
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 24, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Benchmarking of algorithms for machine learning

 Student: Tom Svoboda

 Supervisor: Ing. Viktor Černý

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

In an unnamed company selling SaaS products, we want to offer the best service possible to our customers.
To add additional value to them we want to predict their needs based on their input data. For this purpose,
we can use machine learning algorithms, which create a prediction model for each customer. We assume
various algorithms and their configurations can have different success rates for each customer type. The
goal of this thesis is to create a tool, that can automatically evaluate the quality of created prediction
models.

- Create a methodology, which evaluates the quality of prediction for each model against expected results.
- Apply this methodology in a tool, which automatizes the evaluation of these models.
- The tool will provide an output as feedback for developers of machine learning algorithms in a way, that
will improve the quality of said models.

References

Will be provided by the supervisor.

Bachelor’s thesis

Benchmarking of algorithms for machine
learning

Tom Svoboda

Department of Software Engineering
Supervisor: Ing. Viktor Černý

January 7, 2021

Acknowledgements

I want to thank Ing. Viktor Černý for his guidance, supervision, and help with
the thesis. Also, my family and close friends for support and neverending belief
in me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 7, 2021

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Tom Svoboda. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Svoboda, Tom. Benchmarking of algorithms for machine learning. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Ćılem práce je vytvořit metodiku pro hodnoceńı model̊u strojového učeńı.
Následně použ́ıt tuto metodiku v nástroji, který automatizuje hodnoceńı mo-
del̊u a dává zpětnou vazbu jejich vývojář̊um.

Výsledkem práce je popsaná metodika pro hodonceńı model̊u, která je
využitelná i bez automatizace. Nástroj byl implementován jako distribuovaný
systém, který lze použ́ıt samostatně nebo lze napojit na daľśı systémy.

Kĺıčová slova hodnoceńı model̊u strojového učeńı, porovnáńı prediktivńıho
modelováńı, metodika hodnoceńı model̊u, systém pro vyhodnoceńı model̊u,
strojové učeńı, umělá inteligence

Abstract

The goal of this work is to create a methodology to evaluate machine learning
models. Then use this methodology in a tool, to automate the evaluation of
models and provide feedback to their developers.

The result of this work is a described methodology for model evaluation.
The methodology can be used on its own with no automation. The tool was
implemented as a distributed system that can be used as a standalone solution
or integrated into other services.

vii

Keywords machine learning model evaluation, benchmark predictive mod-
eling, model evaluation methodology, model evaluation system, machine learn-
ing, artificial intelligence

viii

Contents

Introduction 1
Motivation . 1
Aim of the Thesis . 1
Thesis structure . 1

1 Machine Learning 3
1.1 Choosing an area of machine learning 3

1.1.1 Considered aspects . 3

2 Supervised learning 5
2.1 Types of supervised learning . 5
2.2 Process of developing models 5
2.3 Evaluation protocol . 6

2.3.1 Holdout Validation . 6
2.3.2 Iterated K-Fold Validation with Shuffling 6

2.4 Evaluation metrics . 6
2.4.1 Confusion matrix . 7
2.4.2 Accuracy . 7
2.4.3 F1 score . 7
2.4.4 Matthews correlation coefficient 8
2.4.5 Mean absolute error . 8
2.4.6 Mean squared error . 8

2.5 Algorithms . 9

3 Existing technology and services 11

4 Automating evaluation 13
4.1 Methodology . 13
4.2 Requirements . 15
4.3 Domain model . 15

ix

4.4 Design . 15
4.5 System design . 16
4.6 Implementation and used technologies 18

4.6.1 ML Runner . 18
4.6.2 Server . 19
4.6.3 Administration . 19

4.7 Experiment . 20
4.7.1 Preparing data . 20
4.7.2 Evaluating algorithms 21

4.8 Evaluation . 24

5 Conclusion 27

Bibliography 29

A Acronyms 35

B Contents of enclosed CD 37

x

List of Figures

4.1 Evaluation activity diagram . 14
4.2 Evaluation domain model . 16
4.3 Components of the evaluation system 17
4.4 Defining a problem in Administration 21
4.5 Defining an experiment in Administration 22
4.6 Results of the experiment for random classifier 22
4.7 Results of the experiment for Neural Network classifier 23
4.8 Results of the experiment for Decision Tree classifier 24

xi

Introduction

Motivation

In an unnamed company selling Software as a Service (SaaS) products, we
want to offer our customers the best service possible. To add additional value
to them, we want to predict their needs based on their input data. For this
purpose, we can use machine learning algorithms, which create a prediction
rule for each customer. We assume various algorithms and their configurations
can have different success rates for each customer type.

The motivation for this thesis is to help with the development of such
algorithms and provide a tool for selecting the best one for each customer.

The goal is not to compare machine learning algorithms in general but to
compare their usability on a selected problem.

This work is focused only on supervised machine learning.1

Aim of the Thesis

This thesis aims to create a tool that can automatically evaluate the quality
of a machine learning algorithm for prepared data sets.

The initial goal is to create a methodology that evaluates the quality of
each model to predict against expected results. The consequent goal is to
apply this methodology within a tool that automates the evaluation of these
models. The final goal is to provide an output as feedback for developers of
machine learning algorithms to improve the quality of said models.

Thesis structure

The first part of the thesis is analytical. The basics of machine learning and
predictive modeling are described in Chapter 1. The process of development

1This choice is explained in Section 1.1

1

Introduction

and evaluation of supervised learning models is covered in Chapter 2. Existing
technology and services that implement or support predictive modeling are
covered in Chapter 3.

The second part is practical. In Chapter 4, it is described how to automate
the methodology and provide feedback.

2

Chapter 1
Machine Learning

“Machine learning is a set of methods that can automatically detect patterns
in data and then use the uncovered patterns to predict future data or perform
other kinds of decision-making under uncertainty.”[1]

Input data is a vector of input measurements, also known as ”question”

Label is an output measurement, also known as ”answer”

Model is a mathematical model for predicting labels for input data

Observation is input data with its true label

Supervised learning fit model to match observations (predictive)

Unsupervised learning find interesting patterns in the input data or ob-
servations themselves (descriptive)[1, 2]

Reinforcement learning teach an agent new behavior through trial-and-
error interactions with a dynamic environment[3]

1.1 Choosing an area of machine learning

This work is focused only on supervised learning. It can solve relevant prob-
lems that do not have existing industry solutions. It has a less complicated
evaluation process.

1.1.1 Considered aspects

• type of problems that can be solved for a SaaS company

• feasibility - existing solutions, complexity

3

1. Machine Learning

All learning methods are useful in a SaaS environment. In supervised
learning, we can think of business predictions such as customer churn or pos-
sible product features such as automating user actions. There is automatic
content processing for unsupervised learning, such as cluster analysis or finding
outliers in customer behavior. For reinforced learning, it could be preventing
security threats or predicting infrastructure load for better auto-scaling.

The problems solvable with reinforced learning are common across SaaS
companies. They already have existing industry solutions that can be used.[4,
5, 6] Spending resources to develop solutions for them within an organization
might not be feasible.

Both supervised and unsupervised learning can solve many problems for
SaaS companies that have the company-specifics to them.

Evaluating unsupervised learning is challenging. The goal of unsupervised
learning is to find interesting patterns. Assessing how much the finding is
interesting depends on each particular problem. That makes it harder to
generalize the evaluation process.

Evaluation of supervised learning is easier to automate.2 As supervised
learning can solve relevant problems that do not have existing industry so-
lutions and is the most feasible, this work focuses on this machine learning
method.

2The methodology of evaluating supervised learning is explained in Chapter 4.

4

Chapter 2
Supervised learning

2.1 Types of supervised learning

There are two types of problems supervised learning solves.[7]

Regression predicting continuous scalar value for input data (predicting a
person’s height from their sex and age).

Classification to classify input data (predicting illness from the patient’s
symptoms).

Classification can be further split into the following types:[8]

Binary input is classified into one of 2 classes

Multi-class input is classified into one of the l classes

Multi-label input is classified into several of the l classes

2.2 Process of developing models

We have clearly defined a prediction problem that is solvable with supervised
learning. We need a data-set containing observations from which the learn-
ing algorithm will learn. If we have only input data, we need to add their
labels manually. We need to establish an evaluation protocol (section 2.3)
and choose a metric (section 2.4) appropriate for the problem. We should
assess the success threshold. Now we select or develop the learning algorithm
(section 2.5) that is suitable for the problem. Then the evaluation protocol is
executed to assess the quality. The models that surpass the success threshold
are candidates for usage.[9, 10]

5

2. Supervised learning

2.3 Evaluation protocol

With machine learning, we create models that will process data that do not
exist or are not available. For that, we can not measure the real performance
but only predict it. We can use the existing data to measure the performance
with varied success. We should not test the model accuracy on the data it
has trained on, as it would promote over-fitting. We can first put aside some
data for validation and use the rest for training the model.[9, 11]

2.3.1 Holdout Validation

This method consists of setting apart some portion of the data as the validation
set. It is common to use 1

5 to 1
3 of the data for validation. This method

gives a pessimistic estimation of the accuracy as the estimate is biased by the
selection.[12]

2.3.2 Iterated K-Fold Validation with Shuffling

We can split the data into k folds (random, mutually exclusive and with the
same size), use each fold as a validation set, and learn the model from the
rest. Then we can compute the performance by averaging the performance of
the k models.

This method helps overcome selection bias and over-fitting. It is excellent
for smaller data-sets as it maximizes the use of data as only 1

k is used for
validation while improving the accuracy of the performance metric.[12] For
bigger data-sets learning k − 1 additional models can be expensive.

2.4 Evaluation metrics

Learned models are approximations of reality. Therefore, there can be an
error in their predictions. For regression models, we can measure the size of
the error. Classifiers produce either true or a false classification.

To evaluate the correctness of the model, we need to choose an appropriate
evaluation metric. The evaluation metric quantifies the extent to which the
predicted labels for a given input-data are close to these observations’ true
labels.[1]

Each metric can cover different aspects of trained models. They can be
sensitive to outliers, respect, or account for the distribution of training data.
Some metrics are better for subjective labeling, and others are for data with
outliers that cannot be explained from provided data. Which properties are
important depends on the problem itself, so there is no single best metric.[8]

6

2.4. Evaluation metrics

2.4.1 Confusion matrix

Confusion matrix A stores counts of matches and mis-matches of n-class clas-
sifier in an experiment. The value of element Ai,j is a number of predictions
in an experiment, where classi was predicted and classj was the true label.

Following example is a confusion matrix for a binary classifier.(
TP FP
FN TN

)
(2.1)

Where TP is number of true positives, FP is number of false positives, FN
is number of false negatives and TN is number of true negatives.

Sometimes it can be useful to analyse performance for individual classes.
We can convert multi-class confusion matrix M to a set of binary confusion
matrices for each class. Each will have 2 classes: classi and not classi, where
not classi encapsulates the other classes.(

TPi FPi

FNi TNi

)
(2.2)

Where TPi is number of true predictions to classi, FPi is number of false
predictions to classi, FNi is number of false predictions to not classi and
TNi is number of true predictions to not classi.

2.4.2 Accuracy

Accuracy is ratio of correct predictions to all predictions. For binary classifi-
cation we can use values in confusion matrix:

Accuracy = TP + TN

TP + TN + FP + FN
(2.3)

Average accuracy for n-class classification:

Accuracy = 1
n

n∑
i=0

TPi + TNi

TPi + TNi + FPi + FNi
(2.4)

2.4.3 F1 score

It is the harmonic mean of recall r and precision p. Can be used when both
recall and precision are equally important. It can take on values between [0; 1],
where higher value is better.

F = 2pr

p + r
(2.5)

p = TP

TP + FP
(2.6)

7

2. Supervised learning

r = TP

TP + FN
(2.7)

For multi-class classifiers, we can compute F1 score for each class.3

2.4.4 Matthews correlation coefficient

Matthews correlation coefficient (MCC) is used over pure accuracy for un-
balanced data as it accounts for distribution of data within the experiment.
Opposed to accuracy, a bigger error on a less represented class will be more
noticeable. MCC can take on values between [−1; 1], where a higher value is
better.

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.8)

MCC was also generalized for the multi-class case.[13]

MCC =
∑

k

∑
l

∑
m CkkClm − CklCmk√∑

k(
∑

l Ckl)(
∑

k′|k′ 6=k

∑
l′ Ck′l′)

√∑
k(
∑

l Clk)(
∑

k′|k′ 6=k

∑
l′ Cl′k′)

(2.9)

2.4.5 Mean absolute error

Mean absolute error (MAE) is used to quantify size of error for regression
models. It can take on values between [0;∞), where lower value is better.
The value of error is in the same dimension as the values have. This allows
the result to be interpreted more easily.[14]

MAE = 1
n

n∑
i=1
|yi − f̂(xi)| (2.10)

Where f̂(xi) is the prediction of label for observationi and yi is the true
label of the observationi.

2.4.6 Mean squared error

Mean squared error (MSE) is also used to quantify size of error for regression
models. It is more useful than MAE if we want to prevent outliers with huge
error. It can take on values between [0;∞), where lower value is better.

MSE = 1
n

n∑
i=1

(yi − f̂(xi))2 (2.11)

3See 2.4.1

8

2.5. Algorithms

Where f̂(xi) is the prediction of label for observationi and yi is the true
label of the observationi.

2.5 Algorithms

There are many algorithms and their variants that have different results on
different kinds of problems. What they have in common is their interface. On
input, they require a labeled data-set. On output, they produce a model that
can predict labels for additional data.

The choice of the algorithm does not affect the evaluation protocol. For
reference, there are some examples of such algorithms:

• Artificial neural network

• Decision tree learning

• Linear regression

• Naive Bayes

To achieve better results, we can include in the algorithm other techniques,
such as pre-processing.

9

Chapter 3
Existing technology and services

Using machine learning to solve tasks is a complex problem with multiple
steps. It involves understanding the problem. The necessary part of that is
to gather and study the data describing the problem. To help with that, we
can use visualization tools and tools that streamline data processing. Usually,
we need to prepare the data needs for machine learning algorithms to be
successful. To give an example: making predictions on a text - as ML methods
do not work well directly with language, but rather numbers, we can use
natural language processing methods to convert it to the machine-readable
values.

With the pre-requisites satisfied, we can build the model with machine
learning methods. Then we can evaluate the models and approve them for
usage. We can use this evaluation to guide us to better solutions and even
automate the selection of the best method.

Once we have a successful model, we can decide to use it to solve real-
world tasks. That includes choosing the channel for providing the model and
how to maintain it. We may need to monitor their real performance and react
if it would degrade. The degradation happens when the environment of the
problem changes and the models gets outdated. Large scale applications can
include continuous learning to avoid this issue.

As the machine learning industry progresses, there are several existing
solutions that we can use. We can use most of them in the way that can
complement each other although some do overlap. The solutions range from
solving individual step in the process to providing full end-to-end solution
with ranging level of automation.

We can use conventional database management systems, big data solutions
like Apache Hadoop, or a simple file system to store the data.[15] We can
manage the data by hand on a case-by-case basis or use tools to streamline
the process.[16]

Machine learning engineers can use existing libraries that implement meth-
ods described in Chapter 1. Namely, Scikit-learn, PyTorch, and SciPy.[17, 18,

11

3. Existing technology and services

19] They are open-sourced and well documented. To use them, we need to
integrate them into a process outlined above.

There are existing machine learning development tools that integrate with
existing cloud service providers: H2O.ai, Azure Machine Learning, Amazon
SageMaker, or Cloud AutoML from Google.[20, 21, 22, 23] These services
provide end-to-end solutions.

They provide the necessary functionality and infrastructure to apply the
methods described in this document. Some have provided specialized solutions
for the type of machine learning usage that this work supports. Microsoft
has Many Models Solution Accelerator, which automates building multiple
models on Azure Machine Learning.[24] Amazon has Multi-Models Endpoint
providing functionality to serve multiple models from one server to cut down
operating costs.[25]

There are tools that help with model evaluation such as Neptune and Guild
AI.[26, 27]

Neptune provides a system of records for executed experiments. We can
use their library in existing model training scripts to track model evaluations
and parameters used to get them. The results are available to explore in
provided dashboard.

Guild AI instead provides a CLI tool that can execute provided the scripts.
It automatically declares new experiments in its system and tracks results as
well as used parameters to get them. Thanks to that we can later analyze
individual runs.

My solution is focused on running the experiments on multiple models for
single problem easier.

12

Chapter 4
Automating evaluation

The goal is to make the development of models easier. The development of
models is an iterative process. What works for one kind of problem and a
set of data may not apply to others. To understand the success of a solution,
we need to evaluate it. As the evaluation is a repetitive process, it is a great
candidate for automation.

4.1 Methodology

Before we can start, we need to understand the problem we want to tackle.
We need to gather all information related to the problem that may impact
the outcome we want to predict. We must structure the information so that
the machine can process it. We need to have enough instances of the problem
recorded for the learning algorithms to be successful. Every recorded instance
used in a supervised learning algorithm must have defined the expected out-
come (label).

The next step is to establish the evaluation process. The flow of this
process is illustrated in figure 4.1.

The first step is to design the evaluation protocol. We need to decide
which protocol to use. We could use Holdout or K-Fold validation. See Sec-
tion 2.3 for more information.

The second step is to select the evaluation metric for the protocol The
type of the problem indicates which metric we can use. Also depending on
the problem, we need to identify what is essential.

We should set the success threshold of the problem for the metric. We
can derive the value from an existing solution (e.g., we want to improve on an
older model or some custom solution). There can be business requirements
that imply minimal value. We can use this threshold to filter out solutions
that are not usable. Note that solutions passing a metric may still not be
great as the metric quantifies complex problems into a single number. Also,
the quality of the learning data limits the ability of the model.

13

4. Automating evaluation

Define
evaluation
protocol

Define
evaluation

metric

Prepare data

Is meeting the
desired success

Yes

No

Develop ML
algorithm

Execute the
evaluation
protocol

Figure 4.1: Evaluation activity diagram

14

4.2. Requirements

The third step is to prepare the data for training and evaluation according
to the evaluation protocol. We need to ensure the task’s data do not change to
achieve reproducible results and make them directly comparable. To achieve
that, we will persist both the data and the selection of data.

The fourth step is to execute the evaluation protocol to get an evaluation.

4.2 Requirements

• Define evaluation metrics for a particular problem only once and use it
for all customers and different learning algorithms

• Results for different algorithms are reproducible and directly comparable
for the same instance of a problem

• For other tasks in machine learning we can use 3rd party services - e.g.,
training the models

4.3 Domain model

The domain of evaluation is illustrated in figure 4.2. The primary entity is
the problem itself. The problem has a title and optional description, where
we can track additional information. It has assigned some evaluation protocol
and an evaluation metric. Each problem is also described by a set of data
of customers (customer data). The customer data is specific to the problem
and will be used for training. Each problem can be solved by some machine
learning (ML) algorithm (ML Algorithm). Such ML algorithms can be used in
an experiment to be evaluated for each customer. Each customer is evaluated
using their data in a customer experiment.

4.4 Design

The evaluation protocol, success metrics, and ML algorithms are procedures
that a data scientist would develop. The challenge is that we need to use them
in the automated process and allow flexibility in their implementation.

I was considering three options while accounting for the requirements in
Section 4.2:

The first was to define the algorithm in an interpreted language (Python).
It would use a provided library that would be configured by the system through
environment variables. The user could then upload this algorithm to the
server, which would then execute.

The second option was to make the algorithm part of the system itself.
The user would then need to contribute to the system to add new algorithms.

The third option was to provide a library that would serve as an automa-
tion helper. The user would set up problems in the system and then use the

15

4. Automating evaluation

Figure 4.2: Evaluation domain model

library. It would provide the data, evaluate the model, and save the results in
the system.

The first option has security implications. If someone accessed the Ap-
plication Programming Interface (API) of the system, they would be able to
execute their scripts. The second option is self-contained and most secure.
We can accept only approved contributions to the system - to prevent unau-
thorized scripts executed in a protected environment. We could restrict the
access to the learning data and expose only the results on them - if we would
need to protect sensitive data. The third option is the most versatile. It is
the approach used by existing services. It is not readily usable if we do not
want to use the 3rd party services to execute the learning algorithm or have
existing infrastructure. In case we would use the 3rd party service - it is easier
to stay in the ecosystem and use the provided APIs to build this solution.

For the above reasons, this work implements the second option: a self-
contained system.

4.5 System design

Evaluating machine learning algorithms is a computationally demanding op-
eration. The part of the system responsible for evaluation will often change
to include new algorithms we want to test. We can load data into the system
from other services so that we can automate this process.

16

4.5. System design

REST API

Data Interface

Messaging
Queue

Server ML
Runner

Administration

Database

Figure 4.3: Components of the evaluation system

The system is distributed into three services to work under these aspects.
Their relation is captured in figure 4.3.

Server is the leading service that manages data and evaluations. It provides
an API for the Administration or other internal services.

ML Runner service is executing evaluations.

Administration is an optional service that provides user interface (UI) for
the server.

We can use Administration or provided server APIs to declare problems
and execute experiments with available algorithms. The Administration is
using the provided API from Server to send requests to it. The Server has a
connection to the database, where it can store data provided through API. The
Server can execute experiments on said data by scheduling evaluation jobs to
ML Runner through Messaging Queue. ML Runner is processing evaluation
requests from the Messaging Queue. Runner sends the results back through
the queue. Thanks to that, we can update ML Runner with new algorithms

17

4. Automating evaluation

while keeping the main Server available and queue further evaluation requests.
The ML Runner could be scaled to run in multiple instances to speed up the
evaluation queue processing.

4.6 Implementation and used technologies

To make the deployment of our service more manageable, we use technology
for containerization of the applications. It manages the required dependencies
and environment for the applications. In this work, we use Docker.[28] To
orchestrate the services we use docker-compose.[29]

To broker messages between Server and Runner, we use RabbitMQ.[30]
PostgreSQL is used as a database management system.[31]

4.6.1 ML Runner

This service is responsible for the execution of evaluations. It is the place to
define new algorithms.

We will support Python for developing the algorithms. This programming
language is popular among data scientists.[32] All major ML frameworks and
services covered in Chapter 3 provide APIs for Python.

The ML Runner service is implemented in Python to simplify the usage of
developed ML algorithms.

To communicate with the messaging queue, we will use a library called
Pika.[33]

We can execute evaluation for each customer separately to allow processing
of the evaluation in parallel when we have multiple ML Runner instances. The
evaluation request messages must contain all information needed to execute
the experiment on a customer. We use JSON to encode the information
in the message.[34] It must contain identifiers for the following algorithms:
protocol, metric, and learning algorithm. Also, it must have an identifier of
the experiment and customer that will be evaluated. The last requirement is
data for the learning algorithm.

To identify the algorithms, we will use the concept of catalogs. By design,
the user needs to define their identifiers to register them in a catalog. Each
catalog is enforcing the algorithms to use a particular interface. The interface
for each type is described at the end of this section.

Identifiers of the experiments and customers are defined in the database.
The amount of data can be large, so we cannot send them in the message.[35]

Instead, the system needs to expose the resource to the Runner through HTTP
GET method.[36] The address to this resource is part of the message so that
the Runner can load the data upon processing.

The algorithms may use some 3rd party Python packages. To allow con-
tributors to add new, we need a package manager with easy configuration.

18

4.6. Implementation and used technologies

The package manager of choice is Conda.[37] With Conda, we can manage
the dependencies in a YAML configuration file.[38]

Interface of algorithms

ML algorithm creates the model. The input of the ML algorithm is training
data to learn on. The output is a model for making predictions.

Evaluation metric evaluates the model. The evaluation metric’s input is a
list of results in an experiment and a list of actual results.

Evaluation protocol defines how the evaluation is executed. On input, it
takes data of a customer, ML algorithm, and evaluation metric. It out-
puts the evaluation of the algorithm for the provided data.

4.6.2 Server

The system must provide API for other services to interact with it (including
Administration). We will use REST API as it is the standard for communi-
cation between web services.[39]

This service is written in TypeScript.[40] It is an extension of JavaScript
providing a type system.

The sources are executed with NodeJS.[41] We use Yarn as a package
manager.[42]

The framework of choice is NestJS.[43] It supports object oriented pro-
gramming (OOP) patterns, including dependency injection (DI).

To work with the database, we use object–relational mapping (ORM) - for
our case library TypeORM has support for NodeJS.[44] TypeORM integrates
into NestJS framework through @nestjs/typeorm module.[45]

We can use @nestjsx/crud to build the APIs, which provides methods
to build CRUD API for TypeORM repositories with @nestjsx/crud-typeorm
package.[46] We document the API with OpenAPI Specification standard.[47]
We can generate the API specification using @nestjs/swagger module.[48]
With that, the documentation is always up to date and available on the service
itself. It is accessible on the server on path /api.

4.6.3 Administration

To implement the UI for the Server, we also use TypeScript. The library for
building components is React.[49] To scaffold the UI for our Create, Read, Up-
date, Delete (CRUD) APIs we can use @FusionWorks/ra-data-nest-crud.[50]
To visualize data in graphs, we use recharts.[51]

19

4. Automating evaluation

4.7 Experiment

Because of privacy and security concerns regarding customers’ data, we cannot
use them in this thesis without their consent. In the end, we could not get the
consent, given there was still outstanding work to be done to follow security
protocols regarding the usage of their data.

Instead, we use generated data for a proof of concept. The consequence
of this approach is we cannot evaluate the real usage. For example, answer
whether different machine learning methods work great for some customers’
segments. On the other hand, this approach does not affect the validity of this
solution overall. We can simulate the types of problems that will be solved.
The system must be able to process them and provide evaluations we would
expect.

In the experiment, we use the kind of problem, which properties are similar
to problems we have identified for our application.

To give an example: say we have an organization where we have a queue
of tasks. Each task has an owner that solves it. Some people are specializing
in certain types of tasks. It can be by domain, involved business partner, or
any other aspect the task can have. Every person and different organizations
may have different approaches to assign ownership, so we cannot create a
custom rule for this problem that would serve all cases. Given we have com-
prehensive metadata about the task and have a history of ownership within
the organization, we can create a model to predict the owners.

4.7.1 Preparing data

The problem in the example is a multi-classification problem.
At first, we will declare the problem in Administration of the System

(fig. 4.4). After providing the name and brief description, we need to configure
the evaluation. For the evaluation protocol, we select Hold Out. For the
evaluation metric, we select MCC as it is suitable for multi-classification. We
cannot set a success threshold, but we know that values close to 0 mean similar
success as random classifier would have. A score of 1 is for perfect models, and
-1 means the model is always wrong. The expectation is that the models will
perform better than random. Both the protocol and the metric are predefined
in the Runner’s catalog as they are likely to be used for other problems.

To simulate the problem we can generate data with a selected number of
classes. The data will take form of a hyper-cube. The dimension of hyper-
cube is the number of attributes we have in the metadata. Each point in the
hyper-cube is an instance of the problem with attributes. The points for each
class form a cluster that is spread in each dimension using noise. The clusters
can overlap. Some attributes contain random values and have no correlation
with the classification.

20

4.7. Experiment

Figure 4.4: Defining a problem in Administration

To generate the data, we are using the Scikit-learn library with a simple
Python script. To simulate different customers, we use a different number of
classes, amount of data, overall noise, and overlap between the classes. Using
the API, we can upload the data to the Server and assign them to the problem.

4.7.2 Evaluating algorithms

We will use this data on two machine learning methods (Neural Network and
Decision Tree) and a random classifier for reference.

Then we need to develop the algorithm for the random classifier. In Run-
ner, we would create a new entry in the learning catalog and implement its
interface. In this case, we will extract unique labels from the training data
and make predictions by selecting a random label from them. We need to
restart the Runner service to have the algorithm available.

In Administration we can create a new experiment for the problem and
use the new algorithm (fig. 4.5). All the data attached to the problem is
automatically evaluated. As the customers get evaluated, their results will be
displayed there. We can reload the results to update the displayed content.

The results are plotted in a graph and also displayed in a list (fig. 4.6).
The results of a random classifier are close to zero, as we would expect for
MCC.

Next, we follow the same process with the algorithm for Neural Network.
The results (fig. 4.7) are better with values in the range between 0.15 and 0.6.

21

4. Automating evaluation

Figure 4.5: Defining an experiment in Administration

Figure 4.6: Results of the experiment for random classifier

22

4.7. Experiment

Figure 4.7: Results of the experiment for Neural Network classifier

There is one outlier with a value close to 0.
And with Decision Tree as well. The results (fig. 4.8) are similar to the

ones for Neural Network, but trailing slightly.
We can see that the machine learning algorithms are working as have

better results than random solution. Overall the models for neural network
algorithm performed slightly better than the decision tree on this data set.
But at the cost of the time of evaluation as the creation of the model is
slower. We can observe a few interesting cases: From the results, we can see
that customer 70 for all methods has the same results as a random classifier
would have. The generated clusters have too much noise and are close to each
other there. Customer 66 has a performance score more than two times higher
for the neural network algorithm than for the decision tree. On the contrary:
customer 58 has a value higher by 0.1 for the decision tree.

23

4. Automating evaluation

Figure 4.8: Results of the experiment for Decision Tree classifier

4.8 Evaluation

This work was based on the assumption that algorithms can have different
success rates for each customer. Based on the experiment, this hypothesis
seems valid.

Creating distributed system was a great choice. The system was respon-
sive even when we filled it with a high amount of evaluation requests. The
capability to add new algorithms into the system with no downtime is a neat
attribute of this architecture.

We could improve a few interactions in the Administration to make the
system more comfortable to use. When users are declaring a new problem or
experiment, they need to know what keys are available in the catalog. It would

24

4.8. Evaluation

be nice to select them from a list. Another issue is that users do not know
whether there are still any customer experiments to be evaluated. Showing
the status of the process would improve the transparency of the system.

25

Chapter 5
Conclusion

This thesis aimed to create a tool that automatically evaluates machine learn-
ing algorithms for data sets. This goal is fulfilled for problems solvable with
supervised learning. The system can accept any learning algorithm, and even
algorithms can use another service. This provides freedom in the usage of this
service.

The initial goal was to define the methodology of evaluation. As there are
many areas of machine learning, this work is focused on supervised learning
problems only.

The consequent goal was to use the methodology to automate evaluation.
The built tool is capable of automating the machine learning algorithms only
with some initial configuration required. The methodology proved to be easy
to automate.

The final goal was to provide feedback on the models. This topic proved
to be broad and dependent on what is being solved. That is why the system
provides feedback on them only with the evaluations of the model, which is the
most crucial aspect. It will be interesting to measure and compare models for
real customers, but unfortunately, it was impossible to run the experiments
before the deadline of this thesis.

Future work could extend the methodology and the tool with unsupervised
learning to enable a broader range of problems to be solved more efficiently.
The tool could provide guidelines for selecting the best evaluation protocol and
metric. This system could evolve into a Model Management Inventory and
Governance service. We could persist the models and provide an endpoint
to make predictions. The service then could track the health of models by
measuring their real performance.

27

Bibliography

[1] James, G.; Witten, D.; et al. An Introduction to Statistical Learning: with
Applications in R. Springer Texts in Statistics, Springer New York, 2013,
ISBN 9781461471387.

[2] Shalev-Shwartz, S.; Ben-David, S. Understanding machine learning from
theory to algorithms. 2014, ISBN 9781107298019 9781107057135,
oCLC: 945459331. Available from: https://doi.org/10.1017/
CBO9781107298019

[3] Kaelbling, L. P.; Littman, M. L.; et al. Reinforcement Learning: A
Survey. CoRR, volume cs.AI/9605103, 1996. Available from: https:
//arxiv.org/abs/cs/9605103

[4] IBM QRadar Security Intelligence — IBM. https://www.ibm.com/
security/security-intelligence/qradar, (Accessed on 10/28/2020).

[5] What Is Machine Learning in Security? - Cisco. https://www.cisco.com/
c/en/us/products/security/machine-learning-security.html,
(Accessed on 10/28/2020).

[6] New – Predictive Scaling for EC2, Powered by Machine Learn-
ing — AWS News Blog. https://aws.amazon.com/blogs/aws/new-
predictive-scaling-for-ec2-powered-by-machine-learning/, (Ac-
cessed on 10/29/2020).

[7] Murphy, K. Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning series, MIT Press, 2012, ISBN
9780262018029.

[8] Sokolova, M.; Lapalme, G. A systematic analysis of performance
measures for classification tasks. Information Processing & Manage-
ment, volume 45, no. 4, 2009: pp. 427 – 437, ISSN 0306-4573,

29

https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/cs/9605103
https://www.ibm.com/security/security-intelligence/qradar
https://www.ibm.com/security/security-intelligence/qradar
https://www.cisco.com/c/en/us/products/security/machine-learning-security.html
https://www.cisco.com/c/en/us/products/security/machine-learning-security.html
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/

Bibliography

doi:https://doi.org/10.1016/j.ipm.2009.03.002. Available from: http://
www.sciencedirect.com/science/article/pii/S0306457309000259

[9] Goodfellow, I.; Bengio, Y.; et al. Deep Learning. Adaptive Computation
and Machine Learning series, MIT Press, 2016, ISBN 9780262035613.
Available from: https://books.google.cz/books?id=Np9SDQAAQBAJ

[10] Roman, V. How To Develop a Machine Learning Model From Scratch.
https://towardsdatascience.com/machine-learning-general-
process-8f1b510bd8af, December 2018, (Accessed on 11/17/2020).

[11] Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learn-
ing: From Theory to Algorithms. Understanding Machine Learning:
From Theory to Algorithms, Cambridge University Press, 2014, ISBN
9781107057135. Available from: https://www.cse.huji.ac.il/˜shais/
UnderstandingMachineLearning/

[12] Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Es-
timation and Model Selection. volume 14, 03 2001.

[13] Jurman, G.; Riccadonna, S.; et al. A Comparison of MCC and CEN Error
Measures in Multi-Class Prediction. PLoS ONE, volume 7, no. 8, Aug.
2012: p. e41882, ISSN 1932-6203, doi:10.1371/journal.pone.0041882.
Available from: https://dx.plos.org/10.1371/journal.pone.0041882

[14] Willmott, C. J.; Matsuura, K. Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance. Climate Research, volume 30, no. 1, 2005: pp. 79–
82. Available from: https://www.int-res.com/abstracts/cr/v30/n1/
p79-82/

[15] Apache Hadoop. https://hadoop.apache.org/, (Accessed on
01/07/2021).

[16] RapidMiner — Best Data Science & Machine Learning Platform. https:
//rapidminer.com/, (Accessed on 01/07/2021).

[17] scikit-learn: machine learning in Python — scikit-learn 0.23.2 documen-
tation. https://scikit-learn.org/stable/index.html, (Accessed on
12/20/2020).

[18] PyTorch. https://pytorch.org/, (Accessed on 01/07/2021).

[19] SciPy.org — SciPy.org. https://www.scipy.org/, (Accessed on
01/07/2021).

[20] Home - Open Source Leader in AI and ML. https://www.h2o.ai/, (Ac-
cessed on 01/07/2021).

30

http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://www.sciencedirect.com/science/article/pii/S0306457309000259
https://books.google.cz/books?id=Np9SDQAAQBAJ
https://towardsdatascience.com/machine-learning-general-process-8f1b510bd8af
https://towardsdatascience.com/machine-learning-general-process-8f1b510bd8af
https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/
https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/
https://dx.plos.org/10.1371/journal.pone.0041882
https://www.int-res.com/abstracts/cr/v30/n1/p79-82/
https://www.int-res.com/abstracts/cr/v30/n1/p79-82/
https://hadoop.apache.org/
https://rapidminer.com/
https://rapidminer.com/
https://scikit-learn.org/stable/index.html
https://pytorch.org/
https://www.scipy.org/
https://www.h2o.ai/

Bibliography

[21] Azure Machine Learning — Microsoft Azure. https://
azure.microsoft.com/cs-cz/services/machine-learning/, (Ac-
cessed on 01/07/2021).

[22] Amazon SageMaker – Machine Learning – Amazon Web Services. https:
//aws.amazon.com/sagemaker/, (Accessed on 12/20/2020).

[23] Cloud AutoML Custom Machine Learning Models — Google Cloud.
https://cloud.google.com/automl, (Accessed on 01/07/2021).

[24] microsoft/solution-accelerator-many-models. https://github.com/
microsoft/solution-accelerator-many-models, (Accessed on
10/29/2020).

[25] Host Multiple Models with Multi-Model Endpoints - Amazon Sage-
Maker. https://docs.aws.amazon.com/sagemaker/latest/dg/multi-
model-endpoints.html, (Accessed on 01/07/2021).

[26] Neptune.ai — Experiment tracking tool for you and your team. https:
//neptune.ai/, (Accessed on 01/07/2021).

[27] Guild AI - Experiment tracking, ML developer tools. https://guild.ai/,
(Accessed on 01/07/2021).

[28] Empowering App Development for Developers — Docker. https://
www.docker.com/, (Accessed on 01/03/2021).

[29] Overview of Docker Compose — Docker Documentation. https://
docs.docker.com/compose/, (Accessed on 01/03/2021).

[30] Messaging that just works — RabbitMQ. https://www.rabbitmq.com/,
(Accessed on 01/03/2021).

[31] PostgreSQL: The world’s most advanced open source database. https:
//www.postgresql.org/, (Accessed on 01/03/2021).

[32] 2019 Kaggle Machine Learning & Data Science Survey — Kaggle. https:
//www.kaggle.com/c/kaggle-survey-2019, (Accessed on 12/20/2020).

[33] pika/pika: Pure Python RabbitMQ/AMQP 0-9-1 client library. https:
//github.com/pika/pika, (Accessed on 01/04/2021).

[34] JSON. https://www.json.org/json-en.html, (Accessed on
01/04/2021).

[35] What is the message size limit in RabbitMQ? - CloudAMQP.
https://www.cloudamqp.com/blog/2019-05-24-what-is-the-
message-size-limit-in-rabbitmq.html, (Accessed on 01/04/2021).

31

https://azure.microsoft.com/cs-cz/services/machine-learning/
https://azure.microsoft.com/cs-cz/services/machine-learning/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/automl
https://github.com/microsoft/solution-accelerator-many-models
https://github.com/microsoft/solution-accelerator-many-models
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://neptune.ai/
https://neptune.ai/
https://guild.ai/
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.rabbitmq.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.kaggle.com/c/kaggle-survey-2019
https://www.kaggle.com/c/kaggle-survey-2019
https://github.com/pika/pika
https://github.com/pika/pika
https://www.json.org/json-en.html
https://www.cloudamqp.com/blog/2019-05-24-what-is-the-message-size-limit-in-rabbitmq.html
https://www.cloudamqp.com/blog/2019-05-24-what-is-the-message-size-limit-in-rabbitmq.html

Bibliography

[36] RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. https://tools.ietf.org/html/rfc7231#section-4.3.1, (Ac-
cessed on 01/04/2021).

[37] Conda — Conda documentation. https://docs.conda.io/en/latest/,
(Accessed on 01/03/2021).

[38] The Official YAML Web Site. https://yaml.org/, (Accessed on
01/04/2021).

[39] Web Services Architecture. https://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/#relwwwrest, (Accessed on 01/04/2021).

[40] TypeScript: Typed JavaScript at Any Scale. https://
www.typescriptlang.org/, (Accessed on 01/03/2021).

[41] Node.js. https://nodejs.org/en/, (Accessed on 01/03/2021).

[42] Home — Yarn - Package Manager. https://yarnpkg.com/, (Accessed on
01/03/2021).

[43] NestJS - A progressive Node.js framework. https://nestjs.com/, (Ac-
cessed on 01/03/2021).

[44] TypeORM - Amazing ORM for TypeScript and JavaScript (ES7, ES6,
ES5). Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server,
Oracle, WebSQL databases. Works in NodeJS, Browser, Ionic, Cor-
dova and Electron platforms. https://typeorm.io/#/, (Accessed on
01/03/2021).

[45] nestjs/typeorm: TypeORM module for Nest framework (node.js). https:
//github.com/nestjs/typeorm, (Accessed on 01/03/2021).

[46] nestjsx/crud: NestJs CRUD for RESTful APIs. https://github.com/
nestjsx/crud, (Accessed on 01/04/2021).

[47] OpenAPI Specification. http://spec.openapis.org/oas/v3.0.3, (Ac-
cessed on 01/04/2021).

[48] nestjs/swagger: OpenAPI (Swagger) module for Nest framework
(node.js). https://github.com/nestjs/swagger, (Accessed on
01/04/2021).

[49] React – A JavaScript library for building user interfaces. https://
reactjs.org/, (Accessed on 01/03/2021).

[50] FusionWorks/react-admin-nestjsx-crud-dataprovider: Data provider
which integrates React Admin with NestJS CRUD library.
https://github.com/FusionWorks/react-admin-nestjsx-crud-
dataprovider#readme, (Accessed on 01/03/2021).

32

https://tools.ietf.org/html/rfc7231#section-4.3.1
https://docs.conda.io/en/latest/
https://yaml.org/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://nodejs.org/en/
https://yarnpkg.com/
https://nestjs.com/
https://typeorm.io/#/
https://github.com/nestjs/typeorm
https://github.com/nestjs/typeorm
https://github.com/nestjsx/crud
https://github.com/nestjsx/crud
http://spec.openapis.org/oas/v3.0.3
https://github.com/nestjs/swagger
https://reactjs.org/
https://reactjs.org/
https://github.com/FusionWorks/react-admin-nestjsx-crud-dataprovider#readme
https://github.com/FusionWorks/react-admin-nestjsx-crud-dataprovider#readme

Bibliography

[51] Recharts. https://recharts.org/en-US/, (Accessed on 01/07/2021).

33

https://recharts.org/en-US/

Appendix A
Acronyms

API Application Programming Interface.

CLI Command Line Interface.

CRUD Create, Read, Update, Delete.

DI dependency injection.

JSON JavaScript Object Notation.

MAE mean absolute error.

MCC Matthews correlation coefficient.

ML machine learning.

MSE mean squared error.

OOP object oriented programming.

ORM object–relational mapping.

REST representational state transfer.

SaaS Software as a Service.

UI user interface.

YAML YAML Ain’t Markup Language.

35

Appendix B
Contents of enclosed CD

thesis.pdf..............................the thesis text in PDF format
thesis.................the directory of LATEX source codes of the thesis
src.......................................the directory of source codes

admin.........the directory of source codes of Administration service
runner........... the directory of source codes of ML Runner service
server the directory of source codes of Server service
README.md..installation guide
.env.example...........................example of environment file
docker-compose.yml..........configuration file for Docker Compose

37

	Introduction
	Motivation
	Aim of the Thesis
	Thesis structure

	Machine Learning
	Choosing an area of machine learning
	Considered aspects

	Supervised learning
	Types of supervised learning
	Process of developing models
	Evaluation protocol
	Holdout Validation
	Iterated K-Fold Validation with Shuffling

	Evaluation metrics
	Confusion matrix
	Accuracy
	F1 score
	Matthews correlation coefficient
	Mean absolute error
	Mean squared error

	Algorithms

	Existing technology and services
	Automating evaluation
	Methodology
	Requirements
	Domain model
	Design
	System design
	Implementation and used technologies
	ML Runner
	Server
	Administration

	Experiment
	Preparing data
	Evaluating algorithms

	Evaluation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

