ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební

Katedra betonových a zděných konstrukcí

Studijní program: Stavební inženýrství

Studijní obor: Integrální bezpečnost staveb

ANALÝZA VLIVU PŘEDCHOZÍHO POŠKOZENÍ BETONU NA POŽÁRNÍ ODOLNOST ŽELEZOBETONOVÝCH KONSTRUKcí

ANALYSIS OF THE EFFECT OF CONCRETE DEGRADATION ON FIRE RESISTANCE OF REINFORCED CONCRETE STRUCTURES

Diplomová práce

Bc. Daniela Benáková

vedoucí práce: Ing. Radek Štefan, Ph.D.

Ing. Roman Chylík

2021
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

<table>
<thead>
<tr>
<th>Příjmení:</th>
<th>Benáková</th>
<th>Jméno:</th>
<th>Daniela</th>
<th>Osobní číslo:</th>
<th>458601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zadávající katedra:</td>
<td>133 - Katedra betonových a zděných konstrukcí</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studijní program:</td>
<td>Stavební Inženýrství</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studijní obor:</td>
<td>Integrální bezpečnost staveb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce: Analýza vlivu předchozího poškození betonu na požární odolnost železobetonových konstrukcí

Název diplomové práce anglicky: Analysis of the effect of concrete degradation on fire resistance of reinforced concrete structures

Pokyny pro vypracování:
Rešerše literatury
Popis experimentů
Řešený příklad
Vyhodnocení
Závěr

Seznam doporučené literatury:
ČSN EN 1992-1-1 Eurokód 2: Navrhování betonových konstrukcí - Část 1-1: Obecná pravidla a pravidla pro pozemní stavby
Marek FOGLAR, Radek HÁJEK, Radek ŠTEFAN a Jiří STÖHR. Vyšetřování vlastností cementových kompozitů vystavených působení extrémních zatižení.

Jméno vedoucího diplomové práce: Ing. Radek Štefan, Ph.D.
Datum zadání diplomové práce: 28.9.2020
Termín odevzdání diplomové práce: 3.1.2021
Udaj uvedenho: toh ak. roku

III. PŘEVZETÍ ZADÁNÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT „Jak psát vysokoškolské závěrečné práce“ a metodickým pokynem ČVUT „O dodržování etických principů při přípravě vysokoškolských závěrečných prací“.

28.9.2020
Datum převzetí zadání
Signatura studenta(ka)
Prohlášení

Prohlašuji, že jsem předloženou práci vypracovala samostatně a že jsem uvedla veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 3. ledna 2021

Daniela Benáková
Poděkování

Ráda bych tímto poděkovala vedoucímu mé diplomové práce, Ing. Radku Štefanovi, Ph.D., za ochotu při konzultacích, připomínky a odborné vedení. Dále bych ráda poděkovala panu Ing. Romanu Chylíkovi za konzultace při tvorbě praktické části této diplomové práce, za věnovaný čas a předané znalosti.
Obsah

Abstrakt 7
Abstract 8

Seznam použitých symbolů a zkratek ... 9

I. TEORETICKÁ ČÁST .. 10
1 Úvod 10
 1.1 Motivace ... 10
 1.2 Stanovení výzkumné otázky ... 10
 1.3 Cíle práce ... 10
2 Stav poznání .. 11
 2.1 Beton ... 11
 2.2 Mráz ... 11
 2.3 Zemětřesení .. 12
 2.4 Požár ... 12
 2.5 Výbuch ... 13
3 Požár na poškozených konstrukcích ... 13
 3.1 Požár na poškozených konstrukcích po nárazu ... 14
 3.2 Požár po výbuchu .. 17
 3.2.1 Bombový útok v Oklahoma City ... 17
 3.2.2 Kombinace požáru a výbuchu na železobetonovou desku s dutým jádrem ... 19
 3.3 Požár po zemětřesení ... 24
 3.3.1 Požární zkouška železobetonového rámů vystaveného zemětřesení 25
 3.3.2 Rozložení teploty na betonovém vzorku s trhlinou za požáru 29
 3.4 Degradace betonu mrazem a teplotou ... 31
 3.4.1 Degradace betonu po cyklu zmrazení a rozmrazení a následnému vystavení vysokým teplotám .. 31
 3.4.2 Kombinované poškození betonu zatížením ohybem, zmrazováním a rozmrazováním a chloridem sodným ... 36
 3.4.3 Trojrozměrná mezor-numerická simulace heterogenního betonu za mrazu a tání ... 39

II. PRAKTICKÁ ČÁST ... 43

4 Experimentální část ... 43
 4.1 Výroba vzorků .. 43
 4.1.1 Postup přípravy betonové směsi ... 43
 4.1.2 Zkouška sednutí kužele ... 44
 4.1.3 Výroba zkušebních těles .. 46
 4.2 Vystavení zmrazovacím cyklů ... 47
 4.3 Vystavení vysokým teplotám ... 50
 4.4 Zkouška pevnosti betonu v tlaku ... 51
 4.5 Zkouška modulu pružnosti impulzní metodou ... 52

5 Experimentální příklad ... 57
 5.1 Experimentální skupina 1 - Referenční zkouška .. 57
 5.2 Experimentální skupina 2 – Mráz ... 59
Abstrakt

5.2.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 2 ... 62
5.3 Experimentální skupina 3 – Požár ... 63
5.3.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 3 ... 70
5.4 Experimentální skupina 4 - Mráz + požár .. 72
5.4.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 4 ... 77

6 Výsledky .. 79
7 Závěr 90

Seznam obrázků ... 91
Seznam tabulek .. 95
Literatura 96
Abstrakt

Klíčová slova

„Požár; výbuch; náraz; mráz; požární odolnost; beton; zatížení; materiálové vlastnosti; pevnost v tlaku; dynamický modul pružnosti“.
Abstract

The subject of this work is a combination of the effect of freeze-thaw cycles and fire effect on concrete structures. The work is divided into theoretical part and practical part. The theoretical part describes the individual loads separately, experiment for analysing the effect of combinations of extreme loads and their results. Individual experiments focus on fire on damaged structures and are divided into 3 basic parts: fire after an impact, fire after an earthquake and fire after an explosion. Another part of the experiments is focused on concrete structures exposed to freeze-thaw cycles. In the practical part are investigated four groups of concrete solids with different types of loads, which are then tested for compressive strength of concrete and dynamic modulus of elasticity. Group one describes concrete solids without additional loads, which are called referential. In group two, concrete solids are exposed to freeze-thaw cycles using a freezing box. In the third group, concrete solids are exposed to high temperatures using ceramic blankets. In the last group, combination of these two effects is applied to concrete solids. First of all, concrete solids were exposed to freeze-thaw cycles and then exposed to high temperatures. At the end of this work, all these groups are compared in order to verify the change in mechanical properties of concrete that has been exposed to frost, fire and combinations of these two conditions. The degree of degradation was evaluated by changing the value of compressive strength and dynamic modulus of elasticity.

Keywords

„Fire; blast; impact; freeze; fire resistance; concrete; loading; material properties of concrete; compressive strength; dynamic modulus of elasticity”.
Seznam použitých symbolů a zkratek

Latinské symboly

<table>
<thead>
<tr>
<th>Symbol</th>
<th>ZN</th>
<th>Oznacení</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_c</td>
<td></td>
<td>Pevnost betonu v tlaku</td>
<td>MPa</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Maximální zatěžovací síla</td>
<td>N</td>
</tr>
<tr>
<td>A_c</td>
<td></td>
<td>Plocha betonu</td>
<td>mm2</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>Rozpětí prvku</td>
<td>mm</td>
</tr>
<tr>
<td>E_{cu}</td>
<td></td>
<td>Dynamická modul pružnosti</td>
<td>GPa</td>
</tr>
<tr>
<td>v_L</td>
<td></td>
<td>Rychlost šíření impulzu</td>
<td>m/s</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>Součinitel rozměrnosti prvku</td>
<td>-</td>
</tr>
<tr>
<td>k_1</td>
<td></td>
<td>Koeficient pro jednorozměrné prostředí</td>
<td>-</td>
</tr>
<tr>
<td>k_2</td>
<td></td>
<td>Koeficient pro dvourozměrné prostředí</td>
<td>-</td>
</tr>
<tr>
<td>k_3</td>
<td></td>
<td>Koeficient pro trojrozměrné prostředí</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td></td>
<td>hmotnost</td>
<td>g</td>
</tr>
</tbody>
</table>

Řecké symboly

<table>
<thead>
<tr>
<th>Symbol</th>
<th>ZN</th>
<th>Oznacení</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td></td>
<td>Objemová hmotnost betonu</td>
<td>kg/m3</td>
</tr>
<tr>
<td>μ_{cu}</td>
<td></td>
<td>Poissonův součinitel</td>
<td>-</td>
</tr>
</tbody>
</table>

Zkratky

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Oznacení</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZS</td>
<td>Hasičský záchranný sbor</td>
</tr>
<tr>
<td>TNT</td>
<td>Trinitrotoluen (organická sloučenina, trhavina)</td>
</tr>
<tr>
<td>UZ</td>
<td>Ultrazvukový</td>
</tr>
<tr>
<td>ČSN</td>
<td>Česká technická norma</td>
</tr>
<tr>
<td>ČSN EN</td>
<td>Česká verze evropské normy</td>
</tr>
<tr>
<td>CEM I 42,5 R</td>
<td>Portlandský cement</td>
</tr>
</tbody>
</table>
I. TEORETICKÁ ČÁST

1 Úvod

1.1 Motivace

Při navrhování betonových konstrukcí je nutné brát ohled na veškeré návrhové situace a jejich příslušná zatížení, kterými je navrhovaná konstrukce vystavována po zbytek své životnosti.

Požár a výbuch se řadí mezi extrémní zatížení, kterým mohou být vystaveny všechny typy konstrukcí. Toto zatížení je velmi aktuální vzhledem ke zhoršující se bezpečnostní situaci. Do zatížení působící na konstrukci je nutné brát v potaz i extrémní zatížení (výbuch, zemětřesení, náraz a mráz) a tato zatížení posuzovat současně, nikoliv odděleně.

Hlavní motivací na toto téma jsou neprozkoumaná odvětví kombinací zatížení působící na konstrukce.

1.2 Stanovení výzkumné otázky

Jaký vliv má kombinace zmrazovacích a rozmrazovacích cyklů a požáru na betonovou konstrukci?

Jak je ovlivněna požární odolnost železobetonových konstrukcí předchozím vystavením cyklů zmrazování a rozmrazování?

1.3 Cíle práce

Hlavními cíli práce jsou:

1) komplexně prozkoumat účinky kombinací zatížení požárem, výbuchem, nárazem, zemětřesením a mrazem

2) zaměřit se na změny mechanických vlastností betonu vystaveného mrazu, požáru a jejich kombinaci

3) Porovnat výsledky experimentu
2 Stav poznání

2.1 Beton

Beton je základní stavivo, které vzniká stmelením plniva a pojiva. Za plnivo se považuje přírodní nebo umělé kamenivo. Pojivem je nejčastěji cementový tmel, ve speciálních betonech se jako pojivo nachází pryskyřice, živice, asfalty, síra, sádra atd.

V dnešní moderní době se na trhu nachází celá řada druhů betonů. Rozdělují se podle konstrukčních vlastností (prostý beton, slabě vyztužený beton, železobeton, předpjatý beton, vláknobeton), podle objemové hmotnosti (lehký, obyčejný, těžký), podle funkce v konstrukci (konstruktivní beton, výplňový beton), podle hmotnosti (hutný, mezerovitý, pórovitý) a podle dalších specifických vlastností.

2.2 Mráz

Obecně je působení mrazu na beton rozděleno do dvou skupin. První skupinou jsou účinky povrchového poškozování, kterým se říká odpad a druhou skupinou je porušení vnitřní struktury. Mrazuvzdornost betonu je přímo ovlivněna množstvím pórů a kapilár ve struktuře betonu. V těchto dutinách dochází ke hromadění vody a při působení mrazu k jejímu následnému zmrznutí a zvětšení objemu a tyto změny potom mohou způsobit porušení struktury betonu. Povrchové poškození betonu mrazem doprovázejí vždy neviditelné změny jako je ztráta pevnosti, ztráta modulu pružnosti, ztráta nepropustnosti a zvětšení objemu. Obvykle se tyto změny uplatní dříve než poruchy viditelné, což jsou zkoušky, kterými se tyto skryté změny zjišťují a měří. [2] [3]
2.3 Zemětřesení

2.4 Požár

V §51 vyhlášky MV č. 21/1996 Sb., kterou se provádějí některá ustanovení zákona o požární ochraně, se požár definuje takto:

„Pro účely požární ochrany se za požár považuje každé nežádoucí hoření, při kterém došlo k usmrcení či zranění osob nebo zvířat, anebo ke škodám na materiálních hodnotách. Za požár se považuje i nežádoucí hoření, při kterém byly osoby, zvířata nebo materiální hodnoty nebo životní prostředí bezprostředně ohroženy.“

Je celá řada kritérií, podle kterých rozdělujeme požáry a každé kritérium má určitý vliv na průběh požáru, záchranu životů i na způsob hašení daného požáru. Rozdělení požáru je podle hořících látek, podle možnosti šíření, podle rozsahu, podle doby trvání, podle zjistitelnosti nebo podle polohy požáru.

Na šíření požáru, zvláště na otevřeném prostranství, mají značný vliv srážky ve formě deště nebo sněhu, větr a teplota vzduchu, při velkém suchu se požár samozřejmě šíří rychleji, a to samé platí pro jeho rychlost šíření při podporování větrem. Naopak v dešivém počasí je rychlost šíření podstatně omezena, v jistých situacích může dojít i k vlastnímu uhašení požáru vlivem srážek.

Každá stavební konstrukce má danou odolnost proti působení vysokých teplot způsobených požárem. Je dán, že čím vyšší je požární odolnost daných stavebních konstrukcí, tím menší je pravděpodobnost rozšíření požáru, a tím pádem je pro požární jednotku jednodušší požární zásah, je menší riziko ztrát na životech v důsledku rozšíření požáru a prodlužuje se doba, kterou je konstrukce schopna odolávat požáru, aniž by se ztírala. Z tohoto důvodu je posouzení požární odolnosti objektu nedílnou součástí projekce a následná kontrola zpracovaných projektů včetně protipožárních opatření je nedílnou součástí činnosti oddělení prevence každého HZS. [8]
2.5 Výbuch

Výbuch je jev, při kterém dochází k rychlému uvolnění velkého množství par, vzduchu a u výbuchu způsobených hořením také k intenzivnímu tepelnému záření. Při výbuchu dochází k okamžitému porušení rovnovážného stavu určitého hmotného systému, přičemž přechod látky nebo soustavy látek z jednoho rovnovážného systému do nového probíhá velmi rychle. Výbuch je vždy doprovázen zvukovým, tepelným a světelným efektem. Podle podstaty vzniku rozeznáváme dva druhy výbuchu: fyzikální a chemický.

Výbuch lze očekávat zejména v objektech, kde se skladují/vyrábí látky schopné výbuchu (hořlavé plyny, hořlavé kapaliny, hořlavé prachy, látky reagující s vodou), v objektech, kde se provozují technologická zařízení s obsahem látek schopnými výbuchu, kde se přepravují nebo unikají nebezpečné látky, kde se používají hořlavé kapaliny při vyšších teplotách, kde probíhá nedokonalé hoření, kde probíhá chemický nebo tepelný rozklad látek a jiné provozovny. [9]

3 Požár na poškozených konstrukcích

Při navrhování betonových konstrukcí je nutné brát ohled na veškeré návrhové situace a jejich příslušná zatížení, kterými je navrhovaná konstrukce vystavována po zbytek své životnosti. Do zatížení, které na konstrukci působí během její životnosti, spadají i události, které značně ovlivňují zatížení vyvolané důsledkem mimořádné situace. Za mimořádnou situaci se počítá např. teroristický útok, letecká katastrofa, přírodní katastrofa, nehoda apod.

3.1 Požár na poškozených konstrukcích po nárazu

Konstrukce budov v městských částech mohou být vystaveny různým zatížením během jejich životnosti. V případech, kde jsou konstrukce vystaveny dvěma nebo více typům zatížení, může dojít k vážnému poškození konstrukce. Mezi takové případy patří konstrukce obklopené hořlavými materiály náchylnějšími ke kombinaci účinků nárazového zatížení a požárního zatížení. Účinky mechanického zatížení (náraz) jsou odlišné od účinků ohně. Mechanická zatížení jsou krátkodobá a přechodná, zatímco zatížení ohněm je dlouhodobé.[10]

V odborném článku [10] je proveden experiment na zkoumání požární odolnosti nosníku po nárazu v nízké rychlosti. Byly zkoumány čtyři nosníky stejných rozměrů (Obr. 1), s rozpětím 2,4 m. Nosníky byly navíc vyztuženy ocelovými vlákny.

Nárazový test byl aplikován pomocí nárazového zařízení (Obr. 2), které se skládá ze zvedacího a řídicího systému kladiva, spouštěcího zařízení a podpěry závěsů. Nosníky byly jednoduše podepřeny na ocelových válcích. Náraz byl proveden na horní povrch panelu volným pádem kladiva o hmotnosti 393 kg, z předem určené výšky 1,5 m a zrychlením 5,4 m/s. Během nárazového testu byl zaznamenán proces růstu trhlin v každém panelu pomocí vysokorychlostních kamer. Průhyb ve středu rozpětí byl měřen pomocí převodníku posunutí a na sběr dat byl použit počítačově řízený systém sběru dat.

Požár na poškozených konstrukcích
Po vystavení všech vzorků nárazovému zatížení byly nosníky přemístěny do zkušebního stroje ohybu, kde byla zároveň postavena montážní elektrická pec (Obr. 3). Elektrická pec se skládala ze základny, kovového pláště, izolačních materiálů, obložení, elektrického drátu, termočlánků a systému regulace teploty. Při zatížení vzorku požární zkouškou byly každých 30 minut zaznamenávány teplotní výkypy termočlánků a průhyby ve středu rozpětí.

![Obr. 3: Nastavení teploty: (A) Elektrická pec; (B) Schéma pece. Převzato z [10]](image)

Výsledky experimentu zatížení vzorků nosníků nárazovým testem a následnému vystavení požárního zatížení jsou znázorněny na Obr. 4, na kterém je znázorněno i pozorování drcení betonu v bodě nárazu pro všechny čtyři testované nosníky. Trhliny nejsou u všech nosníků totožné, díky různým dávkám ocelových vláken. Většina trhlin vznikla v místě nárazu a je rozložena v klinovité oblasti bodu nárazu, pod úhlem 45 ° směrem ke koncům nosníků.

![Obr. 4: (A) Prvek po nárazu; (B) Prvek po nárazu a požárním zatížením. Převzato z [10]](image)

Pro zaznamenávání hodnot při požární zkoušce bylo na každý nosník umístěno sedm termočlánků. Poškození vzniklé nárazovým zatížením, které se projevilo menšími a tenkými trhlinami, má zanedbatelný vliv na rozvoj teploty na testovaných nosnících vystavených ohni. Ovlivňování rozvoje teploty pomocí trhlin v jednotlivých betonových prvcích je popsáno v kapitole 3.3.2 - Rozložení teploty na betonovém vzorku s trhlinou za požáru. Během zkoušky požární odolnosti byly nosníky vystaveny jak ohni, tak konstantnímu čtyřbodovému namáhání ohybem.
Požár na poškozených konstrukcích

Výsledkem experimentu zatížení nosníku nárazem v malé rychlosti a následnou zkouškou požární odolnosti jsou hodnoty v rozmezí 140 – 150 min do selhání únosnosti nosníku. Dále bylo pozorováno, že dávkování ocelových vláken nemá žádný významný vliv na požární odolnost na nárazem poškozených nosnících. Vysvětlením může být fakt, že ocelová vlákna se vytahují pomalu od zatěžování až do konečného procesu selhání, takže ponechávají dostatek času pro všechna aplikovaná vlákna, aby ztratila svůj účinek. Je to jeden z důvodů, proč požární odolnost nosníků nezávisí na množství aplikovaných ocelových vláken.

Obr. 5: Výpočetní model konečných prvků nosníku. Převzato z [10]

Výsledky simulace jednoho vybraného testovaného nosníku jsou srovnatelné s výsledky experimentu a jsou znázorněny na Obr. 6. Většina deformací byla obnovená, ve spodní části nosníku byly rozptýleny pouze malé trhliny. Po vystavení exponovaného nosníku ohni se trhliny ve spodní části ohybového úseku nosníku šířily směrem nahoru k povrchu nosníku, což je totožné s reálným experimentem.

Obr. 6: Porovnání simulovaných poškození s porovnáním experimentu pro jeden vybraný nosník. Převzato z [10]

Na závěr experimentu lze shromatovat, že při nárazovém zatížení je vyztužení nosníku ocelovými vláky spolehlivé pro převedení střihového porušení na ohybovou deformaci. Dávka ocelových vláken má zanedbatelný vliv na tepelné a mechanické chování poškozených nosníků. I když jsou nosníky porušeny předchozím nárazem v malé rychlosti, stále fungují v elastickém stavu a mají
velmi dobrou požární odolnost. Je třeba brát v potaz, že všechny hodnoty se vztahují na náraz v malé rychlosti. Jakmile se nárazové zatížení zvýší, dojde k vážnějšímu poškození prvku, přičemž bude ovlivněno jak tepelné, tak mechanické chování nosníků.

3.2 Požár po výbuchu

V současné době je na světě zvýšený nárůst objemů teroristických útoků na objekty dopravní a veřejné infrastruktury, proto je nutné věnovat velkou pozornost výbuchové odolnosti staveb. Dalším rostoucím faktorem je výstavba velkých bytových domů, obchodních center nebo kancelářských budov, do kterých jsou zahrnuty podzemní garáže, aby se vyřešil problém s přetížením parkovišť v ulicích měst. Zatímco teroristické útoky jsou plánované a nedá se předem určit, v jaké míře a kde k výbuchu dojde, v podzemních garážích se s výbuchem počítá, a proto se zde navrhuji detekční systémy, odvětrávací systémy a hasicí systémy. Stejně, jako se vyvíjí návrhy ochrany před požárem a výbuchem, vyvíjejí se i technologie motorů automobilů (nová paliva, elektromobily a jiné).

Riziko zatížení vyvolané výbuchem spočívá v šíření rázové vlny prostředím, jako je vzduch nebo konstrukční prvek. Rázová vlna se šíří od epicentra výbuchu a překračuje rychlost zvuku v prostředí (vzduch, prvek). Zdrojem výbuchu mohou být různé látky, typy hořlavého materiálu, nitromethan a podobně [9].

S problematikou výbuchu v podzemních garážích je spojena nedávná nehoda v Rotterdamu (2007).

3.2.1 Bombový útok v Oklahoma City

Požár na poškozených konstrukcích

Obr. 7: (A) Rámová konstrukce budovy.; (B) Pohled znázorňující umístění výbuchu. Převzato z [14]

Tento útok byl klasickým příkladem toho, čemu se říká „progresivní kolaps“. Rozsah kolapsu, který sahal daleko za oblast přímého poškození konstrukce výbuchem, vedl ke studii progresivního kolapsu. Přímým účinkem výbuchu byl zničen pouze jeden sloup v konstrukci a to tak, že byl odstraněn všechn beton a zůstala pouze ocelová výztuž sloupu. Jak se rázová vlna šířila dál do konstrukce, změnila směr působícího zatížení na stropní desky, které nebyly vyztužené natolik, aby zcela odolávaly opačnému zatížení, než jakému byly navrženy (tlaková vlna působila směrem od výbuchu ke stropní desce, to znamená od spodní strany a prostupovala stropní deskou). Tlaková síla působící směrem nahoru byla dostatečně velká, aby nadzvedla stropní desky. Jelikož byly stropní desky zmonolitněny se stropními nosníky a propojení mezi nimi bylo řádně zesíleno, tak reakce na tlakovou sílu směrem vzhůru stropní desky efektivně přenesly do stropních nosníků, které ovšem také nebyly na tlak směrem vzhůru navrženy. Důsledkem tlakové síly bylo reverzní ohýbání stropních trámů a stropní desky a následné smykové porušení u sloupů, (Obr. 8). Vlivem výbuchu došlo ke změně orientace zařízení a změně statického schématu, což vedlo k narušení konstrukce. Podrobnější popsání porušené a následně stržené konstrukce [14–17].

Obr. 8: (A) Ilustrace deformace stropní desky a nosníků v důsledku působení tlakové sily; (B) Pohled na poškozený spoj sloupu tlakem. Převzato z [14]
Zničení federální budovy bylo kombinací přímých účinků výbuchu, které zničily jeden sloup a velké části druhé, třetí a možná i čtvrté stropní desky ve čtvrtém patře. V důsledku robustního spojení mezi stropní deskou a stropními trámy a křehkým spojením mezi stropními trámy a sloupy došlo ke ztrátě stability stropních desek, sloupů a nosníků. Ze zhroucení federální budovy byly vyvozeny čtyři závěry, které se vztahují na návrh velkých budov, ať už pro obranu proti teroristickým útokům, nebo jen pro lepší výsledky pro případy, že bude budova vystavena neočekávanému zatížení.

1) Navrhovat kompletní prostorový rám, který propojuje všechny prvky přenášející zatížení a poskytuje stabilitu.

2) Tento rám musí být chráněn tzv. „mechanickými pojistkami“, které umožňují selhání stropních desek a stěn bez poškození rámů.

3) Rám musí být schopen přijímat velká zatížení s následnými deformacemi při zachování kontinuity.

4) Spodní části obvodových sloupů by měly být navrženy v co největší míře tak, aby odolávaly přímým účinkům výbuchu.

3.2.2 Kombinace požáru a výbuchu na železobetonovou desku s dutým jádrem

Z hlediska zvýšeného rizika kombinace výbuchu a požáru v podzemních garážích byl proveden experiment [18], který se zabýval analýzou únosnosti vysokopevnostních desek z dutého jádra ze železobetonu, které jsou vystaveny nejprve vysokému zatížení a poté ohni. Tato studie má v úmyslu přispět k analýze kombinaci požáru a výbuchu na konstrukci podzemních parkovišť. Odborný článek [18] se zaměřuje pouze na požár pod stropní deskou. Nejprve analyzuje chování železobetonové desky bez vystavení požáru a poté ze zabývá analýzou výbuchu pro desky, které ohni vystaveny byly.

Numerické nástroje, které jsou doposud známy, neumožňují analyzovat požár a výbuch současně, a to z důvodů celkového rozdílu v časové změně fyzikálních jevů. Exploze mění materiálové vlastnosti velmi rychle. Oproti tomu požár nemění materiálové vlastnosti tak rychle. V tomto experimentu byl použit software LS-DYNA, který umožňuje analyzovat chování
Požár na poškozených konstrukcích

materiálu po výbuchu. Vlastnosti materiálu po požáru jsou do numerického nástroje vkládány jako vstup před nárazovým zatížením na základě odhadu redukcí pomocí bibliografických výsledků.

Experiment se zaměřil na posouzení deskového prvku, který je 5,2 m dlouhý a 0,6 m široký, tloušťka desky je 0,13 m. Pod prostě podepřenou stropní desku je umístěn ocelový rám, se kterým lze manipulovat pomocí vysokozdvižného vozíku. Manipulace vysokozdvižným vozíkem zaručuje rychlé výměnu požárního zdroje za nainstalování výbušného zdroje (celá akce by neměla trvat déle než 2 minuty, aby nedošlo k nežádoucím účinkům na konstrukci, jako je ochlazování povrchu). Tato ocelová konstrukce nese kovovou nádobu, ve které je umístěno 50 l oleje a 10 l paliva jako zdroj požáru. Železobetonová deska je vystavena ohni po dobu 50 minut.

![Obr. 10: Rozměry desky. Převzato z [18]](image1)

![Obr. 11: (A) Nastavení během požárního zatížení; (B) Umístění výbušniny. Převzato z [18]](image2)

Jsou zkoumány celkem čtyři scénáře: detonace 350 g trhaviny ve vzdálenosti 1 m od konstrukce, bez požárního zatížení, druhý scénář s požárním zatížením před výbuchem, třetí a čtvrtý scénář je totožný, akorát se použije 1,5 kg trhaviny.

Byly provedeny celkem tři totožné zkoušky, z důvodu porovnání a ověření výsledků. Podmínky pro všechny zkoušky byly stejné (hořlavá látka, vzdálenost mezi ohněm, deska). Chování desky se v různých zkouškách neměnilo. Měření teploty bylo zaznamenáváno pomocí termokamery a termočlánků. Po ukončení zkoušky deska vykazovala deformaci 5 cm směrem dolů (průhyb) v důsledku požárního zatížení. Po vizuální stránce nebyly shledány žádné trhliny od požárního zatížení.
Scénář 1 a 2: trhavina 350 g, zavěšená ve vzdálenosti 1 m od železobetonové desky

Zatížení explozi bylo simulováno pomocí zavěšené trhaviny. Reakce na výbuch je zachycena vysokorychlostní kamerou. Po zatížení konstrukce výbuchem bez vystavení požáru nejsou pozorovány žádné trhliny. Při prvotním zatížení ohněm a následnému vystavení železobetonové desky výbuchu dochází k redukci tuhosti a také dohází k tepelným dilatacím. Nejvíce poškozenou částí byl prostor mezi dutými jádry a spodním povrchem železobetonové desky. Po výbuchu se objevují podélné trhliny v oblastech, které byly v přímém kontaktu s ohněm.

Scénář 3 a 4: trhavina 1,5 kg, zavěšená ve vzdálenosti 1 m od železobetonové desky

Při zatížení železobetonové desky bez vystavení požáru deska značně vibruje v první fázi, nejprve bez trhlin, později s jednou podélnou trhlinou ve střední části rozpětí. Na železobetonové desce vystavené požáru a následně výbuchu se také objevují podélné trhliny. Deska si zachovává svoji únosnost, ale vlivem předchozího působení požáru se prodlužuje dynamická odezva a maximální průhyb uprostřed ze zvýšil z 12,5 cm na 16 cm.

Obr. 12: Schéma průřezu s porušením. Převzato z [18]

Obr. 13: (A) Nastavení během požárního zatížení; (B) Umístění výbušniny. Převzato z [18] [19]
Dále je v softwaru LS-DYNA modelována železobetonová deska. Numerický model pro analýzu výbuchu vykresluje dobrou shodu maximální deformace a frekvence s ohledem na experimentální posouzení případu bez vystavení požáru. U modelace desky vystavené požáru jsou maximální odchylky shodné s experimentem, ale frekvence numerických výsledků jsou ve srovnání s experimentem vyšší.

Pro scénář s menším množstvím výbušniny je pozorováno elastické chování železobetonové desky. Pro scénář s větším množstvím výbušniny dochází k vzniku podélných trhlin s efektem uzavírání. Deska si i po vystavení požáru zachovává svou únosnost.

Obr. 14: (A) Trhliny na konstrukci po zatížení požárem a výbuchem; (B) Měření termokamer po požárním zatížení; na povrchu je dosaženo maximální teploty 432°C. Převzato z [18]

Obr. 15: Rozdělení betonové desky na vrstvy s různými vlastnostmi betonu v závislosti na teplotě betonu. Převzato z [18]

Obr. 16: Poškození po výbuchu 1,5 kg trhaviny bez požárního zatížení. Převzato z [18]
Shrnutí výsledků experimentu:

- Na stropní desce s aplikací menšího výbuchu bez rozšíření plamene je pozorováno pružné chování betonového prvku bez viditelných trhlin.
- Zatížení menším výbuchem a následně požárem způsobilo největší oslabení prostoru mezi dutými jádry a spodním povrchem stropní desky. Jsou viditelné podélné trhliny v oblastech, které byly v kontaktu s ohněm.
- Betonový prvek vystavený větší náloži výbušniny, ale také bez požárního zatížení vykazuje viditelné trhliny ve střední části rozpětí.
- Stropní deska vystavená větší náloži výbušniny a následně požáru zvětšila svůj maximální průhyb o cca 30%.
- Porovnání experimentu je provedeno se zjednodušeným modelem, kde je dosaženo dobré korelace. I přesto je třeba investovat úsilí ke zlepšení numerického modelování, aby se dosáhlo lepší korelace s experimentálními hodnotami.
3.3 Požár po zemětřesení

Požáry jsou velmi pravděpodobnou událostí v důsledku zemětřesení a to hlavně v městských oblastech. Zemětřesení je ve většině případů doprovázeno sekundárním účinkem a to požárem. Zemětřesení může např. způsobit tsunami, které zapříčiní zřícení komínu ve městech, a tím dojde ke vzniku a rozšíření požáru. Další příklad může být sesuv půdy zapříčinění zemětřesením, díky kterému dojde ke zkratu elektrického vedení a následnému vzniku a šíření požáru. Proto je po stavebních inženýrích ve stavebních předpisech vyžadováno (ve většině zemích), aby zvažovali vliv seismického a požárního zatížení na konstrukce a aby byla zajištěna dostatečná odolnost vůči těmto nebezpečím, které mohou vznikat.

San Francisco (1906)

Tokio (1923)
Dne 1. září 1923 byla silným zemětřesením o síle 7,9 stupně Richterovy škály zasažena jižní oblast Kantó, především Jokohama a Tokio. Zemětřesení bylo po chvíli následováno asi 12 metrů vysokým tsunami a dále pak rozsáhlými požáry. Požár trval 3 dny a šířil se hlavně v městských částech a v jihovýchodním Tokiu. Požár zasáhl 45% Tokia, udává se počet 381 000 zničených domů [21].

Dalším příkladem může být vypuknutí plošného lesního požáru v oblastech zasažených zemětřesením, jak tomu bylo v Chile.

3.3.1 Požární zkouška železobetonového rámu vystaveného zemětřesení

Z důvodů nedostatečné literatury v odvětví výzkumu chování betonových konstrukcí po zemětřesení a následném požáru byl proveden experiment se zaměřením na danou problematiku. Jednopatrový testovací rám byl zkonstruován na silném podlaží. Zkušební rám se skládal ze čtyř čtvercových sloupů o rozměrech 300x300 mm, střešních nosníků 230x230 mm a stropní desky tl. 120 mm. V článku [22] je popsán zkušební test, kde byla provedena požární odolnost otevřeným ohněm na konstrukci, která byla nejdříve vystavena simulovanému seismickému poškození.

Na závěr byl testovací rám vystaven mechanickému bočnímu zatížení, aby se stanovila zbytková tuhost a pevnost konstrukce.

Veškerá měření byla zaznamenávána elektronickými čidly, senzory, tenzometry a termočlánky. Umístění těchto zaznamenávacích čidel znázorňuje Obr. 18.
Odborný článek [22] popisuje výsledky experimentu jednotlivých fází. V první fázi (seismické zatížení) popisuje vznik jednotlivých trhlin a jejich prohlubování, výsledky experimentu jsou doplněny fotografiemi, na kterých jsou trhliny znázorněny (Obr. 19).

Obr. 18: Zkušební rám s umístěním termočlánků a tenzometrů. Převzato z [22]
Požár na poškozených konstrukcích

V druhé fázi (požární zkouška) je termočlánky zaznamenána dvanáctihodinová zkouška, z toho byla konstrukce vystavena hodinovému ohně a jedenáct hodin byla ve fázi chladnutí. Termočlánky, které byly umístěny příliš blízko zdroje ohně, nebyly funkční. K flashoveru došlo mezi pátou až sedmou minutou požární zkoušky. První významnou událostí bylo odštěpování betonové vrstvy stropní desky, ke které začalo docházet mezi čtvrtou až pátou minutou. Stropní deska, která byla narušená již od seismického zatížení, byla náchylnější k odštěpování betonové krycí vrstvy více než deska, která poškozená nebyla. Odštěpování doprovázely hlasité zvuky, které iniciovaly, že k odštěpování dochází vlivem vysokých tlaků pórů v betonu, které se zhoršovaly díky nedávným deštům před experimentem a následné vlhkosti ovzduší. Odštěpování však nebude vždy stejně. Je to proces, který je závislý na parametrech, jako je pírovitost, propustnost, rozdílná tepelná roztažnost, vlhkost, rychlost zahřívání a vnější zatížení. Dále zahřívání vyvolalo několik povrchových trhlin na všech prvcích konstrukce, při teplotě asi 600 °C a tyto trhliny se při vzrůstající teplotě dále rozšiřovaly. Jak již bylo zmíněno u stropní desky, prvky které byly poškozené seismickým zatížením, byly během zkoušky požární odolnosti náchylnější k většímu tepelnému poškození. Testovací rám, který byl vystaven simulovanému požáru, experiment přežil bez kolapsu.

Obr. 19: Schéma trhlin způsobených seismickým zatížením. Převzato z [22]
Požár na poškozených konstrukcích

Obr. 20: a) zatížení simulovaným zemětřesením, b) požární zkouška, c) zkouška zbytkové tuhosti rámu. Převzato z [22]

Obr. 21: (A) Schéma prostoru zatíženého požárem; (B) Stropní deska po požáru. Převzato z [22]

Obr. 22: Znázornění průhybů ve stropní desce. Převzato z [22]
Shrnutí výsledků experimentu:

- Celkové poškození rámu nebylo závažné.
- Nebyla pozorována velká ztráta tuhosti a pevnosti.
- Nebylo pozorováno ohýbání výztuže.
- Na konstrukci byly pozorovány rozsáhlé trhliny a plastické deformace v předpokládaných místech nosníku.
- Rám nevykazoval známky kolapsu.
- Na sloupech a trámech nebylo pozorováno odštěpování betonu.
- Největší poškození bylo zaznamenáno na stropní desce, poté na sloupech a menší poškození nesly nosníky. Nosníky a sloupy umístěné v zadní části byly poškozeny více než ty v části přední. Přítomnost prasklin způsobených simulovaným seismickým zatížením nezhoršila míru poškození od požárního zatížení, avšak urychlil se přenos tepla těmito prvky konstrukce.

3.3.2 Rozložení teploty na betonovém vzorku s trhlinou za požáru

Experiment [23] analyzuje deset betonových vzorků na zkoušku požární odolnosti. Devět vzorků má předem vyrobené trhliny a jedem vzorek je neponičený (bez trhlin). Účelem experimentu je zkoumání vlivů trhlin na konstrukci na rozložení teploty v betonových prvcích, které jsou vystavené požáru po zemětřesení.

Betonové vzorky byly připraveny v rozměrech 200 mm x 300 mm x 800 mm a byly vyrobeny z jedné šarže hotového betonu (portlandský vysokopecní cement, přírodní drcený vápenec, místní říční písek). Všech devět vzorků bylo vytvořeno s jednou kolmou trhlinou a jednou šikmou trhlinou. Trhliny jsou znázorněny na Obr. 23 a Obr. 24. Všechny vzorky byly vytvrzovány na vzduchu déle než půl roku. Do jednoho narušeného vzorku bylo umístěno celkem šestnáct termočlánků, z důvodu zaznamenávání teploty. Do nenarušeného vzorku bylo umístěno dvanáct termočlánků. Všech deset vzorků bylo zahříváno po dobu 90 minut v peci na univerzitě v jižní Číně (South China University of Technology).

Obr. 23: Schéma vzorků s předem vytvořenými trhlinami a) s kolmou trhlinou, b) se šikmou trhlinou.

Převzato z [23]
Podle teplot naměřených na vzorcích, které byly vystaveny požáru, je zjištěno, že předem vytvořená trhlina může urychlit přenos tepla v betonu a naopak trhlina s šířkou menší než 3 mm brání přenosu tepla v betonu. Pohyb vzduchu v extrémně úzké trhlině je velmi pomalý. Rychlostní profil vzduchu uvnitř trhliny se blíží k nule ve všech směrech. Protože tepelná vodivost vzduchu je velmi nízká, působí vzduch uvnitř trhliny do jisté míry jako tepelný izolant. Z tohoto důvodu se trhliny s šířkou menší než 3 mm zanedbávají. Dále bylo zjištěno, že u vzorků s šikmými trhlinami se stejnou šířkou trhliny a se stejnou délkou trhliny jsou naměřené výsledky o něco vyšší než u vzorků s kolmými trhlinami.

Po zkoušce požární odolnosti deseti vyrobených vzorků byla navržena zjednodušená numerická metoda založená na programu ABAQUS.

Ze srovnání výsledků zkoušek a simulace z výpočetního programu, které jsou uvedeny v odborném článku [23] je zřejmé, že výsledky simulace souhlasí s výsledky zkoušek, jen v počáteční fázi zahřívání jsou rozdíly mezi vypočtenými a změřenými hodnotami relativně vyšší.

Z experimentálních a numerických výzkumů lze vyvodit následující závěr:

- Naměřené teploty na narušených vzorcích jsou nižší než teploty na středním průřezu nenarušeného vzorku – menší trhliny s omezenou šířkou brání přenosu tepla v betonu.
- Zjednodušená numerická metoda založená na programu ABAQUS je použitelná pro predikci teplotní analýzy na průřezu s trhlinou.
3.4 Degradace betonu mrazem a teplotou

Betonové konstrukce jsou během své životnosti vystavovány mnoha přírodním vlivů. V zemích, kde se vyskytují nízké teploty (mráz), je nutné brát v potaz zhoršení mechanických vlastností betonu po vystavení nízkým teplotám. Proto je velmi důležité zkoumat chování betonové konstrukce, která je vystavena opakovaným cyklům zmrazení a následnému rozmrazení a to i v kombinaci s vystavením konstrukce vysokým teplotám.

3.4.1 Degradace betonu po cyklech zmrazení a rozmrazení a následnému vystavení vysokým teplotám

Na kombinaci zatížení mrazem a vysokou teplotou na betonové konstrukce se zaměřuje odborný článek [24]. V této publikaci byla provedena experimentální studie na 75 vzorcích hranolů o velikosti 100 mm x 100 mm x 300 mm. Betonové vzorky byly po řádném vytvrzení (po dobu 24 dnů za standartních podmínek) vloženy na 4 dny do nádoby s vodou tak, aby hladina vody byla vyšší než horní povrch betonových vzorků a následně byly zatíženy zmrazovacími a rozmrazovacími cykly. Ke zkoušce cyklem zmrazování a rozmrazování byl použit zkušební přístroj KDR-V9 pro rychlé zmrazování a rozmrazování betonu a rozmezí teplot bylo zvoleno na +3°C až -16°C. Tento teplotní rozdíl byl aplikován každé 2 hodiny pro každý zmrazovací a rozmrazovací cyklus.

Obr. 25: Povrchové vlastnosti betonových vzorků po různých počtech zmrazovacích a rozmrazovacích cyklů. Převzato z [24]
Již po zatížení zmrazovacími a rozmrazovacími cykly nesly povrchové vrstvy betonových vzorků různé stupně poškození. Z výsledků je patrné, že záleželo na počtu cyklů zmrazení a rozmrazení. Při počtu cyklů 25 nebo 35 nevznikaly trhliny na povrchu betonu, ale docházelo k odštěpování povrchové vrstvy betonu. Při počtu cyklů 45 a 55 docházelo k prudkému odštěpování a k vystavení hrubého kameniva. Zejména při 55 cyklech docházelo u betonových vzorků k rozpadu okrajů.

Po různých počtech zmrazovacích a rozmrazovacích cyklov byly betonové vzorky přemístěny do vysokoteplotní pece (Obr. 26), ve které byly vystaveny expozičním teplotám (20°C, 300°C, 400°C a 500°C).

U skupiny betonových vzorků vystavených vysokým teplotám a následnému ochlazení vodou bylo zřejmé, že čím více byly betonové prvky vystaveny zmrazovacím a rozmrazovacím cyklů, tím více se po požárním zatížení projevily trhliny (Obr. 27 a)). Na betonových vzorcích zatížených teplotou 400°C byly patrnější trhliny gradující s narůstajícími počty zatěžovacích cyklů zmrazování a rozmrazování (Obr. 27 b)).
Požár na poškozených konstrukcích

Barva betonových vzorků po zatížení vysokými teplotami (400°C) byla téměř stejná bez ohledu na to, jestli byly betonové vzorky chlazeny vzduchem nebo vodou (Obr. 27 b) a (Obr. 27 c)). Rozdíl v druhu ochlazování byl patrný z povrchových trhlin. U betonových vzorků, kde byla použita metoda ochlazování vodou, byly trhliny značně viditelnější, co znamenalo, že poškození způsobené vodním chlazením na betonových vzorcích po požárním zatížení je větší než chlazení vzduchem.

Dále byly vzorky testovány na únosnost pomocí hydraulického lisu maximální zatěžovací silou 1000 kN. U betonových vzorků v kombinaci se zatížením nízkou teplotou a nízkou tlakovou silou bylo zaznamenáno několik trhlin. S rostoucím tlakovým zatížením byly způsobovány na betonových vzorcích narůstající šikmé trhliny, které vedly k destrukci vzorků v důsledku narůstajícího tlakového zatížení (Obr. 28 a)). U betonových vzorků vystavených vysokým teplotám s nízkým tlakovým zatížením se objevily trhliny, které se velmi rychle rozvíjely. Šikmé trhliny však na betonových vzorcích zjevně nebyly, ale za to se odštěpovala povrchová vrstva betonových vzorků (Obr. 28 b)). U vzorků, které byly vystaveny stejně vysokým teplotám lze odvodit, že čím více byly vzorky zatíženy zmrazovacími a rozmrazovacími cykly, tím větší poškození nastalo po tlakovém zatížení (Obr. 28 c)).
Požár na poškozených konstrukcích

Jako další část toho experimentu bylo provedeno přeměření a přepočítání ztráty hmotnosti betonu po cyklech zmrazení a rozmrazení a vystavení vysokým teplotám. Na (Obr. 29) jsou patrné rozdíly v hmotnostním poměru betonu se zvýšeným počtem cyklů zmrazení a rozmrazení a vysokými teplotami.

Na Obr. 30 a) je znázorněno zhoršení relativní pevnosti v tlaku na vodou chlazeném betonu. Tento graf vychází z poměru pevnosti betonu v tlaku po cyklech zmrazení a rozmrazení a vystavení vysokým teplotám ku pevnosti v tlaku nezmrazeného betonu při 20°C. Na Obr. 30 b) je zobrazeno porovnání účinků metod chlazení na relativní pevnost v tlaku betonových vzorků. Celkově lze z Obr. 30 a) a Obr. 30 b) odvodit, že s počtem cyklů zmrazení a rozmrazení a zvýšenými teplotami relativní pevnost betonu v tlaku postupně klesá.

Obr. 28: Porušení betonových vzůrů po různých zmrazovacích a rozmrazovacích cyklech a různých teplotách chlazených stříkající vodou: a) 20°C, b) 300°C, c) 400°C, d) 500°C. Převzato z [24]

Obr. 29: (a) Poroušení betonových vzorců po různých zmrazení a rozmrazení a vystavení vysokým teplotám.
Požár na poškozených konstrukcích

Obr. 29: a) Změny v hmotnostním poměru betonu se zvyšujícím se počtem cyklů zmrazení a rozmrazení, b) Variace ve vodou chlazeném hmotnostním poměru betonu se zvýšením teplotami. Převzato z [24]

Obr. 30: a) Relativní pevnost v tlaku ve vodou chlazeném betonovém vzorku po cyklech zmrazení a rozmrazení a po vystavení vysokým teplotám, b) Vliv metod chlazení na relativní pevnost betonu v tlaku při různých počtech cyklů zmrazení a rozmrazení po vystavení vysokým teplotám. Převzato z [24]

Z experimentálního článku lze vyvodit následující závěr:

- Po vystavení betonových vzorků různému počtu cyklů zmrazování a rozmrazování a následnému vystavení vysokým teplotám se barva povrchu betonu výrazně neměnila.

- Na betonových vzorcích zatížených zmrazením a rozmrazováním, které byly následně vystaveny teplotě 400°C, byly jasně vidět trhliny. U těchto vzorků dominoval vyšší počet cyklů zmrazení a rozmrazování.

- S vyšším počtem zmrazených a rozmrazených cyklů a vysoké teploty se zvýšovala i ztráta hmotnosti betonu. Počet cyklů zmrazení a rozmrazování a následnému vystavení vysokým teplotám má také velký vliv na relativní pevnost v tlaku a modul pružnosti betonu. Čím více těchto cyklů nastalo na betonových vzorcích, tím významnější zhoršení nastalo ve srovnání s hodnotami nezmrazených betonových vzorků při stejných teplotách.
3.4.2 Kombinované poškození betonu zatížením ohybem, zmrazováním a rozmrazováním a chloridem sodným

Článek [25] byl zaměřen na zkoumání degradace betonu. Experimentální betonové vzorky bylo zhotoveny ve třech skupinách, kde jednotlivé skupiny rozděloval vodní součinitel betonové směsi (Obr. 31).

<table>
<thead>
<tr>
<th>Series</th>
<th>Cement: kg/m³</th>
<th>Water: kg/m³</th>
<th>Sand: kg/m³</th>
<th>Coarse aggregate: kg/m³</th>
<th>Air content by volume: %</th>
<th>Compressive strength at 28 days: MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-0-44</td>
<td>409</td>
<td>180</td>
<td>658</td>
<td>1169</td>
<td>2-8</td>
<td>56-0</td>
</tr>
<tr>
<td>PC-0-32</td>
<td>440</td>
<td>142</td>
<td>665</td>
<td>1236</td>
<td>2-7</td>
<td>76-2</td>
</tr>
<tr>
<td>PC-0-26</td>
<td>477</td>
<td>124</td>
<td>621</td>
<td>1262</td>
<td>2-5</td>
<td>89-0</td>
</tr>
</tbody>
</table>

Obr. 31: 3 skupiny betonové směsi. Převzato z [25]

Betonové vzorky byly po odlití ponechány po dobu 24 dnů k procesu vyzrání. Po vytvrzení byla část vzorků ponořena do roztoku chloridu sodného a zbývající vzorky byly ponořeny do vody po dobu 4 dnů. Jakmile dosáhly vzorky stáří 28 dnů, přešlo se k zatěžovacím cyklům zmrazování a rozmrazování. Betonové vzorky byly podrobeny několika cyklům zmrazování a rozmrazování a po celou dobu zatěžování těmito cykly byly navíc zatíženy tříbodovým ohybem, viz Obr. 32. Počet opakovacích cyklů se odvíjel od dynamického modulu pružnosti. Jakmile dynamický modul pružnosti klesl na 60% a méně, nebo u daného betonového vzorku došlo k úbytku hmotnosti o více než 5%, byl proces cyklů zmrazování a rozmrazování ukončen (Obr. 33). O počtu cyklů jednotlivých betonových vzorků vypovídá Obr. 34.

Obr. 32: Schéma tříbodového zatížení. Převzato z [25]
Požár na poškozených konstrukcích

Obr. 33: Úbytek hmotnosti betonových vzorků po cyklech zmrazování a rozmrazování: a) ponořených do vody, b) ponořených do roztoku chloridu sodného. Převzato z [25]

Obr. 34: Počet zmrazovacích a rozmrazovacích cyklů pro vzorky naložené ve vodě a v chloridu sodném. Převzato z [25]

Požár na poškozených konstrukcích

Během zatěžování cykly zmrazování a rozmrazování hrálo velkou roli napětí u zatěžování tříbodovým ohybem. Pro poměry napětí 0 a 0,1 betonové vzorky vykazovaly schopnost opakování více cyklů zmrazování a rozmrazování, než když se poměr napětí zvýšil na 0,25 a 0,5. Když byl poměr napětí nastaven na 0,5, všechny betonové vzorky selhaly při cca 20-40 cyklech zmrazování a rozmrazování. Při vyšším napětí se beton stával křehkým a relativní dynamický modul pružnosti klesal na 0.

Z experimentálního článku lze vyvodit následující závěr:

- k výraznému odpadávání povrchu došlo, když byl betonový vzorek namočen v 3,5% roztoku NaCl a poté podroben cykly zmrazování a rozmrazování.
- Ztráta hmotnosti v roztoku NaCl byla větší než ve vodě.
- Vzorky namočené v roztoku NaCl vydržely o 20% více zatěžovacích cyklů zmrazování a rozmrazování než vzorky ponořené do vody.
- Ztráta dynamického modulu pružnosti u vzorků ponořených v NaCl byla menší než u vzorků ponořených do vody.
- Tříbodové zatížení mělo malý vliv na úbytek hmotnosti betonových vzorků.
- Čím vyšší je poměr napětí, tím rychleji klesal dynamický modul pružnosti.

Obr. 35: Maximální počet cyklů zmrazování a rozmrazování v poměru s velikostí napětí při zatěžování. Převzato z [25]
3.4.3 Trojrozměrná mezo-numerická simulace heterogenního betonu za mrazu a tání

V odborném článku [26] byl vytvořen trojrozměrný mezo-numerický výpočetní model betonu za mrazu a tání určený k dosažení simulace trhlin a jejich charakteristiky na betonu. K tomuto modelu byly analyzovány mechanické vlastnosti betonu s různým průměrem kamene po zmrazení a rozmrazení a vliv průměru kamene na mrazuvzdornost betonu.

Pro vývoj materiálu byl v tomto experimentu použit uživatelský podprogram VUSDFLS a poruchy betonu byly rozděleny na tahové trhliny a tlakové drcení. U podprogramu bylo velmi důležité nastavení citlivosti modelu k síťím, protože velikost prvku ovlivňuje stav porušení a vztah napětí a deformace betonu. V článku [26] byl vypočten vztah napětí-deformace a křivka tohoto vztahu pod tlakem a tahem je znázorněna na Obr. 37.
Požár na poškozených konstrukcích

K poškození betonu se předpokládálo, že dochází hlavně během procesu zmrazování s tím, že ignorovali poškození, které by mohlo nastat při rozmrazování. Stav zmrazování byl nastaven pomocí uvolnění roztažení póru, aby byl simulován stav deformace a napětí v betonu. Jelikož je proces zmrazení a rozmrazování zjednodušený, bylo nutné stanovit vztah mezi stupněm expanze póru a počtem cyklů zmrazení a rozmrazení. Vztahová křivka byla získána na základě výsledků zkoušek a výsledků výpočtů betonu při zmrazování a rozmrazování.

Obr. 37: Vztah napětí-deformace betonu s různými velikostmi ok sítě. Převzato z [26]

Obr. 38: Vztahová křivka. Převzato z [26]
Požár na poškozených konstrukcích

K ověření platnosti a použitelnosti trojrozměrné mezo-numerické simulace byly použity režimy selhání betonu při 25, 50, 75 a 100 cyklech zmrazení a rozmrazení (Obr. 38). Ze začátku zmrazovacího a rozmrazovacího cyklu se póry postupně rozšířovaly a jejich stěna se porušovala. Čím více byly betonové vzorky zatěžovány zmrazovacími a rozmrazovacími cykly, tím větší tlak působil na matici mezi póry. Podle výsledků testů byly schopny malé póry účinně omezit poškození větších pórů v betonu, které jsou blízko u sebe a vytvářely síť trhlin. Kvůli pórům, které byly umístěny v blízkosti povrchu betonu, docházelo na povrchu betonu k jeho deformacím a rozvíjejícím se prasklinám.

Obr. 39: Porovnání výpočetního modelu a výpočetních zkoušek.
Převzato z [26]

Dále byl v článku [26] zkonstruován graf křivek napětí a deformace betonu zatíženého cykly zmrazení a rozmrazení (Obr. 40 a)). Na Obr. 40 b) jsou znázorněny výsledky zkoušky tlakové pevnosti odvíjející se od počtu cyklů zmrazení a rozmrazení.

Obr. 40: a) Křivka napětí/deformace zmrazeného a rozmrazeného betonu, b) Výpočet a výsledky zkoušek tlakové pevnosti zmrazeného a rozmrazeného betonu. Převzato z [26]
Dále byl vypočítán dynamický modul pružnosti (Obr. 41 a)). Z výsledků bylo patrné, že maximální odchylka výsledné zkoušky a matematického výpočtu se liší o 1,25%. V tomto experimentu byly zohledňovány i vlivy velikosti kameniva na mechanické vlastnosti zmrazeného a rozmrazeného betonu. Konečné výsledky výpočtu byly popsány křivkami na Obr. 41 b). Z grafu zmrazeného a rozmrazeného betonu s různými průměry kameniva lze odvodit, že účinky samotného maximálního průměru kameniva na tlakovou pevnost nemají vliv na mrazuvzdornost betonu.

![Diagram a) Výsledky výpočtu dynamického modulu pružnosti zmrazeného a rozmrazeného betonu, b) Tlaková pevnost zmrazeného a rozmrazeného betonu podle max. velikosti kameniva. Převzato z [26]](image1)

Závěrem odborného článku [26] lze shrnout, že navržený trojrozměrný mezo-numerický výpočetní model zmrazeného a rozmrazeného betonu byl vytvořen pomocí podprogramu VUSDFLD společnosti ABAQUS za účelem simulace charakteristik trhlin na betonu. Maximální odchylka výsledků a výpočtů dynamického modulu pružnosti je pouze 6,26%, což ověřuje použitelnost metody. Z počátku zatěžování zmrazováním a rozmrazováním se vnitřní póry postupně rozšiřovaly a jejich stěna se poškozovala a se zvyšujícím se počtem těchto cyklů se maltová matrice mezi póry ničila pod náložem tlaků. V poslední řadě byly zohledněny účinky průměru kameniva na mrazuvzdornost betonu s výsledkem, že maximální průměr kameniva má velmi malý vliv na mrazuvzdornost betonu.
II. PRAKTICKÁ ČÁST

4 Experimentalní část

Experimentální část diplomové práce byla navržena a provedena za účelem ověření změny mechanických vlastností betonu, který byl vystaven mrazu, požáru a kombinacím těchto dvou zatěžovacích stavů. Míra degradace byla vyhodnocena pomocí změny hodnoty tlakové pevnosti a dynamického modulu pružnosti a dále se tomuto experimentu věnují následující kapitoly.

4.1 Výroba vzorků

Před samotným experimentem byla na katedře betonových a zděných konstrukcí navržena betonová směs (Tabulka 1), která se použila při výrobě zkušebních těles. Pro výrobu zkušebních těles byla využita prověřená receptura, na které byly již v minulosti ověřeny základní mechanické a fyzikální vlastnosti. Vzhledem k lehce proměnné vlhkosti jemného kameniva v laboratoři bylo pro účely kontroly shodnosti vlastností betonové směsi přistoupeno ke zkoušce konzistence pomocí sednutí kužele.

Tabulka 1: Jednotlivé složky navržené betonové směsi

<table>
<thead>
<tr>
<th>NAVRŽENÁ BETONOVA SMĚS</th>
<th>[kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cement</td>
<td>CEM I 42.5 R</td>
</tr>
<tr>
<td>voda</td>
<td>180</td>
</tr>
<tr>
<td>(w = \frac{V}{c})</td>
<td>0.44</td>
</tr>
<tr>
<td>hrubé kamenivo</td>
<td>8-16</td>
</tr>
<tr>
<td>střední kamenivo</td>
<td>4-16</td>
</tr>
<tr>
<td>jemné kamenivo</td>
<td>0-4</td>
</tr>
<tr>
<td>superplastifikátor</td>
<td>Stacement 95</td>
</tr>
<tr>
<td>vzduch</td>
<td>Micropropan</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.1 Postup přípravy betonové směsi

Jednotlivé složky betonové směsi, viz Tabulka 1, byly předem naváženy na digitální váze v laboratoři, kde probíhala příprava betonové směsi. Do míchačky bylo nejprve vloženo kamenivo společně s cementem a byla provedena homogenizace suchých složek. Po homogenizaci byla přidána voda s plastifikátorem a provzdušňovací přísadou. Jakmile byla směs důkladně promíchána, přešlo se k provedení zkoušky stanovení konzistence čerstvého betonu zkouškou sednutím.
4.1.2 Zkouška sednutí kužele

Zkouška sednutí kužele byla provedena za účelem zařazení betonové směsi do třídy zpracovatelnosti a v souladu s ČSN EN 12350-2 [27]. Dle této normy byla zkouška provedena pomocí dutého kužele, který byl naplněn čerstvým betonem. Naplnění dutého kužele bylo provedeno třemi vrstvami s tím, že každá vrstva čerstvého betonu byla řádně zhutněna přesně 25 vpichy propichovací tyčí. Po řádném zhutnění a naplnění až nad horní okraj kužele, došlo k odstranění kužele svislým pohybem nahoru. Jakmile byla forma dutého kužele zvednuta, vyhodnotila se zkouška sednutí jako platná, jelikož byl tvar kužele po sednutí symetrický, neporušený a nedošlo k usmyknutí kužele, viz Obr. 44. Výsledkem platné zkoušky sednutí kužele byla hodnota sednutí o 80 mm, viz Obr. 43, což odpovídá stupni konzistence S2 (50-90mm).
Experimentální část

Obr. 43: Zkouška sednutí kužele

Obr. 44: Zhodnocení správnosti zkoušky
4.1.3 Výroba zkušebních těles

Tabulka 2: Označení jednotlivých zkušebních těles

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Referenční 1</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
</tr>
</tbody>
</table>

Jelikož se zde jednalo o experiment, kde byl zkoumán vliv různých degradačních účinků na betonových tělesech, byl experiment rozdělen na 4 základní sekce. Tři betonové vzorky byly určeny jako referenční. Na těchto vzorcích po 28 dnech proběhlo zkoušení tlakové pevnosti a dynamického modulu pružnosti. Další tři betonové vzorky byly po řádném vytvrdnutí uloženy do mrazícího zařízení. Před vložení do mrazícího zařízení proběhlo měření dynamického modulu pružnosti a další měření proběhlo po vyjmutí vzorků z mrazícího zařízení. Třetí skupina tří betonových vzorků byla určena k zatížení vysokými teplotami, kdy po 28 dnech zrání proběhlo zahřívání na předem zvolenou teplotu a následně na těchto vzorcích proběhlo měření dynamického modulu pružnosti jak před zahříváním, tak po zahřátí a dále byla provedena zkouška tlakové pevnosti betonových těles. Poslední skupina tří betonových vzorků byla určena ke kombinaci mrazu a požáru dohromady. Po 28 dnech zrání byl na vzorcích odzkoušen dynamický modul pružnosti a poté byly uloženy do mrazícího zařízení. Po vyjmutí vzorků z mrazícího zařízení proběhlo znovu měření dynamického modulu pružnosti a následně bylo provedeno vysokoteplotní zatížení a měření fyzikálních a mechanických vlastností zahřátého materiálu.
4.2 Vystavení zmrazovacím cyklů

Vystavení vzorků zmrazovacím a rozmrzovacím cyklů proběhlo uložením betonových těles do automatického zařízení KD 20 pro zkoušky mrazuvzdornosti a povrchové odolnosti stavebních materiálů vůči mrazu, který byl k dispozici v laboratoři katedry betonových a zděných konstrukcí, viz Obr. 46. [28]
Zkušební automatické zařízení je vybaveno displejem, na kterém jsou znázorněny aktuální hodnoty zkušebního cyklu. Data o průběhu zkoušky jsou zaznamenávány a uloženy v paměti řídícího PC. Zkušební tělesa se vkládají do tepelně izolované vany o rozměrech 120 x 600 x 400 mm. Mrazicí box je vybaven teplotními čidly, které snímají teplotu ve zkušebním prostoru. V tomto zařízení je možné provádět zkoušky v rozmezí teplot -25°C až +30°C s libovolným průběhem časů. Je možné u zkoušek používat vodu i provádět zkoušku bez vody a počet cyklů zmrazování a rozmrazování je volitelný.

Obr. 47: Průběh zatěžování v mrazicím boxu. Převzato z [28]

Obr. 48: Grafické znázornění průběhu zatěžování. Převzato z [28]

Na Obr. 49 jsou znázorněny pouze dva zatěžovací cykly. Pro lepší přehlednost grafu nebylo vykresleno všech 14 cyklů zmrazování a rozmrazování.

Obr. 49: Průběh zatěžování zmrazovacími a rozmrazovacími cykly
4.3 Vystavení vysokým teplotám

Jelikož byla polovina betonových těles určena ke zkoumání degradace na tělesech vystavených vysokým teplotám, bylo nutné betonová tělesa vysokými teplotami zatížit. Vystavení vybraných betonových těles vysokým teplotám bylo provedeno pomocí keramických deček, viz Obr. 50. Tyto keramické dečky zajišťovaly rovnoměrné rozložení teplot při zkoušce. Záznam teploty při zkoušce zahřívání betonových vzorků byl zajištěn pomocí termočlánků, které byly umístěny uprostřed každého betonového vzorku, a dále pak z vnějších stran každého betonového tělesa.

Jednotlivé termočlánky byly připojeny do dataloggeru, viz Obr. 51, který přijímal zaznamenané teploty a ukládal v závislosti na čase. Výsledné hodnoty naměřených teplot byly závislé na zahřívání betonových těles pomocí keramických deček. Tyto dečky byly napojeny na řídící stroj, podle kterého dané betonové vzorky zahřívaly.

Řídící stroj byl ovládán manuálně a to tak, že během první hodiny zahřívacího experimentu byl teplotní gradient zvolen na 600°C za hodinu. Počáteční hodnota zahřívání byla zvolena dle [30], kde je prokázáno, že teplotní gradient ohřevu 600°C za hodinu zajišťuje rovnoměrné rozložení teploty na betonových tělesech. Poté byl teplotní gradient zvýšen o 100°C za hodinu a to na dalších 60 minut. V poslední fázi byl nárůst teploty zvýšen o 50°C za hodinu. Manuální ovládání řídícího přístroje bylo zvoleno z důvodu udržování stejné povrchové teploty ale zároveň zvyšování vnitřní teploty. Při dosažení vnitřní i povrchové teploty cca 600°C - 700°C byly keramické dečky odpojeny a zatěžování vysokými teplotami ukončeno.
4.4 Zkouška pevnosti betonu v tlaku

Podstatou zkoušky, dle ČSN EN 12390-3 [31], je postupné zatěžování zkušebních těles ve zkušebních lisu až do stavu porušení. Stav porušení se považuje maximální zatížení, při kterém dochází k rozdrcení zkušebního tělesa. Toto zatížení se zaznamenává a vypočítá se pevnost betonu v tlaku společně s posunem zatěžovací hlavy lisu. Zkouška se provádí na zkušebních tělesech, která představují krychle nebo válce o přesně daných rozměrech. Zkušební tělesa musí být vyrobena v souladu s ČSN EN 12390-2 [32]. Po vyjmutí zkušebních těles ze form se řádně očistí od zbytků uvolněného materiálu na plochách, které se budou dotýkat tlačených desek zkušebního lisu. Zkušební tělesa tvaru krychle se do zkušebního lisu osazují tak, aby směr zatěžování byl kolmý na směr ukládání (zhutňování) betonu. Do zkušebního lisu se zkušební tělesa umisťují na střed spodní tlačené desky s přesností 1% jmenovitého rozměru zkušebního tělesa. Při zatěžování zkoušice se samotné zatížení nastaví nejdříve pomocí konstantní rychlosti zatěžování a po tomto počátečním zatížení, se zkušební vzorek zatěžuje plynule, bez rázů, až do porušení.

Obr. 51: Betonová tělesa při zahřívání vysokými teplotami a zapojení do dataloggeru
Jakmile dojde k porušení zkušebního tělesa, zaznamená se maximální zatížení při porušení a přejde se k vyjádření pevnosti v tlaku. Pevnost v tlaku je vyjádřena pomocí rovnice:

$$f_c = \frac{F}{A_c} \quad \text{(1)}$$

kde: f_c = pevnost v tlaku [MPa]
F = maximální zatížení při porušení [N]
A_c = průřezová plocha zkušebního tělesa, na kterou působí zatížení v tlaku [mm²]

4.5 Zkouška modulu pružnosti impulzní metodou

Jedná se o rychlou, jednoduchou a v dnešní době hojně využívanou zkoušku, kterou lze aplikovat jak na zkušebních vzorcích (v laboratořích), tak i přímo na konstrukci. Dynamický modul pružnosti je možné stanovit měřením ultrazvukové impulzové metody dle ČSN 73 1371 [33]. Měření pomocí ultrazvukové (UZ) impulzové metody spočívá ve stanovení rychlosti šíření ultrazvukového vlnění v betonu. Metodou měřením ultrazvukovými impulzy lze stanovit fyzikálně mechanické vlastnosti betonu (degradace betonu, pevnost betonu, dynamický modul pružnosti a jiné vlastnosti). Rychlost šíření UZ impulzů lze určit výpočtem z času šíření a dráhy, po které se UZ impulz vlnění šířil (Obr. 52). [34]

![Obr. 52: Princip měření doby průchodu impulzu UZ vlnění materiálem. Převzato z [33]](image)

Zkouška se provádí pomocí ultrazvuku, který vysílá ultrazvukové impulzy. Ultrazvukový přístroj se skládá z několika propojených částí. Hlavní část tohoto přístroje je elektrický generátor, který vytváří impulzy. Do hlavního generátoru jsou připojeny sondy (budiče a snímače), které vysílají a přijímají vygenerované impulzy, procházející zkoušeným vzorkem. Po průchodu známou délkou dráhy betonového zkoušeného tělesa je impulz vibrací přeměněn na elektrický signál snímačem, umístěným na druhé straně zkoušeného tělesa, a elektronický časový okruh umožňuje změřit dobu průchodu impulzu [35]. Ve stavebnictví se používají pracovní kmitočty v rozmezí od 20 kHz do 150 kHz a je nutno tento kmitočet volit v závislosti na nejmenším bočním rozměru tělesa, délce mřížicí základny a pevnosti betonu.
Při měření prostupu impulzového vlnění byl pro tento experiment použit laboratorní ultrazvukový přístroj Pundit Lab Plus, viz Obr. 53. [36]
Při výpočtu dynamického modulu pružnosti může dojít k různému ovlivnění měření (Obr. 55). V roce 2005 (březen) vstoupila v platnost nová evropská norma: ČSN EN 12504-4 Zkoušení betonu – Část 4: Stanovení rychlosti šíření ultrazvukového impulzu [35]. Tato norma uvádí ve své příloze B ovlivňující faktory měření rychlosti šíření UZ impulzu a v příloze C zásady pro tvorbu kalibračních vztahů mezi rychlostí šíření impulzu a pevnosti betonu v tlaku.

Vlhkost

Vlhkost dokáže ovlivnit měření dvěma způsoby: chemické účinky a mechanické účinky. Největší rozdíly při měření vyvolá rozdílné ošetřování betonových vzorků, které způsobuje rozdílnou hydrataci cementu.

Teplota betonu

V rozmezí teplot mezi 10°C až 30°C bylo zjištěno, že teplota nemá podstatný vliv na změny pevnosti nebo pružných vlastností materiálu. Opakovaná měření by musela nastat v případě, že by teplota byla mimo rozsah uvedených teplot.

Obr. 55: Vliv prostředí na rychlost šíření a tvar impulzu UZ vlnění. Převzato z [33]
Tvar a velikost těles

Rychlost šíření impulzů není závislá na velikosti a tvaru těles, pokud jejich boční rozměr není menší, než minimální hodnota. Jakmile rozměr klesne pod minimální hodnotu, může být rychlost šíření impulzů podstatně menší.

Měřicí základna

Měřicí základna představuje nejkratší vzdálenost mezi sondami (mezi budičem a snímačem) a musí být zaznamenána a stanovena s přesností ±1%. Rychlost šíření impulzu není ovlivňována délkou základny, i přesto vykazují přístroje při větší měřicí základně o něco menší rychlost šíření impulzu. Dalo by se to vysvětlit tím, že složky vyššího kmitočtu impulsu jsou více protáhlé než složky nižšího kmitočtu a tvar náběžného čela impulsu je více zaoblen při větší měřicí základně. Zvláštní pozornost je nutná při prozvučování na velké měřicí základně.

Vliv výztužných ocelí

U zkoušeného tělesa vyztuženého ocelovými výztuhami je žádoucí se vyhnout měření v blízkosti ocelové výztuže rovnoběžné se směrem šíření impulzů. Vliv ocelových prutů kolmých nebo šikmých na směr měřicí základny se projevuje vždy, když je poměr součtu průměrů prutů výztuže k délce měřicí základny větší nebo roven 0,1.

Trhliny a dutiny

Jakákoliv vzduchová meze v trhlině nebo vzduchová bublina, která je na trase mezi budičem a snímačem, vytváří překážku přímému UZ toku, jakmile je vzduchová meze delší než šířka budiče a délka používané zvukové vlny. Tak vznikne delší doba pro zachycení vyslaného impulzu, protože budou odchýlen po obvodu vzduchové mezery. Relativně malé poruchy mají velmi malý nebo dokonce žádný vliv na dobu prostupu impulzu.

Ze zaznamenaných hodnot rychlosti prostupu ultrazvukového vlnění lze vypočítat dynamický modul pružnosti. Hodnota dynamického modulu pružnosti v tlaku byla vypočtena ze vzorce:

\[E_{cu} = \rho \cdot v_L^2 \cdot \frac{1}{k^2} \cdot 10^{-6} \]

kde:
\[E_{cu} = \text{dynamický modul pružnosti betonu [GPa]} \]
\[\rho = \text{objemová hmotnost betonu [kg/m}^3\text{]} \]
\[v_L = \text{rychlost šíření impulzu [m/s]} \]
\[k = \text{ součinitel rozměrnosti prostředí [-]} \]
Podle normy se hodnoty součinitele k stanoví dle:

\[k_1 = 1 \]

\[k_2 = \frac{1}{\sqrt{1 - \mu_{cu}^2}} \]

\[k_3 = \frac{1 - \mu_{cu}^2}{\sqrt{(1 + \mu_{cu}^2) \cdot (1 - \mu_{cu}^2)}} \]

kde:
\[k_1 = \text{koeficient pro jednorozměrné prostředí [-]} \]
\[k_2 = \text{koeficient pro dvourozměrné prostředí [-]} \]
\[k_3 = \text{koeficient pro trojrozměrné prostředí [-]} \]
\[\mu_{cu} = \text{Poissonův součinitel [-]} \]

Poissonův součinitel je různý pro jednotlivé materiály. Dle [37],[38] je hodnota Poissonova součinitel pro beton rovna 0,2 [-]. Po dosazení do rovnice 5 vyjde součinitel rozměrnosti prostředí pro beton 1,0541 [-].
5 Experimentální příklad

5.1 Experimentální skupina 1 - Referenční zkouška

Do experimentální skupiny 1 byly vyrobeny vzorky č. 1, 2, 3. Tato zkušební betonová tělesa byla nazvána skupinou referenční a v tomto experimentu sloužila k porovnávání degradačních procesů betonových vzorků s různými druhy zatížení a jejich kombinací. Betonové vzorky byly ponechány 28 dní v laboratorních podmínkách k řádnému vytvrzení betonu. Po 28 dnech došlo u referenčních vzorků nejprve ke změření základních hodnot (rozměry, hmotnost, objemová hmotnost) a následně k odzkoušení tlakové pevnosti a dynamického modulu pružnosti.

Tabulka 3: Základní naměřené hodnoty betonových vzorků - skupina 1

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Rozměry tělesa</th>
<th>Hmotnost tělesa</th>
<th>Objemová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Délka [mm]</td>
<td>Šířka [mm]</td>
<td>Výška [mm]</td>
</tr>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>149.4</td>
<td>149.7</td>
<td>149.5</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>149.4</td>
<td>152.3</td>
<td>148.4</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>149.2</td>
<td>150.0</td>
<td>149.1</td>
</tr>
</tbody>
</table>

Zkouška pevnosti betonu v tlaku byla provedena v souladu s ČSN EN 12390-3 [31], viz kapitola 4.4. Zkouška proběhla 5.11.2020, ve stáří zkušebních těles 28 dní dle normy a byla provedena na hydraulickém lisu. Pomocí zkoušky pevnosti betonu v tlaku byla zjištěna tlaková pevnost referenčních vzorků, viz Tabulka 4.

Tabulka 4: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 1

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Datum výroby [d.m.r.]</th>
<th>Datum zkoušky [d.m.r.]</th>
<th>Stáří vzorku [dny]</th>
<th>Tlaková pevnost betonu [kN]</th>
<th>Pevnost [Mpa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>509.6</td>
<td>22.8</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>543.6</td>
<td>23.9</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>463.6</td>
<td>20.7</td>
</tr>
</tbody>
</table>

U referenčních vzorků byla provedena také zkouška modulu pružnosti impulzní metodou dle ČSN 73 1371 [33] a ČSN EN 12504-4 [35]. Naměřené hodnoty prostopu UZ vlnění jsou patrné z Tabulka 5, ve které byl dále dopočítán, pomocí rovnice 1, dynamický modul pružnosti.
Tabulka 5: Výsledné hodnoty dynamického modulu pružnosti – skupina 1

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Prostup UZ vlnění</th>
<th>Dynamický modul pružnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[m/s]</td>
<td>[GPa]</td>
</tr>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>4478</td>
<td>37.2</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>4425</td>
<td>36.8</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>4464</td>
<td>36.5</td>
</tr>
</tbody>
</table>

Na Obr. 56 jsou zakreslené křivky získané z tlakové zkoušky betonu pomocí hydraulického lisu. Při této zkoušce byla zaznamenávána jak síla, působící na betonové těleso, tak i posun příčníku. Z výsledných hodnot byl vytvořen zatěžovací diagram, ze kterého je patrné, jak se daný vzorek choval při zatěžování. Na začátku zkoušky je vidět, že si hlava hydraulického lisu dosedala na zkoušený betonový vzorek. Dále (od zatěžovací síly cca 30 kN) nabýval graf standartního průběhu lineárním nárůstem hodnot až do porušení (cca 470 – 530 kN).
5.2 Experimentální skupina 2 – Mráz

Betonové zkušební tělesa č. 4, 5, 6 byla zařazena do skupiny č. 2. Tato skupina byla zaměřena na zkoumání změn mechanických vlastností betonu, který byl vystaven zmrazovacím cyklům. Zkušební tělesa byla vyrobená 8. 10. 2020 a dne 6. 11. 2020, po 28 dnech zrání v laboratorním prostředí, byla zkušební tělesa vložena do mrazicího boxu, viz kapitola 4.2. Pro simulaci zatěžovacích cyklů zmrazování a rozmrazování byl na katedře betonových a zděných konstrukcí (K133), respektive v laboratoři této katedry, k dispozici osvědčený mrazicí box model KD 20 pro zkoušky mrazuvzdornosti a povrchové odolnosti stavebních materiálů vůči mrazu, viz kapitola 4.2.

Tabulka 6: Základní naměřené hodnoty betonových vzorků - skupina 2

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Rozměry tělesa</th>
<th>Hmotnost tělesa</th>
<th>Objemová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Délka</td>
<td>Šířka</td>
<td>Výška</td>
<td>před mrazem</td>
</tr>
<tr>
<td></td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[g]</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>149.3</td>
<td>147.8</td>
<td>149.3</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>149.3</td>
<td>147.0</td>
<td>149.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>149.3</td>
<td>149.8</td>
<td>149.4</td>
</tr>
</tbody>
</table>

Obr. 57: Vložení betonových vzorků č. 4, 5, 6 do mrazicího boxu

Tabulka 7: Výsledné hodnoty dynamického modulu pružnosti – skupina 2

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Prostup UZ vlnění</th>
<th>Dynamický modul pružnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>před mrazem po mrazu</td>
<td>před mrazem po mrazu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[m/s] [m/s] [GPa]</td>
<td>[GPa]</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>4310 4335</td>
<td>34.6 35.4</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>4425 4373</td>
<td>36.7 36.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>4399 4451</td>
<td>36.1 37.3</td>
</tr>
</tbody>
</table>

Po zatížení vyzrálých zkušebních těles skupiny 2, vložením do mrazicího boxu a následném vystavení zmrazovacím a rozmrázovacím cyklům, byla betonová tělesa odzkoušena na tlakovou pevnost pomocí hydraulického lisu, viz Obr. 58. Výsledky zkoušky pevnosti v tlaku jsou vypsány v Tabulce 8.

Tabulka 8: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 2

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Datum výroby zkoušky</th>
<th>Stáří vzorku</th>
<th>Tlaková pevnost betonu po mrazu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[d.m.r.] [d.m.r.] [dny]</td>
<td>síla [kN]</td>
<td>pevnost [Mpa]</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>8.10.20 20.11.20 43</td>
<td>488.1</td>
<td>22.1</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>8.10.20 20.11.20 43</td>
<td>511.0</td>
<td>23.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>8.10.20 20.11.20 43</td>
<td>525.7</td>
<td>23.5</td>
</tr>
</tbody>
</table>
Na Obr. 58 je znázorněno betonové těleso č. 4, které bylo podrobeno zkoušce pevnosti betonu v tlaku. Z obrázku je vidět, jak se deformoval povrch betonového tělesa během zatížení v hydraulickém lisu. Povrch betonu odpadával a došlo i k rozdrcení jedné boční hrany ve směru namáhání betonového tělesa.
Na Obr. 59 jsou zaznamenány hodnoty nárůstu síly/posunu příčníku při zatěžování betonových těles tlakovou silou u skupiny 2. Jak je z grafu patrné, zkouška tlakové pevnosti u vzorků skupiny 2, po dosednutí hlavice lisu, pobíhala lineárně vzestupně, až dosáhla maximální hodnoty cca 480 – 520 kN zatěžovací síly, kdy nastalo porušení zkoušených vzorků.

5.2.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 2

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Dynamický modul pružnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
</tr>
<tr>
<td></td>
<td>[GPa]</td>
<td>[GPa]</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>34.6</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>36.7</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>36.1</td>
</tr>
</tbody>
</table>

Z vypočtených hodnot dynamického modulu pružnosti, viz Tabulka 9, lze pozorovat, že jednotlivá betonová tělesa skupiny 2 mají velmi podobné hodnoty. Nepatrný rozdíl (0,6 GPa) lze v tomtéž případě zanedbat, jelikož nepatrné chyby vznikaly už při měření betonových vzorků a také při zatěžování pomocí hydraulického lisu, který má toleranci přesnosti 5%. K mírně
zvýšeným hodnotám naměřených po zatížení betonových těles cykly zmrazování a rozmrazování mohlo také dojít v důsledku větší vlhkosti těles, viz Obr. 57.

Tabulka 10: Porovnání hodnot tlakové pevnosti – skupina 2

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Tlaková pevnost betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
</tr>
<tr>
<td></td>
<td>[MPa]</td>
<td>[MPa]</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>22.1</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>23.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>23.5</td>
</tr>
</tbody>
</table>

Výsledné hodnoty tlakové pevnosti betonu, který byl vystaven zmrazovacím a rozmrazovacím cyklům a betonu, jsou také téměř totožné. Průměrná hodnota tlakové pevnosti betonových vzorků zatížených mrazem vyšla 23 MPa.

5.3 Experimentální skupina 3 – Požár

Skupina 3, která se skládá ze zkušebních těles č. 7, 8, a 9, byla určena pro pozorování degradace na betonových tělesech vystavených vysokým teplotám. Tyto vzorky byly po vybetonování (8. 10. 2020) ponechány po dobu 28 dní v laboratorních podmínkách, za účelem řádného vyzrání betonu. Jakmile byla zkušební tělesa vyzrálá, byla podrobená měření modulu pružnosti pomocí ultrazvukové impulzové metody, viz kapitola 4.5.

Tabulka 11: Základní naměřené hodnoty betonových vzorků - skupina 3

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Rozměry tělesa</th>
<th>Hmotnost tělesa</th>
<th>Objemová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Délka</td>
<td>Šířka</td>
<td>Výška</td>
<td>před požárem</td>
</tr>
<tr>
<td></td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[g]</td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>149.4</td>
<td>151.1</td>
<td>149.3</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>149.3</td>
<td>151.5</td>
<td>149.1</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>149.8</td>
<td>145.5</td>
<td>150.1</td>
</tr>
</tbody>
</table>
Jelikož byla skupina 3 určena ke zkoumání mechanických vlastností betonové směsi po požáru, bylo nutné vyzrálé prvky zatížit vysokými teplotami. Pro tento experiment byly zvoleny keramické dečky, kterými se jednotlivé betonové vzorky po stranách pokryly. Tyto keramické dečky byly napojeny na řídící přístroj, který zajišťoval přívod elektrického proudu do keramických deček a rovnoměrné ohřívání betonových vzorků. Aby se docílilo rovnoměrného prohřívání a zároveň se zamezilo co největším tepelným ztrátám, byl vzorek tepelně izolován pomocí rohože Fiberfrax durablaket Z 1250°C, viz Obr. 61. Rohože jsou vyráběny ze žáruvzdorných vláken Fiberfrax a poskytují efektivní řešení pro vysokoteplotní aplikace s vynikajícími izolačními vlastnostmi a odolností, viz [39].

Obr. 60: Schéma uložení betonových těles (č. 7, 8, 9) a zapojení termočlánků a keramických deček

Obr. 61: Uložení betonových vzorků č. 7, 8, 9 při zatěžování vysokými teplotami
Před zahájením samotného procesu obalování betonových vzorků keramickými dečkami a tepelnou izolací bylo nutné vyzkoušet, jestli všechny keramické dečky fungují (topí). Pro monitorování teplot jak na povrchu betonových vzorků, tak i v jejich středu byly využity termočlánky. Aplikace termočlánků uprostřed betonových vzorků probíhala už při betonáži zkušebních těles, viz Obr. 63. Pláštové termočlánky (Obr. 62), umístěny z vnějšího povrchu betonových vzorků, byly instalovány při obalování těles keramickými dečkami společně s tepelnou izolací. Jednotlivé termočlánky byly připojeny k dataloggeru, který zaznamenával naměřené hodnoty.

Obr. 62: Pláštový termočlánek

Obr. 63: Aplikace termočlánku při betonáži zkušebních těles
Přistoupilo se k zatěžovací zkoušce vysokými teplotami. Ze začátku probíhala zkouška bez problémů. Bohužel při 45 minutě zahřívání, se ze zkušebních těles začalo kouřit (došlo k vypalování vaty a izolace termočlánku), a jelikož experiment probíhal uvnitř laboratoře, musel být přerušen a veškeré komponenty přeneseny na volné prostranství, kde se v experimentu pokračovalo dále. Teplota venkovního prostředí při průběhu experimentu byla 5°C. Na Obr. 67 je možné vidět, jak relativně nahrážené keramické dečky předaly svou teplotu betonové krychli, a proto byl v termočláncích umístěných na vnějším povrchu krychle zaznamenan drobný pokles teploty. Oproti tomu termočlánky uvnitř betonových těles zaznamenávaly teplotní nárůst, který způsobilo předání teploty z keramických deček do betonových těles. Pokles teploty v důsledku přerušení a přemístění experimentu byl zanedbatelný a v experimentu se pokračovalo dále. Mezi 60 až 80 minutou zahřívání začalo docházet k mírným poklesům naměřených teplot uvnitř betonových těles. Pokles teplot byl zapříčiněn fázovými změnami, kdy se začala odpařovat voda. V zahřívání se stále pokračovalo, a jakmile vystoupila teplota betonových těles na rozměr 600°C až 700°C, zahřívání pomocí keramických deček se odpojilo a betonová zkušební tělesa se nechala vychladnout na povrchovou teplotu cca 150°C. K této povrchové teplotě bylo přímo vztahováno s technologických důvodů, aby bylo možné s betonovými tělesy manipulovat a také aby bylo možné přiložit ultrazvukovou sondu.

Po odkrytí betonových vzorků, viz Obr. 64, Obr. 65 a Obr. 66, byly pozorovány menší trhliny napříč vzorkem, které byly způsobeny zatěžováním vysokými teplotami.
Experimentální příklad

Obr. 65: Betonové těleso č. 7 – vyjmout po zatížení vysokými teplotami

Obr. 66: Betonové těleso č. 7 – detail poškození vysokými teplotami
Průběhy teplot

Obraz. 67: Graf průběhu teplot při zatěžování vysokými teplotami - skupina 3
Po 28 dnech od betonáže bylo na vzorcích provedeno měření rychlosti prostupu UZ impulzů. Po zatížení vysokými teplotami a následném odstranění keramických deček a tepelné izolace bylo provedeno druhé měření rychlosti prostupu UZ impulzů. Naměřené hodnoty byly zaznamenány a následně z nich byl dopočten dynamický modul pružnosti, viz Tabulka 12.

Tabulka 12: Výsledné hodnoty dynamického modulu pružnosti – skupina 3

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Prostup UZ vlnění před požárem [m/s]</th>
<th>Prostup UZ vlnění po požáru [m/s]</th>
<th>Dynamický modul pružnosti před požárem [GPa]</th>
<th>Dynamický modul pružnosti po požáru [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>4399</td>
<td>509</td>
<td>36.4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>4451</td>
<td>162</td>
<td>37.1</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>4425</td>
<td>142</td>
<td>36.9</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Po zatížení vysokými teplotami a vyjmutí betonových vzorků z boxů s tepelnou izolací a keramickými dečkami, byly vzorky ponechány k ochlazení vnějšího povrchu na cca 150°C a následně byly vloženy do hydraulického lisu a postupně zatěžovány. Výsledné naměřené hodnoty jsou sepsány v Tabulce 13.

Tabulka 13: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 3

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Datum výroby [d.m.r.]</th>
<th>Datum zkoušky [d.m.r.]</th>
<th>Stáří vzorku [dny]</th>
<th>Sila [kN]</th>
<th>Pevnost [Mpa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>209.5</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>217.5</td>
<td>9.6</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>8.10.20</td>
<td>5.11.20</td>
<td>28</td>
<td>240.8</td>
<td>11</td>
</tr>
</tbody>
</table>
Zatěžovací diagram - skupina 3

![Zatěžovací diagram - skupina 3](image)

Obr. 68: Graf zatěžovacího diagramu skupiny 3

Na Obr. 68 jsou zaznamenány hodnoty nárůstu síly/posunu příčníku při zatěžování betonových těles tlakovou sílou na vzorcích skupiny 3. Z grafu je opět patrné, že při zatěžovací síle cca 30 kN dosedla hlavice hydraulického lisu na betonové těleso a při narůstajícím zatěžování nabýval lineárně posun příčníku až do mezní hodnoty 210 – 240 kN, kdy byla tlaková pevnost betonových těles porušena.

5.3.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 3

Tabulka 14: Porovnání hodnot dynamického modulu pružnosti – skupina 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Požár 1</td>
<td>Vzorek č. 7</td>
<td>36.4</td>
<td>36.8</td>
<td>0.3</td>
<td>0.45</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Požár 2</td>
<td>Vzorek č. 8</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Požár 3</td>
<td>Vzorek č. 9</td>
<td>36.9</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Z porovnávání hodnot dynamického modulu pružnosti, viz Tabulka 14, lze pozorovat, že jednotlivá zkušební tělesa skupiny 3 po vytvrdnutí nabývala průměrných hodnot 36.8 GPa. Dynamický modul pružnosti po zatížení vysokými teplotami u skupiny 3 klesl na 1% své původní hodnoty.
Tabulka 15: Porovnání hodnot tlakové pevnosti – skupina 3

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Tlaková pevnost betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Po mrazu/po požáru</td>
</tr>
<tr>
<td></td>
<td>[MPa]</td>
<td>[MPa]</td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>9.6</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Při porovnávání výsledných hodnot tlakové pevnosti betonu u skupiny 3, viz Tabulka 15, došlo u vzorků č. 7 a 8 k velmi podobným naměřeným hodnotám, ale u vzorku č. 9 byla naměřená hodnota tlakové pevnosti o cca 1,5 MPa vyšší. Průměrná hodnota tlakové pevnosti byla tedy vypočtena na 10 MPa.
5.4 Experimentální skupina 4 - Mráz + požár

![Diagram](image-url)

Obr. 69: Schéma uložení betonových těles (č. 10, 11, 12) a zapojení termočlánků a keramických deček
Experimentální příklad

Tabulka 16: Základní naměřené hodnoty betonových vzorků - skupina 4

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Rozměry tělesa</th>
<th>Hmotnost tělesa</th>
<th>Objemová hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Délka [mm]</td>
<td>Šířka [mm]</td>
<td>Výška [mm]</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>149.3</td>
<td>147.3</td>
<td>149.3</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>149.7</td>
<td>149.0</td>
<td>149.7</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>149.3</td>
<td>149.2</td>
<td>149.5</td>
</tr>
</tbody>
</table>
Průběhy teplot

Obr. 70: Graf průběhu teplot při zatěžování vysokými teplotami - skupina 4
Zatížení vysokými teplotami probíhalo stejně, jako při zatěžování u skupiny 3, viz kapitola 5.3. Nejprve se ověřila funkčnost keramických deček, a když bylo vše připravené, spustila se zatěžovací zkouška. U tohoto experimentu také došlo k mírnému zakouření díky procesu vypalování vaty a izolace na termočláncích, ale jelikož byl experiment už od samého začátku na volném prostranství, nebylo nutné přenášet experiment z vnitřních prostor do venkovních. Z toho důvodu na obr. 70 není při cca 45 minut zaznamenán žádný pokles teplotních hodnot. I u skupiny 4 začalo docházet mezi 60 až 80 minutou zahřívání k mírným poklesům naměřených teplot uvnitř betonových těles (zvýrazněno na obr. 70 červeným kroužkem). Příčinou toho poklesu byly opět fázové změny – odpařování vody. V zahřívání se stále pokračovalo, a jakmile vystoupala teplota betonových těles na rozmezí 600°C až 700°C, zahřívání pomocí keramických deček se odpojilo (znázorněno na obr. 70 pomocí červené čárkované čáry) a betonová zkušební tělesa se nechala vychladnout na povrchovou teplotu cca 150°C. V tento moment nastalo pár odlišných kroků oproti počínání se skupinou 3. Po odpojení keramických deček zůstaly zapojeny vnitřní termočlánky do dataloggeru a zaznamenávaly vývoj vnitřní teploty betonových těles. Tímto krokom navíc bylo zjištěno, jakou teplotu má dané betonové těleso uvnitř, když probíhá zkouška tlakové pevnosti při povrchové teplotě 150°C. U skupiny 4 byl navíc aplikován jeden termočlánek (č. 8), který zaznamenával teplotu venkovního prostředí. Na obr. 70 je červeným kroužkem znázorněn přenos betonových těles z venkovního prostředí (+5°C) do laboratorního prostředí (+20°C). V laboratorním prostředí se vyčkalo, dokud nebude povrchová teplota 150 °C, kdy se betonová tělesa umístila do hydraulického lisu, a proběhla zkouška tlakové pevnosti betonu.

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Prostup UZ vlnění</th>
<th>Dynamický modul pružnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>před mrazem</td>
<td>po mrazu</td>
<td>po požáru</td>
</tr>
<tr>
<td></td>
<td>[m/s]</td>
<td>[m/s]</td>
<td>[m/s]</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>4464</td>
<td>4451</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>4399</td>
<td>4412</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>4532</td>
<td>4545</td>
</tr>
</tbody>
</table>
Výsledné naměřené hodnoty tlakové zkoušky jsou sepsány v Tabulce 18.

Tabulka 18: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 4

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Datum výroby [d.m.r.]</th>
<th>Datum zkoušky [d.m.r.]</th>
<th>Stáří vzorku [dny]</th>
<th>Tlaková pevnost betonu po mrazu a požáru síla [kN]</th>
<th>Pevnost [Mpa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>8.10.20</td>
<td>20.11.20</td>
<td>43</td>
<td>223.0</td>
<td>10.1</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>8.10.20</td>
<td>20.11.20</td>
<td>43</td>
<td>207.6</td>
<td>9.3</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>8.10.20</td>
<td>20.11.20</td>
<td>43</td>
<td>266.2</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Na Obr. 71 jsou opět zaznamenány hodnoty nárůstu síly a posunu příčníku při zatěžování betonových těles tlakovou silou v hydraulickém lisu u skupiny vzorků 4. Ze zatěžovacího diagramu lze vyčíst lineární zatěžování až do hodnoty při porušení, která byla zaznamenána v rozmezí cca 200 – 260 kN.
5.4.1 Porovnání naměřených hodnot tlakové pevnosti betonu a dynamického modulu pružnosti skupiny 4

Při porovnání dynamického modulu pružnosti skupiny 4 (Tabulka 20) dochází k téměř totožným hodnotám u betonových těles bez zatížení a následně po zatížení pouze zmrazovacími a rozmrazovacími cykly, kdy dynamický modul pružnosti nabýval hodnot 38 GPa. Bohužel u měření prostupu UZ impulzů došlo k razantnímu poklesu hodnoty na pouhé 1%.

U porovnání výsledků tlakové pevnosti skupiny 4 byly naměřené pevnosti jednotlivých betonových těles mezi sebou s větší odchylkou (1 - 2 MPa), oproti předchozím skupinám. Průměrná tlaková pevnost byla naměřena 10,4 MPa.
Tabulka 19: Porovnání hodnot dynamického modulu pružnosti – skupina 4

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Dynamický modul pružnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Před mrazem</td>
<td>Po mrazu</td>
</tr>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
</tr>
<tr>
<td></td>
<td>[GPa]</td>
<td>[GPa]</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>37.7</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>36.4</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>38.6</td>
</tr>
</tbody>
</table>

Tabulka 20: Porovnání hodnot tlakové pevnosti – skupina 4

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Tlaková pevnost betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Po mrazu a požáru</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
</tr>
<tr>
<td></td>
<td>[MPa]</td>
<td>[MPa]</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>10.1</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>9.3</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>11.9</td>
</tr>
</tbody>
</table>
6 Výsledky

První skupina byla nazvána referenční skupinou, kde na betonových tělesech proběhla pouze zkouška tlakové pevnosti betonu a měření dynamického modulu pružnosti pomocí ultrazvukové metody. Tyto referenční vzorky sloužily k porovnávání hodnot míry degradace při vystavení různým zatěžovacím stavům.

Druhá skupina betonových těles byla skupinou vystavenou mrazu. U této skupiny byl betonový tělesa po důkladném vyzrání vložen do mrazícího boxu, kde podléhala zmrazovacím a rozmrazovacím cyklům. U porovnávání hodnot výsledné tlakové pevnosti a dynamického modulu pružnosti bylo ale prokázáno, že naměřené hodnoty neklesají, ale naopak průměrná hodnota vzorků vystavených zmrazovací a rozmrazovací cyklů byla naměřená o 0,5 MPa vyšší. U průměrných hodnot dynamického modulu pružnosti nastal rozdíl hodnot už na betonových tělesech bez zatížení, to lze přisuzovat chybnému měření, které je ale v toleranci. U skupiny 2 se tedy dynamický modul pružnosti po zatížení zmrazovacími a rozmrazovacími cykly zvýšil z hodnoty 35,8 GPa na 36,3 GPa. Tak malý rozdíl je ale zanedbatelný právě díky toleranci při měření. U skupiny 3 se tedy dynamický modul pružnosti po zatížení zmrazovacími a rozmrazovacími cykly zvýšil z hodnoty 35,8 GPa na 36,3 GPa. Tak malý rozdíl je ale zanedbatelný právě díky toleranci při měření. Z tohoto tvrzení tedy vyplývá, že referenční hodnoty se shodují s naměřenými hodnotami jak tlakové pevnosti, tak dynamického modulu pružnosti skupiny 2.

Jak jsem se později dočetla v [16], je velmi důležitým faktorem počet zatěžovacích cyklů zmrazování a rozmrazování. Díky časové náročnosti experimentu a nepřispívajícím podmínkám covidové situace nebylo provedeno dostatek opakování zmrazovacích a rozmrazovacích cyklů na to, aby se zatížením cykly projevila degradace betonových těles. Při eventuálním dalším experimentu, který by byl zaměřen na degradační procesy během zatížování cykly zmrazování a rozmrazování, by bylo nutné zvolit vyšší číslo opakování zatížení a použít silnější degradační činidla, aby se degradace betonu na provzdušněné směsi projevila.

U třetí skupiny bylo přistoupeno k zatížení betonových těles vysokými teplotami a výsledné naměřené hodnoty byly porovnávány jak se skupinou 1, tak se skupinou 2. U betonových těles, zatížených vysokými teplotami, byly naměřené hodnoty o poznání nižší. Dynamický modul pružnosti skupiny 3 nabýval již po vytvrdnutí rozdílných hodnot. Oproti skupině 2 se lišil o 1 GPa a se skupinou 1 byl totožný. Tak malé rozmezí hodnot je výsledkem měření a nepřispívajícím podmínkám zatížení betonových těles vysokými teplotami. Dynamický modul pružnosti po zatížení vysokými teplotami byl zatížením betonu znatelnější, než u předchozích skupin. Tlaková pevnost betonu vystaveném vysokým teplotám byla naměřena o 40-50% tlakové pevnosti betonu v referenční skupině. Výsledné hodnoty dynamického modulu pružnosti po zatížení betonových těles vysokými teplotami byly nízké, což nevzniklo díky mrazu. Na Obr. 64 je vidět, že po odkrytí vzorků po ukončení zatížování vysokými teplotami, byly na tělesech patrné trhliny napříč vzorkem. Tyto trhliny možno napomoci zpomalit přenosu ultrazvukových impulzů. Větší problém ale nastal při samotném měření prostupu ultrazvukových impulzů. I když jsme se snažili použít více gelu při přiložení sondy k betonovému tělesu, abychom zajistili kvalitní kontakt, nepodařilo se naměřit kvalitu více než 1%. Tak nekvalitní kontakt zapříčinil vysušený vzorek, který gel velice rychle nasával. Tím pádem se zdálo výsledky přenosu ultrazvukových impulzů nerelevantní. Tabulka 21 - červeně vyznačené hodnoty. Navíc na Obr. 75, kde jsou znázorněny zatížovací diagramy pro všechny skupiny, je patrné, že vzhledem
Výsledky

ke sklonu lineárního nárůstu hodnot by měl být dynamický modul pružnosti cca poloviční, oproti dynamickému modulu pružnosti skupina 1 a 2.

U poslední skupiny byla zkoumana míra degradace betonu u kombinace zatížení dvou stavů. Nejprve se betonová tělesa zatížila cykly zmrazování a rozmrazování a poté byla vystavena vysokým teplotám. Zkouška tlakové pevnosti i měření dynamického modulu pružnosti vykazovaly velmi podobné výsledné hodnoty jako u skupiny 3. Velmi podobné výsledky jsou zapříčiněny tím, že i když se jednalo o kombinaci dvou zatěžovacích stavů, tak první zatěžovací stav zmrazování a rozmrazování neměl na degradaci betonu téměř žádný vliv, jako tomu bylo u skupiny 2, a proto následné zatížení vysokými teplotami vykazuje totožné hodnoty, jako výsledná degradace betonu u skupiny 3, kde probíhalo zatížení pouze vysokými teplotami.

Veškeré naměřené a porovnávané hodnoty dynamického modulu pružnosti a tlakové pevnosti tohoto experimentu jsou shrnuty v následujících tabulkách a grafech: Tabulka 21, Tabulka 22, Obr. 72 a Obr. 73.

Tabulka 23 jsou porovnány hodnoty objemových hmotností jednotlivých zkušebních těles během tohoto experimentu. Z výsledků je patrné, že u skupiny 2 po zatížení zmrazovacími a rozmrazovacími cykly byla objemová hmotnost o 1% vyšší než původní objemová hmotnost. Mírné navýšení lze opět zdůvodnit nasáknutím betonových těles během cyklů zmrazování a rozmrazování. U skupiny 3, po zatížení požárem, byla objemová hmotnost zatížených vzorků o cca 7% nižší než původní hodnoty a u skupiny 4 byly výsledné hodnoty kombinací výsledků u skupiny 2 a 3. Po zatížení mrazem vzrostla objemová hmotnost o 1 % díky nasákavosti materiálu a po zatížení vysokými teplotami opět výsledné hodnoty objemové hmotnosti klesly o cca 7%. Grafické znázornění hodnot objemových hmotností je na Obr. 74.
<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Dynamický modul pružnosti</th>
<th>Před mrazem/požárem</th>
<th>Po mrazu/po požáru</th>
<th>Po mrazu a po požáru</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
<td>Směrodatná odchylka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[GPa]</td>
<td>[GPa]</td>
<td>[-]</td>
</tr>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>37.2</td>
<td>[GPa]</td>
<td>[GPa]</td>
<td>[-]</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>36.8</td>
<td>36.9</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>36.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>34.6</td>
<td>35.8</td>
<td>0.9</td>
<td>36.3</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>36.7</td>
<td></td>
<td></td>
<td>36.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>36.4</td>
<td>36.8</td>
<td>0.3</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>37.1</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>36.9</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>37.7</td>
<td>37.5</td>
<td>0.9</td>
<td>37.7</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>36.4</td>
<td></td>
<td></td>
<td>38.0</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>38.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Porovnání dynamického modulu pružnosti

Obr. 72: Graf porovnání dynamického modulu pružnosti
Tabulka 22: Porovnání hodnot tlakové pevnosti všech skupin

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Tlaková pevnost betonu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Před mrazu/požáru</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naměřené hodnoty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MPa]</td>
</tr>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>22.8</td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>23.9</td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>20.7</td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>22.1</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>23.3</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>23.5</td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>9.6</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>11.0</td>
</tr>
</tbody>
</table>
Porovnání tlakových pevností

Obr. 73: Graf porovnání tlakových pevností
Výsledky

Tabulka 23: Porovnání hodnot objemových hmotností

<table>
<thead>
<tr>
<th>Číslo vzorku</th>
<th>Označení tělesa</th>
<th>Objemová hmotnost</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Před mrazem/požárem</td>
<td>Po mrazu/po požáru</td>
<td>Po mrazu a po požáru</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
<td>Směrodatná odchylka</td>
<td>Naměřené hodnoty</td>
<td>Průměrná hodnota</td>
</tr>
<tr>
<td></td>
<td>[kg/m³]</td>
<td>[kg/m³]</td>
<td>[-]</td>
<td>[kg/m³]</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>1</td>
<td>Referenční 1</td>
<td>2064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Referenční 2</td>
<td>2091</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Referenční 3</td>
<td>2036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mráz 1</td>
<td>2071</td>
<td>2076</td>
<td>6.5</td>
<td>2095</td>
</tr>
<tr>
<td>5</td>
<td>Mráz 2</td>
<td>2085</td>
<td>2076</td>
<td>6.5</td>
<td>2095</td>
</tr>
<tr>
<td>6</td>
<td>Mráz 3</td>
<td>2072</td>
<td>2076</td>
<td>6.5</td>
<td>2095</td>
</tr>
<tr>
<td>7</td>
<td>Požár 1</td>
<td>2089</td>
<td>2088</td>
<td>4.2</td>
<td>1931</td>
</tr>
<tr>
<td>8</td>
<td>Požár 2</td>
<td>2083</td>
<td>2088</td>
<td>4.2</td>
<td>1931</td>
</tr>
<tr>
<td>9</td>
<td>Požár 3</td>
<td>2093</td>
<td>2088</td>
<td>4.2</td>
<td>1931</td>
</tr>
<tr>
<td>10</td>
<td>Mráz + požár 1</td>
<td>2100</td>
<td>2092</td>
<td>5.6</td>
<td>2115</td>
</tr>
<tr>
<td>11</td>
<td>Mráz + požár 2</td>
<td>2088</td>
<td>2092</td>
<td>5.6</td>
<td>2115</td>
</tr>
<tr>
<td>12</td>
<td>Mráz + požár 3</td>
<td>2088</td>
<td>2092</td>
<td>5.6</td>
<td>2115</td>
</tr>
</tbody>
</table>
Výsledky

Porovnání objemových hmotností

Porovnání objemových hmotností bez zatížení po zatížení mrazem nebo požárem po zatížení mrazem a požárem

Obr. 74: Graf porovnání objemových hmotností
Výsledky

Zatěžovací diagram - skupina 1, 2, 3 a 4

Obr. 75: Graf zatěžovacího diagramu všech skupin
Výsledky

Na Obr. 75 jsou zaznamenány hodnoty nárůstu zatěžovací síly a posunu příčníku při zatěžovací zkoušce tlakovou silou pomocí hydraulického lisu. V tomto grafu jsou zaznamenány výsledky všech čtyřech skupin dohromady, které jsou barevně odlišeny. U skupiny 1 (červená barva) byl zaznamenan klasiccký sklon lineárního nárůstu hodnot až do stavu porušení tlakové pevnosti zkoušených těles. Jak je z grafu vidět, zkouška skupiny 2 probíhala téměř totožně jako u skupiny 1, čemuž odpovídají i naměřené hodnoty tlakové pevnosti a dynamického modulu pružnosti. Podobnost hodnot dynamického modulu pružnosti lze ověřit i velmi podobným sklonem lineárního nárůstu skupin 1 a 2. U skupiny 3 měla zatěžovací zkouška odlišný průběh, než tomu bylo u skupiny 1 a 2. Výsledné vykreslení hodnot jak sklonu lineárního nárůstu, tak maximální dosažené působící tlakové síly byl cca poloviční a je tedy zřejmé, že betonová tělesa zatížená vysokými teplotami jsou výrazně měkčí a jsou schopny odolávat pouze cca 40% tlakové síly zaznamenané u skupin 1 a 2. Stejné naměřené hodnoty i průběh zatěžování měla skupina 4. Oslablení betonových těles skupiny 3 a 4 způsobilo vystavení těles vysokým teplotám, které by měly podle naměřených křivek zatěžovacího diagramu oslabit tělesa na cca poloviční hodnoty jak u dynamického modulu pružnosti, tak u tlakové pevnosti. Z Obr. 73 je vidět, že výsledné hodnoty tlakové pevnosti jsou opravdu na cca 40-50% oproti skupině 1 a 2. Bohužel výsledky měření dynamického modulu pružnosti po požáru, viz Obr. 72, nejsou relevantní, jak už bylo popsáno výše, takže se nedají se zatěžovacím diagramem porovnat.

Dále nastal viditelný rozdíl odpařování vody při zahřívání betonových vzorků skupiny 3 a 4 vysokými teplotami. Fázové změny (odpařování vody Obr. 76) u betonových těles skupiny 4 (vzorky č. 10, 11, 12 – modrá barva) nastaly již ve 40 minutě a probíhaly až do 90 minuty zkoušky. Zato u skupiny 3 (vzorky č. 7, 8, 9 – zelená barva) došlo k fázovým změnám o trochu děle a to v 50 minutě a probíhaly také do 90 minuty zkoušky. Doba odpařování vody u skupiny 4 byla tedy 50 minut, zatímco u skupiny 3 byla 40 minut. Rozdílná doba trvání fázových změn byla zapříčiněna nasákavostí betonových těles, jak již bylo vysvětleno u celkového porovnání objemových hmotností.
Výsledky

Průběhy teplot

Obr. 76: Graf porovnání fázových změn skupiny 3 a 4
7 Závěr

Cílem této diplomové práce bylo prozkoumání a porovnání změn mechanických vlastností betonu, který byl vystaven mrazu, požáru a kombinacím těchto dvou zatěžovacích stavů. Míra degradace byla vyhodnocována pomocí změny tlakové pevnosti betonu a dynamického modulu pružnosti betonu na 12 kusech betonových těles. Experiment byl rozdělen do 4 skupin, kde každá skupina obsahovala 3 zkušební tělesa a každá skupina byla zatěžována odlišným zatěžovacím stavem nebo jejich kombinací.

Z realizovaného experimentu je patrné, že jednotlivé zatěžovací stavy mají svůj podíl na celkové degradaci betonu. Je ale nutně brát ohled na míru zatěžování jednotlivých zatěžovacích stavů nebo jejich kombinací. U vystavení provzdušněné betonové směsi zmrazovacím cyklům velmi záleží na počtech cyklů a na degradačním činidle, které je nutné si předem dobře stanovit. Při nízkém počtu zatěžovacích cyklů zmrazování a rozmrazování není míra degradace betonu patrná.

Při zatěžování vysokými teplotami je degradace betonu zнатelnější. Tlaková pevnost betonu klesá na cca polovinu své hodnoty při zatěžování a dynamický modul pružnosti je téměř nulový betonový vzorek se stává velmi měkkým. U zatížení kombinací zmrazování a rozmrazování a následného zatížení vysokými teplotami je velmi důležitým faktorem síla a počet cyklů.
Seznam obrázků

Obr. 1: Rozměry a rozmístění výztuže nosníků (v mm). Převzato z [10]14
Obr. 3: Nastavení teploty: (A) Elektrická pec; (B) Schéma pece. Převzato z [10] ...15
Obr. 4: (A) Prvek po nárazu; (B) Prvek po nárazu a požárním zatížením. Převzato z [10] ...15
Obr. 5: Výpočetní model konečných prvků nosníku. Převzato z [10].............15
Obr. 6: Porovnání simulovaných poškození s porovnáním experimentu pro jeden vybraný nosník. Převzato z [10] ...16
Obr. 7: (A) Rámová konstrukce budovy.; (B) Pohled znázorňující umístění výbuchu. Převzato z [14] ..18
Obr. 8: (A) Ilustrace deformace stropní desky a nosníků v důsledku působení tlakové síly; (B) Pohled na poškozený spoj sloupu tlakem. Převzato z [14]18
Obr. 9: Ilustrace ztráty vodorovných konstrukcí. Převzato z [14]19
Obr. 10: Rozměry desky. Převzato z [18] ...20
Obr. 11: (A) Nastavení během požárního zatížení; (B) Umístění výbušniny. Převzato z [18] ...20
Obr. 12: Schéma průřezu s porušením. Převzato z [18] ..21
Obr. 13: (A) Nastavení během požárního zatížení; (B) Umístění výbušniny. Převzato z [18] [19] ...21
Obr. 14: (A) Trhliny na konstrukci po zatížení požárem a výbuchem; (B) Měření termokamer po požárním zatížení; na povrchu je dosaženo maximální teploty 432°C. Převzato z [18] ..22
Obr. 15: Rozdělení betonové desky na vrstvy s různými vlastnostmi betonu v závislosti na teplotě betonu. Převzato z [18] ...22
Obr. 16: Poškození po výbuchu 1,5 kg trhaviny bez požárního zatížení. Převzato z [18] ...22
Obr. 17: Poškození po výbuchu 1,5 kg trhaviny s požárním zatížením. Převzato z [18] ...23
Obr. 18: Zkušební rám s umístěním termočlánků a tenzometrů. Převzato z [22] ...23
Obr. 19: Schéma trhlin způsobených seismickým zatížením. Převzato z [22] .27
Obr. 20:a) zatížení simulovaným zemětřesením, b) požární zkouška, c) zkouška zbytkové tuhosti rámu. Převzato z [22] ...28
Obr. 21: (A) Schéma prostoru zatíženého požárem; (B) Stropní deska po požáru. Převzato z [22]28

Obr. 22: Znázornění průhybů ve stropní desce. Převzato z [22]28

Obr. 23: Schéma vzorků s předem vytvořenými trhlinami a) s kolmou trhlinou, b) se šikmou trhlinou. Převzato z [23]29

Obr. 24: Fotografie čtyř vzorků s předem vytvořenými trhlinami. Převzato z [23]30

Obr. 25: Povrchové vlastnosti betonových vzorků po různých počtech zmrazovacích a rozmrazovacích cyklů. Převzato z [24]31

Obr. 27: Povrchová degradace zmrazených a rozmrazených betonových vzorků po zatížení vysokými teplotami: a) 300°C (vodou chlazené), b) 400°C (vodou chlazené), c) 400°C (vzduchem chlazené), d) 500°C (vodou chlazené). Převzato z [24]33

Obr. 28: Porušení betonových vzorků po různých zmrazovacích a rozmrazovacích cyklech a různých teplotách chlazených stříkající vodou: a) 20°C, b) 300°C, c) 400°C, d) 500°C. Převzato z [24]34

Obr. 29: a) Změny v hmotnostním poměru betonu se zvyšujícím se počtem cyklů zmrazení a rozmrazení, b) Variace ve vodou chlazeném hmotnostním poměru betonu se zvýšenými teplotami. Převzato z [24]35

Obr. 30: a) Relativní pevnost v tlaku ve vodou chlazeném betonovém vzorku po cyklech zmrazení a rozmrazení a po vystavení vysokým teplotám, b) Vliv metod chlazení na relativní pevnost betonu v tlaku při různých počtech cyklů zmrazení a rozmrazení po vystavení vysokým teplotám. Převzato z [24]36

Obr. 31: 3 skupiny betonové směsi. Převzato z [25]36

Obr. 33: Úbytek hmotnosti betonových vzorků po cyklech zmrazování a rozmrazování: a) ponořených do vody, b) ponořených do roztoku chloridu sodného. Převzato z [25]37

Obr. 34: Počet zmrazovacích a rozmrazovacích cyklů pro vzorky naložené ve vodě a v chloridu sodném. Převzato z [25]37

Obr. 35: Maximální počet cyklů zmrazování a rozmrazování v poměru s velikostí napětí při zatěžování. Převzato z [25]38

Obr. 36: Trojrozměrný mezo-numerický výpočetní model betonu. Převzato z [26]39

Obr. 37: Vztah napětí-deformace betonu s různými velikostmi ok sítě. Převzato z [26]40
Obr. 38: Vztahová křivka. Převzato z [26] ...40
Obr. 39: Porovnání výpočetního modelu a výpočetních zkoušek. Převzato z [26] ...41
Obr. 40: a) Křivka napětí/deformace zmrazeného a rozmrazeného betonu, b) Výpočet a výsledky zkoušek tlakové pevnosti zmrazeného a rozmrazeného betonu. Převzato z [26] ...41
Obr. 41: a) Výsledky výpočtu dynamického modulu pružnosti zmrazeného a rozmrazeného betonu, b) Tlaková pevnost zmrazeného a rozmrazeného betonu podle max. velikostí kameniva. Převzato z [26] ...42
Obr. 42: Příprava betonové směsi v laboratorní míchačce44
Obr. 43: Zkouška sednutí kužele ..45
Obr. 44: Zhodnocení správnosti zkoušky ...45
Obr. 45: Plnění forem a následné zhotovení zkušebních těles47
Obr. 46: Automatický mrazicí zařízení KD 20. Převzato z [28]47
Obr. 47: Průběh zatěžování v mrazícím boxu. Převzato z [28]48
Obr. 48: Grafické znázornění průběhu zatěžování. Převzato z [28]48
Obr. 49: Průběh zatěžování zmrazenou a rozmrazenou cykly49
Obr. 50: Keramická dečka ..50
Obr. 51: Betonová tělesa při zahřívání vysokými teplotami a zapojení do dataloggeru ...51
Obr. 52: Princip měření doby průchodu impulzu UZ vlnění materiálem. Převzato z [33] ...52
Obr. 53: Ultrazvukový měřicí přístroj. Převzato z [36]53
Obr. 54: Umístění snímačů při měření doby průchodu impulzu UZ vlnění zkoušeným materiálem. Převzato z [33] ...53
Obr. 55: Vliv prostředí na rychlost šíření a tvar impulzu UZ vlnění. Převzato z [33] ...54
Obr. 56: Graf zatěžovacího diagramu skupiny 1 ..58
Obr. 57: Vložení betonových vzorků č. 4, 5, 6 do mrazícího boxu59
Obr. 58: Ukázka zkoušky pevnosti betonu v tlaku u vzorku č. 461
Obr. 59: Graf zatěžování skupiny 2 ...62
Obr. 60: Schéma uložení betonových těles (č. 7, 8, 9) a zapojení termočlánků a keramických deček ...64
Obr. 61: Uložení betonových vzorků č. 7, 8, 9 při zatěžování vysokými teplotami ...64
Seznam obrázků

Obr. 62: Plášťový termočlánek ... 65
Obr. 63: Aplikace termočlánu při betonáži zkušebních těles 65
Obr. 64: Betonová tělesa č. 7 a 8 po zatížení vysokými teplotami 66
Obr. 65: Betonové těleso č. 7 – vyjmutí po zatížení vysokými teplotami 67
Obr. 66: Betonové těleso č. 7 – detail poškození vysokými teplotami 67
Obr. 67: Graf průběhu teplot při zatěžování vysokými teplotami - skupina 3 . 68
Obr. 68: Graf zatěžovacího diagramu skupiny 3 .. 70
Obr. 69: Schéma uložení betonových těles (č. 10, 11, 12) a zapojení termočlánků a keramických deček ... 72
Obr. 70: Graf průběhu teplot při zatěžování vysokými teplotami - skupina 4 . 74
Obr. 71: Graf zatěžovacího diagramu - skupina 4 76
Obr. 72: Graf porovnání dynamického modulu pružnosti 82
Obr. 73: Graf porovnání tlakových pevností ... 84
Obr. 74: Graf porovnání objemových hmotností 86
Obr. 75: Graf zatěžovacího diagramu všech skupin 87
Obr. 76: Graf porovnání fázových změn skupiny 3 a 4 89
Seznam tabulek

Tabulka 1: Jednotlivé složky navržené betonové směsí ... 43
Tabulka 2: Označení jednotlivých zkušebních těles ... 46
Tabulka 3: Základní naměřené hodnoty betonových vzorků - skupina 1 57
Tabulka 4: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 1 57
Tabulka 5: Výsledné hodnoty dynamického modulu pružnosti – skupina 1 58
Tabulka 6: Základní naměřené hodnoty betonových vzorků - skupina 2 59
Tabulka 7: Výsledné hodnoty dynamického modulu pružnosti – skupina 2 60
Tabulka 8: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 2 60
Tabulka 9: Porovnání hodnot dynamického modulu pružnosti – skupina 2 62
Tabulka 10: Porovnání hodnot tlakové pevnosti – skupina 2 .. 63
Tabulka 11: Základní naměřené hodnoty betonových vzorků - skupina 3 63
Tabulka 12: Výsledné hodnoty dynamického modulu pružnosti – skupina 3 69
Tabulka 13: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 3 69
Tabulka 14: Porovnání hodnot dynamického modulu pružnosti – skupina 3 70
Tabulka 15: Porovnání hodnot tlakové pevnosti – skupina 3 ... 71
Tabulka 16: Základní naměřené hodnoty betonových vzorků - skupina 4 73
Tabulka 17: Výsledné hodnoty dynamického modulu pružnosti - skupina 4 75
Tabulka 18: Výsledné hodnoty zkoušky pevnosti betonu v tlaku – skupina 4 76
Tabulka 19: Porovnání hodnot dynamického modulu pružnosti – skupina 4 78
Tabulka 20: Porovnání hodnot tlakové pevnosti – skupina 4 .. 78
Tabulka 21: Porovnání hodnot dynamického modulu pružnosti 81
Tabulka 22: Porovnání hodnot tlakové pevnosti všech skupin ... 83
Tabulka 23: Porovnání hodnot objemových hmotností .. 85
Literatura

[21] Velké zemětřesení v Kantó [online]. 2020 [vid. 2020-04-14]. Dostupné z: https://cs.wikipedia.org/w/index.php?title=Velk%C3%A9_zem%C4%9Bt%C5%99esen%C3%AD_v_Kant%C3%B3&oldid=18053015

[26] PENG, Rong-xin, Wen-liang QIU a Fei TENG. Three-dimensional meso-numerical simulation of heterogeneous concrete under freeze-thaw. Construction and Building

[33] ČSN 73 1371: Nedestruktivní zkoušení betonu - Ultrazvuková impulzová metoda zkoušení betonu. 2011

