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Abstrakt

Hešovaćı tabulka je typ datové struktury, která umožňuje vložeńı a vyhledáváńı
kĺıč̊u se složitost́ı O(1). Některé hešovaćı tabulky jsou optimalizované pro
práci na grafických procesorech (GPU). Tato práce je zaměřena na studium
r̊uzných typ̊u hešovaćı tabulek a algoritmů a jejich implementaci pro GPU.
Ćılem je seznámit se s programováńım pomoćı nástroje CUDA® a knihovny
Template Numerical Library (TNL - www.tnl-project.org). Teoretická část po-
pisuje podstatu hešováńı a představuje některé datové struktury a algoritmy
přizp̊usobené pro paralelńı zpracováńı na GPU. V praktické části jsou některé
z těchto př́ıstup̊u (jmenovitě Cuckoo hashing a HashGraph) implementovány
s pomoćı TNL. Nakonec je implementace testována. Testy porovnávaj́ı výkon
na GPU a CPU s implementaćı kontejneru std::unordered set ze standardńı
šablonové knihovny (STL) jazyka C++. Výsledky ukazuj́ı, že všechny tes-
tované př́ıstupy funguj́ı na GPU mnohem rychleji. Nejrychleǰśım nalezeným
př́ıstupem byl HashGraph verze 1.0. Ten je nejlepš́ı pro použit́ı v mnoha apli-
kaćıch, které vyžaduj́ı vložeńı a vyhledáváńı neuspořádaných kĺıč̊u na GPU.

Kĺıčová slova Hešováńı, hešovaćı tabulka, grafický procesor, GPU, CUDA,
Template Numerical Library, TNL, Cuckoo hashing, HashGraph.
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Abstract

A hash table is a type of data structure that enables insertion and probing
of keys having same format with an average complexity of O(1). Some hash
tables are also more optimized for working on graphics processors (GPU). The
goal of this work is to get familiar with programming for GPU using CUDA®
framework and Template Numerical Library (TNL - www.tnl-project.org) and
use it to realize several hashing approaches. Theoretical part describes the idea
of hashing and introduces some data structures and algorithms intended to
adapt it for parallel programming for GPU. In practical part, some of these
approaches (namely, Cuckoo hashing and HashGraphs) are implemented using
TNL. Finally, the implementation is tested. The tests compare its performance
on GPU and CPU with the implementation of std::unordered set container in
Standard Template Library of the C++ language. The results show that all
tested approaches perform faster on GPU. The fastest approach found was
HashGraph of version 1.0. Thus, it is the best examined choice to be used in
many applications that require storing and probing unordered keys on GPU.

Keywords Hashing, hash table, graphics processing unit, GPU, CUDA,
Template Numerical Library, TNL, Cuckoo hashing, HashGraph.
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Introduction

Motivation and objectives
Graphical processing units (GPU) are fundamentally different from the Cen-
tral processing units (CPU) in terms of their ability to perform specific types
of tasks. The design of a GPU is focused on optimization of parallel com-
putations at a cost of efficiency on sequential operations. That creates per-
formance issues while implementing there the techniques specifically designed
for the CPU. To overcome this problem, new algorithms and data structures
need to be created and tested that would exploit the GPU’s advantages on
parallel computing without suffering from their drawbacks. One example of
a traditional task in Computer Science is to store large amount of data that
have same format but different values.

There exist numerous types of data structures and related algorithms that
solve this problem. All those approaches vary in time and memory efficiency
while performing specific operations. One popular data structures fulfilling
said purpose is called hash table.

It’s biggest advantage is the ability to insert new elements (rows) and
query previously inserted ones with a constant average cost.

The idea of a hash table is to introduce a hash function that would find
a hash value for each piece of data inserted. A hash function maps each data
element to a particular value of fixed size (an integer in our case). The element
is then inserted into a 1D array with its hash value as the index (called the
row of the table).

Assuming that the hash function itself has time complexity of O(1), the
operations of element insertion and probing has constant complexity in most
cases. This makes hash tables very useful in implementation of sets and maps,
because those classes are focused on fast accessing of the elements by value
and do not depend on their order. The only situation when this access is not
constant happens when two different data elements have the same hash value
and are thus supposed to be inserted into the same row of the table. This
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Introduction

event is called a collision, and different types of hash tables employ various
strategies for handling it.

Another feature that differentiates these types is the support of dynamic
allocation in some of them. It supposes an ability to add new entries after
the initial building is finished. Static allocation only allows insertion of the
elements on the building stage.

Three examples of hash tables and associated algorithms were considered:

• Cuckoo hashing

• HashGraph V1

• HashGraph V2

These data structures were designed specifically for parallel usage with the
performance on GPU in mind.

Implementation of those algorithms for GPU requires using special tools.
One relatively simple instrument suitable here is CUDA® – Compute Unified
Device Architecture. It is a parallel computing platform and programming
model developed by NVIDIA. It provides a high-level interface for developing
programs on a number of languages that allows to easily execute specified
parts of code in parallel on GPU kernels while the rest of project is compiled
for the CPU.

This programming model introduces additional issues to the developing
process that require the developer to pay special attention to some details
of function design and memory management. Template Numerical Library
(TNL®) is a project whose idea is to develop a library of template classes for
C++ language. Its functionality allows to overcome some of the issues related
to programming with CUDA by providing a unified interface for implementing
parallel algorithms on both CPU and GPU with focus on numerical calcula-
tions and linear algebra.

Problem statement
The purpose of this work is to familiarize with nuances of programming for
GPU using CUDA, then study the basic functionality of the TNL library and
extend it by providing a set of classes implementing the types of hash tables
mentioned above. Performance of these algorithms needs to be compared with
each other as well as with the implementation of similar functionality from
the standard C++ library.
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Chapter 1
State-of-the-art

As a well-known data structure in Computer Science, the hash table was
explored for a long time and was developed in many forms. The main reason
to invent new versions of the structure and related algorithms is the necessity
to tackle the problem of hash collisions between the inserted elements. Most
of the specific types of hash tables can be grouped by in the following way
based on their approach to this problem [1]:

• Open-addressing – insertion attempts for each key are repeated to a
new position after each collision until a free location for it is found.
This requires using multiple hash functions (one for each new candidate
position). Iterating over possible rows generates additional overhead
which becomes greater as the load factor increases. When the table
is full, the process of insertion transforms into an infinite loop. The
solution in this case is to reconstruct the table from scratch using larger
number of rows (and thus increased range of hash values).

• Perfect hashing – hash function is sequentially constructed in such a way
that no collisions happen in the end. This ensures that the query will
always complete in a single step, but doesn’t allow dynamic allocation.

• Separate chaining – multiple elements are hashed into the same row in
case of collision. As the result, instead of just one unique element, each
row stores a pointer to the first node of a linked list of keys hashed into
it. The query operation in this case performs a linear search within all
elements sharing the same hash value as the queried key.

• Spatial hashing – applied for looking up geometric primitives in a 2D
or 3D space divided into uniform cells. Each object is mapped to its
cell, and each cell is hashed into a hash table based on its positional
coordinates.

3



1. State-of-the-art

A specific approach must be taken for each of these types to make them
efficient on GPU. That means developing unique structures and algorithms
that would take advantage of GPU parallelism. Some of the most popular
approaches follow:

• Open-addressing

– Cuckoo hashing – in case of a collision, the inserted element is
extracted from the table and then inserted back using another hash
function [2].

– Double hashing – new hashes are calculated for the element until it
can be inserted into corresponding position [3].

– HashGraph – compressed sparse row (CSR) data structure is used
to represent the table contents in a form of a graph [4].

– Robin Hood hashing – key ages are tracked and the youngest keys
are evicted and replaced with the oldest ones [5].

– Stadium hashing – data are stored in CPU while an auxiliary struc-
ture called Ticket board is used on GPU to access it [6].

– WarpDrive – coalesced groups (CG) of threads are used to paral-
lelize linear probing [7].

• Perfect hashing

– Perfect spatial hashing – table and hash function are constructed
over a sparse set of multi-dimensional spatial data while ensuring
locality of hashed points [8].

• Separate chaining

– Slab hash – a GPU-optimized data structure called slab list is used
instead of a traditional linked list [9].

• Spatial hashing

– Compact spatial hashing (CSH) – data are written into a sparse
table with perfect hashing. Large number of empty entries in the
resultant table are exploited to compress it to a size proportional
to the number of keys divided by load factor [10].

– Exclusive grouped spatial hashing (EGSH) – compacts the table by
gathering points with same data values into groups to avoid storing
duplicates [11].

– Voxel hashing – the world is partitioned into several voxels (values
in 3D grid), each containing multiple points. The points are hashed
based on the coordinates of voxels they are assigned to [12].
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Chapter 2
Theory

2.1 General structure of GPU. Streaming
multiprocessors, warps and memory hierarchy.

Computational power of a GPU is represented by a number of streaming mul-
tiprocessors (SM). Each SM combines several GPU cores and is responsible
for processing a number of parallel threads grouped into thread warps (usu-
ally by 32 in each). This structure creates a hardware connection between
threads that introduces logical implications for the program design. Com-
pared to threads on multi-core CPU that perform different actions and only
require synchronization at specific points, GPU threads do not act as inde-
pendently. Instead, each operation is executed simultaneously on all threads
of the warp assigned to the SM. This approach is called Single Instruction
Multiple Threads (SIMT).

Based on lifetime duration and availability to the threads, GPU memory
is structured into the following levels:

• Thread private local memory is available to a single thread and is per-
sisted until its execution is finished.

• Block shared memory is common for all threads of a single block and is
freed when all of them finish execution.

• Global memory is available to all threads within the application and is
persisted through the whole run of the program.

• Constant and texture memory spaces are shared and persisted just as
global memory, but they are read-only.

Apart from the listed memory levels, one should also consider the hierarchy
of device’s memory cache. Cache is another form of memory used is many
types of processors. It is characterized by smaller volume but much shorter
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latency. A GPU uses two levels of cache called L1 and L2. Each unit of the
smaller L1 is utilized by a single SM while the larger L2 is used commonly by
all L1 units.

The purpose of cache memory in GPU, just like on CPU, is to speedup
memory accesses. Latency of L1 is higher than of L2, and the main memory is
slower than both of them. The idea is thus to store data to and read it from the
faster cache device instead of looking up the main memory. Its smaller size,
however, requires synchronizing the levels with each other. To increase the
number of cache hits (successful reads of data from the cache without accessing
the next level), the data are cached in a way that respects temporal and spatial
locality. The former principle assumes that recently accessed variables and
arrays will be accessed again soon, and thus should be copied to the cache
for that case. The latter one supposes that the accesses are done sequentially,
meaning that future memory reads will be performed to addresses next to the
recently accessed ones. Thus, caching is done in large portions of sequentially
stored data rather than its single units. Understanding this structure gives an
advantage in a form of performance boost. To properly exploit temporal and
spatial locality, one should aim to access same pieces of data repeatedly and
move over data sequentially instead of jumping between the addresses located
far from each other.

2.2 General-purpose computing on GPU and
CUDA® programming model

The structural differences between the CPU and the GPU make thread execu-
tion on the latter one much worse optimized for sequential operations. On the
other hand, this construction allows it to support thousand of parallel threads
at the same time (compared to the average of 8 to 16 threads on most modern
CPUs).

This makes the GPU extremely helpful in specific applications like data
processing, machine learning, numerical calculations and, most of all, graphics
processing. These areas employ algorithms that suppose performing simulta-
neous computations of similar type on numerous elements of data, and thus
benefit from large number of parallel threads. However, natural inefficiency of
each separate GPU thread due to poor optimization of flow control and data
caching make them impossible to use as the only processing unit in a system.
The only sensible approach in this case is to make use of both CPU and GPU
in a way that would allow us to benefit from their advantages. The goal of a
programmer is thus to identify in which stages of the algorithm advantages of
the GPU would outweigh its drawbacks and load it with work exactly there.
Evidently, this creates a need for an interface that would allow for easy switch
of the work focus between the two devices. CUDA programming model by
NVIDIA was developed with exactly this idea in mind.
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2.2. General-purpose computing on GPU and CUDA® programming model

CUDA provides a software development environment that introduces spe-
cific extensions for a list of high-level languages to support its own program-
ming model scalable for automatically adapting an application to different
number of processing cores. The language used in this work was C++. These
extensions include new standard functions, structures, macros and even slight
syntax modifications.

2.2.1 Kernel and threads. Thread hierarchy and
synchronization

The model itself is based on an idea of a kernel represented as a user function
that is being run in parallel. All stored data and running functions that
are created on the CPU and the GPU are referred to as device and host
respectively. Execution starts in a standard way for the C++ language on the
host, and an altered syntax is used to start the kernel function on a provided
number of threads.

Parallel threads in CUDA are organized into 1, 2 or 3-dimensional blocks.
Within each block, its threads are distinguished by unique indices that are
represented by 3-element integer vectors and are accessible from inside the
kernel code through a variable called threadIdx. As all threads of a single
block are run on the same processor core, the number of these threads is
limited. The size of the block can be learned by any kernel from a vector
variable called blockDim. If the required quantity of threads exceeds this
limit, multiple blocks can be started to run the same kernel. One should
also remember that the threads within one block are forced to share limited
resources of the core it is running on. Just like the threads, blocks are placed
into a grid with up to 3 dimensions and their vector indices are available to
the threads by reading blockIdx variable.

By combining dimensions and index of its block with its own coordinates
within that block, each thread can uniquely identify itself and the piece of data
it is supposed to process. This simplifies adaptation of kernels for processing
data containers with up to three dimensions (arrays, matrices and volumes).
For example, when working with N ∗M matrices, the kernel are started in
two dimensions bounded by N and M , and coordinates of each kernel tell it
which element of the matrix is to be processed by it.

The number of warps needed to run all required threads can exceed com-
bined capacity of all SMs. This would create a need to start some of them one
by one rather than in parallel. Moreover, this behavior cannot be predicted
as the scalability of the model supposes that an application should adapt to
different kinds of GPUs it could be run on. Thus, one can never assume the
execution order of thread blocks. It is impossible to synchronize all threads in
a grid, however on the block level it can be done by calling syncthreads()
function. It acts as a barrier for the threads and does not let them continue
their execution until the rest of them reach that point.
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2.2.2 Memory management in CUDA
Memory management in CUDA is similar in its principles to simple memory
management used in C language (with functions like malloc(), memcpy(),
free() etc.). CUDA provides a set of functions to allocate, copy, move and
free data (most widely used thus being cudaMalloc(), cudaMemcpy() and
cudaFree()) - basically, with the same functionality except that they operate
on the memory of GPU. This introduces a difficulty when operating on two
devices that is discussed below.

2.2.3 Common issues and limitations
It is a programmer’s responsibility to allocate and deallocate the memory for
data, and they should also keep in mind that the two devices have separate
memories and address spaces, which makes it impossible to access the same
data from the host and the device interchangeably (for example, by using
pointers). In other words, one cannot construct an object by the CPU and then
pass it to a CUDA kernel by reference (or vice-versa). Being nothing more than
an address in the device’s memory, the pointer will direct the kernel to data in
the host memory, and thus will be useless for a device not having an access to
it. To partially solve this problem, CUDA provides operations for transferring
data between the two devices (for example, cudaMemcpy() with the 4th enum
parameter specifying direction of copying – e.g. cudaMemcpyHostToDevice).
The problem is that copying data between the devices is a very slow operation
(especially when its amount is large), and thus should be used as little as
possible.

A well-known problem while working with multi-threaded applications is
race conditions. It is a situation when two or more threads attempt to write
data into the same memory, which causes undefined behavior. CUDA pro-
vides a solution for that problem in a form of atomic operations. It is a set
of functions that, when being called from one thread on some value in the
memory, block all other threads that write into the same memory until the
operation is finished. As an example, CUDA’s

int atomicAdd(int* address, int val)

adds val to the value stored to address and returns its previous value. All
other threads writing into address are blocked until adding is done. There
exist other functions of various types but they only work with primitive types
of integers and numbers with floating point.

SIMT approach can negatively affect performance when the threads di-
verge from each other. Thread divergence takes place when the algorithm
steers the threads to different branches of execution, and it makes the perfor-
mance dependent on the similarity of those branches. This includes if-else-then
statements and loops of variable length
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2.3 TNL - Template Numerical Library
Template Numerical Library comprises multiple classes for C++ language.
One of its goals is to re-implement and extend the functionality of Standard
template library (STL) of C++ for scientific computations. By setting specific
parameters, it allows to choose which device (GPU or CPU) must be used for
data storage and operation execution. Targeting for general-purpose GPU
usage allows it to be especially focused on sparse linear algebra and numerical
meshes.

At the current stage of development, TNL provides classes for unified
memory management between devices, instruments for parallel reduction, nu-
merical solvers, structures representing sparse matrices and more. All these
features simplify general-purpose programming for a GPU and exploit its ad-
vantages for parallelism. Some classes that were used in this work are ex-
plained next

2.3.1 Class TNL::Algorithms::ParallelFor
TNL’s template class TNL::Algorithms::ParallelFor is dedicated to orga-
nizing parallel execution of kernels and their synchronization without using
CUDA-specific macros, functions and syntax constructs. The class specialized
by template parameters specifying the device and mode (synchronous/asyn-
chronous) has only one static method exec that accepts bounds of the loop, a
lambda-function representing its body and variadic parameters to that func-
tion. Lambda-function then accepts a current index in the for-loop and
than can proceed with its actions accordingly. In case of Device passed be-
ing TNL::Devices::Cuda, lambda is run in parallel on the number of ker-
nels specified by bounds. For TNL::Devices::Host, it is nothing but a for-
loop standard for C and C++ languages. To support 3-dimensional execu-
tion of kernels, TNL provides classes TNL::Algorithms::ParallelFor2D and
TNL::Algorithms::ParallelFor3D in a similar manner. The only difference
is the number of bounds to be provided to exec method and integer indices
accepted by the lambda-function.

An important note is that CUDA requires each kernel function to be
marked with a device macro and host macro if it will be called from
CPU as well. TNL unites them into a single cuda callable macro that
will only be resolved to host device if the code is compiled with
CUDA compiler. Same is true for the lambda-function used in ParallelFor.

2.3.2 Classes Array, StaticArray, Vector and ArrayView
Another major point to care about when programming with CUDA is working
with memory. General principles are what is usual for manual memory man-
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# include <TNL/ Algorithms / ParallelFor .h>
# include <TNL/ Devices /Cuda.h>

using namespace TNL :: Algorithms ;
using namespace TNL :: Devices ;

int main(void) {
auto body = [] __cuda_callable__ (

int i, int j, int k) mutable {
printf ("%d %d %d\n", i, j, k);

};
ParallelFor2D <Cuda >:: exec (0, 0, 12, 15, body , 20);
return 0;

}

Figure 2.1: Example of using TNL::Algorithms::ParallelFor2D. Each ker-
nel prints three integers in ranges: 0..11, 0..14 and 20.

agement. However, the programmer must also keep in mind that two devices
have separate memories. What is allocated on CPU is not accessible form
GPU without calling special functions, and vice-versa. TNL employs a set of
classes to simplify this task with a simple interface.

Class TNL::Containers::Array is a template container class used as a
one-dimensional dynamic array. Its most important feature is that like many
other TNL classes it allows to specify which device to allocate the data on.
Thus, an object of this class stored on the Host device can point to data on the
CUDA device. For the Device template argument set to TNL::Devices::Host,
the class behaves almost like std::vector with some minor differences. For
TNL::Devices::Cuda, some operations use the versions implemented for GPU
in parallel. For example, Array<T, Device>::setValue sets all elements of
the array to the same value in parallel.

In order to use the class properly, one has to remember that any data
element can be accessed only from the device that it was allocated on. Copying
between devices is possible, and the methods getElement and setElement
allow working with GPU data from the CPU. However, as was mentioned
before, those operations are slow, and must be used as little as possible. As
it is always the case with data allocated on GPU, it can only be efficiently
used in parallel operations. The way to do it in TNL (except for a limited
number of methods that are provided in Array class itself) is by means of
TNL::Algorithms::ParallelFor.

One problem with this is that the lambda function supplied as the body
of the parallel for-loop is called from a CUDA kernel, and the host-function
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calling it stores the Array instance in the CPU-memory. Thus, the lambda
cannot accept the Array by reference. Data allocated by the Array is stored
on the GPU, but passing the Array to the kernel by value will result in deep
copying of the contents, which will generate an enormous overhead. To resolve
this issue, Template Numerical Library provides a special set of classes called
View. TNL::Containers::ArrayView and the views for some other classes
give an access to data owned by the Array. In other words, they let the user
read and/or change it, but do not allow to delete or allocate it. Passing it
to a CUDA-kernel will trigger a shallow copy, thus saving a lot of execution
time. This means that the data will be the same as pointed to by the original
Array object, but the wrapper object will be different. Provided that the data
itself is allocated on a CUDA device, it makes this approach perfect for using
with TNL::Algorithms::ParallelFor. This also allows the lambda-function
to accept an ArrayView in its capture list.

Class TNL::Containers::Vector is another container class derived from
TNL::Containers::Array and in addition to memory management function-
ality, it is used for algebraic operations like Scan (see below). Another derived
class, TNL::Containers::StaticArray, accepts a template parameter speci-
fying its size at the compile time (analogous to std::array).

Both classes (and some not mentioned here) provide an access to their
views through methods getView() and getConstView().

2.3.3 TNL::Algorithms::Scan and Segments::CSR

TNL::Algorithms::Scan has an interface similar to ParallelFor. It is a
template class containing only one static method perform that accepts input
array, start and end indices, operation itself (in the form of a lambda function)
and the initial value. Apart from the Device to execute the operation on,
the class accepts another template parameter to choose between exclusive
and inclusive scan (using TNL::Algorithms::ScanType). See Sec. 2.5.1.4 for
theoretical explanation.

TNL also provides a set of classes for working with Segments. In this
work, we are interested in a class called TNL::Algorithms::Segments::CSR
that represents a popular Compressed sparse row format (see Sec. 2.5.1.2).
Having all non-zero elements of a matrix written subsequently into a one-
dimensional array, one can use an object of this class to index that array
instead of the original matrix. Just like rows of a 2D array, the segments in
the CSR represent matrix rows and have their own inner indexation. How-
ever, as the CSR only stores non-zero elements, the segments have unequal
sizes. A CSR class instance keeps track of these sizes and simplifies indexing
the ”flattened” version of the original matrix. In other words, it provides a
mapping from 2D indices of matrix elements to 1D indices of its compressed
version. Thus, the object helps with indexing the data but does not store it.
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# include <TNL/ Algorithms / ParallelFor .h>
# include <TNL/ Containers /Array.h>
# include <TNL/ Containers / ArrayView .h>
# include <TNL/ Devices /Cuda.h>

using namespace TNL :: Algorithms ;
using namespace TNL :: Devices ;

int main(void) {
Array <int , Cuda > arr (25);
auto assign = [] __cuda_callable__ (int i,

ArrayView <int , Cuda > view) mutable {
view[i] = i;

};
ParallelFor <Cuda >:: exec (0, 25, assign ,

arr. getView ());

auto print = [] __cuda_callable__ (int i,
typename Array <int , Cuda >:: ConstViewType view) {

printf ("%d %d\n", i, view[i]);
};
ParallelFor <Cuda >:: exec (0, 25, print ,

arr. getConstView ());
return 0;

}

Figure 2.2: Example of using TNL::Containers::Array and its view. Array
elements are assigned number from 0 to 24, and then the contents are printed
(both done in parallel).

In order to be aware of the index sizes, CSR class accepts them as a TNL
Vector to either a constructor or a setter method.

The class has methods for learning the number of segments and the size of
each of them. But most importantly, the method getGlobalIndex returns the
index in the compressed array by accepting a segment index and an element
index inside the segment.

Just like Array and textttVector, CSR has its own View class called CSRView
that can be used to access the segments and indices but cannot initialize it by
accepting the segment sizes.
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2.4 Cuckoo hashing
Cuckoo hashing is one version of an algorithm for managing hash tables and
resolving hash collisions designed specifically to benefit from parallelism of
GPU. Its main idea is based on assigning a set of possible position for insertion
of each key using multiple hash functions. This guarantees the insertion in a
constant time while still keeping the query time relatively short.

2.4.1 Overview
The main idea of this strategy is to exchange the newly inserted keys with
previously existing ones and reinsert them using another hash function until
no keys that need reinsertion are left. Probing in this case is just an iteration
over hash functions looking for the actual position of the key we are interested
in.

Each table therefore depends on three parameters that determine its be-
havior and performance. The work done by Alcantara et al. states the most
optimal values for these parameters with respect to the number N of input
elements.

• Table size - specifies how many rows are to be used in the table and
thus the maximal hash value of each key (with 0 being minimum). The
optimal size for N input keys was found to be 1.25 ∗N .

• Number of hash functions - 4 is said to be the best choice to balance all
metrics.

• Maximum number of iterations - needed to indicate an infinite loop pro-
duced by the building process (see below). Preferred value is 7∗ log(N).

2.4.2 Construction
Starting the procedure of table creation is trivial.

The first step is to take the first hash function h1 and insert the first key
k1 into the array representing the table under the position h1(k1). If the same
operation is performed with other keys, it will eventually lead to a collision
in most cases. It happens when hn(ki) = hn(kj) for i < j and will lead to
inserting the key ki into a position that was previously occupied by kj . The
solution used in this type of algorithm is to exchange the newly inserted key
with previous contents of its row and then check if evicted content was free.
If not, then the next step is to identify which hash function hn that content
was previously inserted with. After that, the element is placed back to the
table, but this time into position hn+1(ki). If hn was the last function in the
list of available ones, then h0(ki) is used instead.

The problem of this procedure is that it can eventually lead to an infinite
loop of evictions and re-insertions of keys. Being a probabilistic approach,
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Cuckoo hashing cannot guarantee our safety from this event, nor can we be
sure that it does not happen. The only way to algorithmically detect this
situation is to limit the maximum number of insertions that the operation
can perform when started with a single key. This number is exactly what the
third parameter described above stands for. In case the maximum number of
operations is reached, it is a sign that the construction process cannot finish
in current configuration, and the whole procedure needs to be restarted with
different set of hash functions. All in all, the steps are described in Alg. 1 and
2.

Input: TableEntry Entry, HashTable Table
Result: Boolean value indicating success

1 HFun := HFArray[0];
2 for Int i := 0 to Iterations do
3 Location = HFun(Entry);
4 swap(Entry, Table[Location]);
5 if Entry is empty then
6 return True;
7 end
8 // Find next HashFunction to re-insert evicted entry
9 for Int h := 0 to HashFunctions do

10 HFun := HFArray[h];
11 if HFun(Entry) = Location then
12 HFun := HFArray[(h + 1) mod HashFunctions];
13 break;
14 end
15 end
16 end
17 // Maximum number of iterations reached => report an error
18 return False;
Algorithm 1: Algorithm to insert a single entry into a Cuckoo hash table.

2.4.3 Probing

The probing mechanism is simple - each key queried is being hashed by all
hash functions one by one. The values returned by them are being used as
indices for the table elements until some of them yields an index of the element
equal to the one being requested. If a relevant value has not been found after
going through all hash function, the key is reported as missing.
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Input: EntryArray Input, Int TableSize, Int HashFunctions, Int
Iterations

Result: Cuckoo hash table with keys inserted
1 Table := EmptyEntryArray(TableSize);
2 repeat
3 HFArray := RandomInit(HashFunctions, TableSize);
4 foreach Entry in Input do
5 Success := InsertOne(Entry, Table);
6 if not Success then
7 break;
8 end
9 end

10 until Success;
Algorithm 2: Algorithm to build a table from a list of entries.

Result: An Entry if it was found, NULL otherwise
Input: CuckooHashTable Table, Entry Probed

1 foreach HFun in HFArray do
2 Index := HFun(Probed);
3 Found := Table[Index];
4 if Found = Probed then
5 return Found;
6 end
7 end
8 // No hash function yielded an index of the probed key
9 return NULL;

Algorithm 3: Key probing algorithm of Cuckoo hash table.

2.4.4 Improvements and parallelization

Modifying the building algorithm into a parallel version is quite straightfor-
ward. The actions needed are similar for each entry, and the structure guar-
antees finishing the operations in a constant time, which makes it naturally
fitting for a GPU implementation. Thus, the idea is to insert all keys at the
same time, thus transforming the for-loop on lines 4-9 of the Alg. 2 into a
CUDA-kernel indexed by the index inside Input array. All threads then need
to have an access to a global flag indicating a failure.

Probing in parallel employs a similar idea of devoting a separate thread for
each key. Conveniently, the number of hash functions is constant for the entire
table, which allows us to parallelize the algorithm on them as well. More on
that is in the section 3.

One clear drawback of the introduced algorithm is the part of insertion
operation on the lines 8-14 in Algorithm 1. The purpose of this for-loop is
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to find which of the hash functions was previously used to insert the evicted
entry to the table and find the new one to pick a new position for it. In the
original version presented above, the operation is linear with respect to the
total number of hash functions used by the table. Instead of doing this, the
index of each hash function can be stored into the table together with the
entry itself. It will replace the for-loop with a constant operation of accessing
a single value from the array with known index, though it means that more
memory will be used for storing these arrays.

2.5 HashGraph
HashGraph employs a different approach to hashing. This concept represents
hash values and respective data entries as vertices of a bipartite graph. Cor-
respondence between the keys and their hash values is viewed as the graph’s
edges, and all these data are stored into a memory-efficient data structure
called (CSR).

2.5.1 Background
2.5.1.1 Bipartite graphs

A bipartite graph is a special type of a graph whose set of vertices can be
divided into two subsets, such that none of its edges connects vertices from
the same subset. In other words,

G = (V, E)

V = A ∪B, A ∩B = ∅
∀e ∈ E, e = u, v : (u ∈ A & v ∈ B) or (v ∈ A & u ∈ B)

This defining property makes bipartite graphs a perfect illustration for hash-
ing. If we have sets of data entries and their possible hash values as vertices,
we will be able to depict them as a graph. Each edge will then connect a
vertex representing a data entry to the one standing for its hash value. The
fact that the two vertices will be naturally located in two different subsets
makes the result a bipartite graph.
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(a) Graph

a b c d e f
a 0 0 0 1 1 0
b 0 0 0 1 0 1
c 0 0 0 0 0 0
d 1 1 0 0 0 1
e 1 0 0 0 0 1
f 0 1 0 1 1 0

(b) Adjacency matrix

Figure 2.3: Representation of a graph by an adjacency matrix.

2.5.1.2 Compressed Sparse Row

In order to work with a hash table in a form of a bipartite graph in a real
computer program, one needs a way to represent it in a more abstract form. In
Computer Science, there exist several approaches to view a graph as a usable
data structure, the simplest being adjacency lists, edge lists and adjacency
matrices. This section describes the concept of a data structure called Com-
pressed Sparse Row which can be viewed as a form of adjacency matrix, but
more efficient from both space and time points of view.

Classic version of adjacency matrix is depicted on Fig. 2.3. The idea of
this way of storing information about a graph is to have each row and a column
of a matrix representing a single vertex. Each entry inside of it has a binary
value indicating whether or not the graph contains an edge connecting these
two vertices.

This traditional method is practical but has one significant problem. The
issue is that the structure in a form of a 2D-array basically considers all
possible edges and indicates which of them exist in reality. That demands
excessive amounts of memory space to be used, especially for graphs with
many vertices. A graph with a few or no edges at all would use exactly as
much memory as a complete graph with the same number of vertices. A much
more efficient approach would be to only store positions of entries having a
value of 1. That is exactly what the idea of a Compressed Sparse Row is based
on.

In CSR, all non-zero values in the matrix are written into a one-dimensional
array. Their positions in the original matrix are stored in two separate arrays
representing column and row indices respectively.

2.5.1.3 CSR representation of a graph

One feature of a graph’s adjacency matrix that we can benefit from is the fact
that all non-zero elements of it can never be anything but 1. This leaves us
no need to store the actual values of the matrix as it is enough to remember
the positions at which these 1’s are located. Moreover, instead of storing their
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row and column indices in two arrays, we can remember each row as a list
of column indices where this row contains 1’s. Finally, we can write these
new rows subsequently into a one-dimensional array preserving only the order
of values, and remember the positions from which each row begins there in
a second array of offsets. This would allow to store the graph in the most
memory-efficient way. Formally, the following three arrays are used (see also
Fig. 2.4):

• Vertices - each only once.

• Offset array used divide the third array into parts relevant for each
vertex

• Edges - represented each by the vertex adjacent to a one in the first
array - stored in a specific order that is managed by Offset. Explained
in details below.

In this structure, Offset maps each element of Vertices to a subarray of Edges
that represents a list of its neighbors. Specifically, for each vertex v having
an index n in the first array, its neighborhood is listed in the third one from
index Offset[n] to index Offset[n + 1]− 1.

The same ideas for both standard adjacency matrix and Compressed Spa-
rse Row apply for directed graphs. The only difference is that existence of an
edge going in one direction does not imply that the opposite one will be present
as well. In other words, the classical matrix might become asymmetric, and
CSR will represent only out-neighborhoods (see Fig. 2.5).

Procedure of construction of CSR representation of a given graph is pre-
sented on Alg. 4. In this version, the input graph is provided in a form of
adjacency lists (where each vertex is mapped directly to a list of its neigh-
bors), because this representation is the most trivial and is naturally very
close to the idea of hashed values. PrefixSum operation used on the line 5 is
described in both sequential and parallel forms in the next section. We are
not concerned about creating a parallel version of Alg. 4 as construction of
HashGraph itself discussed in Section 2.5.2.

Figure 2.4: Compressed Sparse Row representation of the graph from Fig. 2.3
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2.5.1.4 Prefix sum or Scan

Prefix sum (also known as Scan) is a sequence of numbers constructed from
another sequence such that each i− 1-th element of it is equal to sum of first
i elements in the original sequence. Formally,

S = a1, a2, a3, ...an

PrefixSum(S) = 0, a1,
2∑

i=1
ai,

3∑
i=1

ai, ...
n∑

i=1
ai

Of course, the same logic can be applied not only to sequences but to one-
dimensional arrays as well.

Operation to find a Scan sequentially is very trivial (see Alg. 5). All we
have to do is to set the first element of output array and then iterate over the
other ones while setting each i-th element to the sum of the previous one and
i-th element of the input.

Parallel version of it was described by M. Harris et al. [13]. It requires
more effort and is presented in Alg. 6. It consists of two large steps:

1. Reduction step. In the first step, values of input are grouped into pairs
and sum of each pair is written instead of its second element. All sums
are grouped and summed the same way until only one new sum pro-
duced. When this has happened, every second element will contain
partal sum and the complete sum will be written into the last element.
(Fig. 2.6)

(a) Directed graph

a b c d e f
a 0 0 0 0 0 0
b 0 0 0 1 0 1
c 0 0 0 0 0 0
d 1 0 0 0 0 0
e 1 0 0 0 0 0
f 0 0 0 1 0 0

(b) Adjacency matrix

(c) Compressed Sparse Row

Figure 2.5: Representations of a directed graph.

19



2. Theory

Input: Graph G
Result: CSR representation of the graph

1 int CounterArray[]; // Size of each node’s neighborhood
2 for int i := 0 to |V (G)| do
3 CounterArray[i] := nAdj(G[vi]);
4 end
5 int Offset := PrefixSum(CounterArray);
6 for int i := 0 to |V (G)| do
7 CounterArray[i] := 0;
8 end
9 Vertex Edges[]; // Represents edges as a list of adjacent vertices

10 for int i := 0 to |V (G)| do
11 foreach Vertex v : Adj(G[vi]) do
12 Edges[Offset[i] + CounterArray[i]++] := v;
13 end
14 end
Algorithm 4: Algorithm to transform a graph into a Compressed Sparse
Row form.

Figure 2.6: Reduction - first step of parallel scan finding.

2. Down-sweep phase - First, the last element is set to 0. After that,
having d = 0 and incremented on each step, the following is repeated
while possible:

• 2d+1 equally distanced elements are divided into 2d pairs of neigh-
bors. Each n’th element starting from the last one is paired with
the one of index n− N

2d+1 (for the array of N elements);
• in each pair, the left element is replaced with the right one;
• old value of the left element is added to the value of the right one.

After 2d has reached the total size of the array, the operation is finished
and the array is transformed into the prefix sum of its original self. The
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Figure 2.7: Down-sweep - second step of parallel scan finding.

zero inserted in the beginning of the phase is translated into the first
element.

It must be noted that all terms and algorithms shown here and used in
HashGraphs represent so-called exclusive scan. In inclusive version, each el-
ement of the output sequence is equal to sum of all elements including the
current one. In exclusive scan, the operation is done only on preceeding ele-
ments. This requires supplying initial element as a parameter. For sum, this
role is usually played by 0.

Moreover, the operation itself can be different from the sum (for example
Prefix product). The contruction algorithm in this case does not differ by
anything other than that operation.

Input: int Array[]
Result: Scan of input array

1 int Result[];
2 Result[0] := 0;
3 // Note that the loop starts from the second element (index 1)
4 for int i := 1 to len(Array) do
5 Result[i] := Result[i - 1] + Array[i - 1];
6 end

Algorithm 5: Sequential algorithm to find a scan of a sequence.

2.5.2 HashGraph algorithms
As mentioned above, HashGraph represents data entries and their hash values
as a bipartite graph. It is done by viewing stored data entries as one subset of
the vertex set and their hash values as another one. Each edge (u, v) between
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Input: int Array[]
Result: Scan of input array

1 // Reduction step
2 for int k := 0 to M - 1 do
3 int offset := 2k;
4 for int j := 1 to 2M−k−1 in parallel do
5 Array[j ∗ 2k+1 − 1] := Array[j ∗ 2k+1 − 1]
6 + Array[j ∗ 2k+1 − 2k − 1]
7 end
8 end
9 // Down-sweep phase

10 for int k := M-1 to 0 do
11 int offset=2k for int j := 1 to 2M−k−1 in parallel do
12 int dummy := Array[j ∗ 2k+1 − 2k − 1]
13 Array[j ∗ 2k+1 − 2k] := Array[j ∗ 2k+1 − 1]
14 Array[j ∗ 2k+1 − 1] := Array[j ∗ 2k+1 − 1] + dummy
15 end
16 end

Algorithm 6: Parallel scan finding algorithm.

the two subsets then denotes that the entry u is hashed into the value v. In
practice, the graph’s adjacency matrix is stored as a Compressed Sparse Row.

The idea is presented in two versions that have same structure but different
construction algorithms. Both are well optimized for running in parallel and
unique in terms of their load factor. The load factor (referred to as CV )
is a relation of actual number of elements inserted into hash table to the
maximum one. A low factor means that many positions for the data entries
are left empty, which makes the structure less memory efficient. The higher
factor, on the other hand, increases the probability of collision in most of
hash table types, which increases the time of each operation. An advantage of
HashGraph is that it can have a load factor of 1 (maximum possible) without
suffering from related slow downs in construction.

Original versions of Alg. 7 provided in the author’s paper had the line 18
written as

pos = AtomicAdd(CounterArray[HA[i]], 1)

instead of what is shown here. This version cannot possibly be correct, because
it would mean assigning value pos to 0 multiple times (because CounterArray
is assigned to all 0’s in the previous step). It is assumed to either be a mistake,
or a misunderstanding in the pseudo-code. The same is true for line 38 in Alg.
8. In both algorithms, argument N refers to the number of elements in the
input array, and V stands for the number of vertices in the resultant graph.
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Some of the vertices can be left empty meaning that V = N/CV . As our goal
is to construct a HashGraph with CV = 1, we can assume that V = N .

2.5.2.1 HashGraph Version 1.0

Version 1.0 of HashGraph creation procedure (Alg. 7) is nothing but a parallel
form of CSR construction algorithm described in Alg. 4 but with table keys
and hash values as vertices.

Input: Entry A[], int V, int N, int Cv, Function Hash
Output: HashGraph with given values

1 int HA[];
2 for int i := 0 to N-1 in parallel do
3 HA[i] := Hash(A[i]) mod V;
4 end
5 int CounterArray[];
6 for int i := 0 to V-1 in parallel do
7 CounterArray[i] := 0;
8 end
9 for int i := 0 to N-1 in parallel do

10 AtomicAdd(CounterArray[HA[i]], 1);
11 end
12 int OffsetArray[] := PrefixSum(CounterArray);
13 for int i := 0 to V-1 in parallel do
14 CounterArray[i] := 0;
15 end
16 int E[]; // Analogue of Edges array in Alg. 4
17 for int i := 0 to N-1 in parallel do
18 int pos := OffsetArray[HA[i]] + AtomicAdd(CounterArray[HA[i]],

1);
19 E[pos] := A[i];
20 end

Algorithm 7: HashGraph construction algorithm Version 1.0.

2.5.2.2 HashGraph Version 2.0

Version 2.0 of the algorithm (Alg. 8) is designed to be more memory efficient
because it exploits the cache better by improved locality.

It is achieved through dividing data into bins of equal size and reordering
it accordingly. The goal is to decrease the distance between memory accesses
at the building stage, and thus increase the number of cache hits by exploit-
ing spatial locality of memory accesses (see Sec. 2.1 for more details). The
procedure is divided into three phases:
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1. Bin counting. Count the number of elements to be inserted into each
bin.

2. Data reorganization. Reorder the input data in a more cache-efficient
manner.

3. HashGraph creation. Put the data on their final places ready for probing.

One of the parameter of this algorithm is the number of bins. The authors
suggest 32000 as optimal value for hundreds of millions data entries that they
have tested it on. A modification that was done here compared to the original
version (except for the fix mentioned above) is taking ceiling of the fraction
as the value for BinSize on the first line. Without it (if BinSize = V/Bins),
the value of bin on line 4 might be greater than Bins, causing the line 5 to go
out of bounds for BinCounterArray. Reorganization of input data requires
allocating a separate array which increases memory comsumption. The usage
of 8 for-loops instead of 5 in the Version 1.0 can also introduce additional
slow-downs, however improved space locality is aimed to compensate it and
yield faster performance.

2.5.2.3 Probing a HashGraph

From the graph point of view, the simplest way to probe a key is to take the
vertex representing its hash value and look for the it within its neighbors like
it is done Alg. 9. This procedure is referred to as HashGraph–Probe–Standard.

Another algorithm (Alg. 10) is called HashGraph–Probe-New. It is de-
signed to query many keys at a time. The idea is to build another HashGraph
from the queried keys using the same hash function and consider all possible
hash values in parallel. For each value, the pair of the corresponding vertices
is taken from both graphs. Intersections of neighborhoods of these vertices in
all pairs will then yield a list of found keys.

HashGraph–Probe–Standard can also be used for multiple keys. To do so,
a parallel for-loop would iterate over the keys. As we cannot start another for
loop from inside a parallel one without knowing its bounds in advance, the
loop that actually finds the keys in the Edges array (Alg. 9 - line 4) cannot
be parallel.
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Input: Entry A[], int V, int N, int Cv, int Bins, Function Hash
Output: HashGraph with given values

1 int BinSize := dV/Binse;
2 int BinCounterArray[Bins];
3 for int i := 0 to Bins in parallel do
4 BinCounterArray[i] := 0;
5 end
6 for int i := 0 to N-1 in parallel do
7 int bin := Hash(A[i])modV /BinSize;
8 AtomicAdd(BinCounterArray[bin], 1);
9 end

10 int BinOffsetArray[] := PrefixSum(BinCounterArray);
11 int BinCounterArray[Bins];
12 for int i := 0 to Bins-1 in parallel do
13 BinCounterArray[i] := 0;
14 end
15 Entry Areorg[N];
16 for int i := 0 to Bins-1 in parallel do
17 int bin := Hash(A[i])modV /BinSize;
18 int pos :=

BinOffsetArray[bin]+AtomicAdd(BinCounterArray[bin], 1);
19 Areorg[pos] := A[i];
20 end
21 for int i := 0 to V-1 in parallel do
22 CounterArray[i] := 0;
23 end
24 int HA[N];
25 for int i := 0 to N-1 in parallel do
26 int pos := hash(Areorg[i].val) mod V;
27 AtomicAdd(CounterArray[pos], 1);
28 HA[i] := Hash(Areorg) mod V;
29 end
30 int OffsetArray[] := PrefixSum(CounterArray);
31 for int i := 0 to V-1 in parallel do
32 CounterArray[i] = 0;
33 end
34 Entry E[N];
35 for int i := 0 to N-1 do
36 int pos = OffsetArray[HA] + AtomicAdd(CounterArray[HA], 1);
37 E[pos] = Areorg[i];
38 end

Algorithm 8: HashGraph construction algorithm Version 2.0.
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Input: HashGraph HG, Key K
Output: True if the key is found

1 int Hash := HG.HashFun(key);
2 int Start := HG.Offset[Hash];
3 int End := HG.Offset[Hash + 1];
4 for int i := Start to End do
5 if HG.Edges[i] = K then
6 return True;
7 end
8 end
9 return False;

Algorithm 9: HashGraph–Probe–Standard algorithm.

Input: HashGraph HG, Keys K[]
Output: Keys from K that were found

1 bool Found[len(K)] = Array of False; HG’ := HashGraph(K);
2 for int i := 0 to V-1 in parallel do
3 for int v1 = HG.Offset[i] to HG.Offset[i + 1] do
4 for int v2 = HG’.Offset[i] to HG’.Offset[i + 1] do
5 if HG.Edges[v1] == HG’.Edges[v2] then
6 Found[HG.Edges[v1]] = True;
7 end
8 end
9 end

10 end
Algorithm 10: HashGraph–Probe–New algorithm.
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Chapter 3
Realization

3.1 Implementation

Cuckoo hash table and HashGraph of versions 1.0 and 2.0 were realized using
Template Numerical Library. The classes make use of TNL Arrays and each
has its View class implementing most of the functionality. The View-classes
for the hash tables store Views of the tables’ member TNL Arrays as their
class members.

Each class representing a table has two derived classes providing Set and
Map interfaces (with their own views in case of HashGraph). The Table class
in both cases accepts a template parameter called Item that can be either of
type Value<T> (for Set) or Pair<K, V> (for Map). These two data types are
used as simple wrappers for actual data entries. They both have a member
called key that is used in the table’s logic. This allows to unify that logic in
one parent Table class. Type of the key is supplied as the second template
parameter called Key. Considering that a Map is nothing but a version of

Figure 3.1: General class diagram for the implemented classes
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Set storing key-value pairs, it is enough to demonstrate functionality and
performance for the Set version. Thus, from now on this text will refer to
Set derived class interchangeably with the parent Table class representing the
table itslef. The child class for map is different only in its ability to return
associated value for each key queried. The third template parameter Device
specifies whether the data is allocated on CPU or GPU, and is passed further
to all used TNL containers.

Each implemented class has a constructor designed to accept a TNL Array
of values used as input data entries. The array’s Device parameter should be
the same as the table’s. It also contains a find method that has the following
prototype:

void find(
typename Array <Key , Device >:: ConstViewType

keys ,
ArrayView <bool , Device > success )

This method queries each element from the keys array view and sets the
element of success with the same index to a boolean value indicating whether
or not the key was found in the table. A version to probe a single key is
provided as well. All it does is constructing a single-element array with that
key and return success flag as a boolean value.

Constructor of each table’s view accepts a pointer to the table itself and
extract views from its member arrays. The view construction is triggered by
the constructor of the table, and a pointer to it is stored as the table’s member.
The view can be returned from the table using a getter method, and is being
destroyed by the table’s destructor. Map and Set views derive from the table
view. Each implements an interface that allows to query a key from inside a
CUDA kernel. The actual algorithm for a single-element probing is realized
in the table view method with the following prototype:

template <bool writeResult >
__cuda_callable__ bool find(

const K& key , Item* item) const

This method returns True if the key is found. If writeResult = true, the
found item into the address supplied as the second argument (used in Map
views). Set and Map views just provide interfaces for this method.

3.2 Class HashFunction
Trivially, all hashing algorithms are based on usage of hash functions. In
this work, they are implemented as a template functor class with special-
izations for all data types used in testing. Each specialization uses its own
approach (iterative multiplication and addition for integer arrays, std::hash
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for std::strings etc.). However, the resultant value, even modulo the max-
imum required number, cannot be used as a hash value in itself. The reason
is that Cuckoo hashing generates its hash functions randomly and has to re-
generate them after each failed attempt to build the table. Thus, each hashing
operation must be dependent on unique attributes of each hash function. The
easiest way to realize that is to use the following formula:

(a * spec(value) + b) % PRIME % max

, where spec is a method specialized for each hashed data type, a and b are
unique attributes of the HashFunction instance, PRIME is defined as 334214459
and max is maximum acceptable hash value (relevant to the context of usage).
Each instance can be initialized by specific values of a and b.

3.3 Implementation of Cuckoo hashing
The approach is realized in classes CuckooHashMap and CuckooHashSet de-
rived from CuckooHashTable and their common corresponding view class
called CuckooHashTableView with derived Map and Set views.

By definition of Cuckoo hash table, it contains two one-dimensional arrays:
an array of stored items (the table itself) and the array of hash-functions.
Both are represented by TNL::Containers::Array in this implementation.
Apart from the input array, the constructor of the table accepts table size,
number of hash functions and maximum number of iterations. By default,
these arguments are set to the values suggested by the authors and described
in Sec. 2.4.1. However, the advised choice of 4 hash functions has proven not
enough for larger data as it forces the building algorithm to go into an infinite
loop of failed insertions. In our testing setup, we used the value of 6, and it
was practically found that the number actually growth as the size of input
data increases.

3.3.1 Storing and indexing
As mentioned in Sec. 2.4.4, it is more time-efficient to store each data key
with an integer index representing the hash function used to hash the key. It
might be useful later to find a new function to re-insert the key after eviction.
The easiest way to do that was to introduce a new structure called Entry that
would store both values together, and then use Array<Entry, Device> as the
main data storage.

The process of building the table supposes constant eviction and re-inser-
tion of the keys that were previously stored there. That is the natural way
of Cuckoo hash table to handle the hash collisions. Having numerous threads
performing those operation simultaneously will inevitably lead to race condi-
tions. The only tool offered by CUDA to fight the race condition is the usage of
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atomic operations (in our case, atomicExch can be a solution). The problem
with provided operations is that they only work for a limited number of stan-
dard primitive types from the C language. Thus, applying atomic operations
to the instances of Entry is impossible. The solution used here was storing
table contents separately from their indices. The class CuckooHashTable uses
two TNL Arrays to represent the data. The class attributes are listed as
follows:

• Array<Entry, Device> m content keeps the data entries in the same
order as they were supplied;

• Array<int, Device> m table references then by indices in the order
specified by the algorithm;

• Array<HashFunction<Key>, Device> m hashFunctions contains a
number of hash functions given as constructor parameter.

All evictions and insertions are then done on m table using atomic operations,
and probing of an element in position i is done by accessing m content[m -
table[i]].

3.3.2 Initialization of hash functions

Initialization of hash functions is done in parallel as well. Each kernel started
by ParallelFor is supplied with integer index i of its hash function and
is supposed to randomly initialize it. Limitiations of CUDA framework do
not allow calling a host function (not defined with a special macro) from a
device kernel. That prevents using the rand function from standard C library.
Interface of ParallelFor does not allow to generate and pass a separate
random integer to each instance of the kernel either. So instead, on each re-
initialization, a new integer r was generated randomly for all hash functions.
That value was supplied to all parallel kernels together with the index i of a
hash function they had to initialize. Each kernel then would pass the following
values to a constructor of its corresponding hash function:

a = r ∗ i + 10538

b = r ∗ i + 152324

. The constant integer numbers chosen are irrelevant and could really be set
to any random value. This way each hash function was different from the
others while each re-generation produced a new set of functions written into
the later used array.
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3.3.3 Insertion and probing
Insertion of each data key from the input array was done by a procedure
called insert impl defined as cuda callable . The procedure is called
from ParallelFor and is supplied a view of a common 1-element result
array indicating success. ParallelFor itself is enclosed in a do-while loop
that checks the success after each attempt to insert all the keys. If insertion
of at least one key is failed, the only value inside result is set to false and
the loop is started again from initializing the hash functions.

As for all classes created here, probing is done by the find method. In
case of Cuckoo hashing, it is done by executing a ParallelFor2D. The first
dimension of its execution specifies the key in queried array to look for, and
the second one determines which hash function to use to find a candidate
position of the key. When a particular kernel is lucky to be provided an index
of a key with the index of the function that the key was hashed with, it sets
the element in the success array with corresponding index to true. In case of
a Map, it also writes a value mapped to by the found key into another output
array.

In case of CuckooHashTableView and its derived Map and Set classes,
they iterate over the hash functions sequentially until the key is found. That
is the only way to make this method usable from inside a CUDA kernel as a
ParallelFor cannot be executed from there.

3.4 Implementation of HashGraph
As HashGraph is nothing but a version of Compressed Sparse Row (Sec.
2.5.1.2), their structures look very much alike.

3.4.1 Structure
Unlike in Cuckoo hash table, here we do need multiple hash functions, nor
do we need to deal with race conditions. This allows us to store the data as
they are in a single array without using Entry wrapper or a separate array
of indices. Thus, apart from the view pointer, both versions of HashGraph
(1.0 and 2.0 - classes HashGraphV1 and HashGraphV2) have only these class
members:

• Array<Item, Device> m content - inserted data of type Item. Corre-
sponds to Edges array in Alg. 4;

• Vector<int, Device> m offset - same use as in CSR;

• HashFunction<Key> m hash - one hash function is enough.

However, we also have a variant of the version 1.0 implemented using
TNL::Algorithms::Segments::CSR whose functionality substitutes all the
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actions needed to process the Offset array (while its instance replaces the
array itself in the HashGraph’s class members). Each segment corresponds
to a separate hash value, and its indices iterate over the keys hashed into
it. CounterArray from the original algorithm is then used to initalize the
segment sizes. This variant is realized in HashGraphS class. From now on,
we will refer to it as Segment version, while the other two will be called Ar-
ray versions. All classes have their corresponding views (HashGraphSView,
HashGraphV1View, HashGraphV2View) and derived Map and Set implementa-
tions with Map and Set views. The last two are derived from the View class
and used for calling its method for probing a single key.

The process of construction of the Array versions in our implementation
is very close to the one described in Sec. 2.5.2. It is only worth mentioning
that the function PrefixSum used in Alg. 7 and 8 works by copying the
CounterArray into OffsetArray and then passing it to TNL’s Scan class’s
exec method with lambda returning sum of its arguments (See Sec. 2.3.3).

The Segment version is constructed in a similar way to the version 1.0
except that the first part of the building process is done by the HashGraph
class itself instead of the View class. This had to be done so because the
CounterArray dictates the segment sizes for the CSR instance, and the
CSRView cannot accept it as the views do not allocate any data in TNL.
Thus, only the actual data placement is done by the view constructor.

3.4.2 Probing

Algorithm HashGraph–Probe–New supposes building a second HashGraph of
queried keys and running parallel kernels in 3 dimensions. The first one would
go through all hash values, and it is possible to do using ParallelFor because
the number of hash values is known in advance. However, the neighborhoods
of all hash values have unequal sizes, which makes using ParallelFor3D im-
possible (because it requires the sizes of all three dimensions to be equal and
known at launch time).

Somewhat optimal solution is to iterate in parallel over possible hash val-
ues, and started normal for-loops inside the kernel for neighborhoods of each
of them in both HashGraphs. This way has experimentally proven to be slower
than HashGraph–Probe–Standard which was our primary choice.

To realize it, we run a ParallelFor through all queried keys. Each kernel
then calls the single-key finding method that iterates in a sequential for-loop
over all keys having the same hash value as the one it is responsible for. In
practice, it means going from OffsetArray[hvi] to OffsetArray[hvi + 1],
where hvi = hash(ki) for each parallelly probed key ki (see Alg. 9).

Probing is done identically for both Array versions 1.0 and 2.0.
The Segment version uses a variant of the Probe–Standard by iterating

over a segment corresponding to the key’s hash value. The upper bound
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for the inner for-loop is learned from the getSegmentSize() method, and
getGlobalIndex is used to index m content looking for the key.
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Chapter 4
Testing

4.1 Recapitulation of the tested classes
The classes tests on which are described further implement two general ap-
proaches: Cuckoo hashing and HashGraph. Map classes derived from them
store key-value pairs and can be used for probing values by keys, while Sets do
the same with just singular keys. View classes are used to be passed to CUDA
kernels without performing deep copy of data provided that the data itself are
allocated on the proper device. There exists a class for each approach serving
as a parent for Map and Set and a View class with Map and Set views derived
from it. Below is the hierarchy of the implemented classes:

• std::unordered set - standard implementation from the STL library.
Represents a hash table-based set that can only be run on a CPU and
was only tested for comparison with our implementation.

• CuckooHashTable - based on Cuckoo hashing (Sec. 2.4). Building is
done by repeated eviction and insertions of keys with several hash func-
tions until a free position is found (Alg. 2). Probing is done by hashing
the queried key with all hash functions taking the results as potential
positions (Alg. 3). Implementation is described in Sec. 3.3.

– CuckooHashMap

– CuckooHashSet

• CuckooHashTableView

– CuckooHashMapView

– CuckooHashSetView

• HashGraphs - represents hash-entry mapping in a form of bipartite graph
stored as a Compressed sparse row (Sec. 2.5.1.2). The idea is de-
scribed in Sec. 2.5 and implementation is in Sec. 3.4. Has two versions
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of the probing algorithms: HashGraph–Probe–Standard (Alg. 9) and
HashGraph–Probe–New (Alg. 10). Building is also introduced in two
versions described below. Presented here in three variants:

– HashGraphV1 - a version of HashGraph with a simpler building
algorithm (Alg. 7) described in Sec. 2.5.2.1.

∗ HashGraphV1Map
∗ HashGraphV1Set

– HashGraphV1View

∗ HashGraphV1MapView
∗ HashGraphV1SetView

– HashGraphV2 - a version of HashGraph whose building algorithm
(Alg. 8) is designed to be more cache-efficient due to a better
spatial locality. Described in Sec. 2.5.2.2. This class is used for
testing HashGraph–Probe–New algorithm along with HashGraph–
Probe–Standard used in the other two classes.

∗ HashGraphV2Map
∗ HashGraphV2Set

– HashGraphV2View

∗ HashGraphV2MapView
∗ HashGraphV2SetView

– HashGraphS - based on HashGraphV1 but uses TNL’s CSR class
(Sec. 2.3.3) instead of managing some of the inner array by itself.

∗ HashGraphSMap
∗ HashGraphSSet

– HashGraphSView

∗ HashGraphSMapView
∗ HashGraphSSetView

4.2 Implementation of tests
The nature of TNL allows to compile and run our implementation in both
GPU and CPU and compare the results obtained from both options.

The tests consisted of unit tests implemented using GoogleTest library
and performance tests on large amounts of data. In order to test probing
mechanism (and thus correctness of insertion as well), two types of tests were
used in both test sets:

• Correct query - probing previously inserted keys (expecting success);
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• Wrong query - probing keys that were not previouly inserted (expecting
failure).

While testing Set classes meant nothing but checking if the inserted keys were
found (and not vice-versa), tests for Maps also checked if found keys were
associated with correct values.

4.2.1 Unit tests
GoogleTest is a C++ library used for unit testing (testing of separate func-
tions). It provides a simple interface for writing test suites and running them
in parallel and is used for testing all classes in Template Numerical Library.

In our implementation, we used tests on correct and wrong queries on
both Sets and Maps implemented by all classes. Testing data consisted of
consecutive numbers, and the test were done with 4 primitive C data types
- int, long, float and double (in all 16 combinations as key-value pairs in
case of Maps). The tests included testing keys separately and by whole arrays
- both using a specific array-probing method and a view class from inside a
ParallelFor body.

4.2.2 Performance tests
Performance is tested on two sets of data which is similar in format but while
one is generated randomly (using a Python script), the second one is taken
from a real-life case. We will describe the first one because we can control
its amount, and thus it is more representative in terms of size vs performance
dependency trends. The results obtained on the second set will be provided as
well. In our case, it allows to observe the performance on inputs of small sizes
and non-linear size differences. There is no other practical difference between
them as they have the same format.

The data consist of tetrahedral meshes cells represented as integer numbers
grouped by 4. In the code these groups are stored as instances of 4-element
static arrays (TNL::Containers::StaticArray<4, int>). The data are read
from the text files whose sizes differ by whole millions of entries (to form a
good illustration). In tests, we are interested in the way the execution time
depends on the number of input entries. We do not test Maps alongside Sets
because all difference between the classes lies in functionality, while building
and querying logic is absolutely identical. Randomly generated tests contain
8 sets of input data: from 5 ·106 to 3 ·107 entries with 5 ·105 between the sets.

To register the time spent on each operation, we used functions of the
standard library of the C language, namely the header <ctime>. It allows
to register processor time at any moment. To measure performance time,
it is possible to subtract registered times and represent them in seconds.
To wrap this functionality into a convenient interface, we introduced a class
Measurable that stores two registered times and can return their difference.
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Registering is triggered by calling protected methods begin operation() and
end operation(), and double time difference is returned by a public method
elapsed(). The classes we being tested are then derived from Measurable.
The registering methods are called before and after relevant operations (build-
ing and probing), and the execution time is used by the testing function for
further analysis.

It was important to compare our implementation to analogous classes in
the standard library. In case of STL, the functionality of a hash table is
implemented by the std::unordered set class. It has a different interface
from our implementation, mainly not being able to query multiple elements
at the same time. To test it alongside our classes with the same test suites, we
use a special wrapper class StdSetWrapper that inherits from Measurable and
uses an internal std::unordered set attribute to implement find method in
the same fashion. The only difference that cannot be overcome is the device
storing the content. Unlike our classes, std::unordered set can only accept
multiple values in a form of std::vector iterators. This forces us to store the
data twice - once into an std::vector for the StdSetWrapper and another
one into TNL::Containers::Array for our hash tables. Storing a copy of data
on the CPU will also allow us to access it in the testing functions without using
the expensive getElement methods of the TNL arrays.

The data are read from a text file by a get data function that accepts
the name of the file and an std::vector as an output parameter to fill with
data. The same data are written into an Array<T, Device> returned from
the function.

The function test class accepts the class as a template parameter and
runs three tests on that class:

• Building;

• Correct query;

• Wrong query.

Each test is represented by a separate template function and it writes the
double value representing execution time (returned from elapsed()) into a
global 2-dimensional array. Each of the functions has a specialization for
StdSetWrapper that uses the std::vector instead of a TNL Array. The
function test building returns the instance of the table built. Intuitively, it
cannot test correctness of the building process by itself as the contents are not
seen before the probing stage. The functions performing probing testing pass
the values to be queried to the find invalid function that runs the query
and checks the results in a ParallelFor loop. While test correct query
probes the same input array that was used for building, test wrong query
”ruins” the input values by calling the ruin procedure that replaces the first
value of the cell with its negative version. This way we make sure that the
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4.3. Testing setup

key will be missing from the table because the integers in the cells are always
positive.

On the top level, each of the classes is passed as a template parameter to
the test class function that runs test building in a loop for each input
file and stores the resultant tables in an std::vector. The tables are then
passed to the probing test suites. In case a test fails functionally along the
whole process, a failing assertion stops the execution. Otherwise, the two-
dimensional array of performance times is being filled and then printed to the
console.

For HashGraphV2, we made a comparison of HashGraph–Probe–Standard
and HashGraph–Probe–New. A graph was constructed from 4·107 entries, and
then both correct and wrong queries were performed with different numbers
of keys.

We run the tests on a single CPU thread and in multi-threaded GPU
version. We compare the time needed to complete the tests and calculate the
speedup resulting from the transition to GPU.

4.3 Testing setup
The test is performed on a machine with the following characteristics:

CPU: Intel® Core™ i9-9900KF CPU @ 3.60 GHz
(8 cores, 16384 KB cache)

RAM: 31Gi
GPU 0: GeForce RTX 2070 SUPER, 7979 MiB
GPU 1: GeForce RTX 2070 SUPER, 7982 MiB

In terms of software configuration, the system used was Arch Linux 5.9.13-
arch1-1. We used g++ 9.3.0 as host compiler and NVIDIA® Cuda V11.1.105.
Unit test were done using Google Test V1.10.0

Below are the results obtained in the tests. The first section of this chapter
shows and analyzes the results from testing on randomly generated values, the
second one shows that findings are consistent with real data.

After comparing the results acheived after running the tests on CPU and
GPU, we calculate the speedups between them as the relation of times spent
on both devices:

∆T = TCP U

TGP U

4.4 Results of testing with randomly generated
data

Each test was run on both CPU and GPU. In the results, we consider the
time spent on tests execution versus the number of input values.
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4. Testing

4.4.1 Results from running tests on CPU
4.4.1.1 Building test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.84 2.23 0.83 1.90 0.97 2.03 0.91 2.22 0.83
1 · 107 3.97 4.80 0.83 4.26 0.93 4.51 0.88 4.49 0.88

1.5 · 107 6.79 7.38 0.92 6.65 1.02 7.01 0.97 6.78 1.00
2 · 107 10.10 10.09 1.00 9.05 1.12 9.57 1.06 9.05 1.12

2.5 · 107 13.89 12.71 1.09 11.47 1.21 12.08 1.15 11.34 1.22
3 · 107 18.11 15.35 1.18 13.88 1.30 14.68 1.23 13.63 1.33

3.5 · 107 22.79 18.08 1.26 16.31 1.40 17.16 1.33 15.92 1.43
4 · 107 27.91 20.81 1.34 18.31 1.52 19.65 1.42 18.21 1.53

Table 4.1: Time in seconds spent on building hash tables of our imple-
mentation (CuckooHashSet, HashGraphSSet, HashGraphV1Set and Hash-
GraphV2Set - Sec. 4.1) with N elements of randomly generated data on a
single CPU thread with speedup compared to std::unordered set.
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Figure 4.1: Graph of performance of building hash tables on CPU with ran-
domly generated data - see Table 4.1.

As depicted on the graph, the amount of time spent by all of our classes
on building responds linearly to the size of input data. Compared to STL
version showing an exponential trend, it makes HashGraphs advantageous on
data larger than 1.5 · 107 elements even on the CPU (and Cuckoo hashing
for more than 2 · 107). The values are very close to each other with Hash-
GraphV2 slightly overtaking its competitors, which might be explained by its
better spatial locality. Despite algorithmic similarity, the Segment version of
HashGraph shows better results than HashGraphV1.
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4.4. Results of testing with randomly generated data

4.4.1.2 Correct query test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.81 7.16 0.25 2.49 0.73 2.30 0.79 1.56 1.16
1 · 107 3.94 15.13 0.26 5.21 0.76 4.76 0.83 3.32 1.19

1.5 · 107 6.75 23.19 0.29 7.87 0.86 7.21 0.94 5.05 1.34
2 · 107 10.03 31.25 0.32 10.54 0.95 9.67 1.04 6.79 1.48

2.5 · 107 13.78 39.38 0.35 13.25 1.04 12.17 1.13 8.56 1.61
3 · 107 17.91 47.48 0.38 15.94 1.12 14.65 1.22 10.34 1.73

3.5 · 107 22.52 55.60 0.41 18.67 1.21 17.10 1.32 12.07 1.87
4 · 107 27.56 63.76 0.43 21.34 1.29 19.57 1.41 13.82 1.99

Table 4.2: Time in seconds spent on probing N previously inserted elements
of randomly generated data over hash tables on a single CPU thread with
speedup compared to std::unordered set. Each table is built from the same
N elements and implemented by one of our classes (CuckooHashSet, Hash-
GraphSSet, HashGraphV1Set or HashGraphV2Set - Sec. 4.1).
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Figure 4.2: Graph of performance of probing correct keys over hash tables on
CPU with randomly generated data - see Table 4.2.

When it comes to probing, both Array versions again show much bet-
ter results than std::unordered set with Segment variant being slightly slower
than HashGraphV1 (although still linear) and significantly worse than Hash-
GraphV2. Cuckoo hash table, on the other hand, cannot compete with neither
of those as its linear growth is about three times faster. However, considering
exponential trend of the STL implementation, it is expected to start losing
the battle on much greater amounts of data. Unfortunately, we cannot check
this hypothesis as the memory capacity of our equipment is too limited.
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4. Testing

4.4.1.3 Wrong query test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.79 6.87 0.26 2.07 0.86 1.84 0.97 1.10 1.63
1 · 107 4.11 14.59 0.28 4.39 0.94 3.85 1.07 2.41 1.71

1.5 · 107 7.79 22.35 0.35 6.61 1.18 5.83 1.34 3.66 2.13
2 · 107 12.40 30.13 0.41 8.88 1.40 7.84 1.58 4.96 2.50

2.5 · 107 17.83 37.97 0.47 11.17 1.60 9.88 1.80 6.26 2.85
3 · 107 24.07 45.78 0.53 13.45 1.79 11.92 2.02 7.59 3.17

3.5 · 107 31.16 53.62 0.58 15.79 1.97 13.93 2.24 8.86 3.52
4 · 107 39.07 61.46 0.64 18.04 2.17 15.95 2.45 10.17 3.84

Table 4.3: Time in seconds spent on probing N missing keys over hash ta-
bles on a single CPU thread with speedup compared to std::unordered set.
Each table is built from different N elements of randomly generated data and
implemented by one of our classes (CuckooHashSet, HashGraphSSet, Hash-
GraphV1Set or HashGraphV2Set - Sec. 4.1).

0.5 1 1.5 2 2.5 3 3.5 4
·107

0

12.
29

24.
58

36.
88

49.
17

Number of entries

T
im

e
(s

)

std::unordered set
CuckooHashSet
HashGraphSSet

HashGraphV1Set
HashGraphV2Set

Figure 4.3: Graph of performance of probing wrong keys over hash tables on
CPU with randomly generated data - see Table 4.3.

Trends for probing wrong keys look very close to the previous test except
that HashGraphs show slightly better results here. Interestingly, the opposite
is true for the STL and Cuckoo versions.

4.4.1.4 Comparing HashGraph probing algorithms

Both probing algorithms react linearly to the increase in the number of queried
keys. HashGraph–Probe–Standard looks faster in all cases. Moreover, its
growth rate is steeper than the one of HashGraph–Probe–New which leaves
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4.4. Results of testing with randomly generated data

N STANDARD NEW
1 · 107 3.28 13.79
2 · 107 6.67 20.47
3 · 107 10.16 27.07
4 · 107 13.74 33.69

(a) Testing with correct queries - probing
N different previously inserted keys.

N STANDARD NEW
1 · 107 2.53 12.63
2 · 107 5.06 18.30
3 · 107 7.60 23.94
4 · 107 10.13 29.55

(b) Testing with wrong queries - probing
N missing keys.

Table 4.4: Comparing times spent by two HashGraph (Sec. 2.5) probing
algorithms (Probe–Standard - Alg. 7 and Probe–New - Alg. 8) on a single
CPU thread. The table is built from 4 · 107 elements of randomly generated
data and implemented as HashGraphV2 class (see Sec. 4.1).

no hope for the latter one to overtake it for larger data. This contradicts our
expectations as the New algorithm is supposed to be more time-efficient.

4.4.2 Results from running tests on GPU
Unsurprisingly, running Cuckoo hashing and HashGraphs in parallel on GPU
makes them much faster than on CPU, and std::unordered set cannot compete
with them anymore.

4.4.2.1 Building test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.84 0.62 2.97 0.15 12.27 0.16 11.50 0.22 8.36
1 · 107 3.97 1.25 3.18 0.29 13.69 0.31 12.81 0.44 9.02

1.5 · 107 6.79 1.88 3.61 0.43 15.79 0.46 14.76 0.65 10.45
2 · 107 10.10 2.48 4.07 0.58 17.41 0.61 16.56 0.92 10.98

2.5 · 107 13.89 3.06 4.54 0.73 19.03 0.77 18.04 1.15 12.08
3 · 107 18.11 3.67 4.93 0.88 20.58 0.92 19.68 1.38 13.12

3.5 · 107 22.79 4.24 5.38 1.02 22.34 1.07 21.30 1.62 14.07
4 · 107 27.91 4.86 5.74 1.17 23.85 1.22 22.88 1.86 15.01

Table 4.5: Time in seconds spent on building hash tables of our imple-
mentation (CuckooHashSet, HashGraphSSet, HashGraphV1Set and Hash-
GraphV2Set - Sec. 4.1) with N elements of randomly generated data in
parallel on GPU with speedup compared to std::unordered set running on
CPU.

At the building stage, all our classes behave in a linear fashion. The
Segment HashGraph and the HashGraphV1 show exactly the same perfor-
mance here. Contrary to our expectations, HashGraphV2 takes more time
than them despite its better space locality. It can be explained by more com-
plicated building algorithm, but generally we can conclude that the goal of
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Figure 4.4: Graph of performance of building hash tables on GPU with ran-
domly generated data - see Table 4.5.

its improvements is not reached. In any case, both versions still show much
better results than Cuckoo hashing that took almost 5 seconds to build on the
largest input set of data compared to the HashGraphs spending between 1
and 2 seconds. Compared to the Standard implementation, we get a speedup
of 4.45 to 12.3 times.

4.4.2.2 Correct query test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.81 0.77 2.35 0.32 5.66 0.25 7.24 0.27 6.70
1 · 107 3.94 1.53 2.58 0.64 6.16 0.50 7.88 0.52 7.58

1.5 · 107 6.75 2.29 2.95 0.96 7.03 0.74 9.12 0.79 8.54
2 · 107 10.03 3.07 3.27 1.37 7.32 1.05 9.55 1.12 8.96

2.5 · 107 13.78 3.85 3.58 1.72 8.01 1.31 10.52 1.40 9.84
3 · 107 17.91 4.63 3.87 2.06 8.69 1.58 11.34 1.68 10.66

3.5 · 107 22.52 5.41 4.16 2.40 9.38 1.84 12.24 1.96 11.49
4 · 107 27.56 6.20 4.45 2.75 10.02 2.11 13.06 2.24 12.30

Table 4.6: Time in seconds spent on probing N previously inserted elements
of randomly generated data over hash tables in parallel on GPU with speedup
compared to std::unordered set running on CPU. Each table is built from the
same N elements and implemented by one of our classes (CuckooHashSet,
HashGraphSSet, HashGraphV1Set or HashGraphV2Set - Sec. 4.1).

Again, HashGraphs were the winners of the comparison being very close
to each other, and Cuckoo hash table is more than twice slower than them.
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4.4. Results of testing with randomly generated data
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Figure 4.5: Graph of performance of probing correct keys over hash tables on
GPU with randomly generated data - see Table 4.6.

The version 2.0 of HashGraph still shows worse performance than version 1.0
but this time better than the Segment version. Still, all four of them are much
faster than the standard class running on CPU, and the gap between them
grows with the size of input data.

4.4.2.3 Wrong query test

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

5 · 106 1.79 0.59 3.03 0.25 7.16 0.15 11.93 0.15 11.93
1 · 107 4.11 1.17 3.51 0.50 8.22 0.30 13.70 0.30 13.70

1.5 · 107 7.79 1.76 4.43 0.75 10.39 0.45 17.31 0.45 17.31
2 · 107 12.40 2.35 5.28 1.07 11.59 0.63 19.68 0.63 19.68

2.5 · 107 17.83 2.95 6.04 1.34 13.31 0.79 22.57 0.79 22.57
3 · 107 24.07 3.54 6.80 1.61 14.95 0.95 25.34 0.95 25.34

3.5 · 107 31.16 4.14 7.53 1.89 16.49 1.10 28.33 1.10 28.33
4 · 107 39.07 4.74 8.24 2.16 18.09 1.26 31.01 1.26 31.01

Table 4.7: Time in seconds spent on probing N missing keys over hash tables of
s in parallel on GPU with speedup compared to std::unordered set running on
CPU. Each table was built from different N elements of randomly generated
data and implemented by one of our classes (CuckooHashSet, HashGraphSSet,
HashGraphV1Set or HashGraphV2Set - Sec. 4.1).

General comparison between the trends here is quite similar to the Cor-
rect query version except that all values are smaller (just like it was in CPU
testing).
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Figure 4.6: Graph of performance of probing wrong keys over hash tables on
GPU with randomly generated data - see Table 4.7.

4.4.2.4 Comparing HashGraph probing algorithms

N STANDARD NEW
1 · 107 0.52 3.37
2 · 107 1.11 4.98
3 · 107 1.68 6.40
4 · 107 2.24 7.66

(a) Testing with correct queries - probing
N different previously inserted keys.

N STANDARD NEW
1 · 107 0.30 2.07
2 · 107 0.62 2.90
3 · 107 0.94 3.66
4 · 107 1.25 4.41

(b) Testing with wrong queries - probing
N missing keys.

Table 4.8: Comparing performances of two HashGraph (Sec. 2.5) probing
algorithms (Probe–Standard - Alg. 7 and Probe–New - Alg. 8) in parallel on
GPU. The table is built from 4 ·107 elements of randomly generated data and
implemented as HashGraphV2 class (see Sec. 4.1).

All values are much smaller than in the CPU version (as expected). How-
ever, both preserve linear dependency and the New algorithm is still much
slower than the Standard one.

4.4.3 Speedup on GPU compared to CPU

It is clear that all our classes show themselves much more efficient when run
on GPU. This is an illustrated analysis of the speedup.
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4.4. Results of testing with randomly generated data

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
5 · 106 3.60 12.67 12.69 10.09
1 · 107 3.84 14.69 14.55 10.20

1.5 · 107 3.93 15.47 15.24 10.43
2 · 107 4.07 15.60 15.69 9.84

2.5 · 107 4.15 15.71 15.69 9.86
3 · 107 4.18 15.77 15.96 9.88

3.5 · 107 4.26 15.99 16.04 9.83
4 · 107 4.28 15.65 16.11 9.79

Table 4.9: Speedup of building hash tables (CuckooHashSet, HashGraphSSet,
HashGraphV1Set or HashGraphV2Set - Sec. 4.1) with randomly generated
data of size N after switching from using a single CPU thread to a parallel
GPU run.
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Figure 4.7: Graph of speedup of building hash tables with randomly generated
data - see Table 4.9.

4.4.3.1 Building test

Clearly, all three types of hash tables build faster on GPU. And the rate
of this acceleration does not seem to depend much on the size of input data,
although the trends for HashGraphV1 and HashGraphS are rather logarithmic
than constant. As we can observe, it exceeds 15 times for the largest input
data while HashGraphV2 and Cuckoo hashing follow almost constantly around
10 and 3.5 times respectively. HashGraph version 2.0 seems to have a tiny
decreasing and Cuckoo hashing - a slightly increasing trend, but that is hardly
noticeable.
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4.4.3.2 Correct query test

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
5 · 106 9.30 7.78 9.20 5.78
1 · 107 9.89 8.14 9.52 6.38

1.5 · 107 10.13 8.20 9.74 6.39
2 · 107 10.18 7.69 9.21 6.06

2.5 · 107 10.23 7.70 9.29 6.11
3 · 107 10.25 7.74 9.27 6.15

3.5 · 107 10.28 7.78 9.29 6.16
4 · 107 10.28 7.76 9.27 6.17

Table 4.10: Speedup of probing N previously inserted elements of randomly
generated data over hash tables of our implementation (CuckooHashSet, Hash-
GraphSSet, HashGraphV1Set and HashGraphV2Set - Sec. 4.1) after switching
from using a single CPU thread to a parallel GPU run. Each table was built
from the N elements.
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Figure 4.8: Graph of speedup of probing correct keys over hash tables with
randomly generated data - see Table 4.10.

These results look more optimistic for Cuckoo hashing, although as we
remember, it lost the comparison in actual values to the HashGraphs. Its
probing speed has become around 10 times faster on GPU. HashGraphV1 has
started at roughly the same point but then stabilized at around 9.3 times.
Segment and version 2.0 followed it with the same shape at around 7.7 and
6.15 respectively.

48



4.4. Results of testing with randomly generated data

4.4.3.3 Wrong query test

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
5 · 106 11.64 8.28 12.27 7.33
1 · 107 12.47 8.78 12.83 8.03

1.5 · 107 12.70 8.81 12.96 8.13
2 · 107 12.82 8.30 12.44 7.87

2.5 · 107 12.87 8.34 12.51 7.92
3 · 107 12.93 8.35 12.55 7.99

3.5 · 107 12.95 8.35 12.66 8.05
4 · 107 12.97 8.35 12.66 8.07

Table 4.11: Speedup of probing N missing keys over hash tables of the same
size N built with randomly generated data in our implementation (Cuck-
ooHashSet, HashGraphSSet, HashGraphV1Set and HashGraphV2Set - Sec.
4.1) after switching from using a single CPU thread to a parallel GPU run.
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Figure 4.9: Graph of speedup of probing wrong keys over hash table with
randomly generated data - see Table 4.11.

In this test, all types of hash tables improved even greater with more than
12 times speedup for Cuckoo hashing and HashGraphV1. HashGraphS and
HashGraphV2 were close to each other at around 8 times speedup.

4.4.3.4 HashGraph probing algorithms

We see that both algorithms improve their performance on GPU, and espe-
cially for the wrong queries. However, even in this rating HashGraph–Probe–
Standard has shown better results.
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4. Testing

N STANDARD NEW
1 · 107 5.58 4.08
2 · 107 5.21 4.10
3 · 107 5.21 4.22
4 · 107 5.18 4.38

(a) Testing with correct queries - probing
N different previously inserted keys.

N STANDARD NEW
1 · 107 7.42 6.11
2 · 107 6.95 6.31
3 · 107 6.91 6.46
4 · 107 6.91 6.63

(b) Testing with wrong queries - probing
N missing keys.

Table 4.12: Comparing speedups of two HashGraph (Sec. 2.5) probing algo-
rithms (Probe–Standard - Alg. 7 and Probe–New - Alg. 8) with randomly
generated data after switching from using a single CPU thread to a parallel
GPU run. The table is built from 4 ·107 elements of randomly generated data
and implemented as HashGraphV2 class (see Sec. 4.1).

4.5 Results from testing with real data
Performing same tests with real data yielded very similar results showing the
same general trends. For the smallest input sizes, it was possible to see the
time delays fluctuating in a less linear fashion, which is especially clear when
looking at the speedup readings. However, as the amounts of data grow, the
observations seen in the previous section start showing themselves again.

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 3.21 · 10−4 3.51 · 10−4 0.915 3.01 · 10−4 1.07 3.36 · 10−4 0.955 1.42 · 10−3 0.226
3,698 8.87 · 10−4 1.04 · 10−3 0.855 8.44 · 10−4 1.05 9.40 · 10−4 0.944 2.40 · 10−3 0.370
29,674 7.04 · 10−3 8.22 · 10−3 0.856 6.92 · 10−3 1.02 7.72 · 10−3 0.912 1.32 · 10−2 0.533
240,373 5.84 · 10−2 6.87 · 10−2 0.850 5.87 · 10−2 0.994 6.51 · 10−2 0.897 1.02 · 10−1 0.574

1,939,414 6.40 · 10−1 7.30 · 10−1 0.876 6.10 · 10−1 1.05 6.65 · 10−1 0.962 8.43 · 10−1 0.759

Table 4.13: Time in seconds spent on building hash tables of our imple-
mentation (CuckooHashSet, HashGraphSSet, HashGraphV1Set and Hash-
GraphV2Set - Sec. 4.1) with N elements of real data on a single CPU thread
with comparison to std::unordered set.
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4.5. Results from testing with real data

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 3.22 · 10−4 1.17 · 10−3 0.276 5.41 · 10−4 0.595 4.83 · 10−4 0.667 2.97 · 10−4 1.08
3,698 8.42 · 10−4 3.26 · 10−3 0.258 1.46 · 10−3 0.578 1.31 · 10−3 0.642 8.78 · 10−4 0.959
29,674 7.15 · 10−3 2.60 · 10−2 0.275 1.17 · 10−2 0.609 1.04 · 10−2 0.684 6.29 · 10−3 1.14
240,373 6.08 · 10−2 2.15 · 10−1 0.283 9.57 · 10−2 0.636 8.58 · 10−2 0.709 5.14 · 10−2 1.18

1,939,414 6.47 · 10−1 2.39 0.271 8.87 · 10−1 0.729 8.15 · 10−1 0.794 5.30 · 10−1 1.22

Table 4.14: Time in seconds spent on probing N previously inserted ele-
ments of real data over hash tables on a single CPU thread with compari-
son to std::unordered set. Each table is built from the same N elements and
implemented by one of our classes (CuckooHashSet, HashGraphSSet, Hash-
GraphV1Set or HashGraphV2Set - Sec. 4.1).

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 2.24 · 10−4 1.07 · 10−3 0.210 4.74 · 10−4 0.473 4.58 · 10−4 0.489 2.24 · 10−4 1.00
3,698 6.21 · 10−4 2.95 · 10−3 0.211 1.27 · 10−3 0.490 1.10 · 10−3 0.562 5.67 · 10−4 1.10
29,674 5.08 · 10−3 2.38 · 10−2 0.213 1.01 · 10−2 0.502 8.73 · 10−3 0.582 4.45 · 10−3 1.14
240,373 4.45 · 10−2 1.97 · 10−1 0.227 8.22 · 10−2 0.542 7.12 · 10−2 0.625 3.64 · 10−2 1.22

1,939,414 5.93 · 10−1 2.28 0.260 7.34 · 10−1 0.808 6.45 · 10−1 0.920 3.61 · 10−1 1.64

Table 4.15: Time in seconds spent on probing N missing keys over hash ta-
bles on a single CPU thread with comparison to std::unordered set. Each
table is built from different N elements of real data and implemented by one
of our classes (CuckooHashSet, HashGraphSSet, HashGraphV1Set or Hash-
GraphV2Set - Sec. 4.1).

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 3.02 · 10−4 2.63 · 10−3 0.115 3.22 · 10−4 0.938 3.11 · 10−4 0.971 6.57 · 10−4 0.460
3,698 8.35 · 10−4 3.43 · 10−3 0.243 3.80 · 10−4 2.20 3.60 · 10−4 2.32 7.10 · 10−4 1.18
29,674 6.96 · 10−3 6.69 · 10−3 1.04 1.03 · 10−3 6.79 1.02 · 10−3 6.86 1.79 · 10−3 3.89
240,373 6.02 · 10−2 3.75 · 10−2 1.60 7.10 · 10−3 8.48 7.43 · 10−3 8.10 1.10 · 10−2 5.48

1,939,414 6.57 · 10−1 2.47 · 10−1 2.66 5.74 · 10−2 11.5 6.07 · 10−2 10.8 8.73 · 10−2 7.53

Table 4.16: Time in seconds spent on building hash tables of our imple-
mentation (CuckooHashSet, HashGraphSSet, HashGraphV1Set and Hash-
GraphV2Set - Sec. 4.1) with N elements of real data in parallel on GPU
with comparison to std::unordered set running on CPU.

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 3.32 · 10−4 1.79 · 10−4 1.85 6.46 · 10−4 0.514 4.82 · 10−4 0.689 5.04 · 10−4 0.659
3,698 8.96 · 10−4 4.52 · 10−4 1.98 6.46 · 10−4 1.39 4.60 · 10−4 1.95 4.70 · 10−4 1.91
29,674 7.10 · 10−3 4.69 · 10−3 1.51 1.98 · 10−3 3.59 1.56 · 10−3 4.55 1.56 · 10−3 4.55
240,373 6.02 · 10−2 3.71 · 10−2 1.62 1.68 · 10−2 3.58 1.33 · 10−2 4.53 1.35 · 10−2 4.45

1,939,414 6.40 · 10−1 2.97 · 10−1 2.15 1.28 · 10−1 5.01 1.02 · 10−1 6.30 1.09 · 10−1 5.87

Table 4.17: Time in seconds spent on probing N previously inserted ele-
ments of real data over hash tables in parallel on GPU with comparison to
std::unordered set running on CPU. Each table is built from the same N ele-
ments and implemented by one of our classes (CuckooHashSet, HashGraphS-
Set, HashGraphV1Set or HashGraphV2Set - Sec. 4.1).
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4. Testing

N std::unordered set CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1,313 2.36 · 10−4 1.27 · 10−4 1.86 3.85 · 10−4 0.613 2.27 · 10−4 1.04 2.12 · 10−4 1.11
3,698 5.93 · 10−4 3.28 · 10−4 1.81 3.98 · 10−4 1.49 2.19 · 10−4 2.71 2.14 · 10−4 2.77
29,674 5.03 · 10−3 3.47 · 10−3 1.45 1.40 · 10−3 3.59 8.54 · 10−4 5.89 8.26 · 10−4 6.09
240,373 4.46 · 10−2 2.82 · 10−2 1.58 1.24 · 10−2 3.60 7.40 · 10−3 6.03 7.33 · 10−3 6.09

1,939,414 5.94 · 10−1 2.28 · 10−1 2.61 9.77 · 10−2 6.08 5.90 · 10−2 10.1 5.78 · 10−2 10.3

Table 4.18: Time in seconds spent on probing N missing keys over hash tables
of s in parallel on GPU with comparison to std::unordered set running on CPU.
Each table was built from different N elements of real data and implemented
by one of our classes (CuckooHashSet, HashGraphSSet, HashGraphV1Set or
HashGraphV2Set - Sec. 4.1).

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
1,313 0.134 0.935 1.08 2.16
3,698 0.302 2.22 2.61 3.38
2,9674 1.23 6.76 7.61 7.39
240,373 1.83 8.28 8.76 9.26

1,939,414 2.95 10.60 11.00 9.66

Table 4.19: Speedup of building hash tables (CuckooHashSet, HashGraphS-
Set, HashGraphV1Set or HashGraphV2Set - Sec. 4.1) with real data of size
N after switching from using a single CPU thread to a parallel GPU run.
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Figure 4.10: Graph of speedup of building hash tables with real data - see
Table 4.19.
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4.5. Results from testing with real data

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
1,313 6.53 0.837 1.00 0.589
3,698 7.22 2.25 2.85 1.87
29,674 5.55 5.93 6.70 4.04
240,373 5.78 5.69 6.46 3.79

1,939,414 8.04 6.94 8.01 4.86

Table 4.20: Speedup of probing N previously inserted elements of real data
over hash tables of our implementation (CuckooHashSet, HashGraphSSet,
HashGraphV1Set and HashGraphV2Set - Sec. 4.1) after switching from using
a single CPU thread to a parallel GPU run. Each table was built from the N
elements.

N CuckooHashSet HashGraphSSet HashGraphV1Set HashGraphV2Set
1,313 8.39 1.23 2.02 1.06
3,698 8.98 3.19 5.04 2.65
29,674 6.87 7.23 10.2 5.38
240,373 6.98 6.64 9.62 4.96

1,939,414 10.00 7.51 10.90 6.24

Table 4.21: Speedup of probing N missing keys over hash tables of the same
size N built with real data in our implementation (CuckooHashSet, Hash-
GraphSSet, HashGraphV1Set and HashGraphV2Set - Sec. 4.1) after switching
from using a single CPU thread to a parallel GPU run.
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4. Testing
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Figure 4.11: Speedup of probing correct keys over hash tables with real data
- see Table 4.20.
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Figure 4.12: Speedup of probing wrong keys over hash tables with real data -
see Table 4.21.
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Conclusion

The purpose of this thesis was to understand the principles of programming for
GPU, study and implement some algorithms and data structures for hashing
on GPU, test the implemented approaches and compare their performances
to each other and to the version in the standard library of C++.

We studied the ideas behind CUDA programming model - a tool that al-
lows to develop programs with easy shifting between CPU and GPU using
high-level languages like C++. We also got familiar with Template Numer-
ical Library that simplifies this task even further by providing a convenient
interface for the functionality that CUDA is often used for.

Next, this thesis dived into understanding of the idea of a hash table that
encorporates a large set of data structures and related algorithms for time-
efficient storage and probing of data. From the vast family of those structures,
each of which employs different techniques to handle hash collisions, we se-
lected and explored two approaches that specifically aim to be efficient with
parallel execution using GPU. The first approach of our choice was Cuckoo
hashing whose idea is based on continuous eviction and reinsertion of keys
using different hash functions. The second was a HashGraph - a structure in
two versions that views a hash table as a bipartite graph and represents it in
a space-efficient form of a Compressed sparse row.

Both types of hashing structures were implemented by means of TNL
with derivations allowing to use each of them as a Set or a Map. Version
1.0 of HashGraph was done in two variants: one closely following the original
algorithm and the second one making use of TNL’s class representing CSR (we
called it the Segments variant). After that, their functionality and speed were
tested. The first test suite consisted of GoogleTest-based unit tests, while the
second one tested the performance with real and randomly generated data. In
the second set, the classes’ speed was compared to the one of std::unordered -
set that appears to be a version of hash set used in the Standard template
library of C++.

The tests have shown a manyfold increase in efficiency for our implemen-
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Conclusion

tation on GPU compared to CPU. Both approaches proved to be faster in
parallel than the STL implementation, but all three versions of HashGraph
have shown better results than Cuckoo hashing. In fact, they were so fast that
they managed to overtake the std::unordered set even on CPU when tested
with large amounts of data. It was also observed that querying all classes with
existing keys was a bit slower than doing so with keys that were not inserted.

Contrary to our expectations, the building algorithm for the HashGraph
version 2.0 was slower then for 1.0 and Segments variant. Its performance
while probing the correct keys was also slightly better, although this difference
disappeared while probing wrong keys on GPU. Moreover, HashGraph–Probe–
New has failed to overtake the HashGraph–Probe–Standard in the probing
time on both devices and with no regard to the number of keys queried.

When comparing time spent by all the classes on building on both de-
vices, we are most satisfied with HashGraph version 1.0 in both classical and
Segments variants. HashGraph version 2.0 followed and Cuckoo hashing was
the worst. In querying, on the other hand, Cuckoo hashing has shown itself
better. HashGraphV1 followed with Segments version speeding up more, and
HashGraphV2 was the last one.

In conclusion, from the algorithms that we have explored, the most ef-
ficient choice for both building and running on GPU from the performance
point of view appears to be a HashGraph of the version 1.0, and it is better
implemented without Segments. That is also true for CPU when used for
large data.

Possible future improvements
The most helpful addition to our implementation can be a support for dynamic
allocation, that being an ability to insert new keys after the process of building
was finished. It is possible to realize with Cuckoo hashing already, although
the effect of this on its performance is uncertain and must be tested. Similar
is believed to be possible for the HashGraphs, however the dynamic versions
their algorithms have not been published yet.
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Appendix A
Acronyms

CPU Central processing unit

CSR Compressed sparse row

CUDA Compute unified device architecture

GPU Graphics processing unit

SIMT Single instruction multiple threads

STL Standard template library

TNL Template numerical library
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Appendix B
Content of enclosed media

bin .................................... directory containing binary files
CuckooHash ....... directory with Cuckoo hash table, view, Map and Set
data.....directory with text files with data used for performance testing
HashGraph...................directory with HashGraph implementation

HashGraphV1 .. directory with HashGraph Version 1.0 implementation
HashGraphV2 .. directory with HashGraph Version 2.0 implementation
HashGraphMap.h ............. Map classes derived from both versions
HashGraphSet.h...............Set classes derived from both versions

UnitTests.......directory with unit tests implemented with GoogleTest
HashFunction.h.............HashFunction used by all implementations
main.cpp.....................................file with main() function
Makefile
Measurable.h....................base class enabling time measurement
Pair.hpp....................................class used by Map classes
readme.txt.....................................description of contents
test set.h.........................performance tests for all set classes
test set.hpp
thesis.pdf......................................thesis in PDF format
Value.hpp...........class used by Set classes for consistency with Maps
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