
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 2, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: 3D game with an open world for Android

 Student: Bc. Adam Novák

 Supervisor: Ing. Martin Půlpitel

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Design and implement a 3D open-world role-playing game prototype for Android. Use the Unity platform
and Data-Oriented Technology Stack (DOTS) for its creation. Design and implement a real-time combat
system, artificial intelligence, and a procedural map generator.
Artificial intelligence must be able to handle combat and daily routine. Procedural map generation must
create maps from scratch – it cannot use premade sections.
Adapt user interface and controls for mobile devices. Design the prototype using standard software
engineering methods. The implemented prototype must be appropriately documented and tested.

References

Will be provided by the supervisor.

Master’s thesis

3D game with open world for Android

Bc. Adam Novák

Department of Software Engineering
Supervisor: Ing. Martin Půlpitel

January 6, 2021

Acknowledgements

I want to thank my friends and family who supported me during the creation
of this thesis, especially because the COVID-19 pandemic made everything a
little more challenging. I would also like to thank my supervisor, who enabled
me to work on this exciting project and was open to many changes I requested.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Adam Novák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Novák, Adam. 3D game with open world for Android. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Tato práce se zabývá návrhem a implementaćı prototypu hry využ́ıvaj́ıćı
Unity Data-Oriented Technology Stack (DOTS). Ćılem práce je prozkoumat
možnosti a potenciál DOTS, který je nyńı v ranném stádiu vývoje. Unity
prezentuje budoucnost jako výkonnou alternativu k GameObject̊um. Kĺıčové
oblasti práce zahrnuj́ı pohyb postavy na 3D terénu, soubojový systém, umělou
inteligenci, procedurálńı generátor map a uživatelské rozhrańı. Výsledná apli-
kace běž́ı na Androidu 5 a nověǰśım.

Kĺıčová slova Data-Oriented Technology Stack, DOTS, Unity, Android, UI
Toolkit, hra, procedurálńı generováńı map, boj, umělá inteligence

vii

Abstract

This thesis focuses on design and implementation of a game prototype in Unity
Data-Oriented Technology Stack (DOTS). The aim is to explore capabilities
and potential of DOTS, which is in early development and is striving to become
a more performant alternative to GameObjects. Key areas include character
movement on 3D terrain, combat system, artificial intelligence, procedural
map generation and user interface. The final application runs on Android 5
and newer.

Keywords Data-Oriented Technology Stack, DOTS, Unity, Android, UI
Toolkit, game, procedural map generation, combat, artificial intelligence

viii

Contents

Introduction 1

1 Unity Data-Oriented Technology Stack 3
1.1 The C# Job System . 3
1.2 Burst compiler . 4
1.3 Entity Component System . 4

1.3.1 Entities . 4
1.3.2 Components . 4

1.3.2.1 GameObject conversion 5
1.3.3 Systems . 6

1.3.3.1 Groups . 7
1.3.4 Archetypes . 7

1.4 Packages . 7
1.4.1 Unity Mathematics . 7
1.4.2 Animation . 7
1.4.3 UI Toolkit . 8
1.4.4 Physics . 8
1.4.5 Rendering . 8

1.5 Project Tiny . 9
1.6 Code . 9

1.6.1 Accessing components 10

2 Assignment 13

3 Analysis 15
3.1 Requirements . 15

3.1.1 Assignment requirements 15
3.1.2 Requirements . 16

3.2 Procedural map generation . 17
3.2.1 Prim’s (Jarńık’s) algorithm 17

ix

3.2.2 Cellular automaton . 18
3.2.3 ClassiCube . 19
3.2.4 The fantasy map generator (Voronoi) 20

3.3 Data persistence . 21
3.3.1 ScriptableObjects and PlayerPrefs 22
3.3.2 Files . 22

3.3.2.1 Text files . 22
3.3.2.2 Binary files . 23

3.3.3 Databases . 23
3.3.3.1 SQLite . 24
3.3.3.2 LiteDB . 24

4 Design 27
4.1 Asset Management . 27
4.2 Architecture . 28
4.3 Movement . 28
4.4 Procedural Map Generation . 29

4.4.1 Procedural terrain generation 29
4.5 Combat . 30

4.5.1 Input . 31
4.5.2 Abilities . 31
4.5.3 Modifiers . 32

4.5.3.1 Example . 33
4.5.3.2 Equipment . 34

4.6 Artificial Intelligence . 34
4.6.1 Groups . 35

4.6.1.1 Sensors . 35
4.6.1.2 Behaviour selection 36
4.6.1.3 Behaviour execution 36

4.6.2 Daily Routines . 36
4.7 Character entity . 37
4.8 System communication . 37
4.9 User interface . 38

5 Realisation 41
5.1 Code editors . 41

5.1.1 Movement systems . 41
5.2 Asset management . 45

5.2.1 Asset loading . 45
5.2.2 Database . 47

5.2.2.1 Issues . 48
5.2.3 Asset management tools 48

5.3 Scene management . 49
5.4 Physics . 50

x

5.5 Combat . 51
5.5.1 Stats . 52
5.5.2 Modifiers . 52
5.5.3 Abilities . 52

5.5.3.1 Input . 52
5.5.3.2 Activation . 53
5.5.3.3 Instantiation 53
5.5.3.4 Behaviour . 54

5.6 Items . 56
5.6.1 Map generation . 61

5.6.1.1 Room generation 61
5.6.1.2 Path generation 61
5.6.1.3 Spawning . 62
5.6.1.4 Presenter . 62
5.6.1.5 Editor . 64
5.6.1.6 Performance 65

5.7 Artificial intelligence . 66
5.7.1 Sensors . 66
5.7.2 Behaviours . 67

5.7.2.1 Activatable behaviours 67
5.7.2.2 Daily Routines 68
5.7.2.3 Requestable behaviours 69

5.8 Input . 71
5.9 User interface . 73

5.9.1 World-space user interface 73
5.10 Animations . 75

6 Testing 79
6.1 Compilation . 79
6.2 Testing scenario . 80
6.3 Results . 80

6.3.1 Performance . 81
6.3.2 Testing conclusion . 81

Conclusion 83

Bibliography 85

A Glossary 89

B Acronyms 91

C Contents of enclosed CD 93

xi

List of Figures

1.1 GameObject conversion.[3] . 6
1.2 An example of job syntax.[1] . 10
1.3 An example of job syntax. 11

3.1 Example of a maze generated with Prim’s algorithm. 18
3.2 Example of a cave system generated with cellular automata. 19
3.3 Example of Perlin noise. 20
3.4 Example of noise generated with random number generator. 20
3.5 Example of a map generated by the fantasy map generator. 21

4.1 Design of modular procedural map generator 30
4.2 Combat parts . 31
4.3 Modifier architecture . 33
4.4 Example of the modifiers on a health property. 34
4.5 The order of AI (artificial intelligence) group execution 35
4.6 Entity structure of an AI character. The player’s character has a

similar structure. The primary difference is that it does not have
behaviours. 37

4.7 Dependency of important parts . 38
4.8 Wireframe of the user interface . 39

5.1 The order of execution of the movement systems 42
5.2 Implementation of the Slope and Step calculation system. 44
5.3 Implementation of the Grounding system. 45
5.4 First part of asset loading system. 46
5.5 Second part of asset loading system. 47
5.6 Implementation of a 2D vector field using reflection in UI Toolkit. 49
5.7 Implementation of a ParentScene component 50
5.8 Flow of the combat system . 51
5.9 Implementation of the initialization part of a projectile behaviour. 55
5.10 Implementation of the active part of a projectile behaviour. 55

xiii

5.11 Implementation of the application part of a projectile behaviour. . 56
5.12 Implementation of loading key item from database. 58
5.13 Implementation of a pick-up event creation system with event en-

tity archetype definition. 59
5.14 Unlock system implementation. 60
5.15 Implementation of the random spawner. 62
5.16 Part of Mesh presenter implementation. 64
5.17 Procedural map editor . 65
5.18 Example of two problems caused by sphere cast in two-dimensions. 67
5.19 Combat behaviour selection. 68
5.20 Daily Routines Behaviour system. 69
5.21 Implementation of requestable pathfinding behaviour. 70
5.22 Implementation of Input System update. 71
5.23 Implementation of reading input data for character movement. . . 72
5.24 Implementation of frame per second UI system. 74
5.25 Example of a UXML (Unity Extensible Markup Language) file. . . 74
5.26 Example of a USS (Unity Style Sheets) file. 75
5.27 AnimatorProxy component implementation with custom Author-

ing MonoBehaviour. 76
5.28 Implementation of a humanoid animation system. 77

xiv

List of Tables

1.1 Comparison of various component access methods 10

xv

Introduction

In recent years, Unity grew from a game engine into a platform used by other
industries, including film and car industries. Unfortunately, existing script-
ing methods struggle in more performance-intensive applications. To address
this, Unity introduced a Data-Oriented Technology Stack, DOTS for short.
Instead of objects (GameObjects and MonoBehaviours), DOTS uses Entity
Component System. In DOTS, Unity focuses on using value types instead of
reference types, which improves performance by increasing the cache utiliza-
tion on the CPU. Multithreading is also significantly improved. Compile-time
rules prevent race-conditions. Native support and code generation make cre-
ating multithreaded code much more manageable.

The focus of this thesis is on creating a prototype game that demonstrates
the capabilities of DOTS. First, I will look at what DOTS is and its various
packages. After learning the basics about the technology, I will better define
the prototype, what it is about and what it will feature. Once the definition
is complete, I will look at how to create specific parts of the prototype and
define requirements for the prototype. After the preparations, I will create a
high-level design of various systems that fulfil the requirements. With design
complete, I will ultimately implement the needed systems and solve some
previously unforeseen issues. Once I complete the implementation, I will test
the prototype and look at how it could be expanded in the future.

1

Chapter 1
Unity Data-Oriented

Technology Stack

Data-Oriented Technology Stack (DOTS) shapes almost every aspect of how
the prototype will work. Because it plays such a significant role, it is essential
to understand how it works. DOTS is a rewrite of the core of Unity to make it
more performant and multithreading friendly. Unfortunately, as of 2020, the
only packages considered stable are Burst compiler and C# Job System. All
other packages are either in preview, experimental or not yet publicly avail-
able. Fortunately, unless DOTS runtime (Project Tiny) is used, the standard
Unity features can be used too.

I have decided to use only stable and preview packages. It is challenging
to work with experimental packages because they are bare-bones. Luckily,
the three most essential packages meet this requirement The C# Job System,
Burst compiler, and Entity Component System (ECS).

1.1 The C# Job System

The C# Job System provides developers with a way to run optimized, multi-
threaded code. Before the job system, Unity did not offer any tools, besides
those included in the .NET framework, for multithreading. Many develop-
ers ended up either opting out of multithreading entirely or developing their
multithreading solutions. The C# Job System tries to change this by giving
developers APIs to create jobs which are executed by Unity’s internal Job
System allowing for better management of resources and detection of race
conditions. There is also a new challenge for developers. The job system sup-
ports only blittable types1 and native collections. Consequently, before the
creation of a job, every collection (Array, List, Dictionary, Queue) needs to

1blittable types—data types with identical memory representation in managed and un-
managed code

3

1. Unity Data-Oriented Technology Stack

be converted into native collection (NativeArray, NativeList, NativeHashMap,
NativeQueue).

1.2 Burst compiler

With new performance first mindset, Unity also introduced a new compiler—
Burst. Burst compiles code from IL/.NET bytecode to highly optimized native
code using LLVM.1 Burst provides excellent performance benefits, but there
is a cost. Burst is limited in what it can optimize, and during my experiments
with it, there were issues with foreach and using statements.

While Burst provides excellent performance benefits, it also poses further
restrictions on the developers. It cannot optimize every piece of code. Unity
actively develops Burst, adding new features and reducing the restrictions
imposed in developers. In 2020 there were two major Burst updates.

1.3 Entity Component System

The Entity Component System (ECS) is the core of the Unity DOTS (Data-
Oriented Technology Stack). As the name indicates, it consists of three parts:
Entities, Components, and Systems. In Unity ECS is contained inside an
Entities package.[1] In the following sections, I will look at each part in more
detail.

1.3.1 Entities

An entity represents an individual “item”; it can be anything from a message
to a player’s character. An Entity is essentially just a unique identifier (ID). It
holds no data or logic. Instead, data is in components, and logic is in systems.

In Unity, an Entity is a structure (struct) with two integers — Index and
Version. The index uniquely identifies an active entity; however, when an
entity is destroyed, the same index can be used by a different entity, this is
called recycling. To distinguish between the old, recycled entity, and the new
one, the version is used. Every time an Entity is recycled, its version is incre-
mented, so the system knows when you try to access a recycled (destroyed)
entity.

1.3.2 Components

A component represents data. It contains all the data that the entity has,
for example, health, items in inventory, known skills etc. One entity can have
multiple components attached to it. Components contain no logic; logic is in
systems.

1a collection of compiler and toolchain technologies

4

1.3. Entity Component System

In Unity, standard components (IComponentData) attached to an entity
must be unique. For example, there cannot be multiple Health components on
a single entity. Also, components are blittable structures. Blittable structures
have two main advantages in performance compared to classes.

1. Structures are value types, meaning I do not have to dereference them
(access more memory) to get the data.

2. Blittable structures do not have to be converted from managed to un-
managed memory, improving performance.

In .NET, blittable types are only numbers. Some examples of non-blittable
types include Char, Boolean, String, Object, and Array.[2] This does not mean
that text or arrays cannot be in components, but there are some restrictions.
Unity provides fixed-length array types, including strings, that I can use inside
components. The problem with fixed-length array types is that they always
take the same amount of memory no matter how much data I store in them,
and there is no way to extend them. To solve this problem, Unity also supplies
a component called a dynamic buffer (IBufferElementData). Compared to
standard components, these components are contained in a resizable buffer
which is attached to an entity.

There are also two components, which allow reference types: shared com-
ponents (ISharedComponentData) and class components (IComponentData).
Shared components are components which share with multiple entities. All
entities with the same shared data value are placed inside the same chunk.
Class components are the same as struct components, but they are a reference
type (class) instead of a value type (struct).

1.3.2.1 GameObject conversion

In Unity 2020.2, it is impossible to create or modify entities outside of scripts.
The only way to create them before the launch of the game is with GameObject
conversion.

GameObject conversion consists of two parts: Authoring and Conver-
sion. Authoring contains GameObjects with scripts that inherit from ICon-
vertGameObjectToEntity interface, which tells Unity to call a conversion
method on them. The interface also defines a Convert method. During conver-
sion, Unity creates a new entity for each GameObject and invokes the Convert
method with the object’s entity, Entity Manager and conversion system ob-
ject. In the convert method, components, with data from the GameObject,
are added to the entity. After the conversion, the entity is ready for use.

GameObject conversion is a relatively slow process. Luckily, Unity can
do the conversion during the compilation of the application, so the runtime
only loads the post-conversion data. Ahead of time conversion is not always

5

1. Unity Data-Oriented Technology Stack

possible, and one example is when GameObject is instantiated in code because
the reference to that GameObject is needed.

The developer can also choose to keep the GameObject after the conver-
sion. Keeping the GameObject allows DOTS systems to access both ECS
components and GameObject components.[3]

Figure 1.1 contains a diagram showing the conversion process.

Figure 1.1: GameObject conversion.[3]

1.3.3 Systems

A system provides the logic that transforms component data from its current
state to its next state. System iterates over all the components that satisfy
its criteria (set of components). A single system might only do a smaller part
of the complete behaviour to reuse as much code as possible.

Unity provides an abstract class (SystemBase) that offers many useful
APIs, but for now, I will focus on simple iteration. At first, Unity had dif-
ferent implementations for systems that used only the main thread and those
that used job systems; however, that changed with SystemBase. SystemBase
provides a more straightforward API that Unity automatically converts in
the background to its runtime format (using code generation). In Unity, pro-
grammers specify which components the entity must have and which it must

6

1.4. Packages

not have. Unity automatically iterates over all the entities and provides the
matching entities in each iteration.

1.3.3.1 Groups

Groups are unique systems that help with system organization. They do not
contain any logic themselves but can have children systems. As with any other
system, groups can run before or after any other system, even another group.
Groups can also be used to update their children manually.

1.3.4 Archetypes

An archetype is a unique collection of types of data components and is used
to categorize entities. Archetypes improve performance as every entity within
an archetype is stored within a chunk that is passed to appropriate systems.
If an archetype is not specified, it is up to Entities to dynamically resolve it at
runtime. Adding and removing components can be costly for the same reason.

For event entities1 it is beneficial to create archetypes. Adding a new entity
to an existing archetype is a cheap operation. In tests, I conducted, creating
new entities with archetypes was two times faster than adding components to
existing entities.

1.4 Packages

Many parts of DOTS are encapsulated inside a package. In this section, I will
look at select few which are relevant to this prototype.

1.4.1 Unity Mathematics

Unity Mathematics is a C# math library with support for Burst compiler. It
provides vector types and math functions. The syntax is similar to shaders,
which has been critiqued by many because it violates C# naming conven-
tions.2 Unity argued that in C# built-in types (such as int and float) also
user lower-case type names and that making functions lowercase makes them
more compatible with shader code.[4]

1.4.2 Animation

An animation package is at a very early stage of development. As of 2020,
Unity considers it experimental — very early preview. It offers animation
blending, IK (inverse kinematics), root motion, layers, and masking. Those

1Event entities are entities that exist only for a frame or two.
2For example, functions in math class use all lower case names instead of PascalCase

names.

7

1. Unity Data-Oriented Technology Stack

who would look for GUI (graphical user interface) would be out of luck as it
can only be accessed with scripts. For this prototype, I decided to use the
current animation system, Mecanim.

1.4.3 UI Toolkit

UI Toolkit is the third generation UI (user interface) solution in Unity. The
Web inspired UI Toolkit. Just as websites, it has markup language (UXML)
and style sheet language (USS). In Unity 2020.2 the UI Toolkit is considered
stable for editor tools and in preview for game UI. UI Toolkit is attempting
to improve complex hierarchies’ performance, which causes issues in previous
Unity UI solutions.

Unity did not leave UI designers in the cold. There is a preview package
(UI Builder) for UI designers adding a visual editor to UI Toolkit.

1.4.4 Physics

In DOTS, Unity offers not one, but two physics solutions: Unity Physics and
Havok Physics. Both of which are free for all Unity developers. These new
solutions are a complete departure from the current Nvidia PhysX solution.
Each solution has its advantages and disadvantages, but both offer the same
API, making the switch between them as simple as downloading a package
and flicking a switch.

The Unity Physics is a stateless open-source physics solution written in
HPC# (High Performance C#). Because it is stateless, it is suitable for
multiplayer games. The solution was developed by Unity with help from
Havok. Unity presents this as a solution suitable for most games—from very
small to very large.

The Havok Physics is a stateful closed-source physics solution written in
native C++. It supports caching and is very fast and stable.

Both engines can run at the same time. It is also possible for a developer
to implement their solution instead of using those provided by Unity.[5]

1.4.5 Rendering

In recent years, Unity made significant efforts on reworking the render pipeline,
introducing Scriptable Render Pipeline (SRP). The SRP has two provided
variants: URP (Universal Render Pipeline) and HDRP (High Definition Ren-
der Pipeline). Anyone developer can, however, create their own variant. The
HDRP is a render pipeline with a focus on the best graphics possible. On
the other hand, the URP focuses on running everywhere at the cost of fewer
graphics features. These render pipelines took many years to develop and are
still in active development with more features coming with every release.

To not throw these efforts away, Unity decided to introduce Hybrid Ren-
derer package for DOTS. Hybrid Renderer is not a render pipeline, but rather

8

1.5. Project Tiny

a system that bridges DOTS with URP and HDRP. Unfortunately, not every
feature is supported and for URP many essential features, such as point lights
and lightmaps, are unsupported.[6]

Unity is also developing a pure DOTS renderer that is part of Project
Tiny. This renderer is, however, much less capable and only supports a basic
feature set.

1.5 Project Tiny

It may seem that Unity DOTS still needs existing GameObject oriented ar-
chitecture to work, but this is not entirely true. Project Tiny is the ultimate
DOTS experience on Unity.

Project Tiny focuses on small, light, and fast experiences such as mobile
games, playable ads, and instant social experiences. Project Tiny targets new
DOTS runtime which does not rely on existing UnityEngine components. It
supports desktop, web, Android and iOS platforms. The 3D and 2D rendering
is very fundamental and not suitable for most games. Input, audio, anima-
tion, physics are all provided as part of Project Tiny; however, each of these
components has a minimal feature set. There is currently no UI support, but
UI Toolkit should be supported by the end of 2020.

Developing anything larger in Project Tiny is very difficult. There is no
way to substitute missing features with components from standard Unity.
Because of this, I did use Project Tiny in this prototype.[7]

1.6 Code

Unity Entities has various ways to implement components and system. In this
section, I will look at some of these implementations to make examples easier
to understand.

The most frequently used and performant method is Entities ForEach func-
tion in a SystemBase system with struct components. Both Burst and jobs
support it. Struct components are standard C# structs that inherit from
IComponentData. Entities ForEach function is a lump of syntactic sugar. Be-
hind the scenes, a code generator converts this function into a job syntax. An
example of how Entities ForEach looks like is in Figure 1.2, and an example
of how job syntax might look like is in Figure 1.3.

The only system type that allows the use of Entities syntax is SystemBase.
There are other base classes for systems, but Unity is working on unifying them
under SystemBase. When an example of such a class occurs, I will explain
the difference.

It is also possible to Burst compile struct systems. However, Unity is still
actively working on this, and the documentation does not even mention it,
yet.

9

1. Unity Data-Oriented Technology Stack

protected override void OnUpdate () {
Entities
.WithAll <LocalToWorld >()
.WithAny <Rotation , Translation , Scale >()
.WithNone <LocalToParent >()
.ForEach ((

ref Destination outputData ,
in Source inputData

) => {
/* do some work */

})
.Schedule ();

}

Figure 1.2: An example of job syntax.[1]

1.6.1 Accessing components

There are multiple ways to access a component and which ways are available
depends on the type of a component. Accessing components directly with
EntityManager should be avoided. EntityManager can only be called on the
main thread and thus makes it impossible to create multithreaded code. The
following table shows where the different components are supported.

Table 1.1: Comparison of various component access methods

struct1 class2 shared3 buffer4

EntityManager Get/Set/Remove 3 3 3 3

ForEach.Run without Burst 3 3 3 3

ForEach.Schedule with Burst 3 7 7 3

GetDataFromEntity 3 7 7 3

SystemBase Get/Set5 3 7 7 3

CommandBuffer Remove 3 3 3 3

CommandBuffer Set 3 7 7 3

1 Struct implementing IComponentData (blittable)
2 Class implementing IComponentData
3 Struct implementing ISharedComponentData
4 Struct implementing IBufferElementData
5 Uses code generation to replace the call with the best available method

to access data.

10

1.6. Code

public c lass RotationSpeedSystem : SystemBase
{

[BurstCompile]
struct RotationSpeedJob : I J o b P a r a l l e l F o r
{

[DeallocateOnJobCompletion] public NativeArray<ArchetypeChunk> Chunks ;
public ArchetypeChunkComponentType<RotationQuaternion> RotationType ;
[ReadOnly] public ArchetypeChunkComponentType<RotationSpeed>

RotationSpeedType ;
public f l o a t DeltaTime ;

public void Execute (int chunkIndex)
{

var chunk = Chunks [chunkIndex] ;
var chunkRotation = chunk . GetNativeArray (RotationType) ;
var chunkSpeed = chunk . GetNativeArray (RotationSpeedType) ;
var instanceCount = chunk . Count ;

for (int i = 0 ; i < instanceCount ; i ++)
{

var r o t a t i o n = chunkRotation [i] ;
var speed = chunkSpeed [i] ;
r o t a t i o n . Value = math . mul (math . normal ize (r o t a t i o n . Value) , quatern ion

. AxisAngle (math . up () , speed . RadiansPerSecond ∗ DeltaTime)) ;
chunkRotation [i] = r o t a t i o n ;

}
}

}

EntityQuery m Query ;

protected override void OnCreate ()
{

var queryDesc = new EntityQueryDesc
{

Al l = new ComponentType [] { typeof (RotationQuaternion) , ComponentType .
ReadOnly<RotationSpeed >() }

} ;

m Query = GetEntityQuery (queryDesc) ;
}

protected override void OnUpdate ()
{

var rotat ionType = GetArchetypeChunkComponentType<RotationQuaternion >() ;
var rotationSpeedType = GetArchetypeChunkComponentType<RotationSpeed >(

true) ;
var chunks = m Query . CreateArchetypeChunkArray (A l l o c a t o r . TempJob) ;

var rotat ionsSpeedJob = new RotationSpeedJob
{

Chunks = chunks ,
RotationType = rotationType ,
RotationSpeedType = rotationSpeedType ,
DeltaTime = Time . deltaTime

} ;
this . Dependency rotat ionsSpeedJob . Schedule (chunks . Length , 3 2 , this .

Dependency) ;
}

}

Figure 1.3: An example of job syntax.

11

Chapter 2
Assignment

The provided instructions are vague and only define a handful of very general
requirements. It is essential to define better what the prototype is about.
With the provided instructions in mind, I came up with an idea for a game.

The game world is divided into a procedurally generated areas and a main,
handcrafted world. The player ventures from the main world into various
procedurally generated areas to find keys. These keys unlock new areas in the
main world. The AI in the main world is peaceful and uses routines to make
the world feel more alive. The procedurally generated areas, on the other
hand, have hostile AI that attacks players on sight. The player has no means
of fighting back and must rely only on wits and speed to find a key and leave
the area.

13

Chapter 3
Analysis

In this chapter, I will analyse several aspects of the prototype. First, I will
create a set of requirements to define what the implementation must do. After
requirements, I will examine implementations of various approaches to proce-
dural generation. The analysis finishes with a look at various ways to store
data in Unity.

3.1 Requirements

The software requirements describe the features and functionalities of the
target system.

3.1.1 Assignment requirements

Assignment requirements contain only requirements which are in the assign-
ment of this thesis.

• 3D graphics,

• open world1,

• role-playing genre2,

• built for Android platform,

• built on Unity platform,

• uses Unity DOTS (Data-Oriented Technology Stack),

• has real-time combat,

1A world that player can explore and approach objectives freely.
2Player assumes a role of a character withing a fictional setting.

15

3. Analysis

• includes characters controlled by AI,

• AI supports combat,

• AI supports daily routines,

• includes procedural map generator which builds maps from scratch,

• has UI (user interface) adapted for mobile devices.

3.1.2 Requirements

List of all requirements combining both functional and non-functional require-
ments into a single list.

• Prototype requirements:

– runs on Android 5.0 and newer (API 21),
– user-interface supports various screen densities and aspect-ratios,
– uses Unity DOTS,
– 3D graphics,
– role-playing genre.

• Player character requirements:

– responds quickly to player inputs,
– can climb smaller obstacles (such as stairs),
– can move at variable speeds.

• World requirements:

– open world,
– procedurally generated environments:

∗ does not use premade sections,
∗ can generate rooms,
∗ every area is accessible,
∗ location selection for

· items
· player
· enemies
· portals (to the next level or/and an exit)

∗ spawned items are accessible,
∗ result is mesh or texture,

16

3.2. Procedural map generation

• Artificial intelligence requirements:

– able to fight,
– has daily routines,
– can move,
– can find paths between two positions in the non-procedurally gen-

erated world,
– integrates with movement used for the player character,
– support for senses,
– behaviours:

∗ combat behaviour:
· target selection,
· ability usage,
· integration with the combat system,

∗ movement behaviour,
∗ behaviour selection,

3.2 Procedural map generation

Procedural map generation is a method of creating maps with algorithms in-
stead of manually. Games often use procedural map generation to create a
near-infinite number of map layouts. Diablo 3 uses tiles made by artists, with
hand-picked areas for asset placement, stitched together and filled with ob-
jects by the algorithm. Premade tiles, however, violate the requirement from
instruction to create maps from scratch. Probably the best-known example
of procedural map generation from scratch is Minecraft. Map generation in
Minecraft is unfortunately not only complicated but also proprietary. Instead,
I will look at ClassiCube, open-source reimplementation of Minecraft Classic.1
First, I will look at Prim’s (sometimes called Jarnik’s) algorithm.

3.2.1 Prim’s (Jarńık’s) algorithm

Prim’s (also known as Jarńık’s) algorithm is a greedy algorithm that finds a
minimum spanning tree on an unweighted graph. By adding randomization,
I can modify this algorithm to generate a maze. Unfortunately, the algorithm
creates only corridors, which makes for a rather dull level design.[8] Example
of a maze generated with this algorithm is in Figure 3.1.

1Minecraft Classic is the official name for version 0.0.23a 01 of Minecraft. Anyone can
play it inside their internet browser for free at classic.minecraft.net.

17

3. Analysis

Figure 3.1: Example of a maze generated with Prim’s algorithm.

3.2.2 Cellular automaton

Cellular automaton is a cell model with following properties:

• cells live on a grid,

• each cell has a state,

• each cell has a neighbourhood.[9]

To create a cave system, I can get help from the Game of Life rules,
invented by Cambridge mathematician John Conway.[10] The rules are as
follows:

1. Each cell with one or no neighbours dies, as if by solitude.

2. Each cell with four or more neighbours dies, as if by overpopulation.

3. Each cell with two or three neighbours survives.

4. Each cell with three neighbours becomes populated.

In the original Game of Life, the cellular automaton created interesting
ever-changing shapes. However, I can use it to create impressive cave systems.
Example of a cave system, generated by this method, is in Figure 3.2.

The downsides of this method are lack of control and similar style of each
map.

18

3.2. Procedural map generation

Figure 3.2: Example of a cave system generated with cellular automata.

3.2.3 ClassiCube

ClassiCube is a complete opensource reimplementation of Minecraft Classic. It
is written in programming language C and supports OpenGL and Direct3D 9.
The game has a very well documented map generation algorithm.

The generator generates the world map in 9 steps. Choose map size, create
height-map, create strata, carve out caves, create ore veins, flood fill-water,
flood fill-lave, create a surface layer, create plants. Only height-map, water
and surface generation are relevant to this prototype.

The game uses various noise functions, but all of them rely on Perlin noise.
Perlin noise, named after its inventor Ken Perlin, is a type of gradient noise.
Ken Perlin originally designed it to create procedural textures for the movie
Tron in the early 1980s. Nowadays, it is often used in video games for proce-
dural map generation, among other things. Unlike random number generator,
Perlin noise forms a naturally ordered (“smooth”) sequence of pseudo-random
numbers.[9] For visual reference see Figures 3.3 and 3.4.

The game creates height-map using three octave noise functions.1 Height-
map defines height at which the algorithm places surface blocks, practically
defining the landscape. With simple math equations and threshold conditions,
the algorithm generates a value for each pixel (block) on the height-map.

The above-ground water is flood-filled into the map. It spreads first on
the x-axis and then the z-axis from the edges of the map.2 The algorithm fills
the water at the height of water level minus one.

At this point, the algorithm created a height-map and filled the edges
with water if possible. However, the terrain still has no materials (textures).

1An octave noise function is a summation of multiple noise functions (in this case Perlin
noise) where each function has a different frequency and amplitude.

2Most 3D games have a coordinate system that uses y-axis for height and xz axes for
the width and depth.

19

3. Analysis

Figure 3.3: Example of Perlin noise.

Figure 3.4: Example of noise generated with random number generator.

The algorithm decides the material in the final crucial part, the surface layer
creation phase.

The surface layer creation supports only three types of materials: sand,
gravel, and grass. The algorithm uses several conditions that check proba-
bilities and position relative to water, to decide what material a block will
have.

3.2.4 The fantasy map generator (Voronoi)

Fantasy map generator created by artist, designer, teacher, and researcher
Martin O’Leary. The algorithm uses Voronoi polygons and various other
methods to generate realistic-looking fantasy maps. The algorithm makes
these maps in six steps.

The first step generates many random points to create an irregular grid.
According to the author, the irregular grid helps hide artefacts that a regular
grid would create and gives the map more organic feeling. These points are
then relaxed using Lloyd relaxation.

The second step of the algorithm focuses on generating landscapes. Unfor-
tunately, it is impossible to simulate natural landscape creation processes in
a reasonable amount of time, so the algorithm uses clever tricks to get around
this problem. The algorithm creates “proto-landscapes” built with geometric
primitives. These primitives make up the general outline of the terrain. There
are also few operations: normalize, relax, round and set sea level. A particular
sequence of primitives and operations defines the landscape.

The third step is a more physical process, erosion. More specifically, water

20

3.3. Data persistence

erosion which is by far the most significant type of erosion. In the context of
the map, the erosion adds features to our terrain while making it smaller. The
algorithm assumes constant rainfall across the whole map and traces how the
water would flow down.

In the fourth step, it is time to render the terrain on a map. The algorithm
renders coastlines, rivers, and slopes.

The fifth step renders cities and borders. For city generation, the algorithm
prefers building cities near a water source and away from each other. The
borders are calculated simply by measuring the distance of each grid point
from the city (using a custom metric).

The algorithm adds labels to the generated map (such as borders, city
markers, rivers) in the final step.[11]

Figure 3.5: Example of a map generated by the fantasy map generator.

The Fantasy map generator is suitable for generating large scale maps.
One of the most significant missing features is road generation. For an actual
level generation, this algorithm could be a good start. However, the map
generation would end up being very tricky. Nonetheless, some of the ideas in
this generator can be used to create more realistic looking maps.

3.3 Data persistence

There are many ways to store various types of data in Unity games. To narrow
down the possibilities, I am going to create groups. Each group can store
static (such as item definitions and procedural configurations) and dynamic

21

3. Analysis

data (player save data). It is important to note that as of the time of writing,
there were no solutions that worked out of the box with Unity DOTS.

3.3.1 ScriptableObjects and PlayerPrefs

A ScriptableObject is a data container that developers can use to store large
amounts of data independently from class instances. ScriptableObjects are
reusable between many instances of an object, reducing the amount of mem-
ory needed and the probability of a mistake. There are many different editor
utilities that developers can use to speed up the development available for
ScriptableObjects. During runtime, ScriptableObjects are read-only. Unfor-
tunately, they do not yet support Unity DOTS and need to be manually
converted to entities.[12]

For smaller user data, developers can use PlayerPrefs. PlayerPrefs is an
API that allows developers to store user data as key-value records. It supports
only numbers (int and float) and text (string). On Android PlayerPrefs use
SharedPreferences, which load all preferences into memory on first access,
storing larger JSON files is therefore not a good idea.[13]

Unity does not provide a solution for storing large amounts of user data.

3.3.2 Files

Nearly every solution that stores data locally uses files, because files are the
only way to reasonably and persistently store data on a computer or a phone.
In this case, using files means directly managing data in files instead of leaving
it to a library. The primary two categories are text and binary files.

3.3.2.1 Text files

Text files store data in a human-readable format. Instead of using a computer
representation of data, we convert the data to text and store it inside a file.
However, the data can still be scrambled with, for example, encryption.

The most common formats for storing data in text files are JSON and
XML. When I refer to text files, I will only refer to JSON and XML. In this
comparison, both formats have the same set of advantages and disadvantages,
so I will not differentiate between them.

22

3.3. Data persistence

Advantages

• Human-readable,

• Git-changes tracking,

• less likely corruption,

• order of items does not matter.

Disadvantages

• Less space efficient.

3.3.2.2 Binary files

Storing data in a binary file is a more efficient operation. Binary (native)
files are smaller and need not be converted to text, saving on processor time.
Applications often use binary format only internally, and as a result, there
are no significant standards for binary formats. The binary file formats are
prone to breaking. Even different architectures can produce different binary
files (the most common reason is Endianness). There is also an increased risk
of corruption when the format changes; for example, when a new property is
added.

Advantages

• Space efficient,

• performant.

Disadvantages

• Prone to corruption,

• Git can’t detect changes,

• error recovery is difficult,

• humans can’t efficiently read binary code.

3.3.3 Databases

A robust system that stores data in an organized form is called a database.
There are many ways to categorize databases, but I will focus on embedded1

SQL and NoSQL, more precisely, SQLite and LiteDB.
1Embedded databases run as a part of an application rather than in a separate process

or a separate machine.

23

3. Analysis

3.3.3.1 SQLite

SQLite is a Relational Database Management System (RMDBS). It is written
in C and distributed as a C library. Because C is a compiled language, SQLite
needs to be recompiled for each processor architecture. The database itself
is embedded inside the application that runs it. SQLite is a popular choice
among embedded databases and is included in Android. Because every version
of Android has a different version of SQLite, it is wise to include SQLite in
the application, improving the stability of the application and reproducibility
of some issues.

Advantages

• performance,

• atomicity, consistency, isolation, durability (ACID),

• errors are automatically detected and repaired,

• optional encryption,

• good editing software support.

Disadvantages

• needs to be compiled for each processor architecture,

• lists are not stored easily,

• Git can’t detect changes.

3.3.3.2 LiteDB

LiteDB is a small, embedded, open-source, .NET NoSQL database. Because it
is written in C#, it can be reused on any platform Unity supports. The library
supports many important concepts such as indexing, encryption (which can
help protect a saved game against tampering), thread-safety, and recovery
after a failure. Uncommonly to NoSQL databases, LiteDB supports ACID
and is thread-safe. Unfortunately, it cannot be used inside jobs, because the
library code cannot be statically analysed. From my experience, the API is
intuitive and easy to use.

One of the more popular projects that use LiteDB is password manager
Bitwarden.

24

3.3. Data persistence

Advantages

• Portable,

• ACID,

• thread-safety,

• recovery after failure,

• optional encryption,

• automatic property serialization.

Disadvantages

• GIT can’t detect changes,

• only a few external tools.

25

Chapter 4
Design

Software design is a process of transforming user requirements into a form,
that helps the programmer in the implementation phase. The prototype re-
quires a very flexible design due to the rapid development of the DOTS. To
make the design more flexible, I decided to make it less detailed and worry
about the details during the implementation phase. This decision proved to
be very fruitful as some parts of the DOTS API changed almost every week
and sometimes even changed between design and implementation.[14]

4.1 Asset Management

Managing assets in Unity is not a straightforward task. The most basic ap-
proach is using the Asset Database in editor and Resources in a player. Asset
Database provides mostly unrestricted access to any file inside the project
folder. The primary limitation of the Asset Database is that it can only be
used within the editor.[15] Resources provide the API to load assets in a player
but can only access files inside a resources folder1. Usage of Resources folder
significantly affects how the project is structured and makes it more challeng-
ing to manage. Developers can also use Asset Bundles, but they require much
work from the developer to implement.[16]

Luckily, there is a third solution, the Addressables library. The Address-
ables library provides developers with an asynchronous way of loading any
asset inside the Assets folder2. It supports loading assets from various loca-
tions, including the internet.[17]

Unfortunately, none of these solutions supports DOTS. It is not clear how
will DOTS load assets in the future. However, the development team is plan-
ning to bring some parts of Addressables into DOTS as built-in functionality.

1Resources folder is any folder named “Resources” within the project.
2In every Unity project, the Assets folder is a folder contained within the projects top-

level directory. It contains all the games assets such as scripts, textures, models, sounds,
and prefabs.

27

4. Design

The first step is sub-scenes. Unfortunately, they only support pure DOTS
scenes, so they are not viable for scene management in this prototype.[18]

I have chosen Addressables as the most promising approach to asset man-
agement.

4.2 Architecture

Software architecture is not a precisely defined term. In this thesis, I will use
Ralph Johnson’s definition that architecture is the shared understanding that
the expert developers have of the system design.[19]

4.3 Movement

There are many parts involved in making a character move. First, there has
to be some input, that systems convert into motion. These systems have to
handle collisions, steps, slopes, rotation, and more, depending on the require-
ments. Lastly, the right animation has to play.

The player or the AI provide the input in this prototype. There are two
primary methods of making a character move. Either modifying the position
directly or using a physics system and applying force to the character to move
it. The choice is very much dependent on the game. For this prototype, I
chose physics system, because the character can better interact with other
physics objects.

There are several hidden problems when using physics. The primary cause
of these problems is the separation of physics and animation. Usually, the
representation of the character in the physics system is much simpler than its
actual 3D model. In the simplest form, the character is a capsule that moves
through the world. The model and animations visible to the player are often
only for show. The primary reason for this simplification is performance. It is
orders of magnitude faster to handle physics between the capsule and a box
than between two complicated and often non-convex meshes.

The first problem is that if a character capsule walks down a slope, it
does not stick to the ground but instead floats forward and slowly falls to the
ground. The second problem is climbing steps or small bumps. The physics
will not allow it, and the character capsule gets stuck on even the smallest
of steps. In older linear role-playing games, characters could get stuck on a
small pebble, unable to step over it.

A system can solve the first problem by guaranteeing the player stays on
the ground if the ground is close enough. Another system can solve the second
problem by lifting the character once it is near a step.

28

4.4. Procedural Map Generation

4.4 Procedural Map Generation

Procedural map generation is a task with varying levels of difficulty. When
approached from the more straightforward side, it entails only a simple algo-
rithm that decides at random if a cell inside a two-dimensional grid is passable
or not. The more complicated approach is a procedural generation of worlds,
beings, decorations, and virtually everything. The most ambitious procedural
map generation project known to me is a game No Man’s Sky, where a player
has the whole, entirely procedurally generated, universe to explore.

In the next section, I will look at the map generator design, which I created
based on the requirements specified in the Analysis chapter.

4.4.1 Procedural terrain generation

With the list of requirements complete, I can now create a high-level design.
Very early on, it became apparent that the system should not use DOTS.
The design would be unnecessarily complicated. There are no performance
benefits in using DOTS because map is procedurally generated only during
level loading. I settled on using standard object-oriented programming for
this task.

There is one thing I wanted to keep from ECS, and that is modularity.
Every part of the generator should be replaceable, except for core logic. I
separated the generation into four replaceable parts: room generator, path
generator, spawner, and presenter.

The room generator is responsible for generating a set number of continu-
ous rooms with restrictions only from map configuration. The path generators
job is to ensure a player can get from any room to any other room. The task
for spawner is to spawn items, player, enemies, and portals. Last but not
least, presenter presents everything in a proper format. The format depends
on the situation; in the editor, it can be an image; on the other hand, in-game
it can be a mesh.

See Figure 4.1 for the diagram of the procedural generator’s architecture.

29

4. Design

Figure 4.1: Design of modular procedural map generator
The dashed borders represent replaceable parts. The solid borders represent parts

of the core.

4.5 Combat

In most games, combat is a fight where a player tries to beat enemies. In
role-playing games, there are often rewards that enemies drop when they die.
Games often feature health with only two states, life and death. It could be
frustrating to have a character that is weaker the less health they have. Games
instead do the opposite, making the players character stronger at low health.

In this prototype, I decided to incentivize combat avoidance to players.
Because the prototype is limited in scope, the result is that the player has
no means of fighting back and has to avoid enemy attacks. Nevertheless, the
design needs to allow possible future integration of player combat.

I focused on range abilities for enemies because melee combat systems
are very challenging to implement properly. One of the main challenges is
that the actual combat systems and animations are often separate, which
results in a difference between what the player sees and what happens. The
combat system performs only simple calculations to determine hits while the
animation system can perform flashy moves.

The combat has two parts, abilities, and modifiers. Each ability describes

30

4.5. Combat

Figure 4.2: Combat parts

and executes one or more actions. Some examples of abilities include fireball,
punch, shooting an arrow and so on. Modifiers serve as a universal method of
modifying characters properties.

4.5.1 Input

Before anything else, there must be something that triggers the ability, an
input. Abilities are requested by attaching an Ability Request component
to an ability definition entity. Even though attaching a component requires
synchronisation, its flexibility is more important in this case. The component
makes it straightforward to implement any trigger as a source, such as player
input or AI input.

4.5.2 Abilities

The ability part of the combat includes all attacks performed by a living
character. Examples of such attacks are punch, fireball, shooting an arrow
and swinging a sword. I divided this part into three segments: definition,
activation, and instance. Segments can only communicate between themselves
with events and tag components. Each segment can further be divided into
phases, which are not restricting in methods of communication.

Definition segment describes actions and provides logic for ability creation.
Activation segment handles activation of abilities. I further divided it into

two phases: validation and activation. Using phases improves performance
because segments cannot communicate with component properties and have
to use synchronization. Unfortunately, the downside is that each system has
to check whether it can use the ability.

The activation phase initializes the ability. It loads all required assets and
applies properties from the definition to the instance. Applying properties

31

4. Design

from definition allows varying strength of each ability between characters and
even using various other properties such as character’s strength.

Finally, the instance segment contains all the logic abilities require after
activation. This phase does not have a specific structure, because the logic
can vary significantly from ability to ability.

4.5.3 Modifiers

A combat system that affects only health can be rather dull. To make it
more interesting, I decided to add the ability to modify any player property.
Examples of player properties include energy, movement speed, and strength.
There are many possible problems with changing these values. For example, if
the change is temporary, how will multiple changes interact with each other,
how to avoid code duplication when these values represent different properties.
To solve these problems, I designed modifiers.

The modifier system is a unified system for modifying any floating-point
value. Modifiers operate on entities exclusively designated to them. There
are five main types of operations (listed in order) addition, multiplication,
clamping1, absorption2, and override. Operations modify subtotal compo-
nent attached to the same entity. Unity DOTS guarantees there are no race
conditions — operations are executed in order.

After the update, the last executed operation system stores the result in
the subtotal component and cleanup system runs. After the execution, the
cleanup is performed to ensure that long frame times do not reduce the actual
value over time. Specific systems use the result to apply it to the appropriate
property inside a primary entity component.

Modifiers are very versatile and can be used for all kinds of things, in-
cluding abilities, equipment effects and zone effects. Having all these effects
on many different entities updated every frame can potentially lead to per-
formance problems. I decided to split permanent and temporary modifiers to
ease this issue. Permanent modifiers are only updated when change occurs;
this has a performance penalty on change, but it increases overall performance
if these changes are not very common. On the other hand, temporary modi-
fiers are updated every frame. However, they have no significant performance
penalty when adding or removing a modifier.

1Clamping is a process of limiting value to a minimum and maximum bound.
2Absorption reduces the magnitude of a value by absorption amount.

32

4.5. Combat

Figure 4.3: Modifier architecture

4.5.3.1 Example

In the following example, I will look at how modifiers work on the health
property. See Figure 4.4 for visual representation of the following description.

There are two significant entities in this example—a primary entity and
a temporary modifier entity. The primary entity has a health component
attached to it, which contains current health value, maximum health value,
temporary modifier entity and permanent modifier entity. The temporary
modifier entity has a buffer for additive, multiplicative, and absorb modifier
operations and a subtotal component.

At the start, there is already an activated ability that has modifiers at-
tached to it. All modifiers on the ability are temporary and only affect current
health. This ability is executing an attack in the current frame. If the attack
hits, it applies modifiers to all entities it hits—in this example, to the Health
temporary modifier entity. Because no entity structures are modified, the
system can immediately take the new modifiers into account without thread
synchronization. Entities package ensures there are no race conditions.

During the update phase, the system executes the operations in order,
reading subtotal at the start and saving its modified value at the end. Because
this entity only has Add, Multiply, and Absorb buffers, only their respective
systems will run. After running the final update system, the cleanup system
removes all expired modifiers. A specified system then updates the health
value in the Health component attached to the Primary Entity. Finally, the
modifiers wait for the next update to update the values again.

33

4. Design

(a) Entity structure

(b) System flowchart

Figure 4.4: Example of the modifiers on a health property.

4.5.3.2 Equipment

All characters have several equipment slots. The most critical slot is the
hand slot, which contains a weapon. Weapons are the source of abilities. A
character can change available abilities by swapping weapons.

4.6 Artificial Intelligence

Excellent AI enhances players experience with fun challenges. On the other
hand, inadequate AI only frustrates them. In this prototype, AI serves as

34

4.6. Artificial Intelligence

an opponent and makes the world feel more alive. Machine learning AI is
often considered the current peak of the AI. However, creating good machine
learning AI is extremely difficult. Instead, I chose to create an AI which has
behaviours and switches between them based on conditions. This method
retains much control over the AI and is very extendable. The only downside
is the theoretical performance penalty with many behaviours, but this can
be solved, by smarter evaluation of only behaviours that have a chance to be
selected.

4.6.1 Groups

The groups help define the basic structure of the AI and its execution order.
AI needs to gather information, process it, decide what to do next and finally
do it. For each of these parts, there is a group. All the sensors that gather
information are executed in the Sensors group. The information from the
sensors is then processed to more advanced formats inside the Pre-Processing
group. Behaviours report how much they want to run in the Behaviour selec-
tion group, which then chooses the most eager behaviour. Lastly, the selected
behaviour is executed in the Behaviour execution group. Inactive behaviours
are also allowed to execute their logic in the Behaviour execution group, but
they must not change the state of the character. For example, they can update
internal information based on sensors data, but cannot move the character.
The Figure 4.5 shows the order of execution in a visual form.

Figure 4.5: The order of AI group execution

4.6.1.1 Sensors

Sensors gather the information that the AI uses for its decisions. The most
common example of a sensor is vision or enemy awareness. The difference
between vision and enemy awareness is that vision does not penetrate walls,
while enemy awareness does. Vision is a handy tool for detecting the player;
however, it is not as handy for navigation. Hearing and smell are challenging to
implement, but in the future could provide unique game mechanics. Example
of a much more common sensor for a game can be danger awareness. Danger

35

4. Design

awareness provides AI with specific information about abilities in space, which
can then be used by the AI to evade them.

These use cases are essential for enabling design freedom in content. En-
abling any sensor requires sensors to be independent of each other; for this
purpose, each sensor will have one or more buffer containing information.
The sensors systems run on entities with these buffers to update them every
update.

For example, the visual sensor consists of two buffers. First contains a list
of all the visual sensors the character has (the character might have two eyes
that can see to the sides but not in front). The second buffer contains a list
of all entities it can see.

4.6.1.2 Behaviour selection

Behaviours are selected based on two properties: priority and value. The
priority describes how important behaviour is. For example, when in combat,
AI should not decide that it is time to eat. To avoid this, the priority for
combat must be higher than hunger. The second property, value, describes
how much it wants to be activated. For example, when the character is more
thirsty than hungry, the thirst will have higher value and will be chosen.

Each behaviour can use sensor results and properties to calculate these
values. The selection system chooses the behaviour with the highest priority
as the active behaviour. Suppose there are multiple behaviours with the same
priority. In that case, the system compares values and chooses the system with
the highest value. If multiple behaviours share the same selection properties,
only one of them is chosen as active.

4.6.1.3 Behaviour execution

The final group is also the most loosely defined. It executes behaviour logic.
Behaviours are free to decide if they want to run only when active or execute
some logic every update.

4.6.2 Daily Routines

Daily Routines give non-player characters something to do when they have
no other task. Even if the NPCs only walk around, it makes the world seem
livelier than if they stand somewhere, waiting for the player or decorating the
street. Because in this prototype, they are not a vital gameplay feature, I
chose to make them more straightforward. The NPCs walk between a list
of checkpoints and wait at each checkpoint for a specified amount of time.
Routines have an essential prerequisite, pathfinding.

Pathfinding falls under requestable behaviours because it responds to event
entities. Because the terrain is not yet convertible to DOTS, it is best to use
the built-in NavMesh generation with pathfinding. Built-in NavMesh support

36

4.7. Character entity

will make things much more manageable and solve many challenging problems
that pathfinding on meshes imposes.

The routines are activatable behaviour. They need to report their prior-
ity, which should be low, to the selection buffer every update. Once they are
active, they need to create a pathfinding event for a path to the next check-
point. When the path is available, they need to follow it until they reach the
checkpoint and repeat the process.

Because the characters are a decoration, there is an early optimization
that can improve performance. Because the paths are three-dimensional and
avoid obstacles, the characters do not need to use physics and can follow the
path at a certain speed.

4.7 Character entity

To make a character structure clear and avoid mistakes, I created a diagram
that shows how the AI character’s entity structure looks. The diagram is in
Figure 4.6.

Figure 4.6: Entity structure of an AI character. The player’s character has a
similar structure. The primary difference is that it does not have behaviours.

4.8 System communication

In an ideal world, systems would not directly depend on each other and could
be freely replaced. ECS makes this simpler to implement because components

37

4. Design

are the only thing that connects different systems. Unfortunately, when a
component changes, it might affect systems that rely on it. To properly un-
derstand what important parts rely on, I created a diagram that shows direct
dependencies of various parts. The diagram is in Figure 4.7.

Figure 4.7: Dependency of important parts

4.9 User interface

This prototype’s user interface needs to display only a few essential pieces of
information—the health, energy, and items. It also needs to allow the player to
control the character. The bottom of the screen contains interactive elements
to make it easier to control the game. The top of the screen primarily contains
informative elements, because fingers will not obstruct them.

Since players can only move in this prototype, the only interactive ele-
ment is the movement control—a floating joystick. Compared to buttons and
standard joystick, the floating joystick is the most comfortable to use. The
difference between standard and floating joystick is that standard joystick has
a static centre position. In contrast, the floating joystick has a centre position
set to the first position the player touches in a selected area.

The most significant informative elements in this prototype are health,
energy, and items. Many games have health in the top left corner and other
information in the top right corner. It would be counter-intuitive for the user
to design it any other way. The health and energy are in the top left corner.
The items are a vertical list of icons, displayed from the top right corner
downwards.

The Figure 4.8 contains a wireframe of this design.

38

4.9. User interface

Figure 4.8: Wireframe of the user interface

39

Chapter 5
Realisation

The realisation of the prototype was more complicated than it might seem
at first glance. Because DOTS is in such an early stage of development, the
documentation is lacklustre, many features were not yet implemented, and
some features were broken. The community is also much smaller and not
that well versed compared to standard Unity development. In the following
chapters, I will look at how I implemented the design.

5.1 Code editors

Unity supports several code editors including Visual Studio Code, Visual Stu-
dio 2019, and Rider. From the three Rider was by far the best option for Unity
development. Visual Studio Code lacks many features which more robust IDEs
like Visual Studio 2019 and Rider have. Visual Studio 2019 is a much more
robust editor, but unfortunately, it is not a very performant option. It was
very slow and often unresponsive for several seconds. Rider, while not perfect,
provided the best working experience. It has a Unity plugin developed by Jet-
Brains which supports Entities package. Early in the development, there were
performance issues with Entities ForEach function, because it has hundreds
of different overloads. Luckily, JetBrains resolved this issue in a later release.
It suffers from occasional disconnects from Unity, but over time these became
less common.

5.1.1 Movement systems

Because the movement systems use physics, they are executed in a fixed-step
group. If the movement systems were executed outside of this group, they
would create weird artefacts, and they would not correctly work as there
might be either no updates or multiple updates per physics step. However,
systems that show the result to the player need to be updated each frame. In

41

5. Realisation

this case, the Animation System. Figure 5.1 shows the order of execution of
each group.

Figure 5.1: The order of execution of the movement systems

A system manually triggers the Input System update at the start of the
fixed-step group. Manual trigger ensures that all inputs are correctly reg-
istered. Unfortunately, it also requires every system that reads input to be
executed in the fixed-step group.1

Sometime after the Input System update, the Input system reads the input
and sets its values into an input intent component. This component is then
accessed by pre-processing components that prepare essential information for
the Movement itself, such as the height of the character and initialization of
data required for the movement calculations.

The physics movement group systems are responsible for calculating the
final velocity vector, which the physics system uses. The group contains two
primary systems — the Grounding system (Figure 5.3) and the Slope and
Step calculation system (Figure 5.2). The Grounding system keeps the player
on the ground while walking down a slope or stairs. The Slope and Step
calculation system has two roles. The computationally more demanding role
is to calculate the speed at which the character should climb the slope. The
second role sets the y coordinate (height) to the y coordinate of the next
expected position. The coordinate is obtained at no extra computational cost

1The Input System update is costly on mobile devices and during debugging took one
millisecond each frame to process. Unfortunately, there were no better solutions at the time
of writing.

42

5.1. Code editors

because the system already knows it from the first role. In the future, the
Slope system, and the Step system could be improved by only using velocity.

43

5. Realisation

var physicsWorld = phys icsData . BuildPhysicsWorld . PhysicsWorld ;
var f ixedDeltaTime = Time . f ixedDeltaTime ;
E n t i t i e s
. WithoutBurst ()
. ForEach (

(
ref P h y s i c s V e l o c i t y p h y s i c s V e l o c i t y ,
ref T r a n s l a t i o n t r a n s l a t i o n ,
ref DirectionalMoveData directionMoveData ,
in ExtraMoveData extraMoveData ,
in BaseMoveData baseMoveData

) => {
var ve loc i ty2D = p h y s i c s V e l o c i t y . Linear . xz ;
i f (ve loc i ty2D . I s Z e r o ()) {

return ;
}
var f u t u r e P o s i t i o n = PhysicsMath . NextPos i t ion (

t r a n s l a t i o n . Value ,
p h y s i c s V e l o c i t y . Linear ,
f ixedDeltaTime

) ;
var n o r m a l i z e d V e l o c i t y = math . normal ize (ve loc i ty2D) ;
f u t u r e P o s i t i o n . x += n o r m a l i z e d V e l o c i t y . x ∗ extraMoveData . Radius ;
f u t u r e P o s i t i o n . z += n o r m a l i z e d V e l o c i t y . y ∗ extraMoveData . Radius ;
i f (Ent i tyPhys ics . GroundRayCast (

in physicsWorld ,
in f u t u r e P o s i t i o n ,
extraMoveData . HalfHeight ,
0 ,
out var f u t u r e R e s u l t

)) {
var a n g l e S t a r t P o s i t i o n = Ent i tyPhys ics . GroundRayCast (

in physicsWorld ,
in t r a n s l a t i o n . Value ,
extraMoveData . HalfHeight ,
extraMoveData . HalfHeight ,
out var f e e t R e s u l t

)
? f e e t R e s u l t . P o s i t i o n
: t r a n s l a t i o n . Value ;

var ang le = a n g l e S t a r t P o s i t i o n . AngleYTo (f u t u r e R e s u l t . P o s i t i o n) ;
f l o a t v e l o c i t y P e r c e n t a g e ;
i f (ang le <= baseMoveData . MaxFullSpeedSlope) {

v e l o c i t y P e r c e n t a g e = 1 f ;
} else i f (ang le <= baseMoveData . MaxClimbSlope) {

v e l o c i t y P e r c e n t a g e = math . s q r t (
1 −
(ang le − baseMoveData . MaxFullSpeedSlope) /
(baseMoveData . MaxClimbSlope − baseMoveData . MaxFullSpeedSlope)

) ;
} else {

v e l o c i t y P e r c e n t a g e = 0 f ;
}
i f (v e l o c i t y P e r c e n t a g e > 0 && v e l o c i t y P e r c e n t a g e <= 1) {

p h y s i c s V e l o c i t y . Linear . x ∗= v e l o c i t y P e r c e n t a g e ;
p h y s i c s V e l o c i t y . Linear . z ∗= v e l o c i t y P e r c e n t a g e ;
t r a n s l a t i o n . Value . y = f u t u r e R e s u l t . P o s i t i o n . y ;

} else i f (v e l o c i t y P e r c e n t a g e <= 0) {
p h y s i c s V e l o c i t y . Linear . x = 0 ;
p h y s i c s V e l o c i t y . Linear . z = 0 ;

}
}

}
)
. Run () ;

Figure 5.2: Implementation of the Slope and Step calculation system.

44

5.2. Asset management

var physicsWorld = phys icsData . BuildPhysicsWorld . PhysicsWorld ;
E n t i t i e s
. ForEach (

(
ref T r a n s l a t i o n t r a n s l a t i o n ,
ref DirectionalMoveData directionMoveData ,
in P h y s i c s V e l o c i t y p h y s i c s V e l o c i t y ,
in ExtraMoveData extraMoveData ,
in BaseMoveData baseMoveData

) => {
f l o a t maxGroundDistance ;
i f (! directionMoveData . IsGrounded && p h y s i c s V e l o c i t y . Linear . y < 0 . 0 f) {

maxGroundDistance = InAirGroundCheckDistance ;
} else {

maxGroundDistance = GroundCheckDistance ;
}
i f (Ent i tyPhys ics . GroundSphereCast (

in physicsWorld ,
in t r a n s l a t i o n . Value ,
AboveFeetCheckDistance ,
maxGroundDistance ,
extraMoveData . Radius / 2 f ,
out var r e s u l t

)) {
directionMoveData . IsGrounded = true ;
i f (r e s u l t . P o s i t i o n . y < t r a n s l a t i o n . Value . y) {

t r a n s l a t i o n . Value . y = r e s u l t . P o s i t i o n . y ;
}

} else {
directionMoveData . IsGrounded = f a l s e ;

}
}

)
. Run () ;

Figure 5.3: Implementation of the Grounding system.

5.2 Asset management

This section will look at how the prototype loads assets and tools needed to
manage database data.

5.2.1 Asset loading

Because many systems rely on loading assets such as prefabs and database
files, the Addressables are among the first things that I need to implement.
Jobs, Burst, and DOTS do not support Addressables. Nevertheless, that does
not mean it is impossible to use them while using DOTS.

The most expensive operations in asset loading are loading the asset and
creating its instance. Neither of these operations can be executed inside a job
or compiled with Burst. Thus, I decided it is better to use class components
and non-blittable structs instead of complicated pointer workarounds. This
solution might slightly reduce performance, but it will likely be replaced with
a DOTS compatible variant in the future.

Addressables are asynchronous, so instead of an asset, they return an asyn-
chronous handle, which contains information about the asset’s current loading
status and its value. I created a two-part system which handles this task. The

45

5. Realisation

Entities
.WithAll <PrefabAsset >(). WithNone <LoadHandle >()
.WithoutBurst ()
.ForEach(

(Entity entity , in LoadAsset loadAsset) => {
var operation =

Addressables.LoadAssetAsync <GameObject >(
loadAsset.Path.ToString ()

);
commandBuffer.AddComponent(

entity ,
new LoadHandle {Value = operation}

);
}

)
.Run();

Figure 5.4: First part of asset loading system.

first part (Figure 5.4) sends a request to load the asset and adds a compo-
nent handle to the request entity. The second part (Figure 5.5) checks each
frame if the loading has finished. If so, it removes the request components
and adds a result component containing the loaded asset. Keeping the same
entity ensures, that no request information, such as instantiation1 tag, is lost.
Unfortunately, because Addressables use generics, each type requires its sys-
tem. It is possible to load any asset as type object; however, this can lead to
unpredictable results such as Sprites loaded as Textures.

To instantiate an object, I created a new system that requires Instantiate
tag and the loaded asset component. Because Instantiation is synchronous,
there is no need for multiple parts.

1Instantiation is the process of creating a new instance.

46

5.2. Asset management

Entities
.WithAll <PrefabAsset >()
.WithoutBurst ()
.ForEach ((

Entity entity ,
in LoadAsset loadAsset ,
in LoadHandle handle

) => {
switch (handle.Value.Status) {

case AsyncOperationStatus.None:
return;

case AsyncOperationStatus.Succeeded:
commandBuffer.RemoveComponent <LoadAsset >(entity);
commandBuffer.RemoveComponent <LoadHandle >(entity);
commandBuffer.AddSharedComponent(

entity ,
new PrefabAssetData {

Prefab = handle.Value.Result as GameObject ,
Path = loadAsset.Path

}
);
break;

case AsyncOperationStatus.Failed:
// Log error
commandBuffer.DestroyEntity(entity);
break;

default:
throw new ArgumentOutOfRangeException ();

}
})
.Run();

Figure 5.5: Second part of asset loading system.

5.2.2 Database

During the initialization of the prototype, the database instance is created and
stored inside a singleton. Singleton makes it possible to use the database in
exclusive mode, which improves performance. Systems can access this instance
with GetSingleton method. The database cannot be accessed directly and has
to be copied to an accessible location outside of the editor. The database is
copied before the initialization of the prototype. In this case, the persistent
data path1 was the most suitable location for the copy. Systems accessing the
database are not allowed to use Burst or run outside of the main thread.

1Persistent data path provides the location of a directory, where data persistent between
runs should be kept. On Android it is resolved by calling getExternalFilesDir.

47

5. Realisation

5.2.2.1 Issues

During design, the database showed great promise in supporting multithreaded
access to the data. Sadly, while the database solution makes it possible, Unity
needs to perform static code analysis on job code. Because LiteDB is a library,
Unity cannot statically analyse the code and throws an error message. The
only remaining alternative is to run the database requests code without Burst
on the main thread. Fortunately, the database is not accessed often, so this is
not much of an issue.

At the moment of implementation, Entities package did not offer any way
to run code outside of ForEach only when ForEach is executed at least once.
Loading database from singleton and getting a collection takes 1 ms. If it
were outside of ForEach, it would reduce the frame budget by 1 ms for each
system that needs to do this. To avoid this penalty, I decided to call database
requests inside ForEach instead.

5.2.3 Asset management tools

The database comes with the increased difficulty of creating tools for creation.
These tools are needed because it is complicated to create database records
manually as there are often unseen references to C# classes. For the creation
of these tools, I decided to use UI Toolkit and reflection. While reflection will
make the initial implementation more complicated, it will make it universal,
enabling its use on various classes without new mapping.

The UI Toolkit creates a tree layout and redraws it at its discretion. Up-
dating a node in the layout requires a reference. Keeping a reference would
be difficult with reflection, but luckily, I could use events and keep the refer-
ence inside them. The classes can be split into their respective fields, thanks
to reflection. However, dividing structs1 is much too complicated and not
worth the effort. Each struct needs its implementation, which cannot share
code with a different implementation. The code cannot be shared because of
type-safety required by generics.

There are only around twenty to thirty structs in use for this prototype’s
necessary structures, including signed numbers, unsigned numbers, vectors,
strings, enums, lists, and arrays. This number of structs is manageable, and
field implementations range from a few lines for the most straightforward
structures to tens of lines for the more complicated ones. Figure 5.6 shows an
example of a straightforward structure.

1Primitive types, such as int and float, are also structs in C#.

48

5.3. Scene management

if (fieldType == typeof(int2)) {
var typedValue = (int2) value;
result = new Vector2IntField(name) {

value = new Vector2Int(typedValue.x, typedValue.y)
}.Also(

field => field.RegisterValueChangedCallback(
evt => {

fi.SetValue(parentObject ,
new int2(evt.newValue.x, evt.newValue.y)

);
onValueChanged ?. Invoke(field);

}
)

);
}

Figure 5.6: Implementation of a 2D vector field using reflection in UI Toolkit.

5.3 Scene management

One of the unexpected problems I encountered was scene management. Unity
provides a SceneManager API; however, it only works with GameObjects.
When using the SceneManager, it loads a GameObject scene, then the objects
with ConvertToEntity component (MonoBehaviour) are converted to entities.
The main problem is that the converted entities are not associated with the
scene, so when the scene is unloaded, they are not.

My workaround for this issue was attaching a ParentScene component to
every entity (Figure 5.7). This component identifies to which scene compo-
nents belong. When a scene is unloaded, all entities belonging to that scene
are destroyed.

I later expanded the scene management to make it possible to load scenes
within DOTS and create procedural maps—more about implementing proce-
dural maps in Section 5.6.1.

49

5. Realisation

public struct ParentScene : IComponentData {
public FixedString64 Id;

}

Entities
.WithNone <ParentScene >()
.ForEach(

(Entity entity , int entityInQueryIndex) => {
commandBuffer.AddComponent(

entityInQueryIndex ,
entity ,
new ParentScene {Id = sceneId}

);
}

)
.ScheduleParallel ();

Figure 5.7: Implementation of a ParentScene component

5.4 Physics

While some things have no DOTS packages, physics has two packages: Unity
Physics and Havok. For this prototype, I chose Unity Physics because it
is open-source. Even though the documentation is lacking, I can at least
look at the source code. As of version 0.5.1, Unity has documented only a
handful of functions. The primary source of information is a manual and an
example project. Because of the poor documentation and occasional bugs,
the implementation consisted mostly of trial and error. One of the most
common use cases—collision and trigger events—is particularly challenging
to do. The easiest way to implement it is to copy implementation from the
example provided by Unity.[20]

Sadly, to find a specific collision, each system has to use a linear search to
find whether it is present or not. To reduce code duplication, I decided to add
a CollidedWithPlayer tag component for often used collision detection with
the player.

I encountered an issue with physics using LocalToWorld component.1 Ac-
cording to documentation, Unity made systems should update LocalToWorld
component with translation, rotation, and other relevant components. How-
ever, this was not behaviour I observed and instead, I had to set LocalToWorld
manually. Resolving this issue was made even more complicated because there
were no runtime physics debugging tools at the time of implementation.

1LocalToWorld component is a 4y×4 transformation matrix containing position, rota-
tion, and scale information in world coordinates.

50

5.5. Combat

5.5 Combat

Combat consists primarily of three parts: the combat system, the modifier
system, and the stats. The combat system contains abilities which apply the
modifiers. The modifiers define how the stats are modified. The stats describe
the characters’ properties. In this section, I will look at how I implemented
each part in reverse order of execution. Figure 5.8 shows the flow of the
combat system.

Figure 5.8: Flow of the combat system

51

5. Realisation

5.5.1 Stats

The stats, also known as character properties, describe the properties of every
character in-game. It contains attributes (such as strength and agility), health,
and energy.

Health, as its name implies, is used to describe characters current health in
a measurable way. By design, health should be only modified with modifiers.
Health changes are propagated from modifier entities to the primary entity.
Various systems can then access health changes within the health component.

Energy follows the same rules as health.

5.5.2 Modifiers

Modifiers serve as the primary logic system for changing properties in a non-
destructive way. I implemented them as buffers attached to an entity. Each
type of modifier has its buffer and update system. Update systems contain
logic that updates the subtotal value with modifier values. There are three
types of modifiers from update perspective: always update, update on change
and never update. An update tag component makes it possible to differentiate
between these three types, making them practically a single type. If the update
component is present, update systems calculate a new value based on existing
modifiers. Otherwise, no modifier system is executed.

The removal system removes expired modifiers after the update is exe-
cuted. Executing this system after the update allows update systems to apply
the modifier partially. I expect there to be many modifiers that should not
be checked for expiration, like template modifiers and permanent modifiers.
For this purpose, I added persistent and temporary tags. The removal system
checks only temporary modifiers for expiration.

Specialized systems need to apply modifier subtotals (results) because ap-
plication logic is different for each property. For this purpose, each character
modifier entity contains a tag component, specifying to which property it be-
longs. Implementing it in this way allows application systems to leverage
modifier tags and for example, only update, when the update tag is present.

5.5.3 Abilities

Abilities are the final piece of the combat system. Abilities describe what
the ability (skill) does, how it looks, and whom it impacts. The implementa-
tion has four phases: input, activation (validation, activation), instantiation,
behaviour. Each ability is different, but they share these four phases.

5.5.3.1 Input

Everything starts with an input, either from the player or the AI. In the
input phase, a system creates an Ability Request component which contains

52

5.5. Combat

the entity that requested it, input source (AI or player), position, and forward
vector. The input system attaches this component to the ability entity, final-
izing the input phase. The activation phase begins the next frame because
the component is attached at the end of the frame.

5.5.3.2 Activation

The activation phase consists of two subphases the validation and the activa-
tion.

In the validation subphase, various things are validated, such as if the
ability is on cooldown and whether there is enough energy to use the ability.
During this subphase, reservations ensure that the conditions still hold in the
activation subphase. A good demonstration of a possible problem is if two
abilities activate simultaneously and the user has energy only for one. If there
were no reservations on energy, the user would end up with negative energy.
Each validation has its system and optional component, to make it possible to
add additional validations without rewriting the existing code in the future.

The activation subphase is executed after the validation subphase. Every
ability has its activator system that contains the logic for ability initialization
(activation). Unfortunately using a tag component to identify valid requests
would impose an unnecessary performance penalty. To avoid this, each system
has to check for the result of the activation phase manually. The logic of each
ability differs, but certain operations such as copying the modifiers to ability
instance or applying cooldown and energy are shared between abilities.

5.5.3.3 Instantiation

The instantiation phase is not an exclusive part of the combat system. How-
ever, it introduces a significant delay and performance penalty. It uses asset
management systems to load and instantiate abilities. This is a necessary step
because the best way—and only advised way—to create physics and graphics
objects is through prefabs. The same holds for graphical effects and particle
systems. Prefabs can also store shared properties between instances.

In the best-case scenario, the asset management systems can prepare a new
instance for ability before the next frame. However, in the worst case, it might
even take several frames to do so. I decided not to solve this potential problem
in the prototype because it is a theoretical issue. There is one more frame
delay after the asset instantiation system creates the instance of the prefab.
The activation system copying components with instance-specific data causes
this delay. It can be mitigated in the future, by adding necessary components
to the prefab and only updating them at runtime with proper values.

53

5. Realisation

5.5.3.4 Behaviour

Behaviour is the most extensive phase because it differs for each ability. It
has three parts initialization, active, and application. I do not consider them
subphases because they might be executed at the same time. A projectile
that hits a target but is not destroyed by it is an excellent example of such a
situation.

The initialization part consists of logic that sets up necessary runtime
information for the active part. For example, an ability that travels on a
curve needs to know its current position on the curve.

The active part contains all logic that decides the movement, shape, and
other logic not related to registering an ability hit. Projectiles move using
physics, so the movement of the projectile is not an example. Nevertheless,
each projectile has a logic that limits its distance and lifetime, primarily to
ensure it does not travel for all eternity; such a system is a piece of this part.

The application part contains all logic that detects when it hit a target and
what to do afterwards. An example from projectiles is the logic of applying
modifiers when a projectile hits the player.

In some cases, one system can contain more than one part.
Examples in Figure 5.9, Figure 5.10 and Figure 5.11 show all three parts

on a projectile ability.

54

5.5. Combat

E n t i t i e s
. WithAll<P r o j e c t i l e >()
. WithNone<Project i l eRunt ime >()
. ForEach (

(
Entity e n t i t y ,
ref Rotation r o t a t i o n ,
in P r o j e c t i l e p r o j e c t i l e ,
in T r a n s l a t i o n t r a n s l a t i o n

) => {
commandBuffer . AddComponent (

e n t i t y ,
new P r o j e c t i l e R u n t i m e {

L a s t P o s i t i o n = t r a n s l a t i o n . Value
}

) ;

r o t a t i o n . Value =
quatern ion . LookRotationSafe (p r o j e c t i l e . Di rect ion , math . up ()) ;

}
)

. Schedule () ;

E n t i t i e s
. WithNone<Project i l eRunt ime >()
. ForEach (

(
Entity e n t i t y ,
ref P h y s i c s V e l o c i t y v e l o c i t y ,
in Components . General . P r o j e c t i l e s . P r o j e c t i l e p r o j e c t i l e

) => {
v e l o c i t y . Linear =
math . normal ize (p r o j e c t i l e . D i r e c t i o n) ∗ p r o j e c t i l e . Speed ;

}
)

. Schedule () ;

Figure 5.9: Implementation of the initialization part of a projectile behaviour.

E n t i t i e s
. ForEach (

(
Entity e n t i t y ,
in Components . General . P r o j e c t i l e s . P r o j e c t i l e p r o j e c t i l e ,
in P r o j e c t i l e R u n t i m e runtime

) => {
i f (p r o j e c t i l e . MaxDistance <= runtime . D i s t a n c e T r a v e l l e d | |

p r o j e c t i l e . MaxAge <= runtime . TimeElapsed) {
commandBuffer . AddComponent<DestroyEntity >(e n t i t y) ;

}
}

)
. Schedule () ;

Figure 5.10: Implementation of the active part of a projectile behaviour.

55

5. Realisation

var elapsedTime = (f l o a t) Time . ElapsedTime ;
E n t i t i e s
. WithAll<Components . General . P r o j e c t i l e s . P r o j e c t i l e , ModifierAddValue >()
. ForEach (

(Entity e n t i t y , in Col l idedWithPlayer h i t) => {
var h e a l t h = GetComponent<Health >(h i t . P layerEnt i ty) ;
var s o u r c e B u f f e r = GetBuffer<ModifierAddValue >(e n t i t y) ;
var t a r g e t B u f f e r =

GetBuffer<ModifierAddValue >(h e a l t h . TemporaryModif ierEntity) ;
var targetArray =

new NativeArray<ModifierAddValue >(s o u r c e B u f f e r . Length , A l l o c a t o r . Temp) ;
for (var i = 0 ; i < targetArray . Length ; i ++) {

var item = s o u r c e B u f f e r [i] ;
item . M o d i f i e r . ActivatedAt = elapsedTime ;
targetArray [i] = item ;

}
t a r g e t B u f f e r . AddRange (targetArray) ;
targetArray . Dispose () ;

}
)
. Schedule () ;

Figure 5.11: Implementation of the application part of a projectile behaviour.

5.6 Items

Items are objects that players can use. In the prototype, there are two types of
items: keys and weapons. Only keys have a visual representation as weapons
are not obtainable by the player. I have chosen to use sprites to represent
keys as they can be used in the game world as well as the user interface. Each
item’s definition is stored inside the database (as class objects) and loaded
on demand. Because it is impossible to use LiteDB inside jobs, the items
are loaded synchronously on the main thread. Load systems automatically
load items tagged with LoadDatabase component from the database. Each
type of item needs its system. There is only one type of item loaded from the
database, so it would not be worth implementing a robust loading system from
the start. Each item type needs its system to convert data from a database
format to components (Figure 5.12).

Each item has two core components: Item and ItemText. The Item com-
ponent identifies each item with a unique identifier. Title and description are
inside the ItemText component. Specific to keys is an ItemIsKey component
that identifies them as keys and provides the key’s value.

Each character has multiple slots to equip items. The only used equipment
slot is the hand, which contains weapons. Weapons provide their owners with
abilities making them essential for combat. Even though players cannot use
weapons in the prototype, the combat system can accommodate player combat
in the future without many changes.

I implemented weapons as standard items with extra components, which
provide information about available modules. Modules contain a reference to
ability entity. When a change occurs, equipment changed tag component is
added to alert the rest of the systems about this change. This tag allows other

56

5.6. Items

systems to update computed information from the equipment; for example,
abilities are cached on the primary character entity and need to be updated
when change occurs.

The keys have a specialized system to load them from the database when
needed. The only required information to load a key from the database is
a position, rotation, and item identifier. Every obtainable item spawned in
the world requires the item definition and needs a physical representation and
physics collider. A system can create the physics collider, but sprite needs
to be loaded from a prefab, because of the Hybrid Renderer. The logic for
picking up an item is straightforward, as I prepared everything necessary in
earlier sections. The pick-up system only needs to require CollidedWithPlayer
and ObtainableItem components to know that it should add an item to the
inventory. For extra versatility, I decided to make this into an event (Fig-
ure 5.13). Event entity allows multiple systems to know about item pick-up.
Change event becomes especially handy for the user interface. Unlocking is
implemented similarly with extra validation if a player has all the required
keys (Figure 5.14).

57

5. Realisation

var database = GetSingleton <GameDatabase >(). Value;
var collection = database.GetCollection <IDatabaseItem >();

Entities.WithoutBurst (). WithAll <LoadDatabase , ItemIsKey >()
.ForEach ((

in Item item ,
in Translation translation ,
in Rotation rotation

) => {
var itemId = item.Id.ToString ();
var result = collection.FindOne(x => x.Key == itemId);
if (result is KeyItemDatabase databaseRecord) {

var entity =
commandBuffer.CreateEntity(_itemArchetype);

// Set item components
var iconPath = databaseRecord.Icon?. Addressable;
if (iconPath != null) {

var iconEntity =
commandBuffer.CreateEntity(_iconArchetype);

// Set icon components
}
var obtainableEntity =

commandBuffer.CreateEntity(_genObtainArchetype);
commandBuffer.SetComponent(

obtainableEntity ,
new GenerateObtainable {

Size = new float3 (1) // Hardcoded size of 1x1x1
}

);
commandBuffer.SetComponent(

obtainableEntity ,
new ObtainableItem {

ItemEntity = entity
}

);
}

})
.Run();

Figure 5.12: Implementation of loading key item from database.

58

5.6. Items

private EntityArchetype _eventArchetype;

protected override void OnCreate () {
base.OnCreate ();
_eventArchetype = EntityManager.CreateArchetype(

typeof(ItemPickedUp),
typeof(GameEvent)

);
}

protected override void OnUpdate(
EntityCommandBuffer commandBuffer

) {
var eventArchetype = _eventArchetype;
Entities
.ForEach ((

Entity entity ,
in CollidedWithPlayer collision ,
in ObtainableItem obtainableItem

) => {
var eventEntity =

commandBuffer.CreateEntity(eventArchetype);
commandBuffer.SetComponent(

eventEntity ,
new ItemPickedUp {

ItemEntity = obtainableItem.ItemEntity ,
OwnerEntity = collision.PlayerEntity ,
TriggerEntity = entity

}
);

})
.Schedule ();

}

Figure 5.13: Implementation of a pick-up event creation system with event
entity archetype definition.

59

5. Realisation

Entities
.ForEach ((

Entity entity ,
in CollidedWithPlayer collision ,
in DynamicBuffer <UnlockRequirement > requirementBuffer ,
in UnlockEntity unlockEntity

) => {
var playerInventory =
GetBuffer <InventoryItem >(collision.PlayerEntity);

if (playerInventory.Length < requirementBuffer.Length){
return;

}
var foundKeys = 0;
for (var i = 0; i < requirementBuffer.Length; i++) {

var found = foundKeys;
var requirement = requirementBuffer[i];
for (var j = 0; j < playerInventory.Length; j++) {

var playerItemEntity = playerInventory[j]. Entity;
var isItemKey =
HasComponent <ItemIsKey >(playerItemEntity);

if (! isItemKey) {
continue;

}
var keyComponent =
GetComponent <ItemIsKey >(playerItemEntity);

if (requirement.Value == keyComponent.Value) {
foundKeys ++;
break;

}
}
if (found == foundKeys) {

break;
}

}
if (foundKeys == requirementBuffer.Length) {

var ueRef = unlockEntity.Entity;
commandBuffer.AddComponent <DestroyEntity >(ueRef);
commandBuffer.AddComponent <DestroyEntity >(entity);

}
})
.Schedule ();

Figure 5.14: Unlock system implementation.

60

5.6. Items

5.6.1 Map generation

During the implementation of the procedural generation, I experimented with
various techniques. The idea was to decide on one implementation from room
generation and one implementation for path generation to demonstrate the
modular generation system.

5.6.1.1 Room generation

The tested techniques for room generation include random DFS, cellular au-
tomaton and other methods derived from these two. The result uses BFS with
a configurable chance of expanding to a cell. While this is not the best method,
it provides suitable areas for testing various other systems, like combat.

The room generator saves each cell into a list and calculates a room’s
bounding box. The bounding box is useful to speed up room position detec-
tion. After all the rooms are generated, an algorithm uses a bounding box to
identify possible intersecting rooms and then validates it with more expensive
cell to cell comparison. Merging rooms is beneficial because the original al-
gorithm may sometimes generate overlapping rooms that could mess up with
spawning that relies on room definitions. It also reduces the need to check for
paths in pathfinding phase.

5.6.1.2 Path generation

Path techniques include drawing a line and various pathfinding algorithms.
I selected an algorithm that uses A* pathfinding because it offers the best
quality/performance ratio. The algorithm guarantees that rooms stored di-
rectly after each other (index i and i+1) are always connected. Other paths
have a configurable probability of appearance. When the algorithm creates a
path from room A to room B, it first selects a random cell from each room
(cell A and B for each room, respectively). After that, it uses my own A*
implementation to find a path to a cell in room B.1 The distance from cell A
to cell B is calculated using Manhattan distance. The final path is reversed,
so it is from start to end, rather than from end to start.

The algorithm selects a random cell because finding the closest cell is a
costly operation. During testing, it took 100 milliseconds for each path to find
the closest point. One of the perks of A* is that it can be easily altered, for
example, by adding noise penalties to the pathfinding map, it can produce
more curvy lines.

1A* is a popular graph search algorithm. It is a modification of Dijkstra’s Algorithm
optimized for a single destination.[21]

61

5. Realisation

public int2 RequestSpawnPosition(
ref Random random ,
SpawnMemory memory ,
int[,] cells ,
IReadOnlyList <DungeonSegment > segments ,
MapSpawnData spawnData

) {
if (memory.SpawnPositions.Count >= cells.Length) {

throw exception , no possible spawn positions
}
// Check positions until an empty one is found
while (true) {

var segmentIndex = random.NextInt(segments.Count);
var segment = segments[segmentIndex];
var positionIndex =

random.NextInt(segment.Cells.Length);
var position = segment.Cells[positionIndex];
// Test if position is taken
if (! memory.IsPositionTaken(position)) {

// Record position as taken
memory.AddPosition(position);
return position;

}
}

}

Figure 5.15: Implementation of the random spawner.

5.6.1.3 Spawning

The spawner first selects x and y coordinate at random. Then it checks if the
coordinate is empty if it is it returns that coordinate. Otherwise, it tries a
different coordinate. The spawning relies on the fact that the random number
generator eventually tries every possible combination, so there are no safety
measures not to repeat coordinates. In the scenarios that can occur in the
prototype, this is not an issue. The probability of hitting taken coordinate is
very low.

5.6.1.4 Presenter

The presenter has several variations in the prototype. Before the editor was
ready for use, I tested map generation algorithms inside sprites using Sprite
presenter. It converted cell maps to textures and added them to Image com-
ponent of Unity UI (uGUI). When I finished the map editor, I replaced it with
Texture presenter and added map preview to the editor.

At first, I generated the playable areas with a Terrain presenter. However,

62

5.6. Items

this proved to be a problematic solution as the terrain cannot create 90-degree
slopes and has trouble drawing textures correctly on a steep slope. I could
solve the texture problem with tri-planar mapping, but that would introduce
a significant performance penalty. Instead, I decided to implement a Mesh
presenter.

The Mesh presenter generates a three-dimensional model of the terrain.
I used the core of the Mesh presenter from Joseph Hocking’s article about
Procedural Generation Of Mazes With Unity.[22] The algorithm was modified
to use Unity Mathematics and extended to generate a physics collider.

Unfortunately, there is a problem with recalculating normals. After in-
vestigating the issue, I determined that fixing it for the prototype would take
much time and make the code more complicated. A likely cause of this prob-
lem is in the Hybrid Renderer library although I could not verify it. Since
this issue is more of an annoyance than gameplay breaking problem, I decided
not to fix this issue as it could be just a bug inside Unity. This problem
causes some vertexes to have randomly flipped normals. The built-in Recal-
culateNormals method, which should fix these problems has no effect.

An example of a part of mesh presenter is in Figure 5.16.

63

5. Realisation

var dimensions = new i n t 2 (c e l l s . GetLength (1) , c e l l s . GetLength (0)) ;

// normalize c e l l s to a format t h a t can be understood by the generator
var n o r m a l i z e d C e l l s = new int [d imensions . y , dimensions . x] ;
for (var y = 0 ; y < dimensions . y ; y++) {

for (var x = 0 ; x < dimensions . x ; x++) {
n o r m a l i z e d C e l l s [y , x] = c e l l s [y , x] > 0 ? 0 : 1 ;

}
}
var meshResult = FromData (

normal i zedCe l l s ,
c o n f i g u r a t i o n . MapScale ,
c o n f i g u r a t i o n . Terra inHeight

) ;
meshResult . Mesh . LowPolify () ;
var renderMesh = new RenderMesh {

m a t e r i a l = new Mater ia l (Shader . Find (” U n i v e r s a l Render P i p e l i n e / L i t ”)) ,
mesh = meshResult . Mesh

} ;
commandBuffer . AddSharedComponent (e n t i t y , renderMesh) ;
commandBuffer . AddComponent (

e n t i t y ,
new RenderBounds {

Value = renderMesh . mesh . bounds .ToAABB()
}

) ;
using var c o l l i d e r V e r t =

new NativeArray<f l o a t 3 >(meshResult . V e r t i c e s , A l l o c a t o r . Temp) ;
using var c o l l i d e r T r i s =

new NativeArray<int3 >(meshResult . Tr iang les , A l l o c a t o r . Temp) ;
commandBuffer . AddComponent (

e n t i t y ,
new P h y s i c s C o l l i d e r {

Value = MeshCol l ider . Create (
c o l l i d e r V e r t ,
c o l l i d e r T r i s ,
new C o l l i s i o n F i l t e r {

BelongsTo = (uint) C o l l i s i o n F i l t e r C a t e g o r y . StaticEnvironment ,
Col l idesWith = (uint) (

C o l l i s i o n F i l t e r C a t e g o r y . DynamicEnvironment |
C o l l i s i o n F i l t e r C a t e g o r y . DynamicCharacters |
C o l l i s i o n F i l t e r C a t e g o r y . Player

)
}

)
}

) ;

Figure 5.16: Part of Mesh presenter implementation.

5.6.1.5 Editor

An editor is a vital part of the procedural map generation. Without it, it
would be tough to design a map. The map editor (also known as level cre-
ator) generates all editable fields using reflection. To update the editor, only
fields in the data file need to be changed. The GUI will automatically adjust
itself. Section 5.2.3 has more information about the automatic field genera-
tion. Without visual feedback, an editor would not be as useful, so the editor
also generates an example of a map generated with the current configuration.
The Texture presenter generates the preview; it does so asynchronously to
avoid editor UI freezes. Figure 5.17 shows the GUI of the map editor.

64

5.6. Items

Figure 5.17: Procedural map editor

5.6.1.6 Performance

The map generation algorithm is high-speed. Even in the editor with debug
mode enabled1. It is generated in several hundred milliseconds, making the
loading times of new areas very fast.

1Editor’s Debug mode significantly reduces the performance and can often result in worse
performance than on mobile devices.

65

5. Realisation

5.7 Artificial intelligence

The implementation of AI (artificial intelligence) consists of two main parts:
sensors and behaviours. Sensors provide AI with information about its sur-
roundings, and behaviours tell AI what to do based on this information.

5.7.1 Sensors

A component defines each sensor. It specifies its properties and makes it
configurable. I chose the visual sensor for the demonstration of what sensors
do.

The visual sensors definition component contains information such as field
of view, distance, and filter. The filter improves the performance of the sensor
by ignoring things in which the sensor is not interested. The visual sensor
does not work like human eyes. Instead, it casts a sphere with a diameter
equal to the size field of view has at the end of the visible distance. This was
the best method, but there are two problems with it. The first problem is that
the sphere will detect even objects outside of the field of view. The second
problem is that it will detect even objects hidden behind other objects.

The first problem can be solved by validating if the object is within the
FoV (field of view). I simplified the implementation to improve performance,
so only the “collision point” is checked. As a result, some objects might
be partially inside the FoV, but the algorithm will incorrectly discard them.
However, solving this edge case would result in too high of a performance
penalty.

The second problem can be solved similarly by sending a ray to validate
if nothing obscures it from issue. It suffers from a similar problem as a single
small object could obscure the ray, and the object would be incorrectly dis-
carded. Luckily, the level design is done in a way that makes this problem
very unlikely.

Visual two-dimensional representation of both of these problems is in Fig-
ure 5.18.

One final addition to the sensors is the processing of data provided by
them. Working with raw data can be difficult and might become expensive
with multiple behaviours. For that purpose, common use cases, such as cal-
culating threat each visible character poses, are computed by a dedicated
system.

66

5.7. Artificial intelligence

Figure 5.18: Example of two problems caused by sphere cast in two-
dimensions.

The solid circle represents the character with the visual sense. The shape with a
dashed outline that starts from the character represents the field of view. The
sizeable dashed circle represents the area “seen” by the sphere (circle) cast in a

single iteration. The dotted shapes represent objects with problems one and two.
The solid rectangle is the only shape that should be detected.

5.7.2 Behaviours

All behaviours operate on exclusive entities. I divided behaviours into activat-
able and requestable. The former uses permanent entities that are activated
with a tag component. The latter uses short-lived entities created for each
request separately.

5.7.2.1 Activatable behaviours

The activatable behaviours are attached to an AI character. Every update all
attached activatable behaviours calculate their selection priority and value.
An example from combat behaviour of such calculation is in Figure 5.19. The
system collects all behaviours and selects one by adding an ActiveBehaviour
component. Behaviours with this component are allowed to modify the state of
the character. The implemented combat behaviour tries to activate an attack
each frame to demonstrate, that the combat system handles everything on its
own and ignores invalid requests.

67

5. Realisation

Entities
.ForEach ((

DynamicBuffer <ThreatData > threatDataBuffer ,
ref DynamicBuffer <SelectionResult > resultBuffer ,
in HasCombatBehaviour combatBehaviour

) => {
if (threatDataBuffer.IsEmpty) {

return;
}
resultBuffer.Add(

new SelectionResult {
BehaviourEntity = combatBehaviour.Behaviour ,
Priority = int.MaxValue ,
Value = float.MaxValue

}
);

}
)

.Schedule ();

Figure 5.19: Combat behaviour selection.

5.7.2.2 Daily Routines

Daily routines need two parts: the pathfinder and routine itself.
I implemented the pathfinder as a requestable behaviour. For a behaviour

to request a path, it needs to create an event entity (PathRequest) which
contains information about the start and end points of the path. During the
update, the pathfinder system queries all the unprocessed path events and
finds a path for them. The system inserts the path into the event entity as
a DynamicBuffer (PathCheckpoint) of three-dimensional points. It is much
more challenging to check for a buffer’s existence than a component’s. There-
fore the system adds PathFinishedTag component, to mark path entity as
finished.

The routine is activatable behaviour, requiring at least two systems—
selection system and behaviour system. I ended up implementing it as four
systems, a Selection system, a Path Requester system, a Behaviour system
and a Delay system. As the name suggests, the Selection system adds the be-
haviour to the selection buffer with the lowest priority and zero value. Once
the system is activated, the Path Requester system requests a path if no path
is available. The Behaviour system waits until a valid path is available. Once a
path is available, it uses lerp function to move the character between a current
checkpoint and the next checkpoint. Once the character reaches next check-
point, it goes to the next until it reaches the end of the path. After reaching
the end of the path, it destroys the path. The code of the Behaviour system

68

5.7. Artificial intelligence

var deltaTime = Time . DeltaTime ;
E n t i t i e s
. ForEach (

(Entity e n t i t y , ref ActivePath path , in ActiveBehaviour a c t i v e) => {
i f (HasComponent<PathFinished >(path . Value)) {

var pathBuf fer = GetBuffer<PathCheckpoint >(path . Value) ;
i f (pathBuf fer . Length > path . LastCheckpoint + 1) {

var l a s t = pathBuf fer [path . LastCheckpoint] ;
var next = pathBuf fer [path . LastCheckpoint + 1] ;
i f (path . NewCheckpoint) {

path . ChangePerSecond =
MovementSpeed / math . d i s t a n c e (l a s t . Pos i t ion , next . P o s i t i o n) ;

path . Time = 0 f ;
path . NewCheckpoint = f a l s e ;

}
path . Time =

math . min (1 f , path . Time + deltaTime ∗ path . ChangePerSecond) ;
var newPosit ion = math . l e r p (l a s t . Pos i t ion , next . Pos i t ion , path . Time) ;
SetComponent (a c t i v e . Entity , new T r a n s l a t i o n {Value = newPosit ion }) ;
i f (path . Time >= 1 f) {

path . LastCheckpoint += 1 ;
path . NewCheckpoint = true ;

}
} else {

commandBuffer . RemoveComponent<ActivePath >(e n t i t y) ;
commandBuffer . DestroyEntity (path . Value) ;

}
}

}
)
. Schedule () ;

Figure 5.20: Daily Routines Behaviour system.

is in Figure 5.20. Finally, the Waiter system waits for a specified amount of
time before allowing the cycle to continue.

5.7.2.3 Requestable behaviours

Requestable behaviours are not attached to an AI character, but rather re-
spond to requests. Each request needs to have a request component attached
(every behaviour has a different request component). All requestable be-
haviours are asynchronous and not guaranteed to be completed before the
next frame. The requester needs to store a reference to the request entity
and check every frame if it is completed. The request is marked as completed
when the behaviour removes the original request from the entity and replaces
it with a result. An example of requestable behaviour is pathfinding. Because
pathfinding has to rely on built-in NavMesh systems, it has to run on the
main thread without Burst. Code example of the pathfinding behaviour is in
Figure 5.21.

69

5. Realisation

struct PathRequest : IComponentData {
// From position

public float3 From;
// To position

public float3 To;
// Entity which requested the path.

public Entity Entity;
}

struct PathCheckpoint : IBufferElementData {
// Position of the checkpoint

public float3 Position;
}

class PathfindingSystem : NextFrameSerialBufferSystemBase{
void OnUpdate(EntityCommandBuffer commandBuffer) {

Entities
.WithoutBurst ()
.WithNone <PathCheckpoint >()
.ForEach(

(Entity entity , in PathRequest request) => {
var navMeshPath = new NavMeshPath ();
var foundPath = NavMesh.CalculatePath(

request.From , request.To ,
1, // area mask
navMeshPath

);
var pathBuffer =

commandBuffer.AddBuffer <PathCheckpoint >(entity);
if (foundPath) {

pathBuffer
.EnsureCapacity(navMeshPath.corners.Length);

for (
var i = 0; i < navMeshPath.corners.Length; i++

) {
pathBuffer.Add(

new PathCheckpoint {
Position = navMeshPath.corners[i]

}
);

}
}

})
.Run();

}}

Figure 5.21: Implementation of requestable pathfinding behaviour.

70

5.8. Input

5.8 Input

I chose the new Input System package to handle inputs. It replaces the older
input system in Unity which has been troublesome for many years.[23] How-
ever, neither the old nor the new input system are yet compatible with Unity
DOTS. Luckily, the integration into DOTS was not difficult.

To integrate the new Input System into DOTS, I first had to call Input
System Update function manually to synchronise the update with DOTS sys-
tems (Figure 5.22). Next, I had to ensure that each system that uses inputs
is called after the Input System update. Because the Input System is not
compatible with DOTS, systems using it cannot be compiled with Burst, and
cannot use jobs. Another issue is that the Input System uses Vector21 type
instead of float2 from Unity Mathematics. I had to convert all vector inputs
to float2. An example of a system using inputs is in Figure 5.23.

// Alternative to SystemBase for systems .
// It does not support Entities . ForEach syntax .
public class InputUpdateSystem : ComponentSystem {

protected override void OnUpdate () {
InputSystem.Update ();

}
}

Figure 5.22: Implementation of Input System update.

1Vector2 is Unity’s built-in two-dimensional vector type

71

5. Realisation

public class MoveInputIntentSystem : SystemBase {
private PlayerMovementControls _inputActions;
protected override void OnCreate () {

base.OnCreate ();
_inputActions = new PlayerMovementControls ();
_inputActions.Movement.Move.Enable ();

}
protected override void OnDestroy () {

base.OnDestroy ();
_inputActions = null;

}
protected override void OnStartRunning () {

base.OnStartRunning ();
// Enable movement actions

_inputActions.Enable ();
}
protected override void OnStopRunning () {

base.OnStopRunning ();
// Disable movement actions

_inputActions.Disable ();
}
protected override void OnUpdate () {

Entities
.WithAll <UseInputDevices >()
.WithoutBurst ()
.ForEach(

(ref DirectionalMoveData directionData) => {
// Read joystick data as two - dimensional vector

var input =
_inputActions.Movement.Move.ReadValue <Vector2 >();

// Convert two - dimensional input vector to
// three - dimensional velocity vector

directionData.IntentVelocity =
new float3(input.x, 0, input.y);

}
)
.Run();

}
}

Figure 5.23: Implementation of reading input data for character movement.

72

5.9. User interface

5.9 User interface

I chose UI Toolkit for the user interface implementation. UI Toolkit does not
yet support DOTS1, so it is not possible to compile UI systems with Burst
and use them inside jobs. As a result of the missing support for DOTS, it
also requires a GameObject to contain UIDocument MonoBehaviour. To al-
low usage inside DOTS, each UIDocument is contained within an ECS class
component. While this introduces some limitations, it is not a problem, be-
cause most of the time, I use Entities ForEach function. An implementation
example is in Figure 5.24.

User interface can be created either from code (Figure 5.6) or UXML
(Unity Extensible Markup Language) (Figure 5.25) and USS (Unity Style
Sheets) (Figure 5.26) files. Or a combination of both. There is a visual editor
available for the latter. The main UI is composed of several smaller UXML
files to make it easier to understand and maintain.

To create the prototype UI, I decided to use the visual editor because it
provides the best experience. It supports all the essential functions I needed
and immediately showed a preview of how the UI looks.

5.9.1 World-space user interface

One significant limitation I faced was the fact that UI Toolkit does not support
world-space UI. In other words, it cannot place UI elements inside the three-
dimensional world space. The only way to work around this issue is to use a
different solution. Because uGUI (Unity UI) is built-in Unity and is easy to
work within less complicated projects, I decided to use it. I needed to use the
world-space UI to implement floating damage numbers when a character is hit
to make it easier to find issues and give exact information to number-oriented
players.

1DOTS support is coming in a future release.

73

5. Realisation

// Class component so it can contain TextElement (class)
// without being shared component
public class FramePerSecondHud : IComponentData {

public TextElement Text;
}

public class FramePerSecondHudSystem : SystemBase {
protected override void OnUpdate () {

Entities
.WithoutBurst ()
.ForEach ((

// class component - no in/ref needed
FramePerSecondHud hud ,
in FramePerSecondData data

) => {
var millisecondsDeviation =

(data.MaxFrameTime - data.MinFrameTime) * 100f;
var milliseconds = data.AverageFrameTime * 1000f;
hud.Text.text =

$"{1f/data.AverageFrameTime:F1}fps{NewLine}" +
$"{milliseconds:F2}ms{NewLine}" +
$"{millisecondsDeviation:F1}ms␣˜";

})
.Run();

}
}

Figure 5.24: Implementation of frame per second UI system.

<ui:UXML xmlns:ui="UnityEngine.UIElements" xmlns:uie="
UnityEditor.UIElements" xsi="http :// www.w3.org /2001/
XMLSchema -instance" engine="UnityEngine.UIElements"
editor="UnityEditor.UIElements"
noNamespaceSchemaLocation="../../../ UIElementsSchema/
UIElements.xsd" editor -extension -mode="False">

<ui:Label text="FPS" display -tooltip -when -elided="True"
name="FpsText" style="-unity -font -style:␣bold;␣font -
size:␣12px;␣-unity -text -align:␣upper -right;␣color:␣
rgba (255,␣255,␣255,␣255);" />

</ui:UXML >

Figure 5.25: Example of a UXML (Unity Extensible Markup Language) file.

74

5.10. Animations

.inspector -label {
padding -left: 2px;
padding -right: 2px;

}

.preview -image {
min -height: 300px;
min -width: 300px;

}

.fill -row > Button , ToolbarMenu {
flex -grow: 1;

}

#unity -content -container {
flex -grow: 1;

}

Figure 5.26: Example of a USS (Unity Style Sheets) file.

5.10 Animations

Animations are an essential part of each game; without them, it would be
static. Unfortunately, the animation package for DOTS is in a very early pre-
view and working with it is complicated. I decided to turn to Unity Mecanim
Animation System, which is currently the default animation solution for Unity.

As with every GameObject system, this required some extra work to con-
nect with Unity DOTS. I decided to use a class component—AnimatorProxy
(Figure 5.27)— because the system can never use the Animator component
outside of the main thread, and there is no need to modify it. Every system
that needs to access the Animator can use either ForEach or EntityManager.

Humanoid animation system is an example of a system that uses Animator
and its implementation in Figure 5.28.

75

5. Realisation

public class AnimatorProxy : IComponentData {
public Animator Animator;
public float Offset;

}
public class AnimatorProxyAuthoring :

MonoBehaviour , IConvertGameObjectToEntity {
public void Convert(

Entity entity ,
EntityManager dstManager ,
GameObjectConversionSystem conversionSystem

) {
var animator = GetComponentInChildren <Animator >();
dstManager.AddComponentData(

entity ,
new AnimatorProxy {

Animator = animator ,
Offset = animator.transform.localPosition.y

}
);

}
}

Figure 5.27: AnimatorProxy component implementation with custom Author-
ing MonoBehaviour.

76

5.10. Animations

public class HumanoidAnimationSystem : SystemBase {
private const double VelocityThreshold = 0.01;
private static readonly int Forward =

Animator.StringToHash("Forward");
protected override void OnUpdate () {

Entities
.WithoutBurst ()
.ForEach ((

in AnimatorProxy animatorProxy ,
in BaseMoveData baseMoveData ,
in ExtraMoveData extraMoveData

) => {
var planarVelocity =

new float2(
extraMoveData.ActualVelocity.x,
extraMoveData.ActualVelocity.z

);
var distance =

length(planarVelocity) / baseMoveData.MoveSpeed;
if (distance < VelocityThreshold) {

distance = 0f;
}
animatorProxy.Animator.SetFloat(Forward ,distance);

}
)
.Run();

}
}

Figure 5.28: Implementation of a humanoid animation system.

77

Chapter 6
Testing

Testing is an essential part of software development; without it, the resulting
program has a very high chance of being plagued with issues. Even prototypes
should have some level of testing involved. The testing of this prototype proved
to be more challenging than expected.

Initially, I planned to implement unit testing for database operations, mod-
ifiers, and some general-purpose systems. Unfortunately, this was not possible
due to issues with the Entities library. I decided to abandon automated testing
and instead only test functionality manually. The manual testing consisted
of playing the prototype, trying various conditions that might occur during
gameplay and validating whether they work or not. I also used assertions in
some areas to catch potential problems.

After finishing the prototype, it was time to test and confirm its viability
with several testers. However, the restrictions imposed by the government
during the state of emergency made testing options limited. In the end, I
decided to test everything remotely. I created a short scenario that the testers
went through. During the testing session, the tester records the screen and
audio (or are present in a voice call). Seeing what players did and thought in
this form, allows me to see some common problems. Lastly, the testers rate
the overall experience with the prototype and whether they found it enjoyable.

6.1 Compilation

The compilation for the testing of this project proved to be more challenging
than initially expected. The first significant platform-specific problem was
that it is not possible to open a database file directly. Instead, it needs to
be copied to some location accessible by the application. Only then can it be
used by the database. The database supports an option to run from memory.
However, I could not make it work, as there were issues that seemed like in-
memory corruption of the database. Similar issues were reported by other
developers who use LiteDB, but unfortunately, they are difficult to reproduce.

79

6. Testing

Unity developed a scripting backend IL2CPP that tries to improve Unity
projects’ performance, security, and platform compatibility. Unfortunately,
in this prototype, it led to significant degradation of performance. Instead, I
decided to use its alternative Mono.

Unfortunately, during testing, the Burst compiler caused native crashes
and had to be disabled. Disabling Burst led to significant degradation of
performance and caused some devices, which initially ran the prototype at
target framerate1, to struggle to maintain even half the target framerate. Due
to changes in the codebase, it was impossible to revert to an older version of
Burst.

6.2 Testing scenario

Before proceeding with the instructions, do not forget to turn on a screen
recorder.

By touching a dragging at the bottom right quarter of the screen, you can
make the character move. There are no other interactable parts in the user
interface.

Your character has awakened inside a barricaded building. Your first task
is to reach a cellar and find a key inside it. Once you have the key, use it
to unlock the door. After unlocking the door, your next task is to find the
next key in the next area, which you can reach by a portal near the well.
After finding the key and leaving the area, a portal will transport you near
the square; however, there is a barrier preventing entry. To destroy/unlock
this barrier, you need two keys (you should already have one from an earlier
area). You can find the third and final key by entering the last procedurally
generated area. The entrance is near the intersection of the barrier and the
road. The last procedurally generated area has two levels, and only the second
one contains a key. You can reach the second level by finding a portal inside
the first level. Once you have gathered both keys, destroy/unlock the barrier
and reach the centre of the square. When you reach the centre of the square,
you have completed all the required tasks. Thank you for testing.

6.3 Results

The results from testing were mixed. Testers found the game concept to be
interesting and fun. They also praised the modifier system as an interesting
mechanic, which makes combat more interesting. On smaller screens, testers
reported that the touch area for the joystick was too small. The movement
system had only a single small issue with friction. The character slowly walked
(slid) on a gradual slope and from testers perspective, walked by itself.

1Target framerate for this prototype is 60 FPS (frames per second).

80

6.3. Results

The procedurally generated areas were difficult to orient, and testers some-
times struggled to find their target. The orientation in the dungeon was even
more difficult because the camera was too close. The procedurally generated
area with two levels also proved difficult for testers, because most of them
expected to find a key in the first level and would spend minutes looking for
it.

The technical aspect of the game was very problematic. All testers re-
ported performance issues, and in some cases the prototype was unplayable.
The technical problems did not end there. The HybridRenderer was the most
problematic package of them all. Some devices experienced issues with light-
ing, and on some, it rendered nothing at all. With poor performance also
comes battery drain and some testers reported rapid battery drain on their
device.

The testers also reported flipped normals, which caused some triangles in
the procedurally generated areas to be incorrectly lit. This issue was known,
but after a short investigation, I determined there is no apparent issue in the
code, and fix might be very complicated. Because I also determined it would
be best to rework the game into 2D, which would not suffer from this problem.

6.3.1 Performance

Many testers noticed that the prototype ran at suboptimal framerates. Often
at half or even less of the target framerate. There are several reasons for
deficient performance. The primary cause is HybridRenderer, which has an
enormous overhead.

A reference frame, taken from a debug build, took 37.19 milliseconds to
render. The HybridRenderer overhead amounted to 13.28 ms. Compared to
that, all the game’s logic took 10.30 ms. It is important to note that physics
took 6 ms to process. However, because the framerate is so low, two physics
steps were executed in one frame. If the game ran at target framerate, the
logic would only take about 3 ms. The actual rendering took 5.64 ms, which
is as expected. By lowering the graphical settings, this can be reduced to 4
ms.

In some cases, more powerful SoC had much lower framerates than weaker
SoC from a different manufacturer. I did not investigate this issue further, but
the cause might be an incompatibility between Hybrid Renderer and specific
SoC.

6.3.2 Testing conclusion

Testing showed significant performance issues with HybridRenderer. It is
much more sensible for mobile devices to use 2D where the rendering takes
a lot less power. A 2D rendering solution is currently in early development
as part of Project Tiny, which offers the only “pure” DOTS experience in

81

6. Testing

Unity. In the future, they plan to expand this solution outside of Project
Tiny, but it is not clear when this might happen. Any project with more
complicated gameplay should avoid Project Tiny as there is no uncomplicated
way to avoid its shortcomings. This leaves a hybrid solution, where rendering
is taken care of by GameObjects. While this will not yield any performance
benefits, it should not be difficult to convert it into pure DOTS rendering once
it is available.

The flipped normals seem like it might be a problem with HybridRenderer
rather than the mesh itself. I increased the camera distance to make it easier
for players to orient themselves in the procedurally generated areas. I also
reduced the size of the procedurally generated areas to reduce the chance of
getting lost. Last but not least, I increased the touch are for the floating
joystick.

I plan on converting this project into 2D a continuing the work on it in
the future. Conversion to 2D should solve most problems testers had with the
prototype. I also plan to continue implementing the logic in DOTS. Because
the rendering tools are still lacklustre, I think using existing Unity rendering
is better. Hopefully, by the time the game is ready, Unity will have a proper
DOTS 2D rendering solution.

82

Conclusion

By the end of 2020, Unity DOTS is an exciting glimpse at the Unity en-
gine’s future. Unfortunately, it is far from ready for other than experimental
projects. Unity laid the groundwork, but not much is yet built on it. However,
not every part of DOTS is unstable. Burst, Job System and Mathematics are
three parts of DOTS, which can be used today in existing projects. Together
they provide significant improvements to parts of the code by optimizing it
and providing safer and more straightforward multithreading.

The core of Unity DOTS is still in early stages of development. The
most developed package, the Entities, has significantly improved over time.
However, much work still lies ahead before it can be considered stable enough
for widespread use. Physics package has all the fundamental tools for most
projects. Sadly, it is mostly undocumented, and I would not recommend using
Unity Physics for mobile games. Hybrid Renderer, the bridge between DOTS
and the existing rendering architecture, is one of the most problematic parts
of DOTS. It only supports basic features and has an extensive performance
overhead. The Animation and Audio packages require a lot of extra effort
from the developer to create even basic things, compared to existing Unity
tools. Many features have not yet been released, such as user interface, asset
management, NavMesh, and many others. I estimate it will take at least two
to three years before DOTS will be a viable solution for a considerable number
of Unity projects.

I succeeded in creating the prototype with all the requirements from the
assignment. The player’s goal is to collect keys to unlock new areas. The
prototype has a physics-based movement system, which gives the player the
ability to freely explore the environment. The player has no means of fighting
back, so they must dodge enemies instead of engaging them. The modifier sys-
tem makes the combat more engaging by enabling proper interaction between
damage values of various attacks. It can also be expanded in the future to
any property. The procedurally generated environments provide players with
replayable value. The testers expressed concerns that the environments can

83

Conclusion

be disorienting at times because everything looks the same. Lastly, artificial
intelligence gives non-player characters the ability to fight and make the world
look less static with routines. The prototype runs on devices with Android
5.0 and newer.

Because Hybrid Renderer is computationally expensive, I think it would
be better to convert the game into 2D instead of 3D. 2D would help with many
problems such as battery drain and orientation in procedurally generated ar-
eas. Even though conversion to 2D would be a significant effort, most of the
logic can be preserved as it is not specific to three dimensions. The mechanic
of collecting keys is a good start, but the testers deemed it dull in its current
state.

The prototype was a successful endeavour that explored the advantages
and disadvantages of DOTS in its current state. Developers interested in
becoming early adopters of DOTS can learn from it and make a better decision
on whether and how to use DOTS in their current or future projects.

84

Bibliography

[1] Unity. Entity Component System package. [online], visited:
17.7.2020. Available from: https://docs.unity3d.com/Packages/
com.unity.entities@0.16/manual/index.html

[2] Microsoft. Blittable and Non-Blittable Types. [online], visited:
17.7.2020. Available from: https://docs.microsoft.com/en-us/
dotnet/framework/interop/blittable-and-non-blittable-types

[3] Unity. GameObject conversion. [online], visited: 29.11.2020. Available
from: https://docs.unity3d.com/Packages/com.unity.entities@0.9/
manual/gp_overview.html

[4] Unity. Unity.Mathematics. [online], visited: 29.11.2020. Available from:
https://github.com/Unity-Technologies/Unity.Mathematics

[5] Mechtley, A. Overview of physics in DOTS - Unite Copenhagen. [online],
visited: 29.11.2020. Available from: https://youtu.be/tI9QfqQ9ATA

[6] Unity. Hybrid Renderer. [online], visited: 5.11.2020.
Available from: https://docs.unity3d.com/Packages/
com.unity.rendering.hybrid@0.10/manual/index.html

[7] Unity. Project Tiny. [online], visited: 5.11.2020. Available from:
https://docs.google.com/document/d/1A8hen2hLFY5FLkC5gd3JP2Z-
IpHfnAX-CpYLK3aOdwA/edit

[8] Buck, J. Maze Generation: Prim’s Algorithm. [online], visited:
31.1.2020. Available from: http://weblog.jamisbuck.org/2011/1/10/
maze-generation-prim-s-algorithm

[9] Shiffman, D. The nature of code. United States: D. Shiffman, 2012, ISBN
0985930802.

85

https://docs.unity3d.com/Packages/com.unity.entities@0.16/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.16/manual/index.html
https://docs.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types
https://docs.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types
https://docs.unity3d.com/Packages/com.unity.entities@0.9/manual/gp_overview.html
https://docs.unity3d.com/Packages/com.unity.entities@0.9/manual/gp_overview.html
https://github.com/Unity-Technologies/Unity.Mathematics
https://youtu.be/tI9QfqQ9ATA
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.10/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.10/manual/index.html
https://docs.google.com/document/d/1A8hen2hLFY5FLkC5gd3JP2Z-IpHfnAX-CpYLK3aOdwA/edit
https://docs.google.com/document/d/1A8hen2hLFY5FLkC5gd3JP2Z-IpHfnAX-CpYLK3aOdwA/edit
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm

Bibliography

[10] Conway, J. Game of Life. [online], visited: 7.9.2020. Available from:
https://playgameoflife.com

[11] O’Leary, M. Generating fantasy maps. [online], visited: 9.9.2020. Avail-
able from: https://mewo2.com/notes/terrain/

[12] Unity. ScriptableObject. [online], visited: 24.9.2020. Available from:
https://docs.unity3d.com/Manual/class-ScriptableObject.html

[13] Unity. PlayerPrefs. [online], visited: 24.9.2020. Available from: https:
//docs.unity3d.com/ScriptReference/PlayerPrefs.html

[14] Point, T. Software design basics. [online], visited: 26.10.2020. Avail-
able from: https://www.tutorialspoint.com/software_engineering/
software_design_basics.htm

[15] Unity. Asset Database documentation. [online], visited: 14.11.2020. Avail-
able from: https://docs.unity3d.com/Manual/AssetDatabase.html

[16] Unity. Loading resources at runtime. [online], visited:
14.11.2020. Available from: https://docs.unity3d.com/Manual/
LoadingResourcesatRuntime.html

[17] Unity. Addressables. [online], visited: 14.11.2020. Available from:
https://docs.unity3d.com/Packages/com.unity.addressables@1.1/
manual/AddressableAssetsGettingStarted.html

[18] Joachim Ante. Addressables and DOTS. [online], visited: 14.11.2020.
Available from: https://forum.unity.com/threads/subscenes-and-
addressable-asset-system.861838/#post-5677804

[19] Fowler, M. Architecture. [online], visited: 26.10.2020. Available from:
https://martinfowler.com/architecture/

[20] Unity. Entities and Physics samples. [online], visited: 15.11.2020.
Available from: https://github.com/Unity-Technologies/
EntityComponentSystemSamples

[21] Patel, A. Introduction to A*. [online], visited: 20.11.2020. Avail-
able from: https://www.redblobgames.com/pathfinding/a-star/
introduction.html

[22] Hocking, J. Procedural Generation Of Mazes With Unity. [online], vis-
ited: 20.11.2020. Available from: https://www.raywenderlich.com/82-
procedural-generation-of-mazes-with-unity

[23] Damm, R. Introducing the new Input System. [online], visited:
22.11.2020. Available from: https://blogs.unity3d.com/2019/10/14/
introducing-the-new-input-system/

86

https://playgameoflife.com
https://mewo2.com/notes/terrain/
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://www.tutorialspoint.com/software_engineering/software_design_basics.htm
https://www.tutorialspoint.com/software_engineering/software_design_basics.htm
https://docs.unity3d.com/Manual/AssetDatabase.html
https://docs.unity3d.com/Manual/LoadingResourcesatRuntime.html
https://docs.unity3d.com/Manual/LoadingResourcesatRuntime.html
https://docs.unity3d.com/Packages/com.unity.addressables@1.1/manual/AddressableAssetsGettingStarted.html
https://docs.unity3d.com/Packages/com.unity.addressables@1.1/manual/AddressableAssetsGettingStarted.html
https://forum.unity.com/threads/subscenes-and-addressable-asset-system.861838/#post-5677804
https://forum.unity.com/threads/subscenes-and-addressable-asset-system.861838/#post-5677804
https://martinfowler.com/architecture/
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.raywenderlich.com/82-procedural-generation-of-mazes-with-unity
https://www.raywenderlich.com/82-procedural-generation-of-mazes-with-unity
https://blogs.unity3d.com/2019/10/14/introducing-the-new-input-system/
https://blogs.unity3d.com/2019/10/14/introducing-the-new-input-system/

Bibliography

87

Appendix A
Glossary

Blittable types data types with identical memory representation in man-
aged and unmanaged code.

Convex mesh a mesh is convex if, given any two points within the mesh,
the mesh contains the line between them.

Dereference to access value or object located in a memory location stored
within a pointer or another value interpreted as such.

Direct3D graphics API for rendering 3D vector graphics on Windows. It is
part of DirectX.

DirectX collection of APIs for handling tasks related to multimedia (primar-
ily game programming and video) on Windows.

IL2CPP scripting backend developed by Unity, which can improve perfor-
mance, security, and platform compatibility in comparison to Mono.

Instantiation a process of creating a new instance.

LLVM a collection of compiler and toolchain technologies.

Managed code a computer program that can only be executed in VES (Vir-
tual Execution System).

Mono Ecma standard compliant .NET Framework-compatible software frame-
work. It includes a C# compiler and a Common Language Runtime. In
2016, Microsoft acquired the developers of Mono.

MonoBehaviour base class from which every Unity script derives.

OpenGL cross-platform API for rendering 2D and 3D vector graphics.

89

Glossary

Pointer a variable whose value is the address of another variable.

Sprite two-dimensional graphical objects that can be placed inside a game
world.

90

Appendix B
Acronyms

ACID atomicity, consistency, isolation, durability.

AI artificial intelligence.

API application programming interface.

ARPG action role-playing game.

BFS breadth-first search.

CPU central processing unit.

DFS depth-first search.

DOTS Data-Oriented Technology Stack.

ECS Entity Component System.

FoV field of view.

FPS frames per second.

GUI graphical user interface.

HDRP High Definition Render Pipeline.

HPC# High Performance C#.

ID identifier.

IDE integrated development environment.

IK inverse kinematics.

91

Acronyms

LTS long-term support.

PC personal computer.

RMDBS Relational Database Management System.

RPG role-playing game.

RTS real-time strategy.

SQL Structured Query Language.

SRP Scriptable Render Pipeline.

UI user interface.

URP Universal Render Pipeline.

USS Unity Style Sheets.

UXML Unity Extensible Markup Language.

VES Virtual Execution System.

92

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
thesis.pdf..............................the thesis text in PDF format
prototype.apk the compiled apk file for 64 bit ARM
src.......................................the directory of source codes

code..implementation sources
thesis..............the directory of LATEX source codes of the thesis

93

	Introduction
	Unity Data-Oriented Technology Stack
	The C# Job System
	Burst compiler
	Entity Component System
	Entities
	Components
	GameObject conversion

	Systems
	Groups

	Archetypes

	Packages
	Unity Mathematics
	Animation
	UI Toolkit
	Physics
	Rendering

	Project Tiny
	Code
	Accessing components

	Assignment
	Analysis
	Requirements
	Assignment requirements
	Requirements

	Procedural map generation
	Prim's (Jarník's) algorithm
	Cellular automaton
	ClassiCube
	The fantasy map generator (Voronoi)

	Data persistence
	ScriptableObjects and PlayerPrefs
	Files
	Text files
	Binary files

	Databases
	SQLite
	LiteDB

	Design
	Asset Management
	Architecture
	Movement
	Procedural Map Generation
	Procedural terrain generation

	Combat
	Input
	Abilities
	Modifiers
	Example
	Equipment

	Artificial Intelligence
	Groups
	Sensors
	Behaviour selection
	Behaviour execution

	Daily Routines

	Character entity
	System communication
	User interface

	Realisation
	Code editors
	Movement systems

	Asset management
	Asset loading
	Database
	Issues

	Asset management tools

	Scene management
	Physics
	Combat
	Stats
	Modifiers
	Abilities
	Input
	Activation
	Instantiation
	Behaviour

	Items
	Map generation
	Room generation
	Path generation
	Spawning
	Presenter
	Editor
	Performance

	Artificial intelligence
	Sensors
	Behaviours
	Activatable behaviours
	Daily Routines
	Requestable behaviours

	Input
	User interface
	World-space user interface

	Animations

	Testing
	Compilation
	Testing scenario
	Results
	Performance
	Testing conclusion

	Conclusion
	Bibliography
	Glossary
	Acronyms
	Contents of enclosed CD

