
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague September 21, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Security assessment of web application penetration testing tool

 Student: Bc. Tomáš Stefan

 Supervisor: RNDr. Daniel Joščák, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2021/22

Instructions

1) Study the current state of the Burp Suite penetration testing tool or Owasp ZAP penetration testing tool
(at least one of them).
2) Describe its functionality.
3) Manually examine security aspects of the application, look for weak spots. Focus on new functionalities
of the applications (e.g. WebSockets).
4) Write a fuzzer application that will automatically generate input data and monitor the tested application
for unexpected behaviour.
5) Discuss and analyze the results, with a focus on their security aspects.

References

Will be provided by the supervisor.

Master’s thesis

Security assessment of web application
penetration testing tool

Bc. Tomáš Stefan

Department of Information Security
Supervisor: RNDr. Daniel Joščák, Ph.D.

January 4, 2021

Acknowledgements

I would like to express my gratitude to my supervisor RNDr. Daniel Joščák,
Ph.D., for his constructive suggestions in making of this thesis. I would also
like to thank my family for their support throughout my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 4, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Tomáš Stefan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Stefan, Tomáš. Security assessment of web application penetration testing tool.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021. Also available from: ⟨https://gitlab.stdin.cz/ts/dp-
security-assessment⟩.

https://gitlab.stdin.cz/ts/dp-security-assessment
https://gitlab.stdin.cz/ts/dp-security-assessment

Abstract

The subject of the presented thesis is a security evaluation of a penetration
testing tool – Burp Suite. A theoretical part first describes the application,
its features, and ordinary usage. Later, we explain how a WebSocket pro-
tocol works. The practical part consists of a manual evaluation of specific
components of this application, running automated scans, developing a fuzzer
application to make an in-depth analysis of the WebSocket implementation,
and examining network traffic, which Burp generates in the background. We
identified several minor flaws such as webserver violating the HTTP standard,
or an undocumented REST API call. Moreover, we managed to decipher most
of Burp’s network traffic and verify that it does not contain sensitive or sus-
picious data.

Keywords security assessment, penetration testing, Burp Suite, web, proxy

vii

Abstrakt

Tématem předkládané práce je bezpečnostní analýza nástroje pro provádění
penetračních testů – Burp Suite. V teoretické části práce je nejprve popsána
samotná aplikace, její možnosti a základy běžného používání. Následuje vys-
větlení fungování protokolu WebSockets. Praktická část se skládá z manuální-
ho testování vybraných částí aplikace, automatizovaného skenování, vytvoření
aplikace k provedení podrobné analýzy implementace WebSocket protokolu
pomocí fuzzingu a nakonec prozkoumání síťového provozu, který Burp gene-
ruje na pozadí. Podařilo se nám najít několik drobných chyb, jako například
webserver, který porušuje HTTP standard nebo nezdokumentované REST
API volání. Navíc se povedlo rozklíčovat většinu síťového provozu, který Burp
generuje a ověřit, že tento neobsahoval citlivá nebo podezřelá data.

Klíčová slova bezpečnostní analýza, penetrační testování, Burp Suite, web,
proxy

ix

Contents

Introduction 1

1 Web application penetration testing tools 3
1.1 Burp Suite . 4

1.1.1 Usage . 4
1.1.1.1 Connecting a web browser 4
1.1.1.2 Tips for initial configuration 5
1.1.1.3 Intercept . 6
1.1.1.4 HTTP history 8
1.1.1.5 Automatic issue detection 8
1.1.1.6 Other tools and extensions 10

2 WebSockets 13
2.1 Overview . 13
2.2 Protocol details . 14

2.2.1 Opening handshake . 14
2.2.1.1 Client to server 14
2.2.1.2 Server to client 15

2.2.2 Data transfer . 16
2.2.2.1 Framing . 16
2.2.2.2 Control frames 17
2.2.2.3 Data frames 18
2.2.2.4 Masking . 18
2.2.2.5 Examples . 18

3 Practical part 21
3.1 Burp’s web endpoints . 21

3.1.1 Finding other endpoints 21
3.1.1.1 What is cross-site scripting (XSS) 22

xi

3.1.1.2 Check for reflective XSS 23
3.1.1.3 Replay/show in browser feature 24
3.1.1.4 Enumerating sites 26

3.1.2 REST API . 28
3.1.3 Found web endpoints summary 29

3.2 Scanning . 30
3.2.1 Nikto . 30
3.2.2 Burp . 33

3.3 Non-compliance with the HTTP protocol 34
3.3.1 Host header . 34
3.3.2 HEAD method . 36
3.3.3 Expect header . 36

3.4 Writing a WebSocket fuzzer . 37
3.4.1 Creating a local WebSocket server 38
3.4.2 High-level fuzzing . 39
3.4.3 Low-level fuzzing . 40

3.5 Examine Burp’s communication 44
3.5.1 Motivation . 44

3.5.1.1 SolarWinds Orion incident 44
3.5.2 Prepare a network namespace 45
3.5.3 Breaking the TLS . 47
3.5.4 Record Burp’s traffic . 48
3.5.5 Analyze the captured traffic 48

3.5.5.1 Check for updates 48
3.5.5.2 BApp Store current list 50
3.5.5.3 Burp Collaborator polling 51
3.5.5.4 Performance anonymous feedback 52
3.5.5.5 Background traffic summary 53

Conclusion 55

Bibliography 57

A Acronyms 65

B Performance feedback 67

C Contents of enclosed CD 69

xii

List of Figures

1.1 Configure proxy in Firefox’s settings 4
1.2 FoxyProxy . 6
1.3 Firefox profiles . 7
1.4 Burp – integrated browser . 7
1.5 Burp – intercepted request . 8
1.6 Burp – requests history . 9
1.7 Burp – detected issues . 11

2.1 WebSocket data frame . 17
2.2 WebSocket example – server message 19
2.3 WebSocket example – client message 19

3.1 Burp’s index page . 22
3.2 Burp – xyz site does not exist . 22
3.3 Burp – testing reflective XSS . 25
3.4 Configuration file for an upstream proxy 26
3.5 REST API page . 28
3.6 REST API – try out the request from web 30
3.7 Burp – undocumented REST API call 33
3.8 Burp’s web interface sitemap . 34
3.9 Burp’s REST API sitemap . 35
3.10 Invalid HTTP request being accepted 35
3.11 Sending a request with a HEAD method 36
3.12 Sending a request with an Expect header 37
3.13 Burp’s fuzzing topology . 38
3.14 Wireshark --check for updates . 49

xiii

Introduction

Web applications and services are probably the most popular software prod-
ucts nowadays, known even to the least technical person. Many people use
them throughout the whole day. Search engines, video streaming services,
social networks, e-shops, online banking – people can probably name at least
one popular website for each of the categories mentioned. The importance of
these products and the amount of money involved fortunately leads companies
to realization. It is not just about the look and feel, but the security aspects
are essential as well.

Burp Suite, a web application security testing framework, has become
the de-facto standard tool for discovering such products’ vulnerabilities. It
combines manual testing approach with automatic scanning, making it quick
in discovering the potentially vulnerable places but leaving enough space for
the creativity of a security specialist.

This thesis aims to choose specific components of the penetration testing
framework itself and examine the security properties, whether there might be
any vulnerability present. Also, examine all suspicious parts discovered during
this process. The past years have shown us that no big application is immune
to security incidents. For example, the recent indicent with SolarWinds Orion
should be a huge warning not to take security of any product lightly. No
matter how widely used an application is, it is never harmful to be extremely
cautious.

Burp Suite is a proxy between a user and a server. That gives it access to all
the data transferred on the channel, including login credentials and sensitive
content of the websites accessed. When conducting penetration testing inside
companies, it might gain access to private networks inside. Furthermore,
people using Burp are mostly security professionals expected to have valuable
information on their computers. Compromise of this application would have
a significant impact.

In chapter 1, we describe the Burp Suite penetration testing framework
and some of the features it provides. In the following chapter 2, we take a look

1

Introduction

at WebSockets as the chosen component of Burp to be tested in this thesis.
And in the last chapter 3, we proceed to the practical part – finding web
endpoints, scanning, developing a WebSockets fuzzer, and analysing Burp’s
network communication.

2

Chapter 1
Web application penetration

testing tools

Many tools are allowing to study the traffic going between a client and a
web server. However, only a small fraction of them are useful for security
researchers performing dynamic1 penetration tests of web applications and
services. [3]

In the core, such a tool is nothing else than a proxy server [4] sitting
between a web browser (or other local client) and an outside world – typically
Internet. However, it usually has some extended capabilities – logging of the
requests and responses, intercepting the traffic, modifying it before sending
further, finding vulnerable patterns, crawling locations on the server, and
much more. [5, 6]

These are the two most notable products matching this description:

Burp Suite is a mature product with quite a comprehensive feature set. It
is being developed by the PortSwigger Ltd. company and comes in three
different editions. There is a free Community edition, which comes with
limited features (especially in the automated scanning part, but also
lacks some advanced manual tools). Then there is a Professional edition,
which unlocks the automated scanning, Intruder, and other features.
And finally, there is an Enterprise edition, which has completely different
use case (scheduled and repeated vulnerability scans across the whole
organization) and does not fit into the scope of this thesis. [7]

1DAST (Dynamic Application Security Testing) is performed on running application in
an environment similar to the production. It simulates a real attack by hackers. On the
contrary, SAST (Static Application Security Testing) is taking advantage of the knowledge of
the codebase, documentation, and other sources, but does not include testing a live instance
of the application. IAST (Interactive Application Security Testing) is a combination of the
two approaches. [1, 2]

3

1. Web application penetration testing tools

Figure 1.1: Configure proxy in Firefox’s settings

Owasp ZAP is a free and open-source (Apache License 2.0) competitor to
Burp suite, a solution developed by volunteers around the world. [8]

1.1 Burp Suite
The software is written in Java programming language [9], making it easily
portable to various platforms, but being heavier on system resources. [10] The
official installer provides versions for Windows, Linux, Mac OS, and also a
plain JAR file. [11]

When we launch the application, it starts right away a proxy server, listen-
ing for new connections on the user configured address and port (by default
the address is localhost and port 8080). [12]

1.1.1 Usage
To see any data in the application, we need to redirect some traffic into the
proxy. It can be achieved in many different ways, but let us focus on one with
a great use case – web browsing.

1.1.1.1 Connecting a web browser

The first step to connect a web browser through Burp is to go to the browser’s
settings and configure the proxy details similarly as shown in Figure 1.1.

Any request from the web client goes through Burp now. Nevertheless,
when we try to connect for example to https://fit.cvut.cz, we get a warning
“Software is Preventing Firefox From Safely Connecting to This Site” (or
similar, depending on the specific web browser). This cryptic message says,
that the other side of the TLS encrypted connection is no longer the original
server. Instead, it is the Burp, which uses a different certificate, not trusted

4

https://fit.cvut.cz

1.1. Burp Suite

by our browser. Connecting to another website on plain HTTP, e.g. http:
//httpforever.com2, works without errors. But using the http:// prefix for
all sites is not a solution and many times even no longer possible because of
the following reasons:

HSTS HTTP Strict Transport Security is a security mechanism allow-
ing servers to declare themselves as accessible only via a secure connec-
tion (HTTPS). Most commonly it is implemented as an HTTP response
header Strict-Transport-Security, which uses a trust-on-first-use [13]
model. However, domains can also be specified in the HSTS preload [14]
of web browsers, mitigating this drawback and leaving no space to an
attacker, even on the first connection attempt. [15]

Redirection The server may respond to the request of unsecured ver-
sion with HTTP status code 301 – Moved Permanently (or other 3xx),
followed by the location of the secure version of the site. [16]
Ideally, redirection to the correct location should be handled by the web
server itself. [17, 18] However, in some cases, it is implemented in the
code running in the browser (e.g. JavaScript) loaded from the insecure
version of the site. [19]

No confidentiality and integrity Even if we could use the plain HTTP,
there is still a good argumentation against it, always using the encrypted
TLS tunnel. The most important reasons are keeping a confidentiality
and data integrity of the communication – no third party on the way
can see, nor modify the content of the communication. [20] Otherwise,
it would be possible to read the login credentials, bank account infor-
mation, place an advertisement, virus, or cryptocurrency mining script
into the content of any site, and more malicious actions, only limited by
the creativity of an attacker.

The preferred solution should be to import the certification authority
(Burp’s self-signed certificate) into a browser’s CA database and mark it as
trusted to identify websites. The certificate can be obtained either from the
GUI in the tab Proxy – Options – Import/export CA certificate or by visit-
ing a special URL http://burpsuite, which is served from the local Burp’s
instance.

1.1.1.2 Tips for initial configuration

The tool is fully prepared for usage with the proxy configured and the Burp’s
CA imported according to the previous section. But before we dive into
the features, there are several tricks to make life easier when using Burp
extensively.

2Site intended to always run on plain HTTP, owned by a security researcher Scott Helme.

5

http://httpforever.com
http://httpforever.com
http://burpsuite

1. Web application penetration testing tools

Figure 1.2: Browser extension allowing to quickly switch between different
proxy configurations.

Sometimes, it is needed to let only specific requests into the Burp and
other not. That leads to manually switching the proxy on and off quite often.
The solution is to either find some pattern and configure automatic rules,
or install a browser extension. One notable is FoxyProxy, which allows to
configure several proxy entries and switch between them on one click from the
corresponding menu in the top bar, as shown in Figure 1.2.

Another possibility is to use several browser profiles. This method has a
great benefit, that each profile is completely separate, including history, set-
tings, extensions, and other parts of the user profile. This way, we can, for
example, create a penetration testing profile, which uses the proxy as discussed
earlier, cleans the whole history and cookies when closed, and is visually dif-
ferent, to easily recognize on first sight which profile is in use. With profiles,
we can have several opened windows, each with a different configuration. In
Firefox, this can be achieved from a special URL about:profiles as shown
in Figure 1.3.

Yet another possibility was brought by a quite recent update. It is now
possible to use an integrated browser based on Chromium. The traffic goes
right away to the proxy without configuring anything. The only disadvantage
is that we have less control over the browser itself, which might not be ideal
for every use case. This can be achieved with the steps shown in Figure 1.4.

1.1.1.3 Intercept

The intercept feature allows us to see and make decisions about all the requests
before they are sent to the server. We can either make some modifications or
forward the request further without any change. In case we do not like the
request, we can drop it. Example is given in Figure 1.5. [21]

6

1.1. Burp Suite

Figure 1.3: Special site (about:profiles) built into Firefox for managing
multiple profiles.

Figure 1.4: Using Burp’s integrated web browser based on Chromium.

7

1. Web application penetration testing tools

Figure 1.5: Intercepted GET request to https://fit.cvut.cz/ is waiting for
user’s decision.

This feature can be handy in situations, where JavaScript validation pre-
vents sending invalid data; however, the validation takes place only on the
client’s side. The server processes the data without any further checks. A
similar case is character encoding before sending the request from the client.
Insufficient user input validation, is an ordinary programmer’s offence, which
might introduce severe vulnerabilities, such as SQL Injection and Cross-site
scripting (XSS). [22]

1.1.1.4 HTTP history

All the traffic going through Burp is also recorded, both requests and re-
sponses. It is possible to reach this information from the Proxy – HTTP
history tab, as shown in Figure 1.6. Additionally, this section provides ad-
vanced filtering capability, allowing to specify various keys such as MIME
type, response status code, specific string (including regular expressions), and
much more. [23]

1.1.1.5 Automatic issue detection

Burp also tries to recognize some vulnerable patterns and reports specific
findings with a short description and recommendation on how to mitigate
them.

Often, this might be quite useful to quickly recognize the problematic
places in the application, where to spend the most time, or just not overlook
some severe issue. Nevertheless, it does not mean that all the reported vulner-

8

1.1. Burp Suite

Fi
gu

re
1.

6:
H

ist
or

y
of

al
lt

he
re

qu
es

ts
an

d
co

rr
es

po
nd

in
g

se
rv

er
re

sp
on

se
s.

9

1. Web application penetration testing tools

abilities are valid. The scanning has false positives as well as false negatives.
It should be taken only as another input for a skilled security researcher who
should have a final word. [24]

The detected issues are accessible from the Target tab. There is a sitemap
in a tree format of the detected site content so far on the left side of this
window. The right side displays related issues to the currently selected subtree.
An example is shown in Figure 1.7. In this case, Burp was scanning a locally
running instance of DVWA3.

1.1.1.6 Other tools and extensions

There are many more useful features built-it (e.g. Intruder, Sequencer, Collab-
orator client). However, this section’s goal was not to summarise the official
documentation, but rather give some insight into what the tool is capable of
and point out how big application it really is.

One more thing needs to be mentioned in the context of Burp. It is not just
about the tools provided in the application, but there is also a great support
for extensions, which play a significant role in the ecosystem. [26]

3Damn Vulnerable Web Application is a web application with many common vulnera-
bilities included on purpose. The goals are to help security professionals test their skills,
improve the tooling, and educate others. [25]

10

1.1. Burp Suite

Fi
gu

re
1.

7:
Ta

rg
et

ta
b

co
nt

ai
ni

ng
au

to
m

at
ic

al
ly

de
te

ct
ed

iss
ue

s.

11

Chapter 2
WebSockets

2.1 Overview
This chapter will explain the inner working of the WebSocket protocol. We
will build upon this knowledge later in section 3.4, where we will develop a
WebSocket fuzzer.

Many modern web applications require full-duplex4 communication be-
tween a client and a server. Before WebSockets, the possible solution was
to implement some polling mechanism, because the HTTP protocol uses the
request-response model (the client sends an HTTP request, and the server
responds with an appropriate response). [27]

The polling is a bypass from the request-response model, simulating a
bidirectional communication, which the authors of the HTTP protocol did not
incorporate into the specification. The trick is in sending additional requests
from a client to the server. There are two types of polling, depending on the
chosen strategy. Short polling strategy periodically sends a request to the
server, expecting an immediate answer – either some data or empty message
if the server has nothing to say. If the tolerated communication latency is
low, this will generate an excessive load on the server and network. The other
strategy is long polling, where the server responds to a request only when
there is a message to be sent or timeout has occurred. Long polling allows
lower latency and decreases the use of network and server resources. [28]

The WebSocket protocol, defined in RFC 6455, comes as a solution to the
problem. It is a full-duplex communication protocol, using only a single TCP
connection as an underlying layer. The commonly used ports for WebSockets
are the same as for HTTP(S) communication – TCP ports 443 and 80 for
secure communication using TLS layer, and insecure communication, respec-
tively. Usage of the same ports and other similarities to the HTTP protocol
(especially in the handshake part) are on purpose. It allows easy integration

4Communication in both directions.

13

2. WebSockets

with existing HTTP proxies, other intermediaries5, and prevents some firewall
issues. [29]

The registered URI6 scheme is:

• ws for an insecure WebSocket protocol

• wss for WebSocket Secure (which uses TLS)

Example of the whole URI:

wss://server.example.com/chat

Except for a different scheme, the other distinction from HTTP URIs is
that the WebSocket ones must not include fragment identifiers (starting with
character). [30]

2.2 Protocol details
The protocol is divided into two parts – a handshake for establishing the
connection, and if that succeeds, a data transfer can follow. [31]

The WebSocket connection can be in one of the following states:

• CONNECTING – initial state; after the client sends a handshake

• OPEN – after successfully establishing the connection

• CLOSING – after either sending or receiving a closing handshake

• CLOSED – when the closing handshake is finished

2.2.1 Opening handshake
2.2.1.1 Client to server

The first part of the handshake, sent from the client to the server, is a GET re-
quest with an upgrade offer, which has to conform to the HTTP protocol. [31]

An example of such a request:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

5The server may be using a load balancer or a reverse proxy.
6Uniform Resource Identifier (URI) = scheme:[//authority]path[?query][#fragment]

14

2.2. Protocol details

Line 1 must be a Request-Line7, as defined in RFC 2616 (Hypertext Trans-
fer Protocol) with HTTP-Version at least 1.18. The remaining lines are head-
ers. Their ordering can be arbitrary; however, the following ones must be
present in a valid handshake:

• Host: the value specifies the host and optionally a port number (if not
the default value); obtained from URI of the origin server

• Upgrade: the value must include the “websocket” keyword

• Connection: the value must include the “Upgrade” token

• Sec-WebSocket-Key: a 16-byte random value; base64 encoded

• Origin: (required only for requests from a browser client); the value is
the address from where the client started the handshake attempt

• Sec-WebSocket-Version: the value must be 13

Other headers, including Sec-WebSocket-Protocol, are optional. After this
request is sent, the connection moves to the CONNECTING state. [33]

2.2.1.2 Server to client

The second part of the handshake, from the server to the client, is similar to
the following example:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

Line 1 is a Status-Line9, which must contain the HTTP status code 101
for establishing the connection successfully. If any other value is present, the
request must be processed as a standard HTTP request. For example, it can
be a platform authentication request with a status code 401. Or redirection
to another location, with status code 3xx. [33, 34]

Similarly to the handshake’s first part, the leading line is followed by an
unordered set of headers. The following headers are required for establishing
the connection:

• Upgrade: the value must include the “websocket” keyword

• Connection: the value must include the “Upgrade” token
7Request-Line = Method SP Request-URI SP HTTP-Version CRLF
8For HTTP/2, there is RFC 8441 – Bootstrapping WebSockets with HTTP/2. [32]
9Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

15

2. WebSockets

• Sec-WebSocket-Accept: the value must be a base64-encoded10 SHA-
111 hash value of the concatenation of the string value received in the
Sec-WebSocket-Key header with the string “258EAFA5-E914-47DA-
95CA-C5AB0DC85B11”12

Other headers, including Sec-WebSocket-Protocol, are optional. After this
response is sent, and if both parts of the handshake were successful, the con-
nection state becomes OPEN. [33]

2.2.2 Data transfer
Unlike the handshake part, the data transfer is no longer similar to the HTTP
protocol. WebSockets use their own set of rules, including the encapsulation
into frames.

2.2.2.1 Framing

A frame is the raw format of the data. The WebSocket standard defines the
frame as shown in Figure 2.1. Note that the sizes specified there are in bits.
In a group of bits, the leftmost one is the most significant bit (MSB). [35]

Now to the meaning of individual fields [35]:

FIN The frames can be fragmented into several smaller ones. The pro-
tocol guarantees the delivered order of each frame. This FIN flag marks
the final fragment from a message.

RSV1–RSV3 Reserved bits for future definition. The values must be
zero if the application does not know their meaning.

Opcode Numeric code specifying the type of the frame.

• 0x0: continuation frame
• 0x1: text frame
• 0x2: binary frame
• 0x3–0x7: reserved (non-control frames)
• 0x8: connection close
• 0x9: ping
• 0xA: pong
• 0xB–0xF: reserved (control frames)

10As defined in section 4 of RFC 4648.
11As defined in FIPS.180-3. The produced hash is 160 bits long.
12This string is a Globally Unique Identifier (GUID), as explained in RFC 4122.

16

2.2. Protocol details

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-------+-+-------------+-------------------------------+
F	R	R	R	opcode	M	Payload len	Extended payload length
I	S	S	S	(4)	A	(7)	(16/64)
N	V	V	V		S		(if payload len==126/127)
	1	2	3		K		
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +							
Extended payload length continued, if payload len == 127							
+ - - - - - - - - - - - - - - - +-------------------------------+
| |Masking-key, if MASK set to 1 |
+-------------------------------+-------------------------------+
| Masking-key (continued) | Payload Data |
+-------------------------------- - - - - - - - - - - - - - - - +
: Payload Data continued ... :
+ - +
| Payload Data continued ... |
+---+

Figure 2.1: WebSocket data frame

Mask The payload data sent from the client must be masked (XOR with
a masking key). If this bit is set, the mask was used. Otherwise, this
bit must be clear.

Payload length Length of the payload data in bytes. If the value is
lower or equal to 125, that is the length. The value 126 indicates that
the length is in the following two bytes (as an unsigned integer). The
value 127 indicates that the following 8 bytes are the payload length
(again, as an unsigned integer).

Masking-key Random value, present only if the mask flag is set.

Payload data The combination of Extension data, if an extension was
negotiated, and Application data.

2.2.2.2 Control frames

The control frames have the opcode with a value 0x8 and higher. [36]
The close frame (opcode 0x8) indicates the end of a connection and the

payload data. If not empty, it may contain the reason. No further frames
should follow. If an endpoint receives the close frame first, it must also respond
with a close frame. [36]

Ping (opcode 0x9) and pong (opcode 0xA) are control frames for detecting
if the other side of the connection is still alive. An endpoint receiving a ping
frame must respond with a pong, containing the same payload data. [36]

17

2. WebSockets

2.2.2.3 Data frames

Data frames are carriers of the actual data. At the moment, only two types
of data frames are defined [37]:

Text The payload is a UTF-8 encoded text.

Binary The payload are binary data, without any more specific restric-
tions. The data representation is up to the developers of individual
applications.

2.2.2.4 Masking

Masking the payload data is required when sending a message from a client to
a server. When masking is applied, the mask flag must be set. The masking
key is randomly generated four bytes, sent as part of the frame. [38]

The conversion between masked and unmasked data is the same in both
directions, according to the following formula:

Ti = Di ⊕ Ki mod 4

where

• Ti is the transformed data at index i

• Di is the original data at index i

• ⊕ is an XOR operation

• Ki is the masking key at index i mod 4

The index i goes from 0 to the (length of the payload minus 1), and it is an
index to individual bytes. This masking process preserves the length of the
data13. [38]

2.2.2.5 Examples

To give a realistic idea, how such frame may look like, let us have a look at
two examples.

The first one is a text data frame from a server (unmasked data), sending
a short message “server”. The FIN flag will be 1, because the message is short
and no fragmentation is needed. RSV1–3 has to be unset (0); opcode for a
text data frame is 0x1; length of the payload data is 6 bytes14, and finally,
the data are 0x73 65 72 76 65 72. The visual representation of this frame
can be seen in Figure 2.2. The final binary representation is 0x81 06 73 65
72 76 65 72.

13XOR operation may only flip individual bits but does not change the length of the data.
14Six characters in UTF-8 representation could lead to more than six bytes. However, in

this case, only ASCII characters are present, which are always one byte long.

18

2.2. Protocol details

0 1 6
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ... 4
+-+-+-+-+-------+-+-------------+---------------------+
|F|R|R|R| opcode|M| Payload len | Payload data |
|I|S|S|S| (4) |A| (7) | |
|N|V|V|V| |S| | |
| |1|2|3| |K| | |
+-+-+-+-+-------+-+-------------+---------------------+
|1|0|0|0|0 0 0 1|0|0 0 0 0 1 1 0| ... |
+-+-+-+-+-------+-+-----+-------+---------------------+
| 0x8 | 0x1 | 0x0 | 0x6 | 0x73 65 72 76 65 72 |
+-------+-------+-------+-------+---------------------+

Figure 2.2: WebSocket example – server message

0 1 4 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ... 8 ... 6
+-+-+-+-+-------+-+-------------+---------------+---------------------+
|F|R|R|R| opcode|M| Payload len | Masking key | Payload data |
|I|S|S|S| (4) |A| (7) | (32) | |
|N|V|V|V| |S| | | |
| |1|2|3| |K| | | |
+-+-+-+-+-------+-+-------------+---------------+---------------------+
|1|0|0|0|0 0 0 1|1|0 0 0 0 1 1 0| ... | ... |
+-+-+-+-+-------+-+-----+-------+---------------+---------------------+
| 0x8 | 0x1 | 0x8 | 0x6 | 0x1a 2b 3c 4d | 0x79 47 55 28 74 5f |
+-------+-------+-------+-------+---------------+---------------------+

Figure 2.3: WebSocket example – client message

The second example switches the roles. It is coming from a client and
thus needs to apply the mask. The text message is “client” – 0x63 6c 69 65
6e 74 in UTF-8 representation and the masking key was for demonstration
chosen as 0x1a 2b 3c 4d. The payload data can be computed as (0x63 XOR
0x1a) for the first byte, (0x6c XOR 0x2b) for the second byte, up until the
fourth one. Then the index over the masking key resets to the beginning –
(0x6e XOR 0x1a) for the fifth byte, and so forth. The final payload data is
0x79 47 55 28 74 5f. The updated visualization can be seen in Figure 2.3.
The binary representation of this frame is 0x81 86 1a 2b 3c 4d 79 47 55
28 74 5f.

Even though the second message has the same length and opcode as the
first one, the fact that masking needs to be applied makes it four bytes longer
(of the masking key field).

19

Chapter 3
Practical part

In this chapter, we will first search for Burp’s web endpoints (including REST
API, which is turned off by default), manually investigate the suspicious
places, and run vulnerability scans. Then, we will develop an application for
fuzzing the WebSockets protocol implementation. In the end, we will analyse
the network traffic generated by Burp.

3.1 Burp’s web endpoints
Although the most user interaction with Burp happens in the GUI part of the
application, it also provides several web endpoints.

By default, there is a running15 web interface on http://burpsuite ad-
dress, with aliases http://burp, and http://localhost:8080 (or other port,
depending on your proxy configuration). The first two URLs are top-level do-
mains, however not included in the DNS root zone overseen by IANA16. It can
work this way because the request does not reach the Internet. Instead, it is
served locally from Burp. The page content is a welcome message, and a link
to the public part of Burp’s certificate used to serve HTTPS traffic to clients
(endpoint /cert). Once we add this certificate between the trusted ones, it is
possible to access also HTTPS version of all previously mentioned sites.

The entire content of the page http://burpsuite, as rendered by browsers,
can be seen in Figure 3.1.

3.1.1 Finding other endpoints
During a security assessment, finding any error messages may turn out to
be quite useful. In our case, we can try to access a site that does not exist

15It can be turned off in the Proxy – Options configuration.
16Internet Assigned Numbers Authority is responsible for the management of the top-level

domains (like cz, com, and org), besides other things. [39]

21

http://burpsuite
http://burp
http://localhost:8080
http://burpsuite

3. Practical part

Figure 3.1: Burp’s index page

Figure 3.2: Burp – xyz site does not exist

– http://burp/xyz. And indeed, that led the application into giving us
something more interesting, as shown in Figure 3.2.

We can see that the raw version of the request is included in the error
output. That immediately raises suspicion about reflected cross-site scripting
(XSS) vulnerability.

3.1.1.1 What is cross-site scripting (XSS)

Cross-site scripting arises when the user input validation is not done correctly
by the application developers, and that leaves enough space to an attacker to
run arbitrary code in the browser. This method is classified as an injection
attack, just like SQL injection. In addition to customizing the site for himself,
which is usually not the goal, an attacker can17 impact other users by steal-

17If no other defence is in place, such as character encoding, HttpOnly cookie flag, and
Content Security Policy. [40, 41]

22

http://burp/xyz

3.1. Burp’s web endpoints

ing their session tokens or sensitive information from the page content, and
redirecting them to other location controlled by him. [42]

We can distinguish between several types of XSS18 based on the conditions
needed to execute the code:

Reflected XSS happens when a user’s input is included right away in the
response, and the injected payload is executed. To effectively exploit
this vulnerability, an attacker may try to deliver a malicious link to his
victim. [42]

Stored XSS usually requires more steps of user interaction (or multiple ac-
tors). In the initial phase, the payload is saved to the database, probably
by an attacker himself. The code execution is triggered later when other
action results in including this data into a response’s content.

This type can also be wormable, which means it can copy itself and
infect others when executed. One such famous case from the past is a
worm Samy (alternatively called JS.Spacehero) used on MySpace social
network in 2005. It managed to infect over one million users in twenty
hours. [43, 44]

DOM-based XSS is other, lesser-known type, taking advantage of the
specific properties of a site. An example might be the usage of a
window.location (current URL) value in an eval function. [45]

3.1.1.2 Check for reflective XSS

Back to our case, instead of xyz site, we can insert the script tags with some
JavaScript code inside and see if anything happens. The most common pay-
load to try, if any given script on input gets executed, is <script>alert(1)
</script>. The alert function is easy to spot when executed – displays a
pop-up message in the browser with the text given as a parameter. In this
case, a window with number 119 should appear.

Accessing the site http://burp/<script>alert(1)</script> from a
web browser results in a similar error message as with the xyz site, only this
time containing leading line of the included request:

GET http://burp/%3Cscript%3Ealert(1)%3C/script%3E HTTP/1.1

18Some applications may be vulnerable to multiple XSS types simultaneously – e.g. re-
flected and stored XSS at once.

19We can insert any string (e.g. “pwned by XSS”) to the alert function, however using a
number has a great benefit that we do not have to use another special character – quotation
marks. Moreover, the goal is only to find out if any script can get executed. Thus the
payload should be as simple as possible.

23

http://burp/<script>alert(1)</script>

3. Practical part

The characters %3C and %3E indicate a URL encoding. That happens au-
tomatically when sending the request from a web browser. To bypass this
behaviour, we can send the request e.g. from other Burp’s instance, which
was made for such purposes. This attempt is shown in Figure 3.3.

An alternative to the repeater feature in Burp might be a command-line
tool cURL:

$ export http_proxy=http://localhost:8080/
$ curl 'http:/burp/<script>alert(1)</script>'

which can achieve the same results:

[...]
<h1>Error</h1><p>Invalid client request received: URL&# ⌋

32;is not recognized.</p>↪→
<div class="request">GET http://burp/<script>alert(1)</script ⌋

> HTTP/1.1
↪→
[...]

As a result, the text slightly changed; this time, the special characters
reached the server. And we can see that the malicious action was handled
gracefully with an HTML encoding (“<” as “<”, “>” as “>”), which is
an effective defence against XSS attacks. [46]

There are other techniques for achieving the same results, even without
using the script tag if certain conditions are met. E.g. if input from a user
is included in some attribute, we can try to escape from it with a quotation
mark and then inject custom attribute like onload, onerror, onmouseover,
or similar, which accept JavaScript function as its value. However, no such
place is present here.

3.1.1.3 Replay/show in browser feature

The functionality of the web interface does not end with downloading of the
Burp’s CA certificate. It has at least two more use cases.

It is possible to show a specific response or replay the same request in a web
browser from the proxy history. It is achieved through generating a special link
that should be copied to a web browser (which has to be connected through
the proxy). The format of a link to show a specific response in a web browser
is http://burpsuite/show/1/ptb0jdoa7jsbjmibrea7ny4758hhj6zo. The
part after show is a sequential number, incremented with each new link gen-
erated. The remaining part is 32 characters, probably randomly generated for
each action.

Replaying a selected request from the history has a very similar pro-
cedure, only the generated URL looks like the following example – http:

24

http://burpsuite/show/1/ptb0jdoa7jsbjmibrea7ny4758hhj6zo
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg

3.1. Burp’s web endpoints

Fi
gu

re
3.

3:
Bu

rp
–

te
st

in
g

re
fle

ct
iv

e
X

SS

25

http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg

3. Practical part

{
"project_options":{

"connections":{
"upstream_proxy":{

"servers":[
{

"destination_host":"*",
"enabled":true,
"proxy_host":"127.0.0.1",
"proxy_port":8899

}
],
"use_user_options":false

}
}

}
}

Figure 3.4: Configuration file for an upstream proxy

//burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg. The loca-
tion changed from show to repeat, followed again by the sequential number
of the action and 32 character long nonce20.

3.1.1.4 Enumerating sites

We already know about several sites in the http://burpsuite web interface.
Nevertheless, we can try to enumerate more of them, if any additional exist.

First of all, since this will be more resource-intensive job, we can this time
start Burp in a headless mode (running in the background, without the GUI
part):

$ java -Djava.awt.headless=true \
-jar Downloads/burpsuite_pro_v2020.11.jar \
--disable-extensions \
--use-defaults \
--project-file=[...]/project.burp

Optionally, a parameter --config-file can point to a JSON file with a cus-
tom configuration. Example setting up an upstream proxy is shown in Fig-
ure 3.4.

From the previous part, we found an easy way to determine if a site does
not exist. If that is the case, the response contains the following string:

20Unpredictable (pseudo-) random value, which can be used only once. [47]

26

http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite/repeat/1/teuhnu9cit72mm5akt1v9sswrklr46cg
http://burpsuite

3.1. Burp’s web endpoints

Invalid client request received: URL is not ⌋
;recognized.↪→

We can now use this knowledge to enumerate all21 the sites. There are many
tools to perform this task. Even Burp has an Intruder feature that can be
used for such purpose. However, after playing a bit around, Ffuf was chosen
as the right tool for this task. It is a command-line fuzzer written in Go,
aiming for a great performance22. [48]

Ffuf takes a wordlist on the input and using a multithreaded approach
tries all the entries. In the language of Ffuf, we can define matchers, which
are conditions for the entry to be printed (e.g. specific status code, response
length, regular expression, . . .), and filters, which have the same condition,
but if met, the entry is silently skipped.

The first test was made with a famous dictionary rockyou based on the
RockYou company breach in 2009. The incident leaked passwords (stored in
plaintext) of 32,603,388 accounts. When the duplicates were removed, the
count was 14,341,564 unique passwords. Despite its origin in a passwords
leak, it is useful also for other cases, since it contains all the most common
words and phrases. This test revealed one so far unknown location /caset.
However, in contrast to other sites, this one acts exactly as the index page (at
least a response to a GET request). We worked with the hypothesis that it
might allow importing custom certificate through a POST request (the word
caset can be split to form phrase “CA set”). But we did not manage to verify
it. [49, 50]

However, the detected location was a motivation to be more throughout
with the enumeration and generate a brute-force dictionary. The first one
is assembled from lower alpha-numerical characters of length 1–5 characters.
The size of the result is 371 MiB, and the brute-forcing process took around
7.5 hours. The test confirmed the two already known locations – /cert, and
/caset, but did not discover anything new. We continued with a second
dictionary containing only alphabetic characters and the length set to exactly
six characters. The result was a text file with an approximate size of 2.2 GiB.
Despite its huge size and significant time to test all the entries (38 hours),
nothing new was discovered.

Since increasing the length further would be even more space and time-
consuming, and chances to uncover some hidden parts were negligible, we
decided to end up here.

21Theoretically, if we had an unlimited amount of time.
22This specific task’s result was the speed in the range between 2000 and 3000 requests

per second, including matching each of them against a regular expression to decide whether
to print it or not. Against the Burp’s Intruder was a fact that with the increased number
of requests, it was becoming unresponsive.

27

3. Practical part

Figure 3.5: REST API page

3.1.2 REST API

Another part of the web interface is disabled by default – the REST
API for integration with other applications. After enabling it (User op-
tions – Misc – REST API), the default address is http://127.0.0.1:
1337/ followed by an API key23 and version, e.g. http://127.0.0.1:1337/
liLrHvHQlQWs7P0JSgquTTz4h7j7aXQz/v0.1/. The content of this page is
shown in Figure 3.5. It summarises all available endpoints, plus the image
in the top right corner is a link to detailed specification in an OpenAPI [51]
format.

There are only three REST API endpoints available in the current version
v0.1. The /knowledge_base/issue_definitions returns a list of all issues
known to Burp, with a description, possible remediations, references, and
other information. The /scan starts a new scan with provided parameters.
Finally, the /scan/[task_id] returns the progress of a scan with provided
ID, containing the current status (paused, crawling, succeeded, . . .), detected
issues, and other information.

The page with the REST API endpoints summary also offers one additional
feature, which is slightly hidden. After making a click on any of the endpoints
in the table, a modal window appears (as shown in Figure 3.6), allowing to
choose values for the parameters and try out the request straight away from
the web browser. Additionally, the page contains a cURL command of the
same request (including the configurable dynamic parameters). It can help to
understand all the details in the API quickly.

A “Send Request” button directly below the cURL line may invoke an
idea that it is this line that is executed in a shell on the host system, and that
could lead to OS command injection, if the input was not sanitized properly.

23The REST API keys can be created and deleted in the Burp’s configuration, specifically
in the REST API section in User options. Once created, the keys cannot be displayed again.

28

http://127.0.0.1:1337/
http://127.0.0.1:1337/
http://127.0.0.1:1337/liLrHvHQlQWs7P0JSgquTTz4h7j7aXQz/v0.1/
http://127.0.0.1:1337/liLrHvHQlQWs7P0JSgquTTz4h7j7aXQz/v0.1/

3.1. Burp’s web endpoints

A hypothetical exploit of the case shown in Figure 3.6 would be to use the
following payload in the task_id text input:

'; cat /etc/passwd #

The first apostrophe character ends the current string. A semicolon is a de-
limiter between commands in shell (alternatives are && and || operators, that
run the next command depending on the previous one’s return value). The
part that follows is a command we would like to execute – cat /etc/passwd
prints all the users on the system, together with their properties. The last
character # introduces a comment, ensuring the rest of the command does not
cause any syntax problems.

However, this cURL line is not the command that gets executed. Instead,
the GET and POST requests are sent straight away from the web browser, and
the cURL line is only informational. That means no OS command injection
is possible in this place.

3.1.3 Found web endpoints summary

Summary of all the identified web endpoints follows:

http[s]://burp[suite] ≡ http[s]://localhost:<proxy_port>
/
/caset
/cert
/repeat
/show

The / contains a welcome message and a link to /cert, which contains a
Burp’s CA self-signed certificate. The /caset acts similarly as /, however, no
deeper meaning was discovered. The /repeat and /show sites are used in a
web browser for replaying a request, respectively showing a response from the
history.

On the REST API part:

http[s]://localhost:<rest_api_port>/<api_key>/v0.1
/
/knowledge_base/issue_definitions
/scan [POST]
/scan/<id>

There is a summary page in the root (/); definitions of all the issues under
/knowledge_base/issue_definitions; it is possible to start a new scan with

29

3. Practical part

Figure 3.6: REST API – try out the request from web

a POST request to /scan, and to get back the status of a specific scan under
/scan/<id>.

3.2 Scanning
In section 3.1.3, we made a summary of the identified endpoints. We can now
run some automated scans to examine the security properties of the webserver.
First, we will conduct an overall webserver scanning using Nikto. Later, we
will use Burp itself to scan other running instance of Burp.

3.2.1 Nikto
We can start with Nikto – an open-source (GNU GPLv2) project. Nikto
mostly detects well-known locations on the server or specific strings from re-
sponses. These often indicate particular (vulnerable) software being present,

30

3.2. Scanning

or a site not intended for a general public (administrator interface, load bal-
ancer configuration, and similar). [52, 53]

If we simply run:

nikto -h localhost:8080

the tool returns a huge amount of results. A snippet follows:

+ /forums//adm/config.php: PHP Config file may contain database IDs and
passwords.↪→

+ /forums//administrator/config.php: PHP Config file may contain database
IDs and passwords.↪→

+ /forums/config.php: PHP Config file may contain database IDs and
passwords.↪→

+ /guestbook/guestbookdat: PHP-Gastebuch 1.60 Beta reveals sensitive
information about its configuration.↪→

+ /guestbook/pwd: PHP-Gastebuch 1.60 Beta reveals the md5 hash of the admin
password.↪→

We can try to access some of the reported locations. The result is an error
page (same as in Figure 3.2). Nikto is probably confused because all the
responses have a status code 200 (including pages which were not found and
should have a status code 404). Luckily, there is a parameter for this situation
(-404string), which tells Nikto that responses containing provided string (or
regular expression) should be considered as not found:

nikto -h http://localhost:8080 -404string '<h1>Error</h1>'

This time, the output seems more sane:

- Nikto v2.1.6

+ Target IP: 127.0.0.1
+ Target Hostname: localhost
+ Target Port: 8080
+ Start Time: 2020-12-23 13:51:33 (GMT1)

+ Server: No banner retrieved
+ The X-XSS-Protection header is not defined. This header can hint to the

user agent to protect against some forms of XSS↪→
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ Web Server returns a valid response with junk HTTP methods, this may cause

false positives.↪→
+ OSVDB-3092: /3rdparty/phpMyAdmin/Documentation.html: phpMyAdmin is for

managing MySQL databases, and should be protected or limited to
authorized hosts.

↪→
↪→
+ OSVDB-3092: /phpMyAdmin/Documentation.html: phpMyAdmin is for managing

MySQL databases, and should be protected or limited to authorized hosts.↪→
+ 4933 requests: 0 error(s) and 4 item(s) reported on remote host

31

3. Practical part

+ End Time: 2020-12-23 13:53:25 (GMT1) (112 seconds)

+ 1 host(s) tested

Manually checking all the reported items, the X-XSS-Protection header is
really not included in the server responses. However, this header is only
an additional layer of protection against XSS attacks. Its absence does not
introduce the vulnerability, and there might be other sufficient defences in
place – e.g. character encoding and nowadays more popular header Content
Security Policy. The remaining items were assessed as a false positive. [54]

Running Nikto for the REST API part:

nikto -h http://127.0.0.1:1337/PGD6ZD4VvdiTzvWqwoUpNh8MIYDCnBuq/v0.1/

did return:

- Nikto v2.1.6

+ Target IP: 127.0.0.1
+ Target Hostname: 127.0.0.1
+ Target Port: 1337
+ Start Time: 2020-12-23 15:06:30 (GMT1)

+ Server: No banner retrieved
+ Uncommon header 'x-burp-version' found, with contents: 2020.12-5207
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ Allowed HTTP Methods: DELETE
+ OSVDB-5646: HTTP method ('Allow' Header): 'DELETE' may allow clients to

remove files on the web server.↪→
+ 5073 requests: 0 error(s) and 3 item(s) reported on remote host
+ End Time: 2020-12-23 15:06:38 (GMT1) (8 seconds)

+ 1 host(s) tested

The first part is rather informational. However, the reported DELETE HTTP
method is much more interesting. We managed to verify that the server
accepts this method – after sending a request with OPTIONS method, the
response started with:

HTTP/1.1 405 Method Not Allowed
Allow: DELETE

The Allow header specifies a set of HTTP methods acceptable by an end-
point. [55] Probably something similar was what Nikto detected. Our initial
thought was that this might allow deleting a specific scan with provided ID,
but this is not the case. After playing a bit around, we managed to find out
the meaning – it is another (undocumented) REST API call for shutting down

32

3.2. Scanning

Figure 3.7: Burp – undocumented REST API call

the application. This request can be seen in Figure 3.7. The appropriate re-
sponse sent before shutting down the application indicates that this behaviour
is intentional (not an application crash).

In our opinion, all the REST API calls should be documented and listed in
the summary page. Some people may, for example, turn off the authorization
with an API key in a belief that only the listed actions are available and based
on incomplete information evaluate, that no harm is possible. Moreover, in
case of issuing the API keys to multiple people, the responsible person should
have all the information about possible actions with this key.

In the response from Figure 3.7, there is one additional detail worth men-
tioning. The Content-Security-Policy header contains an address ws:
//localhost:3333. But simply connecting to it did not work, and we did
not manage to find the purpose of this address for the REST API.

3.2.2 Burp

To test the web interface from Burp, we need to start two instances at once
and set one as an upstream proxy for the other.

The first scan was targeted towards the web interface – http://localhost:
8080. The generated sitemap from the scan can be seen in Figure 3.8. Not
all the endpoints were automatically detected, so we needed to give the tool
some hints. The reported items were:

• unencrypted communication – while true, it is only running locally and
making it possible to use TLS, if we desired to have the connection
encrypted

• input returned in response (reflected) – we already investigated this in
section 3.1.1.2, when we noticed that an error message contains the
original request

33

3. Practical part

Figure 3.8: Burp’s web interface sitemap

• several other items, which are rather informational

The next scan was of the REST API interface. We provided only the base
address with an API key, and the tool managed to identify all the endpoints
(including various resources like fonts, images, and JS files), as shown in Fig-
ure 3.9. No severe issue was detected even this time; the reported items were
again rather informational. In addition to the unencrypted communication
and input returned in response (reflected), we were notified that an email ad-
dress was detected in one of the files (helpdesk@example.com), that the site
is using Underscore.js in version 1.8.3, located at /static/js/bundle.js,
and few other similar cases.

3.3 Non-compliance with the HTTP protocol
While trying various HTTP GET requests for the proxy’s welcome page, we
noticed that the server is quite flexible and accepts even invalid requests ac-
cording to the HTTP Protocol. [56] For example, the following request sent
to the target http://127.0.0.1:8080 was accepted (as shown in Figure 3.10):

NonExistingMethod / InvalidHTTPVersion

The response is “Welcome to Burp Suite Professional” message with status
code 200, the same as in Figure 3.1.

Note that despite Burp is mainly a web proxy, the specific parts of the
application discussed in the following part act as a regular webserver – directly
serving an HTTP content, rather than being an intermediate between two
endpoints.

3.3.1 Host header
According to the Hypertext Transfer Protocol – HTTP/1.1, which the server
understands and uses (as we can see in its responses, e.g. in Figure 3.10),

34

3.3. Non-compliance with the HTTP protocol

Figure 3.9: Burp’s REST API sitemap

Figure 3.10: Invalid HTTP request being accepted

35

3. Practical part

Figure 3.11: Sending a request with a HEAD method

Host header must be included in the request. Quoted from section 14.23 – “A
client MUST include a Host header field in all HTTP/1.1 request messages”.
That makes the request sent by us to the server invalid, according to this
protocol. [57]

The protocol also defines what should be the response in that case. From
the same section, few sentences further – “All Internet-based HTTP/1.1 servers
MUST respond with a 400 (Bad Request) status code to any HTTP/1.1 request
message which lacks a Host header field.” [57]

We could see (e.g. in Figure 3.10) that this is not the case. The response
had a status code 200.

3.3.2 HEAD method
There is another violation of the HTTP protocol in the handling of the HEAD
request method. Section 4.3 of the RFC 2616 contains the following statement:
“All responses to the HEAD request method MUST NOT include a message-
body [. . .]”. The response to a request with the HEAD method containing a
message body is shown in Figure 3.11. [58]

3.3.3 Expect header
The Expect header (used commonly with the value “100-continue”) is used to
check if the server will accept the request, e.g. before sending a huge message
body. An example from Mozilla’s MDN Web Docs [59]:

PUT /somewhere/fun HTTP/1.1
Host: origin.example.com
Content-Type: video/h264
Content-Length: 1234567890987
Expect: 100-continue

In section 8.2.3, the HTTP protocol demands that the server responds to

36

3.4. Writing a WebSocket fuzzer

Figure 3.12: Sending a request with an Expect header

the “Expect: 100-continue” header with either status code 100 (while it
must not wait for the request body before sending it), or final status code. If
the latter is the case, it must not perform the requested method. [60]

Sending a request with an Expect header to Burp is shown in Figure 3.12.
Despite the presence of this header, the server processed the requested method
(GET).

While the non-compliance with standards is not a security issue, it can
confuse people and tools when interacting with the software. Moreover, the
misunderstanding of the functionality caused by this deviation from standards
could cause severe problems. We recommend following the standards if there
is no rational reason against it.

3.4 Writing a WebSocket fuzzer
From the research of existing work in WebSocket fuzzing, it seems that the
vast majority of projects focus on testing the applications on the other side of
the WebSocket connection, rather than evaluating the implementation of the
underlying protocol. The process is to take the payload data field, decompose
the data representation used by the application (JSON is a commonly used
format) into individual tokens, replace them with values that might cause some
trouble on the other side (if sanitisation was not done properly), and monitor
the responses. The same principle is used with regular dynamic web applica-
tion testing. Only the underlying connection is substituted from WebSockets
to HTTP.

The following section describes a similar high-level approach, only concen-
trating on the payload data (either text or binary). But later, we will make a
step further and start fuzzing individual fields (some of them with a length of
a single bit) of the WebSocket frame itself. The topology used for the fuzzing
is shown in Figure 3.13.

37

3. Practical part

Figure 3.13: Burp’s fuzzing topology

The two versions of a fuzzer application and a simple server were written
in Python programming language. This language is not a rare choice among
security professionals, due to its ability to quickly prototype the testing appli-
cations thanks to a high-level syntax [61] and significant extensibility through
libraries [62].

3.4.1 Creating a local WebSocket server
Although some public WebSocket servers are available (e.g. wss://
echo.websocket.org), allowing us to test and debug an application, our traffic
will be higher and contain malformed frames, which is not suitable for public
service. Fortunately, Python’s websockets library [63] allows us to build a local
WebSockets server quickly:

1 #!/usr/bin/env python
2 # Based on examples from https://pypi.org/project/websockets/
3
4 import asyncio
5 import websockets
6
7 LISTEN_ADDRESS = ('localhost', 8050)
8
9

10 async def msg_handler(websocket, path):
11 async for message in websocket:
12 await websocket.send(message)
13
14
15 if __name__ == '__main__':
16 start_server = websockets.serve(msg_handler,
17 host=LISTEN_ADDRESS[0],
18 port=LISTEN_ADDRESS[1],
19 compression=None)
20
21 asyncio.get_event_loop().run_until_complete(start_server)
22 asyncio.get_event_loop().run_forever()

Now, we have a local server running on ws://localhost:8050 that repeats
back the same data we sent there24.

24For other than text and binary frames (e.g. control frames), it acts according to the

38

wss://echo.websocket.org
wss://echo.websocket.org

3.4. Writing a WebSocket fuzzer

3.4.2 High-level fuzzing
There is one problem with Python’s websockets library – it currently does
not support connection through an HTTP proxy, which is the component we
would like to test. This feature might be coming in the future25. However, in
the meantime, we need to solve it in another way.

One possible workaround is to open the desired connection on our own (or
using another library):

1 def proxy_connect(self, target, proxy):
2 self._http_conn = http.client.HTTPConnection(proxy[0], proxy[1])
3 self._http_conn.set_tunnel(f"{target[0]}:{target[1]}")
4 self._http_conn.connect()

and then feed the underlying socket to the websockets library when starting
the connection.

As for the fuzzer input, we used random data limited to printable char-
acters for a text frame, and all binary characters for a binary frame. The
following data generator was used:

1 def data_generator():
2 while True:
3 yield ''.join(random.choice(string.printable)
4 for _ in range(random.randint(0,

MAX_MSG_SIZE))).encode('utf-8')↪→
5 yield random.randbytes(random.randint(0, MAX_MSG_SIZE))

The decision logic, whether some unexpected behaviour happened, was
based on comparing the sent and received data and manually checking for
exceptions from the Burp application, which were configured to be saved into
a local directory. No exception related to the testing was spotted.

The implementation of the fuzzing function, as described above, follows:

1 async def ws_fuzz(socket, ws_uri):
2 count = 0
3 errors = 0
4
5 async with websockets.connect(ws_uri, sock=socket,

max_size=MAX_MSG_SIZE, compression=None) as websocket:↪→
6 for data in data_generator():
7 await websocket.send(data)
8 resp = await websocket.recv()
9

10 if data != resp:

protocol.
25There is an unresolved issue on GitHub [61] and corresponding pull request [64], which

does not seem functional.

39

3. Practical part

11 errors += 1
12 print(f"MISMATCH\ndata: {data}\nresp: {resp}\n")
13 continue
14
15 count += 1
16 if (count % 1000) == 0:
17 print(f"INFO: {count} OK; {errors} errors\n")

The complete source code can be found on the enclosed media in the file
client.py.

Using this high-level fuzzing client, we tested over one million requests
with payload data lengths between 0 and 215, and no failure was detected.

3.4.3 Low-level fuzzing
From the previous section, we should be confident that no sequence of bytes
in the payload data will cause any harm. Nevertheless, there are more fields
to be tested in the frame itself (presented earlier in section 2.2.2.1).

Several frameworks were considered for this part. Boofuz [65, 66], a more
actively maintained fork of previously quite popular framework Sully [67], did
seem like the best candidate. However, after digging deeper into the details
and trying it out for our specific case, we noticed that it is not sufficiently low-
level. In several cases, we need to work with individual bits in the frame, and
even though the framework does have a primitive BitField, it can produce
only whole bytes from fields with an unaligned count of bits. To demonstrate
it on an example, we used fields from the first byte of the websocket frame:

1 test = Request("Alignment-Test", children=(
2 BitField("FIN", default_value=1, width=1),
3 BitField("RSV1", default_value=0, width=1),
4 BitField("RSV2", default_value=0, width=1),
5 BitField("RSV3", default_value=0, width=1),
6 BitField("Opcode", default_value=1, width=4)))

Calling test.render() returns b'\x01\x00\x00\x00\x01' instead of a single
byte b'\x81'. With a few more minor inconveniences, the idea of using a
fuzzing framework was rejected. However, we can use at least some parts of
the websockets library.

First, we implemented a helper class SimpleWebsocketConnection26

that manages the connection – providing public methods connect, close,
read_frame, write_frame, and proxy_alive. The read_frame simply calls
the library’s implementation – Frame.read [68]. The write_frame method is
a bit more tricky, as the library has some sanity checks and understandably
does not allow us to create malformed frames. The easiest solution was to

26On the enclosed media, it is inside simple_websocket_connection.py file.

40

3.4. Writing a WebSocket fuzzer

copy the code of Frame.write [69] function and modify it according to our
needs. The licence [70] of the library, fortunately, allows us to do this. And
the proxy_alive is a check if the proxy did not crash. It is useful when we
expect that the connection will be terminated (e.g. after sending a frame with
one of the reserved bits set), but we still need some confirmation that the
proxy is alive.

For simple usage, we also defined an asynchronous context manager:

1 @asynccontextmanager
2 async def websocket(target, proxy):
3 """Context manager for the SimpleWebsocketConnection class.
4
5 Allows to use the syntax:
6 async with websocket(...) as ws:
7 ...
8 """
9 ws = SimpleWebsocketConnection(target, proxy)

10
11 try:
12 await ws.connect()
13 yield ws
14 finally:
15 await ws.close()

The last part of the simple_websocket_connectin.py file is a RawFrame class
for representation of individual fields and containing one method, allowing
validation of the whole frame.

The rest of the logic that takes advantage of this prepared infrastruc-
ture is contained in the client_low_level.py file. First, we define some base
RawFrames27:

1 test_cases = [
2 # Text frame
3 RawFrame(fin=True, rsv1=False, rsv2=False,
4 rsv3=False, opcode=OP_TEXT, mask_flag=True, payload_len=None,

mask_key=None, data=b"text"),↪→
5
6 # Binary frame
7 RawFrame(fin=True, rsv1=False, rsv2=False,
8 rsv3=False, opcode=OP_BINARY, mask_flag=True, payload_len=None,

mask_key=None, data=b"binary"),↪→
9

10 # Reserved (non-control frames)
11 RawFrame(fin=True, rsv1=False, rsv2=False,
12 rsv3=False, opcode=0x3, mask_flag=True, payload_len=None,

mask_key=None, data=b"reserved 0x3"),↪→
13 [...]
14]

27There is one frame for each opcode.

41

3. Practical part

These base frames then serve as an input for a mutations generator, which
returns new frames with various mutations of all the fields:

1 def mutations(base_frame):
2 """Generator of frames with various mutations from a given base frame.
3 """
4 # Unchanged
5 yield base_frame
6
7 # Switch mask_flag
8 mutation = copy.deepcopy(base_frame)
9 mutation.mask_flag = not mutation.mask_flag

10 yield mutation
11
12 # Switch rsv1 flag
13 mutation = copy.deepcopy(base_frame)
14 mutation.rsv1 = not mutation.rsv1
15 yield mutation
16
17 [...]
18
19 # Modify data and/or payload_len
20 for _ in range(100):
21 mutation = copy.deepcopy(base_frame)
22 mutation.payload_len = random.randint(0, 2**15)
23
24 data_len = random.randint(mutation.payload_len, 2**15)
25 if mutation.opcode == OP_TEXT:
26 mutation.data = ''.join(random.choice(string.printable)
27 for _ in

range(data_len)).encode('utf-8')↪→
28 else:
29 mutation.data = random.randbytes(data_len)
30
31 yield mutation

The payload data from this generator may contain more data than indicated.
Sending less data is contra-productive because the server is waiting for the
remaining part, leading to a closed connection on timeout error.

Every frame generated this way is then tested using the test_mutation
function:

1 async def test_mutation(frame):
2 async with websocket(TARGET, HTTP_PROXY) as ws:
3 await ws.write_frame(frame)
4
5 # Don't expect response for pong
6 if frame.opcode == OP_PONG:
7 if ws.proxy_alive():
8 return
9 else:

10 raise RuntimeError("Proxy died after pong")

42

3.4. Writing a WebSocket fuzzer

11
12 # Read response frame
13 for _ in range(3):
14 try:
15 resp = await asyncio.wait_for(ws.read_frame(),

timeout=READ_RESPONSE_TIMEOUT)↪→
16 except Exception:
17 if frame.is_valid():
18 raise
19 elif ws.proxy_alive():
20 return
21
22 if not ws.proxy_alive():
23 raise RuntimeError("Proxy is not responding")
24
25 if resp.opcode == OP_PING or (resp.opcode == OP_PONG and

frame.opcode != OP_PING):↪→
26 click.secho(f"Got unexpected frame: {resp}", fg="yellow")
27 click.echo("Reading again\n")
28 continue
29 else:
30 break
31
32 if (not frame.is_valid() or frame.opcode == OP_CLOSE) and

resp.opcode == OP_CLOSE:↪→
33 return
34
35 if resp.opcode not in [OP_CONT, OP_TEXT, OP_BINARY, OP_PONG]:
36 raise ValueError(f"Response contains bad opcode: {resp}")
37
38 # Expecting echo server on the other side sending the same data back
39 if frame.opcode in [OP_TEXT, OP_BINARY, OP_PONG] and frame.data !=

resp.data:↪→
40 # If we faked payload_len, compare only the shorter length
41 incorrect_len = frame.payload_len is not None and

frame.payload_len < len(↪→
42 frame.data)
43 if incorrect_len and frame.data[:frame.payload_len] ==

resp.data[:frame.payload_len]:↪→
44 return
45 raise ValueError(f"Data missmatch: {resp}")

If any unexpected situation happens28, this frame is reported as suspicious
and should be examined manually.

Even in this low-level testing of the WebSocket protocol implementation,
we did not find any bugs or vulnerabilities. Overall, the tested part of the
application seems reliable. We used plenty of different messages, and none of
the responses raised any suspicion.

28E.g. returning different data than we have sent for text/binary/ping frames, or getting
a timeout on the connection.

43

3. Practical part

If anyone is conducting similar fuzzing activity in the future, they might
want to include one additional test-case. We limited ourselves to operating
with single frames. But the protocol allows sending a message decomposed
into several frames, using the FIN flag (unset if another frame will follow), and
opcode 0x0 – continuation frame (from the second frame to the final one).
This additional test-case could use our prepared infrastructure for building,
sending, and receiving frames.

3.5 Examine Burp’s communication

3.5.1 Motivation
In this section, we would like to investigate the Burp’s background commu-
nication. Not the usual traffic expected from a proxy. We are interested in
messages like performance feedback to the company’s servers, or other suspi-
cious outbound traffic. Although the company claims that all the user’s data
are anonymized, it is always better to verify such claims, even though this
analysis might be a tough challenge.

Moreover, recent security incidents are teaching us a lesson not to underes-
timate supply-chain attacks. An example is a recent incident with SolarWinds
Orion, described in brief further.

3.5.1.1 SolarWinds Orion incident

SolarWinds Orion is a suite of products helping companies with IT manage-
ment. It provides a huge range of operations, including various monitoring
capabilities, network configuration, and virtualization. [71]

In December 2020, a famous cybersecurity company Fireeye stated that
their infrastructure was compromised using highly sophisticated offensive ca-
pabilities. The entry point was presumably an Orion platform by SolarWinds.
Later, SolarWinds company said that 18000 of their customers might have
been affected by this supply-chain attack. [72, 73]

The attackers managed to inject their code into the product’s codebase
while doing various measures not to be detected. Even there, they spent a
considerable effort to remain hidden. There might have been a second actor
taking advantage of a zero-day vulnerability CVE-2020-10148 in SolarWinds
Orion API, allowing to execute unauthenticated API calls. [73, 74]

Some news suggested that the hackers might have gained access to some
systems of high-value targets such as the US Energy Department, and the
National Nuclear Security Administration. For example, The Guardian claims
“The attackers gained access to an extraordinary array of potential targets in
the US alone: more than 425 of the Fortune 500 list of top companies; all
of the top 10 telecommunications companies; all five branches of the military;
and all of the top five accounting firms.” [75]

44

3.5. Examine Burp’s communication

Recent update from Microsoft serves as another confirmation of this story.
Microsoft, similarly to other companies, detected presence of malicious So-
larWinds applications in their environment, and said “We detected unusual
activity with a small number of internal accounts and upon review, we discov-
ered one account had been used to view source code in a number of source code
repositories.” [76]

We should not draw preliminary conclusions while the investigation is on-
going. However, the so far uncovered information shows the severity of such
incidents and that nobody should take security lightly. The analysis executed
in this section could potentially discover if the application was malicious, and
the approach developed to inspect the network traffic (3.5.2–3.5.5) can be used
in any future security audit.

3.5.2 Prepare a network namespace
Right at the beginning of the inspection of Burp’s background communication,
we have identified two problems that would need to be solved. The first
one is simpler – we need to capture all the traffic coming out of Burp, but
preferably without too much noise from other applications. We could set
an upstream proxy in Burp and monitor it from there, but that would not
guarantee that no further connection was made or the application behaviour
did not change. Filtering the relevant packets from a whole local network
traffic dump is also not an ideal solution, since there is no easy way to describe
the Burp’s connections. The other challenge is that the traffic is most probably
encrypted using a TLS layer.

An elegant approach to separate an application from the rest of the system
is by using namespaces29. In our case, we only need to separate the network
part; thus, using a network namespace will be sufficient. In the past, a Linux
kernel shared one space across the entire OS for all the network interfaces and
routing tables. This concept has changed with the introduction of network
namespaces, allowing several separate networks to operate independently of
each other. [78]

Note that some of the commands used in this section need to run with
root privileges.

A new net namespace with name burp_ns can be created with:

ip netns add burp_ns

To check all available (named) network namespaces on the system:

$ ip netns list

29Containers are using namespaces as the underlying technology (together with cgroups,
and UnionFS in case of Docker) [77].

45

3. Practical part

In our case, we see burp_ns (id: 0) in the output.
Although we have created a network namespace, at the moment, it is not

much useful since we cannot even ping to the localhost address from within.
Running any command from inside of the burp_ns namespace is possible with
a command ip netns exec burp_ns <command>.

First, we can fix the ping to the localhost address by bringing up a loopback
(lo) interface:

ip netns exec burp_ns ip link set lo up

The ping command should start working (only for localhost):

ip netns exec burp_ns ping localhost

The next task is to bring inside the Internet connection. There are several
things we need to configure. First, let us create a veth30 pair. To create
such pair with names veth-h (on the host), and veth-burp (inside of the
namespace), run:

ip link add veth-h type veth peer name veth-burp

To insert the veth-burp into the namespace, run:

ip link set veth-burp netns burp_ns

Next, assign private IPv4 addresses to the veth devices:

ip addr add 10.9.8.1/24 dev veth-h
ip netns exec burp_ns ip addr add 10.9.8.2/24 dev veth-burp

and bring the devices up:

ip link set veth-h up
ip netns exec burp_ns ip link set veth-burp up

At this stage, ping between the endpoints should be possible:

$ ping 10.9.8.2
ip netns exec burp_ns ping 10.9.8.1

To get access to the Internet, we will need to enable packet forwarding and
start using NAT. To verify if packet forwarding is enabled on the system, run:

$ sysctl net.ipv4.ip_forward

30Veth is a virtual ethernet interface.

46

3.5. Examine Burp’s communication

The value needs to be 1. Otherwise run:

sysctl -w net.ipv4.ip_forward=1

for a temporary assignment or use an appropriate sysctl configuration file.
Then allow the forwarding of packets, e.g. with iptables utility:

iptables -A FORWARD -o enp0s31f6 -i veth-h -j ACCEPT
iptables -A FORWARD -i enp0s31f6 -o veth-h -j ACCEPT

where enp0s31f6 is our ethernet interface. And finally, start the masquerade:

iptables -t nat -A POSTROUTING -s 10.9.8.2/24 -o enp0s31f6 -j MASQUERADE

Sometimes, it might also be needed to add additional firewall rules (e.g. in-
clude the veth-h into a trusted zone).

The last missing piece is routing. We can fix it by specifying a default
route inside the namespace:

ip netns exec burp_ns ip route add default via 10.9.8.1

Finally, there is Internet access in the namespace.

3.5.3 Breaking the TLS

The next big issue to be solved is that nowadays most of the traffic is encrypted
with TLS. Some applications like Chrome, Firefox, and cURL allow saving the
per-session secrets to a local log file (configured with an environment variable
SSLKEYLOGFILE) [79]. However, there is no such option in Burp. [80]

Luckily, a project extract-tls-secrets [81] exists. If attached to a Java appli-
cation on either side of the connection, it allows making similar action (dump
the per-session secrets into a log file). The attachment is made in the following
manner:

$ java \
-javaagent:<path>/extract-tls-secrets-4.0.0.jar=/<out_path>/secrets.log \
-jar app.jar

Then we only need to point Wireshark to the secrets log file, which can af-
terwards achieve automatic on-the-fly decryption of the TLS. This can be
configured in Preferences – Protocols – TLS (SSL for older versions) – (Pre)-
Master-Secret log filename.

47

3. Practical part

3.5.4 Record Burp’s traffic
We already prepared a burp_ns network namespace and found out how to
decrypt the TLS traffic sent from Burp. Now, it is time to start recording the
traffic.

First, start Wireshark, so no traffic is missed during the tested application
launch:

ip netns exec burp_ns wireshark

We can start recording on the any interface since we are inside of the names-
pace. Now, we can finally launch Burp. There is a problem with detecting
the user’s licence because the command ip netns exec burp_ns needs to
run with root privileges (we used sudo utility in front of the command). The
workaround is to specify the user for the next part of the command with
another sudo call. The launch command is:

ip netns exec burp_ns sudo -u tom \
/home/tom/BurpSuitePro/jre/bin/java \
-javaagent:<path>/extract-tls-secrets-4.0.0.jar=/tmp/secrets.log \
-jar <path>/burpsuite_pro_v2020.12.1.jar

We let the application run for some time and then started analyzing the cap-
tured traffic.

3.5.5 Analyze the captured traffic
Fortunately, the TLS decryption is working as expected, so we can see what
Burp is sending outside. Note that we did not list below messages originating
from extensions (e.g. downloading new string patters for finding vulnerable
software versions).

3.5.5.1 Check for updates

The first connection made from the application right after launch is a check for
updates. The corresponding packets in Wireshark can be seen in Figure 3.14.
The extracted HTTP content follows.
Request:

1 GET /Burp/Releases/CheckForUpdates?product=pro&version=2020.12.1& ⌋
license=<censored_license_key>
HTTP/1.1

↪→
↪→

2 Host: portswigger.net
3 Accept: */*
4 Accept-Language: en
5 Connection: close

48

3.5. Examine Burp’s communication

Fi
gu

re
3.

14
:

W
ire

sh
ar

k
–

ch
ec

k
fo

r
up

da
te

s

49

3. Practical part

Response:

1 HTTP/1.1 200 OK
2 Cache-Control: private, s-maxage=0,no-store, no-cache
3 Content-Type: application/json; charset=utf-8
4 Content-Security-Policy: default-src 'none';base-uri 'none';child-src 'self'

https://www.youtube.com/embed/;connect-src 'self'
https://www.google-analytics.com/collect
https://www.google-analytics.com/r/collect
https://www.google-analytics.com/j/collect
https://www.googletagmanager.com
https://www.google.com/recaptcha/;font-src 'self';frame-src 'self'
https://www.youtube.com/embed/ https://www.google.com/recaptcha/;img-src
'self' data:;media-src 'self' https://d21v5rjx8s17cr.cloudfront.net/
https://d2gl1b374o3yzk.cloudfront.net/;script-src 'self'
'nonce-6uAs5bHTLOktc8CP96OD8VbbtFdw/VRe' 'strict-dynamic';style-src
'self';

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

5 Set-Cookie: SessionId=B15461[snipped]; domain=portswigger.net; expires=Sat,
22-Dec-2040 13:14:43 GMT; path=/; secure; HttpOnly; SameSite=Lax↪→

6 X-Content-Type-Options: nosniff
7 Strict-Transport-Security: max-age=31536000; preload
8 X-XSS-Protection: 1; mode=block
9 X-Frame-Options: SAMEORIGIN

10 Date: Sun, 27 Dec 2020 13:14:42 GMT
11 Connection: close
12 Content-Length: 127
13
14 {"result":"up_to_date","licenseId":"<censored

ID>","manualDownloadUrl":"","autoDownloadUrl":"","updates":[]}↪→

We can notice that the request contains the license key, sent as a GET
parameter. The response was that the software is up-to-date.

3.5.5.2 BApp Store current list

The next message sent soon after the application started, is a request for
current BApp Store list of extensions:

1 GET /bappstore/currentlist HTTP/1.0
2 Host: portswigger.net
3 Accept-Encoding: gzip, deflate

The response contains many base-64 encoded strings, where each (except
one) correspond to one extension in the store. The whole response is available
on the enclosed media in file bappstore_currentlist.txt. Example of a
decoded entry follows:

1 Type: 1000
2 Version: 0
3 Uuid: e2a137ad44984ccb908375fa5b2c618d
4 ExtensionType: 1

50

3.5. Examine Burp’s communication

5 Name: .NET Beautifier
6 ScreenVersion: 0.3
7 SerialVersion: 3
8 MinPlatformVersion: 0
9 ProOnly: False

10 Author: Nadeem Douba
11 Description: <base64-encoded description>
12 Rating: 464
13 Revoked: False
14 DownloadUrl: https://portswigger.net/bappstore/bapps/download/e2a137ad44984 ⌋

ccb908375fa5b2c618d↪→
15 ExecutionScore: 8255
16 LastUpdated: 1485173990550
17 RepoUrl: https://github.com/portswigger/dotnet-beautifier

We decoded and inspected all of the entries received. Except for the last
one, they all describe extensions. The last entry contains 128 bytes of binary
data, which we were unable to understand. A similar entry also appears in
other messages. A hypothesis is that it might be a signature of the message.

3.5.5.3 Burp Collaborator polling

The limitation of today’s Internet is the lack of public IPv4 addresses. Burp
Collaborator is a public service (or you can run it on your infrastructure) that
mitigates this shortage and allows testing of external service interaction even
from behind of NAT.

The Collaborator server implements several network protocols (such as
DNS, HTTP, and SMTP) and lets you know when it receives any request.
Burp is configured to use burpcollaborator.net by default, and there is a
polling every 10 seconds to check if any interaction happened. [82]
Request:

1 GET /burpresults?biid=GUHoCPoGOxgbgnB5DiVNLc3wkHu360Np2wMDfw33dws%3d
HTTP/1.1↪→

2 Host: polling.burpcollaborator.net
3 Accept: */*
4 Accept-Language: en
5 Connection: close

Response:

1 HTTP/1.1 200 OK
2 Server: Burp Collaborator https://burpcollaborator.net/
3 X-Collaborator-Version: 4
4 X-Collaborator-Time: 1609074943031
5 Content-Type: application/json
6 Content-Length: 2
7
8 {}

51

3. Practical part

To see how a notification about executed interaction looks like, we gen-
erated a unique link from Burp’s Collaborator client and made a DNS query
for that address (with a dig command-line utility). This time, the HTTP
response data were:

1 {
2 "responses":[
3 {
4 "protocol":"dns",
5 "opCode":"1",
6 "interactionString":"kl9xd7p9i31wrxvnb3semtwvrmxcl1",
7 "clientPart":"0y",
8 "data":{
9 "subDomain":"Kl9XD7P9i31wrXVnB3SeMTwVRMXcL1.BUrpCOLLaboRatOR.NeT",

10 "type":1,
11 "rawRequest":"KdgAEAABAAAAAAABHktsOVhEN1A5aTMxd3JYVm5CM1NlTVR3VlJNW ⌋

GNMMRBCVXJwQ09MTGFib1JhdE9SA05lVAAAAQABAAApBNAAAIAAAAA="↪→
12 },
13 "time":"1609103932712",
14 "client":"<ip_address>"
15 }
16]
17 }

3.5.5.4 Performance anonymous feedback

Burp application is sending another message outside, to the company’s servers
– anonymized performance feedback. If we have a look at the request (at least
its printable representation), it seems a bit strange:

1 POST /feedback/submit HTTP/1.0
2 Content-Length: 566
3
4 PK.........q.Q................ipc-envelope.....@...>..T..!j.*........#.C..2 ⌋

.DE...YP.e.UWwuw}B..i..C40.?..2....Qrp..a.<.F......P.C...}.lg.@.W.....> ⌋

....S.@.....2..Q*..........y..........tCkU2....=^.{>.w...s..?M.C:...#.. ⌋

.2.^^I.....E.E.\...%"..q.gS.F./......PE#....N.b....?h&...F.T.....f..QD8 ⌋
0.&..b....

↪→
↪→
↪→
↪→

5 Y0...E.
6 ..A.....e.@4S...ncs..T.........@>..F_..:....&.g...VV....?..he.ho.v...F.&... ⌋

..↪→
7 .G.Y.HrXz..).&Q...v"u.......".....s}V.:\...6..#4u..6.y5.=.....?.sV.K..)?jD. ⌋

?.....[4..~.PK..,...........PK...........q.Q,.......................... ⌋
...ipc-envelopePK..........:.........

↪→
↪→

The exact data sent can be seen in appendix B.
For some time, we were struggling to understand the meaning of these

binary data. But then we realized that it is a ZIP archive, from which we can
extract a single file named “ipc-envelope”.

An example of the ipc-envelope file content follows:

52

3.5. Examine Burp’s communication

1 Version: 0
2 Channel: stable
3 ProductExecutionMode: 1
4 ProductType: Pro
5 ProductVersion: 2020.12.1-5278
6 UniqueIdentifier: <censored id>
7
8 VHlwZTogNTAwMApWZXJzaW9uOiAwCkZFQVRVUkVfVFlQRTogVEFSR0VUX1NJVEVfTUFQX1ZJRVd ⌋

fT1BUSU9OX0xFRlRfUklHSFRfU1BMSVQKVFlQRTogRkVBVFVSRV9VU0UKCg==↪→
9 VHlwZTogNTAwMApWZXJzaW9uOiAwClFVQU5USVRZX1RZUEU6IFBST1hZX0hJU1RPUllfRURJVEV ⌋

EX1ZJRVdfRklMVEVSX1RJTUVSClRZUEU6IFFVQU5USVRZCgowCg==↪→
10 VHlwZTogNTAwMApWZXJzaW9uOiAwClFVQU5USVRZX1RZUEU6IFBST1hZX0hJU1RPUllfRURJVEV ⌋

EX1ZJRVdfRklMVEVSX1RJTUVSClRZUEU6IFFVQU5USVRZCgowCg==↪→
11 F/Ovx8HRzj4JmcgRhXTSeZfgzeuhpadoand04GEFUzpdKATjAx8c6ssVjUlRxTePUgScheFODZT ⌋

UeWkE6fglQ42WFwqnlorHoYLf0diUcqF/HYlGwdBODYzgbNf09XyhKiUejCaN1qPvqxrsqY ⌋
kqSbnc8iTP2Few3+G5qDTERdI=

↪→
↪→

The four lines at the end of the file seem31 to be base64 encoded. If we decode
them, the first entry contains the following text:

1 Type: 5000
2 Version: 0
3 FEATURE_TYPE: TARGET_SITE_MAP_VIEW_OPTION_LEFT_RIGHT_SPLIT
4 TYPE: FEATURE_USE

The second and third entries are the same, and decoded contain:

1 Type: 5000
2 Version: 0
3 QUANTITY_TYPE: PROXY_HISTORY_EDITED_VIEW_FILTER_TIMER
4 TYPE: QUANTITY
5
6 0

However, the last line is significantly different – contains 128 bytes of binary
data, which we could not decode/decrypt. It is a similar case as with the
BApp Store current list’s last entry.

After examining more of the feedback messages, we can say that they all
follow the same pattern. Some of them may have a significantly higher count
of the base64-encoded entries (e.g. the final one sent during a shutdown), but
the text entries are similar. The one last entry always differs and contains
some binary data.

3.5.5.5 Background traffic summary

During the traffic inspection, we managed to identify and understand the
format of several messages:

31Because of the character set used and the typical ’=’ characters at the end.

53

3. Practical part

• Check for updates

• BApp store current list

• Burp Collaborator polling

• Performance anonymous feedback

Except for the mysterious last entry (128 bytes of binary data) of the BApp
store current list, and performance feedback messages, we did not notice any
sensitive or suspicious data sent outside (or received) by the application. How-
ever, we cannot guarantee that Burp does not send any additional messages,
especially in longer time window or if different conditions occur. In our case,
the network dump covered two hours, during which we generated some light
activity like opening a website from a web browser or starting a scan with
configured credentials. The binary data might be a signature, adding another
layer of security.

54

Conclusion

This thesis’s first two goals were to study the current state of the Burp Suite
penetration testing tool or Owasp ZAP penetration testing tool (at least one
of them) and describe its functionality. Chapter 1 contains the description of
the penetration testing tool of our choice – Burp Suite, the way it is placed in
the man-in-the-middle position, what issues it brings (e.g. broken TLS) and
how to address them (use the Burp’s certificate). Then follows a description
of several most widely used features.

The third goal was to manually examine security aspects of the application,
look for weak spots and focus on new functionalities of the application (e.g.
WebSockets). The manual examination was done in the first part of chapter 3
(sections 3.1, 3.2, and 3.3). First, we identified the endpoints of the web
interface and the REST API. During the process, we examined all the parts
of the application that looked suspicious. Next, we started automated scans
of the web interface. And last, we manually processed and verified findings
from these scans. Although no severe flaw was detected in the application, we
managed to show that not everything is as it should be. E.g. the webserver is
not compliant with the RFC 2616 (Hypertext Transfer Protocol – HTTP/1.1),
or an undocumented REST API call, allowing to shut down the application,
was discovered. All these discrepancies will be reported to the Portswigger
company for their own appraisal.

Continuing in the third goal and moving towards the fourth one, we turned
our attention towards WebSockets. Chapter 2 described the theory of this pro-
tocol. That includes protocol overview, a handshake for both – clients and
servers, and data transfer explanation with all the pieces like framing and
masking. In section 3.4, we describe our approach writing fuzzing applica-
tions for the WebSockets component. We ended up with three applications.
The first one is a WebSocket server for keeping all this testing locally in an
environment controlled by us. The second one is a high-level fuzzer that tests
the data payload being transferred over the WebSocket connection. The third
one goes deeper and breaks down the WebSocket frame into individual pieces

55

Conclusion

and operates on them. In the final section 3.5, we inspected the Burp’s com-
munication. We succeeded in separating the Burp’s traffic from the rest of
the system and breaking into the TLS layer, and we manually examined the
content of the messages.

The final goal was to discuss and analyze the results with a focus on
their security aspects. This was achieved throughout the text, following the
description of individual findings. Overall, we did not discover any major
security flaw of the components tested or any sensitive information leakage,
and the implementation of WebSockets seems reliable. However, we found
several minor issues.

Future work might add support for sequences of frames into the fuzzer
application, analyze an up-to-date traffic dump using our methodology, and
audit other Burp’s components.

56

Bibliography

[1] Oyetoyan, T. D.; Milosheska, B.; et al. Myths and Facts About Static Ap-
plication Security Testing Tools: An Action Research at Telenor Digital.
In Agile Processes in Software Engineering and Extreme Programming,
edited by J. Garbajosa; X. Wang; A. Aguiar, Lecture Notes in Business
Information Processing, Springer International Publishing, ISBN 978-3-
319-91602-6, pp. 86–103, doi:10.1007/978-3-319-91602-6_6.

[2] Positive Technologies. SAST, DAST, IAST, and RASP [online]. Available
from: https://www.ptsecurity.com/ww-en/analytics/knowledge-
base/sast-dast-iast-and-rasp-how-to-choose/ [accessed 2020-10-
04]

[3] Whitehorn-Gillam, M. What Tools Are Used When Pene-
tration Testing a Web Application [online]. Available from:
https://secureideas.com/knowledge/what-tools-are-used-when-
penetration-testing-a-web-app [accessed 2020-12-18]

[4] Luotonen, A.; Altis, K. World-Wide Web Proxies. volume 27,
no. 2: pp. 147–154, ISSN 01697552, doi:10.1016/0169-7552(94)90128-
7. Available from: https://linkinghub.elsevier.com/retrieve/pii/
0169755294901287 [accessed 2020-09-20]

[5] PortSwigger Ltd. Features – Burp Suite Professional [online]. Available
from: https://portswigger.net/burp/pro/features [accessed 2020-
09-20]

[6] OWASP Foundation, Inc. OWASP ZAP [online]. Available from: https:
//www.zaproxy.org/docs/desktop/start/features/ [accessed 2020-
12-18]

[7] PortSwigger Ltd. Web Application Security, Testing, & Scanning [online].
Available from: https://portswigger.net [accessed 2020-09-20]

57

https://www.ptsecurity.com/ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-to-choose/
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-to-choose/
https://secureideas.com/knowledge/what-tools-are-used-when-penetration-testing-a-web-app
https://secureideas.com/knowledge/what-tools-are-used-when-penetration-testing-a-web-app
https://linkinghub.elsevier.com/retrieve/pii/0169755294901287
https://linkinghub.elsevier.com/retrieve/pii/0169755294901287
https://portswigger.net/burp/pro/features
https://www.zaproxy.org/docs/desktop/start/features/
https://www.zaproxy.org/docs/desktop/start/features/
https://portswigger.net

Bibliography

[8] OWASP Foundation, Inc. Zaproxy [online]. Available from: https://
github.com/zaproxy/zaproxy [accessed 2020-10-02]

[9] PortSwigger Ltd. Launching Burp Suite from the Command Line [on-
line]. Available from: https://portswigger.net/burp/documentation/
desktop/getting-started/launching/command-line [accessed 2020-
10-15]

[10] Mitchell, J. C. Portability and Safety: Java. In Concepts in Pro-
gramming Languages, Cambridge University Press, ISBN 978-0-521-
78098-8, pp. 384–428, doi:10.1017/CBO9780511804175.014. Avail-
able from: https://www.cambridge.org/core/books/concepts-
in-programming-languages/portability-and-safety-java/
9950A3084F8D8F2CFA1D21AEF4E79E45

[11] PortSwigger Ltd. Professional / Community 2020.9.2 [online]. Avail-
able from: https://portswigger.net/burp/releases/professional-
community-2020-9-2 [accessed 2020-10-15]

[12] PortSwigger Ltd. Burp Proxy Options [online]. Available from:
https://portswigger.net/burp/documentation/desktop/tools/
proxy/options [accessed 2020-10-16]

[13] Walfield, N. H.; Koch, W. TOFU for OpenPGP. In Proceedings of the 9th
European Workshop on System Security - EuroSec ’16, ACM Press, ISBN
978-1-4503-4295-7, pp. 1–6, doi:10.1145/2905760.2905761. Available
from: http://dl.acm.org/citation.cfm?doid=2905760.2905761 [ac-
cessed 2020-10-12]

[14] Google Inc. HSTS Preload List Submission [online]. Available from:
https://hstspreload.org/ [accessed 2020-10-12]

[15] Jackson, C.; Barth, A.; et al. HTTP Strict Transport Security (HSTS)
[online]. Available from: https://tools.ietf.org/html/rfc6797 [ac-
cessed 2020-10-12]

[16] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616: pp. 61–62, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc2616 [accessed 2020-12-20]

[17] Apache Software Foundation. RedirectSSL - HTTPD [online]. Avail-
able from: https://cwiki.apache.org/confluence/display/HTTPD/
RedirectSSL [accessed 2020-10-16]

[18] Mauro, T. How to Create NGINX Rewrite Rules [online]. Avail-
able from: https://www.nginx.com/blog/creating-nginx-rewrite-
rules/ [accessed 2020-10-16]

58

https://github.com/zaproxy/zaproxy
https://github.com/zaproxy/zaproxy
https://portswigger.net/burp/documentation/desktop/getting-started/launching/command-line
https://portswigger.net/burp/documentation/desktop/getting-started/launching/command-line
https://www.cambridge.org/core/books/concepts-in-programming-languages/portability-and-safety-java/9950A3084F8D8F2CFA1D21AEF4E79E45
https://www.cambridge.org/core/books/concepts-in-programming-languages/portability-and-safety-java/9950A3084F8D8F2CFA1D21AEF4E79E45
https://www.cambridge.org/core/books/concepts-in-programming-languages/portability-and-safety-java/9950A3084F8D8F2CFA1D21AEF4E79E45
https://portswigger.net/burp/releases/professional-community-2020-9-2
https://portswigger.net/burp/releases/professional-community-2020-9-2
https://portswigger.net/burp/documentation/desktop/tools/proxy/options
https://portswigger.net/burp/documentation/desktop/tools/proxy/options
http://dl.acm.org/citation.cfm?doid=2905760.2905761
https://hstspreload.org/
https://tools.ietf.org/html/rfc6797
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://cwiki.apache.org/confluence/display/HTTPD/RedirectSSL
https://cwiki.apache.org/confluence/display/HTTPD/RedirectSSL
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/

Bibliography

[19] W3Schools. How To Redirect to Another Webpage [online]. Avail-
able from: https://www.w3schools.com/howto/howto_js_redirect_
webpage.asp [accessed 2020-12-18]

[20] Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol
Version 1.1. , no. RFC 4346, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc4346 [accessed 2020-12-22]

[21] PortSwigger Ltd. Intercepting Messages [online]. Available from:
https://portswigger.net/burp/documentation/desktop/tools/
proxy/intercept [accessed 2020-12-18]

[22] OWASP Foundation, Inc. OWASP Top Ten Web Application Security
Risks [online]. Available from: https://owasp.org/www-project-top-
ten/ [accessed 2020-10-17]

[23] PortSwigger Ltd. Burp Proxy History [online]. Available from:
https://portswigger.net/burp/documentation/desktop/tools/
proxy/history [accessed 2020-12-18]

[24] PortSwigger Ltd. Audit Options [online]. Available from: https:
//portswigger.net/burp/documentation/desktop/scanning/audit-
options [accessed 2020-12-18]

[25] DVWA team. DVWA – Damn Vulnerable Web Application [online]. Avail-
able from: http://www.dvwa.co.uk/ [accessed 2020-10-18]

[26] PortSwigger Ltd. Burp Suite Extensibility [online]. Available from:
https://portswigger.net/burp/extender [accessed 2020-12-18]

[27] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616: pp. 12–14, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc2616 [accessed 2020-12-20]

[28] Wilkins, G.; Salsano, S.; et al. Known Issues and Best Practices for the
Use of Long Polling and Streaming in Bidirectional HTTP [online]. Avail-
able from: https://tools.ietf.org/html/rfc6202 [accessed 2020-10-
29]

[29] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp.
4, 11, ISSN 2070-1721. Available from: https://www.rfc-editor.org/
info/rfc6455 [accessed 2020-12-19]

[30] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: p. 14,
ISSN 2070-1721. Available from: https://www.rfc-editor.org/info/
rfc6455 [accessed 2020-12-19]

59

https://www.w3schools.com/howto/howto_js_redirect_webpage.asp
https://www.w3schools.com/howto/howto_js_redirect_webpage.asp
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/scanning/audit-options
https://portswigger.net/burp/documentation/desktop/scanning/audit-options
https://portswigger.net/burp/documentation/desktop/scanning/audit-options
http://www.dvwa.co.uk/
https://portswigger.net/burp/extender
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://tools.ietf.org/html/rfc6202
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455

Bibliography

[31] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp. 5–
9, ISSN 2070-1721. Available from: https://www.rfc-editor.org/info/
rfc6455 [accessed 2020-12-19]

[32] McManus, P. Bootstrapping WebSockets with HTTP/2 [online]. Available
from: https://tools.ietf.org/html/rfc8441 [accessed 2020-12-19]

[33] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp. 4–9,
14–25, ISSN 2070-1721. Available from: https://www.rfc-editor.org/
info/rfc6455 [accessed 2020-12-19]

[34] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1. ,
no. RFC 2616: p. 39, ISSN 2070-1721. Available from: https://www.rfc-
editor.org/info/rfc2616 [accessed 2020-12-20]

[35] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp.
27–39, ISSN 2070-1721. Available from: https://www.rfc-editor.org/
info/rfc6455 [accessed 2020-12-19]

[36] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp.
36–38, ISSN 2070-1721. Available from: https://www.rfc-editor.org/
info/rfc6455 [accessed 2020-12-19]

[37] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: p. 38,
ISSN 2070-1721. Available from: https://www.rfc-editor.org/info/
rfc6455 [accessed 2020-12-19]

[38] Fette, I.; Melnikov, A. The WebSocket Protocol. , no. RFC 6455: pp.
32–33, ISSN 2070-1721. Available from: https://www.rfc-editor.org/
info/rfc6455 [accessed 2020-12-19]

[39] IANA. Internet Assigned Numbers Authority [online]. Available from:
https://www.iana.org/ [accessed 2020-12-25]

[40] Mozilla Foundation. Using HTTP Cookies [online]. Available from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies [ac-
cessed 2020-12-20]

[41] Mozilla Foundation. Content Security Policy (CSP) [online]. Avail-
able from: https://developer.mozilla.org/en-US/docs/Web/HTTP/
CSP [accessed 2020-12-20]

[42] OWASP Foundation, Inc. Cross Site Scripting (XSS) Software Attack
[online]. Available from: https://owasp.org/www-community/attacks/
xss/ [accessed 2020-12-20]

60

https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://tools.ietf.org/html/rfc8441
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.iana.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

Bibliography

[43] Grossman, J. Cross-Site Scripting Worms and Viruses: The
Impending Threat and the Best Defense [online]. Available
from: https://web.archive.org/web/20110104191201/http:
//net-security.org/dl/articles/WHXSSThreats.pdf [accessed 2020-
12-20]

[44] Kamkar, S. MySpace Worm Explanation [online]. Available from: https:
//samy.pl/myspace/tech.html [accessed 2020-12-20]

[45] PortSwigger Ltd. What Is DOM-Based XSS (Cross-Site Scripting) [on-
line]. Available from: https://portswigger.net/web-security/cross-
site-scripting/dom-based [accessed 2020-12-20]

[46] OWASP Foundation, Inc. Cross Site Scripting Prevention –
OWASP Cheat Sheet Series [online]. Available from: https:
//cheatsheetseries.owasp.org/cheatsheets/Cross_Site_
Scripting_Prevention_Cheat_Sheet.html [accessed 2020-12-21]

[47] Rogaway, P. Nonce-Based Symmetric Encryption. In Fast Software En-
cryption, edited by B. Roy; W. Meier, Lecture Notes in Computer Science,
Springer, ISBN 978-3-540-25937-4, pp. 348–358, doi:10.1007/978-3-540-
25937-4_22.

[48] Haywood, S.; Skelton, M.; et al. Ffuf [online]. Available from: https:
//github.com/ffuf/ffuf [accessed 2020-12-21]

[49] Burns, W. J. Common Password List (Rockyou.Txt) [online]. Avail-
able from: https://kaggle.com/wjburns/common-password-list-
rockyoutxt [accessed 2020-12-21]

[50] Cubrilovic, N. RockYou Hack: From Bad To Worse [online]. Available
from: https://social.techcrunch.com/2009/12/14/rockyou-hack-
security-myspace-facebook-passwords/ [accessed 2020-12-21]

[51] The Linux Foundation. OpenApi Initiative [online]. Available from:
https://www.openapis.org/ [accessed 2020-11-29]

[52] g0tmi1k. Nikto [online]. Available from: https://tools.kali.org/
information-gathering/nikto [accessed 2020-12-23]

[53] Sullo, C. Nikto v2.1.5 – The Manual [online]. Available from: https:
//cirt.net/nikto2-docs/ [accessed 2020-12-23]

[54] Mozilla Foundation. X-XSS-Protection [online]. Available from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
X-XSS-Protection [accessed 2020-12-23]

61

https://web.archive.org/web/20110104191201/http://net-security.org/dl/articles/WHXSSThreats.pdf
https://web.archive.org/web/20110104191201/http://net-security.org/dl/articles/WHXSSThreats.pdf
https://samy.pl/myspace/tech.html
https://samy.pl/myspace/tech.html
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://portswigger.net/web-security/cross-site-scripting/dom-based
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://github.com/ffuf/ffuf
https://github.com/ffuf/ffuf
https://kaggle.com/wjburns/common-password-list-rockyoutxt
https://kaggle.com/wjburns/common-password-list-rockyoutxt
https://social.techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://social.techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://www.openapis.org/
https://tools.kali.org/information-gathering/nikto
https://tools.kali.org/information-gathering/nikto
https://cirt.net/nikto2-docs/
https://cirt.net/nikto2-docs/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Bibliography

[55] Mozilla Foundation. Allow [online]. Available from: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Allow [ac-
cessed 2020-12-24]

[56] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616, ISSN 2070-1721. Available from: https://www.rfc-
editor.org/info/rfc2616 [accessed 2020-12-20]

[57] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616: pp. 128–129, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc2616 [accessed 2020-12-20]

[58] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616: pp. 32–33, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc2616 [accessed 2020-12-20]

[59] Mozilla Foundation. Expect [online]. Available from: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect [ac-
cessed 2020-12-04]

[60] Fielding, R.; Gettys, J.; et al. Hypertext Transfer Protocol – HTTP/1.1.
, no. RFC 2616: pp. 48–50, ISSN 2070-1721. Available from: https:
//www.rfc-editor.org/info/rfc2616 [accessed 2020-12-20]

[61] Martelli, A. Python in a Nutshell. ”O’Reilly Media, Inc.”, ISBN 978-0-
596-10046-9, pjqbAgAAQBAJ.

[62] Python Software Foundation. PyPI · The Python Package Index [online].
Available from: https://pypi.org/ [accessed 2020-12-15]

[63] Augustin, A. Websockets: An Implementation of the WebSocket Proto-
col (RFC 6455 & 7692) [online]. Available from: https://github.com/
aaugustin/websockets [accessed 2020-12-15]

[64] Shadura, A. HTTP Proxy Support Reworked by Andrewshadura · Pull
Request #751 · Aaugustin/Websockets [online]. Available from: https:
//github.com/aaugustin/websockets/pull/751 [accessed 2020-12-15]

[65] Amini, P.; Portnoy, A.; et al. Boofuzz: Network Protocol Fuzzing for Hu-
mans [online]. Available from: https://boofuzz.readthedocs.io/en/
stable/ [accessed 2020-12-16]

[66] Pereyda, J. Jtpereyda/Boofuzz [online]. Available from: https://
github.com/jtpereyda/boofuzz [accessed 2020-12-16]

[67] Amini, P.; Portnoy, A.; et al. OpenRCE/Sulley [online]. Available from:
https://github.com/OpenRCE/sulley [accessed 2020-12-16]

62

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Allow
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Allow
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
pjqbAgAAQBAJ
https://pypi.org/
https://github.com/aaugustin/websockets
https://github.com/aaugustin/websockets
https://github.com/aaugustin/websockets/pull/751
https://github.com/aaugustin/websockets/pull/751
https://boofuzz.readthedocs.io/en/stable/
https://boofuzz.readthedocs.io/en/stable/
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/OpenRCE/sulley

Bibliography

[68] Augustin, A. Websockets – Frame.read [online]. Available
from: https://github.com/aaugustin/websockets/blob/
139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/
framing.py#L79 [accessed 2020-12-17]

[69] Augustin, A. WebSockets – Frame.write [online]. Available
from: https://github.com/aaugustin/websockets/blob/
139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/
framing.py#L148 [accessed 2020-12-17]

[70] Augustin, A. WebSockets – Licence [online]. Available from: https://
github.com/aaugustin/websockets/blob/8.1/LICENSE [accessed 2020-
12-17]

[71] SolarWinds Worldwide, LLC. Orion Platform [online]. Available from:
https://www.solarwinds.com/solutions/orion [accessed 2020-12-30]

[72] FireEye, Inc. Highly Evasive Attacker Leverages SolarWinds Supply
Chain to Compromise Multiple Global Victims With SUNBURST Back-
door [online]. Available from: https://www.fireeye.com/blog/threat-
research/2020/12/evasive-attacker-leverages-solarwinds-
supply-chain-compromises-with-sunburst-backdoor.html [ac-
cessed 2020-12-30]

[73] Lakshmanan, R. New Evidence Suggests SolarWinds’ Code-
base Was Hacked to Inject Backdoor [online]. Available from:
https://thehackernews.com/2020/12/new-evidence-suggests-
solarwinds.html [accessed 2020-12-30]

[74] Lakshmanan, R. A New SolarWinds Flaw Likely Had Let Hack-
ers Install SUPERNOVA Malware [online]. Available from:
https://thehackernews.com/2020/12/a-new-solarwinds-flaw-
likely-had-let.html [accessed 2020-12-30]

[75] Hern, A. Orion Hack Exposed Vast Number of Targets –
Impact May Not Be Known for a While. Available from:
http://www.theguardian.com/world/2020/dec/14/solarwinds-
breach-orion-hacked-cyber-espionage [accessed 2020-12-30]

[76] Microsoft Security Response Center. Microsoft Internal Solori-
gate Investigation Update [online]. Available from: https:
//msrc-blog.microsoft.com/2020/12/31/microsoft-internal-
solorigate-investigation-update/ [accessed 2021-01-02]

[77] Docker Inc. Docker Overview [online]. Available from: https://
docs.docker.com/get-started/overview/ [accessed 2021-01-03]

63

https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L79
https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L79
https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L79
https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L148
https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L148
https://github.com/aaugustin/websockets/blob/139085fe2624192a5a6c72b1e5db211dcec6ced1/src/websockets/framing.py#L148
https://github.com/aaugustin/websockets/blob/8.1/LICENSE
https://github.com/aaugustin/websockets/blob/8.1/LICENSE
https://www.solarwinds.com/solutions/orion
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://thehackernews.com/2020/12/new-evidence-suggests-solarwinds.html
https://thehackernews.com/2020/12/new-evidence-suggests-solarwinds.html
https://thehackernews.com/2020/12/a-new-solarwinds-flaw-likely-had-let.html
https://thehackernews.com/2020/12/a-new-solarwinds-flaw-likely-had-let.html
http://www.theguardian.com/world/2020/dec/14/solarwinds-breach-orion-hacked-cyber-espionage
http://www.theguardian.com/world/2020/dec/14/solarwinds-breach-orion-hacked-cyber-espionage
https://msrc-blog.microsoft.com/2020/12/31/microsoft-internal-solorigate-investigation-update/
https://msrc-blog.microsoft.com/2020/12/31/microsoft-internal-solorigate-investigation-update/
https://msrc-blog.microsoft.com/2020/12/31/microsoft-internal-solorigate-investigation-update/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/

Bibliography

[78] Lowe, S. Introducing Linux Network Namespaces [online]. Avail-
able from: https://blog.scottlowe.org/2013/09/04/introducing-
linux-network-namespaces/ [accessed 2020-12-28]

[79] Wireshark Foundation. TLS · Wiki [online]. Available from: https://
gitlab.com/wireshark/wireshark/-/wikis/TLS [accessed 2020-12-27]

[80] PortSwigger Ltd. Integrating Burp and Wireshark – Burp Suite User Fo-
rum [online]. Available from: https://forum.portswigger.net/thread/
integrating-burp-and-wireshark-816abb78 [accessed 2020-12-27]

[81] Neykov, S. Extract-Tls-Secrets [online]. Available from: https://
github.com/neykov/extract-tls-secrets [accessed 2020-12-29]

[82] PortSwigger Ltd. Burp Collaborator [online]. Available from: https://
portswigger.net/burp/documentation/collaborator [accessed 2020-
12-27]

64

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://gitlab.com/wireshark/wireshark/-/wikis/TLS
https://gitlab.com/wireshark/wireshark/-/wikis/TLS
https://forum.portswigger.net/thread/integrating-burp-and-wireshark-816abb78
https://forum.portswigger.net/thread/integrating-burp-and-wireshark-816abb78
https://github.com/neykov/extract-tls-secrets
https://github.com/neykov/extract-tls-secrets
https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/documentation/collaborator

Appendix A
Acronyms

API Application Programming Interface

CA Certificate Authority

CRLF Carriage Return (U+000D) Line Feed (U+000A)

DAST Dynamic Application Security Testing

DVWA Damn Vulnerable Web Application

GUI Graphic User Interface

GUID Globally Unique Identifier

HSTS HTTP Strict Transport Security

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IAST Interactive Application Security Testing

JS JavaScript

OS Operating System

RCE Remote Code Execution

SAST Static Application Security Testing

SP Space character (U+0020)

TLS Transport Layer Security

65

A. Acronyms

URI Uniform Resource Identifier

URL Uniform Resource Locator

XSS Cross-Site Scripting

66

Appendix B
Performance feedback

0000 50 4b 03 04 14 00 08 08 08 00 fa 71 9b 51 00 00 PK.........q.Q..
0010 00 00 00 00 00 00 00 00 00 00 0c 00 00 00 69 70ip
0020 63 2d 65 6e 76 65 6c 6f 70 65 cd 8e cb b2 9a 40 c-envelope.....@
0030 18 84 f7 3e 85 fb 54 ce 99 21 6a 90 2a 17 8a 8c ...>..T..!j.*...
0040 8a f1 c2 cc fc 23 b2 43 18 2e 32 07 44 45 90 a7#.C..2.DE..
0050 0f 59 50 d9 65 9d 55 57 77 75 77 7d 42 de 1f 69 .YP.e.UWwuw}B..i
0060 91 1b 43 34 30 13 3f cf a5 32 86 8f a7 7f 51 72 ..C40.?..2....Qr
0070 70 bc 17 61 15 3c ad 46 06 d5 b3 eb ec 8a 50 1a p..a.<.F......P.
0080 43 dc e7 fc 7d eb 6c 67 fa 40 f4 57 1a d2 d0 07 C...}.lg.@.W....
0090 d6 3e f0 f7 b1 f6 53 1f 40 9e 96 95 dc 84 32 7f .>....S.@.....2.
00a0 a6 51 2a ef c6 f0 9d bd f5 1b f2 15 96 79 1a be .Q*..........y..
00b0 f2 f2 19 ab cc b8 8c be 74 43 6b 55 32 18 88 b5tCkU2...
00c0 aa 3d 5e c4 7b 3e af 77 f3 db c9 73 ed d6 3f 4d .=^.{>.w...s..?M
00d0 ab 43 3a af cd cc 23 8e a0 02 32 11 09 a2 1c da .C:...#...2.....
00e0 f5 84 45 18 45 02 5c bc b7 85 25 22 0e c4 71 b1 ..E.E.\...%"..q.
00f0 67 53 11 46 1c 2f 80 c1 f4 e0 a2 86 50 45 23 c8 gS.F./......PE#.
0100 d4 9a 91 4e f1 62 c7 84 b3 ed 3f 68 26 16 82 08 ...N.b....?h&...
0110 46 c5 54 00 82 ad 19 cf 66 ff 06 51 44 38 30 06 F.T.....f..QD80.
0120 26 a8 e7 62 ea 81 05 93 0d 59 30 8e 13 cf 45 89 &..b.....Y0...E.
0130 0d 98 1e 41 a9 88 02 fd 03 65 f5 40 34 53 bb ce ...A.....e.@4S..
0140 b3 6e 63 73 10 cc 54 fd f6 ef 9f 19 17 f5 ff 01 .ncs..T.........
0150 40 3e 0f af 46 5f d3 f6 3a b2 bf 82 98 26 2e 67 @>..F_..:....&.g
0160 d2 8b e2 56 56 c9 cd 0f 0b 3f 0f d1 68 65 11 68 ...VV....?..he.h
0170 6f e1 76 ce af f3 46 0f 26 8f 87 b8 82 a2 0d 97 o.v...F.&.......
0180 47 88 59 90 48 72 58 7a 1c e4 29 b3 26 51 ac 9c G.Y.HrXz..).&Q..
0190 91 76 22 75 99 ab e2 be 2e ce bf 22 14 a6 10 94 .v"u......."....
01a0 e4 73 7d 56 ab 3a 5c 1c 96 e7 36 be ec 23 34 75 .s}V.:\...6..#4u
01b0 df c9 36 05 79 35 fd 3d 2e 8f af b2 b9 3f ca 73 ..6.y5.=.....?.s
01c0 56 b2 4b 1e e8 29 3f 6a 44 d6 3f be ad c6 e5 92 V.K..)?jD.?.....
01d0 5b 34 dc cc 7e 03 50 4b 07 08 2c 92 15 06 ac 01 [4..~.PK..,.....
01e0 00 00 cc 02 00 00 50 4b 01 02 14 00 14 00 08 08PK........
01f0 08 00 fa 71 9b 51 2c 92 15 06 ac 01 00 00 cc 02 ...q.Q,.........
0200 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 00 00
0210 00 00 00 00 69 70 63 2d 65 6e 76 65 6c 6f 70 65ipc-envelope
0220 50 4b 05 06 00 00 00 00 01 00 01 00 3a 00 00 00 PK..........:...
0230 e6 01 00 00 00 00

67

Appendix C
Contents of enclosed CD

Also available from https://gitlab.stdin.cz/ts/dp-security-assessment.

README.md..........................the file with CD contents description
DP_Stefan_Tomas_2021.pdf the thesis text in PDF format
DP_Stefan_Tomas_2021.zip............................XeLaTeX source
bappstore_currentlist.txt........response for /bappstore/currentlist
burp_fuzzer.......................source code of the fuzzer applications

client.py...............................high-level WebSocket fuzzer
client_low_level.py.................... low-level WebSocket fuzzer
server.py..WebSocket server
websockets_licence.txt licence of the websockets library

69

https://gitlab.stdin.cz/ts/dp-security-assessment

	Introduction
	Web application penetration testing tools
	Burp Suite
	Usage
	Connecting a web browser
	Tips for initial configuration
	Intercept
	HTTP history
	Automatic issue detection
	Other tools and extensions

	WebSockets
	Overview
	Protocol details
	Opening handshake
	Client to server
	Server to client

	Data transfer
	Framing
	Control frames
	Data frames
	Masking
	Examples

	Practical part
	Burp's web endpoints
	Finding other endpoints
	What is cross-site scripting (XSS)
	Check for reflective XSS
	Replay/show in browser feature
	Enumerating sites

	REST API
	Found web endpoints summary

	Scanning
	Nikto
	Burp

	Non-compliance with the HTTP protocol
	Host header
	HEAD method
	Expect header

	Writing a WebSocket fuzzer
	Creating a local WebSocket server
	High-level fuzzing
	Low-level fuzzing

	Examine Burp's communication
	Motivation
	SolarWinds Orion incident

	Prepare a network namespace
	Breaking the TLS
	Record Burp's traffic
	Analyze the captured traffic
	Check for updates
	BApp Store current list
	Burp Collaborator polling
	Performance anonymous feedback
	Background traffic summary

	Conclusion
	Bibliography
	Acronyms
	Performance feedback
	Contents of enclosed CD

