
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague September 14, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Document management web-app for a small group

 Student: Bc. Daniel Šulik

 Supervisor: Ing. Jaroslav Kuchař, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

Our lives are daily interviewed with documents. An app aimed to manage documents would very likely
make a difference. Therefore, create a web application supporting saving and searching saved documents
with a focus on a small group.
- Analyze the problem and existing market solutions.
- Design a prototype of a web application.
- Implement it with at least basic operations:
 - authentication,
 - document management,
 - OCR with basic capabilities to extract the content of documents,
 - look up documents depending on the content, upload date, tags, etc.,
 - user interface.
- Create tests for the backend part of the web-app.
- The application should be open-sourced, free to use and available via docker containers.
- Document each component to ease later the app development.

References

Will be provided by the supervisor.

Master’s thesis

Document management web-app for a
small group

Bc. Daniel Šulik

Department of Software Engineering
Supervisor: Ing. Jaroslav Kuchař, Ph.D.

January 5, 2021

Acknowledgements

First and foremost, I’d like to thank my supervisor, Ing. Jaroslav Kuchař,
Ph.D., for his time, help and guidance during the work on the thesis. Ad-
ditionally, I would like to thank, especially to my father, Peter Šulik, for his
support not only during the time I was working on the thesis, but also the
time I’ve spent studying at CTU in Prague. Lastly, but not least, I’d like to
thank my family, friends and colleagues at my work for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 5, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Daniel Šulik. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šulik, Daniel. Document management web-app for a small group. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2021.

Abstrakt

Táto dimplomová práca sa zaoberá návrhom a implementovańım elektro-
nického systému na správu dokumentov, či už pre jedincov alebo pre malé
skupiny l’ud́ı. Vytvorená aplikácia je rozdelená do štyroch čast́ı. Tieto časti
sú Frontend, Backend, OCR-API a databáza. Frontendová čast je implemen-
tovaná pomocou frameworku Angular 10. Backend a OCR-API sú naṕısané
v jazyku Java s vystaveným REST API. Databáza využ́ıva MongoDB tech-
nológiu. V poslednom rade, z každého komponentu tejto aplikácie je vytvorený
Docker image.

Kĺıčová slova EDMS, OCR, Java, Docker, Angular, REST API, MongoDB

Abstract

The thesis deals with designing and implementation of electronic document
management system intended for individuals or a small group of people. The
application itself is divided into four parts: Front-end, Back-end, OCR-API
and database. Front-end part is implemented in Angular 10. Back-end and
OCR-API are coded in Java with exposed REST API endpoints. The database
is using MongoDB technology. Lastly, every of the mentioned components is
made into a Docker image available to use.

vii

Keywords EDMS, OCR, Java, Docker, Angular, REST API, MongoDB

viii

Contents

Introduction 1

1 State-of-the-art 3
1.1 Electronic documentation management system 3

1.1.1 Brief history . 3
1.1.2 EDMS features . 4

1.2 Existing solutions . 4
1.2.1 Paperless . 5
1.2.2 Mayan EDMS . 6
1.2.3 OpenKM . 7
1.2.4 eFileCabinet . 8
1.2.5 Templafy . 9
1.2.6 Vienna advantage . 10
1.2.7 Summary . 11

2 Analysis 13
2.1 Requirements . 13

2.1.1 Functional requirements 13
2.1.1.1 User . 14
2.1.1.2 Documents . 14
2.1.1.3 OCR . 14

2.1.2 Non-functional requirements 15
2.1.2.1 Scalable . 15
2.1.2.2 Unit test coverage 15
2.1.2.3 Basic security 15
2.1.2.4 Integrable . 16
2.1.2.5 Web-application 16
2.1.2.6 Java based back-end 16
2.1.2.7 Open-sourced 16

ix

2.1.2.8 Free . 16
2.1.2.9 Reusable . 16
2.1.2.10 Documented 16

3 Design 17
3.1 Use-cases . 17

3.1.1 User registration . 18
3.1.2 Resetting password . 18
3.1.3 User login . 18
3.1.4 Uploading document . 18
3.1.5 Delete document . 19
3.1.6 View document . 19
3.1.7 Modify document settings 19
3.1.8 Search document using pagination 19
3.1.9 Search document using full-text search 19
3.1.10 Search document using advanced search 19

3.1.10.1 Download uploaded document 19
3.2 Use-case scenarios . 19

3.2.1 User registration . 19
3.2.2 Resetting password . 20
3.2.3 User login . 20
3.2.4 Documents . 20

3.2.4.1 Uploading document 20
3.2.4.2 Search document using pagination 21
3.2.4.3 Search document using full-text search 22
3.2.4.4 Search document using advanced search 22
3.2.4.5 Delete document 23
3.2.4.6 View document 24
3.2.4.7 Modify document settings 25
3.2.4.8 Download uploaded document 26

3.3 Architecture of the application 27
3.4 Front-end . 28

3.4.1 Pages layout . 28
3.4.2 Technologies . 30

3.4.2.1 Angular . 30
3.4.2.2 React . 30
3.4.2.3 Vue.js . 31
3.4.2.4 Chosen framework 31

3.5 Back-end . 31
3.5.1 Technologies . 31

3.5.1.1 Java . 31
3.5.1.2 Spring . 32
3.5.1.3 Swagger . 32
3.5.1.4 Project Lombok 32

x

3.5.1.5 Tesseract . 32
3.5.1.6 Docker . 33

3.5.2 Back-end structure . 33
3.5.2.1 OCR-API . 33
3.5.2.2 Back-end . 34

3.5.3 Database . 34

4 Implementation 37
4.1 OCR-API . 37

4.1.1 REST API layer . 37
4.1.1.1 ImgDocumentController 38
4.1.1.2 PDFController 40
4.1.1.3 Swagger-UI . 41

4.1.2 Business layer . 42
4.1.2.1 DocumentStorageService 42
4.1.2.2 DocumentService 43
4.1.2.3 PDFService . 43
4.1.2.4 OCRService 43
4.1.2.5 Workers . 43

4.1.3 Data layer . 44
4.2 Back-end . 45

4.2.1 REST API layer . 45
4.2.1.1 Access rights 46
4.2.1.2 UserController 46
4.2.1.3 DocController 47
4.2.1.4 Swagger-UI . 48

4.2.2 DTOs . 49
4.2.2.1 DocDto . 49

4.2.3 Business layer . 49
4.2.3.1 Services . 50
4.2.3.2 Workers . 51

4.2.4 Data layer . 53
4.2.5 Repositories . 53
4.2.6 Entities . 55

4.3 Front-end . 56
4.3.1 Components of Front-end 57

4.3.1.1 Login page . 57
4.3.1.2 Page for documents 57
4.3.1.3 Import page 58
4.3.1.4 Common components 58

4.3.2 Services of Front-end . 58
4.4 Docker . 59

5 Testing 61

xi

5.1 Unit testing . 61
5.1.1 OCR-API unit testing 61
5.1.2 Back-end unit testing 62

5.2 Use-case scenarios testing . 62
5.3 Usability testing . 63

5.3.1 Scenario . 63
5.3.2 Testing . 63

5.3.2.1 Tester 1 . 63
5.3.2.2 Tester 2 . 64
5.3.2.3 Tester 3 . 64
5.3.2.4 Tester 4 . 64

5.3.3 Summary of testing . 64
5.3.3.1 Uploading file 64
5.3.3.2 Download file 65

5.3.4 Advanced search . 65
5.3.4.1 Document download 65

Conclusion 67

Bibliography 69

A Acronyms 71

B Executing application 73

C Diagrams 75

D GUI after implementation 81

E GUI after testing fixes 85

F Contents of enclosed USB 89

xii

List of Figures

1.1 Paperless logo [1] . 5
1.2 Mayan EDMS logo [2] . 6
1.3 OpenKM logo [3] . 7
1.4 eFIleCabinet logo [4] . 8
1.5 Templafy logo [5] . 9
1.6 Vienna advantage logo [6] . 10

3.1 Identified user role . 17
3.2 Assigned use-cases to the role user 18
3.3 Simplified activity diagram of uploading document 21
3.4 Simplified activity diagram of using the advanced search to find a

document . 23
3.5 Simplified activity diagram of deleting a document 24
3.6 Simplified activity diagram of viewing a document 25
3.7 Simplified activity diagram of modifying document 26
3.8 Simplified activity diagram of downloading uploaded a document . 27
3.9 General architecture of the application 28
3.10 Suggestion for the login page . 29
3.11 Suggestion for the documents page 29
3.12 Suggestion for the import page . 30
3.13 Possible structure of the new application 34
3.14 Final architecture of the application 35

4.1 Structure of OCR-API . 38
4.2 Example of an asynchronous communication 39
4.3 Example of a synchronous communication 39
4.4 Image and document controller visualization using Swagger 40
4.5 PDF controller visualization using Swagger 41
4.6 Swagger-UI for OCR-API . 41
4.7 POJOs in OCR-API . 44

xiii

4.8 Structure of Back-end . 45
4.9 Communication using JWT . 46
4.10 User controller visualization using Swagger 47
4.11 Doc controller visualization using Swagger 48
4.12 Swagger-UI for Back-end . 48
4.13 DTOs used in Back-end . 50
4.14 Schema of existing repositories . 54
4.15 Back-end entities with relation to the User class 55
4.16 Back-end entities with relation to the Doc class 56
4.17 Angular architecture [7] . 56
4.18 Back-end Dockerfile . 60

B.1 Docker-compose for Back-end . 74

C.5 Simplified activity diagram of using the full-text search to find a
document . 75

C.1 User registration simplified activity diagram 76
C.2 Simplified activity diagram of password resetting 77
C.3 Simplified activity diagram of user login 78
C.4 Simplified activity diagram of using pagination search to find a

document . 79

D.1 Login page . 81
D.2 Import page after implementation. 82
D.3 Documents page after implementation. 82
D.4 Extended view page after implementation. 83

E.1 Import page with fixed selection of the files. 85
E.2 Documents page with fixed column names and position. 86
E.3 Extended view page with a newly added button download. 87

xiv

Introduction

We live in very progressive and hectic times. We usually receive a document
from a doctor, a bank or any other institution. The document represents
a written deal that binds both sides to do something. In a case, there is
an accident or problem with agreed deal, we have the mentioned document,
which supports our claim and in the worst case, it is possible to use it in legal
way. The number of documents we get during our lifetime is huge. However,
only small part of them are very important and therefore, we store them
somewhere for time of their need(if there is any.), though it’s still considerable
amount. The moment, we need them, it takes time to find them between other
documents. Doing it once is acceptable waste of time, but doing it repeatedly
leads to heavy annoyance that may trigger decision to do something about
it. There are two common outcomes. The first one is to physically creating
system of archiving documents that saves time, while trying to find the correct
document. The second one is to use virtual system. For example a software
that is able to load documents, index them and in a need, find them.

Big companies deal with the document problem using software called an
electronic document management system, in short EDMS. Every EDMS ap-
plication has its advantages and disadvantages over the other ones. The most
essential differences between them are in functionality, pricing, support, but
all of them have in common is to store uploaded documents. Later, when
a document or documents are required, they are able to locate them quietly
fast.

In comparison to big companies, ordinary people or small groups have
minimal options to chose from. Usually, they are stuck between free product
with limited features and an expensive option with a lot of features, but hard
to learn. Therefore, I decided after looking through already existing options to
create a prototype on my own that will be free of charge, supporting essential
operation with documents and in future extensible by anyone - open-sourced.

The first part of the thesis describes existing solutions and their compari-
son. The next part will be an analysis of requirements for a new application,

1

Introduction

followed by design and implementation chapter. Lastly, there is a testing part,
which contains existing tests in the application with the addition of manual
tests carried out to verify its functionality.

2

Chapter 1
State-of-the-art

1.1 Electronic documentation management system

Before I start describing current situation of existing products, I would like
to give a brief introduction to document management system, although I’ve
already mentioned a word or two in the introduction.

1.1.1 Brief history

An electronic document management system, or EDMS, is a system, which an
organization or individual use to store, search, utilize and manage documents
or files as they desire.

The history of EDMS starts as far as the 1980s. Before them, people
used file cabinets to somehow organize documents in a smart system that
would allow them to find them easily. However, with an increased amount of
paperwork, file cabinets increased accordingly. More documents mean more
required storage and paper. Those cost companies heavily. Moreover, pa-
per documents could be easily destroyed by disasters as fires and floods, or
even could be lost to theft. In addition, any modification of already existing
document was very time demanding[8].

However, there were people who were thinking modernly, came with a
different approach. As mentioned, it all started around the 1980s, when avail-
ability of computer technology was more and more common. Companies could
use servers to store their organization’s data and with the invention of a scan-
ner that allowed the transformation of paper documents to digital one, came
the beginning of EMDS. Throughout the year’s existence of EDMS came to
being and its features increased[8].

3

1. State-of-the-art

1.1.2 EDMS features

EDMS features available in DMS tools may differ from one to another, but
the most common features are[9]:

• Storing

• Document analyzation

• Information extraction via OCR

• Structuring and indexing documents

• Locating and retrieving

• Permission granting and gating

• Versioning

• Security and compliance

• Communication and collaboration

1.2 Existing solutions

Currently, there are multiple solutions on the market. Most of them are either
expensive or they are not open-source. In a case that they are both free and
open-sourced. Usually, their features are minimalistic, sometimes minimized
to a point being unacceptable.

I picked a few products that are interesting. However, it may not represent
the whole universe of all available products out there. Besides, I’d like to point
out that they were not only compared from the view of a user, but also from
a Java developer perspective that may intend to extend a current solution.
Solutions that I analyzed are the following:

• Paperless

• Mayan EDMS

• OpenKM

• eFileCabinet

• Templafy

• Vienna advantage

4

1.2. Existing solutions

1.2.1 Paperless

The paperless project started around 2015, as mentioned on Github1 website.
The creator of the project was also motivated by similar problems and decided
to do something about it, as he also experienced situations, where he needed
documents, but it was not around[1].

His main goals were to create something that:

• search digital documents

• save storage by using digital documents instead of paper documents

• back up of documents requires no more paper

Even though the application is popular, it is not developed anymore by
the creator, because he has another project that takes priority, but he also
mentions that in case somebody has a feature requested via pull request, he
does not see a problem to incorporate it to current version[1].

Currently, the application coded in the language Python also contains op-
tical character recognition (further as OCR). To be exact, it is using Tesseract,
which is nowadays a very popular and free OCR engine coded in C and C++.
In addition, there are visible actions to use docker in the project.

Figure 1.1: Paperless logo [1]

A summary of the Paperless project’s pros and cons:

Pros

• Simple with basic abilities

• Open-source

• Free to use

• Default security

• OCR for scanning

• Docker for deployment
1https://github.com/the-paperless-project/paperless

5

https://github.com/the-paperless-project/paperless

1. State-of-the-art

• Able to upload documents using FTP

Cons

• Written in Python, would be troublesome to expand

• Dying community

• Complicated execution of the application

• No able to upload documents via the application’s GUI

1.2.2 Mayan EDMS

Mayan EDMS is a free and open-source project, coded in programming lan-
guage Python and using web application framework Django. Its initial release
dates back to the year 2011. The web application looks very well developed
with multiple features using Tesseract as OCR engine, with basic languages.
It’s deployable via docker image. In addition to this all, it also has extensive
documentation. In comparison to the paperless project, it’s is still very active
in devolopment[2].

Figure 1.2: Mayan EDMS logo [2]

Pros

• Extensive features

• Using docker image

• Open-source

• Free

6

1.2. Existing solutions

• Includes basic document operations

• Active community

• Extensive documentation

Cons

• Coded in Python

• Documentation for starting an application is not clear

• Missing Slovak language in OCR

1.2.3 OpenKM

OpenKM is a Java based application that provides web interfaces for managing
documents. Its beginnings date back to the year 2005. It is partially open-
sourced for the community edition. However, it’s missing any JUnit tests, if
there were any in the enterprise edition. As you may think, it’s more intended
for corporations that will pay for the enterprise edition with all its features.
Of course, there is also the community edition with minimalistic features and
free to use, however after trying a few times to set it up and start it, I gave up.
In addition to all its features, it supports more than 35 languages in the user
interface(further as UI) and supports multiple relational databases. Lastly,
as I mentioned, it’s using Java programming language, however the version is
Java 8 or 1.8, which is still very popular and highly used[3].

Figure 1.3: OpenKM logo [3]

A summary of the OpenKM project’s pros and cons[3]:

Pros

• Java

• Extensive features

• Supports more than 25 languages in UI

• Provides community edition for free

Cons

7

1. State-of-the-art

• Open-sourced only for community edition

• Free only counting community edition

• Open-sourced code missing tests

• Confusing documentation

• OCR using only five languages, even though it’s using Tesseract

• Troublesome installation

• Intended for corporations

1.2.4 eFileCabinet

EFileCabinet was founded and is still on the market since 2001[10]. The
whole software consists of multiple features like OCR, file versioning, two-
factor authentication, cloud storage and so on. However, the chance to use
them depends on how much customer is willing to pay. They offer three
different plans, starting from expensive to very expensive, where the more
expensive plan contains more features[4].

Figure 1.4: eFIleCabinet logo [4]

A summary of the eFileCabinet project’s pros and cons:

Pros

• Multiple features

• Popular

• OCR

8

1.2. Existing solutions

• Full-text search

• Mobile and desktop access

Cons

• Pricy

• Not open-sourced

• Intended for bigger groups

• Poor description of the application

1.2.5 Templafy

Templafy is another EDMS tool aim at companies rather than individuals. It
is not open-source, and surely it’s not free. It looks like the price depends
on the number of employees in a company as to get the exact amount, user
has to request a price offer from Templafy. Templafy supports integration
with popular services as Office 365, GSuite, and so on. In contrast to previ-
ous tools, they aim more on the creation and modification of documents via
templates. Though, they should also support basic document management,
though without OCR ability[5].

Figure 1.5: Templafy logo [5]

A summary of the Templafy project’s pros and cons:

Pros

• UI user-friendly

• Integration with popular services

• Document creation and management

• Extensive features

• Documentation and guides available

Cons

• No OCR

9

1. State-of-the-art

• Aiming more to generate documents

• Pay for use

• Not open-sourced

1.2.6 Vienna advantage

Vienna advantage is the last tool that I picked from all available out there.
As in previous tools, Vienna advantage have in common some features, but
still rich with available features. It’s open-sourced for community edition by
the description from the official website and coded in C#. It contains tools
for CRM, BI, HR. There is also a choice to pick from database types that
the client would like to use. Moreover, it is possible to upload via a phone
app, email, scanner or web service. Additionally, OCR supports 27 languages
and there is available indexing of metadata. Lastly, but not least, Vienna
advantage supports versioning of documents[6].

Figure 1.6: Vienna advantage logo [6]

A summary of the Vienna advantage project’s pros and cons:

Pros

• Open-sourced for the community edition

• Free community edition, with basic features

• Dozens of features in general

• Uploading documents via multiple devices

• OCR supporting 27 languages

• Professional support for 30 days free

Cons

• Coded in C#

• Advanced feature only in the paid version

• Open-sourced only for the community edition

• Installation is a little bit too complex

10

1.2. Existing solutions

1.2.7 Summary

In conclusion to all mentioned EDMS, there is none, which would be capable
of all three necessary features:

• Free

• Open-source

• Modifiable in Java

The Closest is Mayan EDMS, but it’s coded in Python language, thought if I
would be experienced with Python and its frameworks, I would surely choose
this one. The second option I though of extending was OpenKM, but it had
many flaws that I couldn’t overcome to accept.

• Open-sourced only for community edition(further CE)

• OCR was missing the Slovak language

• After a few tries and multiple hours waiting, I gave up to install it

• Missing tests and poor documentation for CE

Therefore I decided to create my own prototype with the necessary features.

11

Chapter 2
Analysis

This chapter is going to explain what should a new application contains. To be
more specific, I will elaborate on the necessary functional and non-functional
requirements. Lastly, but not least, it is necessary to define use-cases and
use-case scenarios.

2.1 Requirements

In the requirements, I will describe the necessary functionalities. Usually, in
every software development, we talk about two requirements:

• Functional

• Non-functional

2.1.1 Functional requirements

Functional requirements define the behavior of the function in a system.
Whereas a function is the specification of behavior between data inputs and
outputs.

An EDMS application for small groups with basic operation requires func-
tionalities for the following groups:

• User

• Documents

• OCR

13

2. Analysis

2.1.1.1 User

When we talk about EDMS for a small group, then it would be expected that
there are accounts for every user to avoid breaching of privacy or deletion of
documents that belong to somebody else.

In the case of minimalistic EDMS, there should be these functionalities for
user:

• Creating a new user account in EDMS

• Resetting password by a user, who forgot or want to change password

• Login into the app to gain access to view documents

• Logout

2.1.1.2 Documents

The sole reason why electronic document management systems exist are doc-
uments. Therefore, it is necessary for an EMDS to have document function-
alities.

Therefore, there should be functions for:

• Uploading paper document/s to system

• Searching imported documents using full-text search or advanced search

• Deleting uploaded documents

• Adding tags for document

2.1.1.3 OCR

A very important part of EDMS is the integration of an OCR engine that
enables the extraction of text from scanned documents or photos of documents.
It is a very essential part of EDMS as it creates a bridge between uploaded
documents and the ability to search through them using scanned text, thus
the software should have functions of:

• Extract text from document/s using OCR engine

• Specify/Change extraction language of the document to increase accu-
racy

14

2.1. Requirements

2.1.2 Non-functional requirements

Non-functional requirements, in contrast to functional requirements, defines
software attributes as reusability, open-sourced, scalability, security and other
attributes. Usually, it serves as a limitation or restrictions on software de-
sign. I mentioned that non-functional requirements are constraints of the
application or in other words, one could say they are general characteristics.
Therefore, a new prototype of EDMS should contain the following require-
ments:

• Scalable

• Unit test coverage

• Basic security

• Integrable

• Web-application

• Java based back-end

• Open-Sourced

• Free

• Reusable

• Documented

2.1.2.1 Scalable

Even though this should be software for individual or small group of people,
it should have a chance to scale in case of need of a customer. Therefore
used technology should be compatible with horizontal scaling, if the customer
decides so later.

2.1.2.2 Unit test coverage

Created a back-end part of the application has to be covered by unit testing.
This will decrease the chances of unexpected failures/errors, whenever the ap-
plication gets a new change. Moreover, it will ease further code development.

2.1.2.3 Basic security

The application should be able to provide basic security to user data, even
though the software is aimed mostly at local environment, hence the access to
user data has to be secured by password.

15

2. Analysis

2.1.2.4 Integrable

The back-end part of the software should have available HTTP API for inte-
gration with other applications in the future.

2.1.2.5 Web-application

The created application has to be implemented as a web-application accessible
via Mozilla Firefox version 83.0+ and Google Chrome version 87.0.4280+.

2.1.2.6 Java based back-end

The back-end application has to be coded in the programming language Java.

2.1.2.7 Open-sourced

The application code has to be available to everyone. Not just the final version
of code, but also version control of the code. The aim is to boost up chances
of future work on the project with other people.

2.1.2.8 Free

One of many reasons, why I’m creating new software is the price of existing
ones. I believe, there should be an available alternative with satisfactory
features for individuals or small groups. A synergy of free and open-source
application is much stronger than the effect of only one of them alone.

2.1.2.9 Reusable

The designed software app should contain parts/components that would be
available to others for reuse in their own software tools.

2.1.2.10 Documented

Code that is not self-explanatory, should be documented. This is mainly aimed
at parts of code that could be reused later by other software developers.

16

Chapter 3
Design

3.1 Use-cases

Use-cases are an inseparable part of designing every application that should
be developed. In general, use-case represents a list of actions describing in-
teractions between selected actor, that may or may not exists in the system
and system itself. Whereas an actor represents a role played by a user that
interacts with the system[11].

In the application was identified only one role, which is:

• User - the one that is using application

Normally, there would also be the role of an Admin to take care of existing
users. However, as this will be a prototype with minimal functions, it is
enough to have just one role, with all document functions assigned to the role
user 3.1.

Figure 3.1: Identified user role

For the identified role user, there exist the following use-cases visible on
included image, see 3.2.

17

3. Design

Figure 3.2: Assigned use-cases to the role user

3.1.1 User registration

Basic user operation is his registration to the system.

3.1.2 Resetting password

An essential use-case is resetting the password for the user in case he forgets
his name or password. Also could be used, when the user just wants to change
the password.

3.1.3 User login

A user logs into the application.

3.1.4 Uploading document

A user uploads document or documents to the application.

18

3.2. Use-case scenarios

3.1.5 Delete document

A user has an option to delete an unwanted document from the system.

3.1.6 View document

A user can view document or document details inside the application.

3.1.7 Modify document settings

In case a user sets an incorrect scanning setting for a document, he should
have a chance to modify them without uploading the whole document again.

3.1.8 Search document using pagination

A default searching option that uses pagination.

3.1.9 Search document using full-text search

A document can be found by a user using full-text search.

3.1.10 Search document using advanced search

A document can be found by a user using advanced search with parameters.

3.1.10.1 Download uploaded document

Uploaded documents have to be stored and downloadable, if a user wants to
download them.

3.2 Use-case scenarios

Use-case scenarios are a very important part of designing an application. It
helps to demonstrate and visualize user or even developer, how use-case action
should work, what other actions it contains, what happens in case of invalid
data and so on.

3.2.1 User registration

A user that would like to have access to the application has to register first.
Upon loading the app, the user will see only choices to login, reset password or
register. After clicking on the link register, the user will be redirected to page
register with four text fields to fill: username, e-mail, password, same password
again. When the user is finished writing input data, he can click to submit to
register. If not successful, he will get notification about failed registration and
to change invalid data, but if he was successful, he will receive informative

19

3. Design

alert that the account was registered and a confirmation e-mail was sent to
the user. By clicking on a link located inside the confirmation e-mail, user
will be redirected to the application and the account will be activated. For
better visualisation see C.1 diagram.

3.2.2 Resetting password

In a case a user forgot his password or username, he can request a password
change by click on the link ”Forgot Username/Password” under the login
option. The user will be redirected to the page for resetting password, where
e-mail address is required. After filling e-mail address, the user has to submit
by click on a button reset. If the e-mail address was valid, he will get a
notification about password reset e-mail being sent to him. If it was not valid,
he will stay on the page with chance to change it. After clicking on a link
found inside password reset e-mail, he will be redirected to page to change his
password. Filling new password, new password again and clicking to submit
it, the password will be changed. If he an filled invalid password or both
passwords did no match, he has to correct it. For better visualisation see C.1
diagram.

3.2.3 User login

To access the application, a user has to login. On the first visit of the applica-
tion, the user is redirected to a login page, where he is required to fill username
and password. After clicking a login button, the user will be redirected to the
documents page if the credentials were correct. If not he will stay on the login
page to fix credentials. For better visualisation see C.3 diagram.

3.2.4 Documents

All of the following scenarios belongs to possible operations that could be done
with documents. In all of these scenarios a user is required to have an access
to the application, before he can proceed further. To do so, a user has to log
in and will be redirected to the documents page. If log in was not successful,
he has to try again. After being redirected to the page documents, the user
will able to see search options at the top and table with documents under it.

3.2.4.1 Uploading document

A user located at the page documents, has to click on the navigation tab
import that will redirect him to an import documents page. By clicking
on a file selection bar, a window with files will be shown to the user for
selection. Next to the selected files, there will be changeable settings for
scanning selected files. Settings will contain quality scanning option, option to
scan immediately, option for multi-paged files, option for document language.

20

3.2. Use-case scenarios

When the user is satisfied with the selection of files and settings, he can move
on to submit and upload files/documents. For better visualisation see 3.3
diagram.

Figure 3.3: Simplified activity diagram of uploading document

3.2.4.2 Search document using pagination

Searching for document/s using pagination is the most simplest approach. A
user located on page documents can use pagination arrows at the bottom of
the table containing documents. Click on an arrow to the right, page move
one index further/deeper and shows a next page. Using an arrow to the left

21

3. Design

the table shows a previous page. Using a right arrow pointing to the bar
next to it will navigate table to the last page, respectively using a left arrow
pointing to the bar will navigate table at the beginning of the table. For better
visualisation see C.4 diagram.

3.2.4.3 Search document using full-text search

Searching for document/s using full-text search is also a simple approach, but
it is much more efficient. A user located on page documents can search using
full-text search by selecting full-text search option in top search card, left
corner. Afterwards, the user can write text right next to the selection box to
the input text field. Search will be started, when the user clicks on a button
search. For better visualisation see C.5 diagram.

3.2.4.4 Search document using advanced search

Searching for a document using advanced search a user has to decide, what
specific values does the document hast to contain. Firstly, the user has to pick
an attribute of the document he will be looking for. A selection of attributes
is at the top card, left corner, where is by default selected full-text search.
Other options are:

• Text

• State

• Language

• Tag

• Creation date

• Update date

• Shared

By selecting the mentioned options, UI may change the input value format.
For example, in the case of the text option, the user can fill a string value
inside input text field, but for the state option input text field will be changed
to a select box. Anyway, if the user wants to add an already filled search
option value to searching, he has to click on the add button. The value will be
saved to search parameters. To add more values, the user just needs to repeat
previous steps. All values from one search option are disjunctional, but values
between options are conjunctional. If all search values are selected, it’s only
needed to click the search button.

22

3.2. Use-case scenarios

Figure 3.4: Simplified activity diagram of using the advanced search to find a
document

3.2.4.5 Delete document

When the user finds a desirable document for removing, he has to click on a
garbage icon located at the right side of the document row. The user will be
prompt, if he is sure to delete it. After confirming deletion, the document will
be gone. For better visualisation see 3.5 diagram.

23

3. Design

Figure 3.5: Simplified activity diagram of deleting a document

3.2.4.6 View document

If the user wants to view document, first he has to use already mentioned
search options:

• full-text search

• pagination

• advanced search

When the user finds a desirable document for viewing and row data are not
satisfactory, click on the row will expand and show details of the selected
document.

For better visualisation see 3.6 diagram.

24

3.2. Use-case scenarios

Figure 3.6: Simplified activity diagram of viewing a document

3.2.4.7 Modify document settings

When the user finds a desirable document for modification, a click on the
pencil at the side next to the garbage icon will do. After click, a new window
will be shown to the user with fields that are non-modifiable as a document’s id
and filename. Following not modifiable fields will be fields that are changeable:

• Document scanning state

• Document type

• Share document

• Document language

• Scan immediately

• Multi-paged file

25

3. Design

• Scanning quality

Below mentioned fields is located change to add new tags for document or
remove existing ones by clicking on them. After the user is finished with
changes, he needs to submit changes by clicking the button update. For better
visualisation see 3.7 diagram.

Figure 3.7: Simplified activity diagram of modifying document

3.2.4.8 Download uploaded document

When the user finds a desirable document for downloading its image, he has to
click on the row and it will expand and show details of the selected document.
In the expanded row is shown thumbnail or preview of the uploaded image of

26

3.3. Architecture of the application

the document. It will be shown, if it’s image. Clicking on the preview or the
hyperlink below it will trigger pop-up screen to download the file.

For better visualisation see 3.8 diagram.

Figure 3.8: Simplified activity diagram of downloading uploaded a document

3.3 Architecture of the application

Being aware that the application is going to be a web-application for a small
group of people, It would more than satisfactory to use usual architecture -
three-layer architecture. It consists of layers:

• Presentation layer - Front-end

• Application layer - Back-end

• Data layer - Database

See Figure 3.9, additional information about the architecture will be described
in the following sections.

27

3. Design

Figure 3.9: General architecture of the application

3.4 Front-end

A presentation layer is the front-end part of the application. Its main compo-
nent is the user interface(UI) that enables users to interact, see and manipulate
with its functions and services.

3.4.1 Pages layout

The first step, before implementing UI is to create a prototype version with
pages layout. Using use-case scenarios, there were identified a few pages but
only 3 of them most important:

• The login page, see Figure 3.10

• The documents page, see Figure 3.11

• The import page, see Figure 3.12

As you can see in the list above, there the most important pages with layout,
how they could look like.

28

3.4. Front-end

Figure 3.10: Suggestion for the login page

Figure 3.11: Suggestion for the documents page

29

3. Design

Figure 3.12: Suggestion for the import page

3.4.2 Technologies

After having prepared the layout UI of the application, there is a question
about what technology to be used for implementation. There are multiple
technologies available, but the most commonly used for front-ends are:

• Angular

• React

• Vue.js

3.4.2.1 Angular

Angular belongs to the most powerful, efficient and open-source JavaScript
frameworks. It is developed by Google and it’s implemented for development
aimed on single page application (SPA)[12].

3.4.2.2 React

React or also known as React framework, was developed by Facebook. More-
over, it has gained popularity in a short period after being released. React
is usually used to develop and operate dynamic user interface of web pages
that have very high incoming traffic. One of his attributes is the usage of
virtual DOM, hence it makes integration into other applications much more
straightforward[12].

30

3.5. Back-end

3.4.2.3 Vue.js

Vue.js was developed in 2016 by one of AngularJS’s developers, but even
against being younger than other JavaScript frameworks, it has already made
its way into the market. Moreover, it offers various features. Its dual integra-
tion mode is one of the features that makes developers consider to use it in
their single page application[12].

3.4.2.4 Chosen framework

Selecting a front-end framework from all already mentioned is very difficult,
as all of them are modern, efficient and popular. To select the final one, I will
use the elimination method.

The first one to eliminate would be Vue.js. Although it’s gaining popularity
and gaining momentum, but it is popular only between developers. Both
React and Angular are more often sought, have bigger community and are
also backed by big corporations[12].

The decision between Angular and React is as hard as it was with Vue.js,
because the differences are somewhat small. However, there is one point that
may help. As mentioned in the description of React, it is usually used in apps
with high traffic. That cannot be said about this application as it aims for
a small group of people, therefore traffic will be relative low or non-existing,
which suits Angular much better and makes it the sole winner of the elimina-
tion and the version of Angular that will be used is Angular 10.

3.5 Back-end

3.5.1 Technologies

In contrast to the front-end technology, the back-end technology is already
predetermined by non-functional requirements, therefore I will be using pro-
gramming language Java to implement back-end. The version of Java that
should be used is at least version 1.8 of its key features as streams, lambdas,
optionals and so on. The version 1.8 was released in the year 2014. It is still
very popular in projects, stable and as OpenJDK, it is still supported. Later,
if it would be needed then it can be rather easily upgraded.

Lastly, there are also other technologies that may be useful in this project
and I will introduce them in the following parts.

3.5.1.1 Java

Java is a high-level programming language, but also a platform. Java is mostly
recognized by its features:

• Object oriented

31

3. Design

• Portable

• Architecture neutral

• Secure

• High performance

• etc.

The greatest benefit of using Java is its portability. It is because of javac
compiler compiles source code to bytecodes, which are not native to a normal
processor, however with the usage of Java Virtual Machine can bytecodes run
on every computer[13].

3.5.1.2 Spring

Spring or fully Spring Framework makes it easier and saves time to create
Java applications as it provides nearly everything that a Java developer needs.
The Spring Framework is open-sourced and divided into modules. Therefore,
developers may choose, which modules they need. Currently, there are about
20 available modules. Not to mention, it is considered secure, flexible and
low-cost[14].

3.5.1.3 Swagger

Swagger is an open-source framework for designing and creating documen-
tation and interaction with the API’s resources without having any imple-
mentation logic done, because it is automatically generated from OpenAPI(
formerly known as Swagger) specification[15].

3.5.1.4 Project Lombok

Project Lombok is a very useful library and saves a lot of time and code space
in a project. With the usage of annotation in Java classes, Lombok knows,
what is left to generate, therefore user does not need to code boilerplate code
every time he create a class or modifies an existing one[16]. For example:

• @Getter - generates getters for an annotated class

• @Setter - generates setters for an annotated class

3.5.1.5 Tesseract

Tesseract, an OCR engine, was originally developed at Hewlett-Packardsince
1985, then it was open-sourced. Later Google took over and is still working on
it. Tesseract was code using C++, which makes it a little difficult with Java.
However, there are libraries that wrapped C++ Tesseract and made it easier
to use it. Therefore, Tesseract could be a great help in EMDS application[17].

32

3.5. Back-end

3.5.1.6 Docker

Docker is an open platform used for developing, shipping and running appli-
cations. It helps you separate applications from infrastructure, so it can be
delivered quicker. In addition, Docker provides an ability to package and run
an application in a loosely isolated environment named as a container[18].

3.5.2 Back-end structure

Being aware of what technologies are going to be used in the back-end, it
would be great to have prepared suggestions for back-end structure.

Considering the non-functional requirements of being integrable and reusable,
I would suggest the back-end being separated into two parts. Visualisation
available in Figure 3.13.

• OCR-API - A Java application integrated with an OCR engine Tesser-
act to take care of document scanning logic, accessible via REST API
endpoint.

• Back-end - A Java application taking care of communication between
the front-end, OCR-API and a database.

Separating Java application into two parts, as suggested above, will fulfill the
non-functional requirements of being integrable and reusable. To push it one
step further, it will be an undeniable improvement for reusability, if every
component could be dockerized.

3.5.2.1 OCR-API

OCR-API is a component that will be integrated with an OCR engine. To be
more specific, it will be Tesseract. Besides, it should be able to have exposed
REST API endpoints for receiving new images/documents that should be
scanned. Moreover, it has to be able to return the extracted text from scanned
documents.

Considering the mentioned points, it should consist of three layers that
have separated concerns:

• REST API layer - exposing endpoints for new work assignments and
communication

• Business layer - takes care of a coordination for text extraction and
other computations

• Data layer - data that are necessary to persist

33

3. Design

3.5.2.2 Back-end

As mentioned, the back-end will be an intermediary that takes care of:

• Front-end communication

• Sending and retrieving scanned documents from OCR-API

• Enforcing authorized access to give documents at least basic security

• Persistence of data to a database

Therefore, it will have a similar structure to OCR-API with a different speci-
fication for each layer.

• REST API layer - exposing endpoints for communication with Front-
end

• Business layer - will take care of communication with OCR-API and
it will be checking, if there are documents that needs to be scanned via
OCR-API.

• Data layer - persisting data to a database

Figure 3.13: Possible structure of the new application

3.5.3 Database

To persist data, most of the existing solution use relational databases as Or-
acle, SQL Server, MySQL and others. In the constrast to them, I decided

34

3.5. Back-end

to go with NoSQL database called MongoDB that support many interesting
features. The most important ones were search operations in text, storing
data as JSON and dynamic schema design. The following parts will describe
MongoDB in the futher details.

MongoDB is a NoSQL database is non-tabular and stores data differently
than a relational database. To be specific, MongoDB is a document-oriented
database with scalability and flexibility. Moreover, MongoDB offers far more
features, but from all of the following are most important for this project:

• Dynamic schema design - changes in the back-end, does not need to be
also fixed in a database

• Supported by Spring - avoids time demanding the creation of repositories

• Data representation in JSON - ideal for saving text after scanning and
also retrieving

• Supports text search

According to MongoDB, it also provides ACID transactions for documents.
Considering all the mentioned features, it is all I need for development of a
prototype of the application, without loosing time to take care of the database
and creating object’s tables and columns in it[19].

The database was the only component of the application architecture not
being defined in this chapter. As it is already resolved, the applications final
architecture can be seen in Figure 3.14, where are filled all base technologies
that will be used for corresponding components.

Figure 3.14: Final architecture of the application

35

Chapter 4
Implementation

Accordingly to the design chapter, I proceed further with the implementation
of the application. I took into account that Front-end will be using Angular
framework, Back-end will use Java and it should be separated into two com-
ponents to achieve better reusability. Additionally, a database will be realized
by MongoDB.

4.1 OCR-API

OCR-API was implemented as it was suggested in the design chapter. It
is separated from Back-end as it enables others to use OCR as a prepared
component alone, in a case they only need OCR with API. I will explain
more about implementation in the following subsections designed for each
component.

OCR-API consists of three layers as suggester in the design:

• REST API layer

• Business layer

• Data layer

4.1.1 REST API layer

The REST API layer consists of controllers that expose API endpoints to
others to interact with OCR-API. OCR-API consist of two controllers:

• ImgDocumentController

• PDFController

37

4. Implementation

Figure 4.1: Structure of OCR-API

4.1.1.1 ImgDocumentController

ImgDocumentController is intended for work with file formats:

• JPG

• PNG

• TIFF

The JPG, PNG and TIFF are supported only in ImgDocumentController,
because these are only formats that are supported by Tesseract.

Additionally, a user has an option to upload files/documents via an asyn-
chronous or synchronous POST request. In the first case, the user sends a
file to process and OCR-API saves the file physically and returns to the user
object DocumentAsyncStatus that contains:

• Current state of the uploaded file/document that can be processing or
scanned

• A status link to check the current state of the file

• A link to a result of the scanned file

In a case, where a returned object has state processing, a user has to keep
asking OCR-API on the status link, if the extraction of text is finished. When
it is finished, the user uses the link to the result of the scanned file, where
he receives the extracted text. There is a diagram visualising the described
process in Fig. 4.2.

38

4.1. OCR-API

Figure 4.2: Example of an asynchronous communication

The second option is for a user to use a synchronous request. In comparison
to the previous method, the user has to just send a request with a document
and wait throughout the whole process of text extraction from the document.
In the case of sending more than one document or sending a document with
multiple pages, it may take quite a while. As well, as in the first case, there is
visualization in Figure 4.3. Even though it looks much more straightforward,
it is not as efficient as asynchronous communication.

Figure 4.3: Example of a synchronous communication

39

4. Implementation

The ImgDocumentController has additional four exposed methods:

• Get document status - to get the current status of the document

• Get scanning result

• Delete uploaded file

• Get test method to check availability of OCR-API

For better understanding, I recommend to see Figure 4.4 that was generated
via Swagger.

Figure 4.4: Image and document controller visualization using Swagger

4.1.1.2 PDFController

PDFController is intended as the name suggests for PDF files. The reason,
why it is separated from ImgDocumentController, it is because a PDF file
format is not supported by Tesseract and therefore, it is needed to do prepro-
cessing on the PDF files before they can be sent straight to OcrService that
takes care of the extraction of text from the document. Therefore, I separated
controllers to two different ones.

PDFController has similar exposed methods, but it is missing a syn-
chronous request method for scanning PDF files. The reason behind is, that
usually PDF files contain more than one page and logically, more pages mean
more time spent for text extraction that led me to remove asynchronous com-
munication for PDF files scanning.

As in ImgDocumentController, PDFController also have Figure 4.5 show-
ing exposed methods generated by Swagger that are very similar to ImgDoc-
umentController.

40

4.1. OCR-API

Figure 4.5: PDF controller visualization using Swagger

4.1.1.3 Swagger-UI

For all named controllers, there is also available automatically created API
documentation that is provided using Swagger-UI. As a bonus to the API
documentation, there is also an option for a user to interact with API. Visu-
alization of how it looks can be seen in Figure 4.6.

Figure 4.6: Swagger-UI for OCR-API

41

4. Implementation

4.1.2 Business layer

The business layer in OCR-API is a layer that contains all the work logic
behind OCR-API. It consists of services and workers. Services in OCR-API
are:

• DocumentStorageService - used as virtual storage to keep information
about currently processed documents

• DocumentService - used for distribution of work and processing received
documents from ImgDocumentController

• PDFService - used for work with PDF files, where it reads PDF file via
PDFBox library then saves it as PNG file

• OCRService - used for extraction of text from files using OCR engine
Tesseract

• FileStorageService - used for work with received files - saving, reading,
deleting

Moreover, OCR-API also contains workers. To be specific, there are ex-
actly two workers that take care of text extraction from files. Workers found
in OCR-API are:

• DocumentJobWorker - a worker that has specific job to do, when there
is a file assigned to it

• PDFJobWorker - a worker that has specific job to do, when there is a
PDF file assigned to it

In the following subsections will be more explanation about important
classes that were mentioned.

4.1.2.1 DocumentStorageService

DocumentStorageService is a virtual storage that contains two concurrent
maps:

1. Contains documents

2. Contains current state of document

There are used to access, update or get current state of the document by
workers or controllers, if a user wants to know current state of the document.

42

4.1. OCR-API

4.1.2.2 DocumentService

DocumentService is a service that receives supported document formats as
PNG, JPG, TIFF. In general, when it is called by ImgDocumentController,
it will first save document to a physical disk and then it will create worker of
a type DocumentJobWorker that will be added to task pool. DocumentJob-
Worker will take care of the extraction, while DocumentService will return to
the controller that the document is assigned.

4.1.2.3 PDFService

PDFService is very similar to DocumentService. However, as mentioned PDF
format is not supported by Tesseract. Therefore, it creates PDFJobWorker to
task pool instead of DocumentJobWorker. It may seem that there was no need
for PDFJobWorker as it could be easily done in DocumentJobWorker. The
reason for separation was to make clear that there are two different approaches
and that using PDF document is not as reliable as the supported formats.

4.1.2.4 OCRService

OCRService is the most important service that uses wrapped OCR engine
Tesseract for extraction of data from a document. Additionally, it also contains
a part that adds new languages for use and it is done automatically, if it is
required by configuration provided with a document.

However, there are additional steps to do, if a language is not English,
Czech or Slovak:

• Extend language checker in controller with the language that is required

• Don’t forget to add traindata2 for the language

4.1.2.5 Workers

Workers are essential in asynchronous communication. They work indepen-
dently from controllers as they have their own thread pool. Whenever they
are created, they are put inside the thread poll with a task. When their turn
comes, they will start computing. Let me also put forward that currently, it
is allowed only for one active thread. Other tasks have to wait in it for their
turn.

DocumentJobWorker and PDFJobWorker have many similar parts as to
extract text from a document and change the document’s status. However,
PDF is not supported by Tesseract. Therefore, before it can be scanned,
PDFJobWorker has to first split the PDF document into documents with
only one page. Afterwards, it needs to convert them one by one to PNG

2https://github.com/tesseract-ocr/tessdata

43

4. Implementation

format. When the conversion is done, PDFJobWorker can proceed with the
same routine, but in the end, it has put all pages into one document.

4.1.3 Data layer

The data layer is usually used for objects that are being persisted. In OCR-
API, the only data that are persisted are received files. They are saved to file
storage to avoid jamming memory with the file’s data.

The plain old java objects (further POJOs) that are being used in OCR-
API are:

• Document - containing document data

• DocumentAsyncStatus - document asynchronous status returned to a
requester

• OcrConfig - settings for OCR, currently used only inside OCR-API

• DocumentProcessStatus - state of document is processing, when is being
processed and scanned, when it is completed

To see exactly what named POJOs are containing, I recommend to see Figure
4.7.

Figure 4.7: POJOs in OCR-API

44

4.2. Back-end

4.2 Back-end

Back-end, as well as OCR-API, goes with three suggested layers:

• REST API layer

• Business layer

• Data layer

However, there are some differences that I will elaborate about in the
following parts, but in Fig. 4.8 can be seen, what those three layers use in
comparison to the OCR-API structure.

Before going further, I’d like to point out one important matter. In the
implementation in OCR-API, I was using the word ”document” in created
object names. However, while implementing the data layer in the Back-end, I
realized that annotation for entity in JAVA using MongoDB is ”@Document”.
This conflicted with usage from OCR-API, therefore all namings were changed
from ”document” to ”doc” in Back-end.

Figure 4.8: Structure of Back-end

4.2.1 REST API layer

Back-end component is consisting of two controllers that are exposing API
endpoints for interaction with Back-end. The controllers are:

• UserController

• DocController

45

4. Implementation

4.2.1.1 Access rights

Before there are described existing controllers, it is necessary to point out,
how documents are protected against an unauthorized action, described in
the following part.

Uploaded documents are belongings of a user that uploaded them. The
user can share them with others, but it only enables everyone else to view
them. However, they are not able to modify them in any way.

To enforce access rights, some form of access code was needed. To solve this
issue, JSON Web Token(JWT) was used. JWT is an open-source standard
(RFC 7519), which defines a compact and self-sufficient approach to securely
transmit information between parties as a JSON object. The information is
credible, because it is digitally signed[20].

Therefore, when a user wants to access a document, he has to include a
JWT that was generated for him in the request for accessing the document.
In a case he doesn’t have any or JWT validity expired, the user can get a new
one by authorizing. A diagram describing the usage of JWT can be seen in
Figure 4.9.

Figure 4.9: Communication using JWT

4.2.1.2 UserController

The User-Controller, as the name suggests, is aimed for user operations and
therefore, access to them is available to everyone without JWT verification.
Exposed operations are the following:

• User registration

• Registration confirmation

46

4.2. Back-end

• User authentication - grants a new JWT

• Reset account

• Change password after reset

The mentioned operations are visualized in Figure 4.10. UserController also
contains GET method for testing the availability of Back-end.

Figure 4.10: User controller visualization using Swagger

4.2.1.3 DocController

DocController is exposing endpoints that control operation with documents.
However, every request has to contain JWT that is valid and operation that
the requester wants to do, has to be available to the user. For example,
user A cannot delete a document that belongs to user B. Exposed endpoints
operations are:

• Delete a document

• Get a document

• Get paged documents by default, by specified/advanced parameters or
by full-text

• Get file belonging to document

• Patch document

• Upload documents/files

All mentioned API endpoint above, are visible in Fig. 4.12.

47

4. Implementation

Figure 4.11: Doc controller visualization using Swagger

4.2.1.4 Swagger-UI

As well as OCR-API, Back-end also contains documentation generated by
Swagger and in addition, it also provides a possibility to interact with API.
Visualization of how it looks can be seen in Fig. 4.12.

Figure 4.12: Swagger-UI for Back-end

48

4.2. Back-end

4.2.2 DTOs

Lastly, the REST API layer contains Data Transfer Objects(DTOs), which are
trimmed data objects containing only necessary parts needed on Front-end.
Currently, there are 2 DTOs:

• UserDto - returned only after registration to make sure that correct data
were set

• DocDto - returned every time there is a request for a document or doc-
uments

To see what exactly is inside DTOs, see Fig. 4.13.

4.2.2.1 DocDto

DocDto is the most used DTO class. It is send forth and back between com-
munication of Front-end and Back-end.

On the route from Back-end to Front-end is send everything from Doc
object, except document’s file to minimize communication size.

The other way around from Front-end to Back-end is the situation is a lot
different. To assure that users won’t break the application apart, the following
properties are ignored on the conversion:

• Name of the file

• Owner

• Document’s file

• Document’s preview

4.2.3 Business layer

As well as in OCR-API business layer, a business layer in Back-end contains
logic behind Back-end and does required computation. The business layer
contains in general two groups:

• Services

• Workers

49

4. Implementation

Figure 4.13: DTOs used in Back-end

4.2.3.1 Services

Services are classes with methods that work in a specific domain. For example
DocService works with docs - documents. In Back-end are multiple services.
For documents are used following:

• DocService - used for work with documents

• VirtualStorageService - as the name suggest, virtual storage is virtual
storage with concurrent hash map to know, which document are being
scanned to avoid adding one document more than once to a scanning
queue and also if they failed, including how many times

• OCRService - used for wrapping a whole communication with OCR-API

• RestApiOcr - prepared specific REST API methods for every necessary
endpoint used in OCR-API

While working with users in Back-end component exists following services,
where every one of them has specific reason described:

• ConfirmationTokenService - used for work with ConfirmationTokens
generated while creating an account for user

• ResetTokenService - used to work with ResetTokens intended for user,
when they forget their password or username

50

4.2. Back-end

• UserService - used for work with Users

• EmailService - used for e-mailing

EmailService has a significant meaning for authorization of a user. To
create a new account, the user has to register a new account using an e-
mail address. After the registration, the user will receive and a confirmation
e-mail to activate the account. Moreover, the activation will be done by
ConfirmationTokenService. However, there is a catch to EmailService for the
system to use it. Before the execution of the Back-end, it is necessary to
provide an e-mail account with a password. This topic will be described later
in a chapter dedicated to the execution of the application.

4.2.3.2 Workers

Workers are a specific part of the business layer in Back-end component. They
do their work in a separate thread from the existing logic. In Back-end can
be found these two workers:

• DocOcrChecker - a job that is currently set to be called repeatedly
every 1 minute to check, if there are documents to be processed. If
there are, they will be sent to a queue to be processed. A code of the
DocOcrChecker called every 1 minute can be seen in listing 4.1.

• OcrApiJobWorker - a job created by DocOcrChecker for every not fin-
ished document and put into a queue. The moment it gets the priority,
it will use OCRService to start communicating with OCR-API to do
work that is left to do.

Listing 4.1: Automatically executed code to look for the unscanned docu-
ments.

// 2min -> 120000 milis
@Scheduled (fixedDelay = 60000)
public void checkUnscannedDocs () {

log.info(" Started DocumentOcrChecker !");

List <Doc > cleaningDocs =
documentRepository

. findDocumentsByAsyncApiInfoAsyncApiState (
AsyncApiState . RESOURCE_TO_CLEAN

);

// find processed -> to download
List <Doc > scannedDocs =

documentRepository

51

4. Implementation

. findDocumentsByAsyncApiInfoAsyncApiState (
AsyncApiState . SCANNED
);

// check status
List <Doc > processingDocs =

documentRepository
. findDocumentsByAsyncApiInfoAsyncApiState (

AsyncApiState . PROCESSING
);

// find to_be_send -> to process not yet
processed

List <Doc > waitingToSendDocs =
documentRepository

. findDocumentsByAsyncApiInfoAsyncApiState (
AsyncApiState . WAITING_TO_SEND

);

List <Doc > documentsWork = new
ArrayList <>(scannedDocs);

documentsWork . addAll (processingDocs);
documentsWork . addAll (waitingToSendDocs);
documentsWork . addAll (cleaningDocs);

// filtering documents already in process
documentsWork =

documentsWork . stream ()
. filter (document ->

! virtualStorageService
. isDocUsed (document .getId ())

)
. collect (Collectors . toList ());

// add docs to virtual storage
documentsWork . forEach (document ->

virtualStorageService
. addDoc (document .getId ()));

documentsWork . forEach (
document1 ->

taskExecutor . execute (
new OcrApiJobWorker (

beanFactory

52

4.2. Back-end

. getBean (OCRService .class)
docService ,
documentRepository ,
virtualStorageService ,
document1
)

)
);

log.info("Done executing works.");
}

4.2.4 Data layer

As it can be seen in Fig. 4.8, the Back-end’s data layer consists mainly of 2
blocks:

• Repositories - interfaces that enable Back-end to retrieve, delete and
save data to MongoDB

• Entities - objects that can be persisted inside of MongoDB

4.2.5 Repositories

Repositories are the main parts that are used for communication with the
database. When working with Java and Spring, one can easily use Spring
Data Java Persistence API that gives a user implementation of repositories
that contains all CRUD operations - create, read, update and delete. More-
over, the user has a chance to use his own implementation if he desires to.
For example, DocCustomRepository is customized repository using MongoDB,
where DocCustomerRepositoryImpl is its implementation. It contains imple-
mentation for two methods:

• findDocsByMultipleArgs - a method, which is used to search for doc-
uments using multiple arguments that the searched documents should
contain as a certain tag, status, language and others

• findDocsByFullText - a method, which is using a provided string param-
eter that says, what a document or documents should contain and finds
them using a full-text search

Afterwards, DocRepository implements DocCustomRepository. The exist-
ing repositories can be seen in Figure 4.14.

Used repositories in Back-end:

53

4. Implementation

• DocCustomerRepository - a customized repository for searching in Mon-
goDB using multiple search settings

• DocRepository - a repository that access collection documents

• ResetTokenRepository - a repository that access collection of ResetTo-
kens

• ConfirmationTokenRepository - a repository that access collection of
ConfirmationTokens

• UserRepository - a repository that access collection of Users

Figure 4.14: Schema of existing repositories

54

4.2. Back-end

4.2.6 Entities

Entities are objects that can be persisted in MongoDB and they are also
objects that are retrieved from MongoDB via repositories.

Generally, there are two groups in entities that have strong relations.

• User entities

• Doc entities

User entities consist of four classes: User, ConfirmationToken, ResetToken
and UserRole. Their definition can be seen in Figure 4.15.

Doc entities, in comparison to User entities, consist of seven classes. From
these seven, there are two enumerations and two classes that contain the only
property of type string. They were created with the foresight that in the
future, they may be extended with additional properties. The list of doc
entities is the following:

• Doc - represents a document object

• AsyncApiStat - represents a state of scanning

• AsyncApiInfo - a document state from OCR-API

• DocConfig - a configuration for scanning

• DocType

• Tag - currently consist of an description

• DocPage - represents a page per file-page

Doc entities specific properties can be seen in Figure 4.15.

Figure 4.15: Back-end entities with relation to the User class

55

4. Implementation

Figure 4.16: Back-end entities with relation to the Doc class

4.3 Front-end

An application implemented via Angular framework is built on components.
Every component’s base is a class to which is bound HTML template with CSS
style using directives. Thanks to its logic, a page can be split into multiple
components and again merge them together. An image describing Angular
architecture can be seen in Figure 4.17.

Front-end logic is hidden inside services that are injected into components
using a technique - Dependency Injection.

Figure 4.17: Angular architecture [7]

56

4.3. Front-end

4.3.1 Components of Front-end

Components of Front-end can be separated generally in four groups using
designed main pages with one extra group:

• Components of login

• Components of documents

• Components of import

• Rest of components

4.3.1.1 Login page

The login page or also, in other words, the authentication page contains actions
as login, register and account reset. A part of the implemented login page can
be seen in Figure C.3, located in the appendix. The components that stand
behind the design of the login are the following:

• Login - a component is displaying login

• ChangePassword - a component is displaying page for password change

• PasswordResetContainer - a component container for components ChangePass-
word and PasswordReset

• PasswordReset - a component is displaying option to reset an account

• Register - a component is displaying page for registration of a new user

• Auth - a component container for user components mentioned above

4.3.1.2 Page for documents

A page for documents is the most robust one out of the three groups. The
reason for the robustness is the number of activities available on the page.
For example, a user can view documents, search documents using different
approaches, modify them and lastly delete them. For the curious readers,
there is an available example of the page for documents in Figure D.3 in the
appendix. The components that belong to the documents are:

• AsyncApiInfo - a component is displaying AsyncApiInfo

• DocConfig - a component is displaying DocConfig

• DocumentExtendedView - a component is displaying additional details
about document, when a user click on document row

57

4. Implementation

• DocumentEdit - a component is displaying window that enables a user
to partially modify document

• DocumentPreview - a component is displaying a document image thumb-
nail

• DocumentTags - a component is displaying tags of a document

• Pages - a component is displaying text-pages of a document

• Documents - a component containing tab documents

4.3.1.3 Import page

The last main page is for importing documents. It consists of only one com-
ponent:

• ImportDocuments - a component containing tab for importing docu-
ments

Its illustration is located in Figure D.2.

4.3.1.4 Common components

Components that may be used across above mentioned groups belong to this
group. The common components are:

• Header - a component is displaying header of Front-end

• Message - a component is displaying a message after communication
with Back-end that may be informative, warning or even error message

4.3.2 Services of Front-end

In simplified manners, a service is an object that contains only computing
logic that may be used across all components. Services that are being used in
Front-end are:

• Auth - a service that is taking care of a user authentication

• BasicAuthHttpInterceptor - a service that intercepts every HTTP request
made by Front-end and concat to it JWT, if a user is authenticated

• Document - a service that takes care of communication between Front-
end and Back-end, when there is document request such as modifying,
searching or deleting

• FileUpload - a service that takes care of file upload to Back-end

• Message - a service that shows a message after being triggered

58

4.4. Docker

4.4 Docker

The last part of the implementation chapter is the dockerization of created
components. To dockerize an application, a user has to fulfill the following
steps:

1. Prepare a build and working application.

2. Find a docker image that can be used as a basis for the whole the
application.

3. Write a Dockerfile.

4. Build image of the application.

Additionally, to ease development and usage application, I used a useful tool at
Dockerhub3 that connects to a repository of the source-code, builds the appli-
cation, creates an image automatically and the built image is online available
for usage. I used this approach for all three components that are currently
visible at URL4.

Images used for respective components were the following:

• Front-end - nginx:stable-alpine

• Back-end - gcr.io/distroless/java-debian10

• OCR-API - gcr.io/distroless/java-debian10

An example, how can a Dockerfile look like, can be seen in Figure 4.18. It
consists of two stages.

1. Build stage - used to build an application from the source code.

2. Package stage - stacking the built application onto the provided Docker
image.

Using these two stages does, what I described a while ago about building a
new image from changed source-code without doing it myself.

3https://hub.docker.com/
4https://hub.docker.com/u/madgyver

59

https://hub.docker.com/
https://hub.docker.com/u/madgyver

4. Implementation

Figure 4.18: Back-end Dockerfile

60

Chapter 5
Testing

Testing is the last part of development of every new application. In my case,
I used three different approaches:

• Unit testing

• Use-case scenarios testing

• Usability testing

5.1 Unit testing

Unit testing was the first approach to test the application. I used unit testing
for Back-end and OCR-API for

• Controllers

• Services

In both cases, the testing was realized via library JUnit that easily enables to
do unit testing in Java. These tests are run every-time a new build is being
created. In case they fail, a developer has to fix it, so the next build can be
created.

5.1.1 OCR-API unit testing

In OCR-API, there are five unit tests. From five of them, three belong to
Service testing:

• DocumentServiceImplTest

• PDFServiceImplTest

• OCRServiceTPlatformTest

61

5. Testing

The remaining two are aimed for controllers:

• PDFControllerTest

• ImgDocumentControllerTest

5.1.2 Back-end unit testing

In comparison to OCR-API, Back-end testing contains three groups of unit
testing. The first testing group takes care of controllers.

• DocControllerTest

• UserControllerTest

The second testing group looks after services.

• OCRServiceTesseractTest

• ConfirmationTokenServiceImplTest

• ResetTokenServiceImplTest

• UserServiceImplTest

• DocServiceImplTest

• EmailServiceImplTest

Lastly, but not least, is the unit testing group for DTOs consisting only of one
class.

• DocDtoConverterTest

5.2 Use-case scenarios testing

After implementing the whole application, I tried to simulate all use-case
scenarios to find out any inconsistencies. The found and fixed troubles were:

• Account confirmation of registration not working

• Resetting account password not saving new password

• Advanced search not finding document states and language

• The titles in the documents table were not centered

• Column names were programming naming as origName instead of the
normal full description original name

62

5.3. Usability testing

5.3 Usability testing

In addition to all previous tests, there was also done usability testing. Its main
aim was to see, if the created graphical user interface, even though basic, had
possible problems that would complicate a user’s work with the tool.

5.3.1 Scenario

To users/testers were given a scenario, to at least have a general idea, what
can be done in the application.

Scenario:

1. Upload 2 documents with the language set to English.
2. Upload another 2 documents with a different language in compar-

ison to previous task.
3. Add tags to a document A
4. Add different tags to a document B.
5. Download an image of an arbitrary document.
6. Find a document A using added tags.
7. Find a document that has set language to English.
8. Delete an arbitrary document.

The specified scenario is not a limitation of the testing. It is just a means
to somehow compare the testing of multiple users, but also parts that didn’t
belong to the scenario were taken into account.

5.3.2 Testing

In total, there were four people, who tested the applications usability and
records of their testing can be found in the USB enclosed to this thesis.

In the following subsections will be described what kinds of problems
testers run into.

5.3.2.1 Tester 1

The first tester had experienced complications while trying to import files
to one batch of files by adding them one by one. This approach was not
considered in implementation as every new selection replace the previous one.

Additionally, he was confused at the beginning, how the advanced search-
ing is working, but eventually, everything worked out.

Lastly, he couldn’t download an uploaded document, while it was not in
the completed status.

63

5. Testing

5.3.2.2 Tester 2

For the second tester, the import part worked quietly and without any ma-
jor problems. However, there was major trouble, when the tester wanted to
search via an advanced searching option. The tester’s recording has shown
his misconception, as he wanted to search, without adding the selected search
phrase option to searching parameters. The rest of the testing went smoothly.

5.3.2.3 Tester 3

The third tester had mainly problems with uploading files. He tried to use
batches, but added more batches than he needed to. Therefore, he redoes
whole files importing, but by adding it file per batch.

In the second part to look for documents, there were no problems, as the
tester used just brute force as a viewed file by file. However, there is visible
confusion, when he tried to download the file. At first, he wasn’t aware, where
it is located. Secondary, how to achieve it.

5.3.2.4 Tester 4

The fourth and the last tester met with similar troubles as previous testers.
Documents uploading was not as intuitive as it could be and usage of the
advanced searching method was too complex.

5.3.3 Summary of testing

The usability testing was fruitful as it helped to found a couple of problems:

• Uploading file/s was too simple and bothered the testers

• A way to download the documents file was not obvious

• Advanced search is too complex

• A user is not able to download document, when scanning is not com-
pleted

5.3.3.1 Uploading file

To fix lack of features for uploading file, an additional were added, see E.1.

• A user can drag and drop files

• A user can deselect unwanted files

• A user can select additional files

64

5.3. Usability testing

5.3.3.2 Download file

From testing could be seen confusion, when a user is tasked to download a file
belonging to the document. Therefore, there was added a download button in
the preview, see E.3.

5.3.4 Advanced search

The users’ experiences from usability testing has shown that advanced search
needs to change in the future. It needs to be more intuitive and less complex.

5.3.4.1 Document download

A problem with downloading document while being in a different state than
completed, was fixed inside the Back-end code.

65

Conclusion

This thesis’s goals were to analyse existing electronic document management
systems and design a new prototype that will be open-sourced and free. The
designed application should be divided in parts that would make it easier to
reuse it as the whole or reuse only specific parts. The requirement for reuse
was indirectly pointed at the component OCR-API that could be used by
anyone else, who just want OCR exposed via REST API. Finally, it should
be implemented and tested to make sure it is working well.

All goals were accomplished. Existing solutions were analyzed and have
been taken into account, while trying to create a new prototype. The imple-
mented prototype is open-source and free to use for everyone. It is as well
documented and contains JUnit tests.

In addition, the whole application that is implemented, is available not only
on Github5 as source code, but also as executable Docker image on Docker-
hub6. Moreover, the Dockerhub repository not only contains a docker image
of every component, but also builds a new Docker image, when the source
codes were changed at Github.

In the future, there are multiple tasks that can be done. Firstly, it is
needed to change advanced searching for something more user friendlier. Sec-
ondly, create an admin page and implement its logic to Back-end. Thirdly,
DocOcrChecker needs some tweaks to prevent future overloadings and to en-
able possibility to change execution interval by admin. Moreover, OCR-API
is currently using only basics of Tesseract, but there is much more options to
use.

Lastly, but not least, even though there is still room for improvement, it
has a solid foundation. If given additional time and dedication, it could stand
on equal ground with other document management systems or even surprise
them.

5https://github.com/EnjoyB/docs-archive-backend
6https://hub.docker.com/u/madgyver

67

https://github.com/EnjoyB/docs-archive-backend
https://hub.docker.com/u/madgyver

Bibliography

[1] Pitkley. Paperless [online]. May 2020, [Cited 2020-8-14]. Available from:
https://github.com/the-paperless-project/paperless

[2] EDMS, M. Mayan EDMS [online]. 2020, [Cited 2020-8-11]. Available from:
https://www.mayan-edms.com/

[3] System, O. D. M. Document Management System [online]. 2020, [Cited
2020-8-11]. Available from: https://www.openkm.com/

[4] eFileCabinet. Introducing a New Way to Accomplish Business [online].
[Cited 2020-11-12]. Available from: https://www.efilecabinet.com/
how-it-works/

[5] Templafy. Templafy platform [online]. [Cited 2020-11-9]. Available from:
https://www.templafy.com/platform/

[6] Vienna-Advantage. An enterprise level commercial open source ER-
P/CRM [online]. [Cited 2020-11-11]. Available from: https://
www.viennaadvantage.com/

[7] Prajapati, A. Angular Architecture [online]. 2020, [Cited 2020-12-11].
Available from: https://www.ngdevelop.tech/angular/architecture/

[8] Biels. A History of Document Management [online]. July 2016,
[Cited 2020-12-12]. Available from: http://biels.com/a-history-of-
document-management/

[9] Oragui, D. EDMS: A Comprehensive Guide [online]. March 2020, [Cited
2020-12-16]. Available from: https://helpjuice.com/blog/edms

[10] eFileCabinet. About eFileCabinet, Inc. [online]. [Cited 2020-11-8]. Avail-
able from: https://www.efilecabinet.com/company/

69

https://github.com/the-paperless-project/paperless
https://www.mayan-edms.com/
https://www.openkm.com/
https://www.efilecabinet.com/how-it-works/
https://www.efilecabinet.com/how-it-works/
https://www.templafy.com/platform/
https://www.viennaadvantage.com/
https://www.viennaadvantage.com/
https://www.ngdevelop.tech/angular/architecture/
http://biels.com/a-history-of-document-management/
http://biels.com/a-history-of-document-management/
https://helpjuice.com/blog/edms
https://www.efilecabinet.com/company/

Bibliography

[11] Specification, O. A. Omg unified modeling language (omg uml), super-
structure, v2. 1.2. Object Management Group, volume 70, 2007.

[12] Arora, S. K. 10 Best JavaScript Frameworks to Use in 2020 [online].
September 2020, [Cited 2020-11-4]. Available from: https://hackr.io/
blog/best-javascript-frameworks

[13] Oracle. About the Java Technology [online]. [Cited 2020-11-11]. Avail-
able from: https://docs.oracle.com/javase/tutorial/getStarted/
intro/definition.html

[14] Spring. Spring Framework Overview [online]. October 2020, [Cited 2020-
11-11]. Available from: https://docs.spring.io/spring-framework/
docs/current/reference/html/overview.html

[15] SmartBear. OpenAPI specification [online]. November 2020, [Cited 2020-
11-10]. Available from: https://swagger.io/resources/open-api/

[16] Kimberlin, M. Reducing Boilerplate Code with Project Lom-
bok [online]. January 2020, [Cited 2020-11-11]. Available from:
https://objectcomputing.com/resources/publications/sett/
january-2010-reducing-boilerplate-code-with-project-lombok

[17] Tesseract-ocr. Tesseract OCR [online]. July 2020, [Cited 2020-11-11].
Available from: https://github.com/tesseract-ocr/tesseract

[18] Docker. Docker Overview [online]. 2020, [Cited 2020-11-11]. Available
from: https://docs.docker.com/get-started/overview/

[19] MongoDB. What is MongoDB [online]. 2020, [Cited 2020-11-13]. Avail-
able from: https://www.mongodb.com/what-is-mongodb

[20] Auth0. Introduction to JSON Web Tokens [online]. [Cited 2020-11-12].
Available from: https://jwt.io/introduction/

70

https://hackr.io/blog/best-javascript-frameworks
https://hackr.io/blog/best-javascript-frameworks
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://swagger.io/resources/open-api/
https://objectcomputing.com/resources/publications/sett/january-2010-reducing-boilerplate-code-with-project-lombok
https://objectcomputing.com/resources/publications/sett/january-2010-reducing-boilerplate-code-with-project-lombok
https://github.com/tesseract-ocr/tesseract
https://docs.docker.com/get-started/overview/
https://www.mongodb.com/what-is-mongodb
https://jwt.io/introduction/

Appendix A
Acronyms

UI User interface

GUI Graphical user interface

DMS Document management system

EDMS Electronic DMS

OCR Optical character recognition

CE Community edition

OMG Object management group

UML Unified modeling language

REST Representational state transfer

API Application programming interface

HTTP Hypertext transfer protocol

FTP File transfer protocol

OS Operating system

DTO Data transfer object

71

Appendix B
Executing application

To start up an application from built images on Dockerhub, it must have
a starting script called docker-compose.yml. It is located in Back-end’s git-
repository7, folder docker commands. Afterward, it is only necessary to start
following commands in folder, where is docker-compose.yml located.

The created docker-compose.yml was tested and executed inside different
OS as Windows 10, Ubuntu and macOS. Therefore, it should be working on
other platforms, depending only on the docker settings.
#!/ bin/bash
Command to download container images .
docker - compose pull

Command to start -up application
docker - compose up

After starting up the application, components should be available:

• Front-end - http://localhost:80/

• Back-end - http://localhost:8085/

• OCR-API - http://localhost:8086/

For testing purposes, there is created a dummy user with credentials:

• name - tester

• password - tester

Different settings may be changed, when creating a container via parameters.
In docker-compose.yml, there are few parameters that are already set, so others
could use them in the future easily. Important parameters to be set are:

7https://github.com/EnjoyB/docs-archive-backend/blob/master/docker commands
/docker-compose.yml

73

https://github.com/EnjoyB/docs-archive-backend/blob/master/docker_commands/docker-compose.yml
https://github.com/EnjoyB/docs-archive-backend/blob/master/docker_commands/docker-compose.yml
http://localhost:80/
http://localhost:8085/
http://localhost:8086/

B. Executing application

• spring.mail.username

• spring.mail.password

Both parameters are used for registration of users and need to be set for Back-
end, see Figure B.1, where are set dummy values for the e-mail and password.

Figure B.1: Docker-compose for Back-end

All other parameters that can be changed, will be found in Github repos-
itories of the respective component. For example, OCR-API needs a path to
training sets of the OCR.

• Front-end - does not have any specific parameters to set - https://
github.com/EnjoyB/docs-archive-frontend

• Back-end - other parameters that can be set are located in applica-
tion.yml - https://github.com/EnjoyB/docs-archive-backend

• OCR-API - other parameters that can be set are located in applica-
tion.yml - https://github.com/EnjoyB/docs-archive-ocr-api

Furthermore, additional information can be found in the specific component
repository. However, there is an exception for the ports of Docker images.
When the ports are changes through parameters, they are changed only for
the application, but it doesn’t mean that it will also change the docker network
settings. To change also the docker network settings, it is necessary to change
Expose #PORT in Dockerfile and build it again.

74

https://github.com/EnjoyB/docs-archive-frontend
https://github.com/EnjoyB/docs-archive-frontend
https://github.com/EnjoyB/docs-archive-backend
https://github.com/EnjoyB/docs-archive-ocr-api

Appendix C
Diagrams

Figure C.5: Simplified activity diagram of using the full-text search to find a
document

75

C. Diagrams

Figure C.1: User registration simplified activity diagram

76

Figure C.2: Simplified activity diagram of password resetting

77

C. Diagrams

Figure C.3: Simplified activity diagram of user login

78

Figure C.4: Simplified activity diagram of using pagination search to find a
document

79

Appendix D
GUI after implementation

Figure D.1: Login page

81

D. GUI after implementation

Figure D.2: Import page after implementation.

Figure D.3: Documents page after implementation.

82

Figure D.4: Extended view page after implementation.

83

Appendix E
GUI after testing fixes

Figure E.1: Import page with fixed selection of the files.

85

E. GUI after testing fixes

Figure E.2: Documents page with fixed column names and position.

86

Figure E.3: Extended view page with a newly added button download.

87

Appendix F
Contents of enclosed USB

readme.md the file with USB contents description
records the directory of records from usability testing
docker-images..........................the directory with executables
src.......................................the directory of source codes

docs-archive...............................implementation sources
Front-end...............implementation sources of the Front-end
Back-end implementation sources of the Back-end
OCR-API................implementation sources of the OCR-APIs

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

89

	Introduction
	State-of-the-art
	Electronic documentation management system
	Brief history
	EDMS features

	Existing solutions
	Paperless
	Mayan EDMS
	OpenKM
	eFileCabinet
	Templafy
	Vienna advantage
	Summary

	Analysis
	Requirements
	Functional requirements
	User
	Documents
	OCR

	Non-functional requirements
	Scalable
	Unit test coverage
	Basic security
	Integrable
	Web-application
	Java based back-end
	Open-sourced
	Free
	Reusable
	Documented

	Design
	Use-cases
	User registration
	Resetting password
	User login
	Uploading document
	Delete document
	View document
	Modify document settings
	Search document using pagination
	Search document using full-text search
	Search document using advanced search
	Download uploaded document

	Use-case scenarios
	User registration
	Resetting password
	User login
	Documents
	Uploading document
	Search document using pagination
	Search document using full-text search
	Search document using advanced search
	Delete document
	View document
	Modify document settings
	Download uploaded document

	Architecture of the application
	Front-end
	Pages layout
	Technologies
	Angular
	React
	Vue.js
	Chosen framework

	Back-end
	Technologies
	Java
	Spring
	Swagger
	Project Lombok
	Tesseract
	Docker

	Back-end structure
	OCR-API
	Back-end

	Database

	Implementation
	OCR-API
	REST API layer
	ImgDocumentController
	PDFController
	Swagger-UI

	Business layer
	DocumentStorageService
	DocumentService
	PDFService
	OCRService
	Workers

	Data layer

	Back-end
	REST API layer
	Access rights
	UserController
	DocController
	Swagger-UI

	DTOs
	DocDto

	Business layer
	Services
	Workers

	Data layer
	Repositories
	Entities

	Front-end
	Components of Front-end
	Login page
	Page for documents
	Import page
	Common components

	Services of Front-end

	Docker

	Testing
	Unit testing
	OCR-API unit testing
	Back-end unit testing

	Use-case scenarios testing
	Usability testing
	Scenario
	Testing
	Tester 1
	Tester 2
	Tester 3
	Tester 4

	Summary of testing
	Uploading file
	Download file

	Advanced search
	Document download

	Conclusion
	Bibliography
	Acronyms
	Executing application
	Diagrams
	GUI after implementation
	GUI after testing fixes
	Contents of enclosed USB

