
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague June 25, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Real-time Data Stream Processing System

 Student: Ing. Vitalij Kozlov

 Supervisor: Ing. Michal Valenta, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

The recent evolution of sensor technologies, wireless communication and other real-time sources is
accompanied by rapidly growing demand for real-time applications, which rely upon instantaneous input
and fast analysis being translated into decision or action within a short, often specific timeline. The aim of
the thesis is to design a system that tackles unique aspects of streaming data on one of the areas that have
made streaming data interesting – social media streams.
 1. Analyze current solutions, trends and tools in the real-time large-scale data processing.
 2. Design stream processing system with a focus on high availability, low latency and horizontal scalability.
 3. Create a cloud-based system prototype utilizing social media data streams and selected analysis
techniques as a proof of concept. Implement a delivery mechanism in a form of a web-based interface.
 4. Perform system testing and evaluate the results.

References

Will be provided by the supervisor.

Master’s thesis

Real-time Data Stream Processing System

Ing. Vitalij Kozlov

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

January 8, 2021

Acknowledgements

I want to thank my supervisor Ing. Michal Valenta, Ph.D. for encouraging
me to work on this topic and to Nathan Marz for filling me with enthusiasm
about the topic.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 8, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Vitalij Kozlov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kozlov, Vitalij. Real-time Data Stream Processing System. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Poptávka po zpracováńı big data se v posledńıch letech neustále zvyšuje
navzdory přetrvávaj́ıćım výzvám. Data r̊uzných objemů i formát̊u je nutné
źıskávat, ukládat a zpracovávat. Systémy pro zpracováńı dat muśı být uzp̊usobeny
požadavk̊um big data, je tedy potřeba, aby byly spolehlivé, škálovatelné a
udržitelné. V posledńı době náročnost požadavk̊u ještě vzrostla, jelikož data
muśı být zpracovávána nejen ve velkých objemech, ale i v reálném čase. Tato
diplomová práce navrhuje design systému pro zpracováńı big data, který se
soustřed́ı na vysokou dostupnost, ńızkou latenci a horizontálńı škálovatelnost.
Systém je inspirovaný zavedenou architekturou Lambda, ale odráž́ı také tech-
nologické trendy, jako jsou cloud computing na veřejné platformě nebo kontej-
nerizované aplikace. Tato práce také popisuje implementaci prototypu navrženého
cloudového systému a zhodnocuje dosažené výsledky.

Kĺıčová slova Big Data, proudové zpracováńı dat, Lambda architektura,
Apache Spark, Apache Kafka, Kubernetes, analýza v realném čase

Abstract

Big data processing has been in high demand in recent years despite its many
challenges. Data in different volumes and formats needs to be collected, stored

vii

and processed. To address the nature of big data, data systems must be de-
signed in a reliable, scalable and maintainable manner. Over the last few
years, the requirements have become even more demanding, as the data needs
to be processed not only on a large scale, but also in real time. This thesis
proposes a system design focused on high availability, low latency and hori-
zontal scalability. It is inspired by well-established Lambda architecture but
also reflects certain technological trends, such as public cloud computing and
container technology. This thesis also describes the implementation of a cloud-
based system prototype that was created as part of the project and discusses
its results.

Keywords Big Data, Stream Processing, Lambda Architecture, Apache
Spark, Apache Kafka, Kubernetes, Real-time Analytics

viii

Contents

Introduction 1

1 From Batch to Stream Processing 3
1.1 The age of data . 3

1.1.1 What is data, and why is it important? 3
1.1.2 Big Data . 3
1.1.3 Modern data-processing requirements 4
1.1.4 Technological trends and their effects on Big Data systems 5

1.2 Distributed computing and large-scale data processing 6
1.2.1 MapReduce paradigm 6
1.2.2 Hadoop . 7

1.2.2.1 HDFS . 8
1.2.2.2 Hadoop YARN 8
1.2.2.3 Hadoop shortcomings 9

1.2.3 Apache Spark . 9
1.2.4 Big Data and Kubernetes 11

1.2.4.1 Container technology 11
1.2.4.2 Kubernetes core concepts 12

1.3 Towards Real-Time and Streaming Big Data 14
1.3.1 Event streams . 15

1.3.1.1 Messaging systems 15
1.3.1.2 Partitioned logs 16

1.3.2 Stream processing . 17
1.3.2.1 Uses of stream processing 17
1.3.2.2 Execution modes 18
1.3.2.3 The effect of time 18

2 Real-Time Data Processing Architecture 21
2.1 Big data architecture components 21

ix

2.2 Lambda architecture . 23
2.2.0.1 Problems with fully incremental architectures . 24
2.2.0.2 Batch layer . 25
2.2.0.3 Serving layer 26
2.2.0.4 Speed layer . 26

2.3 Kappa architecture . 27

3 System Analysis and Design 29
3.1 System specification and requirements 29

3.1.1 Functional requirements 30
3.1.2 Non-functional requirements 31

3.2 Sample application . 31
3.3 System design . 33

3.3.1 Message queueing . 34
3.3.2 Batch layer . 35

3.3.2.1 Computing on the batch layer 36
3.3.2.2 Storing master dataset 38

3.3.3 Speed layer . 39
3.3.3.1 Storing real-time views 39
3.3.3.2 Expiring realtime views 40

3.3.4 Serving data . 41
3.3.4.1 Cassandra’s data model 41

3.3.5 Data processing . 43
3.3.6 Application deployment, scaling and management . . . 43
3.3.7 Delivery mechanism . 44
3.3.8 Design Summary . 45

4 System Implementation 47
4.1 Data Collection . 47

4.1.1 Twitter API . 47
4.1.2 Kafka Producer . 47
4.1.3 Data Serialization . 48

4.2 Data processing . 49
4.2.1 Speed layer . 49

4.2.1.1 Consuming data from Kafka 49
4.2.1.2 Updating speed views 50

4.2.2 Hashtag trends . 51
4.2.3 Batch layer . 51

4.3 Hashtag Dashboard . 52
4.3.1 Application server . 53
4.3.2 Client application . 54

4.4 Kubernetes Deployment . 54
4.4.1 Kubernetes cluster . 55
4.4.2 Deployment strategy . 55

x

4.4.3 Spark Operator . 57
4.4.4 Persistent storage . 58

4.5 System Monitoring . 59

5 System Evaluation 61
5.1 Test Scenarios . 61

5.1.1 Latency . 62
5.1.2 Throughput and Scalability 63
5.1.3 Fault tolerance . 63

5.2 Evaluation of system requirements 64
5.2.1 Functional requirements 64
5.2.2 Non-functional requirements 66

5.3 Future work and opportunities 67
5.3.1 Auto-scaling options . 67
5.3.2 Job scheduling . 67
5.3.3 Advanced monitoring 68

Conclusion 69

Bibliography 71

A Acronyms 77

xi

List of Figures

1.1 Map phase of MapReduce program [1] 6
1.2 Reduce phase of MapReduce program [1] 7
1.3 YARN application [2] . 8
1.4 Spark application running in cluster mode. [3] 10
1.5 Isolating groups of applications using VMs vs. isolating applica-

tions with container [4] . 12
1.6 Kubernetes deployment illustration [4] 13
1.7 Kubernetes cluster components [4] 14
1.8 Producers send messages by appending them to a topic-partition

file, and consumers read these files sequentially. [5] 17
1.9 Inaccuracies in measurement introduced by windowing by process-

ing time. [5] . 19

2.1 The Components of big data architecture [6] 22
2.2 Lambda architecture [7] . 24
2.3 Lambda architecture [7] . 26
2.4 Computing a query in Lambda architecture [8] 27
2.5 Kappa architecture [9] . 28

3.1 Example of Twitter Trends [10] . 32
3.2 Comparison of Apache Hadoop and Kubernetes search interest [11] 34
3.3 A recomputing algorithm to update the number of record in the

master data-set [1] . 37
3.4 An incremental algorithm to update the number of record in the

master data-set [1] . 37
3.5 Alternating realtime views [1] . 40
3.6 Storing time-series data in Cassandra 42
3.7 Spark on Kubernetes [11] . 44
3.8 Getting server updates through polling and WebSocket [12] 45
3.9 System Design . 46

xiii

4.1 Hashtag Dashboard . 54
4.2 Spark operator architecture [13] . 57
4.3 Kubernetes Dashboard . 59

5.1 The impact of load change on batch duration 62
5.2 Spark executor recovery . 64

xiv

List of Tables

5.1 Cluster testing configurations . 61
5.2 The effect of batch size on process rate and batch duration 63

xv

Introduction

In the 1800s, the discovery of gold in California set off a frenzied Gold Rush.
Three hundred years later, the madness is back. And so is mining. Although
it is not gold what is mined today. It is data.

The last 15 years brough a data revolution. Enormous quantities of data
are produced every single day. The volume of machine, transactional or social
data is overwhelming. Big companies recognized the potential hidden in the
mountains and streams of data that was pouring into storages from all possible
kinds of sources. Yet it was a challenge to tame this data. It required huge
infrastructure investments and teams of dedicated engineers to operate data
systems in order to collect, process and store the data in such a quantity.

It did not take long for the situation to change. Today, thanks to the rise
of public clouds, technological progress and battle-tested methodology, data
systems at scale can be operated by small companies or even individuals in a
cost-efficient manner.

Aim of the thesis

The aim of this thesis is to identify current trends in big data processing,
understand their concepts and reason about their success. This knowledge
will be applied to propose a design of a complex data system with focus on
stream processing. The design will meet some of the key requirements for such
a system: high availability, low latency and horizontal scalability. The next
step will be to implement a prototype of the system as a proof of concept,
deploy it on a public cloud, evaluate it and discuss its quality.

Thesis structure

In the first chapter of the thesis the core concepts connected to large scale data
processing will be explored and presented. The chapter will help the reader to

1

Introduction

understand the challenges connected to data processing, the difference between
batch and stream processing and introduce some of the most significant tools
for data processing evolution.

The second chapter will present the requirements connected to data system
design. It will then discuss specifics of stream processing systems and the most
important architectures for such a system.

The third chapter contains requirements set for the prototype to be suc-
cessful. All the specifics of the design will be explained to the reader in the
next part of the chapter, along with the decisions behind the design of every
system component.

The fourth chapter will lay out the details of the prototype implementa-
tion.

The last chapter evaluates the prototype, discusses its performance details,
assesses all the requirements and proposes potential future improvements.

2

Chapter 1
From Batch to Stream

Processing

1.1 The age of data

1.1.1 What is data, and why is it important?

We live in the data age, where data means facts, insights, knowledge and power
to control outcomes. We are surrounded by data. We always have been, but
the advancements in informatics in the past decades allowed a variety of new
data sources to be born. Besides affecting the amount of produced data,
it introduced new methods how to efficiently store this data, process it and
transform it into valuable insights.

The terms “data” and “information“ are often used interchangeably, al-
though their meaning is different. Data can be thought of as a unit of infor-
mation, thus the real value of data is tightly coupled to the value of informa-
tion that can be extracted from it. Information can improve decision-making,
power scientific progress and economic prosperity, essentially improving peo-
ple’s lives.

1.1.2 Big Data

Big data is a relatively new term which has been gaining extreme popularity
in the last couple of years. As pointed out by Kleppmann (2017) in [5]: “It
is so overused and underdefined that it is not useful in a serious engineering
discussion.” The term is, indeed, quite abstract and doesn’t come with the
unified definition, specifying how big the data should be to be considered
“Big”. In this work, we will use the term for “datasets that are relatively large
to be stored in a traditional database system or processed by traditional data-
processing pipelines.‘’ as suggested by Yarabarla (2017) in [14]. The datasets
that belong to this category can usually scale to terabytes or even petabytes

3

1. From Batch to Stream Processing

of structured, semi-structured or unstructured data. The term is also often
described by three V’s – volume, velocity and variety. Saxena and Gupta
(2017) in [15] add two more V’s to the definition - veracity and value. The
authors describe 5V’s as:

• Volume
This dimension refers to the amount of data. In the past, storing ter-
abytes of data would have been a problem, but new technologies have
eased the burden.

• Velocity
Velocity refers to the data generation and movement speed that must
be dealt with in a timely manner. It is an important dimension for data
coming from online systems, sensors or social media.

• Variety
This dimension tackles the fact that the data can come in all sorts of
formats ranging from structured data that can be stored in traditional
databases to unstructured data such as images or video files.

• Veracity
Veracity describes how correct and valid the data is. Examples of data
with veracity include Facebook and Twitter posts with nonstandard
acronyms or typos.

• Value
As the name suggest, this dimension describes the value that the data
holds. It presents the biggest motivator to store and process the data.

1.1.3 Modern data-processing requirements

The described nature of big data brings some challenges if the data is to be
processed on full scale, within acceptable time frame and to provide consistent
results.In order to handle big data. Some of the most important points that
need to be addressed are:

• Scalable infrastructure
Scalable data platforms are able to accommodate rapid changes in the
growth of data, either in traffic or volume.

• Complex processing
As the data comes from many sources in the different formats and vol-
umes, modern data processing may consist of multiple layers and include
complex data flows.

4

1.1. The age of data

• Faster processing

Working in real-time becomes fundamental in today’s world. In some
cases, data freshness may be more important than the amount or size of
data. The value of data may decrease with every second, which brings
the importance of fast processing capability.

• Continuous data flow

“Business-critical applications should continue running without much
impact even when there is a system failure or multiple system failures
(server failure, network failure, and so on). The applications should be
able to handle failures gracefully without any data loss or interruptions.”[14]
(Yarabala, 2017)

• Visible, reproducible analysis

The importance of data science has risen in the recent years. As more
and more companies utilize data-driven approach in decision making, it
is crucial to ensure that consistent, reproducible results are produced.

1.1.4 Technological trends and their effects on Big Data
systems

In order to approach challenges connected to Big Data, it is helpful to under-
stand recent trends in technology, as they can significantly influence the way
in which big data systems can be built.

First of all, we’ve started to hit the physical limits of how fast a single
CPU can go. [1] That means that in order to scale data system efficiently,
parallelization is to be heavily utilized. Instead of upgrading a single machine,
known as vertical scaling, the systems are scaled by adding more machines.
This is known as horizontal scaling.

Another trend we witness is the rise of public clouds. Public clouds offer
renting of hardware in multiple locations on demand. This allows companies
to operate their systems without the need to own costly hardware. Public
clouds let their users optimize the number of machines in the cluster, enabling
access to scalability and potential cost savings.

Besides the access to affordable hardware, a variety of software solutions
was produced over the past few years by the open-source community. Some of
these projects have matured and became industry standards, offering its users
the option to operate performant, battle-tested software for affordable costs.

5

1. From Batch to Stream Processing

1.2 Distributed computing and large-scale data
processing

1.2.1 MapReduce paradigm

MapReduce is a distributed computing paradigm that provides primitives for
scalable and fault-tolerant batch computation.[1] Kleppmann (2017) in [5]
describes the importance of MapReduce for Biga Data processing as “a major
step forward in terms of the scale of processing that could be achieved on
commodity hardware.” Besides scalability, MapReduce offers the ability to
parallelize the computation automatically, as it focues on what needs to be
computed instead of how to compute it. In [1] Marz (2015) explains that: “All
the details of concurrency, transferring data between machines, and execution
planning are abstracted for you by the framework”. As the paradigm name
suggest, its backbone is made up by map and reduce functions that manipulate
key/value pairs. These primitives are expressive enough to implement a large
variety of functions.

The canonical MapReduce example is a word count. It is a program that
takes a dataset of text and computes the number of times each word appears
in it. As the input data to the program is stored within a distributed dataset,
the first step is to determine which machines in the cluster host the blocks
containing the data. After determining the input location, the data can be
processed. MapReduce launches a number of map tasks proportional to the
size of the input data. Every task is part of the input and executes map
function on the assigned data. MapReduce promotes data locality. As stated
by Marz (2015): “Because the amount of the code is typically far less than
the amount of the data, MapReduce attempts to assign tasks to servers that
host the data to be processed”. The function generates intermediate key/value
pairs as shown in Figure 1.1. In the word count example, the keys are words,
which are assigned value of 1.

Figure 1.1: Map phase of MapReduce program [1]

Besides map tasks, there are also reduce tasks spread across the cluster.

6

1.2. Distributed computing and large-scale data processing

These tasks are responsible for computing the reduce function for a subset
of keys produced by the map function. Since the function requires all the
values for a given key, the reduce phase can be started only after the map
phase is finished and data is redistributed across the cluster in such a way,
that all the intermediate key/value pairs are co-allocated with the reduce task
responsible for its processing. The data transfer associated with fulfilment of
this requirement is called a shuffle. After the data is shuffled, every reduce
task sorts its assigned key/value pairs and performs reduce function. In case
of word count example, the values are summed together, as demonstrated in
Figure 1.2.

Figure 1.2: Reduce phase of MapReduce program [1]

The word count example demonstrates the key benefits of the model:

• Both map and reduce functions can be executed in parallel across the
cluster.

• The program can be run in a distributed fashion.

• The complexity connected to concurrency and data transfers is handled
for the programmer.

1.2.2 Hadoop

MapReduce model was widely popularized by Hadoop, as its approach showed
to be efficient for data processing tasks. Apache Hadoop is a project focusing
on creating general-purpose storage and analysis platform for big data. [2]
Today, Hadoop is widely used in mainstream enterprises. The term Hadoop
is often used by both core models of the Apache Hadoop framework and a
variety of packages that can be installed on top of it. The core of the project
includes five modules[16]:

• Hadoop Common The common utilities that support the other Hadoop
modules.

7

1. From Batch to Stream Processing

• Hadoop Distributed File System (HDFS) A distributed file system
that provides high throughput access to application data.

• Hadoop YARN A framework for job scheduling and cluster resource
management.

• Hadoop MapReduce A system for parallel processing of large data
sets.

• Hadoop Ozone An object store for Hadoop.

1.2.2.1 HDFS

White (2015) in [2] describes HDFS as “a filesystem designed for storing very
large files with streaming data access patterns, running on clusters of com-
modity hardware”. By “streaming data access patterns” White implies that
the file system is built around the idea of “write-once, read-many-times” pat-
tern. It doesn’t require expensive, highly reliable hardware and can handle
petabytes of data.[2]

HDFS offers scalability and enables parallel processing, as files are spread
across multiple machines. The file system also provides fault tolerance, as file
blocks are replicated across the nodes.

1.2.2.2 Hadoop YARN

Apache YARN (Yet Another Resource Negotiator) is Hadoop’s cluster re-
source management system. YARN was introduced to improve the MapRe-
duce implementation and provide APIs for requesting and working with clus-
ter resources. [2] The provided APIs are typically not used by programmers
directly, but are rather called by distributed computing frameworks, which
themselves are built on YARN. The situation is illustrated in Figure 1.3.
YARN brings in the concept of central resource management, which allows to
efficiently run multiple applications on Hadoop.

Figure 1.3: YARN application [2]

8

1.2. Distributed computing and large-scale data processing

1.2.2.3 Hadoop shortcomings

Hadoop allowed to store and process the large volumes of data in a scalable,
fault-tolerant manner. However, it has its own shortcomings. As HDFS is
optimized for delivering high throughput, it will not work well if low-latency
data access is required, as pointed by White (2015). Hadoop also introduces
processing overhead since it involves a lot of read and write disk operations.

1.2.3 Apache Spark

Hadoop’s shortcomings were partly addressed with the introduction of a new
framework – Apache Spark. Spark was created for distributed general-purpose
computing as a response to limitations in MapReduce cluster computing paradigm,
which involved unnecessarily high number of disk reads and writes.

Spark is used by writing a driver program which implements high-level
control flow of the application and launches various operations in parallel.
Spark’s programming model provides two main abstractions for parallel pro-
gramming – resilient distributed datasets (RDDs) and parallel operations on
these datasets. RDDs are read-only collections of objects that are distributed
over a cluster of machines[17]. These objects are resilient, meaning they are
fault-tolerant and can recover from failures by tracking the ancestry of data
(framework keeps track of how a given piece of data is computed) [5]. As their
name implies, RDDs are also distributed - their data resides in-memory across
cluster nodes.

As stated in [17], RDDs allow several parallel operations that can be per-
formed on them:

• reduce: Combines dataset elements using an associative function and
produces result for a driver program.

• collect: Sends all elements of the dataset to the driver program.

• foreach: Passes each element of the dataset through a user provided
function.

The described model allows it to have much better performance for algo-
rithms that have to repeatedly iterate over the same dataset (as Spark is able
to cache that data in memory rather than read it from disk every time. It’s
been shown that Spark can outperform Hadoop by 10x in iterative machine
learning jobs. [17]

As already mentioned, the application logic of Spark program is imple-
mented through a driver program, which acts as a controller of the applica-
tion execution and maintains all of the state of the Spark cluster (the state
of tasks and executors). The Spark executors are the processes that perform
tasks assigned by the Spark driver. Their responsibility is to take the tasks
assigned by the driver, run them, and report their state and results.[18]

9

1. From Batch to Stream Processing

Specifically, to run on a cluster, the driver program can connect to sev-
eral types of cluster managers, which allocate resources across applications.
This is demonstrated in Figure 1.4. Once the driver program is connected to
the cluster, Spark acquires executors on cluster nodes through cluster man-
ager. Next, the driver program sends the application code and tasks to the
executors, which can start running them.

Figure 1.4: Spark application running in cluster mode. [3]

Spark currently supports several cluster managers[17]:

• Standalone – a simple cluster manager included with Spark.

• Apache Mesos - a general cluster manager that can also run Hadoop
MapReduce and service applications.

• Hadoop YARN - the resource manager in Hadoop.

• Kubernetes - an open-source system for automating deployment, scal-
ing, and management of containerized applications.1

Another option Spark offers is to specify where the driver and executor
processes will be physically located by setting the execution mode. The three
modes Spark supports are[18]:

• Cluster mode
Cluster mode is probably the most common way of running Spark ap-
plications. In this mode, a user submits his code to a cluster manager,

1Kubernetes is the latest supported cluster manager. The support was introduced with
Spark 2.3.0 in 2018 [19]

10

1.2. Distributed computing and large-scale data processing

which launches the driver process on one of the worker nodes in the
cluster, in addition to the executor processes. All the processes run in
the cluster in this scenario.

• Client mode
In client mode the driver process is run on the client machine that sub-
mitted the application. These machines are also known as gateway ma-
chines or edge nodes and are responsible for maintaining Spark driver
process.

• Local mode
Local mode allows to run Spark applications on a single machine, achiev-
ing parallelism using threads. It provides a way to experiment with
Spark or test Spark applications.

1.2.4 Big Data and Kubernetes

It is not an accident that Kubernetes have become the latest supported re-
source manager by Apache Spark. The progress moves with unbelievable speed
and new requirements arise every day. Although it’s been only few years since
Hadoop became mainstream, it already starts lagging behind in satisfying the
current needs in Bag Data. Anadiotis (2018) [20] describes the situation as
follows: “Hadoop was built in a world with different fundamental assumptions
than the world we live in today. A world in which network latency was a major
bottleneck, and cloud storage was not a competitive option.”

Today, the situation is different. Network latency is less of an issue, which
contributed to the rise of private clouds. Companies are tempted by scalable,
cost-efficient services they are offered and are moving their operations either
to public or hybrid clouds. Flexibility becomes an important aspect, where
the ability to quickly deploy, scale or move the infrastructure is vital.

Another shift we can witness in the last few years concerns the whole
application development process and how applications are taken care of in
production. Luksa (2018) in [4] comments the situations as follows: “Orga-
nizations are realizing it’s better to have the same team that develops the
application also take part in deploying it and taking care of it over its whole
lifetime. This means the developer, QA, and operations teams now need to
collaborate throughout the whole process. This practice is called DevOps.”
Similar to how DevOps are changing the way software is developed, DataOps
are changing the way data products are created with both methodologies fo-
cused on speed, quality and flexibility.

1.2.4.1 Container technology

One of the possible solutions to arising needs can be container technology.
“Containers offer a logical packaging mechanism in which applications can be

11

1. From Batch to Stream Processing

abstracted from the environment in which they actually run. This decoupling
allows container-based applications to be deployed easily and consistently, re-
gardless of whether the target environment is a private data center, the public
cloud, or even a developer’s personal laptop.” [21] The concept of containers
allows developers to focus on the application logic without having to worry
about the pitfalls of different environments, where it’s run. It allows flexibility
and can increase development speed.

In order to demonstrate container technology, it is usually compared to
Virtual Machines (VMs). In case of VMs a guest operating system (OS) runs
on top of a host operating system with virtualized access to the underlying
hardware.[4] Unlike virtual machines, where processes run in separate operat-
ing systems, a containerized process runs inside the host’s operating system.
This makes containers far more lightweight: they share OS kernel, start much
faster and use much less memory than VMs.[21] At the same time they offer
the benefit of logical isolation – to the process itself, it looks like it’s the only
one running on the machine and the OS. The difference between isolation
using containers and VMs is demonstrated in Figure 1.5.

Figure 1.5: Isolating groups of applications using VMs vs. isolating applica-
tions with container [4]

1.2.4.2 Kubernetes core concepts

Thanks to their benefits, container technologies quickly became popular. How-
ever, with growing number of deployable application components in the sys-

12

1.2. Distributed computing and large-scale data processing

tem, it becomes harder to manage them all. The need of cost-efficient, man-
ageable deployment of components on a large scale gave birth to Kubernetes.
Luksa (2018) describes Kubernetes as “A software system that allows you to
easily deploy and manage containerized applications on top of it. It relies on
the features of Linux containers to run heterogeneous applications without
having to know any internal details of these applications and without having
to manually deploy these applications on each host.” It allows automating de-
ployment, scaling, and management of containerized applications. Kubernetes
does so by abstracting away the underlying infrastructure. Deploying appli-
cations through Kubernetes is always the same, whether it runs on a large
cluster or a single virtual machine.

Figure 1.6 shows a simple view of Kubernetes system. The system consists
of a master node and any number of worker nodes. The developer submits
a list of applications to the Kubernetes master, which deploys them to the
cluster of worker nodes. Kubernetes allows the developer to specify which
applications have to be run together in order to be deployed on the same node
by Kubernetes. Otherwise, it shouldn’t matter on what node a component
lands.

Figure 1.6: Kubernetes deployment illustration [4]

A closer look to the architecture of a Kubernetes cluster is shown in Figure
1.7. It shows two types of nodes in Kubernetes cluster - the master node, which
holds the Kubernetes Control Plane that controls and manages the whole
Kubernetes system and worker nodes thar run the actual deployed applications
[4]. The Control Plane consists of multiple components which can be run on a
single master node or be split across multiple nodes and replicated to achieve
high availability. The components of the Control Plane include [4]:

• Kubernetes API Server – provides means to query and manipulate
the state of objects in Kubernetes.

13

1. From Batch to Stream Processing

• Scheduler - is responsible for assigning worker nodes to each deployable
component of the application.

• Controller Manager – performs cluster-level functions. These include
component replication, keeping track of worker nodes or handling fail-
ures.

• etcd – a distributed data store which persists cluster configuration

Figure 1.7: Kubernetes cluster components [4]

1.3 Towards Real-Time and Streaming Big Data

“The term ”streaming” is used to describe continuous, never-ending data
streams with no beginning or end, that provide a constant feed of data that can
be utilized/acted upon without needing to be downloaded first.” [22] Kelpman
(2017) in [5] defines streams as: “data that is incrementally made available
over time.” We live surrounded by streams coming in various forms, volumes
and from different sources. Data streams can be generated by network de-
vices, server log files or social media users. The challenges connected to data
streams include the ability to process, store, and analyze streams as it’s gen-
erated real-time, which makes systems focused on stream processing highly
demanding. Kleppmann (2017) in this context distinguishes three types of
systems:

• Services (online systems)
This type of service work in a reactive manner. A service waits for a
request or instruction from a client to arrive. When one is received,
the service tries to handle it as quickly as possible and sends response
back to the requester. Response times and availability of the system are
considered the primary measure of performance.

14

1.3. Towards Real-Time and Streaming Big Data

• Batch processing systems (offline systems)
Batch processing systems take a large amount of input data, run a job
to process it, and produce output data. Jobs typically take long time to
complete (sometimes even days). Batch jobs are often scheduled to run
periodically. The performance of these jobs is usually throughput (the
time it takes to process the input of a certain size).

• Stream processing systems (near-real-time systems)
Stream processing lies somewhere between online and batch processing.
Stream processor consumes inputs and produces outputs (rather than
responding to requests), just like batch processor. However, unlike batch
job, which operates on a fixed set of input data, a stream job operates
on events shortly after they happen. Stream processing systems are
measured both by their latency and throughput.

1.3.1 Event streams

In stream processing context, a record is more commonly known as an event,
but it is essentially the same thing. Kleppmann (2017) defines it as “a small,
self-contained, immutable object containing the details of something that hap-
pened at some point in time.” Events usually contain timestamp indicating
when it occurred. An event might describe a sensor measurement, pageview
or a creation of a new post on social media.

In batch processing, a file is written once and then potentially read multiple
times. Analogously, in stream processing, an event is generated once by a
producer (also known as publisher or sender), and then potentially processed
by multiple consumers (subscribers or recipients)[5] A set of related records is
often referred as a topic.

1.3.1.1 Messaging systems

In principle, a file or a database can be used to connect producers and con-
sumers. However, it is not very efficient, since they lack notification mecha-
nism and polling for updates can quickly become expensive.

One of the ways of notifying consumers about new events is using messag-
ing system: a producer sends a message containing the event, which is then
published to consumers. Kleppmann (2017) compares two types of messaging
systems:

• Direct messages
These systems use direct network communication between producers
and consumers without intermediary nodes. The disadvantage of the
approach is that they are prone to message loses. For example, if a
consumer is offline, it may miss incoming messages.

15

1. From Batch to Stream Processing

• Message brokers

Kleppmann (2017) describes broker as “database that is optimized for
handling message streams.” Brokers run server, with producers and con-
sumers connecting to it. Producers write messages to the broker, and
consumers read them from the broker. The approach tolerates clients
that connect and disconnect, as responsibility of durability is moved to
the broker.

One disadvantage of messaging systems is when a new consumer is added,
it typically only starts receiving messages sent after the time it was regis-
tered. Any messages sent before the connection are already gone and can’t be
accessed.

1.3.1.2 Partitioned logs

Log-based message brokers are hybrids, combining durable storage with a
low-latency notification system of messaging. In this approach producers send
messages by appending it to the end of the log and consumers receive messages
by reading the log sequentially. When a consumer reaches the end of the log,
it waits for a notification that a new message has been appended [5].

Log-based message brokers allow scalability to higher throughput than a
single disk can offer by utilizing partitioned logs. This approach is illustrated
in Figure 1.8, where each partition can be read and written independently
from other partitions, as they are stored on different machines. Topics are
defined as group of partitions that carry messages of the same type.

Within each partition, the broker assigns monotonically increasing number
called offset to every message[5]. As partitions are append-only, this approach
allows to maintain them ordered. Consuming a partition sequentially allows to
tell which messages have been already processed and which have not: all mes-
sages with an offset less than a consumer’s current offset have been processed
an all messages with a greater offset haven’t been seen yet.

16

1.3. Towards Real-Time and Streaming Big Data

Figure 1.8: Producers send messages by appending them to a topic-partition
file, and consumers read these files sequentially. [5]

1.3.2 Stream processing

Stream processing can be defined as “the act of continuously incorporating
new data to compute a result.” [23]. In stream processing the input data is
unbounded. Unbounded data is “a type of dataset that is infinite in size (at
least theoretically)” as stated by Maas (2019). The input data simply has no
predetermined beginning or end. In contrast, by bounded data we understand
a dataset of a known size.

1.3.2.1 Uses of stream processing

Stream processing is a key requirement in many big data applications. Some
Stream processing use cases include real-time reporting, fraud detection or
trading systems. Kleppmann (2017) mentions some of the important applica-
tions of stream processing:

• Complex event processing (CEP): an approach for analyzing event
streams, especially geared toward searching for certain event patterns.
Similarly to the way regular expressions allow to search for patterns in
a string, CEP allows to specify rules to search for patterns in streams.

• Stream analytics: Stream analytics, unlike CEP, tends to be less in-
terested in finding specific events, but is rather oriented towards ag-
gregations and statistical metrics. This might include measuring event
occurrences or calculating rolling average of a value per time interval.

17

1. From Batch to Stream Processing

• Search on streams: While CEP allows searching for patterns in mul-
tiple events, there is also a need to search for individual events based on
complex criteria, such as full-text queries.

1.3.2.2 Execution modes

The two different techniques to process the streams are used today. Each of
them has its own advantages and handicaps.

The first execution mode is known as continuous processing. In continuous-
based systems, each node is continuously listening to messages from other
nodes and outputting new updates to its child nodes. Chambers (2018) in [18]
explains the idea on the implementation of map-reduce computation: “In a
continuous processing system, each of the nodes implementing map would read
records one by one from an input source, compute its function on them, and
send them to the appropriate reducer. The reducer would then update its state
whenever it gets a new record.” Chambers (2018) also implies that continuous
processing offers lowest possible latencies when total inputs are low, as each
node responds immediately to a new message. However, continuous systems
generally have lower maximum throughput, because they incur a significant
amount of overhead per-record.

An alternative to continuous processing is provided by micro-batch pro-
cessing. Micro-batch systems wait to accumulate small batches of input data
(say, 500 ms’ worth), then process each batch in parallel using distributed col-
lection of tasks, similar to the execution of batch job. Chambers (2018) states
in [18]: “Micro-batch systems can often achieve high throughput per node be-
cause they leverage the same optimizations as batch systems (e.g., vectorized
processing), and do not incur any extra per-record overhead.” The downside
of this approach is, however, higher latency due to waiting to accumulate a
micro-batch.

1.3.2.3 The effect of time

Stream processors often need to deal with time, especially when used for
analytics purposes, which frequently use time windows such as counts and
averages over a time period. Chambers (2018) in [18] states that “in stream-
processing systems there are effectively two relevant times for each event: the
time at which it actually occurred (event time), and the time that it was
processed or reached the stream-processing system (processing time).” These
terms can be described as follows:

Event time: Time embedded in the data itself. In most cases it is
not required to be precise time when the event actually occurred. The
main importance of the event time is that it allows more robust way to
compare events against each other.

18

1.3. Towards Real-Time and Streaming Big Data

Processing time: Time at which the stream-processing system actually
receives data.

Many stream processing frameworks use the local clock on the process-
ing machine (the processing time) to determine windowing. [5] This practice
has the advantage of being simple, and it is reasonable if the delay between
event creation and event processing is short enough. However, this approach
may be problematic if some significant processing lag occurs. This fact is
demonstrated in Figure 1.9 where measurement results are distorted due to
processing lag caused by a restart.

Figure 1.9: Inaccuracies in measurement introduced by windowing by process-
ing time. [5]

Time window aggregations, such as the one demonstrated in 1.9 are widely
used in stream processing. Kleppmann (2008) mentions several types of win-
dows that are commonly used:

• Tumbling window: A type of window with a fixed length. Every event
belongs exactly to one window.

• Hopping window: A hopping window has also a fixed length, however
it allows windows to overlap in order to provide some smoothing. For
example, a 5-minute window with a hop size of 1 minute would contain
the events between 10:03:00 and 10:07:59, then the next window would
cover events between 10:04:00 and 10:08:59, and so on.

19

1. From Batch to Stream Processing

• Sliding window: A sliding window contains all the events that occur
within some specified interval of each other. For example, a 5-minute
sliding would cover events 10:03:39 and 10:08:12 because they are 5
minutes apart. Note the difference opposing to tumbling and hopping
windows, which wouldn’t have put these two events in the same window
because they use fixed boundaries.

• Session window: This type of a window, unlike others, has no fixed
duration. It is defined by grouping together all events for the same user
that occur closely together in time. The window ends when no user
events occur for some period of time (for example when user is inactive
for 30 minutes).

20

Chapter 2
Real-Time Data Processing

Architecture

In the earlier days, big data systems were primarily constructed to handle
3 V’s of big data: Volume, Velocity and Variety. Kleppmann (2017) in [5]
lists many factors that may influence the design of a data system, including
the skills and experience of people involved, time scale for delivery, legacy
system dependencies, organization’s tolerance for different kinds of risks or
even regulatory constraints. But regardless the circumstances, there are three
important aspects that the big data system needs focus on, according to the
author:

• Reliability

The system should continue to work correctly (performing the correct
function at the desired level of performance) even in the face of adversity
(hardware, software, and human errors).

• Scalability

As the system grows (whether it is, data volume, traffic volume, or its
complexity), there should be ways of dealing with that growth.

• Maintainability

Many different people may work on the system over time (engineering,
operations), maintain it, or adapt to new use cases. They should all be
able to work on it productively.

2.1 Big data architecture components

Taming big data has always presented a challenge due to its nature. Efficiently
collecting, storing and processing large amounts of heterogenic data required

21

2. Real-Time Data Processing Architecture

a centralized approach, which would avoid all the pitfalls the data presents in-
side all its stages in the system. “Big data architecture refers to the logical and
physical structure that dictates how high volumes of data are ingested, pro-
cessed, stored, managed, and accessed.”[24]. Kalipe et al. (2019) claim that:
“A Big data architecture describes the blueprint of a system handling massive
volume of data during its storage, processing, analysis and visualization.”

Besides the requirements proposed by Kleppmann (2017), Ellis (2014) sug-
gests that stream-processing systems have to share three key features: high
availability, low latency and horizontal scalability. If batch-oriented systems
become unavailable for minutes or even hours, it is unlikely to affect oper-
ations. Real-time systems, on the other hand, are sensitive to these sort of
outages and may even be sensitive to scheduled maintenance windows. Be-
sides that, the system needs to process data in a scalable manner and minimize
time between the event enters the system and the moment it is available for
delivery. These needs add another level of complexity when designing such a
system. It is important keep all of these requirements in mind when selecting
individual system components.

Figure 2.1: The Components of big data architecture [6]

When talking about Big Data architectures, most of them include some or
all of the components listed by [6]. To illustrate their role in a data pipeline,
see Figure 2.1. These components include:

• Data sources: Data sources include either static data, such are files pro-
duced by applications (e.g. logs), or real-time data sources, for example
sensor data, financial trading data, or social media streams.

• Data storage: Their purpose is to store data for batch processing. The
storages are usually built around the idea of “write-once, read-many-
times”. The amount of data in them typically grows with time, which
requires data storage to be scalable and reliable.

22

2.2. Lambda architecture

• Batch processing: Batch processing allows to process data at a large
scale, applying various transformations and aggregations and provide
the output data for further analyses.

• Real-time message ingestion: Systems which focus on stream-processing
must typically provide a way to capture and store these messages before
they are processed. Message ingestion mechanisms provide a way to
promote load-balancing and fault-tolerance.

• Stream processing: After real-time messages are captured, they are read
and processed by filtering, aggregating and other methods preparing the
data for analysis. The processed data is written to an output sink.

• Analytical data store: Analytical data stores provide the option to query
the data computed by either batch or stream processing and retrieve it
in a structured format.

• Analysis and reporting: Some system ease providing data insights through
analysis and reporting. The architecture might include data modeling
layer, presenting users interactive data explorations, drill-downs, etc.

• Orchestration: As most of the data processing and operations consist
of repeating set of steps, they are usually encapsulated into workflows.
This might include workflow management and deployment platforms
that help scheduling processing tasks, manage workflow dependencies or
event infrastructure deployments and upgrades.

2.2 Lambda architecture

One of the major breakthroughs in the real-time data-processing architectures
was caused by Nathan Marz and his widely discussed article named ”How
to beat the CAP theorem” in 2011 [8]. In the article Marz discusses the
complexity brought to data systems with the rise of distributed databases
in combination with incremental algorithms (algorithms relying on updates
in these distributed databases). The author proposes solution which relies
on immutable data and a three-layered architecture that can handle massive
quantities of data by taking advantage by both batch and stream-processing
methods. The details of the proposed architecture appeared in the author’s
book, published in 2015 [1]. A representation of the architecture can be seen
in Figure 2.2

23

2. Real-Time Data Processing Architecture

Figure 2.2: Lambda architecture [7]

2.2.0.1 Problems with fully incremental architectures

In [1] Marz (2015) points out the problems with architectures that use read-
/write databases and maintain the state of those databases incrementally as
new data arrives. Author provides an example of an incremental approach
by counting pageviews. The approach is based on maintaining a counter and
increment it every time a new pageview occurs. According to Marz the major
disadvantages of the approach are:

• Operational complexity

In a read/write database, as a disk index is incrementally added to and
modified, parts of the index become unused. These unused parts take
up space, which at some point in time needs to be reclaimed.

Reclaiming space as soon as it becomes unused brings a lot of overhead,
so it is reclaimed in bulks. A process of reclaiming the space is called
compaction. Compactions are expensive operations, which demand a lot
of machine resources, and may jeopardize machines’ smooth functioning.
Compactions need to be managed correctly by scheduling it on each
system node in a way that not too many nodes are affected at once.

• Complexity of achieving eventual consistency Marz (2015) points
out that: “A theorem called the CAP theorem has shown that it’s impos-
sible to achieve both high availability and consistency in the same system

24

2.2. Lambda architecture

in the presence of network partitions.” To achieve high availability, dis-
tributed databases keep multiple replicas of the stored information. By
doing so, the information is still available, when one of the database
nodes goes down. The states of the replicas, however, may diverge dur-
ing network partitions due to different sets of updates they receive. Only
when the network partition is gone, the replicas can be merged. This
puts a requirement on a data structure, if it is to be merged correctly. In
general, handling eventual consistency in incremental, highly available
systems is unintuitive and error-prone.

• Lack of human-fault tolerance An incremental system is constantly
modifying the state it keeps in the database, which means a mistake can
also modify the state.

2.2.0.2 Batch layer

The problem with the incremental approach is tackled in the batch layer of
their architecture. Marz (2015) suggest using data model which relies on
immutable data. The author introduces the fact-based model for representing
data. By ensuring data immutability (not allowing updates or deletes) this
model brings simplicity and human-fault tolerance. If we get back to the
example with page-views, instead of updating the current state of the counter,
a new record is created, representing pageview event as a fact with included
timestamp. A collection of these fact collected over time is called master
dataset.

The responsibility of the batch layer is to do two things: store an im-
mutable, constantly growing master dataset and regularly compute arbitrary
functions on that dataset. To avoid pitfalls of incremental algorithms, the
views produced by the batch layer are not updated, but rather recreated from
scratch. This type of processing is best done using batch-processing systems.
It allows to process large volumes of data and apply complex functions on the
data. This repeating process is showed in Figure 2.3.

25

2. Real-Time Data Processing Architecture

Figure 2.3: Lambda architecture [7]

2.2.0.3 Serving layer

Serving layer is the simplest one in the proposed architecture. As batch layer
emits views as the result of its functions, the next step is to load the views
somewhere, where they can be queried. The serving layer is represented by
a specialized distributed database that loads batch views and allows to do
random reads on them. Marz (2015)

2.2.0.4 Speed layer

So far, the system is able to efficiently store, process and serve the data. But
the views computed by the layer provide only the data that was present in the
master dataset before the start of the last batch run. To tackle this problem,
a speed layer is proposed in the architecture.

To compensate for the delay caused by a long-running nature of the batch
layer, another system is run in parallel with it and computes functions on
the data in real-time. The goal of the layer, as its name suggest, according
to Marz (2015) is: “to ensure new data is represented in query functions as
quiclky as possible”.

One big difference between batch and speed layers is that speed layer does
incremental computation instead of recomputations in order to achieve the
smallest latencies as possible.

Speed layer produces speed views which contain all the data needed to
compensate for the batch views. Resolving query function requires merging
batch and speed views, as illustrated in Figure 2.4.

26

2.3. Kappa architecture

Figure 2.4: Computing a query in Lambda architecture [8]

2.3 Kappa architecture

Lambda architecture has quickly become popular, but certain criticism also
emerged after some time. Jay Kreps (2014) in [9] acknowledges the benefits
of Lambda architecture, but also implied it brings some drawbacks.

The first thing Kreps (2014) pointed out to, is the necessity of “maintaining
two code bases that need to produce the same result in two complex distributed
systems”.

Another thing Kreps (2014) finds as a drawback is operational burden of
running and debugging two systems.

As an alternative to Lambda architecture Kreps (2014) proposed using a
simplified version of the architecture which does not include batch layer at all.
The architecture overview that started to be called “Kappa” is demonstrated
in Figure: 2.5. The approach is simple:

1. Using a system that helps to retain full log of the data that has to be
potentially reprocessed and which allows for multiple subscribers. As an
example of such a system Kraps names Apache Kafka2

2. When reprocessing needs to be done, a second instance of stream pro-
cessing is started. This jobs starts processing data from the beginning
of the retained data and directs the output to a new output table.

3. When the second job has caught up, the application is switched to read
from the new table.

4. The old version of the job is stopped and its output table is deleted.
2Apache Kafka is a log-based message broker that utilizes partitioned logs.[5]

27

2. Real-Time Data Processing Architecture

Figure 2.5: Kappa architecture [9]

28

Chapter 3
System Analysis and Design

3.1 System specification and requirements

Building reliable, scalable and maintainable data-intensive systems can be
challenging even for experienced teams of engineers. In this work a prototype
of such a system is proposed as a proof of concept, although production-ready
quality is not expected. In this section some prototype requirements will be
set. In later chapters we’ll evaluate how well these requirements were met.

The system should focus on collecting, processing and analyzing data from
microblogs and unlocking new insights from it. Analyzing data from social
media brings many challenges and unpredicitable future directions. One of the
main features of social data is its dynamics, making latest data very valuable
or minutes old data worthless. This is why near real-time processing of this
kind of data is required. With stream processing it becomes desirable not
only to process the newest data, but also to be able to act upon it, apply
predictive modeling, etc. This usually requires extracting information from
real-time data and combining it with historical data for a given context on
the fly.

With this information, it is clear that the system should provide fast access
to both real-time and historical data. It should be flexible, allowing to incor-
porate new data sources, changing schemas and data formats. The system
should be able to project potential changes in business requirement and pro-
cessing methods affecting output data on both real-time and historical results.
If, for instance, a new, improved version of machine learning model used in
the data processing pipeline is utilized, it should affect not only the outputs
based on data processed after the transition to a new model, but all the histor-
ical results as well. Increased loads should be handled without compromising
system performance. Hardware failure effects on the system operation should
be minimized.

29

3. System Analysis and Design

3.1.1 Functional requirements

FR1 - Efficient data storage

The system offers flexibility to decide how to store and compress large
volumes of data to suit specific needs.

FR2 - Fast access to historical data for real-time context

The system is able to efficiently enrich real-time data with the relevant
data from the past based on predefined logic.

FR3 - Datasets are queryable at any time in their history

The selected data model allows to query the data for any time range
covered in the dataset and reproduce query results as if it was run at any
given timestamp in history.

FR4 - Ad hoc queries support

The system provides easy access to the data and the ability to arbi-
trarily mine it on a large scale in a cost-efficient way.

FR5 - Addable data sources and formats

The system allows to incorporate additional sources of input data
without impacting existing data and processing pipelines.

FR6 - Building new views

The data model allows computing and maintaining multiple views
based on existing and newly formulated requests. Tracking of metrics
covered by dataset can be done on-the-fly.

FR7 - Adaptive views

It’s possible to introduce view updates, projecting new business logic,
newly trained machine learning model results or other changes in the view
computation. The new computational logic can be applied both on newly
arrived and historical data.

FR8 - Delivery mechanism

The system provides means to continuously deliver its output data to
the end user.

30

3.2. Sample application

3.1.2 Non-functional requirements

NFR1 - Scalability

The system is able to maintain performance when facing increased
load by adding system resources.

NFR2 - Low-latency processing

The input data is time-efficiently processed and is ready for delivery
with a minimal delay.

NFR3 – Fault tolerance

The system provides means to face both hardware failures, and errors
caused by human mistakes.

NFR4 - Generalization

Wide range of applications can be supported by the system. The
system remains efficient even in case of changing requirements for data
sources and characteristics or its output metrics.

NFR5 - Extensibility

Future system changes can be made. The system is adaptable to
unanticipated use cases or evolving requirements.

NFR6 - Cloud platform compatible

The system can be deployed and operated on cloud-based platofrms.

3.2 Sample application

In order to showcase proposed system’s features and benefits, a sample appli-
cation utilizing the system will be built. The application represents a simple
example of adoption of stream processing on a real data coming from one of
the largest microblogs – Twitter. Its main purpose is to demonstrate func-
tionality of the system and to help reader’s understanding of problematics by
showcasing it on real-life examples.

The application will leverage a system design described in the next section
to collect, process and deliver potentially useful information contained in short
posts (also known as tweets) created by users of Twitter social networking
service. Twitter has become a major platform for spreading news, sharing
thoughts and socializing with other people globally. With 353 million MAU
(monthly active users) in Q3 2020, which produce over 500 million tweets a
day [25], Twitter presents a data source with high potential of being utilized

31

3. System Analysis and Design

for analytical purposes. Interpreting such a high-volume, high-velocity data
stream may be beneficial across multiple domains. One of the topics which has
caught researchers’ interest is trend detection and monitoring based on tweet
data. Natural language processing techniques allow to extract entities such
as people or organizations from tweets and calculate the sentiment expressed
by these tweets, unveiling details about both popularity and reputation of
entities. This information might become helpful in case of predicting stock
prices or even presidential election results. [26]

One of the Twitter’s features called “hashtag” allows users to tag parts
of tweet text, which enables cross-referencing of content. By using a hashtag
symbol (#) before a keyword or phrase people categorize their tweets, allowing
other users to find it more easily. A hashtagged word also becomes a link to
a feed of tweets labeled by the hashtag, allowing users to see other tweets
containing the same hashtag. Hashtagged words that become very popular
can be found in a Twitter section called “Trends”, where emerging topics of
discussion appear to be found by Twitter users. An example of trending topics
can be seen in Figure 3.1.

Figure 3.1: Example of Twitter Trends [10]

Hashtags will be the main subject of the sample application. The first
challenge is low latency hashtag retrieval from tweets in a scalable, fault-
tolerant manner. A similar functionality to Twitter’s Trends will then be
implemented - a list of trending hashtags will be produced and continuously
updated from incoming stream of collected tweets, allowing application users
to see hashtag rankings based on a number of occurrences in tweets during a
given amount of time (e.g., last 10 minutes) with a minimal delay. On top

32

3.3. System design

of that, the application will tackle the need of fast access to historical data
for a given real-time context (trending hashtags) and will be able to retrieve
time-series data representing tweet occurrence evolution for any hashtag on
the fly. This data can be beneficial not only for the application user, but also
for burst detection algorithms, which can distinguish topics that have been
popular for a while or on a daily basis from the ones that become popular
unexpectedly (natural catastrophes, sports events, etc.). Both trends and
hashtag time-series charts will be accessible through a web-based dashboard
to demonstrate “live data” delivery utilizing server push and fast time-series
data retrieval.

3.3 System design

After analyzing system requirements, it is clear that many problems connected
to their successful fulfillment are not new to the systems dealing with large
volumes of data and stream processing. Some of these problems are tackled by
the architectures described in the previous chapter. On the other hand, some
of the architectures may not be suitable for our particular needs or may be
unnecessarily complex. It is, therefore, essential to think about architecture
strengths and weaknesses considering the particular use case.

First of all, the need for the system to be fault-tolerant, scalable and pro-
vide processed data with a low latency is a general requirement for a streaming
system and is promised by all of the aforementioned architectures. Secondly,
the system should provide not only real-time, but also historical data, which
eliminates architectures that focus solely on stream processing without data
retention. On top of that, it should be adaptive and support frequent require-
ment changes, which leads us to Nathan Merz’s Lambda architecture. It will
be the main inspiration for the system design, although some changes will
be proposed. One of the main challenges will be to transfer the architecture,
which was tailored for Hadoop ecosystem, to a public cloud platform and try
to utilize its benefits, while eliminating Hadoop drawbacks.

In the world of big data, Apache Hadoop has been the reigning framework
for deployment of scalable and distributed applications.[11] The rise of cloud
computing, however, diminished Hadoop popularity, as can be seen from Fig-
ure 3.2, which compares search interest between Hadoop and Kubernetes on
Google. It should be noted, that this comparison is not entirely fair, as Ku-
bernetes doesn’t present Hadoop direct substitute – in fact, Hadoop can be
deployed on Kubernetes. Hadoop basically provides three main functionali-
ties: a resource manager (YARN), programming paradigm (MapReduce) and
data storage layer (HDFS). All three of these components are being replaced
by more modern technologies, with one of them being Kubernetes for resource
management.

33

3. System Analysis and Design

MapReduce is being replaced by Spark/Flink and other processing tools,
while cloud object and file storage services slowly replace HDFS.[11].

Figure 3.2: Comparison of Apache Hadoop and Kubernetes search interest
[11]

In the proposed design we want to take advantage of the mentioned emerg-
ing technologies and create a system prototype that utilizes the benefits of
public cloud computing. Besides no acquisition costs (no need to purchase
hardware) and lower operating costs (you pay only for the resources and ser-
vices you use), public clouds allow near-unlimited resource scalability and ease
of a cloud maintenance. On top of that, running Kubernetes on such a cloud
allows applications to scale resources up and down with a simple command,
auto-scale based on usage and make the most economical use of computing,
networking and storage resources.[27] A key benefit for operation teams is
infrastructure abstraction – it can be configured once and run everywhere,
easily shut down and redeployed when needed again. Thanks to public clouds
and Kubernetes, big data systems become affordable for small companies or
even individuals for personal usage.

In the rest of this chapter individual system components will be discussed
in detail. We will take a closer look at the architecture layers, identify their
connections to the system requirements and propose a toolset for building the
system.

3.3.1 Message queueing

To understand the need of persistent queuing in the system, we will first
consider an architecture without it. In such a system, messages would be
handed directly to workers to process each message independently. But what
would happen if a worker dies before completing its task? There is no inherent
mechanism do detect or correct the error. The architecture is also prone
to failures during traffic bursts that exceed the resources of the processing
cluster. Writing messages to a persistent queue addresses these issues, as
queues allow the system to retry message processing in case a worker fails and
provide a place for messages to buffer when downstream workers reach their

34

3.3. System design

processing limits.[1] Application of queueing also ensures that communication
between message producers and message consumers becomes asynchronous.
A producer doesn’t need to wait until the message is processed, but waits
only for a confirmation from a message broker that the message has been
buffered. The processing of the message will happen at some undetermined
future point in time. With the velocity at which social media data is produced
and traffic bursts that can be expected with this kind of data, using persistent
queueing would help to address the requirement for the system to be fault-
tolerant. In order to achieve queue scalability and higher throughput than a
single disk can offer, we want to use a partitioned log for the message storage.
Different log partitions can be hosted on different machines, making each
partition a separate log that can be read and written independently from the
other partitions.[5]. Using logs is also a good way to ensure the workload is
distributed across multiple consumers sharing the work. Load balancing is
achieved by assigning entire log partitions to nodes in consumer group by the
broker, instead of assigning individual messages.

Apache Kafka is a log-based message broker, which is scalable, is able to
segregate load in multiservice ecosystems and ensures messages are durable.
It provides load-balancing, allows to achieve strong ordering guarantees and
is secure.[28] In the proposed system Apache Kafka will be used to help the
system handle unexpected loads of social media messages without jeopardiz-
ing workers by exceeding their processing resources. It will act as a temporary
storage for these messages to allow workers to continue processing after un-
expected crashes right where they left before the crash. Kafka will also help
feeding consumers sharing the work in parallel by utilizing the partitioned
logs.

3.3.2 Batch layer

One of the main reasons the system design was inspired by the Lambda archi-
tecture, is its ability to handle large volumes of data by taking advantage of
both batch and stream processing methods. Our system requirements state
that the system should provide access to both real-time and historical data.
This means that the system should provide the functionality of persistent data
storage and the ability to query the data. On top of that, the system should
be able to reproduce query results as if the query was ran in a given point in
time, which leads us to the necessity to select a right model for data storage.
The fulfillment of this requirement will allow us to reprocess the data at any
time, enabling introduction of new metrics or adjusting the definition of the
existing ones as a reaction to changing business logic or processing method-
ology. As a result, the system will not only reflect methodology changes on
the newly arrived data, but will also provide the updated values for historical
data from the master dataset.

In the proposed system, the decision on how to represent the data in the

35

3. System Analysis and Design

master dataset has to be made. Marz 2015 in [1] proposes using fact-based
model for this purpose. In this model the raw data is stored as atomic facts.
It keeps the facts immutable and eternally true, as well as identifiable by using
timestamps. Marz also mentions four major benefits of the model:

• The dataset is queryable at any time in its history
The benefit is a direct consequence of facts being timestamped and im-
mutable. Instead of storing only the current state of the world, as one
would using a mutable, relational schema, it is possible to query your
data for any time covered by your dataset. ”Updates” and ”deletes” are
performed by adding new facts with more recent timestamps, but no
data is actually removed, making reconstruction of the data possible. If,
for example, we are interested in the number of people a Twitter user
is following (is subscribed to his messages), we don’t just keep a single
record with the information and update it when user starts/stops fol-
lowing people. Instead, a new record is created every time one of these
events occurs, adding timestamp information.

• The data is human-fault tolerant
Human-fault tolerance is achieved by simply deleting any erroneous
facts. The record is automatically reset by using earlier timestamp. If,
for example, user’s location is updated by accident, it can be “restored”
simply by deleting the last record containing user’s location.

• The dataset easily handles partial information
Storing one fact per record makes it easy to handle partial information
about an entity without introducing NULL values into the dataset. Sup-
pose that user provides his location, but doesn’t provide his age. The
dataset will only contain facts for the known information, making any
“absent” fact logically equivalent to NULL.

• The data storage and query processing layers are separate
Another key advantage of the fact-based model in Lambda architecture
is that the data is kept in both normalized and denormalized (in serving
layer) forms, leveraging the benefits of both.

3.3.2.1 Computing on the batch layer

Because the master dataset is continually growing, a strategy for updating
batch view has to be reviewed. Marz 2015 in [1] compares two algorithms,
that can serve the purpose when new data becomes available. The first one is
recomputation algorithm, which throws away old batch views and recomputes
functions over entire master dataset. A recomputation algorithm is shown in
Figure 3.3 on a trivial example of counting the total number of rows in the

36

3.3. System design

dataset. Alternatively, an incremental algorithm will compute the function
over the new data (calculate the number of rows) and merge it with the old
view (add to the number of rows from previous calculation).

Figure 3.3: A recomputing algorithm to update the number of record in the
master data-set [1]

Figure 3.4: An incremental algorithm to update the number of record in the
master data-set [1]

On the first glance, it seems that it doesn’t make much sense to use a
recomputation algorithm, when a more efficient way to achieve the same re-
sult exists. However, the efficiency is not the only factor to consider. The
key trade-offs between the two approaches are performance, human-fault tol-
erance, and the generality of the algorithm. [1]

• Performance

There are two aspects to the performance of a batch-layer algorithm: the
amount of resources required to update a batch view with new data, and
the size of the batch views produced. Incremental algorithm will almost

37

3. System Analysis and Design

always use significantly less resources to update a view, as it needs to use
new data and the current state of the batch view to perform an update.
For a task such as computing the number of rows (as demonstrated in
Figure 3.3), the view size will be significantly smaller than the master
dataset because of the aggregation. But this is not always the case, as
the batch view needs to be formulated in a such a way that it can be
incrementally updated. Imagine calculating the number of unique rows
instead of a simple row count. To perform an incremental update, not
only the current number of unique rows would need to be stored, but
also a set of all the unique rows or their indexes.

• Human-fault tolerance
Human mistakes are inevitable in software engineering. Imagine that a
bug is introduced with a new deployment, making row count increment
by two instead of one for each new row. Correcting such a mistake when
using incremental algorithm can be difficult. Overcounted record need
to be identified from logs and then correct each of the affected records.
Hoping you have the right logs to fix these mistakes is, however, not a
good engineering practice. The exact same issue can be corrected easily
when using recomputation algorithm by just removing the bug. After
the next batch update the batch view will contain correct values, as it
is recomputed from scratch.

• Generality of the algorithm
Although incremental algorithms can be faster to run, in some cases
they have to be tailored for a specific purpose, as shown in the example
with counting unique rows. The problems with the size of the batch
view can be tackled by introducing probabilistic counting algorithms,
however, such improvements can dramatically increase the complexity
of the algorithm and come at cost of the exact result.

As human-fault tolerance is a non-negotiable requirement for a robust data
system, the recomputation version of the algorithms is a must have. The sys-
tem will be designed with this thought in mind. Especially in the environment
where continuous business requirements and processing methodology changes
occur, implementing recomputation algorithms brings multiple benefits.

3.3.2.2 Storing master dataset

As discussed in data model description, the key property of data is immutabil-
ity. Each piece of data is written once and is read multiple times. The storage
solution must therefore be optimized to handle a large, constantly growing
dataset. The batch layer is also responsible for computing functions on the
dataset to produce batch views. This means the storage system must be good

38

3.3. System design

at reading lots of data at once. In particular, random access to individual
pieces of data is not required, as stated by Marz 2015 in [1]. The author of
the architecture also describes distributed filesystems as the perfect candidate
for master dataset storage, as it satisfies all the requirements. They are scal-
able, allow parallel processing and can enforce immutability using permissions
systems.

The distributed filesystem will be used in our design as well. However,
instead of using classic filesystem like HDFS, we will use one of the filesys-
tems provided as a service by public clouds. Using managed filesystem will
highly reduce the complexity connected to patching, deploying and maintain-
ing filesystem. These services also allow scaling easily and save costs, as prices
are usually derived from service usage. In our case Amazon Elastic File Sys-
tem (EFS).[29] will be used. Amazon EFS provides scalable, fully managed
elastic network filesystem for use in Amazon Web Services (AWS) Cloud. It
can be mounted to different AWS services and accessed from virtual machines
and containers.

3.3.3 Speed layer

Designing speed layer requires fundamentally different approach than in the
case of the batch layer. Low latency becomes the main factor in the speed
layer, that’s why it is based on incremental computation instead of batch
computation. As already discussed in the previous section, incremental com-
putation is significantly more complex than batch computation and brings
many challenges. On the other hand, the speed layer usually includes just a
fraction of data, making it much smaller compared to batch layer. Because
of the complexity, the speed layer can be prone to errors. These errors are,
however, short-lived, as they are corrected after the next batch update.

3.3.3.1 Storing real-time views

The obligations of the speed layer views are demanding—the Lambda Archi-
tecture requires low-latency random reads, while using incremental algorithms
needs low-latency random updates. According to Marz 2015 in [1], the under-
lying storage layer must therefore meet the following requirements:

• Random reads

A realtime view should support fast random reads to answer query
quickly.

• Random writes

In order to support incremental algorithms, it has to be possible to
update a real-time view with low latency.

39

3. System Analysis and Design

• Scalability The real-time views should scale with the read/write rates
and the amount of data they store. This typically means that real-time
views can be distributed across multiple nodes.

• Fault tolerance Real-time views should continue to function even in
cases of a disk or a machine crash. The requirement is accomplished by
replicating data across multiple nodes so there are backups available.

The mentioned properties are common to a class of databases called NoSQL
databases. These storages are largely characterized by high-performance reads
and wites, usually at the expense of the usual capabilities of a transactional
database, the complexity of the queries, or both. [30] The selection of the
technology depends on the particular use case. In fact it is not uncommon
to combine multiple databases for realtime views to benefit from strenghts
of each of them. For example, combining Cassandra store indexes with a
key/value format with ElasticSearch for indexes that support search queries.

3.3.3.2 Expiring realtime views

Incremental algorithms and random-write databases increase the complexity
of the algorithms and can introduce data inaccuracy. Because the simpler
batch layer continuously overrides the speed layer to correct these errors, the
speed layer views need to provide only the data not yet processed by the batch
layer. Once a batch computation run finishes, a portion of the data from speed
layer views can be discarded – but obviously only the data that is now provided
by the batch layer views. Everything else must be kept. A generic approach to
the problem proposed by Marz 2015 in [1] is to maintain two sets of real-time
views and alternate clearing them before each batch layer run, as shown in
Figure 3.5. One of those sets (active views) will exactly represent the data
required to compensate for the views produced by the batch layer. Before
each batch run, inactive views are truncated. After the run is finished, the
application reading the data should switch to reading the data from previously
truncated views, as the now contain only the data accumulated since start of
the previous batch run (data not yet processed by the batch layer).

Figure 3.5: Alternating realtime views [1]

40

3.3. System design

It may appear expensive to maintain two real-time views, since it doubles
the storages costs, but as the speed layer represents only a tiny portion of
our data (usually a few hours), we’ll consider this acceptable. The other
issue might be imperfect synchronization when truncating one of the views.
Either data redundancy or data loss may occur during the synchronization.
Since the data will be repaired after the next batch run, we will accept these
potential small errors. In cases when these errors are unacceptable, a messsage
tagging technique can be applied. Tagging data as soon as it enters the system
allows for traceability of when the data entered the system, and thus what
corresponding information can be removed.[31]

3.3.4 Serving data

We’ve already discussed storage requirements for real-time views. But what
are the requirements for the views created by the batch layer? It’s not sur-
prising that they don’t differ much. It needs to be scalable, fault-tolerant and
provide quick answers to queries (random reads). Unlike in speed layer, ran-
dom writes are not required, as the data can be completely swapped after each
batch run, making the requirements for the storage less demanding. It has
been stated, that different requirement scenarios may suit different NoSQL
databases. But what kind of database should we select for our reference ap-
plication? In our scenario, we need to a fast access to historical data for any of
the trending (or rather any) hashtags. In other words, trend lines describing
hashtag occurrences in time should be provided with low-latency. For these
purposes Apache Cassandra has been selected as it fits these needs really
well, which will be discussed in the next section. In the sample application
Cassandra will serve views created by both batch and speed layers.

3.3.4.1 Cassandra’s data model

First issue that can negatively affect the latency of query in distributed databases
are when the values for a queried key is spread across cluster. One of the
servers might be under heavy load or be performing garbage collection, caus-
ing query response to be slow. Another problem is caused by disk seeks.
Ideally, we want to retrieve our data from a single node and the values to be
physically stored next to each other on disks. These issues can be addressed
by Apache Cassandra, which allows users to decide how the data is partitioned
and stored. Cassandra allows to define the partition key, which is responsible
for data distribution across cluster nodes and clustering key, which describes
in what order the data should be stored on disks.[32] Both primary and clus-
tering keys can be made by multiple columns. In the sample application we
will be querying hashtag time-series data. As illustrated in the Figure 3.6,
the data will be partitioned by hashtag, meaning all the data for a hashtag
would be possible to retrieve from a single node. We will also order the data

41

3. System Analysis and Design

by clustering key, which consists of ‘date’, ‘hour’ and ‘min 5’ (5-minute time
slot) columns in descending order, as we don’t expect to always query all the
data for a hashtag, but just a part of it. At the same time, it is assumed, that
the latest data will be demanded more frequently than the old data.

Figure 3.6: Storing time-series data in Cassandra

Besides that, Cassandra offers linear write scalability [33] and there is not
a single point of failure in Cassandra cluster, as it uses features of peer-to-
peer architecture and uses a gossip protocol to maintain and keep in sync
a list of nodes that are alive or dead. No Cassandra nodes perform certain
organizing operations distinct from any other node.[32] These characteristics

42

3.3. System design

make Cassandra a perfect match for our requirements.

3.3.5 Data processing

Once we have incoming events feeding our multi-consumer queue, the next
step is to process them and update real-time views. At the same time a
master dataset needs to be populated by these new events to reflect the new
data after the next batch update. One of the major criticisms of Lambda
architecture is the necessity to maintain two code bases to produce the same
result in two complex distributed systems.[9] Inevitably, code ends up being
specifically engineered toward the framework it runs on. We will address this
problem by selecting a unified engine that natively supports both batch and
streaming workloads. Structured Streaming is a scalable and fault-tolerant
stream processing engine built on the Spark SQL engine. Structured Stream-
ing allows to express the streaming computation the same way it would have
been expressed in a batch computation on static data. The Spark SQL engine
takes care of running it incrementally and perpetually, and updating the final
result as streaming data continually arrives.[34] Using Structured Streaming
will allow us to reuse parts of the code between batch and stream processing
decrease the complexity of maintaining two code bases.

Structured Streaming uses micro-batched model, which allows higher through-
put compared to one-at-a-time processing model. However, this is achieved at
cost of higher latency, making it slightly slower[1]. In case of payment process-
ing or fraud detection this latency difference can be crucial, however, we will
assume that social media analytics doesn’t require performance of stream pro-
cessing in single-digit milliseconds. Should we prefer the best possible latency
against the throughput, Structured Streaming allows to run stream process-
ing in continuous mode (once-at-a-time processing), although this mode is still
labeled as experimental.[34]

3.3.6 Application deployment, scaling and management

One of the challenges of big data solutions development is deployment of the
complex multi-part software to deploy the software in production systems.
To address the challenge, a scalable, reliable and easy to manage platform is
required. In the recent years, Kubernetes has become a popular option to
deploy application in large-scale infrastructures. Kubernetes allows for com-
paratively fast provision of a clustered environment, scales on-demand during
traffic bursts, improves infrastructure utilization and greatly reduces costs
adherent to infrastructure maintenance. Major cloud providers now offer Ku-
bernetes as a Service, including AWS, Google, Microsoft Azure, Oracle and
others. [35] This made installing and operating Kubernetes clusters much eas-
ier, while keeping vendor lock-in risk low, as containerized application built for
Kubernetes can be easily deployed to any other Kubernetes service, regardless

43

3. System Analysis and Design

of its underlying infrastructure. Kubernetes also offers lots of addon services
like third-party logging or monitoring.

Thanks to scalability and extensibility options, big data applications are
good candidates for utilizing the Kubernetes platform. In the recent years
more and more of developer groups behind the big data tools adopt Kubernetes
support. For example, Apache Spark started supporting Kubernetes as the
resource manager. Currently, the Kubernetes scheduler that has been added
to Spark is experimental[36], however some major companies like Google begin
replacing YARN with Kubernetes.[37]. Running Spark on Kubernetes not only
eases and unifies cluster management, but also gives developers the option to
isolate jobs. For example, as shown in Figure 3.7, running containerized jobs
allows to run multiple Spark applications, which are dependent on different
version of Spark.

Figure 3.7: Spark on Kubernetes [11]

3.3.7 Delivery mechanism

Once the computed views from batch and speed layers are stored in the Cas-
sandra database, we want to access the data through a web-based interface.
In the sample application, a simple dashboard will be created to demonstrate
the idea behind the data delivery in the design. Besides delivering the data
from Cassandra, it would be a nice feature to be able to keep dashboard data
updated without the necessity to constantly request updates by dashboard
user.

To fulfill these requirements, we will develop a simple web application,
which will serve the data to the client (web browser) and will demonstrate
the benefits of using WebSockets. WebSocket protocol enables a full duplex

44

3.3. System design

communication between a server and a client over a long running TCP con-
nection. WebSockets provide an enormous reduction in unnecessary network
traffic and latency compared to the unscalable polling solutions.[38] Figure 3.8
compares polling and WebSockets. When using the polling approach, where
the client periodically sends requests to the server in order to find out if any
updates are available, which becomes highly inefficient. In contrast, in case of
WebSockets, after a specific HTTP-based handshake is exchanged between the
client and the server, the application-layer protocol is upgraded from HTTP
to WebSockets, using the previously established TCP connection. After the
upgrade, the data can be sent or received using the Websocket protocol by
both endpoints, until the Websocket connection is closed. [12]

Figure 3.8: Getting server updates through polling and WebSocket [12]

In the sample application we will create a simple service, which will con-
sume updates regarding latest trending hashtags from a Kafka topic and will
emit these updates to the clients through WebSockets. On top of that it will
serve trendline data from Cassandra for hashtags requested by the client.

3.3.8 Design Summary

In this chapter a system design was proposed to tackle the challenges leading
to the fulfilment of system requirements. The design is inspired by a well-
established Lambda architecture with some changes introduced to address its
complexity drawbacks, utilize modern trends in public cloud computing and
to best suit the domain of social media analytics. The proposed system design
is summarized in Figure 3.9.

45

3. System Analysis and Design

Figure 3.9: System Design

46

Chapter 4
System Implementation

4.1 Data Collection

4.1.1 Twitter API

Twitter3 as many other social networks can be accessed via the web or mo-
bile device. Another option provided by Twitter is programmatic access to
Twitter data through their application programming interface (API). Twit-
ter limits free API usage, but, compared to other microblogs, they are quite
generous. This fact makes Twitter data widely used in scientific researches
and data-driven system prototyping. The popularity of the API resulted in
creation of many API wrappers – language-specific kits or packages that wrap
sets of API calls into easy-to-use functions. One of these wrappers is tweepy
[39] – a wrapper for Python, which was used in this implementation. The
most interesting API endpoint for our use case allows to access sampled tweet
stream. As stated in [40] “The sampled stream endpoint delivers a roughly
1% random sample of publicly available Tweets in real-time. With it, you can
identify and track trends, monitor general sentiment, monitor global events,
and much more.”.

4.1.2 Kafka Producer

Tweet-collector is a Python module created in Python 3.9 to collect tweets
using sampled tweet stream utilizing Tweepy library. Besides retrieving tweet
stream, the module acts like a Kafka producer, writing newly obtained tweets
to a dedicated Apache Kafka topic. Another python library - ‘kafka-python’
[41] was used as a client for Apache Kafka.

3Twitter is an American microblogging and social networking service. More information
on https://twitter.com/

47

4. System Implementation

4.1.3 Data Serialization

When writing data to Kafka, it is tempting to use a schemeless format like
JSON. This approach could quickly backfire, as it may lead to a data corrup-
tion. Data corruption issues are hard to debug, because these problems often
surface long after the corrupt data is distributed across the system. This may,
for example, lead to null pointer exceptions when a mandatory field is missing.
It might be easy to realize what the problem is then, but tracing the problem
to its source often proves difficult.

Serialization frameworks are an useful tool for making an enforceable
schema. Avro4 supports direct mapping to JSON as well as a compact bi-
nary format. It is a very fast serialization framework and support polyglot
bindings to many programming languages.[43] Avro schemas are written in
JSON. An example of schema for a Tweet object can be seen in Listing 4.1.

{
"type":"record",
"name":"Tweet",
"namespace":"cz.cvut.fit.kozlovit.twitterstream",
"fields":[

{
"name":"userid",
"type":"long",
"doc":"Id of the user account on Twitter.com"

},
{

"name":"username",
"type":"string",
"doc":"Name of the user account on Twitter.com"

},
{

"name":"timestamp",
"type":"long",
"logicalType":"timestamp-millis",
"doc":"Unix epoch time in milliseconds"

},
{

"name":"tweetid",
"type":"long",
"doc":"Id of tweet"

},
{

"name":"tweet",
"type":"string",
"doc":"The content of the user’s Twitter message"

}
],
"doc":"A basic schema for storing Twitter messages"

}

Listing 4.1: Schema definition example

4Avro is a row-oriented remote procedure call and data serialization framework developed
within Apache’s Hadoop project.[42]

48

4.2. Data processing

4.2 Data processing

4.2.1 Speed layer

The role of speed layer in the system design is to process data streams in real
time and fill the gap caused by batch layer’s lag in providing views based on
the most recent data. The requirement for accuracy is loose, as the results
produced by the layer will be eventually replaced by the batch layer. Speed
layer was implemented using Structured Streaming processing engine built on
Spark SQL – a Spark module for structured data processing. In this project
Spark version 3.0.0 was used. Between the programming languages Spark has
built-in support for, Scala 2.12 was chosen, since Spark itself was written in
Scala and is widely used by data engineers due to superior performance [44]
and it suits Spark due to its functional paradigm.

In the sample application the role of the speed layer is quite simple. It
consumes records from Apache Kafka topic containing tweets, processes each
tweet by extracting hashtags the tweet contains and updates relevant Cassan-
dra speed view records.

4.2.1.1 Consuming data from Kafka

Tweet records are consumed from a dedicated Kafka5 topic, where Tweet-
collectors write new tweets. This makes reading records from Kafka quite
easy, as shown in the code example in Listing 4.2.

val tweetStream = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers",

settings.kafka("addressConsumer"))
.option("subscribe", "tweet_feed")
.option("minPartitions", settings.kafkaMinPartitions("speedLayer"))
.option("maxOffsetsPerTrigger",

settings.maxOffsetsPerTrigger("speedLayer"))
.load()

Listing 4.2: Structured Streaming from Kafka source

Besides specifying stream source, some particularly useful options can be
set when reading records from Kafka topic.

The first of the options shown in the code example is ‘minPartitions’, which
allows to specify the desired minimum number of partitions to be read from
Kafka and control the parallelism of topic reading.

5Kafka is one of the built-in stream sources supported by Structured Streaming and is
compatible with Kafka broker versions 0.10.0 or higher.[45].

49

4. System Implementation

The second option - ‘maxOffsetsPerTrigger’ is used to limit the number of
offsets processed per trigger interval. Setting this option can be specifically
useful when a streaming job is restarted after a crash. Structured streaming
uses a mechanism to ensure fault tolerance and correctness in stream process-
ing - checkpointing. Spark does that by saving the metadata of the streaming
application to a persistent storage. After the streaming job is restarted after
a crash, it will continue right where it left. Without limiting the amount of
consumed message per trigger, Spark will try to read all the new messages
in the first micro-batch. If the number of messages accumulated during job
inactivity rose high enough, the job might potentially crash again due to lack
of resources to process these messages at once.

4.2.1.2 Updating speed views

After each micro-batch of records is read from Kafka, it is deserialized from
Avro format and transformed using Spark SQL, resulting in a set of records
that needs to be stored in the speed views. Since Spark doesn’t offer built-
in Cassandra sink for Structured Streaming, Spark Cassandra Connector will
be used. “This library lets you expose Cassandra tables as Spark RDDs and
Datasets/DataFrames, write Spark RDDs and Datasets/DataFrames to Cas-
sandra tables, and execute arbitrary CQL queries in your Spark applications.”,
as stated in [46].

We will take advantage of Cassandra’s special ‘counter’ column type. A
counter column is a column whose value is a 64-bit signed integer and on which
2 operations are supported: incrementing and decrementing. It provides an
efficient way to count or sum integer values by using atomic increment/decre-
ment operations on column values[47], which will be used in the speed view
tables as shown in Listing 4.3.

CREATE TABLE twitter.speed_view_0(
hashtag text,
date date,
hour int,
min_5 int,
occurrences counter,
PRIMARY KEY ((hashtag), date, hour, min_5))

WITH CLUSTERING ORDER BY (date DESC, hour DESC, min_5 DESC);

Listing 4.3: Usage of Cassandra counter column

Besides storing data into both speed view tables, hashtags are also written
to a dedicated Kafka topic, to be processed by another job to provide hashtag
trends.

50

4.2. Data processing

4.2.2 Hashtag trends

Calculating trending hashtags utilizes window operations available in Struc-
tured Streaming (Spark 3.0.0), which allows aggregations over a sliding event-
time window. During the aggregations Structured Streaming is also able to
handle late-arriving data and update the results even after the sliding window
expires. However, the system needs to know when an old aggregate can be
dropped from the memory. This is handled by watermarking technique, which
lets engine automatically track the current event time in the data and attempt
to clean up old state accordingly.[34] By defining threshold, Spark will know
how long to keep the data in memory for a potential update. Using windowed
operations is demonstrated in the code in Listing 4.4.

hashtagStream
.withWatermark("timtestamp", "20 seconds")
.groupBy(

window(col("timestamp"),
"10 minutes", // 10 minute windows
"10 seconds"), // sliding every 10 seconds

col("hashtag"))
.count()

Listing 4.4: Window operation

It is worth noting that calculating trending hashtags isn’t particularly
scalable operation, as it needs a lot of memory to keep temporary results
and has to sort hashtags by occurrences. With increasing data volumes, the
problem could be tackled by frequency counting algorithms such are Lossy
Counting or Sticky Sampling.[48]

4.2.3 Batch layer

As already mentioned, a substantial advantage of Apache Spark is the ability
to handle both stream and batch processing. Using the same engine in com-
putation of speed and batch layers allows to reuse codebase and reduces the
system complexity. In this project, batch layer was implemented using Spark
3.0.0 and Scala 2.12.12.

The role of a batch layer is to process complete dataset and calculate
batch layer views. These views provide exact results, fixing potential errors
introduced by the speed layer.

The first requirement before the batch update can be run is that the master
dataset is enriched with the data collected since the last batch run. This can
be achieved in multiple ways. For example, the data can be continuously
streamed as it arrives to a master dataset storage. Another approach is to use
pseudo streaming of the data – a technique that brings the streaming feature
into the batch job. This approach is shown in the example in Listing 4.5.

51

4. System Implementation

val query = newTweets
.writeStream
.partitionBy("date", "hour")
.option("checkpointLocation",

settings.checkpointPaths("masterDatasetSupplier"))
.option("path", settings.dataPaths("masterDataset"))
.trigger(Trigger.Once())
.start()

query.awaitTermination()

Listing 4.5: Pseudo streaming job

This feature allows query to fire only once when the job gets triggered.
As this approach is technically streaming, checkpoints are created after each
trigger, allowing to retrieve all the data accumulated since the last run until
now. This way all the new records are appended to the master dataset before
every batch run. Partitioning the data, on the other hand, allows efficiently
limiting date ranges to be queried.

The data in the master dataset is stored in Parquet6 format and is parti-
tioned by date and hour to increases the efficiency of ad-hoc querying. Since
Apache Parquet is a columnar storage format, meaning the values of each
table column are stored next to each other, allowing to skip over non-relevant
columns quickly. Besides that, parquet format allows data compression, re-
ducing overall storage costs.

After the newest data is appended to the mater dataset, the whole dataset
is processed as a batch job and stored to a Cassandra table. To achieve smooth
transition to the newest batch view, we will use a similar approach as in the
case of speed views. Two versions of the table will be kept, however, the other
case, only one of them will contain any data besides the transition period.
Batch job will populate the empty table and when the process is successfully
completed, the newly populated table will become ‘active’ (meaning all the
queries for the data from the batch view will be pointed to this table). The
second table containing outdated data can now be truncated.

To signal changes when ‘active views’ are changed, Apache Zookeeper is
used. Any service dependent on the data from batch or speed views can get
the current information about which table to query from a dedicated znode7.

4.3 Hashtag Dashboard

Hashtag dashboard was implemented to demonstrate how stream processing
results can be delivered to the end user. A simple web application was created

6Apache Parquet is a columnar storage format of the Apache Hadoop ecosystem [49]
7Every node in a ZooKeeper tree is refered to as a znode. Znodes maintain a stat

structure that includes version numbers for data changes, acl changes [50]

52

4.3. Hashtag Dashboard

for this purpose using a client-server model structure.

4.3.1 Application server

The server side of the application was create using Python 3.9 and Flask 1.1.2
– a micro web framework written in Python.[51] It is designed to make getting
started quick and easy, with the ability to scale up to complex applications.
The simplicity of Flask makes it perfect for such a prototype application to
demonstrate a proof of concept.

The goal of the application is to showcase how the system can serve histori-
cal data on the fly for a real-time context. The real-time context is represented
by the continuously updated list of top trending hashtags that appeared in
Tweets during the last 10 minutes. For each of the trendy hashtags (or rather
any hashtag, to be precise), the data, describing hashtag’s popularity in time,
can be retrieved.

Continuous provision of the application outputs to clients is handled using
Flask-SocketIO library. It is a Python library that integrates Socket.IO for
Flask applications and gives them access to low latency bi-directional com-
munication between the clients and the server. Socket.io is a library that
abstracts the WebSocket connections. It also provides a fallback option to
communicate with the client if it doesn’t support WebSockets.

In order to read the latest updates in hashtag trends produced by the
system, the application acts as Kafka consumer, getting the latest updates
from a dedicated topic. It acts as a middleman and immediately transmits
any updates read from Kafka to the client.

To provide historical data for a hashtag, both batch and speed layer views
need to be accessed. The application needs to know which tables to query (‘ac-
tive views’) and be able to combine the data. In order to keep track of which
tables should be queried to retrieve the correct results, Apache Zookeeper zn-
ode data needs to be accessed. Kazoo is a Python library designed to make
working with Apache Zookeeper a more hassle-free experience that is less
prone to errors.[52] Kazoo enables using Zookeeper watchers and implement
application behavior upon znode data changes, which in this case allows the
application to duly switch to the right views.

Apache Cassandra allows usage of prepared statements, which are used to
retrieve hashtag data from batch and speed views. DataStax Python Driver
documentation states that “Prepared statements are queries that are parsed
by Cassandra and then saved for later use. When the driver uses a prepared
statement, it only needs to send the values of parameters to bind. This lowers
network traffic and CPU utilization within Cassandra because Cassandra does
not have to re-parse the query each time.”[53] After the data from batch and
speed views is combined, it is sent to the client in JSON format.

53

4. System Implementation

4.3.2 Client application

The client application was crated using HTML, CSS and JavaScript. Plotly.js
was used as a charting library, providing rich options to create interactive
charts, including 3D charts, statistical graphs, and SVG maps.[54] Socket.IO
library was used to utilize WebSocket protocol for receiving data updates from
the server. The resulting look of the dashboard can be seen in Figure 4.1.

Figure 4.1: Hashtag Dashboard

4.4 Kubernetes Deployment

Using Kubernetes as a platform to manage a stream-processing system work-
loads and services was a big challenge. Kubernetes offers many benefits and
provides a great way to produce prototypes such as the one created in this
project in a time and cost-efficient way, allowing portability and scalability
in case of the prototype proves successfull. However, although a lot of ef-
fort has been made in the last years, the options offered for running big data
systems on Kubernetes are limited and not mature enough. One of the ma-
jor issues concerns limited options for persistent storage that can be shared
between different jobs. Spark Kubernetes scheduler is currently still marked
as experimental, and other problems need to be addressed. Nonetheless, the
open-source community is continuously working on solving these issues in or-
der to make Kubernetes a practical option for deploying big data systems.

54

4.4. Kubernetes Deployment

4.4.1 Kubernetes cluster

A Kubernetes cluster can be deployed on either physical or virtual machines.
Minikube offers a lightweight implementation that creates a virtual machine
and deploys a simple cluster containing one node.[55] Minikube provided a
great option in the initial steps of the development, allowing experimenting
in the local environment. It allowed to test the deployment of individual
system components and test integration of the related component groups.
Local machine resources, however, did not permit the deployment of a whole
system in the Minikube environment.

After exceeding local resources limits, the services of a public cloud provider
were used to deploy and test the system with all of its components. For this
project Amazon Web Services (AWS) were used. Amazon Web Services of-
fers reliable and scalable cloud computing services and offer extensive service
list.[56] One of these services is Amazon Elastic Kubernetes Service (Ama-
zon EKS) – a managed Kubernetes cluster provided as a service.[57] Amazon
EKS gives a user the flexibility to start, run and scale Kubernetes applica-
tions in the AWS cloud. For creating and deleting clusters on EKS eksctl
was used. Eksctl is a simple command line interface tool for creating clusters
on EKS.[58]. The system was deployed on a cluster consisting of 5 t3a.large8

instances, totaling in 10 2.5GHz virtual processing units (vCPU) and 40GB
RAM memory.

4.4.2 Deployment strategy

The basic application deployment on Kubernetes makes use of kubectl – the
Kubernetes command-line tool that allows to run commands against Kuber-
netes clusters. Besides deploying applications, it can be used to inspect and
manage cluster resources or view logs. To create, modify and delete Kuber-
netes resources, Kubernetes manifests are used. These manifests contain the
desired state of the application, that Kubernetes will maintain when the man-
ifest is applied. Using kubectl allows to apply manifests stored in local files,
usually in a YAML format. An example of deployment described in YAML
format is shown in Listing4.6.

8Instance type provided by Amazon Web Services [59]

55

4. System Implementation

apiVersion: apps/v1
kind: Deployment
metadata:

name: hashtag-dashboard-deployment
labels:

app: hashtag-dashboard
spec:

replicas: 1
selector:

matchLabels:
app: hashtag-dashboard

template:
metadata:

labels:
app: hashtag-dashboard

spec:
containers:
- name: hashtag-dashboard

image: dockerforgori/hashtag_dashboard:1.0.6
ports:
- containerPort: 5000
envFrom:
- configMapRef: { name: twitter-streaming-config }
- secretRef: { name: twitter-streaming-secret }

Listing 4.6: Spark Application deployment

The example shows hashtag dashboard deployment. The application was
containerized using Docker9 platform and hosted on Docker Hub – a docker
image repository, from which the application image is pulled. The same de-
ployment strategy was used in the case of tweet Tweet collector.

In the case of more complex projects, when a number of manifests might
grow to dozens or even hundreds, organizing them might become a difficult
task. One of the possible solutions to address the problem might be Helm
– the package manager for Kubernets using packaging format called charts.
Helm charts are easy to create, version, share and publish.[61] Helm charts
are, essentially, collections of preconfigured application resources that can be
deployed as one unit, while providing an easy option for reconfigurations and
customizations. Some of widely used applications can be found in helm chart
repositories like in the one maintained by Bitnami.[62] In this project Apache
Cassandra and Apache Kafka were installed using Helm.

Another option for packaging, deploying, and managing a Kubernetes ap-
plication are Kubernetes operators. Operators are software extensions to Ku-
bernetes that make use of custom resources to manage applications and their
components.[55] They extend the functionality of the Kubernetes API to cre-
ate, configure and manages applications on behalf of a Kubernetes user. This
is particularly useful in the case of complex applications like Spark, therefore
Kubernetes Operator for Apache Spark ([63]) was used in this project.

9Docker is a set of platform as a service products that use OS-level virtualization to
deliver software in packages called containers.[60]

56

4.4. Kubernetes Deployment

4.4.3 Spark Operator

Kubernetes Operator for Apache Spark leverages the operator pattern for
managing the life cycle of Spark applications on a Kubernetes cluster. The
way life cycles of Spark applications are managed (how applications get sub-
mitted to run on Kubernetes and how application status is tracked), is vastly
different from that of other types of workloads on Kubernetes (e.g., Deploy-
ments). The Kubernetes Operator for Apache Spark reduces the gap and
allows Spark applications to be specified, run, and monitored idiomatically on
Kubernetes.[63] The operator allows Spark applications to be specified using
YAML files and run without the need to deal with the spark-submit10 process.
The process of spark-submit can be seen in Figure 4.2 After a SparkAppli-
cation (a custom Kubernetes resource defined by Spark Operator) object, is
created using kubectl command and provided manifest, it is recognized and
picked by the Spark Operator. The operator then submits the application
using spark-submit, providing the specified arguments and creates the driver
pod of the application. After the driver pod is started, it creates executor
pods. Spark operator then continues to monitor the pods and update their
status.

Figure 4.2: Spark operator architecture [13]

Spark operator allows specifying Spark applications in a declarative man-
ner. An example of ‘SparkApplication’ resource is shown in Listing 4.7. The

10spark-submit is a script that takes care of setting up the classpath with Spark and its
dependencies

57

4. System Implementation

operator also supports ‘ScheduledSparkApplication’ resource type, which was
used to schedule batch updates.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:

name: speed-layer
namespace: default

spec:
type: Scala
mode: cluster
image: "dockerforgori/spark3_twitter:1.0.3"
imagePullPolicy: Always
mainClass: cz.cvut.fit.kozlovit.twitterstream.SpeedLayer
mainApplicationFile: "local:///opt/spark/jars/twitter-processing_2.12-3.0.0_1.0.jar"
sparkVersion: "3.0.0"
restartPolicy:

type: OnFailure
onFailureRetries: 3
onFailureRetryInterval: 10
onSubmissionFailureRetries: 3
onSubmissionFailureRetryInterval: 10

volumes:
- name: persistent-storage

persistentVolumeClaim:
claimName: efs-claim

driver:
cores: 1
memory: "512m"
serviceAccount: spark
volumeMounts:

- name: persistent-storage
mountPath: /data

javaOptions: "-Dconfig.resource=test.conf"
envFrom:
- configMapRef: { name: twitter-streaming-config }
- secretRef: { name: twitter-streaming-secret }

executor:
cores: 1
instances: 1
memory: "2g"
volumeMounts:

- name: persistent-storage
mountPath: /data

javaOptions: "-Dconfig.resource=test.conf"
envFrom:
- configMapRef: { name: twitter-streaming-config }
- secretRef: { name: twitter-streaming-secret }

Listing 4.7: Spark Application deployment

4.4.4 Persistent storage

One of the challenges of running big data systems on Kubernetes are persistent
storage options. This turned out to be true in our case of streaming jobs and
checkpointing. It has been shown that Spark batch processing works well over
S3 – an AWS object storage service as shown in [64]. However, this was not
the case for Structured streaming applications as discussed in [65]. Since S3
storage is eventually consistent [66], Spark tasks might start failing with a
“directory not found” error due to S3s read-after-write semantics. Another
service AWS provides are Elastic File System. It is a distributed file system
which can be mounted into pods running Spark applications, tackling the

58

4.5. System Monitoring

problem. Another benefit of the service is that the data persists even when
the cluster is shut down, allowing cost savings by on-demand resource usage
without losing the data. EFS was used as a persistent storage solution for
both streaming and batch processing applications.

4.5 System Monitoring

Kubernetes allows to deploy a web-based user interface (Dashboard). Dash-
board provides information on the state of Kubernetes resources in the cluster
and on any errors that may have occurred.[55] Dashboard was especially useful
for tuning Spark jobs by tracking the resource usage. Dashboard also allows
to display logs from containers or even deploying containerized applications
through a wizard. The look of the Kubernetes dashboard can be seen in Figure
4.3.

Figure 4.3: Kubernetes Dashboard

59

Chapter 5
System Evaluation

5.1 Test Scenarios

In order to evaluate the performance of the system prototype, we will de-
sign test scenarios, which will help us understand and evaluate how well the
prototype meets its key requirements. Test scenarios were primarily created
to test the main part of the system, which means we will be testing Apache
Kafka - Spark Structured Streaming - Apache Cassandra pipeline. In these
tests the stream job reads Kafka topic containing tweets, processes the records
(extracts hashtags from them) and stores the results to Cassandra table.

The purpose of the tests is to get insights about the processing latency,
throughput and how dependent these metrics are. Besides that, we want to
test system fault tolerance and see if the system’s performance is affected by
the amount of available resources.

The tests are run on the system prototype deployed on Amazon Elastic
Kubernetes Service cluster. The two cluster configurations used for the sce-
narios can be seen in Table 5.1.

dev test

Kafka nodes 1 3
Kafka replication factor 1 3
Cassandra nodes 1 3
Cassandra replication factor 1 3
Spark driver cores 1 1
Spark driver memory (GB) 1 1
Spark executor instances 1 3
Spark executor cores 1 1
Spark executor memory (GB) 2 2

Table 5.1: Cluster testing configurations

61

5. System Evaluation

5.1.1 Latency

In the first scenario we will examine how the system reacts to a load change.
For this purpose, Kafka producer was set-up to write 1000 generated tweets
per second into the topic read by the streaming job. After a while, the second
Kafka producer starts to write in the same Kafka topic, generating 6000 tweets
per second.

The metrics provided by the Spark UI, showing the impact of the load
change can be seen in Figure 5.1.

Streaming job is able to increase its process rate when the input rate
increases. However, the result is achieved by increasing the number of records
processed in a single micro-batch (input rows), which negatively affects latency
(batch duration).

Figure 5.1: The impact of load change on batch duration

62

5.1. Test Scenarios

5.1.2 Throughput and Scalability

As seen from the previous scenario, the increased load affected the micro-
batch size, which increased the latency. In the second scenario we will set
fixed batch size when reading from the beginning of Kafka topic containing
over 5.1 million tweets to see the system throughput given the batch size.
After all the tweets are processed, average process rate and batch duration
will be evaluated.

Table 5.2, confirms result of the previous test scenario. Increasing batch
size causes higher process rates, but at the cost of an increased batch duration.

The figure also demonstrates that the system performed much better using
the ‘test’ configuration, showing higher process rates and lower latencies for
the same batch size compared to the ‘dev’ configuration, indicating system
scalability.

Another interesting finding concerns two of the biggest batch sizes, where
no visible difference in process rate can be seen, suggesting the process rate
limit for the particular configuration has been hit.

Cluster
Batch Size
(records)

Process Rate
(records/second)

Batch Duration
(ms)

dev
1000 3500 290

10 000 9800 1020
30 000 12 400 2420
50 000 12 300 4070

test
1000 4100 240

10 000 16 500 610
30 000 22 200 1350
50 000 22 800 2200

Table 5.2: The effect of batch size on process rate and batch duration

5.1.3 Fault tolerance

To test the fault tolerance, we will examine the behavior of the application
in the case when the application driver pod is suddenly killed, simulating
unexpected error. Without the driver pod, the executor pod is terminated
as well. Thanks to the Kubernetes self-healing mechanism, the driver pod is
recreated, as well as the new executor after a request from the driver. Thanks
to the checkpointing mechanism, the streaming job can continue right where
it was stopped.

Figure 5.2 shows the scenario, in which the executor pod is killed. The
processing of records ceases after the executor dies, but after it is recreated,
it processes all the records accumulated in Kafka topic during the respawn

63

5. System Evaluation

period as one relatively big batch and then continues processing records at
the same rate, they were processed before the simulated error.

Figure 5.2: Spark executor recovery

5.2 Evaluation of system requirements

5.2.1 Functional requirements

FR1 - Efficient data storage

The system designe proposes using fact-based data model. The master
dataset, where all the data is stored, is immutable and supports only
read and append operations. This brings simplicity and human-fault
tolerance to the system, preventing the data loss caused by mistakes made
by operators.

To solve the problem of persistent storage, the system utilizes using
shared file systems available as a service by public cloud providers. The
sample application uses Amazon Elastic File System, where the master
dataset is stored. The service allows dynamic scaling, reducing the storage
costs. The data is stored using Apache Parquet columnar format, which
allows data compression and efficient ad-hoc querying.

FR2 - Fast access to historical data for real-time context

To provide historical data on the fly, the system utilizes precomputed
views created by batch and speed layers. The views are stored in the
database system selected to suit the particular use case for the best per-
formance. This was demonstrated in the sample application, which takes

64

5.2. Evaluation of system requirements

advantage of Cassandra’s data model. It allows storing data that are ex-
pected to be demanded in a single query on the same node of Cassandra
cluster. At the same time, it can be defined how the data should be sorted
on disks, which is a great suit for time-series data.

FR3 - Datasets are queryable at any time in their history
Using the philosophy presented in Lambda architecture, all the his-

torical data is kept in the master dataset. Fact-based model assures that
no data is lost by update and delete operations, which are not permitted.

FR4 - Ad hoc queries support
The master dataset is stored on a shared file system, where all the

data is conveniently available in one location. The file system can be
mounted from machines provided by AWS or even from Kubernetes pods.
Applying file system permissions prevents data loss or corruption when
accessed. This enables ad hoc consumers to access the data and query it
according to their needs.

FR5 - Addable data sources and formats
The system proposes a general approach to data ingestion, processing

and delivery. It is suited to handle various data sources and formats with
only minimal changes in data collection and processing logic.

FR6 - Building new views
Building new views is easy, since it only requires defining new logic to

process the master dataset. The new view will not only contain the data
accumulated after the view definition, but all the historical data as well.

FR7 - Adaptive views
Views can also be updated, since it essentially means discarding the

old view and defining the new one with the updated definitions, which
project new business requirements or processing techniques. Batches are
automatically rerun and the updated data is promptly available.

FR8 - Delivery mechanism
The proposed system for the data delivery is demonstrated in the

sample application. A simple web application was implemented to show-
case continuous data updates on the client initiated from the server. The
data is efficiently transmitted using WebSocket with a minimal delay after
reading updates from Apache Kafka.

The application also demonstrates how the data from batch and speed
layers can be combined, serving time-series data covering both the oldest
available data in the system with the data produced by external systems
seconds ago.

65

5. System Evaluation

5.2.2 Non-functional requirements

NFR1 - Scalability

The system was designed and implemented with scalability in mind
mainly by utilizing distributed subsystems. The incoming data is queued
in Apache Kafka, a highly scalable messaging system. The data is then
processed by batch and speed layers, both implemented using Apache
Spark - a distributed cluster computing framework. Apache Cassandra
then provides linear scalability for data storage. The whole system is
deployed on Kubernetes, making it easy to provide additional resources if
required. Testing the speed layer showed that increased resources indeed
had a significant performance effect.

NFR2 - Low-latency processing

Although Structured Streaming’s micro-batch processing is more through-
put rather than latency-oriented, the tests showed it is able to maintain
low-latency even under heavy loads. This metric, however, is highly de-
pendent on the nature of the process.

NFR3 – Fault tolerance

The system offers multiple ways to assure fault-tolerance. The first
aspect is human-fault tolerance, which can cause data corruption or loss.
This issue is addressed by the fact-based data model and immutability of
the master dataset.

The second aspect is represented by hardware failures and is solved
using replication and recovery mechanisms. Apache Kafka and Apache
Spark replicate their respective data across the nodes, so losing one of
the nodes of either of the systems should not affect the overall system
functionality.

As for data processing, Structured Streaming uses checkpointing tech-
nique, giving Spark application the ability to proceed with streaming jobs
right where it left when either job driver or executor encounters failure,
as shown in tests. Kubernetes offers system monitoring and self-healing
by restarting failed containers.

NFR4 - Generalization

The system can support a wide range of applications. It is inspired by
Lambda architecture, which proved itself across many industries, meaning
the system can be adjusted to handle various scenarios concerning system
specific requirements.

66

5.3. Future work and opportunities

NFR5 - Extensibility

Because the master dataset can contain arbitrary data, adding new
types of data can be achieved easily. Adding new views and tweaking the
old ones is supported as well.

NFR6 - Cloud platform compatible

The system utilizes the benefits provided by the Kubernetes platform,
which can be run on bare metal servers, virtual machines, as well as on
private or public clouds. To demonstrate this, the sample application was
successfully deployed on Amazon Web Services.

5.3 Future work and opportunities

5.3.1 Auto-scaling options

It’s been shown that the system was designed to be scalable and can handle
different volumes of data by utilizing more resources. The next step for the
system is to use the full power of Kubernetes and take advantage of dynamic
autoscaling.

On the app-level Spark gives the ability to the application to request more
executors at runtime. Based on the workload, new executor pods can be either
created or deleted to achieve a desired performance.

On a cluster-level, Kubernetes allows to add more nodes to the cluster if
more capacity to schedule pods is needed, or remove them if the nodes become
unused.

In combination, the described autoscaling options allow to handle traffic
bursts without the need to of reconfiguration, utilizing cluster resources in a
cost-effective manner.

5.3.2 Job scheduling

An important part of the proposed hybrid system is the batch layer, which
regularly updates views to provide historical data. In the system prototype,
a simple cron job is used to schedule these updates. This solution, however,
will not be sufficient in cases when more complex, multi-step processing is ex-
pected. This problem can be tackled by using one of the workflow management
platforms like Apache Airflow[67].

Airflow treats a collection of tasks as directed acyclic graph (DAG), re-
flecting tasks relationships and prerequisites. This allows Airflow to run non-
dependent tasks in parallel, starting tasks only when all its prerequisites are
successfully completed or configuring fallback options in the case of a failure.

67

5. System Evaluation

5.3.3 Advanced monitoring

Monitoring of a big data system is just as important as the system itself.
Monitoring allows for a problem detection, proactive response and overall
good health of a computer system. It allows the system to be more stable and
reliable.

Some popular tools have emerged in the recent years, which proved to be
helpful in monitoring Kubernetes cluster. One of these tools is Prometheus[68]
Prometheus allows to regularly collect and store metrics from various appli-
cations such as databases or messaging systems. Prometheus offers many
ready-to-use exporters for many of the widely used tools including Apache
Kafka and Cassandra.

Visualizing metrics collected by Prometheus is easy with Grafana[69].
Grafana is analytics and interactive visualization web application. It allows
efficiently query, display and analyze the data. Grafana comes with alerting
system, allowing timely notifications in case of emerging system anomalies.

68

Conclusion

The main aim of the thesis was to design a stream processing system with a
focus on high availability, low latency and horizontal scalability.

Key concepts connected to large scale data processing were explored,
specifics of processing data streams were analyzed - along with the best prac-
tices and pitfalls of designing stream processing systems. Subsequently, a
system was proposed. The main strengths of the system were discussed in
detail and arguments on why it fits the system requirements provided.

Besides utilizing strengths of well-established design patterns in stream
processing systems, the system takes advantage of some of the newest trends
and technology in the field. In some cases, this meant relying on experimental
software and tackling a lack of well founded resources.

As a proof of concept, a cloud-based system prototype was successfully im-
plemented. The system was deployed and tested on one of the public clouds.11

Thanks to the system design it can be deployed to different environments with
only some minor adjustments.

The system design offers many opportunities for the future, as discussed
in the last chapter. The technology (or rather a combination of multiple
technologies) used in the implementation is predicted to replace some current
standards, making this thesis potentially beneficial in the future.

11The repository containing sample application source code is available on
https://gitlab.fit.cvut.cz/kozlovit/ni-dip-project-kozlovit

69

Bibliography

[1] Marz, N.; Warren, J. Big Data: Principles and best practices of scal-
able realtime data systems. Manning Publications Co., first edition, 2015,
ISBN 978-1617290343.

[2] White, T. Hadoop: The Definitive Guide. O’Reilly Media, Inc., fourth
edition, 2015, ISBN 978-1-491-90163-2.

[3] Spark Cluster Mode Overview. [online], [cit. 2020-12-02]. Available from:
https://spark.apache.org/docs/latest/cluster-overview.html

[4] Luksa, M. Kubernetes in Action. Manning Publications Co., first edition,
2018, ISBN 9781617293726.

[5] Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media,
Inc., first edition, 2017, ISBN 978-1-449-37332-0.

[6] Big data architecture style. [online], [cit. 2020-12-20]. Available from:
https://docs.microsoft.com/en-us/azure/architecture/guide/
architecture-styles/big-data

[7] Lambda Architecture. [cit. 2020-10-08]. Available from: http://lambda-
architecture.net/

[8] Marz, N. How to beat the CAP theorem. [online], 2011, [cit. 2020-10-08].
Available from: http://nathanmarz.com/blog/how-to-beat-the-cap-
theorem.html

[9] Kreps, J. Questioning the Lambda Architecture. [online], 2014, [cit. 2020-
10-08]. Available from: https://www.oreilly.com/radar/questioning-
the-lambda-architecture/

[10] Twitter Trends. [online], 2020, [cit. 2020-12-27]. Available from: https:
//twitter.com/

71

https://spark.apache.org/docs/latest/cluster-overview.html
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/big-data
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/big-data
http://lambda-architecture.net/
http://lambda-architecture.net/
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://twitter.com/
https://twitter.com/

Bibliography

[11] Kubernetes and Big Data: A Gentle Introductione. [online], [cit. 2020-
12-15]. Available from: https://medium.com/sfu-cspmp/kubernetes-
and-big-data-a-gentle-introduction-6f32b5570770

[12] Overview of WebSocket support in Application Gateway. [online],
[cit. 2020-12-20]. Available from: https://docs.microsoft.com/en-us/
azure/application-gateway/application-gateway-websocket

[13] Spark Operator Architecture. [online], [cit. 2020-12-11]. Available
from: https://github.com/GoogleCloudPlatform/spark-on-k8s-
operator/blob/master/docs/design.md

[14] Yarabarla, S. Learning Apache Cassandra. Packt Publishing Ltd., second
edition, 2017, ISBN 978-1-78712-729-6.

[15] Saxena, S.; Gupta, S. Practical Real-Time Data Processing and Analytics.
Packt Publishing Ltd., first edition, 2017, ISBN 978-1-78728-120-2.

[16] Apache Hadoop Website. [online], [cit. 2021-01-02]. Available from:
https://hadoop.apache.org/

[17] Zaharia, M.; Chowdhury, M.; et al. Spark: Cluster Computing with
Working Sets. Proceedings of the 2nd USENIX conference on Hot top-
ics in cloud computing, volume 10, 07 2010: pp. 10–10.

[18] Chambers, B.; Zaharia, M. Spark: The Definitive Guide. O’Reilly Media,
Inc., first edition, 2018, ISBN 978-1-491-91221-8.

[19] Spark Release 2.3.0. [online], [cit. 2020-12-02]. Available from: https:
//spark.apache.org/releases/spark-release-2-3-0.html

[20] The rise of Kubernetes epitomizes the transition from big
data to flexible data. [online], [cit. 2020-12-02]. Available from:
https://www.zdnet.com/article/the-rise-of-kubernetes-
epitomizes-the-move-from-big-data-to-flexible-data/

[21] Containers 101: What are containers. [online], [cit. 2020-12-19]. Available
from: https://cloud.google.com/containers

[22] What is Streaming Data? [online], [cit. 2020-12-27]. Available from:
https://www.confluent.io/learn/data-streaming/

[23] Mass, G.; Garillot, F. Stream Processing with Apache Spark: Best Prac-
tices for Scaling and Optimizing Apache Spark. O’Reilly Media, Inc., first
edition, 2019, ISBN 978-1-491-94417-2.

[24] Kalipe, G.; Behera, R. Big Data Architectures : A detailed and applica-
tion oriented review. 10 2019.

72

https://medium.com/sfu-cspmp/kubernetes-and-big-data-a-gentle-introduction-6f32b5570770
https://medium.com/sfu-cspmp/kubernetes-and-big-data-a-gentle-introduction-6f32b5570770
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-websocket
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-websocket
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/design.md
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/design.md
https://hadoop.apache.org/
https://spark.apache.org/releases/spark-release-2-3-0.html
https://spark.apache.org/releases/spark-release-2-3-0.html
https://www.zdnet.com/article/the-rise-of-kubernetes-epitomizes-the-move-from-big-data-to-flexible-data/
https://www.zdnet.com/article/the-rise-of-kubernetes-epitomizes-the-move-from-big-data-to-flexible-data/
https://cloud.google.com/containers
https://www.confluent.io/learn/data-streaming/

Bibliography

[25] Iqbal, M. Twitter Revenue and Usage Statistics (2020). [online], 2020, [cit.
2020-12-28]. Available from: https://www.businessofapps.com/data/
twitter-statistics/

[26] Joyce, B.; Deng, J. Sentiment analysis of tweets for the 2016 US presi-
dential election. In 2017 IEEE MIT Undergraduate Research Technology
Conference (URTC), 2017, pp. 1–4, doi:10.1109/URTC.2017.8284176.

[27] Why run Apache Kafka on Kubernetes? [online], [cit. 2020-12-28].
Available from: https://www.redhat.com/en/topics/integration/
why-run-apache-kafka-on-kubernetes

[28] Stopford, B. Designing Event-Driven Systems. O’Reilly Media, Inc., first
edition, 2018, ISBN 978-1-492-03824-5.

[29] Amazon Elastic File System. [online], [cit. 2020-12-23]. Available from:
https://aws.amazon.com/efs/

[30] Ellis, B. Real-Time Analytics: Techniques to Analyze and Visualize
Streaming Data. John Wiley and Sons, Inc., first edition, 2014, ISBN
978-1-118-83791-7.

[31] VANHOVE, T.; SEGHBROECK, G. V.; et al. Managing the Synchro-
nization in the Lambda Architecture for Optimized Big Data Analysis.
IEICE Transactions on Communications, volume E99.B, no. 2, 2016: pp.
297–306, doi:10.1587/transcom.2015ITI0001.

[32] Carpenter, J.; Hewitt, E. Cassandra: The Definitive Guide: Distributed
Data at Web Scale. O’Reilly Media, Inc., third edition, 2020, ISBN 978-
1-098-11509-8.

[33] Benchmarking Cassandra Scalability on AWS — Over a million
writes per second. [online], [cit. 2020-12-02]. Available from: https:
//netflixtechblog.com/benchmarking-cassandra-scalability-on-
aws-over-a-million-writes-per-second-39f45f066c9e

[34] Structured Streaming Programming Guide. [online], [cit. 2020-12-02].
Available from: https://spark.apache.org/docs/latest/structured-
streaming-programming-guide.html

[35] The future of big data is Kubernetes. [online], [cit. 2020-12-11]. Avail-
able from: https://banzaicloud.com/blog/future-of-big-data-is-
kubernetes/

[36] Running Spark on Kubernetes. [online], [cit. 2020-12-15]. Avail-
able from: https://spark.apache.org/docs/latest/running-on-
kubernetes.html/

73

https://www.businessofapps.com/data/twitter-statistics/
https://www.businessofapps.com/data/twitter-statistics/
https://www.redhat.com/en/topics/integration/why-run-apache-kafka-on-kubernetes
https://www.redhat.com/en/topics/integration/why-run-apache-kafka-on-kubernetes
https://aws.amazon.com/efs/
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://banzaicloud.com/blog/future-of-big-data-is-kubernetes/
https://banzaicloud.com/blog/future-of-big-data-is-kubernetes/
https://spark.apache.org/docs/latest/running-on-kubernetes.html/
https://spark.apache.org/docs/latest/running-on-kubernetes.html/

Bibliography

[37] Big Data: Google Replaces YARN with Kubernetes to Sched-
ule Apache Spark. [online], [cit. 2020-12-15]. Available from:
https://thenewstack.io/big-data-google-replaces-yarn-with-
kubernetes-to-schedule-apache-spark/

[38] About HTML5 WebSockety. [online], [cit. 2020-12-20]. Available from:
https://www.websocket.org/aboutwebsocket.html

[39] Tweepy: Twitter for Python! [online], [cit. 2020-12-20]. Available from:
https://github.com/tweepy/tweepy

[40] Sampled stream. [online], [cit. 2020-12-20]. Available from:
https://developer.twitter.com/en/docs/twitter-api/tweets/
sampled-stream/introductionl

[41] Kafka Python client. [online], [cit. 2020-12-20]. Available from: https:
//github.com/dpkp/kafka-python

[42] Apache Avro website. [online], [cit. 2020-12-19]. Available from: https:
//avro.apache.org/

[43] Using Avro for Big Data and Data Streaming Architectures: An Intro-
ductiont. [online], [cit. 2020-12-20]. Available from: https://dzone.com/
articles/avro-introduction-for-big-data-and-data-streaming

[44] Why learn Scala Programming for Apache Spark. [online], [cit. 2020-
12-20]. Available from: https://www.dezyre.com/article/why-learn-
scala-programming-for-apache-spark

[45] Structured Streaming + Kafka Integration Guide (Kafka bro-
ker version 0.10.0 or higher). [online], [cit. 2020-12-10]. Avail-
able from: https://spark.apache.org/docs/latest/structured-
streaming-kafka-integration.html

[46] Spark Cassandra Connector. [online], [cit. 2020-10-08]. Available from:
https://github.com/datastax/spark-cassandra-connector

[47] http://clojurecassandra.info/articles/cql.html. [online], [cit. 2020-12-06].
Available from: http://clojurecassandra.info/articles/cql.html

[48] Frequency Counting Algorithms over Data Streams. [online], [cit. 2020-
12-15]. Available from: https://micvog.com/2015/07/18/frequency-
counting-algorithms-over-data-streams/

[49] Apache Parquet Website. [online], [cit. 2020-12-19]. Available from:
https://parquet.apache.org/

74

https://thenewstack.io/big-data-google-replaces-yarn-with-kubernetes-to-schedule-apache-spark/
https://thenewstack.io/big-data-google-replaces-yarn-with-kubernetes-to-schedule-apache-spark/
https://www.websocket.org/aboutwebsocket.html
https://github.com/tweepy/tweepy
https://developer.twitter.com/en/docs/twitter-api/tweets/sampled-stream/introductionl
https://developer.twitter.com/en/docs/twitter-api/tweets/sampled-stream/introductionl
https://github.com/dpkp/kafka-python
https://github.com/dpkp/kafka-python
https://avro.apache.org/
https://avro.apache.org/
https://dzone.com/articles/avro-introduction-for-big-data-and-data-streaming
https://dzone.com/articles/avro-introduction-for-big-data-and-data-streaming
https://www.dezyre.com/article/why-learn-scala-programming-for-apache-spark
https://www.dezyre.com/article/why-learn-scala-programming-for-apache-spark
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://github.com/datastax/spark-cassandra-connector
http://clojurecassandra.info/articles/cql.html
https://micvog.com/2015/07/18/frequency-counting-algorithms-over-data-streams/
https://micvog.com/2015/07/18/frequency-counting-algorithms-over-data-streams/
https://parquet.apache.org/

Bibliography

[50] Zookeeper documentation. [online], [cit. 2020-12-19]. Avail-
able from: https://zookeeper.apache.org/doc/r3.1.2/
zookeeperProgrammers.html

[51] Flask. [online], [cit. 2020-12-20]. Available from: https://github.com/
pallets/flask/

[52] Kazoo. [online], [cit. 2020-12-11]. Available from: https://github.com/
python-zk/kazoo

[53] DataStax Python Driver 3.24. [online], [cit. 2020-12-27]. Available from:
https://docs.datastax.com/en/developer/python-driver/3.24/
getting_started/

[54] Plotly JavaScript Open Source Graphing Library. [online], [cit. 2020-12-
11]. Available from: https://plotly.com/javascript/

[55] Kubernetes documentation. [online], [cit. 2020-12-27]. Available from:
https://kubernetes.io/docs/

[56] Amazon Wev Services website. [online], [cit. 2020-12-27]. Available from:
https://aws.amazon.com/

[57] Amazon Elastic Kubernetes Service. [online], [cit. 2020-12-27]. Available
from: https://aws.amazon.com/eks/

[58] eksctl - The official CLI for Amazon EKS. [online], [cit. 2020-12-19]. Avail-
able from: https://github.com/weaveworks/eksctl

[59] Amazon EC2 Instance Types. [online], [cit. 2020-12-19]. Available from:
https://aws.amazon.com/ec2/instance-types/

[60] Docker website. [online], [cit. 2020-12-19]. Available from: https://
www.docker.com/

[61] Helm website. [online], [cit. 2020-12-27]. Available from: https://
helm.sh/

[62] Bitnami Charts. [online], [cit. 2020-12-27]. Available from: https://
bitnami.com/

[63] Spark Operato. [online], [cit. 2020-12-11]. Available from: https://
github.com/GoogleCloudPlatform/spark-on-k8s-operator

[64] Top 5 Reasons for Choosing S3 over HDFS. [online], [cit. 2020-12-
16]. Available from: https://databricks.com/blog/2017/05/31/top-
5-reasons-for-choosing-s3-over-hdfs.html

75

https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html
https://github.com/pallets/flask/
https://github.com/pallets/flask/
https://github.com/python-zk/kazoo
https://github.com/python-zk/kazoo
https://docs.datastax.com/en/developer/python-driver/3.24/getting_started/
https://docs.datastax.com/en/developer/python-driver/3.24/getting_started/
https://plotly.com/javascript/
https://kubernetes.io/docs/
https://aws.amazon.com/
https://aws.amazon.com/eks/
https://github.com/weaveworks/eksctl
https://aws.amazon.com/ec2/instance-types/
https://www.docker.com/
https://www.docker.com/
https://helm.sh/
https://helm.sh/
https://bitnami.com/
https://bitnami.com/
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html
https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html

Bibliography

[65] Improving Spark Streaming Checkpointing Performance With
AWS EFS. [online], [cit. 2020-12-02]. Available from: https:
//blog.yuvalitzchakov.com/improving-spark-streaming-
checkpoint-performance-with-aws-efs/

[66] Introduction to Amazon S3. [online], [cit. 2020-12-19]. Avail-
able from: https://docs.aws.amazon.com/AmazonS3/latest/dev/
Introduction.htmll

[67] Apache Airflow Website. [online], [cit. 2020-12-22]. Available from:
https://airflow.apache.org/

[68] Prometheus Website. [online], [cit. 2020-12-19]. Available from: https:
//prometheus.io/

[69] Grafana website. [online], [cit. 2020-12-19]. Available from: https://
grafana.com/

76

https://blog.yuvalitzchakov.com/improving-spark-streaming-checkpoint-performance-with-aws-efs/
https://blog.yuvalitzchakov.com/improving-spark-streaming-checkpoint-performance-with-aws-efs/
https://blog.yuvalitzchakov.com/improving-spark-streaming-checkpoint-performance-with-aws-efs/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.htmll
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.htmll
https://airflow.apache.org/
https://prometheus.io/
https://prometheus.io/
https://grafana.com/
https://grafana.com/

Appendix A
Acronyms

API Application Programming Interface

AWS Amazon Web Services

CAP Consistency, Availability, Partition Tolerance

CEP Complex Event Processing

CPU Central Processing Unit

CQL Cassandra Query Language

CSS Cascading Style Sheets

DAG Directed Acyclic Graph

DataOPS Data Operations

DevOps Development Operations

EFS Elastic File System

EKS Elastic Kubernetes Service

HDFS Hadoop Distributed File System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MAU Monthly Active Users

OS Operating System

QA Quality Assurance

77

A. Acronyms

RDD Resilient Distributed Datasets

SQL Structured Query Language

SVQ Scalable Vector Graphics

TCP Transmission Control Protocol

VMs Virtual Machines

YAML Ain’t Markup Language

YARN Yet Another Resources Negotiator

78

	Introduction
	From Batch to Stream Processing
	The age of data
	What is data, and why is it important?
	Big Data
	Modern data-processing requirements
	Technological trends and their effects on Big Data systems

	Distributed computing and large-scale data processing
	MapReduce paradigm
	Hadoop
	HDFS
	Hadoop YARN
	Hadoop shortcomings

	Apache Spark
	Big Data and Kubernetes
	Container technology
	Kubernetes core concepts

	Towards Real-Time and Streaming Big Data
	Event streams
	Messaging systems
	Partitioned logs

	Stream processing
	Uses of stream processing
	Execution modes
	The effect of time

	Real-Time Data Processing Architecture
	Big data architecture components
	Lambda architecture
	Problems with fully incremental architectures
	Batch layer
	Serving layer
	Speed layer

	Kappa architecture

	System Analysis and Design
	System specification and requirements
	Functional requirements
	Non-functional requirements

	Sample application
	System design
	Message queueing
	Batch layer
	Computing on the batch layer
	Storing master dataset

	Speed layer
	Storing real-time views
	Expiring realtime views

	Serving data
	Cassandra's data model

	Data processing
	Application deployment, scaling and management
	Delivery mechanism
	Design Summary

	System Implementation
	Data Collection
	Twitter API
	Kafka Producer
	Data Serialization

	Data processing
	Speed layer
	Consuming data from Kafka
	Updating speed views

	Hashtag trends
	Batch layer

	Hashtag Dashboard
	Application server
	Client application

	Kubernetes Deployment
	Kubernetes cluster
	Deployment strategy
	Spark Operator
	Persistent storage

	System Monitoring

	System Evaluation
	Test Scenarios
	Latency
	Throughput and Scalability
	Fault tolerance

	Evaluation of system requirements
	Functional requirements
	Non-functional requirements

	Future work and opportunities
	Auto-scaling options
	Job scheduling
	Advanced monitoring

	Conclusion
	Bibliography
	Acronyms

