FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Visual Analysis of Plans for Multi-Agent Path Finding with Continuous Time (MAPF-R)
Student: Evgenii Abdalov

Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

Study Programme: Informatics

Study Branch: Information Systems and Management

Department: Department of Software Engineering

Validity: Until the end of winter semester 2021/22

Instructions

Multi-Agent Path Finding with Continuous Time (MAPF-R) represents a variant of MAPF where geometric
agents are moving smoothly along predefined curves between predefined positions in a continuous space.
One of the challenging aspects of MAPF-R is a visualization of plans in order to understand, verify, and
analyze them. This thesis aims at developing a basic software visualizer that will enable the user to animate
plans graphically so the user can make handmade analysis/diagnosis of plans and present plans to non-
experts. Tasks for the student are as follows:

- Study relevant literature on MAPF-R and identify aspects of deserving visualization

- Design and implement a visualization tool of MAPF-R plans

- Provide documentation of both the user part and the program so that future upgrades are possible

- Analyze the economic potential of the visualization tool in logistic domains where MAPF-R is used as an
underlying concept for navigating robotic manipulators

References

[1] Anton Andreychuk, Konstantin S. Yakovlev, Dor Atzmon, Roni Stern: Multi-Agent Pathfinding with Continuous Time.
1JCAI 2019: pp. 39-45

[2] Pavel Surynek, Petr Koupy: Vizualizace jako prostiedek k ziskani znalosti o kvalité feseni problému pohybu po grafu
(Visualization as a tool for acquiring knowledge about the quality of solutions of problems of motion on graphs)
Proceedings of the Conference Znalosti 2010, Faculty of Management, VSE Prague, Jindfichilv Hradec, Czech Republic,
pp. 129-141, Nakladatelstvi Oeconomica Jindfichlv Hradec, 2010, in Czech, ISBN 978-80-245-1636-3.

[3] Wolfgang Honig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, Sven Koenig: Summary: Multi-
Agent Path Finding with Kinematic Constraints. IJCAI 2017: 4869-4873

Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague May 26, 2020

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Visual Analysis of Plans for Multi-Agent
Path Finding with Continuous Time
(MAPF-R)

FEvgenii Abdalov

Katedra softwarového inzenyrstvi
Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

January 7, 2021

Acknowledgements

I would like to give thanks to my supervisor doc. RNDr. Pavel Surynek,
Ph.D., who was leading the path to my deeper understanding of Multi-Agent
Path Finding problems with his advice and knowledge.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In V Praze on January 7, 2021

Czech Technical University in Prague

Faculty of Information Technology

(© 2021 Evgenii Abdalov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Abdalov, Evgenii. Visual Analysis of Plans for Multi-Agent Path Finding with
Continuous Time (MAPF-R). Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2021. Also available from:
(https://gitlab.fit.cvut.cz/abdalevg/bp_evgenii_abdalov).

https://gitlab.fit.cvut.cz/abdalevg/bp_evgenii_abdalov

Abstrakt

Tato prace je vénovana vytvoreni vizualiza¢niho nastroje za icelem zprostredkovani
vizualni analyzy problému Multi-agentniho hledani cest v nepretrzitem case
(MAPF-R). Popisuje problém MAPF-R, poté pokracuje popisem vyvoje vi-
zualiza¢niho néstroje a ekonomickym hodnocenim jeho potencidlu vyuziti v
logistické oblasti.

Klicova slova Zévéreéna prace, MAPF-R problem, vizualizace

Abstract

This thesis is dedicated to creation of visualization tool in order to convey
visual analysis of Multi Agent Path Finding with Continuous Time(MAPF-R)
problem. It describes MAPF-R problem, then it continues with description of
development of visualization tool and economic evaluation of its usage poten-
tial in logistics domain.

Keywords Thesis, MAPF-R problem, visualization

vii

Contents

Introduction 1
[L Understanding of MAPF-R problem and its visual analysis| 3
L1 Motivation| 3
[1.2 Multi-Agent Pathfinding problem description| 3
[1.3 Conflict based search algorithm| 5
[1.4 Visual analysis| oo 8
[1.4.1 Visual analysis methods and tools| 9

[1.4.1.1 Graph visual representation|. 11

[1.4.2 MAPF-R problem visualization theory| 11

[1.4.2.1 Statistical analysis| 12

|2 Analysis and design of the MAPF-R visualization tool -

[ContinuousViz 13
2.1 MAPF-R visualization tool purpose] 13
2.2 MAPF-R visualization tool usage| 14
2.3 User requierements|o 14

[2.3.1 Animation requirements| 14
[2.3.2 Manipulating layout requirements| 14
[2.3.3 Visibility settings requirements| 14
[2.3.4 Color settings requirements| 14
[2.3.5 Statistical analysis tools requirements 15
[2.3.6 Reading input data requirements| 15
[2.3.7 Non-functional requirements| 15
2.4 Data description| Lo 15
2.5 Technologies used|. 17
[2.6 Architectural design| 0oL 17
2.7 Component design| 19
[2.7.1 Business logic module| 19

ix

272 GUlImodule. 19
.73 Statistics modulelo o000 20
[2.7.4 Visualization module component| 21
275 DAOmodule oL 21

2.8 Test design| 22
2.8.1 Incorrect input| L. 22
[2.8.1.1 Incorrect agents| 22

[2.8.1.2 Incorrect graph|. 23

[2.8.1.3 Incorrect plans| 24

2.8.2 Redundant solution| 24
2821 Collisiontestl. 24

2.8.2.2 Ineffective plans| 24

3 MAPF-R visualization tool - ContinuousViz - developer |
[_manuall 25
Bl Buildl. 25
BIT Tinux 25
B.1.2 Windows 26

3.2 Business logic| o oo 26
............................ 26
[3.2.2 AgentState] oo 28
B23 Planl . - . - o o o 28
3.2.4 Step| 28
325 Timelntervall L. 28
B26 Verfex oo 28
3.2.7 Edgel 28
3.2.8 Graphl oo 29
[3.2.9 AgentController|], 29
13.2.10 GraphController| 30
B3.2.11 MammControllerf 30
B3 Stafisticd 31
13.3.1 SpaceTimeDatal. 31
13.3.2 Coordinate, VectorData] 32
13.3.3 AgentMovement| 32
3.3.4 DistanceDatalo 32
3.3.5 CollisionDatal 32
3.3.6 CollisionRiskDatal 33
13.3.7 AgentTimeRatio| 33
13.3.8 AgentTimeRatioData] 33
3.3.9 ShortestDistanceDatal 33
3.3.10 StatisticsDatal. o o000 34
13.3.11 MovementAnalyzer|. 34
8.4 Visualization| L. 35
3.4.1 AgentVisuall. 35

[3.4.2 GraphVisual 35
.43 ColorSetted 36
.44 AnimationControllerl 36

BE _GUI . . .o 36
[3.5.1 Uploading solution| 36
[3.5.2 Starting and controlling solution visualization| 37
[3.5.3 Setting up color palettes intertace| 38
[3.5.4 Setting up statistics interfaces|. 38
[3.5.5 Converting visualization into photo/video format| 39

3.6 _DAOI. 40
3.6.1 DataReader L. 40
.62 Datadet|o oo 40

3.7 PhotoVideoOutput| 40
[3.7.1 PhotoOutputController| 40
[3.7.2 VideoOutputController| 41

B8 Testresults 41
[3.8.1 Incorrect input| L. 41
[3.8.2 Redundant input| 41
[ual 43
4.1 _Main toolbar overview| 43
I D) 43
4111 Newsolutionl 44
[4.1.1.2 Start visualizationl 45

4.1.1.3 Solution parameters| 45

41.1.4 Clear visualizationl 45

[4.1.2 The visualization screenl 45
[4.1.2.1 Zooming| 45

4.1.2.2 Marking agents|. L. 46

ET3 Viewl. oo 46
4.1.3.1 Single agent statistics| 47

4.1.3.2 Double agent statistics| 47

[4.1.3.3 Changecolor| 47

4.1.3.4 Graph visible] 0000 47

[4.1.3.5 Agentwvisible 0. 47

[4.1.4 PhotoVideoOutput|. 48
[4.1.4.1 Take snapshot| 48

[4.1.4.2 Start video/Stop video| 49

4.1.4.3 VideodSettings| 49
............................. 49
[4.1.6 The visualization control panel 49

4.2 The single agent statistics window overview| 50
4.3 'The double agent statistics window overview| 52

xi

4.4 'The group agent statistics window overview| 53

[> Comparison analysis| 57
[5.0.1 Conceptual analysis| 57

5.0.2 Technological analysis| 58

5.0.3 Comparison SUmMmary|« v v v v v v v v v .. 58

|6 Analysis of MAPF-R visualization tool ContinuousViz eco- |
| nomic impact on logistics| 61
6.1 Industry 4.00. 61
[6.1.1 Industry 4.0 fundamental technologies/concepts|. 63

6.1.1.1 Cyber-Physical systems| 63

[6.1.1.2 Internet of Things| 64

6113 Smartdatal 64

[6.1.1.4 Smart factory] L. 64

6.2 Visualization in Industry 4.0 65
[6.2.1 Visualization replacement concept| 65

[6.2.2 Visualization creation concept|. 66

6.3 Smart Logistics| 67
[6.3.1 Amazon warehouse automation experiencef. 68

6.3.2 MAPF-R visualization tool practical applications in ware- |

| house management|{ 70
6.4 Economic assessment summary| 71
[Conclusion| 73
|Bibliography| 75
AT Fabl — 1 wr
IB ContinuousViz class diagrams| 79
|C Input data files examples| 86
(D Contents of the enclosed flash dist) 89

xii

List of Figures

1.1 example of C'T binary tree|l. 8
[1.2 Example of two agents colliding|. 8
1.3 a. MAPF problem| 0. 9
1.4 b. MAPF problem| 9
[L1.5 The Visual Analytics process| 10
1.6 The main components of visual graph analysis| 10
[2.1 graph input data example| oo 0L 16
2.2 agents input data example].o o000 16
2.3 solution input data example]o 00000 17
R4 Architecturd. 18
2.5 Business logic| oo 19
6 _GUI . . . oo 20
R7_Stafisticd 21
2.8 Visualization module components|. 21
2.9 DAO module components| L. 21
[2.10 a.incorrect agents input example| 22
[2.11 b.incorrect agents input example]o 23
[2.12 incorrect graph input example| oo 23
|3.1 Business logic module class diagram| 27
[3.2 Statistics module class diagams|o 0000 31
13.3 a. Visualization module class diagram| 35
[3.4 b. Visualization module class diagram| 37
3.5 GUI module class diagram|. 39
3.6 DAO module class diagram| 40
41 Main toolbarl 44
M2 Toadfild. oo 44
4.3 Start visualization|o L Lo 45
4.4 Start visualization|o 46

4.6 Solution color changel. oL 47
4.7 Not visible graph| oo oo 48
4.8 Marked agent| Lo 48
4.9 Visibility agents|o 49
[4.10 Video settings|.o 50
[4.11 Single Agent Statistics| oo oL 51
[4.12 Ratio Chart example].o o o000 51
(413 Online chart model 52
4.14 Not Omline chart model. 52
|4.15 Double Agent Statistics| L. 53
416 Omline chart mode2l 54
417 Not Online chart mode?f 54
418 Omline chart mode2l 55
4.19 Not Online chart mode2 55
|6.1 History of industrial revolutions|. 62
6.2 Industry 4.0 technologies| 62

6.3 Application cases of scientific visualization in industry manufactur- |
ing. (a) Steelmaking furnace internal environment visualization;

(b) Jet engine internal environment visualization; (c) Oil explo-

[ration external environment visualization) 65
6.4 Application cases of VR, AR and MR in industry manufacturing. |
(a) VR assembly factory; (b) VR furnace hot gases escaping; (c) An
assembly worker wearing AR glasses; (d) AR supported production
line modeling; (¢) MR workshop environment; (f) MR equipment

................................ 66

6.5 Visualizations for design phase: (a) Structural design of product;

(c) Material characteristics analysis; (d) Production environment
design.|. e 67
6.6 Smart logistics| 68
6.7 Amazon warehouse bots(a)| 69
6.8 Amazon warehouse bots(b)] 69
[6.9 Amazon warehouse bots(c)lo 70
IB.1 DAO module class diagram| 80
IB.2 GUI module class diagram|. 81
[B.3 a. Visualization module class diagram| 82
[B.4 b. Visualization module class diagram| 82
IB.5 Statistics module class diagams| 83
IB.6 Business logic module class diagram| 84
|C.1 graph input data example| 86
|C.2 agents input data example|. 87

Xiv

|C.3 solution input data example]

XV

[>.1 Comparison analysis summary|

[6.1 Economic assessment summary|

List of Tables

xvii

Introduction

In modern technological and economical environment the importance of data
has increased dramatically. As a matter of fact, data-driven desicion making
has a lead role in succesfull management techniques. Nevertheless, in order
to extract genuine value from your data, the one must process data correctly.
Dealing with vast amount of data has a potential to increase probability of
making a miscalculation in data processing. In such situation we could imple-
ment tools that facilitate visual analysis of data, i.e. use visual interfaces to
process data.

Among various algorithmic problems there is a certain class of problems,
that requires proper visual analysis in order to be solved correctly - those are
problems on graphs. Graph is an abstraction, that models interconnections
between set of objects. It is a collection of vertices and edges, that are defined
by pairs of vertices. One of the most common type of problems that are
solved on graphs is space-orientated problems, where vertex is an abstraction
for a location(cities,rooms, airports) and an edge is an abstraction for a route
between them. The problem is commonly stated, that we need to find the
shortest path from a location A to a location B. Let’s make an assumption
that there is only one agent, that travels on graph. In this case, in order to
succesfully find a path we need to take into account only restrictions that are
put by space-graph. However, if we add more agents, that are travelling on
graph, we should take other agents movements as a restrictions that must be
considered while finding the solution. This kind of problems is called Multi-
Agent Path Finding problem. Multi-Agent Pathfinding(MAPF) problem deals
with finding paths for multiple agents, so they can avoid collisions with each
other and reach their target destination. The solution to MAPF problem
is as complex as amount of agents involved, which leads to the necessity of
using visual analysis of the solution. Thus, there is a motivation to design
a visualiation tool. Visualization of MAPF problem is crucial for further
analysis of the solution, finding its redundancies and detecting ways to make
it more effective.

INTRODUCTION

The main goal of this thesis is to design and develop a visualization tool
for multi-agent pathfinding problem with continuous time that enables its
visual analysis. In interest of achieving this goal, following tasks must be
accomplished. Initially,we should study relevant literature on MAPF-R prob-
lem and identify aspects deserving visualization. Secondly, we will design and
implement visualization tool of MAPF-R plans. After that, provide docu-
mentation of both the user part and the program so that future upgrades are
possible. Finally, analyze economic potential of the visualization tool in logis-
tic domains where MAPF-R is used as an underlying concept for navigating
robotic manipulators.

CHAPTER 1

Understanding of MAPF-R
problem and its visual analysis

In this chapter we will determine theoretical basis of MAPF-R problem, sec-
ondly we will characterize what visual analysis is, its main functions and tools,
and indicate essential aspects of MAPF-R problem that have to be visualized.

1.1 Motivation

Modern economical and technological environment has a tendency to increase
the level of automation involved in production process. Although automation
is advantageous for production effectivness and speed, it still needs to be
controlled and monitored by a human operator. Therefore increased usage
of robotic manipulators and Al-based desicion making routine requires to be
provided with adequate visual interfaces.

This bachelor thesis aims to provide with a visual interface for one partic-
ular problem in automation domain, which is the Multi-Agent Path Finding

problem in continuous timelI.3|[1.4]

1.2 Multi-Agent Pathfinding problem description

Multi-Agent Pathfinding problem deals with planning paths for multiple agents
so they can avoid collisions with each other and reach their target destinations.
The MAPF problem has a vast range of domains where it is being applied,
including robot planning, autonomous vehicles, videogames, automated ware-
houses.

The input of standard MAPF problem for k agents is a tuple < G, s,t >,
where G = (V,E) is a graph, s : [1,....,k] is a set of starting vertices for k
agents, t : [1,...., k] is a set of target vertices for k agents. Action is a function
a:V— >V, where a(v)— > v/ suggests that if an agent is at vertex v, after

3

1. UNDERSTANDING OF MAPF-R PROBLEM AND ITS VISUAL ANALYSIS

performing action A it will be in vertex v'. Every agent has two types of
actions: wait and move. Wait means that agent stays at the current vertex,
move means that agent moves from its current vertex v to an adjacent vertex
v’. Single-agent plan is a sequence of actions m = (al, ..., an), that leads agent
i from s[i] to t[i] after being executed. The output of standard MAPF problem
is a solution m = (xl,...., k), that contains k single-agent plans, where one
agent has one single-agent plan.[I]

The majority of MAPF problems is solved on grids with discrete time,
where the duration of every action is one time step and each agent occupies
exactly one single location in every time step. All agents are considered to be of
the same shape and size and have the same constant speed. It uses space-time
maps to describe agent’s location at a certain moment of time - Cell(z,y,t),
where (x,y) are space coordinates on the map and () is a timestep.

The standard MAPF problem includes such types of conflicts as:

vertex conflict occurs if agents are planned to occupy the same vertex at
the same time step.

edge conflict occurs if agents are planned to traverse the same edge at the
same time at the same time-step in the same direction.

The solution has addional parameters, that evaluate a MAPF solution.

makespan is the number of time steps, that are required for all agents to
reach their target position. For a MAPF solution 7 = (71,,7k), the
makespan is ||7i||, where 7i is a single-agent plan with the maximum
amount of steps for agent i.

sum of costs is the sum of time steps, that are required for each agent to
reach their target position, which is Z 1 <4 < k|||

The MAPF problem in descrete time is less applicable in real life situations,
where processes occur in real time environment. The MAPF-R is Multi-Agent
Pathfinding with continuous time, where agent motion is planned for a certain
time interval. This time interval is a minium time considered to be safe for
planned actions, which means there would be no collisions during this time
interval. Similar to the standard MAPF problem, MAPF-R has as an input
a workspace and agents parameters. Workspace is a 2D space, which can be
represented as a graph G = (V, E), where vertices V are location, that agents
can occupy, and edges E are line trajectories, which agents move along. Agents
parameters are start location and target location. An output of algorithm is a
MAPEF-R problem solution, which is a joint plan for agents. Joint plan consists
of individual plans for each agent, where the plan is a sequence of actions for
agent needed to be taken so it could reach its target position. Duration of a
move is translation speed times the length of the edge. In order to evaluate
the MAPF-R solution such parameters as the makespan and the sum of costs

4

1.3. Conlflict based search algorithm

are still applicable, however the definition of a plan cost differs. Instead of
the number of time steps, cost of a plan is the sum of the durations of its
constituent actions.

1.3 Conflict based search algorithm

When focusing on algorithms that solve MAPF problem, the key requirement
is that the solution has to be cost-optimal. Although there are several algo-
rithms for solving MAPF-R problem, algorithm, that is considered the most
efficient, is CBS, which stands for Conflict based search algorithm.

First, CBS in discrete time should be described. As an input we have
workspace and agents parameters. The path is how agent ¢ moves on space-
time grid, solution is a set of k paths for the given set of k agents. Generally
speaking, the conflict-based search algorithm finds separate plans for each
agent, then it determines conflicts between those plans and solves it by re-
plannig whith specific constraints, that has been put on individual plans.

There is two types of constraints in conflict-based search algorithm,
which are vertex constraint and edge constraint, Vertex constraint (a[i],v,t)
is a configuration when agent ¢ is not allowed to occupy vertex v at the time t.
Similarly to vertex constraint, edge constraint (a[i], v1,v2,t) is a configuration
when agent ¢ is not allowed to start moving from vertex v1 to vertex v2 at the
time-step ¢ and arriving at the time-step {4+ 1. We say, that path for agent ¢ is
consistent if it satisfies all its constraints. The solution is consistent
if all its paths are consistent.

Two types of conflicts are being considered in CBS: a vertex conflict
and an edge conflict. A vertex conflict is a situation (a[é],a[j],v,t), when
agents ¢ and j are planning to occupy vertex v at the same moment of time
t. An edge conflict is a situation (a[i], a[j],v1,v2,t), when agents ¢ and j are
planning to swap locations v1 and v2 between time-step ¢ and time-step ¢+ 1.
The solution to MAPF problem is considered to be valid, in case there is no
conflict between any two single-agent plannings. In spite of being consistent,
solution can be invalid if this solution has paths that have conflicts with each
other. Conflicts are resolved by imposing constraints.

CBS consists of high-level search and low-level search. The high-level
search is a constraint-tree CT, which is a binary tree. Every node N in-
cludes a set of constraints(N.constraints), a solution(N.solution) and the total
cost(N.cost). The root of CT has an empty set of constraints. The child node
inherits parent constraints and adds to that one new for one agent. One node
consists of constraints for only one agent. The solution inside the node is a
set of k paths, one path for each agent. These paths must be consistent with
given constraints - path for agent ¢ is consistent with constraints imposed to
agent ¢. The total cost is summed over all the single-agent path costs.

1. UNDERSTANDING OF MAPF-R PROBLEM AND ITS VISUAL ANALYSIS

As far as low-level search is concerned, any single-agent pathfinding al-
gorithm(SIPP) can be used, for example A*. The low-level search is looking
for individual paths for each agent with given set of constraints. As an in-
put for the low-level search a set of constraints for a node N is given. As an
output, low-level search returns the shortest path for agent ¢ that is consis-
tent with imposed constraints assosiated with agent ¢ in node N. Afterwards,
validation of the node has to be processed. The validation is conveyed by
iterating through all the time-steps and matching the locations reserved by
all agents. The node N is declared to be the goal node in case there is no
conflict, i.e. no two agents plan to be at the same time at the same location.
On the contrary, the node N is declared to be the non-goal node if a conflict
C = (ali], alj],v,t) between two or more agents has been found as a result of
validation.

In order to resolve a conflict C' = (a[i], a[j],v,t), a new constraint must
be added. It is illustrated in Only one agent ¢ or j is allowed to occupy
location v at a time ¢, subsequently two options is possible - impose a con-
straint (ali],v,t) or a constraint (a[j],v,t). We need to explore both options,
as we are not aware which one is more optimal then another. Therefore, a
non-goal node N is split onto two children, each one obtains a new constraint,
(ali],v,t) and (alj],v,t), and inherits the set of constraints from its parent -
N.constraints. Note, that low-level search may be performed only for an agent
which is connected with newly added constraint, as other agents paths remain
the same since no new constraints have been added for them. The high-level
search treats edge conflicts in a similar manner as vertex conflicts. In case
plan does not have neither vertex nor edge conflicts, the solution has been
found.

CCBS, conflict based search algorithm in continuous time follows CBS
pattern. However, CCBS has its differences from CBS. In order to detect
conflicts, CCBS uses a geometry-aware collision detection mechanism. In or-
der to resolve conflicts, CCBS uses a geometry-aware unsafe-interval detection
mechanism. Instead of location-time pairs, CCBS adds constraints over pairs
of actions and time ranges. CCBS lower-level search uses a variation of SIPP,
single agent pathfinding algorithm, customized to handle CCBS constraints.

In CCBS agents can have any geometric shape, different speed and acceler-
ation and agent’s actions can have any duration, a conflicts in CCBS can occur
between agents traversing different edges. Conflict in CCBS is a conflict be-
tween actions. Formally speaking, a conflict configurtion (a[t], t[7], alj], t[4])
means, that if agent ¢ executes action a[i] during the time period ¢[i] and if
agent j executes action a[j] during the time period t[j], then collision will
happen between agent ¢ and j.

In CCBS the high-level search is similar to its discrete version in CBS. It
also uses CT to resolve conflicts by imposing constraints. The collision [I.2]
detection mechanism determines if node N is a goal node. In case node N is a
non-goal node, it splits into two children nodes with new constraints. In order

6

1.3. Conlflict based search algorithm

Algorithm 1 High level of CBS
Input: MAPF instance
Root.constraints = {null}
Root.solution = find individual paths by the low_level_search()
Root.cost = SIC(Root.solution)
insert Root to OPEN

while OPEN not empty do
P < — best node from OPEN
Validate the paths in P until a conflict occurs
if has no conflict then
return P.solution
end if
C < — first conflict (a[é], a[j],v,t) in P
for agent ali] in C do
A < — new node
A.constraints < — P.constraints + (ali],v,t)
A solution < — P.solution
Update A.solution by invoking low_level_search(ali])
A .cost = SIC(A.solution)
if A.cost < INF then
Insert A to OPEN
end if
end for
end while

to compute new constraints, that will be added, CCBS finds for each action
its unsafe intervals. The unsafe interval of action afi] is the maximal time
interval starting from t[i] during which performing a[i] will cause a collision
with performing performing a[j] at a time ¢[j].

In terms of low-level search, CCBS uses SIPP adopted to handle continuous
time constraints. For each location v € V' SIPP finds a set of safe intervals.
A safe interval is considered to be a maximal time interval in which an agent is
able to arrive or wait at location v without colliding with any moving obstacles.
Extending a safe interval in any direction will lead to collision, thus this safe
interval is maximal. Let’s assume C' = (i, a[i], (t1,¢2)) is CCBS constraint for
agent 7. In this case action ali] may be wait action or move action. In case,
ali] is a wait action, let v be a start location and v’ be a target location. If
the agent arrives at v in time step ¢ € [t1,¢2) then we delete an action that
moves agent from v to v/ during the time period ¢ and exchange it for an
action that is waiting at v until 2, and then agent is allowed to move to v'.
In case afi] is a wait action, let v be a location at which the agent is waiting.
Then, we forbid the agent from waiting during ¢ € [t1,¢2) by splitting safe

7

1. UNDERSTANDING OF MAPF-R PROBLEM AND ITS VISUAL ANALYSIS

Figure 1.1: example of CT binary tree

Figure 1.2: Example of two agents colliding

intervals accordingly - if [0, INF') is considered to be solely one safe interval
for location v, then we split it in two safe intervals [0,¢1] and [t2, INF).[2]

1.4 Visual analysis

In this section visual analysis of MAPF-R problem will be discussed. The
correct MAPF-R problem visualization is necessary as long as it allows to
convey a visual analysis of the solution. Visual analysis is meant to facilitate
the detection of conflicts and redundant elements in terms of output solution.
As a matter of fact, in case of the MAPF-R problem containing tens to hun-
dreds of agents it is extremely hard to determine if output solution is correct
without visual representation

8

1.4. Visual analysis

— o
ER (9N
=3 (2)

e

@ N

Figure 1.4: b. MAPF problem

®

1.4.1 Visual analysis methods and tools

Visual analytics is described as the science of analytical reasoning assisted by
interactive visual interfaces. Visual analysis incorporates aspects of [1.6]

e visual representation
e user interaction
e algorithmic analysis

Those aspects are a foundation of a sufficient visual analysis tools and are
closely interconnected. For instance, algorithmic analysis may function as a
preprocessing step that determine specific graph layout for visual representa-
tion.

User interaction aim to discover different aspects of the data by changing
visual representation and requesting different algorithmic processing of the
data. User interaction may be minimal, where data is processed automatically,

9

1. UNDERSTANDING OF MAPF-R PROBLEM AND ITS VISUAL ANALYSIS

Visual data-exploration

User interaction

Mapping Visualization

Transformation
Model
visualization
Madsl Knowledge
building /
Parameter

refinement

Information mining

Feedback loop

Figure 1.5: The Visual Analytics process

VISUAL GRAPH
REPRESENTATION

GRAPH

USER
ALGORITHMIC
ANALYSIS INTERACTION

=

Figure 1.6: The main components of visual graph analysis

or, on the contrary, data processing is fully dependent on parameters inserted
by user. User interaction can be classified by such criteria as

e user intention
e task
e user action

Those criteria are interrelated; for example, one task might be obtained
by performing several actions, or several intentions might include the same
task. As far as graph visualization is concerned, standard user interaction
techniques might be applied, such as highlighting, brushing, linking, panning
and zooming. Zooming and panning facilitate navigation in any direction and
change the zoom level within the view. Highlighting is making an emphasis
on interesting elements of the visual representation.

10

1.4. Visual analysis

1.4.1.1 Graph visual representation

There are three main techniques for displaying general graphs: node-link
based, matrix-based and hybrid. The node-link based technique is more
compatible with our needs for a visualisation tool. Node-links techniques use
links between graph elements to display their relationship. The main chal-
lenge of this technique is the layout, which is the placement of the nodes, so
that certain degree of graph readability is supported. The main requirements
to the layout are: the nodes must not overlap, the number of edge cross-
ing must be minimal, edge lenght should be homogeneous. Such tasks are
solved by specific graph layout algorithms. There is a sub-technique, which
is graphs with geographic reference , for example transportation graph.
The geographic location dictates the precise location of the nodes and possibly
of the edges. Subsequently, there is no need for a graph layout algorithm in
order to place nodes on the screen, although there might be problems with
long edges and crossings. [3]

1.4.2 MAPF-R problem visualization theory

As an input data set MAPF-R visualisation tool will operate with graph
charachteristics, agent parameters and its plans. The graph characteristics
data set is composed of following components:

e a number of edges
e a number of vertices and which ones are connected with edges
e coordinates for each vertex within the cartesian coordinate system

The agent parameters data set includes agent shape and size parameters,
its velocity and acceleration, and agent start position as well as agent tar-
get position. The agent plans data set represents agent behavior within the
timeline, i.e. agent action during specific time intervals.

Visual representation is based on data, which means that any modification
in data affects the visual representation. For instance, data filtering influences
which parts of the data set are going to be displayed and that could change
graph modification or layout. In case of MAPF-R visualisation tool, user does
not modificate or filter data set, although user could input different agent plans
for the same graph, which results in different agent movement animation on
the same graph layout.

As far as visual representation is concerned, the main challenge is to estab-
lish an acceptable level of physical abstraction, i.e. determine which aspects
of problem should be visualized and which could be ignored. The workspace
is presented as a graph on 2D space, where nodes interconnected with edges
mean that agent is physically allowed to traverse between them. The position
of vertices are specified by coordinates within the cartesian coordinate system.

11

1. UNDERSTANDING OF MAPF-R PROBLEM AND ITS VISUAL ANALYSIS

Edge between two vertices is a line connecting two points. The exact position
of edges is imperative since it has direct influence to the possibility of collision
between agents. Other physical parameters of space, such as lightning, air
temperature, floor level, height of ceiling, can be ignored in visualization.

As previously stated, MAPF-R problem takes into account agent physical
shape and size, subsequently physical restrictions, which are implied, should
be visualized properly. It will allow user to detect danger areas, where the risk
of collision between agents is higher than average. Since agent’s constraints are
presented as a set of time intervals, agent have to move in real time according
to its velocity and acceleration.

1.4.2.1 Statistical analysis

In addition to visual representation, we aim to collect statistics data as a part
of data analysis. Data analysis enhances visual observation and facilitates the
probability of making an analytical discovery. The statistics data indicates
algorithm perfomance and effectivness. In case of MAPF-R problem visual-
ization tool, we will collect data about overall time duration of the solution as
well as time duration for individual agents to reach its target destination from
starting point. Furthermore, we aim to collect data of how much time agent
moves and how much time agent waits, using this data we could estimate
moving/waiting ratio for each agent.

Using visualisation analysis in combination with data analysis, it
is possible to perform a comparison analysis of several MAPF-R problem
solutions. Based on this analysis it is feasable to find out which algorithm
solves MAPF-R problem more effectively.

12

CHAPTER 2

Analysis and design of the
MAPF-R visualization tool -
ContinuousViz

This chapter is dedicated to design and implementation of the MAPF-R visu-
alization tool. It has been decided to name MAPF-R visualization tool Con-
tinuousViz. First, we need to define its purpose as well as its usage to decide
in which direction we will be heading in visualization tool development. Sec-
ondly, we should describe its user requirements in order to determine scope for
the visualization tool. Afterwards, we describe the design of main structural
elements of the visualization tool as well as interfaces between those elements.
Finally, we describe test procedures to define if MAPF-R visualization tool
corresponds to its requirements.

2.1 MAPF-R visualization tool purpose

The main purpose of the ContinuousViz visualization tool is to evaluate the
quality of given solution to MAPF-R problem. Additionally, its purpose is to
discover unknown events, i.e. events that could only be detected by visualizing
the solution.

The main function of MAPF-R visualization tool ContinuousViz - it is a
tool for visualization of MAPF-R problems. It works as a frontend application
for precalculated solutions. By reading MAPF-R problem solution data it
generates an animation of this solution, providing user with a more detailed
understanding of the solution and setting up conditions for its further analysis.
Its main functionality focus objectives are an animation and GUI.

13

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

2.2 MAPF-R visualization tool usage

ContinuousViz is intended to be used in research activity to verify solution, i.e.
if agent plans are correctly solved. In an educational domain it will be serving
as a presentational tool. It also could serve as a prototype for visualization
applications in logistics domain, where its main usage will be as a monitoring
device.

2.3 User requierements

Since the main purpose of ContinuousViz is to visualize solution to MAPF-R
problem in such way, that it could be analyzed and evaluated, we could define
general requirements based on that purpose.

2.3.1 Animation requirements

The basis of the visualization is an animation of MAPF-R solution, which
includes agents moving on a graph structure. User should have a possibility
to play an animation at a chosen speed in chosen direction, forwards or back-
wards. Therefore, we have to simulate video player type of graphic interface,
which enables user to play, pause or stop animation, choose speed and direc-
tion. In addition to that, user should be enabled to set time, from which to
start animation.

2.3.2 Manipulating layout requirements

In order to get a better view at visualized objects, user has to be given a
possibility to manipulate a visualization layout. General instruments of visual
analysis such as zooming and rotating should be at user’s disposal. User
could zoom in or zoom out in order to have a more detailed view on a specific
element of a visualization layout. In terms of rotating, it should be made
possible to rotate 360 degrees, so user could observe the visualization layout
under different angles.

2.3.3 Visibility settings requirements

In case user would want to observe only some specific elements of visualization,
for instance, movement animation of a certain group of agents or solely one
agent, it should be made possible to change visibility settings for each visual
element on a visualization layout, including graph visualization.

2.3.4 Color settings requirements

In addition to that, visualization tool should have customized color settings.
User could change colors of agents and graph vertices. While animation plays

14

2.4. Data description

agent, could potentially be in several states. Agent can be in a state moving,
which means it is moving from starting location towards target location. It
can be waiting, which means agent is waiting at certain location in order
to avoid collision with other agents. In the beginning agent is in a state
initializing, and when agent is placed at the target location it is in a
state arrived. Visualization tool should enable colour differentiation of those
states, so user can intuitively understand in which state agent is being at the
moment.

2.3.5 Statistical analysis tools requirements

Aiming for statistical analysis, ContinuousViz should be disposed with proper
statistical instruments, such as charts, tables and metrics. In order to monitor
interaction between agents during the timeline, statistical instruments has to
showcase speed change, coordinates change and distance between two agents
change.

Visualization tool should detect collisions that occur within MAPF-R so-
lution. In addition to that, it would be reasonable to monitor probability of
collision rate during the timeline.

2.3.6 Reading input data requirements

Furthermore, visualization tool should be able to read input data from text
files and transform it into a visualization form. Within one single working
session uploading multiple files should be made possible, therefore enabling
user to switch between different visualizations layouts to convey a comparison
analysis. In order to store visualization results, ContinuousViz should support
video and photo output of visualizations.

2.3.7 Non-functional requirements

As far as non-functional requirements are concerned, following requirements
have been determined. ContinuousViz has to be platform independent, which
means it has to run on multiple platforms. Its architecture has to be module
based, so visualization tool functionality can be easily extended. It has to have
a short reponse time, since the core element of the system is an animation,
furthermore it has to sustain multiple usage time.

2.4 Data description

Data set consists of three types of data: graph parameters description, agent
paramaters description and MAPF-R problem solution. Graph parameters file
includes data about vertices and edges, how many vertices and edges it con-
sists of. Vertices data consists of vertex index and its coordinates within the

15

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

cartesian coordinates system. Edges data consists of pairs of vertex indexes,
that describe which vertices are connected by edge[2.]]

16

0.000
0.000
, 0.000
0.000
1.000
1.000
1.000
1.000
2.000
2.000
, 2.000
, 2.000
, 3.000
, 3.000
, 3.000
, 3.000
16
Edges: 24
{0,4}
{e,1}
{1,5}
{1,2}
{2,6}
{2,3}
{4,8}
{4,5}
{5,9}
{5,6}
{6,108}
{6,7}
{8,12}
{8,9}
{9,13}
{9,10}
{10,14}
{10,11}

Figure 2.1: graph input data example

Agents parameters file incorporates such data as agent shape parameters,
speed and acceleration. Additionally, it designates agent start location and
agent target location

Kruhobots: 8

1: [r = 0.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,
wf = 0.200]

2: [r = 0.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,
wf = 0.200]

3: [r = 0.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,
wf = 0.200]

4: [r = 0.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,

5: [r = 0.180, lv = 1.660, la = -1.000, av = -1.000, aa = -1.600,
Wwf = 0.200]

6: [r = 0.100, lv = 1.000, la = -1.600, av = -1.008, aa = -1.000,
Wwf = 0.200]

7: [r = 6.100, lv = 1.000, la = -1.600, av = -1.000, aa = -1.000,

8: [r = 6.100, lv = 1.000, la = -1.600, av = -1.008, aa = -1.000,
wf = 0.200]
Start

Assignments: 8|

1->7

2->1
3->9
4-54
5->5
6->12
7->6
8->3
Goal

Assignments: 8

1->9

>1
>2
>3
>13
=12
>12
>4

©NOw b wN

Figure 2.2: agents input data example

MAPEF-R problem solution file gives data about agent schedule. For each

16

2.5. Technologies used

agent it describes time intervals, starting location and finishing location. If
starting and finishing location are the same vertex, it means that agent is
waiting during that time interval 2.3

Kruhebot schedules [
planbA0 [1]: {
7 --> 11 [0.000, 1.000]
11 --> 10 [1.000, 2.600]
10 --> 9 [2.800, 3.000]
9 --> 9 [3.000, 5.000]

¥
planDAO [2]: {
1 --> 1 [0.800, 5.000]

3
planDA0 [3]: {
9 --> 8 [0.000, 1.000]
--> 4 [1.800, 2.0080]
--> 5 [2.800, 3.000]
--> 6 [3.000, 4.000]
-> 2 [4.000, 5.000]

owv b @

}
planDA0 [4]: {
4 --> 5 [0.000, 1.600]
--> 6 [1.080, 2.008]
2 [2.000, 3.800]
3 [3.800, 4.000]
3

5 -->
6 -->
2 12w
3 --> 3 [4.000, 5.000]

)
planDAQ [5]: {
5 --> 9 [0.800, 1.000]
9 --> 13 [1.000, 2.800]
13 --> 13 [2.000, 5.000]
}
planpAo [6]: {
12 --> 12 [0.000, 5.000]

)
]

Figure 2.3: solution input data example

2.5 Technologies used

The MAPF-R visualization tool ContinuousViz is designed as a client-based
desktop PC application. It is an open-source application, meaning that other
developers are approved to commit their changes to the project.

Since ContinuousViz was supposed to have real-time animations, we had to
choose technology that enables programmer with high animation capabilities.
We have chosen to use Java FX software platform, that function as GUI
library for Java. It has support for web browsers and desktop PC on Linux,
Microsoft Windows and MacOS. GUI was created with Java FX Scene Builder,
that enables dropping and dragging controls within application window frame.
Afterwards that information is being converted into special XML file - FXML,
that is code representation of GUI.

Since Java FX is written in native Java, ContinuousViz code is likewise
written in Java.

2.6 Architectural design

Since it was predetermined that ContinuousViz is going to be extended and
updated, we have chosen modular architecture for the project. Modular archi-

17

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

Business logic GUI

| | Visualization

Stafistics ‘

Photo/Video Output ‘ ‘ Data Input ‘

Figure 2.4: Architectural design

tecture is an architectural design pattern, that is composed of distinct mod-
ules, which are connected with each other. Modules are defined as unique
system units, that can be updated independently without affecting change in
other modules.

ContinuousViz has been devided into several modules, each responsible
for a logically unified group of functions. User interaction with the system
is conducted through graphic user interface, therefore it has been decided to
place all elements of GUI into one module. This module is responsible for
processing user’s input and responding with an adequate output.

Next module stores business logic related functions. Overall logic manipu-
lations, that involves changes in graph logic structure or agents logic structure,
is placed into that module.

Since it is presumed that visual representation of agent object and graph
object could be potentially changed afterwards, all graphic objects will be
placed into separate module as well as animation controllers. That separation
allows alteration of objects visual forms without changing business logic or
GUI manipulations.

As far as statistical analysis is concerned, all functions that generate sta-
tistical data will be stored into separate module. This module will be coupled
with business logic module, getting data about agent movements and gener-
ating statistical data out of it.

Overall file input reading will be handled in separate module, so that
it is possible to modify the way data is being read without changing how
data is being processed afterwards. The next module will be managing video
and photo processing, in case it will be needed to update video codecs or

video/photo formatf2.4]

18

2.7. Component design

‘ MainController ‘

0.n
GraphController
1..n 1

‘ AgentController ‘ ‘ Graph ‘

‘ Agent ‘

Figure 2.5: Business logic module components

2.7 Component design

Component design defines module components, logical or functional binary
units that encapsulates behavior of a sowtware element.

2.7.1 Business logic module

Business logic module contains components, that represents logical abstract
entities [2.5] Agent entity embodies parameters and behavior of Agent, such as
identification, state, state change in timeline, starting location, target loca-
tion. Agent entity is linked to Plan entity, which describes separate steps in
timeline. Step entity has data about starting location, finishing location and
time duration of the step. Alongside Agent entity, there is a Graph entity,
which represents graph structure as well as incorporates vertex and edge en-
tities. Both Agent and Graph entities are managed by special components,
which are called AgentController and GraphController respectively. Graph-
Controller is linked to multiple AgentController components, since one Graph
structure could possibly have multiple Agents moving on a Graph. On top of
all that there is a MainController component that stores multiple GraphCon-
troller components. It is responsible for manipulating overall business logic
that is being executed within MAPF-R visualization tool.

2.7.2 GUI module

GUI module accumulates components, that controls defferent layouts of graphic
user interfaceg2.6l MainGUI is the main component, which is responsible for
main user activity, that involves uploading MAPF-R problem data, setting
up and controlling visualization process. Besides that MainGUI component is

19

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

MainGUl

DoubleStatisticsGUI
_ SingleStatisticsGUI

FileLoaderGul

ColorCh GUI P

Figure 2.6: GUI module components

responsible for activating other layouts, for instance, ColorChangerGUI com-
ponent, which is aimed for setting up color parameters. In order to upload
files LoadFileGUI component is being activated. LoadFileGUI component
provides with file dialog so user could upload MAPF problem solution data.
Aiming to visualize statistics data, it has been decided to design two separate
layouts. SingleStatisticsGUI allows user to monitor statistical data for one
single Agent, being speed change, location change, moving/waiting time ra-
tio, etc.. Meanwhile DoubleStatisticsGUI showcases statistical data between
two Agents, such as distance change, collision risk change, etc.. GroupStatis-
ticsGUI enables to monitor statistical data of chosen group of Agents.

2.7.3 Statistics module

Statistics module contains components, that generate statistical dataf2.7] Move-
mentAnalyzer component analyze agent changes in location during timeline
for each millisecond of movement duration for each Agent. That data is stored
in AgentMovement component, represented by array of SpaceTimeData en-
tities. SpaceTimeData keeps data on location and time moment of Agent.
After creating AgentMovement data set, MovementAnalyzer evaluates vari-
ous statistical data out of AgentMovement and store it into StatisticsData
component. Every type of statistical data is represented with its own compo-
nent. CollisionData component keeps data about collisions between Agents,
what time collision starts and what time collision ends between Agents. Colli-
sionRiskData component keeps collision risk rate for every Agent, Agent pair
for each millisecond of time duration, in the meantime DistanceData keeps dis-
tance data for every pair, pair for each millisecond of time duration. Agent-
TimeRatioData component indicates how much time Agent is in a certain
state comparing to total time for all Agents in this certain state. Shortest-
DistanceData contains data about Agents, which move non-effectively on the
graph. StatisticsData contains all those components and transport them into
Business logic module.

20

2.7. Component design

MovementAnalyzer
= ShortestDistanceData
‘ AgentMovement ‘ StatisticsData

‘ SpaceTimeData ‘ ‘ CollisionData ‘ ‘ DistanceData ‘
‘ CollisionRiskData ‘ ‘ AgentTimeRatioData ‘
Figure 2.7: Statistics module components

AnimationController ‘ ‘ AgentVisual ‘ ‘ Graphvisual

Figure 2.8: Visualization module components

DataRead DataSet
0..n

Figure 2.9: DAO module components

2.7.4 Visualization module component

Visual elements module contains component, that is responsible for an anima-
tion - AnimationController. It creates an animation by generating key frames
for visual objects. Afterwards key frames are added to timeline. Timeline is
controllable by GUI module components. In addition to that, visual elements
module contains components, that represents Agent visual form and graph
visual form - AgentVisual and GraphVisual respectively2.8] Both those com-
ponents are linked to Agent and Graph respectivly.

2.7.5 DAO module

DAO module contains components that are responsible for reading data and
transform it into format, that could be used in other moduled2.9] DataRead
component reads input files and add it to DataSet component. DataSet com-
ponent contains data that is needed to create business logic entities.

21

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

Kruhobots: 8
1: [r = ©8.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,

wf = 8.200]
2: [r = 0.100, lv = 1.000, la = -1.000, av = -1.0008, aa = -1.000,
wf = 9.200]
3: [r =0.100, lv = 1.000, la = -1.600, av = -1.000, aa = -1.000,
wf = 8.200]
4: [r = 0.100, lv = 1.000, la = -1.000, av = -1.0008, aa = -1.000,
wf = 9.200]
5: [r = 0.100, lv = 1.000, la = -1.000, av = -1.000, aa = -1.000,
wf = 8.200]
6: [r = 0.100, lv = 1.000, la = -1.000, av = -1.0008, aa = -1.000,
wf = 9.200]
7: [r = 0.100, lv = 1.000, la = -1.600, av = -1.000, aa = -1.000,
wf = 8.200]
8: [r = 0.100, lv = 1.000, la = -1.000, av = -1.0008, aa = -1.000,
wf = 9.200]
Goal
Assignments: 8
1->9
2->1
3-=2
4-=3
5->13
6->12
7->12
8->4

Figure 2.10: a.incorrect agents input example

2.8 Test design

2.8.1 Incorrect input

Incorrect input is designed to test if application is able to detect corrupt input
data and react to it appropriately. Since there are three types of input files
three respective types of test have been designed, which are incorrect input of
agents tests, incorrect graph input tests and incorrect input of agent plans.

2.8.1.1 Incorrect agents

Incorrect agents test simulates various errors in agent description data. First
type of error is wrong data format, for example, instead of numeric value
data is presented as a string value[2.10] Second type is different file structure
deviations: some obligatory parts are missing, there is no start or target des-
tinations; incorrect order of datg2.11} Third type is logical error, for instance
file header states a certain number of agents, however an actual number is less
or more than has been stated.

22

2.8. Test design

Kruhobots: 8
1: [r = 6.180, lv = 1.000, la = -1.8008, av = -1.808, aa = -1.800,

2: [r = 0.100, lv = 1.000, la = -1.800, av = -1.000, aa = -1.000,

3: [r = 8.1080, lv = 1.800, la = -1.6000, av = -1.8080, aa = -1.60080,
wf = 08.200]
4: [r = 8.1080, lv = 1.800, la = -1.000, av = -1.0080, aa = -1.000,
wf = 08.200]
5: [r = 6.180, lv = 1.000, la = -1.8008, av = -1.808, aa = -1.800,
wf = 8.200]
6: [r = 8.1080, lv = 1.800, la = -1.000, av = -1.0080, aa = -1.000,
wf = 08.200]
7: [r = 8.180, lv = 1.800, la = -1.000, av = -1.8080, aa = -1.6080,
wf = 08.200]
8: [r = 8.1080, lv = 1.000, la = -1.000, av = -1.0080, aa = -1.000,
wf = 08.200]
Assignments: 8
1-=7
2->1
3-29
4->4
5-25
6-212
7-26
8-23
Goal
Assignments: 8
1-29
2-21
3-22
4->3
5-213
6-212
7-212
8->4

Figure 2.11: b.incorrect agents input example

Locations: 16

0: 0.000, 0.000
1: 1.000, 0.000
2: 2.000, 0.000
3: 3.000, 0.000
4: 0.000, 1.000
5: 1.000, 1.000
6: 2.000, 1.000
7: 3.000, 1.000
g: 0.000, 2.000
9: 1.000, 2.000
10: 2.000, 2.000
11: 3.000, 2.000
12: 0.000, 3.000
13: 1.000, 3.000
14: 2.000, 3.000
15: 3.000, 3.000
Vertices: 16
Edges: 24

Figure 2.12: incorrect graph input example

2.8.1.2 Incorrect graph

Incorrect graph tests represents test cases when graph data are corrupted in
some way. Similar to incorrect agents input, errors could be divided into
three subcategories: wrong data format, structural corruptions and logical
errordZ2. 12

23

2. ANALYSIS AND DESIGN OF THE MAPF-R VISUALIZATION TOOL -
CONTINUOUSVIZ

2.8.1.3 Incorrect plans

Incorrect plans tests simulate wrong data format and logical error, when there
are more agents than plans. We assume, that every agent should be provided
with a plan.

2.8.2 Redundant solution

Redundancy in solution can be divided into two main categories- occurence
of collisions between agents and agent plan is ineffective.

2.8.2.1 Collision test

Collision test is designed to check if application is able to detect collision events
between agents. Plans input intentionally has collision situation implanted,
which should be detected by application.

2.8.2.2 Ineffective plans

Ineffective plan is a plan, which does not consist of the shortest paths possi-
ble(for example, result of BFS algorithm). Ineffective plans test is designed
to check if application is able to assess the shortest distance possible by cal-
culating path distance value(for example, using BFS algorithm).

24

CHAPTER 3

MAPF-R visualization tool -
ContinuousViz - developer
manual

In this chapter developer manual will be documented. More detailed docu-
mentation is presented on flash disk, attached to this thesis. It is intended to
be read alongside source code, which makes it more comprehensible.

3.1 Build

General requirements for the MAPF-R visualization tool ContinuousViz project
is JavaFX SDK at least version 11, therefore javafx-sdk-11.0.2 is included in
distribution package. However, it is still needed to have JDK(Java Develop-
ment Kit) installed. JavaFX 11 requires JDK 10, more recommended is JDK
11. JavaFX 11 builds on top of Java 11.

Additionaly FFmpeg library is needed for video capturing. FFmpeg is
a free and open-source command-line tool for transcoding multimedia files,
which has a set of shared audio and video libraries such as libavcodec, libav-
format, and libavutil. With FFmpeg, it is possible to convert between various
video and audio formats, set sample rates, and resize videos.

3.1.1 Linux

Usually, FFmpeg can be installed with the apt package manager. First update
packages list:

sudo apt update
Then proceed with installing FFmpeg with following command:

sudo apt install ffmpeg

25

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

To run jar file type in command line:

java —module—path javafx—-sdk—11.0.2/1ib/ —add—modules
javafx .base, javafx.controls, javafx.fxml, javafx.graphics,
javafx .media, javafx.swing,

javafx.swt, javafx.web

—jar MAPE-R. visualization.tool.jar

, where javafx.* are modules that are used in this project. This command
is written down in file run file, therefore, you could just simply execute this
file.

In case there is a freeze problem with GUI, type in command line:

java —Dprism.order=sw —Dprism.verbose=true —module—path
javafx—sdk —11.0.2/1ib/ —add—modules

javafx .base,javafx.controls ,javafx.fxml, javafx.graphics,
javafx .media, javafx .swing ,

javafx .swt,javafx .web

—jar MAPE-R. visualization.tool.jar

, where -Dprism.order=sw and -Dprism.verbose=true are commands, which
disable Hardware Graphics Acceleration(Prism) in JavaFX.

3.1.2 Windows

To install FFmpeg on Windows, open the FFmpeg download site (for example,
https:fimpeg.zeranoe.combuilds) and download build. On your PC, open
Advanced system settings and choose Environment Variables. Then choose
Path variable and click New, there you should entry the path to FFmpeg
library on your PC. At this point FFmpeg is activated in Command Promt.

To run jar file on PC, open a notepad.exe. Inside this file write down
command line:

java —module—path javafx—sdk—11.0.2/1ib/ —add—modules
javafx .base, javafx.controls, javafx.fxml, javafx.graphics,
javafx .media, javafx.swing,

javafx .swt, javafx.web

—jar MAPER. visualization.tool.jar

Afterwards save this file with extension .bat and copy it to the directory
with jar file. Double click it to run application.

3.2 Business logic

3.2.1 Agent

Agent class represents a single Agent object that is moving on the Graph.
Agent class has following parameters Integers agentID, which is unique Agent

26

3.2. Business logic

«MainController»
Package::Business

TreeMap<Integer, GraphController> graphControllers; o k"Agﬁ;‘b’.

TreeMap<String, Pair<integer, Integer» solutionKeys; ackage::Business

GraphcCentroller currentGraphCentroller; Integer agentiD:

Agentstate agentstate: String agentStringID;

DataSet dataSet: .

MainCentroller(); Integer movingTime:
Integer waitingTime;

. - : - . : ; . N Integer initializingTime;
void uploadSolution(String solutionKey, String agentFileString, String graphFileString, String planFileString); intoger oo
. . N Integer startPosition;

void addAgentsTOGraphController(String solutionKey, Graph graph, TreeMap<Integer, Agent> agentMap): Integer targetPosition;

void addGraphController(String solutionKey. Graph graph, TreeMap<integer, Agent> agentMap); Double radius;

Set<String> getKeys(); Plan plan:

GraphController getCurrentGraphController(): Agentstate agentstate;

Pair<integer, Integer> getPairiD(String solutionKey); TreeMap<integer, Integer>_ stateMap
Agent(Integer agentiD);

boolean setCumrentSelution(String solutionKey);
void setTimeCounter(Integer startTime, Integer finishTime, Integer statelndex)

Y

«GraphController»
Package::Business

Integer graphControllerID;

Graph graph: «AgentControllers

GraphVisual graphVisual; Package::Business
Integer agentControllerD;

TreeMap<Integer, AgentController> agentControllers:

AgentController currentAgentCentroller; TreeMap<Integer, Agent> agentMap;
TreeMap<String. AgentVisual= agentVisualMap:

AgentState agentState: P 9. A9 9 P

- - Integer totalMovingTime;

StatisticsData statisticsData; mteger mtalwmnggﬁme

GraphController(Integer graphControllerlD, Graph graph); Integer totallnitializingTime;
Integer totalArrivedTime;

void addAgentController(TreeMap<integer. Agent> agentMap); AgentController(integer agentControlleriD, TreeMap<Integer. Agent> agentMap):

void makeGraphvisual(); void makeAgentvisual():

void makeCurrentAgentControllerStatisticsDatal); void makeTotalTime();

void makeCurrentAgentControllerStateDatal(); ShortestDistanceData getShortestDistanceData(Graph graph);

Figure 3.1: Business logic module class diagram

identifier, startPosition, targetPosition - indexes of start location and target
location. Schedule of Agent movement is prescribed in Plan plan variable.

Integer values movingTime, waitingTime, initializingTime, arrivedTime
are displaying how much summarized time Agent spends in AgentState MOV-
ING, WAITING, INITIALIZING, ARRIVED.

Agent class has variable

TreeMap<Integer, Integer>stateMap where key is a time moment of
movement and a value is AgentState identification index, suggesting in
which state Agent is in at that particular moment of time

Public method setState(Double start Time, Double finishTime, Integer stateIn-
dex) puts values into stateMap for each millisecond between finishTime and
startTime. It also calls private method setTimeCounter(Integer startTime,
Integer finishTime, Integer stateIndex), that adds delta between finishTime
and startTime to corresponding variables: movingTime, waitingTime, ini-
tializingTime or arrivedTime.

27

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

3.2.2 AgentState

AgentState class is responsible for establishing a correlation between String
and Integer values of state. For instance, value 0 indicates that Agent is in
state Initializing, etc.

3.2.3 Plan

Plan class represents a schedule of Agent movements on a Graph. Plan class
has a private variable:

List<Step >stepList which stores Steps taken by Agent

Public method addStep(Timelnterval timelnterval, int from, int to) cre-
ate an instance of Step and add it to stepList. Public method getStepList()
returns stepList.

3.2.4 Step

Step class represents a structural unit of an Agent movements on a Graph.
Step class has following private variables:

Timelnterval timelnterval which is a time duration of Step
Integer from index of start Vertex that is involved in Step

Integer to index of finish Vertex that is involved in Step

3.2.5 Timelnterval

Timelnterval class represents delta between start time moment of movement
and finish time moment of movement. Timelnterval class has two private vari-
ables: Double startTime and Double finishTime. Public method getValue()
returns delta value between startTime and finishTime.

3.2.6 Vertex

Vertex class represents a vertex on a Graph. Vertex class has following param-
eters Integer vertexIndex(unique Vertex identifier), Double xCoordinate and
Double yCoordinate, that represents Vertex location on Cartesian coordinates
system.

3.2.7 Edge

Edge class represents an edge on the Graph. Edge class has two private
Integer variables fromIndex, tolndex, which are indexes of Vertices, connected
by Edge.

28

3.2. Business logic

3.2.8 Graph

Graph class represents a graph on which Agents are moving. Graph class has
two private variables:

List<Edge>edges which is the List of Edges

TreeMap<Integer, Vertex>verticesMap where a key is a Vertex index
and a value is a Vertex object with this index

Public method addEdge(int fromIndex, int tolndex) adds new instance
of Edge to edges. Public method addVertex(int index, double xCoordinate,
double yCoordinate) creates a new Vertex instance and add it to verticesMap,
where Vertex identifier is a key and Vertex is a value.

Public method getEdges() returns edges. Public method getVerticesMap()
returns verticesMap. Public method getVertices() creates and returns List
<Vertex>vertices. Method getVertices() is called when time complexity O(n)
is acceptable, method getVerticesMap() is called when time complexity O(log
n) is acceptable.

Public method equals(Graph anotherGraph) returns boolean value and
checks if two graph are identical, i.e. has same Vertex and Edge structure.

3.2.9 AgentController

AgentController class represents a group of Agents, that are corresponding to

a current solution. AgentController class main objectives are to store Agents,

to convey operations with Agents and to modificate parameters of Agents.
AgentController class has following private variables:

TreeMap <Integer, Agent >agentMap where a key is Agent identifica-
tion and value is Agent.

TreeMap<String, AgentVisual>agentVisualMap where key is Agent
identification as String value, and value of the map is AgentVisual.

Private method makeAgentVisual() iterates through agentMap, gener-
ates AgentVisual for each Agent and puts it into agentVisualMap. Pub-
lic method getAgentVisual(Integer agentID) returns AgentVisual that cor-
responds to Agent with given agentID.

Public method setAgentState(...) invokes public method Agent.setState(Double
start Time, Double finishTime, Integer stateIndex) for Agent that corresponds
to agentIndex. Public method getAgentState(Integer agentIndex, Integer
time) returns Integer AgentState index, which coresponds state of Agent with
agentIndex in time moment.

29

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

3.2.10 GraphController

GraphController class represents a structure of Graph and its group of Agents.
GraphController has private variables Graph graph and GraphVisual graphVi-
sual. Private method makeGraphVisual iterates through Edges and Vertices
of Graph and generates GraphVisual value.

GraphController class has private variable TreeMap <Integer, AgentCon-
troller >AgentContollers, that represents groups of Agents that correspond to
that solution. Private variable AgentController currentAgentController cor-
responds to current solution, that has been uploaded. Public method setCur-
rent AgentController(Integer agentControllerID) sets an AgentController that
has identifier agentControllerID as currentAgentController. Public method
addAgentController(TreeMap agentMap) creates a new instance of AgentCon-
troller with agentMap, sets it as a default currentAgentController and calls
private method makeCurrentAgentControllerStateDatal().

Private method makeCurrentAgentControllerStateData() iterates through
each Agent from currentAgentController. For each agent it gets Plan and iter-
ates through each Step of Plan and identifies AgentState for given Step. When
AgentState is identified method calls AgentController.set AgentState(...) method
to set AgentState. Public method getAgentState(...) returns AgentState in-
dex from currentAgentController.

Public method getGraphStatisticsData() returns StatisticsData object. get-
GraphStatisticsData() invokes private method makeCurrent AgentController-
StatisticsData(), which generates StatisticsData relevant for graph and cur-
rent AgentController.

3.2.11 MainController

MainController class controls operations with GraphControllers as well as
other business logic operations. It has following private variables: TreeMap
<Integer, GraphController>graphControllers, where key is GraphController
identifier and value is GraphController, GraphController currentGraphCon-
troller, that corresponds to current uploaded solution.

MainController class has private variable TreeMap <String, Pair <Inte-
ger, Integer>>solutionKeys, where key String is a unique identifier of up-
loaded solution and Pair <Integer, Integer>is a pair of GraphController and
AgentController identifiers.

Public method setCurrentSolution(...) gets pair of GraphController and
AgentContoller idenifiers - Pair <Integer, Integer>pairlD, using private method
getPairID(...). Afterwards, it sets currentGraphController, that has identifier
pairID.getKey(), and current AgentController, that has identifier pairID.getValue().
Public method getCurrentGraphController() returns currentGraphController,
which corresponds to current uploaded solution.

30

3.3. Statistics

«AgentMovementData» «CollisionRiskData»

Package::Statistics. Package::Statistics.
Integer agentindex; T P LT P . Double> collisionRiskDataMap
B CollisionRiskData();
List<SpaceTimeData> agentMovement;
TreeMap<Integer, VectorData> vectorDataMap; void addCollisi

Integer secondAgentindex.

private TreeMap<integer. Double> speedMovement; Double collisionRisk);
‘AgentMovementData(Integer agentindex);
Double iskCollisionD: fir Integer d dex)
void createAgentMovementData(Double x1, Double y1, Double x2, Double y2,
Double startTime, Double finishTime, i

boolean lastMovement);

«StatisticsData»

Coordinate getCurrentCoordinates(Coordinate start, Coordinate direction, Package: :Statistics
Double mainModule, Double currentModule): TreeMap<Integer, AgentMovementData> _agentMovementData;
TreeMap<Integer, DistanceData> distanceDataMap;
SpaceTimeData getSpaceTimeData(Integer time); Tr P . CollisionRiskDat: isionRiskDataMap:
< AgentTimeRatioData agentTimeRatioData;
Integer getAgentMovementTime(); CollisionData collisionData;
ShortestDistanceData shortestDistanceData;
StatisticsData();
void setAgentTimeRatioData(Agent ioData agent ioData);
«CollisionData» void Data(TreeMap<Integer, Data> agentMovementData);
Package::Statistics.
TreeMap<integer, Pair<integer, Integers collisionTimeMap: void setCollisionData(CollisionData collisionData);
List<Pair<Double, Double» collisionTimeList: : ’))
— void setDistanceDataMap(TreeMap<integer, DistanceData> distanceDataMap);
CollisionData();
i void setRiskDataMap(TreeMap<Integer, CollisionRiskData> riskDataMap);
void DistanceD: DistanceData shortestDistanceData):
Double getTir ificDistanceData(Integer time, Integer fi Integer
Double getTi ificCollisionRi time, Integer first Integer

«MovementAnalyzer»
b vz

TreeMap<Integer, AgentMovementData>_agentMovementMap;

TreeMap<Integer, Double> agentRadiusMap:
CollisionData collisionData;
StatisticsData statisticsData:

MovementAnalyzer();
void addAgentMovementData(integer agentindex,

Double x1, Double y1, Double x2, Double y2,

Double startTime, Double endTime, Double agentRadius, Boolean lastMovement);
void analyzeMovement():
boolean checkCollision(Coordinate firstLocation, Coordinate secondLocation, Double firstRadius, Double secondRadius);
Double getDistance(Coordinate firstLocation, Coordinate secondLocation, Double firstRadius, Double secondRadius):
Double getRiskCollision(Double distance):

StatisticsData getstatisticsData();

Figure 3.2: Statistics module class diagram

MainController class has private variable DataSet dataSet, that contains
data from input files. Public method uploadSolution(...) calls public method
DataSet.makeDataSet(...) to read relevant data from given files. Finally, it
invokes private method addGraphController(...).

Private method addGraphController(...) creates a new instance of Graph-
Controller and AgentController. New instance of GraphController is added to
graphControllers. Additionaly, solutionKey and graphController, agentCon-
toller identifiers are added to solutionKeys.

3.3 Statistics

3.3.1 SpaceTimeData

SpaceTimeData class keeps data about Agent position in time and space. It
has private variable Coordinate space, that contains Agent coordinates, and
private variable Double time.

31

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

3.3.2 Coordinate, VectorData

Coordinate class represents coordinate value within cartesian coordinate sys-
tem. It has two private variables: Double xCoordinate, Double yCoordinate.

VectorData class keeps data of movement vector. It has three private
variables Coordinate vectorStart, vector starting point, vectorFinish, vector
finishing point, and vectorDirection, which is coordinates representation of
vector direction.

3.3.3 AgentMovement

AgentMovementData class has private variable:

List <SpaceTimeData>agentMovement which stores data for an Agent
about its movement for each millisecond of movement duration

Public metod createAgentMovementData(...) generates movement data
for an Agent. It creates an instance of VectorData class using coordinates
x1, y1, x2, y2. Based on vector lenght and duration of movement, which is
delta between finishTime and startTime, it evaluates Agent speed. Then it
iterates through each millisecond of movement duration and defines length,
that Agent has accomplished by this particular moment. Using this length
value, method defines current coordinates of Agent. Based on that data a new
instance of SpaceTimeData is created and added to AgentMovement.

3.3.4 DistanceData

DistanceData class keeps data about distance between all possible pair com-
binations of Agents. It has private variable:

TreeMap<Integer, TreeMap<Integer, Double>>distanceDataMap
where key is an index of Agent, and value is a map with the key index
of a second Agent and with a value of a distance between them

3.3.5 CollisionData

CollisionData class keeps data about collision events that happened between
Agents. It has private varibles:

List <Pair<Double, Double>>collisionTimeList stores data about start-
ing time moment and ending time moment of the collision event

TreeMap <Integer, Pair<Integer, Integer>>collisionMap stores data
about the collision event. A Key is an index of Pair<Double, Double>in
collisionTimeList, value is a pair of Agents, that are involved in the col-
lision event

32

3.3. Statistics

3.3.6 CollisionRiskData

CollisionRiskData class keeps data about risk rate of potential collision be-
tween all possible pair combinations of Agents. It has private variable:

TreeMap<Integer, TreeMap<Integer, Double>>collisionRiskDataMap
where key is an identification of Agent and value is a map, with a key
index of another Agent and with a value of a collision risk rate

3.3.7 AgentTimeRatio

AgentTimeRatio class keeps data about how much time Agent spends in par-
ticular AgentState. It has private variables:

Integer movingTime time spent in the state Moving (moving between ver-
tices)

Integer waitingTime time spent in the state Waiting (waiting on a vertex)

Integer initializingTime time spent in the state Initializing (standing on
the start vertex, movement has not been started yet)

Integer arrivedTime time spent in the state Arrived (standing on the tar-
get vertex, movement has been finished already)

3.3.8 AgentTimeRatioData

AgentTimeRatioData class keeps AgentTimeRatio objects for each Agent in
the private variable:

TreeMap<Integer, AgentTimeRatio>agentTimeRatioTreeMap where
key is an identification of Agent and value is an instance of AgentTimeR-
atio class

3.3.9 ShortestDistanceData

ShortestDistanceData class keeps data about Agents, which has non-optimal
path distances. It has method getBFSDistance(...) that calculates shortest
distances between all possible pairs of vertices on the graph using BFS al-
gorithm. In addition, it has method getActualDistance(...), that calculates
actual distance that Agent traverses from a start position to its target posi-
tion. Method runDistanceTest() invokes compares the shortest distance with
an actual distance, in case those distances are not equal the actual distance
is not optimal. ShortestDistanceData keeps data in private variable:

List<Integer >notShortestDistanceList which is a list of Agent indexes
that have non-optimal distance values.

33

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

3.3.10 StatisticsData

StatisticsData class transports instances of AgentTimeRatioData, Distance-
Data, CollisionData, CollisionRiskData and ShortestDistanceData from statis-
tics module to business logic module.

3.3.11 MovementAnalyzer

AgentAnalyzer class has following private variables:

TreeMap <Integer, AgentMovementData>agentMovementMap key
is Agent index and value is an instance of AgentMovementData

TreeMap <Integer, Double>agentRadiusMap keeps data about Agent
radius, this data is used in order to assess distance between Agents

CollisionData collisionData stores all data concerning collisions between
Agents. Private method getRiskCollision(Double distance) returns Dou-
ble value, which is a rate of collision risk between two Agents

StatisticsData statisticsData stores all statitical data generated in method
analyzeMovement()

Private method analyzeMovement() convey analysis of Agents movement.
In order to store all generated data following variables are implemented:

TreeMap <Integer, DistanceData>distanceDataMap stores all distance
related data for each millisecond of movement duration. Key is millisec-
ond index, value is an instance of DistanceData

TreeMap <Integer, CollisionRiskData>collisionRiskDataMap stores
all collision risk related data for each millisecond of movement. Key is
millisecond index, value is an instance of CollisionRiskData

Side-note: Milliseconds are converted into Integer variables in order to
avoid precision-based errors assosiated with Double values.

In order to generate combination type ’all Agents with all Agents’ method
implicates Agent itaration inside Agent iteration. With given pair of Agents
method iterates through each millisecond of the movement. For each millisec-
ond method evaluates current distance in Agents pair - Double currentDis-
tance, current rate of collision risk in Agents pair - Double currentRiskColli-
sion. Using currentDistance value a new instance of DistanceData is created
and added to distanceDataMap. Using currentRiskCollision value a new in-
stance of CollisionRiskData is created and added to collisionRiskData.

Inside milliseconds iteration private method checkCollision() is called to
verify if collision event has happened. If it has, boolean variable collisionAc-
tive is set to be true, current millisecond is written into Double startTime.

34

3.4. Visualization

«AgentVisual»
Package::Visualization «ColorSetter»
Circle agentCircle; Package::Visualization
AgentVisual(Integer ID, Double radius): Color vertexColor;
Color movingAgentColor;
Circle getAgentCircle(); Color waitingAgentColer:
Color initializedAagentColer:

Color arrivedAgentColor:
Color markedAgentColor:

ColorSetter();

Color getvertexColor();
Color getMovingAgentColor();
Color getwaitingAgentColor();

«Graphvisual»

i iz ati Color getinitializedAgentColor();

- - Pacl.:age Visualization Color getAmrivedAgentColor();
ListeLine> edgelines; Color getMarkedAgentColor();
List<Circle> vertexCircles;
boolean isVisible; void setVertexColor(Color vertexColor);
GraphVisual(); void setMovingAgentColor(Coler movingAgentColor);
void addLine(Vertex fromVertex, Vertex toVertex): void setWaitingAgentColor(Color waitingAgentColor);
void addCircle(Vertex vertex); void setinitializedAgentColor(Color initializedAgentColor);
void changeVisibility () void setArrivedAgentColor{Color arrivedAgentColor);

void setMarkedAgentColor(Color markedAgentColor);

Figure 3.3: a. Visualization module class diagram

When method checkCollision() returns false value and collisionActive is true,
it means that collision event has finished. Value collisionActive is set to be
false, current millisecond is written into Double finishTime. Values startTime
and finishTime are added to collisionTimeList as Pair of Doubles. After that,
new entry is added to collisionMap.

When all milliseconds are iterated for all possible pair combinations of
Agents, collisionTimeList and collisionMap are added to collisionData. Fi-
nally, collisionData, agentMovementMap, distanceDataMap, collisionRiskDataMap
are added to statisticsData.

3.4 Visualization

3.4.1 AgentVisual

In this implementation of MAPF-R visualization tool, it is considered that
Agent has a shape of a circle, therefore AgentVisual class has visual ob-
ject Circle agentCircle, that represents Agent in visualization. In construc-
tor method AgentVisual() Agent identifier is set to Circle object - agent-
Circle.setId(ID.toString()), which allows to get right Circle object for Agent.
Such parameters as radius and visibility are also set in costructor method
AgentVisual().

3.4.2 GraphVisual

GraphVisual class contains List of Lines and List of Circles, that represents
Edges and Vertices in visualization. Line is created in public method ad-
dLine(Vertex fromVertex, Vertex toVertex), where Vertices fromVertex and
toVertex define coordinates of Line points. Circle, that represents Vertex, is
created in method addCircle(Vertex vertex), where vertex defines coordinates

35

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

of Circle center point. Public method changeVisibility() iterates through all
Lines and Circle and switch their visibility status.

3.4.3 ColorSetter

CollorSetter class transports color values stored in Colors variables: movin-
gAgentColor, waitingAgentColor, initializedAgentColor, arrivedAgentColor,
marked AgentColor, vertexColor.

3.4.4 AnimationController

AnimationController class is responsible for animating visualized solution.
It has Timeline variable - timeline. Timeline is defined by one or more
KeyFrames object, which are being sequentially processed in time. Public
method initializeTimeline(GraphController graphController, AgentController
currentAgents) calls internal private method getKeyFrames(GraphController
graphController, AgentController currentAgents), that iterates through Agents
getting for each Agent its plan of movement and visual representation and
send them to internal private method moveTimeline(Circle agentCircle, Plan
plan, TreeMap <Integer, Vertex>verticesMap). In moveTimeline() method
KeyFrames for Circle agentCircle according to Plan plan are being generated.

Public method playAnimation() plays animation at a current time po-
sition. Public method playAnimationFrom(Number timePosition) plays an-
imation from timePosition value. Public method pauseAnimation() pauses
animation, meanwhile public method stopAnimation() stops it and resets an-
imation speed back to normal in case it has been changed. Public methods
speedUpAnimation(), slowDownAnimation() alter animation speed. Public
methods forwardDirectionAnimation(), backwardDirectionAnimation() alter
direction of movement - forwards or backwards respectively.

3.5 GUI

StartGUI class extends Application class, which starts overall application
by invoking start() method. In this method stage for Main.fxml is created.
Main.fxml is controlled by MainGUI class, inside which majority of graphic
user interface is managed. MainGUI class has singleton MainController vari-
able - mainController, that controlls all business processes. GUI accepts user
signals and addresses them to mainController. GUI functionality can be di-
vided into several subsections:

3.5.1 Uploading solution

GUI nodes that are responsible for uploading solution are button setSolution-
Button and TreeView solutionTree, where all uploaded solutions are displayed.

36

3.5. GUI

«AnimationController»
Package::Visualization
MainGUI mainGUI;
Timeline timeline;
AnimationController(MainGUI mainGUI);
void initializeTimeline(GraphController graphController, AgentController currentAgents);
void moveTimeline(Circle agentCircle, Plan plan, TreeMap<Integer, Vertex> verticesMap);
void getkeyFrames(GraphController graphController, AgentController currentAgents);
void timerKeyFrames(Duration duration, Label timerLabel);
void labelTimeline(Label agentLabel, Duration duration, double xCoordinate, double yCoordinate);
Animation.Status getAnimationStatus();
void playAnimationFrom(Number timePosition);
void playAnimation();
void pauseAnimation();
void stopAnimation();
void speedUpAnimation();
void slowDownAnimation();
void forwardDirectionAnimation();
void backwardDirectionAnimation():
Double getTimelineDurationMilliseconds():
Double getCurrentTimeMilliseconds():

Figure 3.4: b. Visualization module class diagram

By clicking setSolutionButton class MainGUI method setFileLoader() is
called, which activates LoadFile.fxml, controlled by LoadFileGUI class. In
LoadFileGUI class there are three FileChooser variables: agentFileChooser,
graphFileChooser, planFileChooser. Those variables are respobsible for file di-
alogue for each respective type of file. In file dialogue user inputs paths to files,
which are written down into string variables agentFileString, graphFileString,
planFileString. In addition to that user inputs solution name, that is stored
into string variable SolutionKey, which serves as a solution unique identifier.
Those string variables are parameters for method setSolution() in MainGUI
class, that uploads solution. Meanwhile solutionTree node is updated by call-
ing method setSolutionList() in MainGUI class, which adds newly uploaded
solution to TreeView.

3.5.2 Starting and controlling solution visualization

StartVisualizationButton node is responsible for starting solution visualiza-
tion. It invokes method startVisualization() in MainGUI class, which gets
unique identifier - solutionKey from chosen solution in TreeView node. In
startVisualization() private method uploadChosenSolution() is called, which
asks mainController to set solution that has unique identifier - solutionKey.
After solution has been set, inside startVisualization() method private
method visualizeSolution() is called, which gets visual elements of agents(circle
for example) and graph(lines and circles) from mainController and puts it on
mainVisualPane node. Additionally, in startVisualization() method a new

37

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

instance of AnimationController class, that is responsible for animating visual
elements, is created.

In startVisualization() private method startStatistics() is invoked in order
to set up and update visual representation of statistical data.

Finally, in startVisualization() method private method initializeConotrols()
method is called, that prescribes actions to nodes playButton, stopButton,
forwardButton, backwardButton, slowDownButton, speedUpButton, it also
initializes Slider nodes - timelineSlider and rotationSlider.

3.5.3 Setting up color palettes interface

Node changeColorButton call setColorChanger() method in MainGUI class,
that activates layout ColorChanger.fxml, that is controlled by ColorChanger-
GUI class. ColorChangerGUI has several ColorPicker variables: vertexColor,
arrived AgentColor, initializedAgentColor, waitingAgentColor, movingAgent-
Color, markedAgentColor. After values of ColorPicker variables have been
set, they are set in ColorSetter class.

3.5.4 Setting up statistics interfaces

Node singleAgentStatisticsButton calls setSingleAgentStatistics() method in
MainGUI class, that activates layout SingleAgentStatistics.fxml, controlled
by SingleAgentStatisticsGUI class. In method setSingleAgentStatistics() pub-
lic method SingleAgentStatisticsGUIsetStatisticsData() is called - it sets up
StatisticsData variable - statisticsData, which is get from mainController
varibale in MainGUI.

Node doubleAgentStatisticsButton calls setDoubleAgentStatisitcs() method
in MainGUI class, that activates layout DoubleAgentStatistics.fxml, controlled
by DoubleAgentStatisticsGUI class. In method setDoubleAgentStatistics()
public method DoubleAgentStatisticsGULsetStatisticsData() is called - it sets
up StatisticsData variable - statisticsData, which is get from mainController
varibale in MainGUI.

Method startStatistics() is called inside startVisualization() method. In-
side this method ScheduledExecutorService is set. SceduledExecutorService
extends ScheduledService, that is able to schedule commands to run after a
given delay, i.e. execute periodically. In startStatistics() method scheduled
service updates visual representation of statistical data every second of anima-
tion. Depends on what layout is activated, service sends current time of anima-
tion by calling public method SingleAgentStatisticsGUILupdateCurrentTime(Integer
time) or DoubleAgentStatisticsGULupdateCurrent Time(Integer time). Vari-
able time is a key, with which statistical data is get from statisticsData vari-
able and visualized on layouts.

38

3.6. DAO

«mainGUI»
Package::GUI

MainController
Set<integer>

List<String>
List<String>

boolean

string

ColorSetter

Boolean

mainController;
unmarkedCircles;

notVisibleCircles;
notVisibleLabels;

agentvisible;

currentsolutionKey;

TreeMap<String, Label> agentLabels:
TreeMap<string, Label> graphLabels;

colorSetter;

visualizationStarted;

AnimationController animationController;

«LoadFileGUI»
Package::GUI

MainGUI mainGUI;
FileChooser agentFileChooser:
FileChooser graphFileChooser;

FileChooser planFileChooser;

[void makeDatasSet(String solutionKey):

void setAgentFileChooser(ActionEvent event);
void setGraphFileChooser(ActionEvent event);

void setPlanFileChooser(ActionEvent event);

void setLoadFileSubmit(ActionEvent event):

Set<String> agentKeys:

«SolutionParametersGUI »
gingEAgemstati?tic.scu|‘Ier\gIsfxgemstatisgic.ssul;" Package::GUI
roupa isticsoul or ptisticsGL ‘AgentController agentController;

o
boolean isSingleStatisticsSet; void i (String i Integer vert:
boolean isDoublestatisticsSet; Integer edgeAmount, Double graphDensity,
boolean i isticsSet: AgentController agentController);
void isuali i isual graphvisual, AgentController c):
:g:g isual ooy : void p i i Integer vertexAmount,
9 gentsli Integer edgeAmount, Double graphDensity);
void startvisualization();
void visualizationFinished(); id .
boolean loadChosenSolution(string solutionkey): void setAgentParametersTree();
void startStatistics();
void setsingleAgentStatistics();
void setDoubleAgentStatistics();

setGroupAgentstatistics();

Set<integer> getGroupAgents(); «singleAgentstatisticsGUl»
Package: :GUI

void setsolutionParameters();
void setMainVisualPane():

MainGUI mainGUI;

statisticsData statisticsData;
| X¥Chart Series<Number, Number> i
XYChart.Seri ing, Number> agent foSeri
XYChart.Series<String, Number> totalTimeRatioSeries;

«DoubleAgentStatisticsGUI» boolean agentspeedChartMode;

] ___ Package:GUI boolean agentLocationChartMode:
MainGUI mainGU: void setAgentspeedChartModel);
TreeMap<Integer, List<Integer» collisionMap; void setAgentLacationChartMode();
TreeMap<String, Pair<Integer,integer» selectedAgentsMap; void setNotOnlineAgentchart()
StatisticsData statisticsData; void sethgentChart(:
CollisionData collisionData; void setstatisticsData(MainGUI mainGUI, StatisticsData statisticsData);
pootean distancechartiode: void updateChart(integer xValue, Double yvalue):
boolean riskCollisionChartMode; void updateChart(Double xValue, Double yvalue);
boolean Chartisset: void updateCurrentTime(Integer time);
boolean firstAgentisset;
boolean secondAgentisSet;
Integer firstAgentiD;
Integer secondAgentID;
AreaChart getAgentChart();

Figure 3.5: GUI module class diagram

3.5.5 Converting visualization into photo/video format

Private method takeSnapshot() invokes an instance of PhotoOuputController
class, that creates a photo image. Mathod takeSnapshot() sends mainVisualPane
node, which contains graph and agents visualization, as an argument of Pho-
toOutputController.takeSnapshot (String snapName, Node node) method. In
case SingleAgentStatistics.fxml layout or DoubleAgentStatistics.fxml layout
are activated, method sends those nodes as an arguments as well.

Private method takeVideo() invokes an instance of VideoOutputController
class, which starts video capturing process. If video capturing process has
already been activated, method stops video capture process.

39

3. MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - DEVELOPER
MANUAL

«DataReader
Package::DAQ

DataReader();
Graph readGraph(string path):
TreeMap<Integer, Agent> readAgents(String path);

TreeMap<integer, Plan> readPlan(String path);

A

«DataSet»
Package::DAO

Graph graph:
TreeMap<Integer, Agent> agentMap;
TreeMap<Integer, Plan> planMap:
Dataset();

boolean makeDataSet(String agentFile, String graphFile, string planFile);

Graph getGraph():

TreeMap<Integer, Agent> getAgentMap();

Figure 3.6: DAO module class diagram

3.6 DAO

3.6.1 DataReader

DataReader class reads data from input files. It has following public methods:
Graph readGraph(String path) reads file, that describes graph structure

TreeMap<Integer, Agent>readAgents(String path) reads file, that de-
scribes Agent parameters

TreeMap <Integer, Plan>readPlan(String path) reads file, that describes
Agent movement plan

3.6.2 DataSet

DataSet class transports data from input files in DAO module to business
logic module. Public method makeDataSet(String agentFile, String graphFile,
String planFile) invokes an instance of DataReader dataReader, that reads
files. Public method getGraph returns a current instance of Graph, which has
been read from file. Public method getAgentMap returns TreeMap<Integer,
Agent>agentMap, that contains Agents read from file.

3.7 PhotoVideoOutput

3.7.1 PhotoOutputController

PhotoOutputController class has public method takeSnapshot(String snap-
Name, Node node), where Node node is a photographed element. Method
implements imageio javafx library to write down image file.

40

3.8. Test results

3.7.2 VideoOutputController

VideoOutputController class has two public methods: startVideoCapture()
and stopVideoCapture(). Video capturing process uses FFMpeg library to
capture screen and transform it into video file. VideoOutputController has a
private variable Process videoCaptureProcess. Process is triggered by script
command

ffmpeg -f xllgrab -s 1365%767 -i :0.0 out.mkv

This command starts screen capture and writes it down into video file
out.mkv. All GUI interactions take place in ApplicationThread, which is
main thread of javafx application. In order to lessen a degree of interference,
overall video capture process takes place in the background Thread videoCap-
tureThread. Public method stopVideoCapture() kills video capturing process
and stops thread.

3.8 Test results

Application has been tested to its assigned tests.

3.8.1 Incorrect input

Application does not upload solution from corrupted input data files. In case
of incorrect input, application signals User, that data are corrupted.

3.8.2 Redundant input

Application is capable of detecting redundancy in MAPF-R problem solution.
It detects collisions between agents. In addition, it calculates path distances
and detects if Agent path is not optimal.

41

CHAPTER 4

The MAPF-R visualization tool
- ContinuousViz - user manual

In this chapter ContinuousViz user manual will be presented. Its purposes are
to explain how to use MAPF-R visualization tool as well as to demonstrate
its functionality features.
4.1 Main toolbar overview
Main toolbar inscludes such interface elements as:

e the main menu panel

e the uploaded solutions list

e the visualization screen

e the vizualization control panel

4.1.1 File

In File menu user could:
e upload new solution
e start visualization process
e check solution parameters

e clear the visualization screen

43

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

_ View ¥ | PhotoVideoOutput « Help

slow down <<< stop play P speed up

Figure 4.1: Main toolbar

File v | View ~ | PhotoVideoOutput ~ Help

load file %

load graph
load plans

Input name

SUBMIT

slow down <<< stop play p speed up

Figure 4.2: Upload new solution dialogue

4.1.1.1 New solution

New solution button opens window for setting up input files. There are three

types of files that has to be uploaded 1.2]

Load agents button opens file dialogue to set up file with agents pa-
rameters. Load graph button opens file dialogue to set up file with graph
parameters. Load plans button opens file dialogue to set up file with agents
plans. In text field user should input solution name. SUBMIT button initiates
uploading data from files and creating new solution. This new solution then

appears in the uploaded solutions list(left side of main window).

44

4.1. Main toolbar overview

_ View ¥ | PhotoVideoOutput « Help

solutionl

solution2

slow down <<< stop play E+ speed up

0 50 100 150 180

Figure 4.3: Visualized solution

4.1.1.2 Start visualization

In order to visualize solution on the screen user should choose one in the
uploaded solutions list, then click on button Start visualization, which
launches visualization 4.3l

4.1.1.3 Solution parameters

Solution parameters button opens an information window, with such solu-
tion parameters as an amount of vertices, an amount of edges, a list of agents,
etc. In order to open agent parameters(agent identification, start location,
target location, etc) user should choose an agent from the list and then
double-click it, as a result the agent’s parameters will be shown in the right
section of the window.

4.1.1.4 Clear visualization

Clear visualization button removes a visualized solution from the screen.

4.1.2 The visualization screen

Graph and agent objects are displayed on the visualization screen.

4.1.2.1 Zooming

In order to zoom in or zoom out user should put a cursor on the graph and
scroll in or scroll out respectively.Zooming in and zooming out is activated by
touchpad.

45

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

= solution parameters X
e =

- Name: solution2 1
J— 5

vertex amount: 10 3

solutionl
solution2
edge amount: 10

graph density: 0.1111111

agent amount: 3

slow down speed up

0 50 100 150 180

Figure 4.4: Solution parameters

solution parameters

File -
~ Name: solution2 agent start position vertex: 4
solutionl R —
solutionz agent target position vertex: 9
vertex amount: 10 3
agent radius: 0.3535533905933
edge amount: 10
agent moving time: 6828 ms
graph density: 0.11111111]
agent waiting time: 0 ms
agent amount: 3
agent initializing time: 0 ms
agent arrived time: 5829 ms
B >
slow down speed up
0 < N 126
o
0 50 100 150 180

Figure 4.5: Agent parameters

4.1.2.2 Marking agents

In order to mark an agent, user should click on it. In order to unmark it user
should click on it again. By default marked agent color is not set up, so user
should set it up manually in Color settings.

4.1.3 View

In the view menu user could:
e open the single agent statistics window

e open the double agent statistics window

46

4.1. Main toolbar overview

File > | View ~ | PhotoVideoOutput « Help
solutionl

solution2

MOVING AGENT WAITING AGENT INITIALIZED AGENT ARRIVED AGENT VERTEX MARKED AGENT
White v White + | | wWhite + | white v | white + | White v
SUBMIT COLOR
slow down <<< stop play pRu speed up

Figure 4.6: Solution color change

e open the color settings window

e manipulate visibility settings

4.1.3.1 Single agent statistics

Single agent statistics button opens window with single agent statistics
interface.

4.1.3.2 Double agent statistics

Double agent statistics button opens window with double agent statistics
interface.

4.1.3.3 Change color

Change color button opens a window with color settings interface. The win-
dow has several color palettes: moving agent, waiting agent, initialized agent,
arrived agent, marked agent, vertex. First yser has to define all this color
palletes. Afterwards SUBMIT COLOR button applies color settings.

4.1.3.4 Graph visible

Graph visible button changes graph visibility settings. If the graph is visible,
it will be invisible, otherwise it returns to its initial visible state.??

4.1.3.5 Agent visible

Agent visible button changes visibility of agents. It makes not marked

agents invisible and it leaves marked agents visible on the screen. To re-

47

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

File - PhotoVideoOutput Help

solutionl

solution2

slow down <<< stop play > speed up

0 50 100 150 180

Figure 4.7: Graph is not visible

File * | View ¥ | PhotoVideoOutput « Help 0.0 ms

solutionl

solution2

slow down <<< stop play =5 speed up

0 50 100 150 180

Figure 4.8: Marked agents

turn all agents back to its visibility, user should click Agent visible button

again [LYLY)

4.1.4 PhotoVideoOutput

PhotoVideoOutput menu button contains buttons that are responsible for
multimedia output.

4.1.4.1 Take snapshot

Take snapshot button creates photos of visualization screen and of single/-
double statistics screen, if they are opened at the moment.

48

4.1. Main toolbar overview

File ~ | View = | PhotoVideoOutput ~ Help 0.0 ms

solutionl

solution2

slow down <<< stop play . speed up

0 50 100 150 180

Figure 4.9: Marked agents are visible, not marked agent is invisible

4.1.4.2 Start video/Stop video

In order to begin video capture user should activate Start video button.
Video captures everything that happens on the screen. Stop video stops
video capture.

4.1.4.3 VideoSettings

In order to set resolution of video recording user should activate Video settings
button. Then input height and width parameters of video recording. Pay at-
tention, that you should input value, which is one point lesser than monitor
parameter. For instance, if your monitor resolution is 1366*768, you should
input width:1365, height:767 [4.10]

4.1.5 Help

Help button opens the user manual.

4.1.6 The visualization control panel

The visualization control panel is an interface that manipulates the visual-
ization process. play button starts an animation, pause button pauses the
animation, stop button stops the animation. When the animation is being
played, timer appears on top of the screen and starts running. >>> and <<<
buttons change direction of the animation, forwards and backwards respec-
tively. To adjust speed user could use speed up or slow down buttons.
Among the visualization controllers there are two sliders. The top slider
controls a timeline position. By using the timeline slider user could

49

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

File - | view ~ | PhotoVideoOut... ~ Help show agent labels || show graph labels

video settings (~]

Video screen capture settings

Screen width 1365

Screen height 767|

SET SETTINGS

slow down <<=< stop play == speed up

Figure 4.10: Set width and height

adjust time of the animation. The down slider controls a rotation state. User
could use the rotation slider to adjust an angle of the visualization screen.

4.2 The single agent statistics window overview

The single agent statistics window showcases statistical data, that are related
to the one single agent [I.11] First user should input an agent index, statistical
data will be shown specifically for the agent with inserted index.

The time ratio chart displays data, that are linked to the agent states:
MOVING, WAITING, INTTALIZING, ARRIVED.

Time ratio mode menu button has two options, total time ratio and
agent time ratio. total time ratio activates the bar chart with the total
time ratio data. agent time ratio activates the bar chart with the time ratio
data, that are relevant for the chosen agent. It is possible to display the total
time ratio and the single agent time ratio at the same time, which is useful
for a comparison analysis[4.12]

Data mode menu button has two options: Speed mode and Location mode.
Speed mode is a function that displays agent speed value at the current time
of movement. Speed mode is a function that displays agent location value at
the current time of movement.

Chart mode menu button sets up how data is going to be displayed.
Real-time mode starts displaying as animation starts playing. Data updates
every second, therefore it is recommended to slow down animation speed4.13]
Not real time mode displays data independently on animation playing. To
set frequency rate in the precision text field user should insert the period
of milliseconds. The minimum value is 60, since the animation is displayed

20

4.2. The single agent statistics window overview

single agent statistics data view

Agent -> _ Time ratio mode ~ | Data mode v | Chart mode ~ | precision ->

Figure 4.11: The single agent statistics window

single agent statistics data view

hgent -= 2 Data mode ~ | Chart mode ¥ | precision ->

me ratio mode 7

20,000
17,500
15,000
12,500
10,000

7,500

5,000

2,500

0.00
MOVING WAITING INITIALIZING ARRIVED

(1} time

Figure 4.12: Ratio Chart example

51

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

single agent statistics data view >

Agent -> 2 Time ratio mode ~ | Data mode * | Chart mode > | precision ->
11
1.0 9
20,000 |
09 1|
17,500 |
08 |
15,000 0.7 |
|
12,500 06 |“
\
05 |
10,000 |
04 \
|
7,500 |
03 {
5,000 0.2 \
01 |
2,500 |
0.0 A . :
0 0 1,000 2,000 3000 4000 5000 6000 7,000 £,000 9,000 10,000 11,000 12,000 13,000
MOVING WAITING INITIALIZING ARRIVED time

Figure 4.13: Single agent real-time chart mode

single agent statistics data view

gent -> 2 Time ratio mode ~ | Data mode ~ | Chart mode ¥ | precision -> 100

11
10 -

20,000
09

17,500
08

15,000 07

12,500 06 ‘
0s

10,000
04 ‘

7,500
03

5,000 0.2 ‘
01

2,500

0 0 1000 2000 3000 4000 5000 6000 7,000 8,000 9,000 10,000 11,000 12,000 13,000
MOVING WAITING INITIALIZING ARRIVED time

Figure 4.14: Single agent not real-time chart mode

in Java FX standard 60 fps, the maximum value is the total duration of the
animation .14

4.3 The double agent statistics window overview

The double agent statistics window showcases statistical comparison data be-
tween two agents. User should insert two indexes, each one corresponds to its

relative agent

92

4.4. The group agent statistics window overview

double agent statistics data view (>0

Chart mode ~ | Data mode ~ First agent -> Second agent -> Set precision ->

60
50
40
30
20
10

0

Collision list Set collision event

Figure 4.15: The double agent statistics window

Chart mode button menu button sets up how data is going to be displayed.
It has the same options as Chart mode button in the single agent statistics
interface A TGAIT

Data mode menu button has two options. Distance mode is a function
that displays the distance between two agents at the current time of movement.
Collision risk mode is a function that displays the rate of collision risk
between two agents at the current time of movement.

Collisions are displayed in Collision list. In this list agents involved
in collision event are presented as well as time of collision event. User should
click on the collision event list item and click button Set collision event.
Afterwards on the visualization screen there are only selected agents left. To
make all agents visible again, user should click agents visible button.

4.4 The group agent statistics window overview

The group agent statistics window showcases statistical comparison data be-
tween a group of agents. User should insert mark agents on the main window,
then by clicking set group agents button the group is set - agent indexes
appear in the list[4.19]

Similar to previous statistics windows Data mode menu button has two op-
tions: Distance mode and Collision risk mode. Distance mode displays
average distance value within the group of agents, meanwhile Collision risk mode
displays average risk collision between agents in the group. [4.1§]

93

4. THE MAPF-R VISUALIZATION TOOL - CONTINUOUSVIZ - USER
MANUAL

double agent statistics data view

Chart mode Data mode w | Firstagent-> | 1 Second agent -> | 3 Set precision -> Set collision event

distance

€12

L9g
SZ0T
PLTT
9LZT
Tl
6IST
0891
08L1
6Z6T
0zoz
8L1z
1ezz
1Zve
6ISZ
Loz
08LZ
9262
LZ0E
ELTE
18ZE
SZvE
PESE
8r9%
9LLE
SZ6E
£€0Y
LTy
LLZy
9zvy
ZESY
SLOY

O distance

¥ Collision list
agents 2 <-> 8 time: start 1.8 finish 2.201
agents 6 <-> 7 time: start 3.801 finish 5.0

Figure 4.16: Double agent real-time chart mode

double agent statistics data view

Chart mode ~ | Data mode w | First agent-> 1 Second agent -> | 3 Set precision -> 100 Set collision event

distance

00z
oog
oot
005
009
0oL
oog
006

000T
00TT
00z1
00£T
00vT
oosT
0091
0oL1T
0081
006T
0002
001z
oozz
oogz
oovz
005z
0092
oozz
oogz
0062
000€
oo1E
oozs
0ogE
00vE
005
009g
oozE
oogs
0065
000t
00T
00zt
0oEY
ooty
oost
009%
0oLy
oost
0005

O distance

¥ Collision list
agents 2 <-> 8 time: start 1.8 finish 2.201
agents 6 <-> 7 time: start 3.801 finish 5.0

Figure 4.17: Double agent not real-time chart mode

o4

4.4.

The group agent statistics window overview

Chart mode ~

~
S
)

oor
009
oog

-
o
=1
a

oozt
oorT
0091

¥ Agents with not optimal distances:

Agent 3

Figure 4.18:

Chart mode ~ | Data mode

¥ Agents with not optimal distances:

Agent 3

group agent statistics data view

Data mode ~ |Set precision -> | 100

distance

oo8t
oooz
oozz
oovz
009z
oogz
000E

O distance
¥ Group of agents:

Agent 1
Agent 2
Agent 8

~ [Set precision ->

 Group of agents:
Agent 1
Agent 2
Agent 7

Figure 4.19:

00zZE
00tE
009€E
ooBe

=
=
=
s

oozy
oovy
009y
oogy
000s

Set group agents

Group agent chart statistics data

File « | View = | PhotoVid... = Help 5000...
solu...
‘ 2 ~ 8
@ 5 7 I
L 4
3)
4 %)
[5) e
== =)
<
Set group agents slow down <<< stop play
0
0 50 100

Setting up group of agents

95

show agent...

>

speed up

>

show graph la...

-3

v

CHAPTER 5

Comparison analysis

In this chapter we must convey a comparison analysis between MAPF-R, visu-
alization tool ContinuousViz and its predecessor Graphviz, which is a MAPF
problem visualization tool, in order to consider their similarities and distinc-
tions.

5.0.1 Conceptual analysis

Graphviz is a software which is developed for visualization of MAPF problem
presented in discrete time. Brief description of how it works:

1: As an input, it gets the problem provided by the user, the problem con-
tains graph definition, initial positions of agents and the list of agent
movements

2: Graphviz loads the input and calculates nodes positions in order to generate
graph layout

3: Afterwards, user sets up colors of nodes and agents

4: Finally, user navigates through the animation as with video recorder with
a possibillity to record it[4]

As it can be seen, ContinuousViz follows the similar pattern.

In terms of software purpose both tools are similar. Graphviz, as well
as ContinuousViz, visualizes precalculated path-finding algorithm results in
order to detect redundancies of presented solution. Additionaly, they both
have applications in education and presentation domains.

The main difference between Grafviz and ContinuousViz consists in time
processing, i.e. while the first operates in discrete time the later operates with
continuous time. In discrete time all moves are divided into groups that are
characterized by the same time step, in continuous time all moves are divided
into groups that are characterized by the same time interval. That changes

o7

5. COMPARISON ANALYSIS

the way the animation of the moves are approached. In Graphviz animation is
played through time steps, where to adjust speed means to alter how fast time
steps are changing. In ContinuousViz animation is played in real time, where
to adjust speed means to alter how fast time is flowing. Timeline in Graphviz
allows to jump quickly between time steps, in ContinuousViz it allows to
jump between time. Grafviz has implemented color differentiation in
order to highlight different states of the agent, ContinuousViz disposes with
identical option. Graphviz allows several animation players on single screen
in order to play them simulteniously, meanwhile ContinuousViz does not have
that option. It has been decided that several animations at the same time on
single screen has a potential to rise the complexity level of visual analysis.

Graphviz enables modification of graph form, meanwhile ContinuousViz
strictly follows graph predefinition derived from input data, i.e. vertex place-
ment is predefined by coordinates values. This restriction is reasoned by the
fact that MAPF-R graph replicates real world space structure.

5.0.2 Technological analysis

In terms of technology Graphviz uses Qt cross-platform application and GUI
framework, as a programming language it uses C++. ContinuousViz uses
JavaFX GUI framework. as a programming language it uses Java. As for video
capture, Graphviz, as well as ContinuousViz, uses FFmpeg video library. In
terms of operation systems, both Graphviz and ContinuousViz are compatible
with Windows, Linux and MAC OS. Graphviz supports extensibility of its
functions and, similarly, ContinuousViz does that as well. Both Graphviz and
ContinuousViz have modular architecture as their component parts represent
interchangable modules. As far as licensing is concerned, they both are open-
source software.

5.0.3 Comparison summary

To sum all up5.0.3} it can be said, that Graphviz has a major impact on
ContinuousViz in terms of an inspiration and ideas. Some functionality design
elements of ContinuousViz, for instance video player type interface, has been
derived from Graphviz. However, ContinuousViz differs in a sense of time
processing, subsequently design interface has to be adapted with real time
movement.

o8

Table 5.1: Comparison analysis summary

’ Parameter ‘ ContinuousViz ‘ Graphviz ‘
’ time ‘ continuous time ‘ discrete time ‘
’ programming language \ Java \ C++ ‘

GUI tool Java FX QT

multiplatfom yes yes

open-source yes yes

collision detection capability yes yes

color differentiation capability yes yes

vertex position change capability no yes

video record capability yes yes

photo record capability yes yes

save current configuration capability | no yes

99

CHAPTER 6

Analysis of MAPF-R
visualization tool ContinuousViz
economic impact on logistics

In this chapter we will analyze economic potential of the visualization tool in
logistic domains where MAPF-R is used as an underlying concept for navi-
gating robotic manipulators.

6.1 Industry 4.0

In the beginning, it should be pointed out that visualization tool will be
economically assessed within the context of Industy 4.0. paradigm change,
which is based largely on use of automated tools[6.]]

Industry 4.0. is a collective term for technologies and concepts of value
chain organization [6.2]Industry 4.0. represents such domains as advanced
robotics, industrial internet, big data and analytics. Industry 4.0. is a product
of the upcoming fourth industrial revolution. If the third industrial revolution
had everything to do with the rise of computers, computer networks(WAN,
LAN, ...) and connectivity, in the fourth industrial revolution it is not
just about the Internet and the client-server architecture, it is about merging
digital and physical environments. The key objectives of Industry 4.0. is in-
formation and services. The main goals of Industry 4.0. are automation and
data exchange, manufacturing process improvement and production optimiza-
tion, cutomer orientation. Those goals must be achieved by blending virtual
and real world together, creating cyber-physical systems(CPS).

61

6.

ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

The Four Industrial Revolutions

t}% ™
[inausiry 1.0 [ncusey 2.0 [iusery 3.0

Mechanization and the Mass production Automated production,
introduction of steam assembly lines using computers, IT-systems
and water power electrical power and robotics

Figure 6.1: History of industrial revolutions

Industry 4.0 - Technological pillars
Cybersecurity

Cognitive m ‘ Cloud

Computing . N Computing
RFID .\‘\ Mobile
technologies | RFID (atechnolog\es

Internet Machine
of Things PKE\M\-’ To Machine

Technaology

Big Data/

Analytics 30 Printing
o 3%

A

Advanced Robotics

Figure 6.2: Industry 4.0. main technologies

—

[

The Smart Factory.
Autonomaous systems,
IoT, machine learning

In terms of technologies, the main difference between Industry 4.0 and its
predecessors lies in the structure: instead of centralised structures, it imple-
ments schemes in which autonomous agents interact in decentralised architec-
tures. The process of decision-making implements such technologies as Cloud
Computing, Big Data, Internet of Things. As a matter of fact, decentralised
intelligence facilitates creation of smart objects networking and independent

62

6.1. Industry 4.0

process management. Industry 4.0. includes horizontal integration across net-
works, that enables internal communication, and the vertical integration of a
production inside the production plant, that facilitates adaptable manufac-
turing systems.

Industry 4.0 can be characterized by following features:

Virtualization companies have a possibility to observe physical processes,
by linking sensor data to simulation data.

Interoperability All systems in and out of company are interconnected.

Autonomization In Industry 4.0 machines and algorithmns are enabled to
make decisions and learn autonomously, which minimize human-machine
interaction.

Real-Time availability Data is collected and analyzed in real time. The
state of the plant is being scrutinized and tracked permanently.

Flexibility Due to the high customer demands, production process must
become more adaptive to constantly changing production environment.

Service orientation The services of the company can be offered internally
and externally, i.e. the services can be utilized by other participants.

Energy efficiency Due to climate change it is crucial for industries to utilize
carbon-neutral technologies in manufacturing. In addition, utilization of
renewable energies is more financially attractive.

6.1.1 Industry 4.0 fundamental technologies/concepts

Main technological concepts of Industry 4.0 can be divided into four major
categories: cyber-physical systems, Internet-of-Things, Smart Data and Smart
Factory.

6.1.1.1 Cyber-Physical systems

It must be noted, that Cyber-Physical Systems(CPS) is considered to be the
key element of Industry 4.0., as they facilitate the confluence of physical and
virtual spaces, integrating computational and communication processes in in-
teraction with physical processes. CPS are physical systems, whose operations
are being monitored and controlled by communicating and computing system.
A relevant instance of CPS can be represented by intelligent manufacturing
lines, in which single machine can carry out a variety of procedures communi-
cating with other components. CPS consists of a set of networked elements,
that include sensors, control processing units, actuators, communication de-
vices. Intelligent CPS has a potential to spur innovation in such industries
as aerospace, infrastructure, transportation, energy, chemical domains and

63

6. ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

logistics services. CPS has an ability to cover all the stages of production
processes, starting from shop floor to logistics networks, consequently shorten
the production cycle.

Cyber-Physical Systems represent such technologies as embedded tech-
nologies, Component machine health, Smart analytics, Remote visualization
for human, Multidimensional data correlation, Degradation and perfomance
prediction, etc.

6.1.1.2 Internet of Things

Internet of things(IoT) is a system where physical devices are bonded with
embedded electronics(RFId tags, senosrs, etc) and they are connected to the
Internet. In the context of IoT physical objects are integrated into the informa-
tion network, which enables them to become active participants in business
processes. Via the internets physical device can message its status, its en-
vironmental surroundings, maintenance schedule, production processes, etc.
ToS facilitates service vendors to offer services via the internet. It consists of
participants, an infrastructure for services, business models and the services
themselves.

IoT includes following technologies: sensors, mobile technologies, RFID,
Rectivity sensors, hardware interfaces, smart objects, smart networks, data
acquisition systems, which connect the machines to suppliers, network of de-
vices, human-computer cooperation, etc.

6.1.1.3 Smart data

In the context of Industry 4.0 a plant will be producing a huge amount of
data that needs to be stored, processed and intelligently analyzed. Big
data handled by innovative methods and cloud computing have a potential to
create new ways to advantage information.

Smart dat includes following technologies big data, electronic documents,
analyzing and storing data, simulation models, sensor data, production status,
energy consumption behavior, etc.

6.1.1.4 Smart factory

Inside the factory of Industry 4.0 new technologies will be used, alongside new
materials and new ways to handle production data. Smart factory consists
of following subcategories: Smart product, smart logistics, 3D visualization,
Smart Manufacturing process, Modularization of processes and products, de-
centralized intelligence, 3D-printing, efficient manufacturing, self optimization
and reconfiguration machines, etc. [5]

64

6.2. Visualization in Industry 4.0

Blade

Surface

Figure 6.3: Application cases of scientific visualization in industry manufac-
turing. (a) Steelmaking furnace internal environment visualization; (b) Jet
engine internal environment visualization; (c) Oil exploration external envi-
ronment visualization.

6.2 Visualization in Industry 4.0

In this section different visualization techniques, that is being used in Indus-
try 4.0, will be described. In smart manufacturing data analysis supports
decision-making processes at all stages of production lifecycle. In the context
of large and complex data sets, visualization has become a predominant tool,
which is able to combine machine intelligence and human intelligence in or-
der to gain insights from data, that could lead to efficiency improvement and
process optimization 6.3

Visualizaion techniques can be divided by the concepts of replacement
and creation. The replacement concept implements visualization tools in
order to simulate physical reality in virtual space, whereas creation concept
uses visualization tools as navigation during the product creation process.

6.2.1 Visualization replacement concept

As far as replacement is concerned various kinds of immersive visual technolo-
gies are being utilized: Virtual reality(VR), Augmented reality(AR), Mixed
reality(MR Such technologies enable to simulate dangerous and complex

65

6. ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

Figure 6.4: Application cases of VR, AR and MR in industry manufacturing.
(a) VR assembly factory; (b) VR furnace hot gases escaping; (¢) An assembly
worker wearing AR glasses; (d) AR supported production line modeling; (e)
MR workshop environment; (f) MR equipment interface.

work scenarios in a computer generated environment, where human operators
can be taught new skills harmlessly and informatively. AR technologies can
function as a graphic interface, that sends messages and instructions to hu-
man operator. As an example, worker can efficiently master assemble order by
reading instructions on AR glasses. One major direction in the replacement
concept is a scientific visualization. It aims to model and analyze industrial
environment, for instance the flame inside a complex gas combustion system,
in order to deepen the understanding of complex systems. With scientific visu-
alization it is possible to gain almost intuitive perception of complex industrial
system by human operator.

6.2.2 Visualization creation concept

Visualization within the creation concept is being used during the production
process of new values for both makers and consumers. The beginning of pro-
duction cycle is a product design phase, which defines appearance, function
and perfomance of a product based on market demand and creative thinking.
In this phase visualization can be applicable in regards to determination of de-
sign constraints, concerning prototype appearance and function. In the next
production phase, during which prototype transforms into physical object,

66

6.3. Smart Logistics

Figure 6.5: Visualizations for design phase: (a) Structural design of product;
(c) Material characteristics analysis; (d) Production environment design.

visualization is used to fulfill the main goal of this phase - to maximaze produc-
tion efficiency. Human operators are provided with real-time data visualiza-
tion to control and monitor production process. It also facilitates production
managers to collect and analyze non-real-time historical data in order to inno-
vate production process, therefore making it more efficient. The next phase is
testing phase, which includes confirming if final product satisfies predefined
requirementsJ6.5] Usually production tests generate a massive amount of data
sets, which makes data analysis extremely difficult to convey. With the help
of visualization tools test engineers can make a subsets out of multivariate
parameter space, for instance injection rates of car engines, and test those
specific parameters. Visualization also enables test products by simulating
different physical environments, for example water waves or light condition,
to test product behaviour pattern in those environments.[6]

6.3 Smart Logistics

As far as logistics domain is concerned, it has to adapt its business processes to
Industry 4.0. requirements. Smart Logistics is a term, which decribes the com-
bination of logistics updated with CPS. The following technological systems
will serve as the structural elements of Smart Logistics: Resource Planning,
Warehouse Management Systems, Intelligent Transportation Systems and In-
formation Securit Warehouse Management Systems(WMS) has a major
role in Smart Logistics, as it is a vital part of a supply chain, connecting pro-
duction process and delivery. Therefore, Smart Warehouses, where intelligent

67

6. ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

Logistics

SmartGate :\

Warehouse

-
Telematics TCU

>
Il "N

Figure 6.6: Smart logistics concept

warehouse management system select and adjust docking slot in accordance
with transport arrival time, could drastically increase level of customer ser-
vices. At this point MAPF-R visualization tool may be used as an information
representation system within Warehouse Management System.[7]

6.3.1 Amazon warehouse automation experience

In order to analyze an economic impact of robotic manipulators on logistics,
it has been decided to take Amazon experience of implementing warehouse
automation as a basis for this analysis[6.6|

Online retail giant Amazon has updated its warehouses with robotic ma-
nipulators, which led to dramatic increase in logistics system productivity.
In the year 2012, Amazon acquired Kiva Systems, the company that makes
robots, for 775% million, and since 2014 more than 100.000 of the machines in
25 of its 149 warehouses worldwide have been deployed. When item is deliv-
ered to warehouse, it is being given location at the warehouse and scanned, so
the computer knows where item is located. When item is ordered warehouse
bot picks it up from its location and transports it.

When Amazon fulfillment centers has been introduced to new sorting sys-
tem - Pegasus, that implements bots to sort orders. It allowed Amazon to
increase sorting accuracy up to 50 percent, i.e. introduction of robotic manip-
ulators has increased the level of customer services by cutting down the risk of

68

6.3. Smart Logistics

Figure 6.7: Amazon warchouse bots(a)

HE

"

Figure 6.8: Amazon warehouse bots(b)

mis-sorted goods. Furthermore, introduction of CartonWrap machines, that
are capable to box 600-700 boxes per hour(5 times the rate of manual human
packer), will definitely shorten delivery time. In fact, as was estimated in 2016
by Deutsche Bank, delivery “click to ship” cycle, which is the time it takes to
pick a product from the stacks, pack it and ship it, was approximately from
60 to 75 minutes when human workers manually handled the process, then
robots have been introduced and the same job could be accomplished in 15
minutes. Considering Amazon experience it can be seen that automation of
warehouses is vital as it leads to higher customer service level[6.86.9]
Although automation of Amazon warehouses has a vast majority of bene-
fits, concern is being made that warehouse workers could be negatively affected
by that. In fact, as Amazon states, the machines are capable to replace at least
24 jobs at each location they are installed. If they are installed in Amazon’s
55 US fulfillment centers, they could replace 1.300 total workers. In order
to solve workforce shortage, it could be possible to re-purpose or re-educate
workers. For instance, it is possible to reallocate jobs away from warehouse

69

6. ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

Figure 6.9: Amazon warehouse bots(c)

workers towards delivery couriers. By the moment of year 2019, Amazon have
implemented robotic machines which are needed of human assistance.[S]

6.3.2 MAPF-R visualization tool practical applications in
warehouse management

The distinction should be made between the shop floor and the higher man-
agement level in terms of usage of MAPF-R visualization tool. A shop floor
is the area of a factory, machine shop, etc. where people work on machines,
or the space in a retail establishment where goods are sold to consumers. The
term shop floor is in contrast to office, where higher management is being
handled. The difference of their main directives influences directly the way
how MAPF-R visualization tool will be accustomed. In the shop floor more
practical and mundain tasks are being solved, thus visualization tool will be
used as a monitor displaying the situation in real-time.

On the contrary higher management handles more strategic oriented tasks,
which implies the function of visualization tool as an analytical instrument,
storing and aggregating the historical data. MAPF-R visualization tool could
be implemented as a part of Enterprise Resource Planning(ERP). By visu-
alizing data set, management professionals will be able to indentify system-
atic errors, inefficient patterns, deeper structural problems with scheduling.
Overall, that has a potential to create an opportunity for optimizing business
processes.

In order to evaluate how MAPF-R visualization tool affects shop floor pro-
cesses, we should model an environment, in which it will be operating. Au-
tomated warehouses combine various kinds of Cyber-physical systems(CPS),
for instance, intelligent robots and autonomous vehicles. The main function
of such systems in warehouse is to fulfill the inventory replenishment, storage
and delivery requests. Those systems require collaborative behavior to han-
dle effectively distribution of goods, as a result, the need of communication
and real-time feedback is increasing. Therefore, CPS are producers of a vast

70

6.4. Economic assessment summary

amount of visualized content. The warehouse manager, system engineer and
warehouse staff are consumers of this visualized content. They monitor func-
tioning of CPS in order to control if the main warehouse Key Production Indi-
cators(KPI) are being accomplished without any conflicts. Following KPIs are
being considered: perfomance, safety, sustainability, knowledge reusability.[9]

The most common usage of robotic manipulators in warehouses is delivery
bots, whose function is to move ordered packages from storage to its target
segment in warehouse. Given smart warehouse, equipped with robotic ma-
nipulators, human operators monitoring the system and providing technical
help in case of complex situations, visualization tool will function as a bridge
between human and machine. Human operator monitors the progress of pro-
duction and solves problems if an actual situation deviates from a scheduled
situation. For instance, if ordered package has not reached its destination, vi-
sualization tool will demonstrate where error has occured. The next type
of problem will be occurance of traffic congestion, the situation where great
amount of bots jam up and get stuck en route, which slows down the pack-
age delivery process. Visualization tool also enables operator to control such
problematic situations by demonstrating a congestion segment.

Regardless to all the benefits, that automation delivers, there is certain
increase in complexity of overall production process. The level of sophistica-
tion required will substantially increase, throughout the IoT and the degree
of specialization of human resources, i.e. computational and analytical skills
will be a necessity among human operators. MAPF-R visualization tool has
a potential to simplify the perception of information by visualizing complex
situations, consequently making job position more acceptable for candidates.

6.4 Economic assessment summary

In this section we sum up key points of MAPF-R visualization tool Continu-
ousViz economic benefits on Smart Logistics. Influence area has been divided
into three domains: shop floor, top management and customer.

According to this tabld6.4] application of MAPF-R visualization tool Con-
tinuousViz in logistics domain has a potential to be highly beneficial for all
business process participants.

In a technological processes perspective it must be pointed out, that the
Smart Logistics goal is not to replace humans in their works, but to avoid
inaccuracies and to have faster processes where the information can be shared
effortless and in real time. It will be always needed to involve people monitor-
ing the processes and taking control of any system failure. As a matter of fact,
introduction of robotic manipulators to Amazon warehouses created a wide
range of job opportunities, such as bots operators, technicians and engineers.
Overall, the highest level of business process effectivity is possible to achieve

71

6. ANALYSIS OF MAPF-R VISUALIZATION TOOL CONTINUOUSVIZ
ECONOMIC IMPACT ON LOGISTICS

Table 6.1: Economic assessment summary

’ Domain

Influence

Shop floor

e More precise goods redistribution system
e Faster actual problem detection system
e More accessible problem representation for workers

Top management

e More precise strategic planning

e Systematic mistakes detection system
e Detection of weak scheduling patterns
e Great presentational tool

Customer

e Higher satisfactory level
e Higher customer service results in higher customer loyalty
e Customer loyalty results in higher probability of repeatable orders

solely by creating symbyosis between humans and machines, and that is where
proper visualization tools can be sufficient.

72

Conclusion

Within the context of this thesis we have studied theoretical basis of MAPF-R
problem and prospects of its visual analysis. As a result, we have concluded
that visualization tool of MAPF-R problem is a necessassity in order to ex-
amine it properly.

The main outcome of this thesis is the application called ContinuousViz.
It has been designed, developed and successfully implemented. It operates
according to its purpose - to visualize and detect weak points of the MAPF-R
problem solution. However, there are plenty of features that could expand
its functionality. Potentially, it could visualize more complex graph structure,
that includes several thousands of vertices and agents. In terms of analytics,
ContinuousViz could potentially be merged with an Al, which facilitates data
analysis with higher level of peculiarity.

In addition, economic influence of MAPF-R visualization tool Continu-
ousViz on logistics domain has been studied. It has been concluded, that
ContinuousViz has a broad spectrum of usage in logistics and a capability of
improving the whole domain.

From a personal perspective, I would conclude, that during the process of
writing this thesis and developing MAPF-R visualization tool ContinuousViz,
I have become deeply interested in robototechnique in general and in motion-
planning algorithms in particular. I have decided to proceed with my research
work as well as with development of technological instruments in this area.

73

Bibliography

G. Sharon, R. Stern, A. Felner, N.R. Sturtevant Conflict-based
search for optimal multi-agent pathfinding. [online]. [cit. 2020-05-05].
Available at: https://www.sciencedirect.com/science/article/pii/
S0004370214001386

A. Andreychuk, K. Yakovlev, D. Atzmon, R. Stern Multi-Agent Pathfind-
ing with Continuous Time [online]. [cit. 2020-05-09]. Available at: https:
//www.ijcai.org/Proceedings/2019/6

T. Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. Wijk, J.
Fekete, D. Fellner Visual Analysis of Large Graphs: State-of-the-Art
and Future Research Challenges [online]. [cit. 2020-06-14]. Available at:
https://hal.inria.fr/hal-00712779/document

Petr Koupy Visualization of problems of motion on a graph[online][cit.
2020-06-14]. Available at: https://dspace.cuni.cz/handle/
20.500.11956/29159

David Pérez Perales, F. Alarcén, Andrés Boza Industry 4.0:
A Classification — Scheme[online|[cit. 2020-12-15]. Available at:
https://www.researchgate.net/publication/319176066_Industry_
40_A Classification_Scheme

8 authors including Z.Ying A survey of wisualization for smart
manufacturing [online]. [cit. 2020-06-14]. Available at: https:
//www.researchgate.net/publication/329197942_A_ survey_of_
visualization_for_smart_manufacturing

L. Barreto, A. Amaral, T. Pereira Industry 4.0 implications in lo-
gistics: an overview [online]. [cit. 2020-06-14]. Available at: https:
//www.sciencedirect.com/science/article/pii/S2351978917306807

75

https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.ijcai.org/Proceedings/2019/6
https://www.ijcai.org/Proceedings/2019/6
https://hal.inria.fr/hal-00712779/document
https://dspace.cuni.cz/handle/20.500.11956/29159
https://dspace.cuni.cz/handle/20.500.11956/29159
https://www.researchgate.net/publication/319176066_Industry_40_A_Classification_Scheme
https://www.researchgate.net/publication/319176066_Industry_40_A_Classification_Scheme
https://www.researchgate.net/publication/329197942_A_survey_of_visualization_for_smart_manufacturing
https://www.researchgate.net/publication/329197942_A_survey_of_visualization_for_smart_manufacturing
https://www.researchgate.net/publication/329197942_A_survey_of_visualization_for_smart_manufacturing
https://www.sciencedirect.com/science/article/pii/S2351978917306807
https://www.sciencedirect.com/science/article/pii/S2351978917306807

BIBLIOGRAPHY

8]

76

Nicholas ~ Shields Amazon s rolling out mnew warehouse
robotsonline][cit.2020-12-16]. Available at: https://
www.businessinsider.com/amazon-introduces-new-warehouse-
robots-2019-5

D.G. Broo, J. El-khoury, K. Raizer Data Visualization Support for Com-
plex Logistics Operations and Cyber-Physical Systems [online]. [cit. 2020-
06-14]. Available at: https://www.researchgate.net/publication/
322855867 _Data_Visualization_Support_for_Complex_Logistics_
Operations_and_Cyber-Physical_Systems

https://www.businessinsider.com/amazon-introduces-new-warehouse-robots-2019-5
https://www.businessinsider.com/amazon-introduces-new-warehouse-robots-2019-5
https://www.businessinsider.com/amazon-introduces-new-warehouse-robots-2019-5
https://www.researchgate.net/publication/322855867_Data_Visualization_Support_for_Complex_Logistics_Operations_and_Cyber-Physical_Systems
https://www.researchgate.net/publication/322855867_Data_Visualization_Support_for_Complex_Logistics_Operations_and_Cyber-Physical_Systems
https://www.researchgate.net/publication/322855867_Data_Visualization_Support_for_Complex_Logistics_Operations_and_Cyber-Physical_Systems

APPENDIX A

List of abbreviations used

MAPF-R Multi-Agent Path Finding Problem in continuous time
MAPF Multi-Agent Path Finding Problem

CBS Conflict-based search

CCBS Continuous conflict-based search

GUI Graphical user interface

CPS Cyber-Physical Systems

IoT Internet of Things

ERP Enterprise Resource Planning

WMS Warehouse Management Systems

KPI Key Production Indicator

7

APPENDIX B

ContinuousViz class diagrams

Following class diagrams present major classes and its main structures, that
are responsible for the most crucial code logic.

79

B. CONTINUOUSVIZ CLASS DIAGRAMS

«DataReader»
Package::DAO

DataReader();

Graph readGraph(String path):

TreeMap<Integer, Agent> readAgents{String path);

TreeMap<Integer, Plan> readPlan(String path);

A

«DataSet»
Package::DAO

Graph graph;
TreeMap<Integer, Agent> agentMap;
TreeMap<Integer, Plan> planMap;

DataSet();

Graph getGraph();

boolean makeDataSet(String agentFile, String graphFile, String planFile);

TreeMap<Integer, Agent> getAgentMap();

Figure B.1: DAO module class diagram

80

«mainGUIs»
Package::GUI

«LoadFileGUI»
Package::GUI

MainController
Set<Integer>

List<String>
List<String>

boolean

String

mainController;
unmarkedCircles;

notVisibleCircles;
notVisibleLabels;

agentVisible;

currentSelutionkey;

TreeMap<String, Label> agentLabels;
TreeMap<String, Label> graphLabels;

ColorSetter

Boolean

AnimationCentroller

Set<String>

colorSetter;
visualizationStarted:
animationController;

agentKeys:

MainGUI mainGUI;
FileChooser agentFileChooser:
FileChooser graphFileChooser:

FileChooser planFileChooser:
[void makeDataSet(String solutionKey);

void setAgentFileChooser(ActionEvent event);
void setGraphFileChooser(ActionEvent event);
void setPlanFileChooser(ActionEvent event);

void setLoadFileSubmit{ActionEvent event);

«SolutionParametersGUI»

singleAgentstatisticsGUI singleAgentStatisticsGUI: Package::GUI
Double, isticsGUI doubleAgent! isti I AgentControll tController:
GroupAgentstatisticsGUI groupAgentstatisticsGUl: gentcontroller agentcontroller:
boolean issinglestatisticsSet: void i ers(String . Integer vertexAmount,
boolean isDoubleStatisticsSet: Integer edgeAmount, Double graphDensity,
boolean isGroupStatisticsSet: AgentController agentController);
void i i raphVisual graphvisual, AgentController currentAgents);
i i h(i hVisual
xg:g visuaIizeAgents(Agen(Cont:ollervcunentﬁ\'gents) void setGraphParameters(String solutionName, Integer vertexAmount,
. Integer edgeAmount, Double graphDensity):
void startVisualization();
void visualizationFinished(); id 0):
boolean loadChosenSolution(String solutionKey); void setAgentParametersiree():
void startStatistics();
void setSingleAgentStatistics();
void setDoubleAgentStatistics();

Set<Integer>

setGroupAgentStati:
getGroupAgents();

s():

«SingleAgentStatisticsGUI»
Package:GUI

csData):

void setSelutionParameters(); MainGUI mainGUI;
void setMainVisualPane();
isticsData statisticsData;
> XYChart.Series<Number, Number> speedSeries;
XYChart.Series<String, Number> agentTimeRatioSeries;
XYChart.Series<String, Number> totalTimeRatioSeries;
"D[’“bIEAgﬁ"tS[‘?tiStiCSGU'” boolean agentSpeedChartMode;
_ _ Package::GUI boolean agentLocationChartMode;
MainGUI mainGUl; void setAgentSpeedChartMode();
- . id TA tLocationChartMode():

TreeMap<Integer, List<Integer> collisionMap; vor setAgentLocationChartMode()
TreeMap<String, Pair<integer.Integer» selectedAgentsMap; void setNotonlineAgentChart():
StatisticsData void setAgentChart():
CollisionData void setStatisticsData(MainGUI mainGUI, StatisticsData statisti
boolean distanceChartMode; wvoid updateChart(integer xvalue. Double yvalue):
boolean riskCollisionChartMode; void updateChart(Double xvalue, Double yvalue):
boolean chartisSet: void updateCurrentTime(Integer time);
boolean firstAgentisSet:
boolean secondAgentlsSet;
Integer firstAgentiD;
Integer secondAgentID;

AreaChart getAgentChart():

Figure B.2: GUI module class diagram

81

CONTINUOUSVIZ CLASS DIAGRAMS

«AgentVisual»
Package::Visualization

Circle agentCircle;

«ColorSetters
Package::Visualization

AgentVisual(Integer ID, Double radius);

Circle getAgentCircle();

Color vertexColor;

Color movingAgentColor;
Color waitingAgentColor;
Color initializedAgentColor;
Color amrivedAgentColor;
Color markedAgentColor:

«GraphVisual»
Package::Visualization

List<Line> edgeLines:
List<Circle> vertexCircles;
boolean isVisible;

GraphVisual();

void addLine(Vertex fromVertex, Vertex toVertex);

void addCircle{Vertex vertex);
void changeVisibility()

Colorsetter();

Color getWertexColor():

Color getMovingAgentColor();
Color getWaitingAgentColor();
Color getinitializedAgentColor();
Color getArrivedAgentColor();
Color getMarkedAgentColor();

void setVertexColor(Color vertexColor);

void setMovingAgentColor(Color movingAgentColor);
setWaitingAgentColor(Color waitingAgentColor);
void setlnitializedAgentColor(Color initializedAgentColor);
void setArrivedAgentColor(Color arrivedAgentColor);
void setMarkedAgentColor{Color markedAgentColar);

Figure B.3: a. Visualization module class diagram

«AnimationController:
Package::Visualization

MainGUI mainGUI;
Timeline timeline;

AnimationController(MainGUI mainGUI);

void initializeTimeline(GraphController graphController, AgentController currentAgents);

void moveTimeline(Circle agentCircle, Plan plan, TreeMap<Integer, Vertex> verticesMap):

void getKeyFrames(GraphController graphController, AgentController currentAgents);
void timerkeyFrames(Duration duration, Label timerLabel);
void labelTimeline(Label agentLabel, Duration duration. double xCoordinate, double yCoordinate);

Animation.Status getAnimationStatus();

Double

void playAnimationFrom(Number timePosition);
void playAnimation();

void pauseAnimation(};

void stopAnimation();

void speedUpAnimation();

void slowDownAnimation();

void forwardDirectionAnimation(};

void backwardDirectionAnimation();

Double getTimelineDurationMilliseconds(};

getCurrentTimeMilliseconds(};

82

Figure B.4: b. Visualization module class diagram

«AgentMovementData»
Package::Statistics

«CollisionRiskData»
Package::Statistics

Integer agentindex; TreeMap<Integer, TreeMap<Integer, Double» collisionRiskDataMap
. CollisionRiskData();

List<SpaceTimeData> agentMovement;

TreeMap<integer, VectorData> vectorDataMap: void addCollisionRiskData(Integer firstAgentindex.
N Integer secondAgentindex.

private TreeMap<Integer, Double> speedMovement; Double collisionRisk):

AgentMevementData(Integer agentindex):
void createAgentMovementData(Double x1. Double y1, Double x2, Double y2.

Double startTime, Double finishTime,
boolean lastMovement):

Coordinate getCurrentCoordinates(Coordinate start, Coordinate direction,
Double mainModule, Double currentModule);

SpaceTimeData getSpaceTimeData(integer time);

Integer getAgentMovementTime();

Double getAgentsRiskCollisionData(Integer firstAgentindex. Integer secondAgentindex)

A

«StatisticsData»
Package::Statistics
TreeMap<Integer. AgentMovementData> agentMovementData:

«CollisionData»
Package::Statistics

TreeMap<Integer. Pair<integer, Integers» collisionTimeMap:
List<Pair<Double, Double> collisionTimeList:

CollisionData();

TreeMap<Integer. DistanceData> distanceDataMap:
TreeMap<Integer, CollisionRiskData> collisionRiskDataMap;

< AgentTimeRatioData agentTimeRatioData;
CollisionData collisionData;
ShortestDistanceData shortestDistanceData;
StatisticsData();

void setAgentTimeRatioDatalAgentTimeRatioData agentTimeRatioData);

void setMovementData(TreeMap<Integer, AgentMovementData> agentMovementData);

void setCollisionData(CollisionData collisionData);

void setDistanceDataMap(TreeMap<Integer, DistanceData> distanceDataMap);

void setRiskDataMap(TreeMap<Integer, CollisionRiskData> riskDataMap);

void setShortestDistanceData(ShortestDistanceData shortestDistanceData):

Double getTimeAgentSpecificDistanceDatalInteger time. Integer firstAgentindex. Integer secondAgentindex):

Double getTimeAgentSpecificCollisionRiskData(Integer time, Integer firstAgentindex, Integer secondAgentindex)

«MovementAnalyzers»
Package::Statistics

TreeMap<Integer, AgentMovementData> agentMovementMap;
TreeMap<Integer, Double> agentRadiusMap;

CollisionData
StatisticsData

MovementAnalyzer():

void addAgentMovementData(Integer agentindex,
Double x1. Double y1. Double x2. Double y2,

Double startTime, Double endTime, Double agentRadius, Boolean lastMovement):

void analyzeMovement();

boolean checkCollision(Coordinate firstLocation, Coordinate secondLocation, Double firstRadius, Double secondRadius);

Double getDistance(Coordinate firstLocation, Coordinate secondLocation, Double firstRadius, Double secondRadius);

Double getRiskCollision(Double distance);

StatisticsData getStatisticsDatal();

Figure B.5: Statistics module class diagram

83

B. CONTINUOUSVIZ CLASS DIAGRAMS

«MainController»
Package::Business

TreeMap<Integer, GraphController> graphControllers;
TreeMap<S5tring, Pair<Integer, Integer» solutionKeys;

GraphController
AgentState
DataSet

currentGraphController:
agentState:
dataset:

MainController();

void uploadSolution(String solutionKey, String agentFileString. String graphFileString, String planFilesString);
void addAgentsTOGraphController(String solutionKey, Graph graph, TreeMap<Integer, Agent> agentMap);

void addGraphController(String solutionKey, Graph graph, TreeMap<Integer, Agent> agentMap);

Set<String>
GraphController
Pair<integer, Integer>

boolean

getKeys();
getCurrentGraphController();
getPairlD(String solutionKey);

setCurrentSelution(String solutionKey);

«Agents
Package::Business

Integer agentiD;
String agentStringID;

Integer movingTime;
Integer waitingTime;
Integer initializingTime;
Integer arrivedTime;
Integer startPosition;
Integer targetPosition;
Double radius;

Plan plan;
AgentState agentState:

TreeMap<Integer, Integer> stateMap

Agent(integer agentiD):

void setTimeCounter(Integer startTime, Integer finishTime, Integer stateindex)

«GraphControllers
Package::Business

Integer graphControlleriD;
Graph graph;

GraphVisual graphVisual;
TreeMap<Integer, AgentController> agentControllers;
AgentController currentAgentController;
AgentState agentState;
StatisticsData statisticsData;

A

«AgentController»
Package::Business

wvoid
wvoid
wvoid

wvoid

GraphController(Integer graphControlleriD, Graph graph):

addAgentController(TreeMap<integer, Agent> agentMap):

makeGraphVisual():
makeCurrentAgentControllerStatisticsDatal):

makeCurrentAgentControllerStateData():

Integer agentControlleriD;

TreeMap<Integer. Agent> agentMap:
TreeMap<String. AgentVisual> agentVisualMap:
Integer totalMovingTime:
Integer totalWaitingTime:
Integer totalinitializingTime:
Integer totalArrivedTime:

AgentController(integer agentControlleriD, TreeMap<Integer, Agent> agentMap);
void makeAgentvisual();
void makeTotalTime();

ShortestDistanceData getShortestDistanceData(Graph graph);

84

Figure B.6: Business logic module class diagram

APPENDIX C

85

C. INPUT DATA FILES EXAMPLES

Input data files examples

Locations: 16

0: 0.000, 0.000
1: 1.000, 0.000
2: 2.000, 0.000
3: 3.000, 0.000
4: 0.000, 1.000
5: 1.000, 1.000
6: 2.000, 1.000
7: 3.000, 1.000
§: 0.000, 2.000
9: 1.000, 2.000
16: 2.000, 2.000
11: 3.000, 2.000
12: 0.000, 3.000
13: 1.000, 3.000
14: 2.000, 3.000
15: 3.000, 3.000
Vertices: 16
Edges: 24

{0,4}

{0,1}

{1,5}

{1,2}

{2,6}

{2,3}

{4,8}

{4,5}

{5,9}

{5,6%}

{6,103}

{6,7}

{8,12}

{8,9}

{9,133}

{9,103}

{10,14}

{10,11}

Figure C.1: graph input data example

86

Kruhobots:

8

1: [ri= 8.186;

wf = 0.200]

2: [r = 8.186,

wf = 0.280]
3: [ri=
0.200]
4: [r =
0.200]
52 [ru=
0.200]
6: [r=
0.200]
e [re=
0.200]
B: [r:=
wf = 0.280]
Start

wf =

wf =

wf =

wf =

wf =

0.100,
0.100,
0.100,
0.100,
0.100,

0.100,

Goal

Assignments: ﬂ

1-=>7
2->1
3-=9
4->4
5-=25
6-=12
7->6
8->3

Assignments: B8

1-=9
2->1
3-22
4-=3
5->13
6->12
7-=12
8->4

1.000,
1.000,
1.000,
1.000,
1.000,
1.000,
1.000,

1.000,

1la

la

1la

la

1la

la

1la

la

-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,

-1.000,

-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,

-1.0800,

Figure C.2: agents input data example

ad

ad

ad

ad

ad

ad

ad

ad

-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,
-1.000,

-1.000,

87

C. INPUT DATA FILES EXAMPLES

Kruhobot schedules [
planDAO [1]: {
7 --> 11 [0.000, 1.000]
11 --> 16 [1.000, 2.000]
10 --> 9 [2.000, 3.000]
9 --> 9 [3.000, 5.000]
1
planDAO [2]: {
1 --=1 [0.000, 5.000]
1
planDAO [3]: {
9 --= 8 [0.000, 1.000]
--> 4 [1.000, 2.000]
--> 5 [2.000, 3.000]
--> 6 [3.000, 4.000]
--> 2 [4.000, 5.000]

= Q¥ R - o

1
planDAO [4]: {

4 --> 5 [0.000, 1.000]
--> 6 [1.000, 2.000]
--> 2 [2.000, 3.000]
--> 3 [3.000, 4.000]
--> 3 [4.000, 5.000]

W M v

;

planDAO [5]: {
5 --> 9 [0.000, 1.008]
9 --> 13 [1.000, 2.000]
13 --> 13 [2.000, 5.000]

planDAO [6]: {
12 --> 12 [0.000, 5.000]
d;

Figure C.3: solution input data example

88

APPENDIX D

Contents of the enclosed flash

readme.txt

| _exe
MAPF-R.visualization.tool. jar
javafx-sdk-11.0.2

run

run2

README

Manual

Test data

| _src

impl
LA,ContinuousViz application
thesis
tthesis.tex
Thesis files
| __text
L,thesis.pdf

89

disk

	Introduction
	Understanding of MAPF-R problem and its visual analysis
	Motivation
	Multi-Agent Pathfinding problem description
	Conflict based search algorithm
	Visual analysis
	Visual analysis methods and tools
	Graph visual representation

	MAPF-R problem visualization theory
	Statistical analysis

	Analysis and design of the MAPF-R visualization tool - ContinuousViz
	MAPF-R visualization tool purpose
	MAPF-R visualization tool usage
	User requierements
	Animation requirements
	Manipulating layout requirements
	Visibility settings requirements
	Color settings requirements
	Statistical analysis tools requirements
	Reading input data requirements
	Non-functional requirements

	Data description
	Technologies used
	Architectural design
	Component design
	Business logic module
	GUI module
	Statistics module
	Visualization module component
	DAO module

	Test design
	Incorrect input
	Incorrect agents
	Incorrect graph
	Incorrect plans

	Redundant solution
	Collision test
	Ineffective plans

	MAPF-R visualization tool - ContinuousViz - developer manual
	Build
	Linux
	Windows

	Business logic
	Agent
	AgentState
	Plan
	Step
	TimeInterval
	Vertex
	Edge
	Graph
	AgentController
	GraphController
	MainController

	Statistics
	SpaceTimeData
	Coordinate, VectorData
	AgentMovement
	DistanceData
	CollisionData
	CollisionRiskData
	AgentTimeRatio
	AgentTimeRatioData
	ShortestDistanceData
	StatisticsData
	MovementAnalyzer

	Visualization
	AgentVisual
	GraphVisual
	ColorSetter
	AnimationController

	GUI
	Uploading solution
	Starting and controlling solution visualization
	Setting up color palettes interface
	Setting up statistics interfaces
	Converting visualization into photo/video format

	DAO
	DataReader
	DataSet

	PhotoVideoOutput
	PhotoOutputController
	VideoOutputController

	Test results
	Incorrect input
	Redundant input

	The MAPF-R visualization tool - ContinuousViz - user manual
	Main toolbar overview
	File
	New solution
	Start visualization
	Solution parameters
	Clear visualization

	The visualization screen
	Zooming
	Marking agents

	View
	Single agent statistics
	Double agent statistics
	Change color
	Graph visible
	Agent visible

	PhotoVideoOutput
	Take snapshot
	Start video/Stop video
	VideoSettings

	Help
	The visualization control panel

	The single agent statistics window overview
	The double agent statistics window overview
	The group agent statistics window overview

	Comparison analysis
	Conceptual analysis
	Technological analysis
	Comparison summary

	Analysis of MAPF-R visualization tool ContinuousViz economic impact on logistics
	Industry 4.0
	Industry 4.0 fundamental technologies/concepts
	Cyber-Physical systems
	Internet of Things
	Smart data
	Smart factory

	Visualization in Industry 4.0
	Visualization replacement concept
	Visualization creation concept

	Smart Logistics
	Amazon warehouse automation experience
	MAPF-R visualization tool practical applications in warehouse management

	Economic assessment summary

	Conclusion
	Bibliography
	List of abbreviations used
	ContinuousViz class diagrams
	Input data files examples
	Contents of the enclosed flash dist

