro experiment byl doporučen pro jeho odolnost vysokým teplotám. Tento manometr s průměrem 63 mm a se spodním připojením je opatřen vnějším závitem G 1/4 “. Rozmezí měřených tlaků se pohybuje mezi 0 bar až 60 bar. V experimentu předpokládáme maximální tlaky okolo 40 bar. Korozivzdorné manometry – série MN se vyrábí z korozivzdorné oceli AISI 316L (1.4404), která je dobře svařitelná a leštitelná. Ocel je velice odolná proti koncentrovaným kyselinám jak organickým, tak anorganickým a má výrazně zvýšenou odolnost proti všem typům koroze. Tato ocel se používá v chemickém průmyslu. Manometr je tudíž určen pro měření tlaku agresivních medií s vysokými nároky na mechanickou i teplotní odolnost přístroje. Třída přesnosti měření manometru je udávána 1,6 %.
3.1.6 Topné těleso [23]

Vzorek byl zahříván topným tělesem značky Thermal Hire. Jedná se o keramickou podložku s označením 400003 o velikosti 152 x 336 mm, napětí 60 V a výkonem 2,7 kW. Keramická podložka je vyrobená z keramických korálků s vysokým obsahem oxidu hlinitého pospojovanými drátem z nikl-chromového pružného jádra. Podložky jsou vhodné pro teploty do 1050 °C. Vyšší teploty lze dosáhnout použitím jádrového drátu s jiným složením materiálů.
3.2 Výroba vzorků a rozmístění měřičů

Betonové vzorky o rozměru 150 x 300 x 120 mm byly vybetonovány ze dvou velmi podobných směsí. První tři vzorky byly vybetonovány ze směsi viz. tab. 2. Čtvrtý až šestý vzorek byl vybetonován ze směsi viz. tab. 3. Rozdíly jsou pouze v použitý PP vlákenu do betonu.

| Složení betonové směsi C30/37 - vzorek č. 1 |
|-----------------|-----------------|
| Složka | Typ/označení |
| Cement | CEM I 42,5 - Mokrá |
| Voda | ---- |
| Kamenivo | Frakce 0/4, 8/16, 11/22 |
| Plastifikátor | Stachement S33 |
| Provzdušňovač | Mikroporan 2 |

tab. 2 - Receptura betonové směsi č. 1 (bez PP vláken)

| Složení betonové směsi C30/37 - vzorek č. 2 |
|-----------------|-----------------|
| Složka | Typ/označení |
| Cement | CEM I 42,5 - Mokrá |
| Voda | ---- |
| Kamenivo | Frakce 0/4, 8/16, 11/22 |
| Plastifikátor | Stachement S33 |
| Provzdušňovač | Mikroporan 2 |
| Vlákna | PP 6 mm |

tab. 3 - Receptura betonové směsi č.2 (s PP vlákny)

Před výrobou vzorků bylo třeba si nejprve připravit jednotlivé části. První připravovaná část bylo bednění z laminátových desek. Desky byly nařezány do požadovaných rozměrů a následně sešroubovány. Byly vyrobeny dvě formy, z nichž každá sloužila k výrobě tří zkušebních těles daných rozměrů. Forma byla o celkové velikosti 300 x 450 x 150 mm.
Do připravených forem byly umístěny duté korozivzdorné trubičky viz 3.1.3. Otvor trubičky byl vyplněn tyčí o průměru 3 mm, a to z důvodu, aby se nám směs při betonáži nevytlačila do trubičky. Tyč byla zasunuta horním otvorem do trubičky v celé délce trubičky a následně byla zafixována modelovací gumou. Následně byl k trubičce lepící páskou připevněn termočlánek, který má funkci měření teplot ve vzdálenosti 20 mm od náhřívaného povrchu. Vzhledem k použití speciálního spoje byl termočlánek na konci ohnut do pravého úhle, aby byla přesně dána polohová výška měření a měření probíhalo v isotermě. Další méně důležitý důvod ohybu byl takový, aby nedocházelo k měření chybných hodnot teploty vlivem dotoku s korozivzdornou trubičkou.
obr. 23 - Ocelová tyč utěsňující otvor trubky proti případnému vniknuté betonové směsi při betonáži

Bednící formy byly opatřeny hrazdou z výztužných tyčí, která slouží jako pomocná konstrukce pro upevnění korozivzdorných trubiček. Hrazda byla vyrobená pomocí dřevěných hranolů připevněných svisle na obou kratších stranách bedníčího dílce, ke kterým se následně vodorovně upevnily ocelové betonářské žebírkové tyče. Tyto tyče byly k hranolu upevněny pomocí vázacích drátů.
Následně byly upevněny korozivzdorné trubičky. Tyto trubičky byly vázány ve svislé poloze, kolmo k betonářským žebírkovým tyčím, pomocí vázacího drátu. Nejprve byla trubička upevněna ke spodní betonářské tyči a poté se trubička horizontálně srovnala tak, aby byl její konec 20 mm od podlahy bednícího dílce. Po výškovém urovnání byla upevněna i k horní betonářské tyči a drátem řádně utažena, aby nemohla změnit svou polohu. Při provádění veškerých spojů byl kladen velký důraz na přesnost, aby vlivem ukládání betonu do formy a vlivem vibrací nedošlo ke změně přesné polohy trubičky a termočlánku.

obr. 25 - Detail upevnění korozivzdorné trubičky pomocí žebříku z betonářské výztuže k bednícím dílům

obr. 26 - Detail upevnění horní části korozivzdorné trubičky k betonářské výztuži pomocí vázacího drátu
Další částí přípravy k samotné betonáži byla příprava jednotlivých materiálů pro betonovou směs. Betonová směs C30/37 byla složena ze tří základních složek, a to z cementu, vody a kameniva. Dále bylo přidáno chemických přísad jako plastifikátor a provzdušňovač betonu. Složení betonových směsí viz tab. 2 a tab. 3. Všechny materiály byly s vysokou přesností naváženy do plastových nádob. Každá složka kameniva, cementu a vody se nacházela samostatně v plastových nádobách. Do dvou malých nádob byl navážen provzdušňovač a plastifikátor. Viz. obr. 28. Druhý typ vzorku navíc obsahoval polypropylenová vlákna délky 6 mm viz. obr. 29.
Kapitola 3: Experimentální část

obr. 31 - Vlévání vody do míchačky s přidaným plastifikátorem a provzdušňovačem betonu

obr. 32 - Vyplnění a vibrování betonové směsi do bednícího dílce na požadovanou výšku
Postupným ukládáním betonové směsi a vibrováním vzorku byly vyplněny všechny tři komory bedníčího dílec až na požadovanou výšku 120 mm. Po dosažení této výšky bylo do jednoho betonového vzorku vtlačeno plastové pouzdro hygropinu o délce 100 mm.

obr. 33 - Po dosažení požadované výšky betonového vzorku bylo ponořeno plastové pouzdro hygropinu

Druhý typ vzorku byl připravován obdobným způsobem, kdy se do míchačky vsypala nejprve suchá směs od nejhrubší frakce kameniva až po cement. Dále byla, na rozdíl od prvního vzorku, přidána polypropylenová vlákna viz. obr. 34. Po rozmíchání suché směsi se přilila voda s potřebnou chemií a vše se důkladně rozmíchalo v maximální době 3 minuty. Následně se směs vyplnil a zavibroval i druhý bednící dílec a bylo přidáno plastové pouzdro hygropinu.
obr. 34 - Přidání polypropylenových vláken do suché směsi betonu před jejím zamícháním

Obě hotové vybetonované formy byly převezeny do zkušební místnosti, kde se vzorky nechaly vytvrdnout.

obr. 35 - Tělesa po betonáži
Poslední fází výroby vzorků bylo samotné odbednění, které proběhlo 7 dnů po betonáži.

3.3 Měření

3.3.1 Příprava vzorku

Po tomto měření vlhkosti byla tělesa přepravena k měření pórového tlaku. K experimentu bylo připraveno místo pro měření tak, že byla rozestlána sklená vata v několika vrstvách, aby nedocházelo k úniku tepla do podlahy a tím i k případnému poškození podlahy. Na sklenou vatu byla následně položena dečka z keramických korálků, která sloužila jako iniciační zdroj teploty.
obr. 39 - Vozík s připravenými věcmi pro experiment, zkušebními tělesy a místo zvolené pro experiment

Na obr. 39 je vozík s potřebnými věcmi a v dálí jsou na zemi již vidět červené kably pro připojení topné rohože (růžová), kabel pro připojení plášťového termočlánku k dataloggeru a připravenou skelnou vatou.

Topné těleso bylo umístěno na skelnou vatu a připojeno ke kabelům, které vedly k ovládacímu přístroji viz obr. 40. Ovládací přístroj a udával teplotu topnému tělesu.

obr. 40 - Topná rohož umístěna na podestýlce ze skelné vaty a připravený plášťový termočlánek

V poslední fázi přípravy byl připojen k dataloggeru také počítač, který později při měření zapisoval teploty na povrchu a uvnitř vzorku.
Vzorek bez PP vláken byl položen na topné těleso a kabelový termočlánek, který byl umístěn uvnitř betonového vzorku byl připojen k dataloggeru. Do zabetonované korozivzdorné trubičky byl pomocí trialtyře nalit silikonový olej a následně byl přišroubován manometr (obr. 41). Kousek od vzorku byl připraven stativ s fotoaparátem, který sloužil ke snímání hodnot na manometru (obr. 42).

obr. 41 - Poslední fáze přípravy před měřením

obr. 42 - Měřicí sestava
3.3.2 Měření

Sestavení měřicí aparatury a nastavení všech požadovaných čidel trvalo přibližně hodinu, a tak zahřívání vzorků započalo kolem 15. hodiny. Venkovní teploty v laboratoři ukazovaly okolo 20 °C a teploty na povrchu vzorku a uvnitř vzorku začínaly pomalu narůstat. Celé měření trvalo kolem 90 minut po kterých byl první vzorek odzkoušen. Ihned poté byl vzorek bez PP vláken odstraněn a na jeho místo byl uložen vzorek s PP vlákny. Celý proces přípravy od položení vzorku na topné těleso, přes připevnění termočlánku, až po našroubování manometru pouze s rozdílem bez naplnění trubičky silikonovým olejem, byl zopakován jako u předchozího vzorku. Druhý vzorek byl nahříván cca 105 minut.
3.4 Vyhodnocení experimentu

3.4.1 Teplota

Teplota byla měřena na nahřívaném povrchu vzorku díky plášťovému termočlánku uloženému mezi topným tělesem a betonovým vzorkem. Druhá teplota byla měřena uvnitř vzorků, a to ve vzdálenosti 20 mm od nahřívaného povrchu, tzn. ve stejně vzdálenosti jako v umístění sběrného místa měřicí aparatury pro měření vlhkosti a pórového tlaku.

Z grafu č.1 je patrné, že maximálních teplota v čase ukončení měření, tj. po 120 minutách, byla na nahřívaném povrchu vzorku (červená) cca 500 ºC, uvnitř vzorku ve vzdálenosti 20 mm od nahřívané plochy vzorku (zelená) necelých 300 ºC.

Graf 1 - Teplotový vzorek č. 1 - bez PP vláken

Graf 2 - Teplotový vzorek č. 2 - s PP vlákniny
Na grafu č. 2 vidíme nárůst teplot na nahlížaném povrchu vzorku (červená) do maximální teploty 540 °C a uvnitř vzorku (zelená), kde byly termočlánky umístěny 20 mm od nahlížaného povrchu do maximální teploty 290 °C. V grafu 2 je také možno vidět v čase 50 minut při teplotě 160 °C prokluz měřené teploty. To vyplívá z uvolňování vázané vody – fázová výměna.

3.4.2 Pórový tlak

Ačkoliv set-up experimentu této diplomové práce byl zvolen přesně dle experimentu Ye Li [14], kde byla zvolena varianta pouze korozivzdorné trubičky vyplněné silikonovým olejem, tak žádný pórový tlak bohužel nebyl naměřen. Po prvním, neúspěšně odzkoušeném, vzorku bylo vyzkoušeno měření bez silikonového oleje, tzn. s trubičkou vyplněnou pouze vzduchem. Bohužel ani toto nastavení nemělo úspěšný konec. Po odejmutí manometru z trubičky, která by taktéž sbírala tlak z větší plochy v betonovém vzorku, naopak z Hygropinového pouzdra pára vycházel. To, že nebyl zaznamenán žádný pórový tlak v betonu mohla být příčina mnoha faktorů.

V tomto experimentu neměl žádný vliv na měření rozdíl set-upů, zdali je tlak přenášen do manometru pomocí oleje, nebo vzduchu. Nastavení měřící techniky by mohlo pomoci:

- Použitím trubičky o větším průměru, která díky většímu průměru sbírala tlak z větší plochy v betonovém vzorku.
- Navařením kalíšku na konec trubičky, který by taktéž sbíral tlak z větší plochy.
- Změna délky či síly stěny trubičky by mohla ovlivňovat výsledky tím, že trubičku na přesvícen konci ochlazuje okolní vzduch a tím trubička může odvádět teplo z betonového vzorku. Ověření by mohlo být provedeno vložením termočlánku do trubičky a následné zahřátí vzorku, čímž by se zjistil rozdíl teplot mezi teplotou uvnitř trubičky a teplotou ve vzdálenosti 20 mm od zahřívaného povrchu mimo trubičku. Vyřešením tohoto problému by bylo použití trubičky s tenčí stěnou a zkrácení trubičky na délku, aby bylo možné manometr našroubovat hned u vzorku.
- Složením receptury betonové směsi. V žádné z předchozích prací nebyla uvedena přesná receptura betonové směsi, a tak na měření pórového tlaku může mít vliv i například velikost kameniva.
- Vtlacením trubičky do betonu. V tomto experimentu byla uchycena trubička k bednění před betonáží a následně byla provedena betonáž s vibrováním. Tím může dojít k postupnému ucpání trubičky jemným cementovým tmelem, který by mohl utěsnit otvor trubičky a nepustit tak do trubičky právní tlak. Jiný postup by mohl být takový, že by se vzorek nejprve vybetonoval a následně by byla trubička vtláčena do betonové směsi. Taktu bylo do betonové směsi uloženo i plastové pouzdro Hygropinu, kde bylo při experimentu zaklapnuto gumovou záslepkou a při zahřívání gumová záslepk a tlakem vyhřela z pouzdra (obr. 45).
Očekávaný výstup experimentu byla podobná křivka jako na obr. 46, kde stejné nastavení měřicí techniky je označovány písmeny O-T-O. Označení znamená O (outside) termočlánek vně měřicí trubičky, T (tube) trubička ukončená bez kališku, O (oil) trubička naplněná olejem. Toto nastavení bylo vybráno z důvodu jednoduchosti přípravy a dále z hlediska vykazování nejvyšších pórových tlaků v experimentu Ye Li [14].

bild 45 - Obrázek zachycující explozivní vystřelení gumového víčka Hygropinového pouzdra

bild 46 - Zobrazení výsledků měření experimentu Ye Li [14]

bild 45 - Obrázek zachycující explozivní vystřelení gumového víčka Hygropinového pouzdra

Očekávaný výstup experimentu byla podobná křivka jako na obr. 46, kde stejné nastavení měřicí techniky je označovány písmeny O-T-O. Označení znamená O (outside) termočlánek vně měřicí trubičky, T (tube) trubička ukončená bez kališku, O (oil) trubička naplněná olejem. Toto nastavení bylo vybráno z důvodu jednoduchosti přípravy a dále z hlediska vykazování nejvyšších pórových tlaků v experimentu Ye Li [14].

bild 46 - Zobrazení výsledků měření experimentu Ye Li [14]
Závěr a návaznost na diplomovou práci

Cílem této diplomové práce bylo zjistit možnosti, jaké jsou v dnešní době metody měření pórového tlaku v betonu vystavených vysokým teplotám a shrnout tyto metody měření pórového tlaku. Jedna z metod byla vybrána a vyzkoušena v experimentu.

Praktická část této práce se zaměřila na výrobu 6 betonových vzorků o rozměrech 150 x 300 x 120 mm. Dva odlišné typy vzorků se lišily pouze ve výskytu polypropylenových vláken. Ve 3 vzorcích se PP vlákná vyskytovala a ve 3 se nevyskytovala PP vláka. Betonová směs byla tedy složena z vody, kameniva, cementu, provzdušňovače, plastifikátoru a polypropylenových vláken. Do každého vzorku byla zabetonována dutá trubička, na jejímž konci vně vzorku se nachází závit pro upevnění manometru. Druhý, volný konec trubičky uvnitř vzorku byl vzdálen od nahřívaného povrchu 20 mm. Ve stejné vzdálenosti od povrchu byl umístěn také termočlánek pro měření teploty. Dále se ve vzorku vyskytovala plastová trubička Hygropin, díky které se ve vzorku zároveň změřila vlhkost.

Vzorky se nechaly vytvrznout a po necelých 4 týdnech byl proveden experiment. Experiment započal se dvěma vzorky, jedním bez PP vláken a jedním s PP vláky. Před zkoušením se ve vzorcích změřila vlhkost pomocí přístroje Hygropin Proceq, která ukazovala téměř stejné hodnoty 62 % a teploty 22 ºC. Zkoušený vzorek byl následně položen na topné těleso, které vzorek nahřívalo. Teploty na povrchu se pohybovaly po cca 120 minutách kolem 500 ºC, uvnitř vzorku kolem 300 ºC. Při tomto měření měl být zároveň měřen i pórový tlak, čehož se bohužel nedočkalo.

Pórový tlak se nejspíš nepodařilo změřit z jednoho z následujících faktorů. Jedním z nich může být například ochlazování polohy měření korozivzdornou trubičkou dlouhou vysoko nad vzorek. To by šlo zjistit například vložením termočlánku do trubičky a pozorovat teplotu při těm v trubičce. Druhým faktorem může být upínání hrdla trubičky cementovou kaší při betonáži a následném vibrovaní. Dalo by se trubičku zatlačit do vzorku až po betonáži.

Námětem na další diplomovou práci by bylo vhodné zkusit promyslet další možné důvody, proč se pórový tlak nepodařil změřit. Zkusit použit jiný set-up pro měření, například trubička opatřena na konci kalíškem, který sbírá pórový tlak z větší plochy.
Seznam obrázků

obr. 1 - Vznik pórového tlaku v betonu [2].. 10
obr. 2 - Proces vytváření tlaku. [4].. 11
obr. 3 - Sorpční izotermy – vzťah mezi poměrem volné vody / cementem a relativním tlaku par při různých teplotách. [10].. 14
obr. 4 - Korozivzdorná trubička s navařeným kališkem a slinutý porézní kov [15]... 15
obr. 5 - Různé nastavení měřicích sestav pro měření pórového tlaku v betonu vystaveném vysokým teplotám s maximálními naměřenými pórovými tlaky [14]... 16
obr. 6 - Legenda k návrhovým tlakovým měřičům [14].. 16
obr. 7 - (a) schéma experimentální nastavení, (b) umístění měřicích hlav [14]... 17
obr. 8 - Konfigurace tlakoměrných sestav (I/O: termočlánek uvnitř/vně trubky, S/T: slinutý porézní disk/pouze trubka, O/R/A: trubka vyplněna olejem/tyčí/vzduchem) [14]... 18
obr. 9 - Maximální pórové tlaky použitých tlakoměrných sestav [14]... 19
obr. 10 - Vliv faktorů na maximální změřený pórový tlak [14].. 19
obr. 11 - Schéma kabelového termočlánku MTC 12 [16]... 21
obr. 12 - Termočlánek upevněn na konci trubičky pro měření pórového tlaku.. 21
obr. 13 - Konstrukce termočlánku [18]... 22
obr. 14 - Řez Hygropinem v betonu [19].. 22
obr. 15 - Plastové pouzdro hygropinu... 23
obr. 16 - Plastové pouzdro hygropinu + ucpávací tyčinka... 23
obr. 17 - Korozivzdorná trubička s navařeným zvnitřním závitem. ... 23
obr. 18 - Silikonový olej Ekolube... 24
obr. 19 - Manometr (foto pouze ilustrativní) [22].. 25
obr. 20 - Topné těleso Thermal Hire [23].. 25
obr. 21 - Výroba formy ... 27
obr. 22 - Hotové formy k výrobě zkušebních těles ... 27
obr. 23 - Ocelová tyč utěsňující otvor trubky proti případnému vniknuté betonové směsi při betonáži .. 28
obr. 24 - Upevnění ocelové tyče k trubičce... 28
obr. 25 - Detail upevnění korozivzdorné trubičky pomocí žebříku z betonářské výztuže k bednicím dílcům .. 29
obr. 26 - Detail upevnění horní části korozivzdorné trubičky k betonářské výztuži pomocí vázacího drátu .. 29
obr. 27 - Bednící díle s fixovanými korozivzdornými trubičkami a termočlánky připravený k betonáži
obr. 28 - Jednotlivé složky betonové směsi
obr. 29 - Polypropylenová vlákna délky 6 mm obsažené v jednom typu betonových vzorků
obr. 30 - Postupné nasypání suché směsi do míchačky od nejhrubšího kameniva po nejjemněší s následným zasypáním cementu
obr. 31 - Vlévání vody do míchačky s přidaným plastifikátorem a provzdušňovačem betonu
obr. 32 - Vyplnění a vibrování betonové směsi do bednícího dílce na požadovanou výšku
obr. 33 - Po dosažení požadované výšky betonového vzorku bylo ponořeno plastové pouzdro hygropinu
obr. 34 - Přidání polypropylenových vláken do suché směsi betonu před jejím zamícháním
obr. 35 - Tělesa po betonáži
obr. 36 - Schéma betonového vzorku s rozmístěním měřičů
obr. 37 - Příprava na měření vlhkosti pomocí přístroje Hygropin Proceq
obr. 38 - Měření vlhkostí ve vzorku s PP vláknky
obr. 39 - Vozík s připravenými věcmi pro experiment, zkušební tělesy a místo zvolené pro experiment
obr. 40 - Topná rohož umístěna na podestýlce ze skelné vaty a připravený plášťový termočlánek
obr. 41 - Poslední fáze přípravy před měřením
obr. 42 - Měřící sestava
obr. 43 - Měření
obr. 44 - Zaznamenání změn pórového tlaku na manometru
obr. 45 - Obrázek zachycující explozivní vystřelení gumového víčka Hygropinového pouzdra
obr. 46 - Zobrazení výsledků měření experimentu Ye Li [14]
Seznam tabulek

tab. 1 - Přeměna betonu za zvýšených teplot [3] ... 8
tab. 2 - Receptura betonové směsi č. 1 (bez PP vláken) ... 26
tab. 3 - Receptura betonové směsi č.2 (s PP vlákny) .. 26
Seznam grafů

graf 1 - Teploty ve vzorku č. 1 - bez PP vláken
graf 2 - Teploty ve vzorku č. 2 - s PP vlákny
Literatura

[4] KALIFA, Pierre. Spaling and pore pressure in HPC at high temperatures. B.m.: Centre scientifique et Technique de Batiment, France. 1. srpen 2000

[13] MINDEGUIA, Jean-Christophe. Temperature, pore pressure and mass variation of concrete subjected to high temperature — Experimental and numerical discussion on spalling risk. B.m.: Elsevier, France. 2010

Literatura

