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Instructions

Managers of complex buildings (like shopping malls, office space) are dealing with various tasks (e.g.,
minimization of wait time, queue prevention, advertisement placement).

The pedestrian detection system, gender and age prediction, and inter-camera identity preservation are
crucial in order to know the customer. In
iC Systems.ai, s.r.o. we are developing such systems.

A student is going to deal with identity perseverance among multiple cameras. At first, he performs a
literature review on this topic. Then, he will design a solution for cameras with and without a field of view
intersection. Next, the student will design and train a neural network. This network will encode the given
image crop into a descriptor vector. The student will use this vector for measuring similarity between
pedestrian image crops. He will also design inter-camera identity matching. This matching process will take
into account locational and time consistency.
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Abstrakt

Sledováńı pohybu osob a jejich Re-Identifikace je zaj́ımavá oblast výzkumu
s širokou aplikaćı. Ćılem této práce je rekonstrukce trajektorie pr̊uchodu lid́ı
komplexńımi prostory, jako jsou např́ıklad obchodńı centra nebo kancelářské
budovy. Představujeme dynamický algoritmus vhodný pro paralelizaci, co sle-
duje pohyb lid́ı v systému kamer. Oblast záběru dvou kamer se může, ale
nemuśı, překrývat. Nejdř́ıve źıskáme deskriptory pomoćı Siamských śıt́ı a
následně hledáme vhodná spojeńı mezi tracky pomoćı Hungarian algoritmu.
Všechna data byla sesb́ırána v obchodńım centru Krakov v Praze. Zároveň
představujeme algoritmus pro tvorbu objemných dataset̊u bez nutnosti heavy
labelingu vhodný pro inter-camera tracking.

Kĺıčová slova poč́ıtačové viděńı, multi-object inter-camera tracking, smart
dataset, dynamické spojováńı track̊u, re-identifikace osob, udržeńı identity
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Abstract

Pedestrian tracking and their Re-Identification is an exciting area of research
with a wide range of applications. This work aims to reconstruct multiple
objects’ trajectories through spacious complexes, such as shopping malls or
office buildings. We present a dynamic algorithm suitable for parallelization
that tracks multiple objects between cameras with a possible field of view
intersection. First, we obtain image descriptors with a Siamese Network.
We use descriptors to associate tracks into trajectories with the Hungarian
algorithm. We built the whole project on our dataset collected in the Krakov
shopping center in Prague. We also present an algorithm for creating large
scale datasets suitable for inter-camera tracking without the need for heavy
labeling.

Keywords computer vision, multi-object inter-camera tracking, smart dataset,
dynamic track association, person re-identification, identity perseverance
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Chapter 1
Introduction

Expectations about Artificial intelligence (AI) went lately through the roof
yet still with a noticeable fear. Incorporating AI in business processes posi-
tively correlates with an understanding of how such models work [1]. Whether
managers of large complex buildings (like shopping malls, office spaces) can
see smart systems effects is beyond doubt. They are aware of how signifi-
cant influence AI may have on, for example, a suitable shop or advertisement
placement, queue prevention, the number of employees, or social distancing
in a crisis like the COVID-19. Even with common sense, we can notice that
different groups of people tend to have different habits. Some people prefer
simplicity, and they go shopping with a clear view of what they want. For
a different group of people, the mall provides a convenient place for hanging
out.

Even with this basic knowledge, we can estimate better shop placement.
E.g., sports and groceries close to the entrance so that customers do not have
to go far for staple items. After careful observation of customer’s behaviors
and traits like their movements, age group, or gender, we quickly realize that
problems become suddenly solvable.

To gather these pieces of information, we have to consider the sheer vast-
ness of observed places and install enough cameras with an often intersected
field of view. Now we need to make this set of isolated cameras work as one
giant organism. However, this is associated with another crucial question:
how to preserve a moving customer’s identity among these isolated sets of
cameras?

In IC Systems.ai, s.r.o. (iC), we develop such smart systems. We help
accumulate data for the managers mentioned above, surveillance companies,
or anyone who needs to track multiple people. We gathered the data for pure
statistics. So saving absolute identification is not our objective. Whenever we
use the term ”identification,” we only mean it from a local perspective. It is
impossible to match customers across multiple visits, and it is not even our
intention to do so. We do not do facial recognition. Our method is based just
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1. Introduction

Figure 1.1: The pipeline of Inter-Camera Tracking.

on color and shape. If, for example, someone takes their jacket off on a toilet,
we cannot match him to his previous self. This approach respects the GDPR.
Please note that each person published in this thesis is a contracted actor.

This thesis’s most significant advantage is that it is driven by demands
and offers excellent experience opportunities. To handle everything well, We
have to study theory properly and test our knowledge in practice with strictly
limited hardware resources. This combination is a perfect presupposition for
effective learning. The project is beneficial for enhancing various services and
event organizing so that our work can be instrumental. We do believe the
outcome will be helpful and favorably appreciable.

1.1 Objectives and Formulation

The goal is to perform multi-target inter-camera tracking and Re-Identification
in reasonable time and space. Assume we have a system of m cameras
C1, C2, ...Cm with possible view overlaps. Each camera makes observations
O1, O2, ..., Oi. Observations are tracks of pedestrians p1, p2, ..., pk in the con-
text of a single camera. We use the term observations only if we want to dif-
ferentiate between tracks from a person’s trajectory and observations(tracks)
from a camera. Trajectory of person pi consists of n tracks T 1, T 2, Tn.

This project focuses on the re-identification of pedestrians and re-creation
of their trajectories in a system of m cameras. Our input is a set of cameras

2
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1.2. Overview of the Thesis

C1, ...Cm with their observations O1, ...Om. The objective is to successfully
re-identify pedestrians and link their tracks into trajectories.

1.2 Overview of the Thesis

This project consists of three stages covered in 5 chapters. Each chapter
analyzes stages from a different viewpoint.

In the first Smart Dataset stage, we describe our method of obtaining
a representative dataset. The second stage, Image Descriptor, explores the
problem of embedding individual image crops and measuring similarity be-
tween tracks. The third stage, Inter-Camera Assignment Problem, focuses on
track association and person trajectory reconstruction.

Every stage is divided into multiple chapters that altogether cover theory,
implementation, experiments, and results.

• Chapter 2 analyzes the theory of Siamese Networks, track association
and person Re-Identification overall.

• In Chapter 3, we describe the environment in the Krakov shopping center
in Prague. Cameras, installation, Inter-Camera calibration, and nature
of our footage.

• Chapter 4 introduces methods and implementations of the Smart Dataset,
Image Descriptor, and the Inter-Camera Assignment Problem.

• In Chapter 5, we cover experiments, tests, evaluation methods, and
results.

• In Chapter 6, we summarize the whole pipeline and discuss future im-
provements.

3





Chapter 2
Theory

2.1 Track, Detection

Detection is a small area defined by an image crop or a bounding box con-
taining most of the target’s body. Every detection stores metadata, such as
timestamp, score (confidence that the crop contains a person), and estimated
local coordinates. How we use local coordinates for obtaining global coordi-
nates is explained in section 3.4.

Track is a chronologically sorted sequence of detections with various at-
tributes: camera id, source gate id, exit gate id, and track id. An example of
tracks from multiple cameras is depicted in figure 2.1. To obtain these sets
of tracks, or if you wish observations, it is necessary to solve a Single-camera
tracking (SCT) first. Supervisor Ing. Filip Naiser has already implemented
this problem. Let us briefly outline the process of SCT.

2.2 Single Camera Tracking

The SCT’s essence is to generate a set of tracks Oi with a single camera
Ci. Ci is placed on the ceiling while objects move under the field of view
simultaneously. They can come and leave at any time point through specified
gates. The job is to detect objects precisely as possible, register coordinates,
timestamps, and gates that they passed. If we link individual detections into
tracks, we successfully achieved SCT.

2.2.1 Target Detection

The first objective would be the detection of potential targets.
There is a possibility to use the state-of-the-art Real-Time object detector

YOLOv4 [2] or an older approach Faster R-CNN [3]. Nevertheless, these
models exist for much more general purposes. They can identify and detect
hundreds of classes, and their training is time consuming. They demand

5



2. Theory

Figure 2.1: Example of detections arranged in tracks that forms a person’s
trajectory. Each displayed person consists of two tracks from two different
cameras (+ and ©).

long and heavy computations with high memory requirements and enormous
datasets that are not feasible in our environment.

Computational resources are in IC limited. Therefore they had to come
up with a completely different algorithm. They combine a sliding window,
AdaBoost [4], and a CNN classifier. The sliding window and the AdaBoost first
suggest places with plausible targets. Such positions are called proposals, and
their boundaries are defined with bounding boxes. Then the CNN classifier
decides whether there is or is not a person. The whole image is compressed
into a set of small image crops. This leads to faster run time and a cheaper
training process with modest data set. In this thesis, we are not going to
explain the target detection further. Let us instead focus on the next topic,
which is closely related to the assignment.

2.2.2 SCT-Image Descriptor

After the target detection, it is necessary to encode crops into descriptor
vectors. There are two crucial requirements for the descriptor. If we encode

6



2.3. Inter Camera Tracking

two crops into descriptor vectors, we can measure distances between these
vectors. The distance tells us how similar these two crops are.

It is desirable to obtain rather short vectors to save computational time
during SCT. For this task, IC historically used the Color Names algorithm [5,
6]. It is a fast and easy baseline method, which works as a lookup table that
encodes RGB colors into 11 categories. The authors introduced bins based
on large scale research of image database. The more sophisticated approach
would be using a Siamese Network (for example, the Twofold Siamese Network
[7]).

A visual descriptor for SCT can be the same one as a visual descriptor
for ICT. We tried to use the locally trained SCT-descriptor for ICT, but we
did not meet any success. Therefore, we expect improvements in SCT with
the use of the ICT-descriptor. In section 2.3.1, we discuss the topic of image
descriptors in greater detail.

2.2.3 Track Construction

The final stage of SCT is linking detections into continuous tracks. Engineers
in IC use descriptor distance as the cost function and they formulate the
task as a spatio-temporal matching problem. For a better result than greedy
matching, they use the Hungarian algorithm [8]. When formulated correctly,
it is a proven stable solution resulting in continuous sequences.

The whole pipeline is as follows: first, they detect all interesting objects
from a frame. With the use of the image descriptor, they perform match-
ing with all detections from the next frame. This approach results in simple
matching, which can be further improved with more sophisticated methods.
They, for example, implemented a motion model for position prediction with
the Kalman filter [9]. They also solved many real-world problems, e.g., drop-
ping frames, incomplete detections, or strong shadow silhouettes.

2.3 Inter Camera Tracking

The problem of inter-camera identity matching, as it is described in section 1.1,
is discussed quite frequently. We consider ICT as a composition of two crucial
sub-problems: image descriptor 2.3.1 and ICT Assignment problem 2.3.2. The
problem of ICT has been previously done. Appearance similarities can be
covered with handcrafted descriptors [10], or learned by Siamese networks with
triplet loss and hard sample mining [11, 12], center loss and label smoothing
[13], or fully unsupervised online learning [14]. The inter-camera assignment
problem is solvable with a static correspondence matrix and the Hungarian
algorithm [8, 15, 16], more dynamically without the inter-camera calibration
[17, 18] or correlation clustering association [19, 11].

7



2. Theory

2.3.1 ICT-Image Descriptor

In computer vision, visual descriptors encode interesting visual features of the
image contents into a vector of numbers. They can either describe images
generally or describe essential (local) pieces of information such as the shape,
color, or texture.

Our interest is leaning towards global descriptors. They describe objects as
a whole. There are many different approaches, but we usually classify them
into two main categories, called handcrafted and learned features. Hand-
crafted descriptors are usually manually predefined on rather small datasets,
but they require expert knowledge. For many years, SIFT [20] has been among
the most popular handcrafted feature descriptors. On the other hand, learned
descriptors extract features through learnable models. And thanks to the deep
learning progress, they are becoming mainstream.

Descriptor Properties Suitable for Person Re-Id

Given an arbitrary pair of two objects, we want their descriptors to be close
if both objects belong to same class. On the other hand, we want descriptors
to be distant if the objects come from different classes. The distance can be
considered as resemblance. Objects can be compared relative to others, or
they can be compared absolutely to some threshold value. Both approaches
are, in our case, relevant.

Then, we are able to encode object into a point in multidimensional space.
To spare a computational time, we want rather short descriptors. We suppose
that the vector length should not be greater than 64.

Depending on our metric of choice, we might face the curse of dimension-
ality. Luckily, we can use methods like [21].

Color Names - A First Solution

Color Names [5, 6] encodes RGB colors into 11 categories: black, blue, brown,
grey, green, orange, pink, purple, red, white, and yellow. With the use of
such a lookup table, we classify each pixel in an image. Then we calculate a
normalized histogram of each color name. Then we can compare two images
encoded with this technique.

Color Names are due to their simplicity, suitable baseline method. In the
spatio-temporal domain, we matched the majority of pairs within a single
camera correctly with just color features.

The environment of ICT conspicuously differs from SCT in such a manner
that each camera brings a different viewpoint, deformation, or illumination.
It increases demands for robustness. Our visual descriptor should be invari-
ant to such changes. Multiple cameras also make the domain for association
significantly larger. And absolute color comparison becomes less relevant. A
demonstration of the manifestation of different camera influences is depicted

8



2.3. Inter Camera Tracking

Figure 2.2: Comparison of observations from different cameras.

in figure 2.2. Comparison of the Color Names, our learned descriptor and
random descriptor is visible in table 5.3.

However, it is possible to overcome the difficulty of having different colors
between cameras. One solution might be using a Camera Transfer Function
in form of a 2-bin RGB quantization matrix as authors in [10, 22] presented.
Topic of color transfer is also used in [14], or described in greater detail in
[23]. Nevertheless, we are going to take a step towards learned descriptors
and leave the idea of color transfer for future work.

Learning Features with Convolutional Neural Networks

CNN are a special sub-type of neural networks commonly applied in computer
vision [24]. They generally consist of convolutional layers, pooling layers, and
fully connected linear layers. Examples of convolutional neural networks that
may be usable in our thesis are [25, 26, 27]. During writing this thesis, all
of the mentioned models performed reasonably well on the COCO dataset in
Object Detection problem [28, 29].

Generating an image descriptor is often with the use of the Siamese net-
works, which have been generally used for similarity learning [30] and one of
the applications is real-time object tracking [7], or face recognition [31]. A
Siamese network is special type of CNN used for similarity learning. When
we feed the network with two inputs x, y, we apply an identical function f on
both inputs. Then we can measure the similarity of f(x) and f(y) with, for
example, Euclidean distance, and we can use this as a loss function.

9



2. Theory

For training a Siamese network, we can either use supervised or semi-
supervised, and even unsupervised methods for person Re-Id learning [32].
Various loss functions exist too [33, 34, 35, 13]. During our research we de-
veloped a special variation of triplet loss the cluster loss (sec: 4.2.2). There
is also a possibility to combine these approaches with the curriculum learning
[36] which is also a good practice for person re-identification problem [12]. To
prevent vanishing/exploding gradients, we can use gradient clipping [37] and
Kaiming weight initialization [38]. We can limit the latent space for descrip-
tors to n dimensional unit sphere with the softmax function. Or favorably use
influence of different batch sizes [39] (beginning at batch size=1). Different
sources like [13] advises to warm-up the network and to adjust learning rate
during the training. Authors in [13] demonstrate that specific combinations
of loss functions may help significantly.

2.3.2 Inter-Camera Track Assignment Problem

The next part of this thesis is to reconstruct pedestrian trajectories. To do
so, we have to link corresponding tracks into sequences so that pedestrians’
identities are preserved. As formulated in section 1.1, the result should obey
rules of logic, e.g., realistic transitions between cameras, no teleportation, and
no multiple occurrences of one person in different places at the same time.

Authors present an interesting solution in [15, 16], where they try to maxi-
mize the joint linking probability with the Hungarian algorithm [8] for minimal
weight matching. The solution is focused on two cameras and then extended
to the problem with multiple cameras. First, they define a correspondence
matrix H of size (2m+ 2n)× (2m+ 2n) as follows:

H =


Am×m Bm×n Em×m −∞m×n

Cn×m Dn×n −∞n×m Fn×n

Gm×m −∞m×m 0m×m 0m×n

−∞n×m Kn×n 0n×m 0n×n

 (2.1)

where the parts of the matrix are as follows:

A targets leave and return back to Camera a
B targets leave and return back to Camera b
C targets leave Camera b and enter Camera a
D targets leave and return back to Camera b
E targets terminate in Camera a
F targets terminate in Camera b
G new targets initialized in Camera a
K new targets initialized in Camera b

Then authors apply the Hungarian algorithm [8] and process the result.

10



2.3. Inter Camera Tracking

We based our method on the minimal weighted matching, but we perform
matching on a dynamic graph structure, not on a static matrix with all match-
ing possibilities (described in section 4.3). Our graph is also very sparse, which
means that it is not optimal to use the Hungarian algorithm since it accepts
only fully connected bipartite graphs. The Hungarian algorithm is sufficient
for this project, but we can use a much more sophisticated algorithm as in
[40]. Our approach does not surpass the algorithm proposed in [15]. However,
we benefit from incorporating various heuristics that make the computation
much more efficient.

2.3.2.1 Cost Function

For building a track assignment problem, we need a cost function. The result
should combine spatial, temporal, and appearance similarity between tracks.
Each detection has global coordinates, which can be used for trajectory esti-
mation. Trajectory comparison can be used only with overlapping cameras,
as described in section 4.1.2. Future work may take into account patterns of
motion, walk analysis, or temporal prediction, as presented in [17].

For measuring temporal similarity, we can estimate a transition duration
(sec: 3.4). And then, concerning the transition duration d, for tracks ti, tj ,
determine the cost as d − time difference(ti, tj). If the cost exceeds a certain
limit, we consider the cost to be infinity.

Each descriptor can be represented as a point in n-dimensional space.
Properly working descriptor should project descriptors of identity in proxim-
ity with descriptors representing the same identity. Since we are matching
sets of detections (i.e., tracks), we use cluster distance metrics. We consider
the following distance metrics for appearance similarity of two sets of tracks
T a, T b, and embedding function f .

• Maximum: max{d(f(ta), f(tb)) : ta ∈ T a, tb ∈ T b}

• Minimum: min{d(f(ta), f(tb)) : ta ∈ T a, tb ∈ T b}

• Mean: mean{d(f(ta), f(tb)) : ta ∈ T a, tb ∈ T b}

• Centroid: ‖ca − cb‖22 where ca, cb are centroids of f(T a), f(T b)

• Ward’s: |T a||T b|
|T a|+|T b|‖ca − cb‖22 where ca, cb are centroids of f(T a), f(T b)

The final cost function returns a weighted sum of these similarity mea-
surements.

11





Chapter 3
Data

3.1 Environment

All experiments took place in the Krakov shopping center in Prague, a medium-
sized building with three levels and more than seventy shops. We installed
and configured around 40 sensors within the area to capture all exits, en-
trances, shops, and main routes within our reach. Sadly, as a consequence of
the COVID-19 outbreak, the overwhelming majority of shops ended closed.
The lockdown followed, and people without necessary exceptions had to stay
at home. We resolved the situation with six cameras near the largest grocery
store, the most frequented place possible, to collect enough data. These six
sensors cover all possible intersection cases, and people have to pass them if
they want to reach the supermarket. Image 3.1 approximately outlines the
area of the first-floor plan, where all presented experiments took place.

3.2 Camera Description

We situate our sensors approximately 5 or 6 meters above the ground. They
reliably meet all strategic places. It is desirable to cover a wide area with just
one camera, so we use special lenses for a field of view extension. As shown
in the following example 3.2, each image is under strong radial distortion.

Sensors have defined virtual gates, which determines if a person leaves or
enters the area. We define gates as a sequence of coordinates representing
a polygon. They are also necessary to specify which transitions make sense
in the real world. These specifications are making the track matching prob-
lem significantly easier. As polygons, we also define camera masks useful for
marking the region of interest.

Table 3.2 defines transitions within our environment. Each transition is
a connection between two exits of two, not necessarily different, cameras.
We also specify the average duration of each transition. This value is easily
obtainable, as described in section 3.4.
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3. Data

Figure 3.1: Plan of OC Krakov’s first floor.

Figure 3.2: Influence of distortion on a selection of 4 cameras. Example of
camera mask (red) and gate definition (green).

14



3.2. Camera Description

cam1 id cam1 exit cam2 id cam2 exit duration[s]
101 1 107 0 -1
101 0 101 0 2
107 1 105 0 -1
105 1 109 1 -1
109 0 109 0 2
105 2 108 0 -1
106 1 108 1 -1
106 0 106 0 2

Table 3.1: Bidirectional transitions between cameras. Leaving and entering
the same camera is estimated to 2 seconds. The transition duration is negative
for overlapping cameras because the pedestrian appears in the second camera
before leaving the first camera.

Notice that only three transitions are leaving and entering the same cam-
era. We estimated the duration of such transitions to two seconds. Pedestrians
can not always leave and enter the same camera/exit. For example, when the
person leaves on escalators or crosses from camera Ca to overlapping camera
Cb. In such a case, the person is observed first by camera Cb, and then he
can enter Ca again.

Camera Configuration

Mandatory parameters are height, cam id, frames per second, gate coordi-
nates, camera mask, transitions, lens type for distortion compensation, and
homography anchors as ground points for the global coordinate system. We
are going to use the points later on to register cameras into the floor plan. Dis-
tortion compensation and homography anchors are elaborated on in sections
4.1.4 and 4.1.3.

Camera Output

Cameras record at a resolution of 640x480 pixels with five frames per second.
Pixels have three channels, each of which has 255 possible values. We represent
images as arrays with the shape 640x480x3. We can record at 1920x1080
resolution with 60 frames per second. However, we had to choose between
accuracy and computational cost. In this thesis, we work with the RGB color
model.

Further research can explore different formats. There is a possibility that
the contribution of texture is higher than that of color [41]. Since our cameras
record in the YUV420 format, and then they extrapolate to the RGB format,
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3. Data

Figure 3.3: Floor plan transition scheme. Each rectangle approximates the
field of the camera’s view. Green circles are exits, and red arrows are transi-
tions.

there is information redundancy. Using the YUV format might lead to faster
inference with the same accuracy.

3.3 Dataset

For appearance similarity learning, we need pairs of tracks with the same
person from two different cameras. For spatio-temporal predictions, it is nec-
essary to register coordinates and timestamps for each detection.

Our dataset is strongly dependent on the testing environment based in the
Krakov shopping center. Despite the COVID-19 crisis, we were able to gather
enough data. Our setup consists of six cameras deployed in a ”T” shape.
People can access monitored space with three entrances, one of which is a
moving walkway. Figure 3.3 shows the distribution of cameras with possible
transitions, and figure 4.3 accurately presents how the footage overlaps. There
is always an overlay between two adjoining cameras, but we can simulate a
gap by turning off some of the cameras situated in the middle.
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3.4. Coordinate System, Distances

We recorded our train set and test set between 06.08.2020 and 05.09.2020,
which takes approximately 368 hours of raw video. This footage is not by
any means sufficient because our goal is to deliver an all-around product. For
better generalization, the data should cover all conditions. For example, in
the winter people usually wear coats. Coats are not as colorful, and they also
look different than a casual summer outfit. This may result in lower accuracy
overall.

3.4 Coordinate System, Distances

Each camera is like a separate universe with its coordinate system, different
distortion, and scaling. However, we want to measure distances and navigate
in the shopping center with one unified coordinate system. We have to make
a model for each sensor that translates coordinates from the local universe to
the absolute/global universe (sec: 4.1.4).

Average Crossing Duration

With our single-camera setup, we can estimate the average walking speed. De-
tections were taken in 0.2[s] intervals. To prevent small deflections caused by
frame drops, lags, or inaccurate position estimation, we also measured the dis-
tances over more distant pairs. With correct homography, velocity, distance,
and time, we can easily derive the mean crossing time for each transition.

Our interest in future work might be directed towards estimating inter-
camera space-time probabilities using Parzen windows as presented in [17].
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3. Data

Figure 3.4: Empirical speed distribution.
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Chapter 4
Method

4.1 Smart Data Set

The straightforward approach to create the dataset is to annotate the video
by a human. He would have to find all detections in every video sample, and
then he would have to link these detections into tracks. He would have to
document all the metadata like timestamp and exits, camera id, and match
corresponding tracks across the whole camera system. We indeed could auto-
mate the process as much as possible, but working simultaneously among more
than two sensors is just too complicated for a single person to achieve. More-
over, we want at least 10000 tracks, where each of which has approximately
30 detections with extra attributes.

In order to avoid this labor, we introduce an algorithm that makes the
whole process exceptionally easy.

The idea

The Smart Dataset can be entirely or partially generated. The algorithm
has to be highly reliable, and the result should be mostly correct. Our first
strategy was naive, and we thought it would be possible to generate the whole
dataset automatically. Later analysis revealed that the task is not as simple
as it looks.

The idea is to rely entirely on geometry. We installed cameras so that they
overlap heavily. Then we run SCT and classify tracks. With a massive view
overlap, we can measure the average distance between all overlapping tracks.
Each detection has a ground point. It is a pair of coordinates that estimates
the approximate position of the person’s feet. If we could somehow compare
these coordinates between two different sensors, we could match corresponding
tracks based on the distance. However, in order to measure the distance, we
have to synchronize time and unify geometry.
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4. Method

Figure 4.1: Smart Dataset - detection matching example.

4.1.1 Detection Association by the Timestamp

First, we have to find detections taken at a similar time, and then we can
measure the distance between them. To create these pairs, we have to take
into account multiple problems. The first one is that the images are not
taken at the same time nor in equal intervals. The second problem is that we
experience occasional frame drops. Approximately every 600 frames camera
stops recording for half a second. These small frame drops are problematic
because we have to measure the location as precisely as possible. It means that
it might sometimes be the best solution to ignore some detections or generate
an imaginary point in between them. Scheme 4.1 displays an example of
proper association.

4.1.2 Measuring Trajectory Distance Between Two Tracks

With proper association within an overlapping interval, we are almost ready
to measure the trajectory distance. We only have to choose a suitable metric
for measuring the distance between detections. Multiple options were con-
sidered, for example, the mean distance of max n distances, mean distance
of min n, where n ∈ 〈1, |distances|〉. However, experiments showed that the
average Euclidean distance between pairs is suitable, and other methods are
not worth mentioning. Algorithm 1 describes the process of measuring the
positional distance between two overlapping tracks. How we acquired coordi-
nates is described in detail in section 4.1.3 and 4.1.4. Part of the SCT phase is
smoothing track coordinates with the Kalman filter [9]. This process improves
the accuracy of the PositionalTrackDistance algorithm.

4.1.3 Radial Distortion

One way to capture as large area as possible with just one camera is to use
a lens with a wide field of view. This approach also has its downsides. The
most obvious one is that the original straight lines do not remain straight in
the projection. An example of what effect radial distortion may have on a
square grid can be seen in figure 4.2. Strong warp makes a notable difference
if we want to measure distances precisely.
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4.1. Smart Data Set

Algorithm 1: PositionalTrackDistance
input: Tracks t1, t2, max detection timestamp difference δ
begin ← max(t1[0].timestamp, t2[0].timestamp)
end ← min(t1[|t1| − 1].timestamp, t2[|t2| − 1].timestamp)
overlap1 ← [d | d ∈ t1 ∧ begin ≤ d.timestamp ≤ end]
overlap2 ← [d | d ∈ t2 ∧ begin ≤ d.timestamp ≤ end]
distances ← []
for d1 ∈ overlap1 do

differences ← [|d1.timestamp− d.timestamp| | d ∈ overlap2]
if |differences| > 0 then

x ← overlap2[argmin(differences)]
if x ≤ δ then

distances.append(‖d1.coordinates− x.coordinates‖22)

if |distances| > 0 then
Result: mean(distances)

else
Result: − inf

Radial distortion is not a linear transformation. Thus homography (sec:
4.1.4) does not work here. We had to calibrate the camera first. Both lens
distortion calibration and intrinsic camera parameters are estimated using
OpenCV’s calibration pipelines. All of our sensors use the same camera and
the same lens, so we have to calibrate them only once. Quality control is done
before shipping to catch a low-quality lens or other issues.

We followed the process of camera calibration with the OpenCV library
[42]. Figure 4.2 presents a simple comparison of the calibrated image from
our sensor 101.

4.1.4 Perspective Transformation Between Two Planes

We want to register six separate cameras into the floor plan. The objective is to
find a transformation H from camera coordinates to global/plan coordinates.
The homography matrix H is a 3x3 matrix, and its dot product returns the
perspective transformation between the camera view and the floor plan.

x′iy′i
1

 ∼ H
xi

yi

1

 (4.1)

For each sensor, we had to select points carefully, that concurrently with
their floor plan counterparts, form a calibration for the homography. The
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4. Method

Figure 4.2: Effect of radial distortion - comparison with a square grid.

findHomography function from the OpenCV gets the most accurate transfor-
mation when it minimizes the back-projection error described in [42].

With an undistorted image and the homography, we are ready to register
all cameras into the floor plan (fig: 4.3). Our algorithm 1 for measuring track
distances is complete.

4.1.5 Matching Tracks

With previously defined distance and coordinate transformations, we are ready
to describe the matching algorithm 2. A reader may consider using more
advanced data structures, but the naive variation suffices for our purposes.
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4.1. Smart Data Set

Figure 4.3: Rectified and registered camera view projection into the floor plan.

Algorithm 2: SmartDatasetPositionalMatching
input: Tracks T, Transitions X, max track distance ε, max detection

timestamp difference δ
1 sets ← []
2 for x ∈ X do
3 C1

out ← {tracks that left cam1 with exit1}
4 C2

in ← {tracks that entered cam2 with exit2}
5 sets.append((C1

out, C
2
in))

6 C1
in ← {tracks that entered cam1 with exit1}

7 C2
out ← {tracks that left cam2 with exit2}

8 sets.append((C1
in, C

2
out))

9 matches ← []
10 for set1, set2 ∈ sets do
11 for t1, t2 : overlapping pairs ∈ set1× set2 do
12 if 0 ≤ PositionalTrackDistance(t1, t2, δ) ≤ ε then
13 matches.append((t1, t2))

Result: matches
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4. Method

Figure 4.4: Average track distance distribution in SmartDatasetPositional-
Matching.

One of the most effective implementations of algorithm 2 uses an inter-
val tree for filtering overlapping pairs at line 11. This approach has a time
complexity of O(n logn), for our purposes, is the cross product fast enough be-
cause we always get a limited number of tracks, and the process ends quickly.
Our implementation runs in O(n2).

To obtain satisfactory results, we have to fine-tune the upper bound for the
maximum detection time difference δ and the maximum track distance ε. For
δ is the threshold of approximately 0.25. More in-depth analysis revealed that
the best value for ε lies somewhere around the number 15 as depicted in figure
4.4, where we try to separate healthy matches from corrupted remainders.

The biggest flaw of this setup is that we often detect so-called ghost tracks.
These are usually relatively short tracks (shorter than 5 detections). The SCT
falsely classified various objects as pedestrians. The most frequent false posi-
tive objects are car wheels, plants, or posters. We can easily detect defective
tracks by their length.

Another problem arises with noisy tracks. When a person passes behind
various objects (E.g., plants), it may be unclear where the pedestrian is and
how he looks. We want to find a way to measure the quality of a track and
find a satisfactory standard. Favorably via CNN classifier (sec: 2.2.1), we
already have a method to measure a single detection quality. This technique
assesses a value that declares person occurrence probability in an image crop.
Our threshold for the classification is 0.5. Further exploration confirms that
the best strategy is measuring the average of the lowest 5 scores from both
tracks combined. Noisy detections are more likely to get low scores close to
the threshold. We use a heuristic, that if the average of the lowest five values
is unsatisfactory, we know that the track has poor quality. The upper bound
lies a bit under 0.6 (fig: 4.5 serves only for an intuition).

Finally, we have a model for positional matching. Next, we developed tools
for manual selection with track previews. We want to have the dataset as clean
as possible, which means that there has to be someone who decides whether
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Figure 4.5: Track quality distribution according to the CNN classifier score.
The y axis represents a percentage.

a positional match is correct or false. In the end, we got nearly 6500 track
pairs from approximately 368 hours of raw footage without heavy labeling.

4.2 Image Descriptor

4.2.1 Neural Network Architecture

Authors in [12] propose to use a pre-trained network for image classification
as [25, 26, 27]. We chose Resnet18 as a reliable and straightforward baseline
architecture, and its efficiency allows us to conduct more experiments in a
short period of time. In future work, we consider using EfficientNet [25]. The
default Resnet18 model accepts images with dimensions at least (224, 224, 3).
However, our image crops are of size (64, 64, 3). So we slightly changed the
network so that it accepts our input.

The output of our model is a vector of 32 numbers. We assumed that using
the softmax function for the output would be beneficial because all descriptors
would be situated on a unit sphere of 32 dimensions. Experiments revealed
the contrary (tab: 5.1.4).

We use adaptive learning rate optimizer Adam [43], gradient clipping [37],
and we initialize weights with the Kaiming Normal method [38], also known
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4. Method

as He initialization.
All methods were implemented with the use of the PyTorch library [44].

4.2.2 Loss Function

A suitable loss function is arguably a crucial part of the whole training pro-
cess. Therefore a considerable part of our work consists of experimenting with
various loss functions and sampling methods. We treat person re-ID more as a
ranking problem, so we use losses suitable for this kind of approach. Our first
bet falls upon the triplet loss [33] as it is used in the FaceNet [31]. Next, we
tried a different approach with the quadruplet loss [34] and even our cluster
loss 4.2.2. And then, we experimented with the contrastive loss [35]. Future
work may include compensation of triplet loss drawbacks with the center loss
[13].

Triplet Loss

As mentioned in the FaceNet paper [31], we want to ensure that an image
crop xa

i (anchor) is closer to all images xp
i (positive) of the same person than

it is to any crop xn
i (negative) of any other person.

‖xa
i − x

p
i ‖22 + α < ‖xa

i − xn
i ‖22 for all triplets from a dataset, where α is a

minimal margin between positive and negative pairs. For the embedding of
an image x into a d-dimensional space, we use the notaion f(x) ∈ Rd. The
triplet loss function can be expresed as

L =
N∑
i

max
(
0, ‖f(xa

i )− f(xp
i )‖22 − ‖f(xa

i )− f(xn
i )‖22 + α

)
(4.2)

The authors then appeal to correct triplet selection. They argue the hard
triplet selection is crucial for a successful result. These propositions ensure
fast convergence because we feed the network with triplets, which significantly
violates the constraint.

Cluster Loss

Our objective was to assimilate the training to the real application as much
as possible. Input for ICT is a sequence of detections that can be represented
as image crops. Our goal is not to learn a similarity between detections. It
is to compare the similarity between tracks. Thus, we came with an idea to
represent a cluster of positive crops as a single object. We represent each
person’s cluster as its geometric center φ(x) ∈ Rd.

φ(x)j = 1
N

N∑
k=0

(xkj) (4.3)
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So the cluster loss function can be expressed as

Lc =
N∑
i

max
(
0, ‖φ(f(xa))− φ(f(xp))‖22 − ‖φ(f(xa))− φ(f(xn))‖22 + α

)
(4.4)

Where xa is the anchor cluster, xp is the positive cluster, and xn is the
negative cluster. Similarly to the triplet loss 4.2.2, we propose using hard
triplet mining.

Quadruplet Loss

Authors of the quadruplet loss [34] argue that the triplet loss suffers from
a weaker generalization capability. They introduce a method that results
in smaller intra-class variation compared to the triplet loss. They added a
constraint to the triplet loss, which demands a margin between unrelated
image pairs. The authors claim that the quadruplet loss outperforms the
triplet loss on the testing dataset.

Contrastive Loss

A Contrastive loss [35] takes only two input images xa
i and xb

i . These two crops
could be either of a similar or different person encoded in a binary variable Y
defined as 0 if xa

i is similar to xb
i , 1 otherwise.

L = 0.5 ∗
(
Y ∗ ‖xa

i − xb
i‖22 + (1− Y ) ∗max(0, α− ‖xa

i − xb
i‖2)2

)
(4.5)

Consider α as a minimal margin between dissimilar data points. This
approach pulls positive points inwards to the margin circle, whereas negative
pairs are pushed out of the margin zone. A method like this gives us a decision
boundary so that if ‖xa

i − xb
i‖22 < α, we assume that the pair is of a similar

class.

4.2.3 Training Method

The basic idea was to start with more comprehensive and general samples and
then changing the training method so that the problem becomes harder and
harder. This approach is inspired by curriculum learning [36].

It is desirable to ensure fast convergence via all to all triplet loss approach
described in [31]. Then we train the network with random sampling as a form
of warm-up. Random sampling also ensures maximal person variance within a
mini-batch, and finally, we use the hard sample selection. We assume that the
online hard triplet selection is more difficult within one epoch, so our objective
is, to begin with, offline selection and then switch to the online selection.
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We implemented each loss function mentioned above with random and
hard sample selection implemented in its data loader. We have an option to
perform hard sample selection, both offline and online (or semi-online). Offline
hard sampling means we compute responses at the beginning of each epoch
and online hard sampling means we compute responses at the beginning of
each batch.

4.2.3.1 Data Pre-Processing

The average track length is approximately 33 detections. For precise similarity
measure, we do not need every detection from the track. We took advantage
of geometry knowledge, and we simplified the dataset significantly.

We flipped all image crops so that a pedestrian head lies within the first
quadrant of the image. We calculate the rotation with knowledge of a camera’s
optical angle and relative position of the camera and the pedestrian.

When a pedestrian approaches a camera, he is first observed from the
front, then from above, and then back. Each angle is different, and it may be
harder to recognize the same person from two different angles. Therefore we
use only the first third of the track for training and similarity measure. In
future work, we can train multiple descriptors for different angles and consider
multiple similarity measurements.

4.3 Inter-Camera Track Assignment Problem

4.3.1 Building an Assignment Problem

Section 2.3.2 outlined the solution presented in [15, 16], where they build
a static correspondence matrix. Our method comes with a more dynamic
approach. First, we have to build an assignment problem (alg: 3).

The effectiveness of algorithm 3 is essential for a fast construction process.
We index tracks by camera id and exit in our implementation, so the selection
can be one in constant time. We select only PartitionA, and then we use an
interval tree for quick candidate selection. We register tracks into the inter-
val tree by the timestamp, and then we search for intersections that intersect
track ta with an extra margin.

The GetCost (alg: 4) function respects similar constraints as our fast
candidate selection. As an input, GetCost accepts two tracks ta, tb recorded
with cameras Ca, Cb. Let transition x be defined as: (cam id1 = Ca, exit1 =
a1, cam id2 = Cb, exit2 = b1, duration = d)

GetCost should return cost even for tracks that leave and enter the same
camera if defined in the transition config. However, there are cases when it
is not possible to return with the same exit. For example, when a pedestrian
leaves the area on escalators, or there are two overlapping cameras. If two
cameras overlap, the pedestrian has to arrive in the second camera’s field of

28



4.3. Inter-Camera Track Assignment Problem

Algorithm 3: BuildTrackAssignmentProblem
input: Tracks T, transitions X

1 G ← empty graph
2 for x ∈ X do
3 PartitionA ← {tracks that left cam1 with exit1} ∪

{tracks that left cam2 with exit2}
4 PartitionB ← {tracks that entered cam1 with exit1} ∪

{tracks that entered cam2 with exit2}
5 for ta, tb ∈ PartitionA× PartitionB do
6 cost ← GetCost(ta, tb)
7 if cost 6=∞ then G.add edge(ta, tb, cost)

8 res ← SplitIntoConnectedComponents(G)
Result: res

Algorithm 4: GetCost
input: Tracks ta, tb that either satisfy transition x, or they were

recorded with the same camera
1 res ←∞
2 if (ta.sink = a1 ∧ tb.source = b1) ∨ (tb.sink = b1 ∧ ta.source = a1)

then
3 timex ← time when the first track ended
4 timey ← time when the second track began
5 if timey ∈< timex + d− ε, timex + d+ ε > then
6 res ← α ∗ |timey − timex + d|+ β ∗AppearanceDistance(ta, tb)

if timey < timey then
7 res← res + δ ∗ PositionalTrackDistance(ta, tb)

Result: res

view, and only then can he return to the first camera. If two cameras overlap,
it means, that timey ≤ timex. In such a case, we consider geometry as a factor,
and we use the PositionalTrackDistance algorithm. Positional distance is a
potent tool that can help us significantly. In this thesis, we do not use this
distinguisher. The dataset was made solely with the use of geometry so that
the result would be heavily biased. The same goes for the time distance since
our benchmark (sec: 5.2.1) sets timestamps randomly within a defined time
range.

In GetCost, we use three fine tuners α, β, δ. They all work as weights that
emphasize a particular measurement. Another parameter is ε. It is a margin
that defines a time window in which we consider tracks to be relatable. The
ε is a constant in our project, but it might carry a different value for each
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transition in real settings.
Our observation of the track assignment problem revealed that the graph G

is relatively sparse. Plus, we can assign each track to a small set of tracks that
satisfy strict constraints. It means that G has many independent components.
There are at least |X| components (for each transition one) and multiple sub-
components. Each one can be computed in parallel, and the result does not
depend on other components. When a component closes, we can run the
assignment algorithm 5. It means that we can continually perform the ICT,
and we do not need to interrupt the process or wait until the end of the day.

4.3.2 Track Assignment Problem Solution

Algorithm 5: TrackAssignment
input: Independent components c1, c2, ..., cn of the track assignment

problem G
1 q ← priority queue (min heap)
2 for connected component ci ∈ G do
3 If needed, set undefined edges of ci to ∞⇒ ci is fully connected

bipartite graph
4 matching ←MinimalWeightMatching(ci)
5 for m ∈ matching do
6 q.heap push(m, priority = cost of m in ci)

7 seen ← dictionary{x : 0 | x ∈ G.nodes}
8 res ← []
9 while |q| 6= 0 do

10 m← q.pop()
11 if seen[m[0]] < 2 ∧ seen[m[1]] < 2 ∧m.cost 6=∞ then
12 res.append(m)
13 seen[m[0]]← seen[m[0]] + 1
14 seen[m[1]]← seen[m[1]] + 1

Result: res, seen

The cycle at line 9 (alg: 5) ensures that each track has at most two
assignments (one prior and one further in time), we call this process an
elimination. However, our dataset is created in such a manner that each
track has exactly one assignment. Thus we implemented a slightly different
elimination, where the condition at line 11 is as follows: seen[m[0]] < 1∧
seen[m[1]] < 1 ∧m.cost 6= ∞. This change will undoubtedly impact test re-
sults, but due to the complexity of this work, we did not have enough resources
to create a new dataset.

30



4.3. Inter-Camera Track Assignment Problem

We chose this elimination algorithm since the min-heap prioritize pairs
with the lowest cost first, benefiting from the ICT-Descriptor’s good relative
distance comparison property.
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Chapter 5
Experiments

5.1 Image Descriptor

The crux of our problem is arguably training a well-performing descriptor.
Hence we conducted a series of experiments revealing the best possible training
method for our task.

5.1.1 Image Descriptor Evaluation Method

Our ambition is to deliver a solution that performs reasonably well in a real
environment. To obtain representative results, we designed an evaluation
method that resembles the real application.

The PairPercentileTest (alg: 6) approximates a normalized rank (per-
centile) of an anchor-positive distance against all anchor-negative distances.

Algorithm 6: PairPercentileTest
input: Track associations TA

1 ok ← 0
2 for ti, tj ∈ TA do
3 anchor ← random ∈ ti
4 positive ← random positive ∈ tj
5 negative ← random negative ∈ TA \ (ti, tj)
6 pos d ← ‖anchor − positive‖22
7 neg d ← ‖anchor − negative‖22
8 if pos d < neg d then ok← ok + 1

Result: ok/|TA|

We also designed a second test ClusterPercentileTest, that works similarly
to the PairPercentileTest with just a slight change, that we do not measure
distances between detections, but distances between clusters with the same
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metric as in the cluster loss (sec: 4.2.2). However, we discovered that the re-
sults of both tests follow the same pattern. The ClusterPercentileTest returns
slightly better scores thanks to higher robustness towards outliers. We do not
consider the Cluster results essential for the training, so we do not present
them. However, we mention this method for completeness.

5.1.2 Baseline Configuration

Overview of Training Options

Gradient clipping - Prevention against vanishing/exploding gradients,
optimization performs more reasonably near sharp areas of the loss sur-
face.

Descriptor size - It is desirable to obtain relatively short vectors. We
experimented with a length of 32 and 64.

Softmax - Situates output on a unit sphere of n dimensions. In our case
n = 32 or n = 64. A universe where descriptors live, has boundaries
with the softmax function.

Warm-up - Warming up/pretraining the network may result in better
performance.

Flipped detections - All crops are flipped so that the pedestrian head
lies within the image’s first quadrant.

Track cropping - For learning and similarity measurements, we use
only the first third of a track.

Weight initialization - Kaiming weight initialization prevents vanish-
ing/exploding gradient problem.

Batch size - Batch size has a great influence on the training process.
We may experiment even with batch size=1.

As a baseline setup, we used the ResNet18 [27] that encodes 64x64x3
images into a vector of length 32. We flipped detections, and we cropped the
last two-thirds of all tracks. As suggested in [31], our first epoch is sampled
with all possible positive combinations to ensure fast convergence. Another
way to ensure fast convergence is to use small batches [39]. We use batches of
size 60. As an optimizer, we use Adam [43] with an initial learning rate of 3.5
* 1e-4. We use the Kaiming weight initialization [38] and gradient clipping
for the reasons mentioned above.
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5.1. Image Descriptor

Figure 5.1: Comparison of various loss functions with the baseline configura-
tion. Percentile defined with algorithm 6.

5.1.3 Loss Function Comparison

With subsequent experiments, we aim to discover a suitable loss function. We
considered the following options: triplet loss, contrastive loss, quadruplet loss,
and cluster loss (sec:4.2.2). Baseline ResNet parameters were pre-trained with
all possible positive combinations.

The comparison revealed that the quadruplet loss worked best for our
baseline setup. The quadruplet, triplet, and contrastive losses perform simi-
larly in our environment. We expect a shrink of differences in the following
training. Nevertheless, due to our resources, we were not able to continue
with the training further.

5.1.3.1 Hard Sampling and Noisy Dataset

Sadly the use of hard sample mining leads to lower performance than random
sampling. We assume that the cause is noise in our Smart Dataset (sec: 4.1).
We obtained the dataset without heavy labeling, and it allowed us to generate
an outstanding amount of images, however, with lower quality.

We noticed two different types of defects in our dataset. The first one,
we call noise. These are detections that do not contain any person. The
second one we call mismatch. It is a false detection assignment that usu-
ally propagates until the end of the track. With various heuristics, we were
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Figure 5.2: Example of noisy track and it’s influence on hard sampling.

able to detect some malicious detections. Nevertheless, the majority of errors
remained undetected.

In figure 5.2, we depicted two phases that occur during hard sample train-
ing. The noise is distant from all detections throughout the dataset at the
beginning. In the first phase, the hard positive sampling pulls these noises
closer. Therefore the noise detections are generally close to all other detec-
tions. This problem escalates in a cycle of pushing noises away with hard
sampling and pulling noises in positive sampling. In the second phase, noises
are closer to anchors than miss-matches are. Hence we minimize distances be-
tween two different pedestrians as is depicted in figure 5.3. A similar principle
applies to the cluster loss, but in a slightly different manner. Among others,
the cluster loss minimizes the distance of outliers from the center. Moreover,
outliers are often noisy detections. Another reason that causes lower perfor-
mance might be that we did not found a suitable training method.

By the time we started experimenting, supervisor Ing. Filip Naiser con-
siderably improved the SCT. We had an option to repair the dataset and
eliminate the majority of noises. However, we decided to eliminate more sig-
nificant flaws first and execute more experiments due to the lack of time.

5.1.4 Training Method

Table 5.1.4 revealed, that the gradient clipping has no influence on the accu-
racy. Surprisingly enough, we did not meet much success with the softmax
function, even with a longer descriptor vector. On the other hand, the warm-
up proved to be beneficial.

Because of how time-consuming the training is, experiments from table
5.1.4 were conducted with just the quadruplet loss. However, we made a quick
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Figure 5.3: Impact of hard sample mining on accuracy. The dataset is pre-
processed (sec: 4.2.3.1).

comparison of how training options influence other loss functions (fig: 5.4).
Note that figure 5.4 is only to acquire intuition over the matter. Nevertheless,
we can notice recurring patterns similar to table 5.1.4.

5.1.5 t-SNE Projection

One way to get insight to multidimensional data is by reducing the number of
dimensions. The t-SNE [45] is a practical non-linear technique for visualizing
large-scale and high-dimensional data.

Figure 5.5 outlines the descriptors of two tracks that contain the same
person concentrate in a cluster. It seems that clusters are not mixed up, so we
should differentiate them. It turns out that descriptors of two tracks with the
same person are relatively mixed, which is a desirable outcome. It suggests
that in latent space, they concentrate on one area evenly.

Summary

Experimental results revealed that the baseline method with warmup per-
formed the best. We were able to exceed the 0.97 percentile on the validation
dataset with just random sampling. We believe that it is possible to outper-
form our result on a cleaner dataset with hard sample mining and various
improvements (i.e., loss function, different network architecture, augmenta-
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Figure 5.4: Performance of loss functions with different training options on
the preprocessed dataset (sec: 4.2.3.1). The y axis represents a percentile.

Figure 5.5: t-SNE projection of random tracks with our best descriptor.
(percenitle: 0.97)
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model epoch 5 epoch 20 epoch 40

baseline 0.922 0.941 0.950
positive effect on accuracy

warm-up -0.025 -0.002 +0.014
neutral effect on accuracy

no gradient clipping -0.003 +0.004 +0.004
desc64 -0.002 -0.003 -0.002
no weight init -0.012 -0.014 -0.006

negative effect on accuracy
softmax64 -0.182 -0.128 -0.119
softmax32 -0.116 -0.088 -0.078
full track -0.020 -0.014 -0.015
unflipped -0.007 -0.011 -0.004

Table 5.1: Comparison of training methods with quadruplet loss. Each row
represents a change of the baseline configuration.

tion, or tricks described in [13, 12]). Moreover, we found the influence of crop
flipping and track cropping beneficial. Therefore we look forward to better
data preprocessing.

In the future, we want to estimate the pedestrian’s perspective (front,
back, or top view). We want to train separate descriptors for each perspective
and imply in the track association process.

On the other hand, we could not prove the effect of gradient clipping [37]
and Kaiming weight initialization [38] on accuracy. However, we believe in
their importance since we experienced exploding gradient issues, especially
during hard sampling methods. Longer descriptors also did not prove to be
useful.

The softmax function resulted in significantly lower performance both in
its short and long descriptor form. We assume that it is possible to reach
reasonable results with the softmax function. However, we did not found a
suitable training configuration.

Our best configuration (baseline with warm-up) had the best results. There-
fore we call this setup an ICT-Descriptor, and we use it in the following re-
sults.
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5.2 Inter-Camera Track Assignment Problem

5.2.1 ICT-Evaluation Method

ICT-Benchmark

To simulate a real environment, we designed a benchmark that randomly dis-
tributes track pairs in a time interval. A track is a sequence of chronologically
sorted detections. The time interval between detections is 0.2 seconds. The
benchmark accepts a set of assigned tracks (crossings) and duration d so that
the longest crossing is shorter than d. Each track pair respect a transition
defined between two cameras with a transition time. For each pair of tracks
ti, tj from cameras Ci, Cj with transition-duration xd, we execute following
steps:

1. estimate crossing duration cd = (|ti|+ |tj |) ∗ 0.2 + xd

2. randomly pick ti beginning t0 ∈ 〈0, d− cd〉

3. calculate transition beginning t1 = t0 + |ti| ∗ 0.2

4. with respect to the order, linearly distribute detections from ti in interval
〈t0, t1〉, and detections from tj in interval 〈t1 + xd, cd〉

For duration d, e chose a value so that each track has approximately four
assignment candidates.

Track Assignment Test

As an evaluation metric, we chose the following formulas.

TP = correctly assigned pairs

FP = falsely assigned pairs

FN = missing assignments

Precision = TP

TP + FP
(5.1)

The conception of the project puts emphasis mainly on Precision. We
are not concerned about unassigned tracks as much as we are about falsely
assigned tracks. Nevertheless, we believe in the importance of this rate, so we
measure it as Recall.

Recall = TP

TP + FN
(5.2)
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5.2.2 Track Distance Metric

Distance metric between two tracks can make a big difference in the final
assignment. Therefore we analyzed the influence of different measuring tech-
niques on Precision. We considered six basic techniques enumerated in table
5.2.2. The Euclidean distance between centroids of tracks outperformed other
variants consistently.

metric precision recall

l2 centroids 0.854 0.459
cross product mean 0.841 0.455
min5 0.827 0.451
min 0.827 0.451
ward 0.820 0.449
max 0.774 0.435

Table 5.2: Influence of different metrics on the inter-camera assignment prob-
lem.

Summary

The track assignment algorithm analyzes the correspondence graph and runs
the Hungarian algorithm for each independent component. It notably reduces
the computation time and allows us to reconstruct trajectories efficiently. In
the future, we would like to replace the Hungarian algorithm with an algorithm
utilizing a high sparsity of our correspondence graph. We expect that this
might lead to dramatic speed improvements.
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5.3 ICT-Results

We successfully designed and implemented the inter-camera multi-object track-
ing. We collected and annotated our dataset in the Krakov shopping center.
To our best knowledge, it is the only available top-view inter-camera tracking
dataset (6 cameras, XY track pairs). On this dataset, we get the following
results:

PairPercentileTest

In PairPercentileTest (alg: 6), ICT-Descriptor significantly outperformed the
baseline Color Names descriptor (tab: 5.3).

desc variant percentile

ICT-desc 0.97
Color Names 0.69
random desc 0.50

Table 5.3: Comparison of the ICT-Descriptor, Color Names descriptor, and
randomly generated descriptor in the PairPercentileTest.

ICT-Benchmark

In the inter-camera multi-object tracking, we achieved reasonable results (pre-
cision: 0.83) with the ICT-Descriptor on the ICT-Benchmark (tab: 5.4).

desc variant precision recall

ICT-desc 0.83 0.45
Color Names 0.38 0.26
random desc 0.18 0.15

Table 5.4: Comparison of the ICT-Descriptor, Color Names descriptor, and
randomly generated descriptor in the ICT-Benchmark (sec: 5.2.1).
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Chapter 6
Conclusion

The author single-handedly implemented the Smart Dataset, collected the
dataset, developed, tested, and tuned the whole ICT pipeline within ten
months, which took nearly 950 hours of work.

We recorded 368 hours of video in the Krakov shopping center in Prague.
We introduced the Smart Dataset, an algorithm for annotating large scale
footage without heavy labeling. With the Smart Dataset, we associated ap-
proximately 13000 tracks into 6453 pairs from different cameras. Our dataset
consists of 436043 image crops.

We trained a Siamese neural network useful for obtaining both SCT and
ICT descriptors. We presented a cluster loss function suitable for pedestrian
Re-Identification. With careful study of various optimization techniques, we
were able to maximize the network’s performance (tab: 5.3) despite having a
noisy dataset, uncalibrated RGB cameras, and low resolution.

We presented a dynamic algorithm for the track assignment problem using
the Hungarian algorithm and min-heap. We implemented the ICT-benchmark
that simulates an environment for testing inter-camera multi-object tracking.

Finally, we have developed and implemented an effective algorithm for
the inter-camera multi-object tracking problem. We search for independent
components in a correspondence graph, which allows continuous and parallel
computation. Furthermore, the whole ICT pipeline performs well on the ICT-
Benchmark (tab: 5.4).

We believe that future work increases performance even further. In partic-
ular, more sophisticated training methods, different descriptors for approach-
ing and leaving pedestrians, better network architecture, a cleaner dataset
for effective hard sample mining, image augmentation, spatio-temporal pre-
dictions and motion models, the influence of improved detector in SCT, the
substitution of the Hungarian algorithm with better, a faster algorithm capa-
ble of using sparse graphs, or changing the assignment algorithm as a whole.
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Chapter 7
Acronyms

AI Artificial intelligence.

CNN Convolutional neural network.

iC iC Systems.ai, s.r.o..

ICT inter-camera tracking.

SCT single-camera tracking.
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