
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 4, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Dataflow extraction tool for Cobol programming language

 Student: Bc. Andrej Taňkoš

 Supervisor: Ing. Jan Trávníček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

Study the syntax and semantics of Cobol programming language with a focus on IBM Cobol dialect.
Familiarise yourself with Manta project and its metadata and dataflow representation data structures.
Design a metadata representation scheme for Cobol programming language, design an internal
representation of Cobol programming language suitable for a followup dataflow analysis.
Design a dataflow analyzer of Cobol programming language intended to detect dataflows among variables
in Cobol programs.
Implement a prototype of a dataflow extraction tool capable of processing Cobol programs with Manta
project.

References

Will be provided by the supervisor.

Master’s thesis

Dataflow extraction tool for Cobol
programming language

Bc. Andrej Taňkoš

Department of Theoretical Computer Science
Supervisor: Ing. Jan Trávńıček Ph.D.

January 7, 2021

Acknowledgements

I would like to thank the supervisor of this work, Ing. Jan Trávńıček Ph.D.,
for his help, time, and valuable advice during the work. I would like to thank
members of Manta project, namely Mgr. Jǐŕı Toušek for his helpful advice.

Declaration

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obliga-
tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related
to Copyright and on Amendments to Certain Laws (the Copyright Act), as
amended, (hereinafter as the “Copyright Act”), in particular § 35, and § 60
of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)
and with respect to all documentation related to the computer programs
(“software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,
the Civil Code, I hereby grant a nonexclusive and irrevocable authorisation
(license) to use this software, to any and all persons that wish to use the soft-
ware. Such persons are entitled to use the software in any way without any
limitations (including use for-profit purposes). This license is not limited in
terms of time, location and quantity, is granted free of charge, and also cov-
ers the right to alter or modify the software, combine it with another work,
and/or include the software in a collective work.

In Prague on January 7, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Andrej Taňkoš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Taňkoš, Andrej. Dataflow extraction tool for Cobol programming language.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Táto práca sa zaoberá analýzou dátových tokov programovacieho jazyka CO-
BOL, konkrétne IBM COBOL dialektu. Práca najprv skúma rôzne pŕıstupy
k analýze dátových tokov, ich reprezentáciu a vizualizáciu v projekte Manta.
Následne je jazyk IBM COBOL analyzovaný s ciel’om identifikovat’ dôležité
konstrukty jazyka, v ktorých prebieha presun a použ́ıvanie dát. Práca obsa-
huje rešerš existujúcich riešeńı, ktoré by pomohli pri syntaktickej analýze ja-
zyka COBOL. Na základe existujúcich riešeńı a výsledku analýzy je extraktor
dátových tokov navrhnútý a implementovaný pre projekt Manta. Funkčnost’
výsledného riešenia je ukázaná na sade testov a pŕıkladov.

Kĺıčová slova Manta, COBOL, IBM COBOL, extrakcia dátových tokov,
analýza dátových tokov, syntaktická analýza

vii

Abstract

This work deals with the data flow analysis of COBOL programming lan-
guage, specifically IBM COBOL dialect. The work first examines various
approaches to data flow analysis, data flow representation and visualization
in Manta project. Subsequently, IBM COBOL is analyzed to identify impor-
tant segments of the language in which data is transferred and used. The
work contains research of existing solutions that could help with the syntax
analysis of COBOL programming language. Based on existing solutions and
results of the analysis, an extraction tool is designed and implemented for the
Manta project. The functionality of the resulting solution is shown in a set of
tests and examples.

Keywords Manta, COBOL, IBM COBOL, data flow extraction, data flow
analysis, parsing

viii

Contents

Introduction 1
The Goal . 2
The Structure of the Thesis . 2

1 Background 3
1.1 Data Flow Analysis . 3

1.1.1 Data Flow Graph . 4
1.2 MANTA Flow . 5
1.3 Static Data Flow Analysis . 6

1.3.1 Terminology . 7
1.3.1.1 Formal Languages 7
1.3.1.2 Grammars . 8

1.3.2 Lexical Analysis . 8
1.3.3 Syntax Analysis . 9
1.3.4 Semantic Analysis . 10
1.3.5 Parser Generators . 12

1.3.5.1 ANTLR . 12

2 Analysis 15
2.1 COBOL . 15

2.1.1 COBOL Standards, Compilers and Dialects 16
2.2 IBM COBOL . 17

2.2.1 Program Structure . 18
2.2.2 Identification Division 18
2.2.3 Environment Division 18
2.2.4 Data Division . 20

2.2.4.1 Working-Storage, Local-Storage and Linkage
Section . 20

2.2.4.2 Data Description Entry 21

ix

2.2.4.3 Condition-name (Level 88) 22
2.2.4.4 Data Names 23
2.2.4.5 Data Description Entry’s Clauses 23
2.2.4.6 Value Clause 24
2.2.4.7 Data Categories, Data Types, Usage Clause

and Picture Clause 24
2.2.4.8 Redefines Clause 30
2.2.4.9 Occurs Clause 31
2.2.4.10 Renames Clause (Level 66) 32

2.2.5 Procedure Division . 32
2.2.5.1 Add Statement 36
2.2.5.2 Subtract Statement 37
2.2.5.3 Multiply Statement 38
2.2.5.4 Divide Statement 39
2.2.5.5 Compute Statement 40
2.2.5.6 Move Statement 40

2.2.6 Other COBOL Features 41
2.2.6.1 Subprograms 42
2.2.6.2 Separators . 42
2.2.6.3 Identifiers and Qualification 42
2.2.6.4 Subscripting 43
2.2.6.5 Literals . 44
2.2.6.6 Source Code Formats 44
2.2.6.7 Copy Statement 46

2.3 Requirements . 47
2.4 Existing solutions . 47

2.4.1 IBM’s VS COBOL II Grammar 47
2.4.2 GnuCOBOL . 48
2.4.3 Java Cobol Lexer . 48
2.4.4 RES - An Open Cobol To Java Translator 48
2.4.5 TypeCobol . 48
2.4.6 ProLeap ANTLR4-based parser for COBOL 48

2.5 ProLeap ANTLR4 COBOL Parser 49
2.5.1 Arithmetic Expressions 49
2.5.2 Ambiguities in Identifiers 49
2.5.3 Nongreedy Subrules . 49

3 Design 51
3.1 Technologies . 51

3.1.1 Java . 51
3.1.2 Spring Framework . 51
3.1.3 Apache Maven . 52
3.1.4 JUnit . 52
3.1.5 ANTLR . 52

x

3.2 Modules . 52
3.2.1 Connector Modules . 53
3.2.2 Dataflow Generator Module 54

3.3 Data Entities . 55
3.4 Data Types . 56
3.5 Redefines and Renames . 57

4 Implementation 59
4.1 Connector Resolver . 59

4.1.1 CobolParserServiceImpl 59
4.1.2 CobolPreprocessorImpl 61
4.1.3 IBMDataItemAnalyzer 62
4.1.4 ResScope . 62
4.1.5 CobolDataDictionary 62
4.1.6 DataDescriptioItemEntryImpl 63
4.1.7 QualifiedDataNameImpl and DataNameImpl 63

4.2 Dataflow Generator . 64
4.2.1 CobolGraphHelper . 64
4.2.2 CobolDataFlowVisitor 64

5 Testing 67
5.1 Connector Testutils . 67
5.2 Connector Resolver . 67
5.3 Dataflow Generator . 68

6 Data Flow Graph Samples 71
6.1 Simple Program . 71
6.2 Sieve of Eratosthenes Program 73

Conclusion 75
Summary . 75
Future Work . 76

Bibliography 77

A Acronyms 81

B Contents of enclosed CD 83

xi

List of Figures

1.1 MANTA Flow visualization . 6
1.2 Phases of a compiler [1] . 7
1.3 The process of a lexical analyzer 9
1.4 A parse tree (a) and an AST (b) of the same statement 10
1.5 A AST/CST combination . 11

2.1 A hierarchy of record description entries [2] 22
2.2 COBOL redefines associations . 30
2.3 COBOL renames examples [2] . 33
2.4 COBOL fixed format [3] . 45

3.1 A diagram showing dependencies among modules 53
3.2 A data flow graph for a simple ADD statement 55
3.3 An example of the data entities representation scheme 56
3.4 An example of a data flow between a redefine and its source 57

4.1 The process of the COBOL parser service 60

6.1 A data flow graph of the simple COBOL program visualized by
Graphviz . 72

6.2 A data flow graph of the simple COBOL program visualized in
Manta Flow . 73

6.3 A data flow graph in Graphviz for the Sieve of Eratosthenes program 73

xiii

List of Tables

2.1 COBOL classes and categories of elementary data items 25
2.2 COBOL usage types . 26
2.3 COBOL picture characters . 27
2.4 COBOL picture characters, usage types and their sizes 29
2.5 IBM COBOL statements that use data items 35
2.6 Line indicators of fixed format in COBOL 45

xv

Introduction

As the amount of data in the world grows, it is necessary to load, process and
store that data. To process the data, many organizations use programming
languages which were designed for that exact purpose. COBOL is one such
language. Its first definition was produced in 1960 by CODASYL Committee
[4], which means it is one of the first computer programming languages. Ac-
cording to a survey of developer skills by HackerRank [5], Cobol is not very
well known nor popular programming language among modern developers,
but the following facts about Cobol [6] show that it has still huge part in
technology of everyday life.

• It powers about 80% of in-person financial services transactions and 95%
of ATM swipes.

• On a daily basis, it processes $3 trillion in commerce.

• There are over 220 billion lines of COBOL code and 1.5 billion are
written each year.

These facts show that although COBOL is a sixty years old, not very popular
programming language, it is still used programming language.

Technologies are still evolving so there will be a time when an old piece
of software should be replaced with a new one. The reasons for this can be
that the old software is broken or it is working inefficiently. In that case, a
replacement of the software can have a huge impact of other systems and that
is often not easily identifiable. Manta project with its application – Manta
Flow can help with this problem.

Manta Flow is a data flow analysis and visualization tool. Currently,
Manta Flow does not support the data flow analysis of COBOL programming
language, which is the reason for this work.

1

Introduction

The Goal

The main goal of this thesis is to design and implement a prototype of a data
flow extraction tool capable of processing IBM COBOL programs with Manta
project.

The Structure of the Thesis

Chapter 1 presents theoretical background about data flow analysis process
in general, Manta Flow application and how data flow will be analyzed in
this work. Chapter 2 contains the analytical part of this work. It presents
the analysis of IBM COBOL language with the focus to identify important
constructs of the language where data are transferred and used. This chapter
also analyzes existing solutions which could help with the syntax analysis of
COBOL. The chosen solution is analyzed in this chapter as well. Chapter 3
presents design concepts of this work. This chapter introduces the used tech-
nologies and core concepts of the implemented solution. Chapter 4 presents
the implementation part of this work. Chapter 5 describes testing methods,
which are used to verify the quality of the implemented solution. Chapter 6
shows simple COBOL programs and their data flow graphs extracted by the
implemented solution.

2

Chapter 1
Background

This chapter presents the theoretical background about a data flow analysis
and its related terms. The first section introduces the concept of data flow
analysis and also describes used data flow representation – data flow graph.
The second section explains what MANTA Flow is. The last section is devoted
to the data flow analysis process used in this work.

1.1 Data Flow Analysis

Data flow is the sequence in which data transfer, use, and transform during
the execution of a computer program [7]. Data flow analysis is a case of
program analysis that computes information about the flow of data (i.e., uses
and definitions of data) in the analyzed program [8]. Data flow analysis,
depending on when it is performed, can be classified into two categories. These
two categories are static data flow analysis and dynamic data flow analysis.

Static data flow analysis analyzes the data flow of a program without its
execution. Its advantage is that the program does not have to run, and there-
fore with static analysis it is possible to analyze not only correct programs,
but also programs which are faulty, incomplete, or programs which cannot run
due to legal reasons. On the other hand, the disadvantage of static analysis
is that the analyzed data flow is just an approximation of the behavior of
runtime, and therefore less precise.

Dynamic data flow analysis, which is performed while the program is run-
ning, does not have this disadvantage. Dynamic data flow analysis is more
precise but it adds additional runtime overhead, and it needs the program to
run which is not always possible. Both types of analyses have their unique
advantages and disadvantages, and therefore they are used for different pur-
poses.

In this work, the data flow is analyzed statically for reasons described
later. The other properties which characterize data flow analysis are scope of
analysis (global, local, basic block, ...), approach (model checking, abstract

3

1. Background

interpretations, ...), flow and context sensitivity, granularity, application (se-
mantic validity, understanding the behaviour, transformation, ...), program
representations (ASTs, CFGs, DAGs, ...) and data flow information represen-
tation (sets, graphs, trees, ...) [8]. All these properties influence each other,
the whole process of data flow analysis as well as the result.

In this work, I’m interested in data flow analysis on the statement level.
This is the way Manta project analyzes data flow of programs or scripts and
this is also the way of this work. Data flow analysis on statement level analyzes
data flow in the context of statement scope (i.e. data flow among variables,
function calls, expressions, and so on, in statements). This has a consequence.
Control flow of analyzed programs is mostly ignored, and therefore static data
flow analysis is more suitable than dynamic analysis. Static data flow analysis
is properly explained in Section 1.3.

1.1.1 Data Flow Graph

Data flow graph is a representation of data flow information used in Manta
project. Data flow graph is an oriented graph, in which nodes represent data
(variables, intermediate results, expressions, ...), operations (assignments, in-
serts, ...) or structural elements (blocks, statements, ...) and edges represent
data flow. Data flow graph is not just a simple graph. Its edges are classified
into two categories:

• Direct Flow
• Filter Flow (also called Indirect Flow)

A data flow from source data to target data is called direct if there is
a direct change of the target data based on the source data. Direct flow
is present in Listing 1 within an assignment statement. In the assignment
statement, there is direct data flow going from variables a and b to variable
c because c is directly changed by values of a and b.

int a, b, c;
c = a + b;

Listing 1: A sample C code snippet

As opposite to the direct flow, the indirect flow is present when target
data is indirectly influenced by source data. This is shown in Listing 2 where
the indirect flow is going from boolean variable cond to variable a. In the
context of the if statement, variable cond influences the value of a indirectly
with the control flow. Indirect flow is commonly called filter flow because it
is present in filter clauses or filter statements of programming languages. For
example, in WHERE clauses of SELECT statements in SQL dialects.

4

1.2. MANTA Flow

int a;
bool cond = true;

if (cond) a = 1; else a = 0;

Listing 2: A sample C code snippet (2)

It is possible to have data flow of both types between two nodes. In that
case, the direct flow, as the more influencing flow, overrides the filter flow.

Structural nodes of the data flow graph have a tree-like structure. The
tree-like structure is used for better separation between data elements as well
as for a preservation of original hierarchy of an analyzed program. Parent
nodes of data elements represent structural elements such as block scopes,
program scopes, statement identifiers, and so on. It is important to note that
data flow is present only in leaf nodes (data) of the tree structure and never
in parent nodes (structural elements).

Another term closely related to data flow is data lineage. Data lineage is
a description of the pathway from the data source to their current location
and the alterations made to the data along the pathway [9]. Data lineage
is also exactly what can be seen in chosen data flow representation - data
flow graph. By merging the data flows of simple operations into a single
representation, it is possible to create data lineages which depict pathways of
data alternations from data sources to target data locations. Data lineages
are commonly used in applications in the sector of business intelligence (BI)
and data governance to make conclusions from data movement. They can
also help with the analysis how information is used and to track key bits of
information that serve a particular purpose [10].

1.2 MANTA Flow

MANTA Flow [11] is a data lineage analysis and visualization tool provided
by Manta project. It supports data lineage analysis and metadata extraction
for various programming languages and data technologies. The following list
shows some of the currently supported technologies: [12]

• Snowflake database
• Hive database
• Oracle database
• IBM DB2 database
• Java programming language
• Apache Pig
• Oracle ODI

5

1. Background

Data lineage is visualized in the form of data flow graph, which is the
same graph representation introduced in Section 1.1.1. Figure 1.1 shows an
example of the data lineage visualization in MANTA Flow.

Figure 1.1: MANTA Flow visualization

1.3 Static Data Flow Analysis

Static data flow analysis is a type of data flow analysis where data flow of a
program is analyzed statically (i.e. without the program’s execution). Static
data flow analysis can be done in many ways, but in the end it mostly depends
on what kind of data flow should be analyzed and what program representation
should be used. In this work, the aim of data flow analysis is to analyze data
flow on the statement scope from COBOL programs, precisely from a source
code of COBOL programs. Data flow is commonly extracted from internal
program representations. This work is using abstract syntax tree (AST) as
the internal program representation. Data flow analysis by using AST as
the internal program representation has proven as very good solution, which
is confirmed by many supported technologies in MANTA Flow application
mentioned in Section 1.2.

To create an AST as the internal program representation, I use common
techniques from compiler theory. A compiler is a program that reads a pro-
gram in one language - the source language - and translate it into an equivalent
program in another language - the target language [1]. From data flow analy-
sis perspective, I’m not interested in a compiler as a translator from a source
language to a target language but rather in some of its individual phases.
Figure 1.2 shows the common phases of the compiler. To get program’s in-
ternal representation, the first three phases are sufficient enough. These three
phases are discussed in the following sections. After these phases, the program
representation suitable for the data flow analysis and data flow extraction is
created. This is discussed in design and implementation chapters of this work.

6

1.3. Static Data Flow Analysis

Figure 1.2: Phases of a compiler [1]

1.3.1 Terminology

Before I proceed to the explanation of individual phases, it is necessary to
present formal definitions of terms from language processing theory. Defini-
tions are extracted from textbooks on parsing and translations [1] and [13].

1.3.1.1 Formal Languages

An alphabet is arbitrary finite nonempty set of elements - symbols. A string
over alphabet T is a sequence of symbols from alphabet T . The empty se-
quence is also a string, an empty string, and it is commonly denoted ε. The
set of all strings over alphabet T is denoted T*. The set of all non-empty
strings over T is denoted T+. If strings x and y are from T* then z = xy is a
concatenation of string x and y. The length of a string x is denoted |x|.

A formal language L over an alphabet T is an arbitrary subset of T*.
The product of languages L1 and L2 is a language L = L1.L2 = {xy : x ∈
L1 ∧ y ∈ L2}. The k-th power of a language L over T is defined for each k≥0
as L0 = ε and Lk = Lk−1.L for k>0. An iteration of a language L is language
L* =

∞⋃
n=0

Ln. A positive iteration of language L is language L+ =
∞⋃

n=1
Ln.

7

1. Background

1.3.1.2 Grammars

A grammar is a fourtuple G = (N,T, P, S), where N is a finite set of nonter-
minal symbols (nonterminals for short), T is a finite set of terminal symbols,
P ⊆ (N ∪T)*.N.(N ∪T)*× (N ∪T)* is a finite set of rules (a rule (α, β) from
P is often denoted α→ β), and S ∈ N is a starting symbol.

A context-free grammar is a grammar, where rules are of the form A →
α, A ∈ N , α ∈ (N ∪ T)*. A regular grammar is a grammar, where rules
are of the form A → a, A → aB, A,B ∈ N , a ∈ T . The relation α ⇒
β ∈ (N ∪ T)* × (N ∪ T)* is a derivation in a grammar G if α = γXδ, β =
γωδ, γ, δ, ω ∈ (N ∪ T)*, X ∈ N,X → ω ∈ P . The replacement of X by ω
is called an expansion. The k-th power, transitive closure, and reflexive and
transitive closure of the derivation relation ⇒ are denoted ⇒k, ⇒+, and ⇒∗,
respectively. String α is called a sentential form in grammar G, if S ⇒∗ α,
α ∈ (N ∪ T)*. If α contains only terminals it is called a sentence.

Leftmost derivation is a derivation in which the leftmost nonterminal is
expanded. Rightmost derivation is a derivation in which the rightmost non-
terminal is expanded.

Grammar G is called ambiguous if it allows multiple leftmost derivations
or multiple rightmost derivations for same sentence.

Nonterminal A is said to be left recursive in grammar G if there exists
derivation A⇒+ Aα, A ∈ N,α ∈ (N ∪ T)*. Grammar G is left recursive if it
contains at least one left recursive nonterminal.

A language L generated by a grammar G is a set L(G) = {x : x ∈ T* ∧
S ⇒∗ x}.

1.3.2 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. It is com-
monly done by a program called lexical analyzer, lexer or lexan. The lexical
analyzer reads the stream of input characters (e.g. a COBOL program source
code) and groups the characters into meaningful sequences called lexemes.
For each lexeme, the lexical analyzer produces a pair called a token as output
[1]. The first item of the token is the token name and the second item is its
attribute value. Figure 1.3 shows the process of a lexical analyzer for a simple
COBOL statement.

Whitespace characters and comments are commonly discarded by the
lexer. This is done because these elements carry no syntactic purpose for
the next phase, but in some cases they can be quite useful. For example, if a
target tool wants to create pretty print of the original code, it is necessary to
create tokens for all elements of the input stream.

Lexical analysis is generally a simple process because the lexical syntax
(i.e. the syntax of tokens) of programming languages can be usually described
by a regular grammar. For the regular grammar, a finite-state machine or a

8

1.3. Static Data Flow Analysis

Figure 1.3: The process of a lexical analyzer

set of regular expressions can be created to easily recognize lexemes in the
input character stream.

Stream of tokens produced by the lexer is then used as the input for the
next compiler phase – the syntax analysis.

1.3.3 Syntax Analysis

The second phase of the compiler is called syntax analysis or parsing. It is
done by a program called parser which accepts a token stream produced by
the lexer and creates tree-like intermediate representation that depicts the
grammatical structure of the accepted token stream [1]. A typical tree-like
representation is syntax tree or parse tree.

A parse tree, also called a concrete syntax tree (CST), is created by parsing
process and depicts the exact grammatical structure of input tokens according
to the used language grammar. On the other hand, an abstract syntax tree
(AST, or simply a syntax tree) does not depicts the exact grammatical struc-
ture. The AST represents the input syntax more abstractly, and as opposed
to the concrete syntax tree it contains only important information. Abstract
syntax trees do not commonly contain programming language constructs like
parenthesis, commas or semicolons because these constructs are already cap-
tured by the tree representation. Figure 1.4 compares both types of trees for
the same statement used in the previous section. A parse tree can be easily
converted to an AST by a process of removing redundant nodes. The other
way around is more complicated.

As already mentioned, this work aims at AST as the internal program
representation. AST is more suitable for data flow analysis because most
syntax elements of the language are not important for the process of data
flow analysis. To be more precise, the representation which is used in this
work is not exactly AST. AST contains only important information about
the structure of the source program, but it is more difficult to process such

9

1. Background

(a)

(b)

Figure 1.4: A parse tree (a) and an AST (b) of the same statement

a representation. Therefore, used representation is a combination of both –
CST and AST, it is more abstract than concrete, but it contains everything
important. In the thesis, I still call it an AST. Figure 1.5 depicts such a
tree-like representation for the simple COBOL statement used in the previous
figures.

As opposed to the lexical analysis, the syntax analysis is more difficult
task. Programming languages are not generally regular languages but at least
context-free, and therefore they cannot be parsed by regular expressions or
finite-state machines. In the case of context-free languages, there are various
parsing principles such as top down (LL) parsing or bottom up (LR) parsing.
A popular method for creating a parser is to use parser generators. Parser
generators are discussed in Section 1.3.5.

1.3.4 Semantic Analysis

Semantic analysis is the third phase of the compiler. This phase is represented
by a program called semantic analyzer which checks the tree representation
produced by syntax analysis for semantic consistency with the language def-
inition [1]. There are many types of checks which the semantic analyzer is
able to perform. A common type of problem checking is called type checking
where the semantic analyzer checks each operator for a matching operand. By
this type of check, the semantic analyzer is able to detect semantic problems

10

1.3. Static Data Flow Analysis

Figure 1.5: A AST/CST combination

such as assignment of a string to an integer variable or using a float number
to index an array. These problems are not necessarily problems in every kind
of language because some languages can interpret this semantic inconsistency
and perform a correction such as casting. The following list mentions other
problems which can be recognized by the semantic analyzer:

• undeclared variable
• multiple declarations of same variable in same scope
• accessing an out of scope variable

Semantic problem detection is not the only process done by the seman-
tic analyzer. The semantic analyzer also handles process called resolving, in
which it tries to resolve semantic meanings of identifiers. In many program-
ming languages, identifiers can represent objects such as data types, variables,
functions, and so on, and the purpose of resolving is to bind those identifiers
with their definitions. To do this, the semantic analyzer uses a data structure
called symbol table. A symbol table is a data structure which contains infor-
mation about symbols, their names, locations, types, and so on [1]. Symbol
table is filled with information in the whole process of compiling.

In this work, I’m interested especially in resolving because it is an impor-
tant step in the data flow analysis process. Semantic error detection is not so
important for the data flow analysis, because a valid input is expected, and
therefore it is mostly ignored.

11

1. Background

1.3.5 Parser Generators

A parser generator is a tool that takes a grammar description as input and
generates a lexer and a parser implementation that can parse stream of char-
acters using the grammar. Differences between various parser generators are
in classes of languages which they can parse and algorithms they are using.
The popular parser generators for context-free languages are:

• ANTLR [14] (uses LL(*) and ALL(*) algorithms)
• JavaCC [15] (uses LL(k) algorithm)
• Yacc [16] (uses LALR(1) algorithm)
• GNU Bison [17] (uses LALR(1), LR(1), IELR(1) and GLR algorithms)

An advantage of using a parser generator over a written parser is a time reduc-
tion. Parser generators are popular because the input grammar can be written
once and a parser generator will resolve everything else. Some parser genera-
tors are also powerful enough that they can parse ambiguous grammars. In the
case of ANTLR, a user can define special rules called predicates which resolve
ambiguities in a deterministic way. Disadvantages of using parser generators
are mostly in error detection and recovery. Error messages produced by a
generated parser are very simple, and sometimes they are not very helpful.
Error recovery in generated parsers is also very limited.

In this work, parser generator ANTLR is going to be used.

1.3.5.1 ANTLR

ANTLR (ANother Tool for Language Recognition) [14] is a powerful parser
generator used for processing of a structured text. ANTLR accepts an input
context-free grammar in extended Backus-Naur form (EBNF) and generates a
lexer and a parser implementation in popular programming languages such as
Java, C, C++ or Python. The input grammar can be enriched with ANTLR-
specific constructs such as predicates and error handling code to extend possi-
bilities and the scope of grammars which can be parsed by ANTLR. ANTLR
is maintained in two versions - ANTLR3 and ANTLR4. In this work, I use
only ANTLR4.

ANTLR4 uses an adaptive LL(*) parsing method called ALL(*). The dif-
ference from LL(*) method, which is top down (LL) parsing method with
arbitrary long lookahead, is in moving grammar analysis phase to parse-time,
which lets ALL(*) handle any non-left-recursive context-free grammar [18].
With ANTLR4, it is possible to process also ambiguous grammars. In am-
biguous situation, the parser uses a production rule with lowest number (i.e.
the first suitable rule) [18]. By this mechanism, production rules can be or-
dered in the favourable way to get a suitable output. The ANTLR4 grammar
structure is quite simple. Lexer rules are initiated by an uppercase letter and
parser rules are initiated by a lowercase letter.

12

1.3. Static Data Flow Analysis

ANTLR4 can process direct left-recursive rules in some situations. It uses
grammar rules rewriting method to rewrite left-recursive rules to non-left-
recursive versions internally [18]. A user can then write ANTLR4 grammar
rules (e.g. ANTLR4 expressions grammar rules) in left-recursive form and
ANTLR4 can handle it.

The output of the ANTLR4 parser is a parse tree representing the struc-
ture of the input text. The parse tree is represented by common classes from
ANTLR4 framework and the same tree can be transformed into more suitable
representation by a visitor pattern or listeners from ANTLR4 framework. List-
ing 3 shows a simple ANTLR4 grammar for parsing of arithmetic expressions
composed of integers, plus and minus operators.

grammar example;

// parser rules
arithmeticExpression

: INTEGERLITERAL
((MINUSCHAR | PLUSCHAR) INTEGERLITERAL)*
EOF

;

// lexer rules
MINUSCHAR : '-';
PLUSCHAR : '+';
INTEGERLITERAL : [0-9]+;

Listing 3: An ANTLR4 grammar

13

Chapter 2
Analysis

This chapter presents the analytical part of this work. The first topic of study
is COBOL programming language and one of its dialects - IBM COBOL.
COBOL and IBM COBOL are analyzed in the first two sections. The next
section presents requirements on the solution by Manta project. This is fol-
lowed by a section about existing solutions, which could help with the syntax
analysis of IBM COBOL. The chosen solution is discussed in the fourth sec-
tion.

2.1 COBOL

Common Business Oriented Language, COBOL or simply Cobol is a compiled
computer programming language designed for business use. Its first definition
was produced in 1960 by CODASYL Committee [4], which means it is one of
the first computer programming languages.

One of the key features of Cobol is its English-like syntax. Thanks to
this feature, programs written in Cobol are known to be self-documenting and
easy-to-read even by non-programmers. COBOL programs are structured into
several types of segments (similar to books) such as sections, paragraphs or
sentences, making a COBOL code to be read and written as a written English
text. However, such design led Cobol to also have several disadvantages. For
example, a Cobol code is very verbose, due to using whole English words
for even simple operations and language constructs, making it longer than it
would be in other programming languages.

Another unique feature of COBOL is its strict program structure. COBOL
standards define a structure of COBOL programs precisely, where a program
is divided into segments and subsegments. Each segment has its own unique
name, type, purpose and also a set of rules specifying what other segments
it can contain as well as their specific order, if there is any. For example,
statements are placed into segment called PROCEDURE DIVISION, data

15

2. Analysis

definitions are placed into DATA DIVISION, and DATA DIVISION must
precede PROCEDURE DIVISION in a COBOL source code.

2.1.1 COBOL Standards, Compilers and Dialects

In its lifetime, Cobol was updated continuously and multiple Cobol specifica-
tions and standards were created and published. The most known COBOL
standards have been produced in 1968, 1974 and 1985 by standardization
organization ANSI, and in 2002 by ISO [4]. These Cobol standards have
been introduced to resolve incompatibilities between Cobol versions, to resolve
problems from older versions as well as to add new features to the language
[4]. They are commonly known as COBOL 68, COBOL 74, COBOL 85, and
COBOL 2002, respectively. The newest COBOL version is named COBOL
2014, but it is not very popular.

Standards have optional parts and implementers can choose if they want
to support them. There are also non-standard features for COBOL. Many
COBOL implementers deliver compilers supporting variations or extensions of
the language, supporting standard and non-standard features. Such a flavour
of the language is not exactly the same thing as the original language even
though its core is the same, and thus it is often called a programming language
dialect. Different COBOL dialects are often not compatible because they
support different features.

To sum it up, Cobol is a successful compiled programming language which
exists in various versions, supporting different standards and features. So
it is natural to assume that there are multiple Cobol compilers supporting
different versions and standards. During the years, many Cobol compilers
were discontinued but there are still compilers which are used today. The
following list mentions the major ones:

• GnuCOBOL [19]
• IBM COBOL [20]
• Micro Focus COBOL [21]
• Fujitsu NetCOBOL [22]

GnuCOBOL is known to be one of a few Cobol compilers distributed with
an open-source license. According to [19], GnuCOBOL implements a substan-
tial part of the COBOL 85, COBOL 2002 and COBOL 2014 standards as well
as many extensions included in the other COBOL compilers (IBM COBOL,
MicroFocus COBOL, ACUCOBOL-GT and others). This is quite handy be-
cause many Cobol compilers such as IBM COBOL or Micro Focus COBOL
are propiertary products, so they cannot be used nor analyzed freely. Gnu-
COBOL supports popular PC operating systems such as GNU/Linux, Mac
OS X and Microsoft Windows. After personal experience with this compiler,
I can say that only simpler constructs of COBOL are supported and those

16

2.2. IBM COBOL

more advanced are not. But because this compiler is also the best open-
source solution out there, I use it in analytical parts of the thesis anyway.
GnuCOBOL is used in the form of OpenCobolIDE 4.7.6.

Another COBOL compiler, which seems to be the most popular COBOL
compiler, is IBM COBOL. IBM COBOL is a proprietary product which targets
enterprise systems (IBM mainframes). To be more precise, this compiler is
not just one compiler but a family of Cobol compilers produced by IBM. IBM
has introduced multiple Cobol compilers implementing different versions and
standards during the years [23] [24]. IBM has also many COBOL dialects with
the most recent one called Enterprise COBOL [23].

The last two COBOL compilers – Micro Focus COBOL and Fujitsu Net-
COBOL also belong to the category of proprietary COBOL compilers. They
are not beneficial to purposes of this work so I will not discuss them here.

Due to multiple specifications, multiple versions of language coming in
various flavours, it is not an easy task to cover all variants of language, even
though the most of them support the same core of the language. Therefore,
this work is focused only on the most popular Cobol family - IBM COBOL
and only one of its dialects - Enterprise COBOL for z/OS Version 6 which is
also the newest one from IBM COBOL family. As the following text is focused
only on this language dialect, I will refer to it by IBM COBOL or simply just
COBOL unless otherwise specified.

2.2 IBM COBOL

IBM industry specification of Enterprise COBOL for z/OS Version 6.3 [25]
precisely defines what specifications and standards are supported by this lan-
guage as well as what non-standard features this language includes. It seems
like IBM COBOL is very good at standards compliance and there is just a
one small restriction related to common standards. IBM Cobol targets at sup-
port of COBOL 85 with partial support of COBOL 2002 and COBOL 2014
standards. It also includes additional modules for intrinsic functions and 7-
bit coded character set. These standards, mainly COBOL 85, are commonly
supported by other major COBOL implementers [19] [26] [27], so it is very
convenient to aim at them.

The next parts of this section are devoted to the documentation of features
of IBM COBOL. The most information is extracted from one single source -
Enterprise COBOL for z/OS Version 6.3 Language Reference [2]. It is im-
portant to note that not every part of the language is analyzed. Language
documentation contains about 730 pages so it is not convenient to process
everything from the language. Instead, this work is focused only on general
concepts of COBOL and also on parts of the language which are the most
important for data flow analysis and extraction.

17

2. Analysis

2.2.1 Program Structure

COBOL programs are known for their unique structure which is strictly de-
fined by the language. A sample COBOL program used in Listing 4 demon-
strates this unique structure. COBOL describes various types of divisions,
paragraphs and sections which can be used in a program code. Those divi-
sions, paragraphs and sections are used for many things such as a configuration
of environment, setting program properties, definitions of data items, state-
ments usages, and so on. COBOL describes their exact order, if there is any,
and where the corresponding elements can appear. In the following text, I
will follow the order of these elements while I will be explaining them, but I
will not address their exact order everywhere as it is mostly irrelevant for this
work. For an interested reader, the structure and the order of these elements
is nicely described in the language reference.

Before I proceed, it is important to mention that COBOL keywords and
identifiers are case-insensitive, even in user-defined words, so IDENTIFI-
CATION and identification represent same keyword. However, all of them
are commonly written in uppercase letters so I will write them like that too.

COBOL programs are composed of building blocks called divisions. There
are four divisions which can be defined within a COBOL program:

1. IDENTIFICATION DIVISION
2. ENVIRONMENT DIVISION
3. DATA DIVISION
4. PROCEDURE DIVISION

2.2.2 Identification Division

The IDENTIFICATION DIVISION is the only single division which is manda-
tory for every COBOL program. It has to contain mandatory paragraph
named PROGRAM-ID in which a programmer specifies a name of the COBOL
program and optionally, program attributes. The other paragraphs of this di-
vision only serve as fields for documentation.

2.2.3 Environment Division

The ENVIRONMENT DIVISION is the second division of COBOL programs.
It serves as a place for describing computer environment and input-output
resources of COBOL programs. This division is a place for two sections - the
CONFIGURATION SECTION and the INPUT-OUTPUT SECTION.

The first section is not important for data flow analysis so I skip it entirely.
The second section is related to input-output properties of COBOL programs.
These properties are somewhat important for data flow analysis but because
COBOL is an extensive language and the target of this work is on the data
flow analysis between variables, I will not cover them in this work.

18

2.2. IBM COBOL

Identification Division.
Program-id. AWIXMP.
Data Division.
Working-Storage Section.
01 Feedback.
02 Fb-severity PIC 9(4) Binary.
02 Fb-detail PIC X(10).

77 Dest-output PIC S9(9) Binary.
77 Lildate PIC S9(9) Binary.
77 Lilsecs COMP-2.
77 Greg PIC X(17).
01 Pattern.
02 PIC 9(4) Binary Value 45.
02 PIC X(45) Value

"Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz ZD, YYYY.".
77 Start-Msg PIC X(80) Value

"Callable Service example starting.".
77 Ending-Msg PIC X(80) Value

"Callable Service example ending.".
01 Msg.

02 Stringlen PIC S9(4) Binary.
02 Str .
03 PIC X Occurs 1 to 80 times

Depending on Stringlen.
Procedure Division.
000-Main-Logic-Paragraph.

Perform 100-Say-Hello-Paragraph.
Perform 300-Say-Goodbye-Paragraph.
Stop Run.

100-Say-Hello-Paragraph.
Move 80 to Stringlen.
Move 02 to Dest-output.
Move Start-Msg to Str.
CALL "CEEMOUT" Using Msg Dest-output Feedback.
Move Spaces to Str. CALL "CEEMOUT"

Using Msg Dest-output Feedback.
300-Say-Goodbye-Paragraph.

Move Ending-Msg to Str.
CALL "CEEMOUT" Using Msg Dest-output Feedback.

End program AWIXMP.

Listing 4: A sample COBOL program demonstrating program structure [28]

19

2. Analysis

2.2.4 Data Division

The DATA DIVISION is a segment of COBOL programs where data defini-
tions belong. This division can contain four sections:

1. FILE SECTION
2. WORKING-STORAGE SECTION
3. LOCAL-STORAGE SECTION
4. LINKAGE SECTION

These sections are a place for variable definitions which are called description
entries. There are two types of description entry:

• file description entry
• data description entry

COBOL uses an uncommon terminology where variables are not called
variables but items. In the case of a variable representing a reference to a file
it is called a file item or simply a file, and in case of a plain variable it is a
data item. I will use both terminologies in this work.

The first section is the FILE SECTION and it is used as the place for
definitions of working structures of files. I will not cover files in this work so
I skip this section entirely.

Working-Storage Section.
01 PERSON-INFO. *> data description

02 FULL-NAME. *> data description
03 NAME PIC X(10). *> data description
03 SURNAME PIC X(10). *> data description

02 AGE PIC X. *> data description
02 ADDRESS-INFO. *> data description

03 STREET PIC X(10). *> data description
03 CITY PIC X(10). *> data description

01 COMPANY-INFO PIC X(80). *> data description

Listing 5: A COBOL code snippet demonstrating description entries

2.2.4.1 Working-Storage, Local-Storage and Linkage Section

The WORKING-STORAGE SECTION and the LOCAL-STORAGE SEC-
TION are sections of COBOL programs where data definitions, in form of
data description entries, are stored. Difference between those two sections is
that variables defined in the working-storage section stay persistent across the
program calls whereas variables defined in the local-storage section are allo-
cated and freed on a program per-invocation basis. Data definitions stored

20

2.2. IBM COBOL

in these sections are very similar to what are in other languages called global
variables definitions. Data items (variables) defined in these sections can be
used in various types of statements such as arithmetic statements or data
movement statements as a source and/or a destination of a computation.

The last section of the Data Division is called the LINKAGE SECTION.
This section defines data items which are available from another program,
meaning that the storage of data is not reserved within the actual program
but elsewhere. The typical case for using data items defined by entries within
the LINKAGE SECTION is as program parameters.

The following text explains data description entries, their structures and
clauses. I will use Listing 5 for an easier grasp of them, where every data
description entry is marked by the floating comment ∗>. Although data de-
scription entries are quite similar in different sections, there are still some
differences. For example, the EXTERNAL clause cannot be used in entries
in the local-storage section nor entries in the linkage section. Because these
differences are not important for the thesis, I will not address them unless it
is necessary.

2.2.4.2 Data Description Entry

A data description entry is a definition of a data item in COBOL. Its first
part is called a level number. Level numbers are used to define a hierarchy of
variables, where the level number 01 is the signalization of a top-level parent,
and every entry with bigger level number defined below it has some sort of
relationship with it. Data items create a tree-like structure, in which subordi-
nate entries are indicated by increased level number. This is demonstrated in
Listing 5, where PERSON-INFO, as a top-level entry, has subordinate (child)
entries FULL-NAME, AGE and ADDRESS-INFO. FULL-NAME entry is also
subdivided and it has subordinate entries NAME and SURNAME. It is im-
portant to note that an indentation of a COBOL program does not mean
anything for this structure and its purpose is purely for better readability.
Level numbers can range from 01 to 49 and there is no rule which states they
must be incremented by 1, though, it is typical to increment levels by 5. Level
numbers 66, 77 and 88 are used for special purposes.

Figure 2.1 shows more visually how entries are subdivided within a hierar-
chy. Important thing to mention is that only bottom entries (leaves) represent
actual variables holding data. Variables defined by those entries are called el-
ementary data items or elementary items, and they are organized sequentially
in the memory according to definition order. Because data is organized se-
quentially, it is possible to reference multiple entries together.

Non-leaf data items are commonly called groups, group items or records,
and they define mostly structural properties of the hierarchy. Data description
entries describing records are commonly called record description entries. A

21

2. Analysis

record description entry can also contain clauses, which are then reflected on
its subordinate data description entries.

The level number 77 identifies a data item as a pure elementary data item
so this is the way to explicitly specify that this data item is a standalone
variable.

Figure 2.1: A hierarchy of record description entries [2]

2.2.4.3 Condition-name (Level 88)

Condition-names are a special case of data description entries with level num-
ber 88. A condition-name associates a value, a set of values, or a range of
values with variable named conditional variable and signalizes a state of that
variable. Condition-names always belong to some conditional variable, defined
by a data description entry, and thus they must be defined immediately after
that entry. The value clause is mandatory for condition-names, and it is only
possible clause for condition-names.

22

2.2. IBM COBOL

Listing 6 illustrates syntax and usage of condition-names. In the example,
there is a conditional variable named AGE. AGE has 4 condition-names
which, depending on the value of AGE, determine true or false state. They
can be seen as a some kind of boolean variables which depend on the value
of another variable. Statements, such as if statements, can then use those
condition-names in their condition expressions to influence control flow of
program. It is important to note that condition-names are special items which
don’t hold actual data, so they are not taken as leaf entries.

01 AGE PIC 99.
88 INFANT VALUE 0.
88 BABY VALUE 1, 2.
88 CHILD VALUE 3 THROUGH 12.
88 TEENAGER VALUE 13 THRU 17.

IF INFANT DISPLAY 'INFANT'.
IF BABY DISPLAY 'BABY'.
IF CHILD DISPLAY 'CHILD'.
IF TEENAGER DISPLAY 'TEENAGER'.

Listing 6: A COBOL code snippet demonstrating condition-names

2.2.4.4 Data Names

Data names represent identifiers (user-defined words) for variables defined by
data description entries. Names are placed after an entry’s level number. In
COBOL, it is possible to define a variable without a user-defined data name.
Those variables are called fillers and they are identified either with keyword
FILLER in the place of a data name or by omitting the data name at all.
Variables defined like this are still present within data hierarchy but there is
no explicit reference to them. However, they can be used in conjunction with
their parent data names or by techniques such as redefinition. Data names
are case-insensitive.

2.2.4.5 Data Description Entry’s Clauses

Data description entry’s clauses are clauses which can be present in a data
description entry. Some clauses are deprecated, some are unused, some are
irrelevant for the thesis but there are still some clauses which are important.
These clauses are:

• Redefines clause
• Renames clause

23

2. Analysis

• Occurs clause
• Picture clause
• Usage clause
• Value clause

2.2.4.6 Value Clause

The value clause specifies the initial contents of a data item. In a case of
condition-names this clause specifies a value, a set of values, or a range of
values which are associated with the condition-name. Only literals can be
specified as initial values in COBOL. If the value clause is specified for a
group item then the value clause is applied correspondingly on subordinate
data items. The value clause can also be applied on data description entries
representing arrays. In that case, all elements of an array are initialized to
given initial value.

2.2.4.7 Data Categories, Data Types, Usage Clause and Picture
Clause

The two clauses which are used to describe the data type of a data item are the
usage clause and the picture clause. To be more precise, COBOL does not have
traditional data types which are known in modern programming languages,
such as integers or strings. Instead, COBOL assigns data items into data
classes and data categories. I will demonstrate classes and categories by their
enumeration which is present in Table 2.1.

The category of a data item is established by its attributes. For example, a
data item which represents alphanumeric string belongs to category alphanu-
meric. Among all categories listed in the table, most of them are pretty self-
explanatory. DBCS stands for double byte character set and describes string
in which every character has 2 bytes. National category describes data items
representing data in extended encoding. For IBM COBOL, it is UTF-16. Data
items belonging to categories ending with edited have special properties. And
the inner representation of a floating-point data item decides if it is internal or
external. On the other hand, classes are simpler groupings of data categories.
For a data item with class numeric, it does not matter if it is a floating-point
number or a decimal number. It is important to note that all these classes
and categories apply only to elementary data items.

Group items are divided into less categories (alphanumeric, national and
UTF-8), and implicitly a group item belongs to the alphanumeric category.
Literals and functions, depending on their return values, also belong to some
categories.

Classes and categories are very important for COBOL because many state-
ments operate differently depending on the categories of their arguments. Cat-
egories of elementary data items can be seen as data types and therefore, I

24

2.2. IBM COBOL

Class Category Usage Type
Alphabetic Alphabetic DISPLAY

Alphanumeric
Alphanumeric DISPLAY
Alphanumeric-edited DISPLAY
Numeric-edited DISPLAY

DBCS DBCS DISPLAY-1

National
National NATIONAL
National-edited NATIONAL
Numeric-edited NATIONAL

UTF-8 UTF-8 UTF-8

Numeric Numeric

DISPLAY (zoned decimal)
NATIONAL (national dec.)
COMP-3 (internal decimal)
PACKED-DECIMAL (inter.)
BINARY
COMP
COMP-4
COMP-5

Numeric

Internal floating-point COMP-1
Internal floating-point COMP-2
External floating-point DISPLAY
External floating-point NATIONAL

Table 2.1: COBOL classes and categories of elementary data items

will recognize them as such. In the case of groups, literals and functions,
categories are not so important so I will ignore them.

Table 2.1 has shown that multiple usage types are assigned to same classes
and categories. Usage types are used in the usage clause, and they specify the
format in which data are represented in storage. Usage types are listed in
Table 2.2, which also contains a simple description of each type. Usage clause
is commonly specified only for elementary data items but it is possible to
specify it also for group items. In that case, the group item usage clause
is applied to elementary data items in that group but there is a rule which
states that usage clauses of elementary data items cannot contradict the group
usage clause. COBOL documentation does not specify if a group usage clause
is applied also on data items which are more deeply in the hierarchy. In
GnuCOBOL, the usage clause is applied on every subordinate data item until
redefined by another usage clause. This is demonstrated in Listing 7, and I
will assume it works same for IBM COBOL.

If an elementary data item nor its parent have usage type, the elementary
data item has implicitly defined usage type. Which usage type it is depends

25

2. Analysis

Usage Type Description
BINARY Two’s complement binary num-

ber.
COMP/COMPUTATIONAL Same as binary type.
COMP-1/COMPUTATIONAL-1 Single precision internal floating-

point number.
COMP-2/COMPUTATIONAL-2 Double precision internal

floating-point number.
COMP-3/COMPUTATIONAL-3 Number in packed-decimal

format.
COMP-4/COMPUTATIONAL-4 Same as binary type.
COMP-5/COMPUTATIONAL-5 Native binary number.
DISPLAY String with 1 byte per character.
DISPLAY-1 Double-byte character set

(DBCS) string.
INDEX Index to tables (arrays).
NATIONAL UTF-16 string.
UTF-8 UTF-8 string.
OBJECT REFERENCE Reference to object.
PACKED-DECIMAL Number in packed-decimal

format.
POINTER 32-bit or 64-bit data pointer.

(platform-dependent)
POINTER-32 Strictly 32-bit data pointer.
PROCEDURE-POINTER Strictly 32-bit procedure pointer.
FUNCTION-POINTER 32-bit or 64-bit procedure

pointer. (platform-dependent)

Table 2.2: COBOL usage types

01 X USAGE POINTER.
05 Y.

10 Z. <* pointer

01 A USAGE POINTER.
05 B USAGE DISPLAY.

10 C PICTURE X. <* display
05 B2. <* pointer

Listing 7: A COBOL code snippet demonstrating usage type inheritance

26

2.2. IBM COBOL

on its picture clause. Categories and usage types are closely related but there
is an exception. Not every data item with usage type has a category. This
can be seen in previously mentioned tables, in usage types such as INDEX
or POINTER which are not assigned to any category nor class. Data items
defined with usage types as these are not categorized by COBOL, and in most
cases they are used only with special statements or clauses such as a SET
statement or a CALL statement.

Character Description
A A position for a letter of the Latin alphabet or a space.
E Marks the starting point of the exponent.
G A DBCS character position.
N A DBCS or a national character position.
P An assumed decimal scaling position.
S An indicator of the presence of a operation sign.
U A UTF-8 character position.
V An indicator of the assumed decimal point location.
X A location of alphanumeric character.
9 A position for numeric character.
. A position for decimal point.

Table 2.3: COBOL picture characters

Picture clause is clause initiated by keyword PIC or PICTURE, and fol-
lowed by so-called picture string. A picture string is a string of picture char-
acters describing general characteristics of data items. The picture clause
can be specified only for elementary data items. Table 2.3 presents possible
picture characters and their meanings. This table does not contain editing
picture characters which are used as positions of special characters, giving a
better representation of data item content. If a picture string has any editing
character then the category of data item has edited suffix.

Picture strings are demonstrated in Listing 8 and explained by the follow-
ing list:

1. The first picture string can be used to define a data item holding numeric
value with up to 3 digits. The data item can then hold values such as
123 or 0.

2. This picture string can be used to define a data item holding a signed
numeric value with up to 4 digits.

3. The third picture string is the same as the second one. However, this
picture string is written in a shortcut notation. X(n) is shortcut for
n-times repetition of character X, so 9(4) is equivalent to 9999.

4. The fourth picture string describes an alphanumeric data item. Its con-
tent can be digits, characters as well as a combination of both.

27

2. Analysis

1 PIC 999 VALUE 123. <* numeric
2 PIC S9999 VALUE +7890. <* numeric
3 PIC S9(4) VALUE -4560. <* numeric
4 PIC XX VALUE "1B". <* alphanumeric
5 PIC -9.99 VALUE 3.14. <* external FP
6 PIC A(5) VALUE "COBOL". <* alphabetic
7 PIC N VALUE "X". <* DBCS or national
8 PIC 00099 VALUE 42. <* numeric-edited; 00042

Listing 8: Examples of COBOL picture strings.

5. The fifth example describes a representation of an external floating-point
data item.

6. The sixth example shows a representation of a string with alphabetic
characters. As opposed to the alphanumeric data item, a data item
described with this picture string can contain only alphabetic characters.

7. This example is a system-dependent. Symbol N represents a position
for either a DBCS character or a national character. Which one is it
depends on the usage clause, compiler options and also on the environ-
ment. Fortunately, both characters are 2 bytes long with difference only
in character encoding, so in the end it does not matter which one it is.

8. The last case shows the usage of editing characters (zeroes). The special
meaning of zeroes is that they are always present at given positions.
Editing characters are irrelevant for data flow analysis, so I will not
discuss them here.

There are more things to write about picture characters and usage clauses.
If an usage clause is not defined for a data description entry and a picture
clause is, the usage type of data item is implied from picture characters of
the picture clause. Presence of N character in the picture string implies it has
national usage type. If the picture string contains character G, it has DBCS
type. Otherwise, it has display usage type.

There are also rules stating which usage type cannot have a picture string,
or rules stating what picture characters can be present within a data item with
given usage type. To have it more simplified, I will not discuss these rules but
I will use Table 2.4 for better recognition of categories, picture characters
and usage types. The table describes possible combinations of categories,
usage types and picture characters for elementary data items in COBOL. The
last column of the table describes the size of data item with present picture
characters and given usage type.

28

2.2. IBM COBOL

U
sa

ge
ty

pe
s

(c
at

eg
or

y)
P

ic
tu

re
ch

ar
ac

te
rs

Si
ze

(i
n

by
te

s)
BI

N
A

RY
/C

O
M

P
C

O
M

P-
4/

C
O

M
P-

5
(n

um
er

ic
)

op
tio

na
ls

ym
bo

ls
S

P
V

;1
-4

di
gi

ts
(9

)
2

BI
N

A
RY

/C
O

M
P

C
O

M
P-

4/
C

O
M

P-
5

(n
um

er
ic

)
op

tio
na

ls
ym

bo
ls

S
P

V
;5

-9
di

gi
ts

(9
)

4

BI
N

A
RY

/C
O

M
P

C
O

M
P-

4/
C

O
M

P-
5

(n
um

er
ic

)
op

tio
na

ls
ym

bo
ls

S
P

V
;1

0-
18

di
gi

ts
(9

)
8

PA
C

K
ED

-D
EC

IM
A

L/
C

O
M

P-
3

(n
um

er
ic

)
op

tio
na

ls
ym

bo
ls

S
P

V
;d

ig
its

(9
)

(c
ou

nt
of

di
gi

ts
)

/
2

C
O

M
P-

1
(in

te
rn

al
flo

at
in

g-
po

in
t)

no
pi

ct
ur

e
cl

au
se

4
C

O
M

P-
2

(in
te

rn
al

flo
at

in
g-

po
in

t)
no

pi
ct

ur
e

cl
au

se
8

FU
N

C
T

IO
N

-P
O

IN
T

ER
IN

D
EX

/P
O

IN
T

ER
O

BJ
EC

T
-R

EF
ER

EN
C

E

no
pi

ct
ur

e
cl

au
se

4
or

8
(p

la
tfo

rm
-d

ep
en

de
nt

)

PO
IN

T
ER

-3
2

no
pi

ct
ur

e
cl

au
se

4
PR

O
C

ED
U

R
E-

PO
IN

T
ER

no
pi

ct
ur

e
cl

au
se

8
D

IS
PL

AY
(a

lp
ha

be
tic

)
on

ly
sy

m
bo

ls
A

1
by

te
fo

r
ea

ch
sy

m
bo

l
D

IS
PL

AY
(a

lp
ha

nu
m

er
ic

)
sy

m
bo

ls
9

A
X

,w
he

re
X

is
at

le
as

t
on

ce
1

by
te

fo
r

ea
ch

sy
m

bo
l

D
IS

PL
AY

(a
lp

ha
nu

m
er

ic
-e

di
te

d)
sy

m
bo

ls
9

A
X

B
0
\,

w
he

re
X

or
A

is
at

le
as

t
on

ce
an

d
B,

0
or
\

is
at

le
as

t
on

ce
1

by
te

fo
r

ea
ch

sy
m

bo
l

D
IS

PL
AY

-1
(D

BC
S)

sy
m

bo
ls

G
an

d
B

2
by

te
s

ea
ch

sy
m

bo
l

D
IS

PL
AY

(e
xt

er
na

lfl
oa

tin
g-

po
in

t)
sy

m
bo

ls
9

+
-E

.V
1

by
te

ea
ch

,V
is

no
t

co
un

te
d

N
AT

IO
N

A
L

(e
xt

er
na

lF
P)

sy
m

bo
ls

9
+

-E
.V

2
by

te
se

ac
h,

V
is

no
tc

ou
nt

ed
N

AT
IO

N
A

L
(n

at
io

na
l)

sy
m

bo
lN

2
by

te
s

ea
ch

N
AT

IO
N

A
L

(n
at

io
na

l-e
di

te
d)

sy
m

bo
ls

N
B

0
\,

w
he

re
N

is
at

le
as

to
nc

e
an

d
B,

0
or
\

is
at

le
as

t
on

ce
2

by
te

s
ea

ch

D
IS

PL
AY

(n
um

er
ic

)
sy

m
bo

ls
9

S
P

V
1

by
te

ea
ch

N
AT

IO
N

A
L

(n
um

er
ic

)
sy

m
bo

ls
9

S
P

V
2

by
te

s
ea

ch
di

gi
t

D
IS

PL
AY

(n
um

er
ic

-e
di

te
d)

sy
m

bo
ls

B
P

V
Z

9
0
\,

.
+

-C
R

D
B

*
$

1
by

te
ea

ch
;P

V
no

t
co

un
te

d
N

AT
IO

N
A

L
(n

um
er

ic
-e

di
te

d)
sy

m
bo

ls
B

P
V

Z
9

0
\,

.
+

-C
R

D
B

*
$

2
by

te
se

ac
h,

P
V

no
tc

ou
nt

ed
U

T
F-

8
(u

tf-
8)

sy
m

bo
ls

U
4

by
te

s
ea

ch

Ta
bl

e
2.

4:
C

O
BO

L
pi

ct
ur

e
ch

ar
ac

te
rs

,u
sa

ge
ty

pe
s

an
d

th
ei

r
siz

es

29

2. Analysis

2.2.4.8 Redefines Clause

The redefines clause allows to use different data description entries to describe
same computer storage area. Redefines will be explained by description entries
present in Listing 9.

05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).

05 C REDEFINES B PICTURE 99V999.

Listing 9: Data description entries demonstrating redefines

In the example, the first data description entry defines variable A repre-
senting an alphanumeric data item. The next three data description entries
defines a record with redefines clause. It means that this record is a redefini-
tion of another data storage, the storage of variable A. The last description
entry redefines a storage of B but B is the redefinition of the storage A, so in
the end, all data description entries share the very same storage. In the case
of B, the data item is structured into smaller data items so corresponding
elementary items use only parts of that storage. How these data items share
storage is illustrated by Figure 2.2.

Figure 2.2: COBOL redefines associations

With redefines, it is possible to redefine a group to another group, a group
to an elementary data item, an elementary item to a group, or an elementary
item to an elementary item. Redefines can also redefine only a part of the
source storage.

IBM COBOL allows a redefinition of storage which is smaller than storage
specified with the picture and/or usage clause. However, the documentation
does not specify what exactly happens in such case. In case of GnuCOBOL,
this is not allowed so I will not handle this case in this work.

30

2.2. IBM COBOL

2.2.4.9 Occurs Clause

Data items described with the occurs clause represent arrays. Arrays are
commonly called tables because their structure simulates tables. There are
two versions of arrays in COBOL - fixed-length tables and variable-length
tables.

Listing 10 shows definitions of arrays in COBOL. In the example, WS-

01 WS-TABLE.
05 WS-A OCCURS 10 TIMES. <* fixed-length

10 WS-B.
15 WS-C PIC X(6) OCCURS 5 TIMES

INDEXED BY I J. <* fixed-length

01 VAR1 PIC 99 VALUE 4.
01 VAR2 PIC 9999 VALUE 1000.

01 WS-VTABLE OCCURS 1 TO 5
DEPENDING ON VAR1. <* variable-length

01 WS-VTABLE2 OCCURS 5 TO UNBOUNDED TIMES
DEPENDING ON VAR2. <* variable-length

Listing 10: Data description entries demonstrating the occurs clause

TABLE represents a two-dimensional array where WS-A are rows and WS-C
are columns. Each occurrence of WS-A has subordinate WS-B and WC-C,
and each occurrence of WS-C is an alphanumeric string of length six. In
COBOL, it is possible to define an array up to seven levels in a one structure.

The clause INDEXED BY specifies indices which can be used to index or
to subscript the array. Indices are not part of data hierarchy, and therefore
they don’t represent leaf data items. In IBM COBOL, indices are regarded
as private special registers for the use of defining program only. It is not
clear if indices can be used only with a table in which they are defined. In
GnuCOBOL, it is possible to use indices also with other tables in the same
program.

Variable-length arrays are defined with an upper and a lower bound, where
actual size depends (the DEPENDING ON clause) on some other variable. It
is possible to use keyword UNBOUNDED to specify an array to have unlimited
size. However, unbounded arrays can only be used in restricted conditions.
IBM documentation does not clearly specify how variable-length arrays are
aligned to other data items defined in same structure. It seems like there are
multiple cases of the alignment, and the documentation also mentions variably
located items which are items following variable-length arrays. In the case of

31

2. Analysis

GnuCOBOL, it seems that variable-length arrays have the maximal defined
size (UNBOUNDED is not working) and other items are aligned accordingly.
I will handle variable-length arrays in the same way. Unbounded arrays will
not be supported.

2.2.4.10 Renames Clause (Level 66)

The RENAMES clause specifies alternative and possibly overlapping group-
ings of elementary data items. To use the renames clause, it is necessary to
describe an elementary data item with special level number 66. The usage
of renames is illustrated in Figure 2.3. In the figure, it can be seen that
with renames it is possible to create new data items which refer to storage of
other data items. Renames are similar to redefines with this feature, but with
renames is possible to refer to multiple groupings together.

Renames are structurally bounded to a previous data item with level 01
(i.e. it is its parent), and thus it is not possible to rename entries with level 01.
In the example, the parent of DN-6 is RECORD-I. It is also not possible to
rename entries with level 66, 77 or 88, but it is possible to define more than
one rename for a record description entry. Renames can be used in a version
without THROUGH keyword, and in such case, they rename only one specific
group/elementary data item to which they refer.

2.2.5 Procedure Division

The PROCEDURE division is a division where a program logic resides. This
division starts by PROCEDURE DIVISION keywords, which are followed by
a procedure division header and a procedure division body. The procedure
division header represents a definition of program input and output parameters
and a return value of the program. In this work, I’m working with COBOL
programs as separate units so I skip the procedure header entirely.

In the procedure division body, it is possible to define COBOL procedures.
A procedure consists of a section or a group of sections, and a paragraph
or group of paragraphs. The purpose of these elements is to structure the
program into logical segments. This is shown in Listing 11.

Sections are identified with a section name, which is followed by SECTION
keyword. Paragraphs are represented only with an user-defined paragraph
name. These names don’t have to be unique if there is a possibility to qualify
these segments uniquely. In the case of sections, this is not possible, but for
paragraphs it is.

Sections and paragraphs in the procedure division are optional, so the pro-
cedure division can start right away with sentences. Specific COBOL state-
ments such as GO TO or PERFORM can change the control flow of the
program by jumping or performing only chosen set of segments. The COBOL
program typically starts with the first statement in the procedure division. It

32

2.2. IBM COBOL

Figure 2.3: COBOL renames examples [2]

33

2. Analysis

PROCEDURE DIVISION. <* procedure division
P. <* paragraph

CBL-SEC SECTION. <* section
PARA. <* paragraph
PARA2. <* paragraph

ADD 5 TO A. <* sentence
DISPLAY 5. <* sentence
ADD 1 TO X
DISPLAY X. <* sentence

SEC2 SECTION. <* section
MOVE B TO C. <* sentence

SEC3 SECTION. <* section
PARA. <* paragraph

Listing 11: A COBOL code snippet demonstrating procedure division

is important to note that an indentation of a code does not mean anything
for the structure of these elements.

Sentences group one or more statements into a single unit. This is demon-
strated in Listing 11, where COBOL code contains a few sentences. State-
ments in these sentences contain reserved keywords so they can be easily
identified. Sentences are always ended with separator period.

COBOL supports a wide range of statements. Table 2.5 lists statements
of COBOL, which use data items, and therefore data flow is present in them.
However, due to the extent of the language, this work targets only to the most
used ones:

• Arithmetic
– ADD
– SUBTRACT
– MULTIPLY
– DIVIDE
– COMPUTE

• Data movement
– MOVE

The chosen statements are explained in the subsequent sections. Other state-
ments will not be discussed in this work, however, the same principles of the
data flow analysis can still be applied to them, and the implemented solu-
tion can be extended with the support for them. There are two additional
constructs which are related to statements.

The first construct is called explicit scope terminator. As already noted,

34

2.2. IBM COBOL

Statement Description
ACCEPT Transfers an input data into a variable.
ADD Adds numeric items.
CALL Used for calling other programs.
COMPUTE Computes arithmetic expressions.
DIVIDE Divides numeric items.
EVALUATE Performs a switch statement.
IF Performs an if statement.
INITIALIZE Sets variables to predetermined values.
INSPECT Examines characters in a data item.
INVOKE Invokes a COBOL or Java class.
JSON PARSE Parses data from JSON format.
JSON GENERATE Converts data into JSON format.
MOVE Moves data between data items.
MULTIPLY Multiplies numeric items.
SET Performs a set operation.
SEARCH Searches a table for a specific element.
SORT Arranges files or tables in a user-specified se-

quence.
STRING Strings multiple items together.
SUBTRACT Subtracts numeric items.
XML GENERATE Converts data into XML format.
XML PARSE Parses data from XML format.
UNSTRING Separates a data item into multiple fields.

Table 2.5: IBM COBOL statements that use data items

COBOL sentences are ended with an explicit terminator period. But in the
case of statements, there was no explicit terminator. Consider Listing 12. In

IF NUMC = 1
DISPLAY '1'
IF NUMD = 2

DISPLAY '2'
ELSE <* which if has this else branch?

DISPLAY '3'.

Listing 12: A COBOL code snippet demonstrating sentence ambiguity

the example, there are two if statements with only one else branch. Because
this code does not use an explicit scope terminator, the code is ambiguous.

35

2. Analysis

IBM COBOL does not explicitly state how these types of sentences are re-
solved but in the case of GnuCOBOL, the ELSE branch is connected to the
closest IF statement. It can be stated that the GnuCOBOL’s parser has
greedy behaviour. I will expect that IBM COBOL handles this case in the
same way. Explicit scope terminators are represented by the keyword END,
a hyphen and an operation. For example, explicit scope terminator for IF is
END-IF and it can be used to explicitly terminate an IF statement. Other
explicit terminators are END-ADD, END-SUBTRACT, END-MOVE, and so
on.

The second construct is a conditional statement. A statement is called
conditional statement if it contains at least one condition phrase (condition).
This is demonstrated in Listing 13. There are many types of conditions in
COBOL, such as ON OVERFLOW, ON EXCEPTION, INVALID KEY, and
so on. Conditions are used to perform particular actions in response to the
result of the associated statement. Conditions are composed of condition
keywords and a list of statements. Conditional statements present a similar
behaviour as the one mentioned with explicit scope terminators. A condition
can contain multiple statements so everything following condition keywords
belong to the condition until an explicit terminator, such as period or END
keyword, occurs. Statements which are not conditional are commonly called

ADD 1000 TO NUM <* (cond.) statement
ON SIZE ERROR DISPLAY 'ERROR' <* condition
NOT ON SIZE ERROR <* condition

DISPLAY 'NOT ERROR'
END-ADD
DISPLAY 'NOT IN ADD'.

Listing 13: A COBOL code snippet demonstrating conditional statements

imperative statements. In this work, I will not distinguish between these types
of statements and I will process them in the same way. If a statement has also
conditions, I will take them as additional phrases of that statement.

2.2.5.1 Add Statement

The ADD statement sums two or more numeric operands and stores the result.
The ADD statement can be written in the three formats. These formats are
shown with examples in Listing 14. The first format is used to sum literals
and/or numeric data items preceding keyword TO, and to add the sum to
every data item following keyword TO. The ADD statement in second format
sums literals and/or numeric data items preceding keyword TO, this sum adds
to a numeric data item or a literal following keyword TO, and finally stores

36

2.2. IBM COBOL

ADD 5, NUM1 TO NUM2, NUM3. <* NUM2 += 5 + NUM1;
<* NUM3 += 5 + NUM1

ADD NUM1 5 TO NUM2 GIVING NUM3. <* NUM3 = NUM2 + NUM1 + 5
ADD CORRESPONDING GROUP1 TO GROUP2.

Listing 14: A COBOL code snippet demonstrating the ADD statement

the result in every numeric data item following keyword GIVING. The third
format uses CORRESPONDING phrase.

The CORRESPONDING phrase is a phrase used in ADD, SUBTRACT
and MOVE statements. When this phrase is specified, an operation between
a source and a target group is done over their subordinate data items. The
operation is done between two data items (one from the source group and one
from the target group) if the following conditions are fulfilled:

• Both data items are elementary numeric data items.
• Both data items have the same name and the same qualifiers up to but

not including them.
• None of them is filler.
• None of them is described as level 66, level 77, or level 88 item.
• None of them is described with USAGE INDEX, USAGE POINTER,

USAGE FUNCTION-POINTER, USAGE PROCEDURE-POINTER,
or USAGE OBJECT REFERENCE.

• None of them include a REDEFINES, RENAMES, or OCCURS clause.
Listing 15 demonstrates the CORRESPONDING phrase. Only ITEM-

A, ITEM-B and ITEM-E items are added from the one group to the other.
Both ITEM-C items are not included because they are not numeric. ITEM-
D from ITEM-1 contains the REDEFINES clause so they are not included
either. Both ITEM-F items are defined with USAGE INDEX, so they are not
included as well.

The operation of the CORRESPONDING clause is applied recursively if
two subordinate data items with same name are groups.

2.2.5.2 Subtract Statement

The SUBTRACT statement subtracts one numeric item, or the sum of two or
more numeric items, from one or more numeric items, and stores the result.
The SUBTRACT statement can be written in the three formats. These for-
mats are shown with examples in Listing 16. The first format is used to sum
literals and/or numeric data items preceding keyword FROM, and to subtract
this sum from every data item following keyword FROM. The SUBTRACT

37

2. Analysis

05 ITEM-1 OCCURS 6.
10 ITEM-A PIC S9(3).
10 ITEM-B PIC +99.9.
10 ITEM-C PIC X(4).
10 ITEM-D REDEFINES ITEM-C PIC 9(4).
10 ITEM-E USAGE COMP-1.
10 ITEM-F USAGE INDEX.

05 ITEM-2.
10 ITEM-A PIC 99.
10 ITEM-B PIC +9V9.
10 ITEM-C PIC A(4).
10 ITEM-D PIC 9(4).
10 ITEM-E PIC 9(9) USAGE COMP.
10 ITEM-F USAGE INDEX.

ADD CORRESPONDING ITEM-2 TO ITEM-1(X).

Listing 15: A COBOL code snippet demonstrating the ADD
CORRESPONDING statement

SUBTRACT 5, NUM1 FROM NUM2, NUM3. <* NUM2 -= (5 + NUM1);
<* NUM3 -= (5 + NUM1)

SUBTRACT NUM1 5 FROM NUM2
GIVING NUM3. <* NUM3 = NUM2 - (NUM1 + 5)

SUBTRACT CORRESPONDING GROUP1 TO GROUP2.

Listing 16: A COBOL code snippet demonstrating the SUBTRACT
statement

statement in the second format sums literals and/or numeric data items pre-
ceding keyword FROM, this sum subtracts from a numeric data item or a
literal following keyword FROM, and finally stores the result in every nu-
meric data item following keyword GIVING. The third format uses CORRE-
SPONDING phrase which is the same phrase introduced in Section 2.2.5.1.
In the case of the SUBTRACT statement, the operation is subtracting, not
adding.

2.2.5.3 Multiply Statement

The MULTIPLY statement multiplies numeric items and sets the values of
data items equal to the results. The MULTIPLY statement can be written in

38

2.2. IBM COBOL

the two formats. These formats are shown with examples in Listing 17. The

MULTIPLY 5 BY NUM2, NUM3. <* NUM2 *= 5;
<* NUM3 *= 5

MULTIPLY NUM1 BY 5
GIVING NUM2, NUM3. <* NUM2 = NUM3 = NUM1 * 5

Listing 17: A COBOL code snippet demonstrating the MULTIPLY
statement

first format is used to multiply every data item following keyword BY by an
item preceding keyword BY. The MULTIPLY statement in the second format
multiplies items preceding and following keyword BY together, and stores the
result in every data item following keyword GIVING.

2.2.5.4 Divide Statement

The DIVIDE statement divides one numeric data item into or by others and
sets the values of data items equal to the quotient and remainder. The DI-
VIDE statement can be written in the five formats. These formats are shown
with examples in Listing 18. The first format is used to divide every data item

DIVIDE 5 INTO NUM1 NUM2. <* NUM1 /= 5;
<* NUM2 /= 5

DIVIDE 5 INTO 10
GIVING NUM1 NUM2. <* NUM1 = NUM2 = 10 / 5

DIVIDE 5 BY 10
GIVING NUM1 NUM2. <* NUM1 = NUM2 = 5 / 10

DIVIDE 5 INTO 10
GIVING NUM1 NUM2 <* NUM1 = NUM2 = 10 / 5;
REMAINDER NUM4. <* NUM4 = 10 % 5

DIVIDE 5 BY 10
GIVING NUM1 NUM2 <* NUM1 = NUM2 = 5 / 10;
REMAINDER NUM4. <* NUM4 = 5 % 10

Listing 18: A COBOL code snippet demonstrating the DIVIDE statement

following keyword INTO by an item preceding keyword INTO. The DIVIDE
statement in the second format divides an item following keyword INTO by
an item preceding keyword INTO. The result is stored in every data item after
keyword GIVING. The third format does same thing as the second format but
the order of division operands is reversed. The fourth and the fifth formats

39

2. Analysis

are same as the second and the third formats, respectively, but these formats
contain also remainder phrase which stores remainder of the division in target
data items.

2.2.5.5 Compute Statement

The COMPUTE statement is a COBOL statement which allows a computa-
tion of variables in the more modern form by using arithmetic expressions.
This statement can be used as the replacement of the other arithmetic state-
ments. It is demonstrated in Listing 19.

COMPUTE A, B = 42 / 13. <* A = B = 42 / 13

Listing 19: A COBOL code snippet demonstrating the COMPUTE
statement

COBOL arithmetic expressions can contain standard arithmetic operators
with the following operator precedence (highest to lowest):

1. Unary + or -
2. Exponentiation (**)
3. Multiplication (*) and division (/)
4. Addition (+) and subtraction (-)

Operands of arithmetic expressions can be other arithmetic expressions, nu-
meric literals, numeric functions or numeric elementary items. It is also possi-
ble to change the order of evaluation of operators with parentheses. The order
of evaluation of operators with same precedence is from left to right.

2.2.5.6 Move Statement

The MOVE statement transfers data from one area of storage to one or more
other areas. The MOVE statement can be written in the two formats. These
formats are shown in examples in Listing 20. The first format is used to move

MOVE A TO B C.
MOVE CORRESPONDING GROUP1 TO GROUP2.

Listing 20: A COBOL code snippet demonstrating the MOVE statement

data from an item preceding keyword TO to data items following keyword TO.
The second format uses the same CORRESPONDING phrase introduced with
the ADD statement in Section 2.2.5.1. In the case of the MOVE CORRE-
SPONDING, it is not necessary to have both subordinate data items described

40

2.2. IBM COBOL

as elementary numeric items, but at least one of them must be elementary
item.

Moves between elementary data items are quite simple. If data items have
different categories or they are described with different usage types, COBOL
automatically converts data to have the correct format. So, in the case of
moving data from a numeric data item represented by a string to a numeric
data item represented by a binary number, COBOL automatically converts
data from the string format to the binary format.

A group move is a move in which at least one operand is a group item.
The group move is treated as though it were an alphanumeric-to-alphanumeric
elementary move, except there is no conversion of data from one form of repre-
sentation to another. COBOL group moving is similar to copying raw memory
from one place to another. To find the exact location where a subordinate
data item is moved, I will use Table 2.4. By calculating individual sizes and
offsets of elementary data items, it can be decided where exactly elementary
data items are moved. This is demonstrated in Listing 21. The example

01 S1.
05 NUM1 PIC 9(5) USAGE IS BINARY VALUE 65. <* size 4
05 NUM2 PIC 9(9) VALUE 10. <* size 9

01 S2.
05 NUMA PIC X(4). <* size 4
05 NUMB PIC 9(9) VALUE 15. <* size 9

MOVE S1 to S2.
DISPLAY NUMA " " NUMB. <* output: A 000000010

Listing 21: A COBOL code snippet demonstrating group move

shows that data of NUM1 are moved to the location of NUMA perfectly
aligned. This happened because these elementary data items have the same
size, so their alignment from the start is also the same. After the move, data
of NUMA represents the string A instead of the original numeric value 65.
Data between NUM2 and NUMB are moved similarly.

2.2.6 Other COBOL Features

This section presents other COBOL features which are important for data
flow analysis.

41

2. Analysis

2.2.6.1 Subprograms

Program divisions are typically followed by an optional END PROGRAM
command to indicate that the code of the current program is ended. However,
COBOL supports nested programs, also called subprograms, to be defined
within a program. After divisions and before the END PROGRAM command,
a definition of another COBOL program can appear. Subprograms are almost
identical to a main, top-level COBOL program. It is possible for a program
to communicate with an inner program but I will not discuss it here. All
programs, even nested programs, will be processed as independent units in
this work.

2.2.6.2 Separators

Separators are used to indicate a separation of COBOL segments or tokens.
A typical separator is a space. A space indicates a separation of two tokens.
A period is another separator. As it was already seen, periods are used as
an ending character of various COBOL constructs. Sentences are ended with
periods, division keywords are ended with periods as well as many other key-
words are ended with periods. A period should be followed with at least one
space.

Two other separators commonly used in COBOL are a comma and a semi-
colon. A comma and a semicolon should be followed by at least one space,
and they represent the same separator as a space. They are used to delimit
tokens, with possibly better readability. Therefore, ADD 5, 5 TO X is the
same statement as ADD 5 5 TO X.

2.2.6.3 Identifiers and Qualification

An identifier is an user-defined word specifying the name of an entity. In
COBOL, it is possible to name variables, paragraphs, sections, programs, and
so on. A name can contain the following characters:

• Latin uppercase letters A-Z
• Latin lowercase letters a-z
• digits 0-9
• - (hyphen)
• (underscore)

The hyphen cannot appear as the first nor the last character in user-defined
words. The underscore cannot appear as the first character in user-defined
words. In some cases, a user-defined word must have at least one alphabetic
character. For example, data names cannot be named 12-34 but sections can.

Names don’t need to be unique if there is a possibility to qualify them
uniquely. Consider Listing 22. In the example, there are multiple entities with
same names. These definitions are correct because it is possible to uniquely

42

2.2. IBM COBOL

01 A.
05 B USAGE DISPLAY.

10 C PICTURE X.
01 A2 USAGE POINTER.

05 B USAGE DISPLAY.
10 C PICTURE X.

DISPLAY C of A.
DISPLAY C OF B of A.

Listing 22: A COBOL code snippet demonstrating a qualification of names

qualify B and C through its parent A. To do this, COBOL uses keywords
OF or IN in a qualification. For example, to qualify the first C, a user can
write C of A. The names in the qualification are written in the order from
the inner item to the outer item. The qualification of intermediate entities is
not necessary if names can be uniquely qualified (i.e. it is not necessary to
write C of B of A). The qualification works on all items in the hierarchy
system, so also on condition-names, indices, renames, redefines, and so on.

2.2.6.4 Subscripting

Subscripting is a method of providing table references through the use of sub-
scripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element. Subscripts are written in the parentheses after the
whole qualified name is specified. This is shown in Listing 23.

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES INDEXED BY I.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE PIC X(8).

DISPLAY ELEMENT-THREE OF TABLE-THREE (2 1).

Listing 23: A COBOL subscripting example

Subscripts must be specified in the order from the outermost to the inner-
most. Arrays are started from the index one, and the number of subscripts
must be exactly the same as the number of dimensions in the hierarchy of the
data entity. It is possible to use literals, data items or indices in subscripting.
Subscripts can be absolute (a single item) or relative (a single item +/- an
integer).

43

2. Analysis

Since COBOL 2002 standard [29], it is possible to use arithmetic expres-
sions in subscripting. However, such combination gave COBOL some prob-
lems. There is no specific delimiter which specifies a delimitation of two ad-
jacent subscripts, and therefore some situations are ambiguous. For example,
A(1 + 1 + 1 + 1) can have two representations. One with two subscripts (1
+ 1) and (+ 1 + 1), and the second one with a single subscript (the whole
expression). From experiments with GnuCOBOL, it seems that GnuCOBOL
goes the greedy way and it tries to parse everything into the one expression
until it cannot continue and then it starts another arithmetic expression. In
this work, I will go on this in the same way. It is important to note that IBM
COBOL does not support subscripting with arithmetic expressions, but be-
cause it is an additive used in other COBOL implementations, I have decided
to include it.

2.2.6.5 Literals

IBM COBOL supports various types of literals. These types are:

• Basic alphanumeric literals (enclosed in quotation marks or apostrophes)
• Hexadecimal alphanumeric literals (prefixed with X)
• Null-terminated alphanumeric literals (prefixed with Z)
• DBCS literals (prefixed with G or N)
• UTF-8 literals (prefixed with U)
• UTF-8 hexadecimal literals (prefixed with UX)
• National literals (prefixed with N)
• National hexadecimal literals (prefixed with NX)
• Integer literals (sign, digits)
• Floating-point literals (sign, digits, decimal point is dot character)
• Floating-point literals (scientific format - sign, mantisa, symbol E, sign,

exponent)
• Figurative constants

A literal can be prefixed with symbols X, Z, G, and so on. For example,
X”abcd” represents a hexadecimal literal. All literals except numeric literals
and figurative constants should be enclosed in quotation marks or apostrophes.

In the case of floating-point literals, a typical delimiter is a period. It
is possible to change decimal point character to a comma character with
DECIMAL-POINT IS COMMA command, but it has some consequences. I
will not support this command in this work. Figurative constants are constants
with special properties. For example, the figurative constant HIGH-VALUE
can be used to assign a highest possible value to given data item.

2.2.6.6 Source Code Formats

Source code formats define the structure of a COBOL source code. There are
three main source code formats:

44

2.2. IBM COBOL

• Fixed format
• Variable format
• Free format

Fixed format is the oldest COBOL source code format and it has a very
strict structure. The first six positions on every line have a special purpose.
They are used as the place for a sequence number. This number is not used
nowadays but fixed format still demands it. The seventh position on each
line has also a special purpose. This position is the place for a line indicator,
which states the purpose of line. The possible choices are listed in Table 2.6.
From eighth to seventy-second position, it is possible to write a COBOL code.

Line indicator Meaning
* or / line is commentary
- continuation of the previous line
$ line with compiler directive
D or d debugging line (ignored if program

is not in the debug mode)
(space) code line

Table 2.6: Line indicators of fixed format in COBOL

After this, there is segment of length eight, which is used as a programmer
documentation. Every source code line in fixed format has exactly eighty
positions. Figure 2.4 describes this structure more visually. In earlier versions
of COBOL, statements had to start from twelfth position but in COBOL 2002
this restriction was lifted. Fixed format is the default format for IBM COBOL
programs.

Figure 2.4: COBOL fixed format [3]

45

2. Analysis

Variable format is similar to fixed format. It divides source code line
into same segments except the two last ones. The COBOL code can have
unlimited positions and there is no programmer documentation area. For
practical purposes, a COBOL code in this format is commonly limited to 250
characters per line.

The last format is free format. As its name suggest, this format is the least
restrictive. In this format, line indicator (same as in fixed format) is placed at
the first position on each line. In free format, there are no continuation lines,
and COBOL code can start even at first position if it starts with the other
characters than indicator characters.

2.2.6.7 Copy Statement

The COPY statement is a library statement that places a prewritten text in a
COBOL program source code. This statement is used to place a part of source
code that is stored elsewhere into the actual source code unit. Its simplified
syntax is explained by Listing 24. Using such copy statement in a COBOL
source code will result in placing the content of the file named copybook at
the place of the copy statement, replacing the copy statement. In COBOL
world, copybooks are files sharing data definitions between multiple programs.

It is possible to share an arbitrary COBOL code between files, not only
data definitions. Files which are not sharing definitions are not commonly
called copybooks but I will call them copybooks anyway, for simplicity.

The REPLACING clause of the copy statement is used to replace the
first string with the second string while copying the content of the source
file. In this case, it would replace all words word for the word word2. The
replacing clause is an optional clause and it can contain an unlimited number
of replacing parts.

COPY 'copybook' REPLACING ==word== BY ==word2==.

Listing 24: A COPY statement example

A text used between two assignments is special for the copy statement.
This text is called pseudo-text and it can contain an arbitrary string (except
one with ==). With pseudo-text, it is possible to replace not only single
words by also groups of words. Other operands which can be used in the
REPLACING clause are:

• word (also keyword)
• identifier
• literal

Copy statements are evaluated in the preprocessing phase, so all copy state-
ments are replaced before the program is compiled.

46

2.3. Requirements

2.3 Requirements

The solution produced by this work will be used in Manta project with other
data flow analysis tools, so it is important to state the requirements on the
solution by Manta project.

The functional requirements are:
• The tool will parse a correct COBOL source code to AST internal rep-

resentation.
• The tool will produce data flow information in the form of the data flow

graph.
The nonfunctional requirements are:

• The tool will use parser generator ANTLR.
• The solution will be implemented in Java programming language and it

will use common codebase and technologies from Manta project.
• Data flow analysis should have a reasonable execution time (i.e. in a

matter of seconds).
• The quality of the solution should be verifiable by tests.
There are other suggestions from Manta project which should be consid-

ered in the course of the implementation. These are:

• It is expected that an input to the analyzer is correct, so the tool does
not need to check syntax validity of the input entirely. Checking syntax
validity entirely only makes process much harder with no added benefit.
For example, the order of clauses in the grammar can be arbitrary which
allows the grammar to be simpler.

• The tool does not need to check semantic validity of the input entirely.
Checking semantic validity entirely only makes process much harder with
no added benefit. For example, it is allowed to have a string literal in a
place where only numeric literals are allowed.

2.4 Existing solutions

COBOL is an extensive language, so it is not very convenient to start from
scratch. Therefore, this section is devoted to the analysis of existing solutions
which could help with parsing of COBOL.

2.4.1 IBM’s VS COBOL II Grammar

IBM’s VS COBOL II grammar is a COBOL grammar for an older version of
IBM’s COBOL. This grammar is written in ENBF and contains the syntax
of many COBOL constructs. VS COBOL II seems to be very similar to
Enterprise COBOL for z/OS, so this grammar is very suitable for this work.
Its disadvantage is that lexical rules are not very specific and many of them

47

2. Analysis

contain only generic regular expressions. This version of COBOL is also a bit
older so constructs such as intrinsic functions are not present in the grammar.
Even though this grammar is a decent one, I will look for a more complete
description of COBOL syntax.

2.4.2 GnuCOBOL

GnuCOBOL [19] is an open-source COBOL compiler. This compiler is a
stable and also well known. Unfortunately, it is written in C programming
language and uses bison and flex for parsing. It would be necessary to rewrite
its grammar, so this solution is not very suitable.

2.4.3 Java Cobol Lexer

Java Cobol Lexer [30] is an implementation of COBOL lexer in Java. This
program meets requirements but it is not very well supported (last update
was in 2013). Also, lexical analysis is easier than parsing so unless there is a
COBOL parser that does not have a lexer I will not use this solution.

2.4.4 RES - An Open Cobol To Java Translator

RES [31] is an open-source translator of a VS COBOL code to a Java code.
This tool contains a COBOL lexer and also a parser. Unfortunately, the parser
and lexer are generated by JavaCC parser generator, and therefore it does not
meet requirements. The project contains a source grammar for COBOL parser
which can be used, however, the JavaCC grammar syntax is different to the
ANTLR grammar syntax, so it would be necessary to rewrite the grammar.

2.4.5 TypeCobol

TypeCobol [32] is an open-source Cobol 85 incremental parser and an exten-
sion of Cobol 85 language named TypeCobol. This project uses an ANTLR4
parser to parse an input COBOL code, and the whole project is created in C#.
Its grammar seems to be very robust and covers COBOL concepts extensively
but sadly, the project’s license does not allow the use of this parser in Manta
project.

2.4.6 ProLeap ANTLR4-based parser for COBOL

ProLeap COBOL parser [33] is an ANTLR4 parser for a COBOL code. This
parser is not targeted at any particular COBOL dialect but supports a wide
range of COBOL dialects and extensions. The project contains a COBOL
parser, a COBOL grammar, and also a codebase to use the parser and to
generate AST program representation. The project converts AST representa-
tion to another representation which the author calls ASG (Abstract Semantic

48

2.5. ProLeap ANTLR4 COBOL Parser

Graph). An ASG is a graph representation of an AST on which some phases
of semantic analysis were done.

This solution is very much suitable because it contains not only the gram-
mar but also the codebase to preprocess a COBOL code and many COBOL
testing examples for parsing. The project is managed under MIT license, so
the license is also suitable. Because this solution seems to be best out there,
I will use this solution as the background for the design and implementation.

2.5 ProLeap ANTLR4 COBOL Parser

Even though the ProLeap ANTLR4 COBOL parser seems to be the best
open-source COBOL parser out there, there are some things which are done
incorrectly, or could be improved. In this section, I want to mention some
things with their possible fixes. I will not mention everything as the grammar
has a lot of problems with ambiguities and incorrect/missing keywords. Some
grammar ambiguities can be easily fixed but others arise from the nature of
COBOL syntax, and therefore cannot be easily fixed. I will tackle these things
in the implementation part of this work.

2.5.1 Arithmetic Expressions

The grammar rules for parsing arithmetic expressions is done by the typical
method of top down parsing by priorities. However, ANTLR4 parser generator
allows to use a direct left-recursion in a source grammar, so original arithmetic
expressions rules can be rewritten to the simpler, more natural form. The
same principle can be applied on other expression rules in COBOL, such as
condition expression rules.

2.5.2 Ambiguities in Identifiers

Listing 25 shows grammar rules for parsing of qualified data names in the
ProLeap ANTLR4 grammar. The problem is that the rules for parsing are
almost the same for all formats, and therefore parsing algorithm will always
go with format1. It is not possible to distinguish between a data name and
a paragraph name on the lexical nor syntax level. The solution for this is to
use specific names only in segments where they are the only option, and in a
general case let the semantic analysis process to figure out what given name
represents.

2.5.3 Nongreedy Subrules

ANTLR4 allows to use nongreedy versions of lexer and parser subrules in
grammars [34]. To define a subrule with the nongreedy behaviour, it is nec-
essary to add suffix ? (the question mark) to given subrule. Consider Listing

49

2. Analysis

qualifiedDataName
: qualifiedDataNameFormat1
| qualifiedDataNameFormat2
| qualifiedDataNameFormat3
;

qualifiedDataNameFormat1
: (dataName | conditionName)

(qualifiedInData+ inFile? | inFile)?
;

qualifiedDataNameFormat2
: paragraphName inSection
;

qualifiedDataNameFormat3
: textName inLibrary
;

Listing 25: ProLeap ANTLR4 parser grammar rules for parsing qualified
names

26. This way, pseudotexts can be parsed on the lexer level instead of the

PSEUDO_TEXT : DOUBLEEQUALCHAR .*? DOUBLEEQUALCHAR;

Listing 26: A ANTLR4 lexer grammar rule for parsing pseudotext

parser level. Nongreedy subrules can also be used in other lexer rules where
it is important to match an input until the first occurrence of a given symbol.
The typical case is parsing of strings.

50

Chapter 3
Design

This chapter presents design concepts of the target solution. The first sec-
tion presents technologies which are used for the implementation of the target
solution. The second section describes a decomposition of the solution into
modules and their responsibilities. The third section describes how data enti-
ties will be represented in the analyzer. The fourth section describes how data
types will be assigned, and the fifth section tells about data flow in renames
and redefines.

3.1 Technologies

This section presents technologies that are commonly used in Manta project.
These technologies will be also used in this work.

3.1.1 Java

Java is a modern general-purpose programming language. Manta project uses
Java for most of its codebase, and the usage of Java is also one of the require-
ments for the target solution. In this work, I will use the version which is
common for other modules in Manta project and that is Java SE 8.

3.1.2 Spring Framework

The Spring Framework [35] is an application framework for building Java
applications. This framework is very extensive and delivers multiple modules
for various purposes. The Spring framework is an easy-to-use framework,
in which it is possible to define a series of XML configurations which set up
everything necessary for easy prototyping. I will use Spring for a configuration
of the target solution in testing phase.

51

3. Design

3.1.3 Apache Maven

Apache Maven [36] is a software project management tool used primarily for
Java. With Maven, it is possible to decouple a project into multiple modules
(artifacts) and manage dependencies between them.

Maven has a very simple configuration file called POM file, in which a de-
veloper states information about the module and all its dependencies. Maven
then handles everything - resolving dependencies, downloading dependencies
and building of the module. Maven will be used in this work to decouple the
solution into multiple independent units, and also to resolve dependencies to
other Manta project modules and external libraries.

3.1.4 JUnit

JUnit [37] is a unit testing framework for Java. With JUnit, it is possible to
create Java unit tests simply by appending Java annotations on corresponding
test classes and methods. JUnit also supports parametrized tests where it is
possible to maintain test suites with supplied parameter values.

This library is very much standard for Java unit testing and it will be used
also in this work. I will use JUnit for verification of quality of created parser
as well as for the verification of results of the data flow analysis.

3.1.5 ANTLR

ANTLR is a parser generator which was introduced in Section 1.3.5.1. This
parser generator will be used for the creation of a parser and a lexer for
COBOL. Other Manta analyzers are commonly using ANTLR3 but I will use
ANTLR4 due to the existence of the suitable ANTLR4 COBOL grammar.

There was an attempt to convert the ANTLR4 COBOL grammar to an
ANTLR3 COBOL grammar but it was not successful. ANTLR3 solves am-
biguities at compile-time with predicates whereas ANTLR4 solves them at
runtime by using production rules with the lowest numbers. Due to this, it
would be necessary to rewrite many rules of the grammar to get it working.

It is important to note that the Manta codebase somewhat expects the
usage of ANTLR3 AST so it is necessary to make some adjustments and
convert an output of ANTLR4 (a parse tree) to an ANTLR3 AST.

3.2 Modules

The solution will be decoupled into a few modules based on similarities with
other modules in Manta project. These modules are:

• manta-connector-cobol-model (Connector Model)
• manta-connector-cobol-resolver (Connector Resolver)
• manta-connector-cobol-testutils (Connector Testutils)

52

3.2. Modules

• manta-dataflow-generator-cobol (Dataflow Generator)

Figure 3.1 shows a diagram of dependencies among these modules.

Figure 3.1: A diagram showing dependencies among modules

3.2.1 Connector Modules

Connector modules are responsible for reading, parsing, processing, and cre-
ation of the internal representation (AST) of an input program. These mod-
ules also handle semantic analysis (resolving) of the created internal represen-
tation.

Model module describes Java interfaces to other connector modules. This
module is used as a communication resource between connector modules,
dataflow modules and also other Manta project modules.

Testutils module contains base classes for testing. Classes of this module
are shared within multiple modules.

Resolver module is a module which has the most responsibilities. The
following list describes its individual phases:

1. Reading of an input source code.
2. Preprocessing of the input source code to a single code representation.
3. Parsing of the single code representation to a parse tree.
4. Transformation of the parse tree to an AST.
5. Semantic analysis of the AST.

The first phase is responsible for reading of an input COBOL source code
into string. It should be possible to read an input source code in various input
formats such as a string or a file. This phase should also accept additional
information about the input such as used encoding, copybooks locations and
the source code format. The input source code and additional information are
passed to the next phase.

The second phase is responsible for preprocessing of the input. As al-
ready noted, there are many COBOL source code formats. This phase should

53

3. Design

handle converting of the input source code to an unified source code which is
stripped from sequence numbers, the last segment (commentary segment) and
the line identification field. The preprocessing phase is also devoted to finding
copybooks and replacing COPY statements for a content of copybooks. It is
necessary to process replacing clauses of COPY statements too.

The third phase is devoted to parsing of the unified source code repre-
sentation. A parser should be generated by the improved ProLeap ANTLR4
grammar. An output of the ANTLR4 parser is a parse tree representing the
structure of the input program.

The fourth phase is done over the parse tree produced by the previous
phase. The purpose of this phase is to transform the parse tree to an AST
with an enhanced functionality. In the process, the transformation should
remove unimportant nodes which are not needed. The AST representation
should be based on the common codebase used in Manta project.

The last phase accepts the AST representing the input program. In this
phase, the module will resolve all identifiers to their real representations. If
an identifier cannot be resolved, the module should try to guess its represen-
tation. The output of this phase is the program representation suitable to the
following data flow extraction.

3.2.2 Dataflow Generator Module

Dataflow Generator module is a module responsible for a generation of a data
flow graph from the input AST, which is passed to this module from Connec-
tor modules. The role of this module will be to traverse the resolved AST
representing the COBOL program, and for each statement generate corre-
sponding data flow graph nodes and edges. For a traversal of the tree, the
module should implement a visitor pattern.

Statements of COBOL programs should be processed as follows:

1. Create nodes for every operand and data item used in a given state-
ment. Create also their corresponding structures according to defined
hierarchy.

2. Create nodes representing the given statement with its corresponding
hierarchy parents (sections, paragraphs, programs, ...).

3. Create intermediate result nodes (called ColumnFlows) which repre-
sents changes in te given statement and attach them under the statement
node. This way these nodes will be present as leaf nodes.

4. According to semantics of given statement, connect created nodes cor-
respondingly. Edges should be only between leaf nodes.

These steps don’t have to be executed in given order. In some cases, it can be
easier to create statement nodes before operand nodes. Figure 3.2 presents a
possible output for a simple ADD statement. Edges marked with D represent
direct flows as discussed in Section in 1.1.1.

54

3.3. Data Entities

ADD 5 TO X.

1 EXPRX 5

<1,1> ADD

DD

Parent

Figure 3.2: A data flow graph for a simple ADD statement

3.3 Data Entities

The process of semantic analysis should create data entities representing vari-
ables, data types and other related constructs, and save them to a symbol
table. In this work, I will use data representation scheme of Manta project.

For each data description entry from Data Division, I will create an object
of IResObject type which will represent data of the entry. IResObject ob-
jects should create same hierarchy scheme as it is present in leveling system of
COBOL description entries. Each object should have assigned a corresponding
data type object represented by IResDataType class. Data types will be as-
signed according to the usage clause and/or picture clause of the corresponding
data description entry. In the case of variables which represent special objects
such as data items with level 66, redefines, renames or condition-names (level
88), these variables shouldn’t be a part of direct hierarchy of IResObject ob-
jects. Special objects will be called pseudo attributes, and they will be saved
to and retrieved from the hierarchy with special methods.

An example of the data representation scheme is shown in Figure 3.3. In
the example, it can be seen that the hierarchy contains parent/child relations
between data types (RECORDs) and objects (ELEM-ITEM, ELEM-ARRAY,
ELEM-ARRAY-ITEM). Typically, an object has a datatype and if the data
type is a record, inner objects are associated with the data type. The same
pattern is used here. In the case of pseudo attributes, they are associated
directly with corresponding objects. In this hierarchy, arrays are exceptions.
Because an array is not a simple object, it is represented with an IResArray
object, and a duo - a key and a content. The object ELEM-ARRAY repre-
sents the whole array. Its key is not so important and it is here purely for
compatibility with the codebase. The content, however, is important and it
represents the content (the data) of the particular array.

55

3. Design

«IResObject»
GRP

01 GRP.
 05 ELEM-ARRAY OCCURS 5 TIMES.
 10 ELEM-ARRAY-ITEM PIC 99.
 88 VAL VALUE 00.
 05 ELEM-ITEM PIC 99.
 05 REDEF REDEFINES ELEM-ITEM PIC XX.

«IResDataType»
RECORD

«IResArray»
ELEM-ARRAY

«IResDataType»
BOOLEAN

«IResDataType»
STRING

«IResObject»
VAL

«IResObject»
REDEF

pseudo attribute

type

type

child

pseudo attribute

type

«IResDataType»
RECORD

«IResObject»
ELEM-ARRAY-ITEM

«IResDataType»
NUMERICtype

«IResObject»
ELEM-ARRAY_CONTENT

array representant

type

«IResObject»
ELEM-ARRAY_KEY

key
representant

child

«IResObject»
ELEM-ITEM

«IResDataType»
NUMERIC

«IResDataType»
NUMERIC

typechild

type

Figure 3.3: An example of the data entities representation scheme

All created objects will be saved to a symbol table which will be represented
by a program scope (IResScope class). The program scope will maintain a
list of all created objects in the program. In COBOL, all variables have the
global scope of validity so one scope for every program is enough. Even though
programs are processed as individual units in this work, I will create a tree-like
structure of scopes according to the hierarchy of programs and inner programs.
This will help in further extensions of the COBOL analyzer. It is important
to note that all objects must be saved to the scope because in COBOL, it is
possible to use references to data items without their fully qualified names.

3.4 Data Types

As already mentioned in Section 2.2.4.7, COBOL does not have traditional
data types. In this work, I will assign common data types, used in modern
programming languages, to data items. These types will be:

• record
• numeric (purely)
• string
• boolean
• data pointer
• procedure pointer
• object reference
• unknown

The data type of a data item will be assigned by the picture and the usage
clause of its data description entry. A data item will have record type if it

56

3.5. Redefines and Renames

is a record. The other data types are primitive data types and they will be
recognized by Table 2.4. The table contains possible combinations of picture
characters and usage types, so a series of if statements can recognize what type
given data item has. In the case of condition-names, they will have assigned
boolean type because their behaviour simulates booleans. A rename doesn’t
have data type, so its type should be unknown. If it won’t be possible to
recognize the type of an item, unknown type will be used.

3.5 Redefines and Renames

Redefines and renames were introduced in Sections 2.2.4.8 and 2.2.4.10, re-
spectively. These data items are special because they share a memory with
other data items, and therefore a change of data in one data item results in a
change in other data items. Thus, it is important to represent data flow also
between these items.

A trivial solution is to create data flow edges between corresponding data
items in both directions every time, so it will ensure that data flow won’t be
lost. However, this solution is not very suitable because it will create many
data flow edges in the data flow graph.

In this work, I will use a better approach. A direct data flow will be present
between corresponding data elements only if there is an incoming edge to a
source node and there is also an outgoing edge from a target node. This will
handle cases when a one data item is used only for reading and a second one
is used only for writing. In such cases, it is not necessary to create a data flow
in both directions. Figure 3.4 illustrates that.

05 ITEM
05 REDEF

REDEFINES
ITEM

Figure 3.4: An example of a data flow between a redefine and its source

57

Chapter 4
Implementation

This chapter describes the implementation part of this work. Due to an exten-
sive number of implemented classes, I have decided to describe only the most
important ones. Classes described in this section comes from two modules –
Connector Resolver and Dataflow Generator. The other two modules – Con-
nector Model and Connector Testutils – contains mostly interfaces and generic
classes, so they are discussed here. The common pattern for class naming is
adding suffix Impl to the name of a interface which the class implements.

It is important to note that source codes contain also an implementation
of the data flow analysis for additional features of COBOL such as embedded
SQL processing, statements working with files, and the data flow analysis
between COBOL subprograms. These additions were not the goal of this
thesis and some of them were created as a collaboration with other members
of Manta project. This part of the thesis describes source codes that were
created by myself and they cover the goal of the thesis, so constructs discussed
in the analysis and design part of this work.

4.1 Connector Resolver

This section describes the most important classes of Connector Resolver mod-
ule.

4.1.1 CobolParserServiceImpl

CobolParserServiceImpl is the most important class of Resolver module.
This class provides two public methods for parsing and resolving - analyzeFile
and analyzeCode. As names imply, these methods are used for the analysis of
files and the analysis of codes, respectively. Both methods process an input in
corresponding formats and converts it into a string. The string of input code
is then processed by a workflow illustrated in Figure 4.1.

59

4. Implementation

:CobolParser-
Service :CobolPreprocessor :CobolLexer :CobolParser :CobolAstNode

foreach
child

resolve()

:CobolReader

tokenizeInput(preprocessedCode)

analyze(code)
preprocessCode(code)

A COBOL reader or
an actor calling the
analysis of COBOL.

A service for
parsing and
resolving of
COBOL.

A COBOL preprocessor
removes unimportant data
and creates generic code. An ANTLR4

COBOL lexer.
An ANTLR4
COBOL parser.

preprocessedCode

tokenStream

parse(tokenStream)

parseTree

resolve()

processed AST
(model)

:CobolTreeVisitor

visitChildren()

visit(parseTree)
<<new>>

AST

foreach child

A COBOL AST
node.

Visitor
converting a
parse tree to an
AST.

Creation of parse
tree from the
input code.

Transformation of
the parse tree to the
COBOL AST.

Resolving of the AST.

Figure 4.1: The process of the COBOL parser service

The workflow of CobolParserServiceImpl is the same as it was designed
in Section 3.2.1.

In the first phase, a COBOL code is preprocessed by a CobolPreproces-
sor. In this phase, the original COBOL code is stripped from unimportant
data, continuation lines are appended accordingly, COPY statements are re-
placed with copybooks, and so on.

The next two phases are tokenization and parsing by an ANTLR4 gener-
ated lexer and parser. After this, the original code is parsed in the form of a
ANTLR4 parse tree representation. The ANTLR4 parse tree representation
is a Java tree with information about the parsing process. The tree is com-
posed of nodes called contexts, where each context represent an instance of
used rule or subrule in the process of parsing. For example, a node of the
class StartRuleContext represents the rule startRule. Additional informa-
tion, which can be retrieved from contexts, are starting and ending positions
of used rules, and input tokens.

The ANTLR4 parse tree is transformed to a COBOL AST represented
by class CobolAstNode. The transformation is done by the visitor pattern,
which is handled by the following classes:

• CobolTreeBuilderVisitor
• CobolTreeBaseVisitor (base for others)
• CobolTreeIdVisitor (visits IDENTIFICATION DIVISION)

60

4.1. Connector Resolver

• CobolTreeEnvVisitor (visits ENVIRONMENT DIVISION)
• CobolTreeDataVisitor (visits DATA DIVISION)
• CobolTreeProcVisitor (visits PROCEDURE DIVISION)

The first class from the list is used as the builder class of the other visi-
tor objects, whereas the others are devoted to processing of specific segments.
CobolTreeBaseVisitor is the base class for visitors, in which common meth-
ods such as visitTerminal, visitChildren, visitIdentifier are defined. Most
transformation methods are quite simple. They convert an instance of parse
tree context to an instance of CobolAstNode node. Important nodes such as
identifiers, data names and divisions are represented by more specific classes
with extended possibilities. A created CobolAstNode node keeps the origi-
nal parse tree context for retrieval of additional information about its origin.
CobolTreeDataVisitor is a bit more complicated class because it contains
also processing of description entries. Method processDescriptionEntriesHier-
archy transforms the original hierarchy of description entries, which is linear,
to the tree hierarchy, which represents the proper structure according to lev-
eling system of COBOL.

The last phase – semantic analysis (resolving) – is done over the COBOL
AST. Resolving is started with calling of CobolAstNode’s resolve method
on the root of the tree. The generic form of this method is shown in Listing
27. In short, this method does nothing and commands its children to do re-
solving. Important nodes such as identifiers and data names have this method
overridden with the corresponding logic.

public IResEntity resolve() {
for (CobolAstNode child : getChildren()) {

child.resolve();
}
return null;

}

Listing 27: The generic resolving method

4.1.2 CobolPreprocessorImpl

CobolPreprocessorImpl and its related classes are an implementation of
preprocessing for COBOL. Most of preprocessing classes were taken from Pro-
Leap COBOL project. Its implementation is decent and covers most aspects of
preprocessing of COBOL. Even though most of the code was copied, there are
two changes which improved preprocessing of COBOL in my implementation.
The first change is related to COPY statements. ProLeap handles replacing
clauses wrongly and does not take into account that tokens are case-insensitive.

61

4. Implementation

My implementation replaces tokens in COPY REPLACING clauses regard-
less of the case. The second change related to preprocessing is a grammar
ambiguity. I have rewritten some grammar rules to be less ambiguous, mostly
in a segment of COPY statement processing.

Even though the implementation is taken from another project, I want to
summarize steps which are done in the COBOL preprocessing. These steps
are:

1. An input COBOL code is divided into lines represented by custom ob-
jects.

2. Lines are normalized by stripping sequence numbers and comment en-
tries. Line indicators are interpreted and removed. Continuation lines
are appended correspondingly.

3. Lines are converted into a string.
4. The string is parsed by the ANTLR4 COBOL preprocessor parser.
5. The parse tree is traversed by a tree walker. While the tree is traversed,

compiler directives are discarded, a content of copybooks is replaced and
included. A content of the other nodes is simply copied to the output.

6. The output of tree walking is a string with the unified code.

4.1.3 IBMDataItemAnalyzer

IBMDataItemAnalyzer is a class responsible for analysis of IBM COBOL
data items. Methods of this class accept the picture string and/or the using
clause of an analyzed data item, and in series of if statements, they decide its
category, size and the internal data type. Decision logic of this class is based
on Table 2.4. Information produced by this class is then used in other classes
related to resolving.

4.1.4 ResScope

ResScope is an implementation of the program scope in the COBOL ana-
lyzer. This class maintains an associative array where IResObject objects
are stored. The class has two important methods:

• IResObject resolveObjects(objectName, properties) - returns an ob-
ject with matching name and fulfilled properties, or null if there is no
such object

• void registerObject(object) - registers an object to the scope

4.1.5 CobolDataDictionary

CobolDataDictionary is a factory class devoted to the creation of dictionary
(IResObject) objects. Its interface consists of the following methods:

• createObjectAsPseudoAttribute

62

4.1. Connector Resolver

• createArrayAsPseudoAttribute
• createObject
• createArray
• createDataType

All these methods accept input parameters such as object’s name, properties,
data type, definition source type and its defining AST node. The defining
AST node is an AST node from which the object is created. This node is
used in cases when it is necessary to get additional information about object’s
origin.

4.1.6 DataDescriptioItemEntryImpl

DataDescriptionItemEntry is a class representing data description entries
in the COBOL AST. This class overrides resolve method, and in that method,
it creates an IResObject object representing a data item described by the
data description entry. In short, resolve method tries to figure out the data
type and the size of the data item. This is done by passing the picture string
and the usage type to a IBMDataItemAnalyzer object.

After analysis by IBMDataItemAnalyzer, name, type, properties and
the defining AST node reference are passed to a particular method of Cobol-
DataDictionary. CobolDataDictionary creates an IResObject instance
which is then saved to the program scope. However, the job of resolve method
is not yet done. Resolving is delegated to subordinate data description en-
tries. It is important to note that in this method, the size of elementary data
item is attached as an attribute on corresponding IResObject object, which
is subsequently used in Dataflow Generator module for a calculation of offsets
in group moves.

4.1.7 QualifiedDataNameImpl and DataNameImpl

QualifiedDataNameImpl is a class of the COBOL AST devoted to process-
ing of qualified names. Children of an instance of QualifiedDataNameImpl
are objects of class DataNameImpl. These two classes are the core of the
resolving process and both classes override the generic method resolve.

The resolve method passes the QualifiedDataNameImpl object to a
CobolReferenceResolver class, which tries to find references for every data
name. The CobolReferenceResolver is an extension of a common codebase
of Manta resolving. This class is quite complicated but in short, it traverse
through every data name (segment) and tries to resolve it.

Resolving is done in the order from the last to the first segment because
COBOL uses reversed ordering of data names in qualified names. The first
segment of a qualified data name is resolved through the program scope. Re-
solving process will look into a list of objects which are registered in the scope
and tries to find match on the name of the segment. After the successful

63

4. Implementation

match, the next segment, if it is present, is going to be resolved. Resolving
of the next segment looks into the result of the previous segment and tries
to find the suitable object in its hierarchy. The process continues until every
segment of the qualified name is resolved. After the process, the reference of
the last segment is returned and that is the reference of the qualified name.

It is important to note that there are cases when resolving does not find any
matching variable. In that case, resolving tries to deduce the missing variable
from the context of resolving. If a variable is deduced then it is registered
into the program scope, so next missing variable with same qualifiers does not
have to be deduced again.

4.2 Dataflow Generator

This section describes two most important classes of Dataflow Generator mod-
ule.

4.2.1 CobolGraphHelper

CobolGraphHelper is a helper class devoted to building of a data flow
graph. This class extends AbstractGraphHelper class from Manta code-
base which contains common methods for building graph nodes and edges.
The following list describes most important methods of CobolGraphHelper
class:

• buildNode(IResEntity) - builds graph nodes for an IResEntity ob-
ject passed as the input parameter. IResEntity is a more abstract
version of IResObject.

• buildOpNode(CobolAstNode) - builds an operation graph node for
a COBOL AST node passed as the input parameter.

• buildEntityLeavesNodes(IResEntity) - processes the whole struc-
ture of an input entity, builds it, and returns its leaf nodes.

• connectDirectFlowBySize(IResEntity source, IResEntity tar-
get, Node opNode) - method builds nodes for a source and target
entity, and connect corresponding nodes according to their sizes and
offsets. This method is used to create data flow between group items
and redefines, where it is necessary to calculate offsets of data items for
correct data flow processing. If an operation node is supplied, data flow
is created through its ColumnFlow nodes.

4.2.2 CobolDataFlowVisitor

CobolDataFlowVisitor is the core class of the data flow analysis in this
work, and its purpose is to create a data flow graph from an input COBOL
AST. Data flow graph is built by traversing of a COBOL AST with a visitor

64

4.2. Dataflow Generator

pattern. CobolDataFlowVisitor implements visitor methods for most of
COBOL AST nodes, which contain a statement-specific logic of the data flow
analysis processing. CobolGraphHelper is used as its helper class.

65

Chapter 5
Testing

This chapter describes created unit tests used for a verification of the imple-
mented solution. Two modules containing the program logic, which is tested,
are Connector Resolver and Dataflow Generator. Both modules use common
classes from Connector Testutils to extend possibilities of testing. JUnit li-
brary is used as a driver for unit testing.

5.1 Connector Testutils

Connector Testutils module is a module containing a base class for testing –
CobolTestBase. This class supplies auxiliary attributes and methods used
for testing such as printing an AST to a file or checking if resolving were done.

Method assertAllReferencesResolved(ICobolAstNode ast, boolean allowDe-
duction) is used to assert if all important references of a COBOL AST were
resolved (i.e. they are not null). The method implements a visitor pattern for
this task. A code snippet of the visitor pattern is shown in Listing 28.

5.2 Connector Resolver

Connector Resolver module is responsible for parsing, resolving and prepro-
cessing of an input COBOL code. All these phases are covered by unit tests.

AstParsingTest is a JUnit parametried test class responsible for testing
of the parser and lexer. This test tries to read and parse every file from
input test folders. These folders contain many COBOL program examples,
which were taken from ProLeap project. It can be said that these tests are
very comprehensive because they are taken from COBOL NIST Test Suite
[38], which is a test suite used for the verification of a COBOL compiler
possibilities. My parser is able to parse most (656) examples but there are
still some examples, which it is unable to parse. Those examples contain

67

5. Testing

@Override
public Object process(DataName node) {

IResEntity entity = node.getReferencedObject();
assertResolved(entity, node);
return super.process(node);

}

public void assertResolved(IResEntity entity,
ICobolAstNode node) {
Assert.assertNotNull("Reference not resolved: "

+ node.toNormalizedString() + " " + node.logNode(),
entity);

if (!allowDeduction) {
Assert.assertTrue(

"Reference resolved using deduction: " +
entity.getName() + ", " + node.logNode(),
entity.getDefinitionSourceType() !=
DefinitionSourceType.DEDUCTION);

}
}

Listing 28: A code snippet of the visitor for asserting references

unknown constructs, which even GnuCOBOL is not able to recognize. They
were placed into the folder not working.

CopyReplaceTest is a unit test responsible for a verification of copy-
ing and replacing of copybooks. The test tries to process an input COBOL
program with the COPY statement and verifies if a content of copybook is
correctly replaced into the input COBOL program.

IBMDataItemAnalyzerTest is a unit test used for testing if the class
IBMDataItemAnalyzer is working correctly. It uses a set of picture strings
and usage types to verify if expected result is same as return value.

The last test class is named ResolvingTest. As the name suggest, this
class is used for a verification of resolving process. It uses separate methods
for testing of different aspects of resolving.

5.3 Dataflow Generator

Dataflow Generator uses a similar approach for testing as Connector Resolver.
ParametrizedCobolScriptTest is a parametrized JUnit test class respon-
sible for data flow analysis testing. This class is parametrized by an input

68

5.3. Dataflow Generator

COBOL program and its expected data flow graph. The class performs all
steps of the data flow analysis and in the end, it checks if the generated data
flow graph is same as expected. By this approach, every program from the
input folder parametrized is checked if its result is the same as expected.

69

Chapter 6
Data Flow Graph Samples

This chapter shows outputs of the implemented tool for a few COBOL sam-
ples. Outputs were generated by the graph rendering program GraphViz [39]
and Manta Flow application. The first section shows data flow graphs for
a COBOL program with simple statements. The second section presents a
graph for a program implementing Sieve of Eratosthenes.

6.1 Simple Program

Listing 29 shows the program which is used for the presentation. In the
program, the value 5 is moved to the variable X. Then, with the COMPUTE
statement, the value of the variable Y is computed as two raised to the power
of the variable X. The data flow graph of this program is shown in Figure 6.1.

1 Identification Division.
2 Program-ID. SAMPLE-PROGRAM1.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION.
5 01 X PIC 9.
6 01 Y PIC 99.
7 Procedure Division.
8 MOVE 5 TO X.
9 COMPUTE Y = 2 ** X.

Listing 29: A sample COBOL program

Nodes of the graph have a specific format. Every node is initiated with name,
followed with its type in brackets and with the parent name in parenthesis.
For example, the first node <8,14>5 [Literal] (SAMPLE-PROGRAM1)
is the node representing literal 5 at position 8:14 (8. line, 14. column) and its

71

6. Data Flow Graph Samples

Figure 6.1: A data flow graph of the simple COBOL program visualized by
Graphviz

parent is SAMPLE-PROGRAM1. Nodes of this graph are divided into the
following types:

• ColumnFlows. ColumnFlows represent data flow within a statement.
They are typically prefixed with the order to distinguish between same-
named nodes.

• Expressions. Expression nodes represent expressions or subexpres-
sions. The graph also shows how expressions are grouped together.

• Literals. Literal nodes represent literals used in the COBOL program.
• Cobol Level 77 Data Items. These nodes represent elementary data

items. The type Cobol Level 77 Data Item is used for all data items
which are not a part of any record.

• Cobol Program. The Cobol program node is a node identifying the
analyzed program. Every program element is a descendant of this node
in the hierarchy.

• Statements. Statement nodes represent used statements. Their names
are typically prefixed with their location to easily distinguish between
multiple usages of the same statement.

• Connection. Connection node is the top-level node used to distinguish
between multiple runs of the data flow extraction.

Figure 6.2 shows the same program in Manta Flow visualization. The
Manta Flow graph is more simplified because Manta Flow application filters
out unimportant nodes such as expression and literal nodes.

72

6.2. Sieve of Eratosthenes Program

Figure 6.2: A data flow graph of the simple COBOL program visualized in
Manta Flow

6.2 Sieve of Eratosthenes Program

Listing 30 shows an implementation of Sieve of Eratosthenes program in
COBOL [40]. This program was analyzed by the implemented tool and its
data flow graph is present in Figure 6.3. However, the figure does not show the
complete graph because the original graph has contained many nodes which
would not fit the page. The figure shows data flow between individual data
items. This data flow graph contains similar node types as the graph described
in Section 6.1. The variable PRIME is used as a register for primes. Literals
and other variables (I, J, K) are used in the prime computation.

Figure 6.3: A data flow graph in Graphviz for the Sieve of Eratosthenes
program

73

6. Data Flow Graph Samples

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SIEVE.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION.
5 77 PRIME PIC 9(5) COMP.
6 77 PRIME-COUNT PIC 9(5) COMP.
7 77 I PIC 9(4) COMP.
8 77 K PIC 9(5) COMP.
9 01 BIT-ARRAY.

10 03 FLAG OCCURS 8191 TIMES PIC 9 COMP.
11 PROCEDURE DIVISION.
12 START-UP.
13 PERFORM SIEVE THROUGH SIEVE-END.
14 STOP RUN.
15 SIEVE.
16 MOVE ZERO TO PRIME-COUNT.
17 MOVE 1 TO I.
18 PERFORM INIT-BITS 8191 TIMES.
19 MOVE 1 TO I.
20 PERFORM SCAN-FOR-PRIMES THROUGH END-SCAN-FOR-PRIMES
21 8191 TIMES.
22 SIEVE-END. EXIT.
23 INIT-BITS.
24 MOVE 1 TO FLAG (I).
25 ADD 1 TO I.
26 END-INIT-BITS. EXIT.
27 SCAN-FOR-PRIMES.
28 IF FLAG (I) = 0
29 THEN GO TO NOT-PRIME.
30 ADD I I 1 GIVING PRIME.
31 ADD I PRIME GIVING K.
32 PERFORM STRIKOUT UNTIL K > 8191.
33 ADD 1 TO PRIME-COUNT.
34 NOT-PRIME.
35 ADD 1 TO I.
36 END-SCAN-FOR-PRIMES. EXIT.
37 STRIKOUT.
38 MOVE 0 TO FLAG (K).
39 ADD PRIME TO K.
40 END-PROGRAM. EXIT.

Listing 30: An implementation of Sieve of Eratosthenes program in COBOL

74

Conclusion

Summary

The goal of the thesis was to analyze the syntax and semantics of COBOL
programming language with a focus on IBM COBOL dialect, and to learn
about Manta project, its data flow analysis process and the data flow repre-
sentation. IBM COBOL programming language was analyzed with the target
to find constructs of the language which are the most important for the data
flow analysis process. Manta project, its data flow analysis process and data
flow representation were introduced in this work as well.

Other goals were to design a metadata representation for COBOL pro-
gramming language and design an internal representation of COBOL pro-
gramming language suitable for a follow-up data flow analysis. The metadata
representation and the internal representation for COBOL programming lan-
guage were designed, and design concepts are described in the design chapter
of this work.

Next two goals of this work were to design and implement a prototype
of a data flow analyzer for COBOL programs with the intention to detect
data flow among variables. The solution was designed, implemented and also
tested. The last chapter of this work presented outputs for sample COBOL
programs.

The implemented solution contains also additional features that were not
a part of the goals of this work. Some of these features were created in a
collaboration with other Manta project members. Additional features of the
prototype are the support of embedded SQL processing, the data flow analysis
to/from files, additional statements, the processing of new COBOL source
code formats, and the data flow analysis between COBOL subprograms.

The prototype was also successfully integrated into Manta framework, and
it was already released in the alpha version.

75

Conclusion

Future Work

The implemented solution is a decent data flow analyzer, however, there is
still work to do. The implemented solution cannot process more advanced
constructs of IBM COBOL such as its object-oriented extensions where a
COBOL program is communicating with Java programs. The prototype does
not support control flow statements. The support of control flow statements
can be an improvement of the implemented prototype, and it will result in a
more accurate data flow analysis.

76

Bibliography

[1] Aho, A.; Lam, M.; et al. Compilers: Principles, Techniques, and Tools.
Pearson Education, 2011, ISBN 9780133002140.

[2] Enterprise COBOL for z/OS Version 6.3. July 2020, accessed on
19.11.2020. Available from: http://publibfp.boulder.ibm.com/epubs/
pdf/igy6lr30.pdf

[3] Best of 2018: The Beauty of the COBOL Programming Language.
2018, accessed on 21.11.2020. Available from: https://devops.com/the-
beauty-of-the-cobol-programming-language-v2/

[4] Coughlan, M. Beginning COBOL for Programmers. Expert’s voice in
COBOL, Apress, 2014, ISBN 9781430262541, 3-4 pp.

[5] 2020 Developer Skills Report - HackerRank. 2020, accessed on 17.11.2020.
Available from: https://research.hackerrank.com/developer-
skills/2020?utm_medium=content&utm_source=blog&utm_campaign=
returnofcobol

[6] Taulli, T. COBOL Language: Call It A Comeback? July 2020, ac-
cessed on 17.11.2020. Available from: https://www.forbes.com/sites/
tomtaulli/2020/07/13/cobol-language-call-it-a-comeback/?sh=
2b2b39a37d0f

[7] IEEE. IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE Std 610.12-1990, 1990: pp. 1–84, doi:10.1109/
IEEESTD.1990.101064.

[8] Khedker, U.; Sanyal, A.; et al. Data Flow Analysis: Theory and Practice.
CRC Press, 2017, ISBN 9780849332517, 16-18 pp.

[9] Steenbeek, I. The Basics of Data Lineage. Accessed on 27.11.2020.
Available from: https://www.ewsolutions.com/the-basics-of-data-
lineage/

77

http://publibfp.boulder.ibm.com/epubs/pdf/igy6lr30.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/igy6lr30.pdf
https://devops.com/the-beauty-of-the-cobol-programming-language-v2/
https://devops.com/the-beauty-of-the-cobol-programming-language-v2/
https://research.hackerrank.com/developer-skills/2020?utm_medium=content&utm_source=blog&utm_campaign=returnofcobol
https://research.hackerrank.com/developer-skills/2020?utm_medium=content&utm_source=blog&utm_campaign=returnofcobol
https://research.hackerrank.com/developer-skills/2020?utm_medium=content&utm_source=blog&utm_campaign=returnofcobol
https://www.forbes.com/sites/tomtaulli/2020/07/13/cobol-language-call-it-a-comeback/?sh=2b2b39a37d0f
https://www.forbes.com/sites/tomtaulli/2020/07/13/cobol-language-call-it-a-comeback/?sh=2b2b39a37d0f
https://www.forbes.com/sites/tomtaulli/2020/07/13/cobol-language-call-it-a-comeback/?sh=2b2b39a37d0f
https://www.ewsolutions.com/the-basics-of-data-lineage/
https://www.ewsolutions.com/the-basics-of-data-lineage/

Bibliography

[10] Data Lineage. Accessed on 20.12.2020. Available from: https://
www.techopedia.com/definition/28040/data-lineage

[11] MANTA. Accessed on 28.12.2020. Available from: https:
//getmanta.com

[12] MANTA - Supported technologies. Accessed on 19.12.2020. Available
from: https://getmanta.com/technologies/databases/

[13] Melichar, B.; Janoušek, J.; et al. Parsing and translation. Prague: Czech
Technical University, 2013, ISBN 978-80-01-05192-4.

[14] ANTLR. Accessed on 23.12.2020. Available from: https:
//www.antlr.org/

[15] JavaCC. Accessed on 6.1.2021. Available from: https:
//javacc.github.io/javacc/

[16] The Lex & Yacc Page. Accessed on 6.1.2021. Available from: http://
dinosaur.compilertools.net/

[17] GNU Bison. Accessed on 6.1.2021. Available from: https://
www.gnu.org/software/bison/

[18] Parr, T.; Harwell, S.; et al. Adaptive LL(*) Parsing: The Power of
Dynamic Analysis. SIGPLAN Not., volume 49, no. 10, Oct. 2014: p.
579–598, ISSN 0362-1340, doi:10.1145/2714064.2660202. Available from:
https://doi.org/10.1145/2714064.2660202

[19] GnuCOBOL — Sourceforge.net. Accessed on 19.11.2020. Available from:
https://sourceforge.net/projects/gnucobol

[20] IBM COBOL. Accessed on 19.11.2020. Available from: https://
developer.ibm.com/languages/cobol/

[21] Micro Focus COBOL. Accessed on 19.11.2020. Available from: https://
www.microfocus.com/en-us/products/cobol-development/overview

[22] FUJITSU Software NetCOBOL. Accessed on 19.11.2020. Avail-
able from: https://www.fujitsu.com/global/products/software/
developer-tool/netcobol/

[23] IBM COBOL compilers by name and version. Oct 2020, ac-
cessed on 18.11.2020. Available from: https://www.ibm.com/support/
knowledgecenter/SS6SG3_6.3.0/migrate/igympreab2.html

[24] Enterprise COBOL for z/OS, Version 4.2, Compiler and Run-
time Migration Guide. Accessed on 18.11.2020. Available from:
https://www.ibm.com/support/knowledgecenter/SS6SG3_4.2.0/
com.ibm.entcobol.doc_4.2/MG/igymch1001.htm

78

https://www.techopedia.com/definition/28040/data-lineage
https://www.techopedia.com/definition/28040/data-lineage
https://getmanta.com
https://getmanta.com
https://getmanta.com/technologies/databases/
https://www.antlr.org/
https://www.antlr.org/
https://javacc.github.io/javacc/
https://javacc.github.io/javacc/
http://dinosaur.compilertools.net/
http://dinosaur.compilertools.net/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://doi.org/10.1145/2714064.2660202
https://sourceforge.net/projects/gnucobol
https://developer.ibm.com/languages/cobol/
https://developer.ibm.com/languages/cobol/
https://www.microfocus.com/en-us/products/cobol-development/overview
https://www.microfocus.com/en-us/products/cobol-development/overview
https://www.fujitsu.com/global/products/software/developer-tool/netcobol/
https://www.fujitsu.com/global/products/software/developer-tool/netcobol/
https://www.ibm.com/support/knowledgecenter/SS6SG3_6.3.0/migrate/igympreab2.html
https://www.ibm.com/support/knowledgecenter/SS6SG3_6.3.0/migrate/igympreab2.html
https://www.ibm.com/support/knowledgecenter/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/MG/igymch1001.htm
https://www.ibm.com/support/knowledgecenter/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/MG/igymch1001.htm

Bibliography

[25] Industry specifications for Enterprise COBOL for z/OS Version 6.3. Oct
2020, accessed on 19.11.2020. Available from: https://www.ibm.com/
support/knowledgecenter/SS6SG3_6.3.0/lr/ref/rlind.html

[26] Chapter 1: Introduction to the COBOL Language. Accessed on
20.11.2020. Available from: https://supportline.microfocus.com/
Documentation/books/sx40/lrintr.htm

[27] FUJITSU Software BS2000 COBOL85. Accessed on 20.11.2020. Available
from: https://www.fujitsu.com/fts/products/computing/servers/
mainframe/bs2000/software/programming/cobol85.html

[28] Sample COBOL program. Accessed on 20.11.2020. Available from:
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/
com.ibm.zos.v2r2.ceea800/cblex1.htm

[29] Subscripting. Accessed on 20.11.2020. Available from: https:
//www.microfocus.com/documentation/visual-cobol/vc60/DevHub/
HRLHLHCLANU045F002.html

[30] Java Cobol Lexer — Sourceforge.net. Accessed on 22.12.2020. Available
from: https://sourceforge.net/projects/javacobollexer/

[31] RES - An Open Cobol To Java Translator — Sourceforge.net. Accessed
on 22.12.2020. Available from: https://sourceforge.net/projects/
opencobol2java/

[32] Github - TypeCobol. Accessed on 22.12.2020. Available from: https:
//github.com/TypeCobolTeam/TypeCobol

[33] Github - ProLeap ANTLR4-based parser for COBOL. Accessed
on 22.12.2020. Available from: https://github.com/uwol/proleap-
cobol-parser

[34] Parr, T. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, sec-
ond edition, 2013, ISBN 1934356999.

[35] Github - Spring Framework. Accessed on 23.12.2020. Available from:
https://github.com/spring-projects/spring-framework

[36] Apache Maven Project. Accessed on 23.12.2020. Available from: https:
//maven.apache.org/

[37] JUnit 5. Accessed on 23.12.2020. Available from: https://junit.org/
junit5/

[38] COBOL Test Suites. Accessed on 1.1.2021. Available from: https://
www.itl.nist.gov/div897/ctg/cobol_form.htm

79

https://www.ibm.com/support/knowledgecenter/SS6SG3_6.3.0/lr/ref/rlind.html
https://www.ibm.com/support/knowledgecenter/SS6SG3_6.3.0/lr/ref/rlind.html
https://supportline.microfocus.com/Documentation/books/sx40/lrintr.htm
https://supportline.microfocus.com/Documentation/books/sx40/lrintr.htm
https://www.fujitsu.com/fts/products/computing/servers/mainframe/bs2000/software/programming/cobol85.html
https://www.fujitsu.com/fts/products/computing/servers/mainframe/bs2000/software/programming/cobol85.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea800/cblex1.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea800/cblex1.htm
https://www.microfocus.com/documentation/visual-cobol/vc60/DevHub/HRLHLHCLANU045F002.html
https://www.microfocus.com/documentation/visual-cobol/vc60/DevHub/HRLHLHCLANU045F002.html
https://www.microfocus.com/documentation/visual-cobol/vc60/DevHub/HRLHLHCLANU045F002.html
https://sourceforge.net/projects/javacobollexer/
https://sourceforge.net/projects/opencobol2java/
https://sourceforge.net/projects/opencobol2java/
https://github.com/TypeCobolTeam/TypeCobol
https://github.com/TypeCobolTeam/TypeCobol
https://github.com/uwol/proleap-cobol-parser
https://github.com/uwol/proleap-cobol-parser
https://github.com/spring-projects/spring-framework
https://maven.apache.org/
https://maven.apache.org/
https://junit.org/junit5/
https://junit.org/junit5/
https://www.itl.nist.gov/div897/ctg/cobol_form.htm
https://www.itl.nist.gov/div897/ctg/cobol_form.htm

Bibliography

[39] Graphviz - Graph Visualization Software. Accessed on 4.1.2021. Available
from: https://graphviz.org

[40] Sieve of Eratosthenes example COBOL program. Accessed on 4.1.2021.
Available from: https://www.roug.org/retrocomputing/languages/
cobol/microfocus/sieve-of-eratosthenes-cbl

80

https://graphviz.org
https://www.roug.org/retrocomputing/languages/cobol/microfocus/sieve-of-eratosthenes-cbl
https://www.roug.org/retrocomputing/languages/cobol/microfocus/sieve-of-eratosthenes-cbl

Appendix A
Acronyms

ANSI American National Standards Institute

AST Abstract Syntax Tree

ANTLR ANother Tool for Language Recognition

BI Business intelligence

CFG Control Flow Graph

COBOL Common Business Oriented Language

CODASYL Conference of Data Systems Languages

CST Concrete Syntax Tree

DAG Directed Acyclic Graph

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

EBNF Extended Backus–Naur Form

GNU GNU’s Not Unix!

JSON JavaScript Object Notation

LOC Lines of code

PC Personal Computer

OS Operating system

XML Extensible Markup Language

81

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src .. source codes

impl.......................source codes of the implemented modules
connector....................source codes of Connector modules
dataflow source codes of Dataflow modules

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

83

	Introduction
	The Goal
	The Structure of the Thesis

	Background
	Data Flow Analysis
	Data Flow Graph

	MANTA Flow
	Static Data Flow Analysis
	Terminology
	Formal Languages
	Grammars

	Lexical Analysis
	Syntax Analysis
	Semantic Analysis
	Parser Generators
	ANTLR

	Analysis
	COBOL
	COBOL Standards, Compilers and Dialects

	IBM COBOL
	Program Structure
	Identification Division
	Environment Division
	Data Division
	Working-Storage, Local-Storage and Linkage Section
	Data Description Entry
	Condition-name (Level 88)
	Data Names
	Data Description Entry's Clauses
	Value Clause
	Data Categories, Data Types, Usage Clause and Picture Clause
	Redefines Clause
	Occurs Clause
	Renames Clause (Level 66)

	Procedure Division
	Add Statement
	Subtract Statement
	Multiply Statement
	Divide Statement
	Compute Statement
	Move Statement

	Other COBOL Features
	Subprograms
	Separators
	Identifiers and Qualification
	Subscripting
	Literals
	Source Code Formats
	Copy Statement

	Requirements
	Existing solutions
	IBM's VS COBOL II Grammar
	GnuCOBOL
	Java Cobol Lexer
	RES - An Open Cobol To Java Translator
	TypeCobol
	ProLeap ANTLR4-based parser for COBOL

	ProLeap ANTLR4 COBOL Parser
	Arithmetic Expressions
	Ambiguities in Identifiers
	Nongreedy Subrules

	Design
	Technologies
	Java
	Spring Framework
	Apache Maven
	JUnit
	ANTLR

	Modules
	Connector Modules
	Dataflow Generator Module

	Data Entities
	Data Types
	Redefines and Renames

	Implementation
	Connector Resolver
	CobolParserServiceImpl
	CobolPreprocessorImpl
	IBMDataItemAnalyzer
	ResScope
	CobolDataDictionary
	DataDescriptioItemEntryImpl
	QualifiedDataNameImpl and DataNameImpl

	Dataflow Generator
	CobolGraphHelper
	CobolDataFlowVisitor

	Testing
	Connector Testutils
	Connector Resolver
	Dataflow Generator

	Data Flow Graph Samples
	Simple Program
	Sieve of Eratosthenes Program

	Conclusion
	Summary
	Future Work

	Bibliography
	Acronyms
	Contents of enclosed CD

