
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Machine Learning Techniques for High
Performance Image Compression

Metody strojového učení pro efektivní kompresi
obrazu

Rudolf Studený

Supervisor: Ing. Fliegel Karel Ph.D.
January 2021

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434707Personal ID number:Studený RudolfStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Radioelectronics

Electronics and CommunicationsStudy program:

Audiovisual and Signal ProcessingSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Machine Learning Techniques for High Performance Image Compression

Master’s thesis title in Czech:

Metody strojového učení pro efektivní kompresi obrazu

Guidelines:
Give an overview of recent methods for image compression using machine learning techniques (ML). Focus on the latest
applications of deep learning (DL) methods. For the selected problem and test data, analyze the performance of the
machine learning based methods compared to classical approaches.

Bibliography / sources:
[1] Chen, Z., He, T., Learning based Facial Image Compression with semantic fidelity metric, Neurocomputing, 338, 2019.
[2] Minnen, D., Ballé, J., Toderici, G., Joint autoregressive and hierarchical priors for learned image compression, Advances
in Neural Information Processing Systems, 2018.

Name and workplace of master’s thesis supervisor:

Ing. Karel Fliegel, Ph.D., Department of Radioelectronics, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 05.01.2021Date of master’s thesis assignment: 14.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Josef Dobeš, CSc.

Head of department’s signature
Ing. Karel Fliegel, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
At this place I would like to give a big
thank you to supervisor of this master
thesis, Karel Fliegel. His calm nature and
expertise in field results in very valuable
points and advice, during origin of this
paper.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

I hereby declare that I have written this
master thesis independently and quoted
all the sources of information used in ac-
cordance with methodological instructions
on ethical principles for writing an aca-
demic thesis. Moreover, I state that this
thesis has neither been submitted nor ac-
cepted for any other degree.

v

Abstract
This paper aims to create a guideline in
growing field of neural networks, and their
application in learning based system for
effective compression methods. In first
chapter looking to create theoretical foun-
dation, as to understand the terms that
we will further work with - such as ma-
chine learning, (deep) neural networks,
deep learning etc. Further we then dis-
cuss application of these methods in field
of image coding as well as discussing crite-
ria for classification of such systems. Sec-
ond chapter, the practical part then dis-
covers various implementation of learn-
ing based codecs (e.g. using TensorFlow
platform) and their performance, compar-
ing with conventional methods (JPEG,
JPEG2000). The paper is wrapped up by
discussing the results and future possibili-
ties for research.

Keywords: machine learning, image
processing, compression methods, neural
networks

Supervisor: Ing. Fliegel Karel Ph.D.
Praha, Technická 2, B3-556

Abstrakt
Tato práce si klade za cíl vytvořit orien-
tační návod stále rostoucím oborem stro-
jového učení, neuronových sítí a jejich
aplikace v systémech efektivních kompres-
ních metod založených na učení. První
kapitola tvoří teoretický základ, napomá-
hající k pochopení termínů se kterými
se budeme nadále setkávat - t.j. strojové
učení, (hluboké) neuronové sítě, hluboké
učení atd. Dále budou diskutovány apli-
kace těchto metod právě v poli kódování
obrazu, jakožto i návrh a diskuze kritérií
pro klasifikaci těchto systémů. Následující
kapitola, praktická část se věnuje různým
implementacím kodeků, systémech založe-
ných na učení (např. s použitím platformy
TensorFlow) a jejich efektivita v porov-
nání s konvenčními kompresními meto-
dami (JPEG, JPEG2000). Práce je uza-
vřená diskuzí výsledků, návrhů zlepšení a
možnostmi navazujícího výzkumu.

Klíčová slova: strojové učení,
zpracování obrazu, kompresní metody,
neuronové sítě

Překlad názvu: Metody strojového
učení pro efektivní kompresi obrazu

vi

Contents
1 Introduction 1
2 Theoretical part 3
2.1 Machine learning 4
2.1.1 General idea. 4
2.1.2 Problem classification in
Machine learning 6

2.2 Artificial Neural network 8
2.2.1 Biological background of Neural
Networks . 9

2.2.2 Artificial neuron 10
2.2.3 Learning and efficiency 14
2.2.4 Deep Learning 15
2.2.5 Topology of ANN 16

2.3 Applications in image compression 21
2.3.1 Examples from practice 23
2.3.2 Quality assessment - metrics . 24
2.3.3 Data sets 24

2.4 Classification proposal 25
2.4.1 Topology 25
2.4.2 Training 26
2.4.3 Performance 26

3 Practical part 29
4 Conclusion 33
A List of electronic attachments 35
Bibliography 37

vii

Figures
2.1 A Venn diagram showing the
relations of fields like AI, machine
learning, deep learning etc. Adapted
from [18] . 3

2.2 Design of checkers learning
program. Adapted from [34] 6

2.3 Examples of Supervised Learning
(Linear Regression) and
Unsupervised Learning (Clustering).
Adapted from [40] 8

2.4 Illustration of the brain. Adapted
from [27] . 9

2.5 Simple illustration of perceptron.
Adapted from [37] 10

2.6 Information processed in neuron.
Adapted from [27] 11

2.7 Example of various activation
functions. Adapted from [37] 12

2.8 Illustration of multilayered neural
network. Adapted from [37] 13

2.9 Figure (a) shows closeup digital
representation of single digit (seven);
figure (b) then shows 100 samples
from MNIST data set. Adapted from
[3] . 14

2.10 3-D plot of two variable cost
function. Adapted from [37] 15

2.11 Feed forward neural network.
Adapted from [53] 16

2.12 Recurrent neural network.
Adapted from [53] 17

2.13 Node map of an autoencoder
network. Adapted from [53] 18

2.14 Sparse autoencoder map.
Adapted from [53] 19

2.15 Architecture of LeNet-5, a CNN,
here for digits recongnition. Each
plane is a feature map, i.e. a set of
units whose weights are constrained
to be identical. Adapted from [29] 20

2.16 Image generated by
deconvolutional layers. Adapted from
[23] . 21

2.17 Motivation for data
encryption/decryption - storing or
further sharing. Adapted from [49] 22

2.18 Example of JPEG compression.
(Left) raw, uncompressed image,
(middle) medium level compression,
perceptually lossless, (right) highly
compressed image. Adapted from
[38] . 22

2.19 Single iteration of shared RNN
architecture from [50] 23

3.1 Comparison of (left) conventional
compression method JPEG2000
(right) ML-based compression system
[50] with identical target compress
ratio of 192 : 1 (0.125 bpp) 30

3.2 Compression method comparison,
MS-SSIM metric 32

3.3 Compression method comparison,
PSNR metric 32

viii

Chapter 1
Introduction

With gradually increasing requirements for effective representation and com-
pression of audiovisual content, for purpose of storing and sharing, we are
always looking for new ways and methods to push the boundary of target
quality and compression ratio achievable. With help of learning based al-
gorithms, in-depth research of neural networks and development of efficient
algorithms to train them - this appears to be a promising field to be applied
in new compression systems; this is also supported by JPEG Committee
forming a group, focused on exploring learning based image coding, so called
JPEG-AI, which is aiming to develop an end-to-end compression system with
potential for a standard to be defined. In this paper we would like to discuss
state of the art compression methods, their design, architecture, as well as
their performance in comparison with conventional systems and methods
that are being commonly used on daily basis. Further a classification criteria
would also be discussed.

1

2

Chapter 2
Theoretical part

Before delving deep into the topic at hand, let us briefly mention some
important terms that might often be intertwined or substituted - such as
Artificial Intelligence, Neural Networks, Deep Learning and more. For better
understanding, let us refer to Venn diagram 2.1 suggested by [18], that is
depicting the possible mutual connections of these terms, that we will further
be working with.

Figure 2.1: A Venn diagram showing the relations of fields like AI, machine
learning, deep learning etc. Adapted from [18]

As is apparent from diagram above, the most superior field that we define
and is related to this thesis (although way too broad) is Artificial Intel-
ligence (AI). One of possible definitions define the field as the study of
"intelligent agents", meaning any device that perceives its environment and
takes actions that maximize its chance of successfully achieving its goals [39].

3

2. Theoretical part
Formally, machine learning (ML) is a sub-field of artificial intelligence.

However, in recent years, some organizations have begun using the terms arti-
ficial intelligence and machine learning interchangeably (hence the ambiguity
of the terms). By ML we usually refer to a program or system that builds
(trains) a predictive model from input data. The system uses the learned
model to make useful predictions from new (never-before-seen) data drawn
from the same distribution as the one used to train the model. It also can
refer to the field of study concerned with these programs or systems [30]. We
will discuss the topic in further detail in upcoming section 2.1.

Last two terms that we would like to mention in this section, which are
closely linked isArtificial Neural Networks andDeep Learning. Former
term refers to the biologically-inspired programming paradigm which enables
a computer to learn from observational data. Latter term then describes a
powerful set of techniques for learning in neural networks. Neural networks
and deep learning currently provide the best solutions to many problems in
image recognition, speech recognition, and natural language processing [37],
and therefore being fundamental concepts for the aims of this thesis. These
will be deeply mentioned in section 2.2 as well.

2.1 Machine learning

As our understanding of computers continues to mature, it seems inevitable
that machine learning will play an increasingly central role in computer
science and computer technology. [34] Let us describe some general ideas
behind the term Machine learning (abbr. ML) and why is it perspective
discipline in these mentioned fields.

2.1.1 General idea

With growing complexity of tasks that we deal with in modern computer
science, programming, we naturally wish to use optimal approaches to reach
the best possible efficiency. By using Machine learning methods, we gain
time saving capabilities to process larger amount of data than ever before.
Furthermore with traditional programming, our program might be limited
or rather tailor-made to specific task that is defined apriori, without further
adaptability to possible changes or exceptions that might come up in future.
Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience
without being explicitly programmed. Machine learning focuses on the
development of computer programs that can access data and use it learn for
themselves. [56] This is to some extent analogous to human way of learning -
we change our behaviour and approach to different tasks based on experience
gained through our life.

To sum this up, let’s use definition from [34]:
Definition 2.1.1 (Machine Learning). A computer program is said to learn
from experience E with respect to some class of tasks T and performance

4

................................... 2.1. Machine learning

measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

As was mentioned before, this might not be the only possible definition,
but for our purpose of better understanding and it works well enough.

Let us propose one example from practice. The most significant early
milestone was A. L. Samuel’s study using the game of checkers. Samuel
devised detailed procedures both of "rote-learning" and "learning by general-
ization". When coupled with efficient methods of look ahead and search, these
procedures enabled the computer to raise itself by prolonged practice from
the status of a beginner to that of a tournament player. Hence there now
exists a checkers program which can learn through experience of checkers to
play better checkers. [31] In general, to have a well-defined learning problem,
we must identity these three features: the class of tasks, the measure of
performance to be improved, and the source of experience. To demonstrate
this on our checkers learning problem:. Task T : playing checkers. Performance measure P : percent of games won against opponents. Training experience E: playing practice games against itself

We can specify many learning problems in this fashion, such as learning
to recognize handwritten words, or learning to drive a robotic automobile
autonomously. [34]

The final design of our checkers learning system can be naturally described
by four distinct program modules that represent the central components
in many learning systems. These four modules, summarized in 2.2, are as
follows:. The Performance System is the module that must solve the given

performance task, in this case playing checkers, by using the learned
target function(s). In our case, the strategy used by the Performance
System to select its next move at each step is determined by the learned
V̂ evaluation function 1.. The Critic takes as input the history or trace of the game and produces
as output a set of training examples of the target function. As shown
in the diagram, each training example in this case corresponds to some
game state in the trace, along with an estimate Vtrain of the target
function value for this example.. The Generalizer takes as input the training examples and produces
an output hypothesis that is its estimate of the target function. It
generalizes from the specific training examples, hypothesizing a general
function that covers these examples and other cases beyond the training
examples.

1V is one particular target function among many that produces optimal play.

5

2. Theoretical part
. The Experiment Generator takes as input the current hypothesis

(currently learned function) and outputs a new problem (i.e., initial
board state) for the Performance System to explore. Its role is to pick
new practice problems that will maximize the learning rate of the overall
system.

Figure 2.2: Design of checkers learning program. Adapted from [34]

2.1.2 Problem classification in Machine learning

In section 2.1.1 we discussed general ideas behind the the ML - as well as
some basics terms - with help of an example of simple checkers "program".
Let us take a step back now, and generalize the problems (as in types of tasks
we deal with) that we define in modern ML methods.

Supervised vs. Unsupervised Learning

Often, we talk about ML as having two paradigms - supervised and unsu-
pervised learning. However, it is more accurate to describe ML problems as
falling along a spectrum of supervision between supervised and unsupervised
learning. Nevertheless, for the sake of simplicity, we will be describing these
two extremes.

In supervised machine learning, you feed the features and their corre-
sponding labels into an algorithm in a process called training. During training,
the algorithm gradually determines the relationship between features and
their corresponding labels. This relationship is called the model. Often times
in machine learning, the model is very complex. Further it finds patterns
between data and labels that can be expressed mathematically as functions.
Given an input feature, you are telling the system what the expected output

6

................................... 2.1. Machine learning

label is, thus you are supervising the training. The ML system will learn
patterns on this labeled data. In the future, the ML system will use these
patterns to make predictions on data that it did not see during training [8].
Such example of ML can be seen on figure 2.3 on the left. Below we will
present some of the most representative classifiers [40]:. Perceptron and Logistic Regression (LR) are probably the simplest linear

classifiers. For both models, the model (i.e., weights and bias) is basically
a simple linear transformation.. Artificial Neural Networks (ANN) is a general extension of the aforemen-
tioned linear classifiers. Compared with Perceptron or LR which linearly
project input data to the output, ANN has an additional “hidden layer”
(with a non-linear activation function), which enables ANN to model
non-linearity. We will go deeper into this type of classifier in section 2.2.. Decision Tree (DT) [41] and Random Forest (RF) [6] are two tree-
structure based non-linear classifiers. Based on certain attribute-splitting
criteria (e.g., Information Gain or Gini Impurity), DT can analyse the
most informative attributes sequentially (i.e., splitting) until the final
decision can be made.. Support Vector Machine (SVM) [9] is another popular supervised learn-
ing method, also called large margin classifier, as it aims at finding a
hyperplane that is capable of separating the data points (belonging to
different classes) with the largest margin. For non-linearly separable
data sets, various kernels (e.g., RBF (Radial Basis Function)) can be
applied into the SVM framework with good generalization ability.. In comparison to SVM, we have K-Nearest Neighbour (KNN) [10], which
does not require a training process (also referred to as lazy learning), is
another powerful non-linear classifier. The classification is performed
by distance calculation (between query and all the training examples),
distance ranking, and majority voting among the (K) nearest neighbours.

In unsupervised learning, the goal is to identify meaningful patterns in
the data (refer to the figure 2.3, right). To accomplish this, the machine must
learn from an unlabeled data set. In other words, the model has no hints
how to categorize each piece of data and must infer its own rules for doing so
[8]. For example, the clustering algorithm can be used to find the potential
patterns of some unlabelled data and the obtained results can be used for
future analysis. [40]
K-Means [19] and Principal Component Analysis (PCA) [45] are the two

most popular unsupervised learning algorithms. K-means aims to find K group
patterns from data by iteratively assigning each sample to different clusters
based on the distance between the sample and the centroid of each cluster.
PCA is normally used for dimensionality reduction, which can de-correlate
the raw features before selecting the most informative ones.

7

2. Theoretical part

Figure 2.3: Examples of Supervised Learning (Linear Regression) and Unsuper-
vised Learning (Clustering). Adapted from [40]

Reinforcement Learning

Another quite specific approach that is also worth to mention is reinforce-
ment learning. The term by itself is somewhat ambiguous, in that it refers
to simultaneously a problem, a class of solution methods that work well on
the class of problems, and the field that studies these problems and their
solution methods.

Reinforcement learning problems involve learning what to do—how to map
situations to actions—so as to maximize a numerical reward signal. In an
essential way they are closed-loop problems because the learning system’s
actions influence its later inputs. Moreover, the learner is not told which
actions to take, as in many forms of machine learning, but instead must
discover which actions yield the most reward by trying them out [46]. The lack
of a data requirement makes RL a tempting approach. However, designing a
good reward function is difficult, and RL models are less stable and predictable
than supervised approaches [8].

To put this simply reinforcement learning focuses on "trial and error" style
of training, by discovering best possible ways to reach the predefined goal of
our task, while receiving positive or negative feedback, to determine how well
is the learning agent doing.

2.2 Artificial Neural network

The Artificial Neural Networks (ANN) or more often simply Neural Net-
works are computing systems vaguely inspired by the biological neural
networks [7]. Before we begin with the technical description, it would be
useful to start with brief description of the biology of neural networks as we
know it from living organisms.

8

................................2.2. Artificial Neural network
2.2.1 Biological background of Neural Networks

The entire information processing system, i.e. the vertebrate nervous system,
consists of the central nervous system and the peripheral nervous system,
which is only a first and simple subdivision. In reality, such a rigid subdivision
does not make sense, but here it is helpful to outline the information processing
in a body.

The peripheral nervous system (PNS) comprises the nerves that are situated
outside of the brain or the spinal cord. These nerves form a branched and
very dense network throughout the whole body.

We would naturally like to focus on brain, as the main center of information
processing. To keep things simple, we will divide brain into 4 main parts, as
seen on 2.4.

The cerebrum (telencephalon) is one of the areas of the brain that changed
most during evolution. Along an axis, running from the lateral face to the back
of the head, this area is divided into two hemispheres, which are organized in
a folded structure.

These cerebral hemispheres are connected by one strong nerve cord ("bar")
and several small ones. A large number of neurons are located in the
cerebral cortex (cortex) which is approx. 2-4 cm thick and divided into
different cortical fields, each having a specific task to fulfill. Primary cortical
fields are responsible for processing qualitative information, such as the
management of different perceptions (e.g. the visual cortex is responsible for
the management of vision). Association cortical fields, however, perform more
abstract association and thinking processes; they also contain our memory.
[27]

Figure 2.4: Illustration of the brain. Adapted from [27]

To close out this section, we will focus on fundamental description of said
neuron, which we can consider as a basic processing unit the brain. A neuron
is nothing more than a switch with information input and output. The switch
will be activated if there are enough stimuli of other neurons hitting the
information input. Then, at the information output, a pulse is sent to, for
example, other neurons. To put it simply:. Synapses weight the individual parts of information. Dendrites then collect all parts of this information

9

2. Theoretical part
. In the soma the weighted information is accumulated. And the axon transfers outgoing pulses

All of the parts mentioned above can be found depicted in figure

2.2.2 Artificial neuron

Now let us put the knowledge gained in previous section 2.2.1, into context
of basic concepts of ANNs, their structure and design.

The fundamental unit the forms our neural network is once again neuron,
be it artificial one, called perceptron. To be more precise, perceptron
is a simple artificial neuron whose activation function consists of taking
the total net input and outputting 1 if this is above a threshold T , and 0
otherwise[57]. We will describe what is activation function further in this
chapter. Perceptrons were developed in the 1950s and 1960s by the scientist
Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter
Pitts. Today, it’s more common to use other models of artificial neurons, and
the main neuron model used is one called the sigmoid neuron [37].

Very similarly as with biological neuron, a perceptron takes several binary
inputs, x1, x2, ..., xn and produces a single binary output:

Figure 2.5: Simple illustration of perceptron. Adapted from [37]

Example above on figure 2.5 shows perceptron with three inputs x1, x2, x3,
which is in this case completely arbitrary, and in general perceptron can have
fewer or more inputs. Rosenblatt proposed a simple rule to compute the
output. He introduced weights, w1, w2, ..., wn real numbers expressing the
importance of the respective inputs to the output. The neuron’s output, 0 or
1, is determined by whether the weighted sum

∑
j wjxj is less than or greater

than some threshold value, arithmetically put:

output =
{

0, if
∑

j wjxj ≤ threshold
1, if

∑
j wjxj > threshold

(2.1)

That’s the basic mathematical model, although perceptron isn’t a complete
model of human decision-making. Connection between the neurons carries
the information that is to be processed. Naturally our next question should
be - how is the incoming information processed? For our neuron j, [27] defines
propagation function converting vector inputs to scalar network inputs:

10

................................2.2. Artificial Neural network
Definition 2.2.1 (Propagation function and network input). Let I = {i1, i2, ..., in}
be the set of neurons, such that ∀z ∈ {1, ..., n} : ∃wiz ,j . Then the network
input of j, called netj , is calculated by the propagation function fprop as
follows:

netj = fprop(oi1 , ..., oin , wi1,j , ..., win,j) (2.2)

Here the weighted sum is very popular: The multiplication of the output
of each neuron i by wi,j , and the summation of the results:

netj =
∑
i∈I

(oi · wi,j) (2.3)

Figure 2.6: Informa-
tion processed in neuron.
Adapted from [27]

At every moment, every neuron in network
happens to be in some state, it’s "active" so to
speak. This state further defines its reaction on
incoming information, and we refer to it as acti-
vation state or more often just shortly activation.
[27] provides following general definition:
Definition 2.2.2 (Activation state / activation).
Let j be a neuron. The activation state aj is ex-
plicitly assigned to j, indicates the extent of the
neuron’s activity and results from the activation
function.

So the current activation state of neuron is
based on the activation state as well as the input,
incoming information. This relation is described
by activation function [27]:
Definition 2.2.3 (Activation function). Let j be
a neuron. The activation function is defined as

aj(t) = fact(netj(t), aj(t− 1),Θj). (2.4)

It transforms the network input netj , as well as the previous activation state
aj(t− 1) into a new activation state aj(t), with the threshold value playing
an important role.

Unlike the other variables within the neural network the activation function
is often defined globally for all neurons or at least for a set of neurons and only
the threshold values are different for each neuron. The threshold value can
also be changed during time, e.g. by learning procedure. [27] As for the most
common activation functions: the most simple one is the binary threshold
function, also well known as Heaviside function (refer to figure 2.7) - value
changes from one to another, once overcoming given threshold; otherwise it
stays constant. Other very popular functions are Fermi function (also logistic
function), possibly expanded by a temperature agent T

1
1 + e

−x
T

(2.5)

11

2. Theoretical part
which gives us the possibility to change the gradient of the function and

approximate the Heaviside function. Another function would be hyperbolic
tangent. Both lastly mentioned, in contrast to Heaviside function, are differ-
entiable (fig. 2.7). Incidentally, there exist activation functions which are not
explicitly defined but depend on the input according to a random distribution
- stochastic activation function. [27]

Figure 2.7: Example of various activation functions. Adapted from [37]

Lastly we define output function of a neuron j calculates the values which
are transferred to the other neurons connected to j:
Definition 2.2.4 (Output function). Let the j be a neuron. The output
function

fout(aj) = oj (2.6)

calculates the output value oj of the neuron j from it’s activation state aj .

12

................................2.2. Artificial Neural network
Generally, the output function is defined globally, too. Often this function

is the identity, i.e. the activation aj is directly output:

fout(aj) = aj , so oj = aj (2.7)

Let us illustrate an example, how a perceptron can weigh up different kinds
of evidence in order to make decisions - this is plausible with a complex
network of perceptrons that could make quite subtle decisions:

Figure 2.8: Illustration of multilayered neural network. Adapted from [37]

The leftmost layer in this network is called the input layer, and the neurons
within the layer are called input neurons. The rightmost or output layer
contains the output neurons, or, as in this case, a single output neuron. The
middle layer is called a hidden layer, since the neurons in this layer are neither
inputs nor outputs [37]. Therefore an example in figure 2.8 is four-layer
network, with two hidden layers.

While the design of the input and output layers of a neural network is
often straightforward, there can be quite an art to the design of the hidden
layers. In particular, it’s not possible to sum up the design process for the
hidden layers with a few simple rules of thumb. Instead, neural networks
researchers have developed many design heuristics for the hidden layers, which
help people get the behaviour they want out of their nets. For example, such
heuristics can be used to help determine how to trade off the number of
hidden layers against the time required to train the network. [37]

Let us propose a simple example how to interpret the structure of simple
neural network for recognition of handwritten numbers. Taking the MNIST
data set of handwritten digits [28] - a single d igit would be represented
by field of pixels (28x28). Using simple black and white representation,
therefore just binary one, where 0 means white (blank space) and 1, black
(written part of the number). This easily fit our input (leftmost) layer of
neurons (perceptrons), specifically 28 · 28 = 784 of them; one for each pixel
in image on the input. (Refer to the figure 2.9)

Output layer then can consist of 10 neurons, each representing digits from
0 to 9, and their values in boolean logic - 0 (false) or 1 (true).

13

2. Theoretical part

Figure 2.9: Figure (a) shows closeup digital representation of single digit (seven);
figure (b) then shows 100 samples from MNIST data set. Adapted from [3]

2.2.3 Learning and efficiency

Since we are aiming to create an efficient model suitable to given task, we’d
like is an algorithm which lets us find weights and biases so that the output
from the network approximates y(x) for all training inputs x. To quantify
how well we’re achieving this goal we define a cost function 2:

C(w, b) ≡ 1
2n

∑
x

‖y(x)− a‖2 (2.8)

Here, w denotes the collection of all weights in the network, b all the biases,
n is the total number of training inputs, a is the vector of outputs from the
network when x is input, and the sum is over all training inputs, x. This
is actually nothing else than mean squared error (MSE) 3. This means that
objectively the goal of our training algorithm would be to keep the cost
function as low as possible, C(w, b) ≈ 0. The lower the MSE value, the closer
the output value is to the correct result.

The next milestone on our way is - how do we find this minimum of cost
function? This is reached by using an algorithm called gradient descent.
Suppose we are trying to minimize cost function C(v). This could be any
real-valued function with arbitrary amount of values: let’s say C is a function
of m variables, v1, v2, ..., vm. Then change ∆C in C produced by a small
change ∆v = (∆v1, ...,∆vm)T is

∆C ≈ ∇C ·∆v, (2.9)

where gradient ∇C is the vector

∇C ≡ (∂C
∂v1

, ...,
∂C

∂v2
)T . (2.10)

We will further also define
2Sometimes referred to as a loss or objective function.
3Or quadratic cost function.

14

................................2.2. Artificial Neural network

∆v = −η∇C, (2.11)

where η is a small, positive parameter (known as the learning rate). Then
equation 2.9 tells us that ∆C ≈ −η∇C ·∇C = −η‖∇C‖2. Because ‖∇C‖2 ≥
0, this guarantees that ∆C ≤ 0, i.e., C will always decrease, if we change v
according to the prescription in 2.11.

Figure 2.10: 3-D plot of two variable cost function. Adapted from [37]

To put this into a better perspective, let’s present a case, where C(v) being
function of two variables v1, v2 and as we know, our goal is to find a global
minimum of said function C(v). By one glance at 3-D plot 2.10 of presented
function C(v), we can immediately recognize there exist ideal combination of
variables v1, v2, the would give us the desired result [37].

The way the gradient descent algorithm works is - by making small changes
(defined by step η) and evaluating change ∆v using equation 2.11 - to repeat-
edly compute the gradient ∇C, and then to move in the opposite direction,
"falling down" the slope of the valley. This concept is then upscaled to
arbitrary amount of values, which takes us back to 2.10.

2.2.4 Deep Learning

It is worth mention what do we understand by the term deep learning
and deep neural networks (DNNs) since this term is being more and more
common while talking about modern learning-based methods.

Since idea of ANNs, that we started to described in previous sections, isn’t
anything new, it’s no surprise that the whole field developed during the years.
More often then not, we can see neural networks that doesn’t have just a
few stages, let’s say single hidden layer - that is something we call shallow
neural network models. We often look for more complex solutions to describe
our task; extracting smaller, more detailed (but also more abstract) features.

15

2. Theoretical part
Lately we often achieve this by stacking hidden layers, leading to so called
deep neural networks (DNNs).

Unsurprisingly this also brings a question of how to (effectively) train
such NNs. Learning (or sometimes called credit assignment) is about finding
weights (as described in section 2.2.3) that make the NN exhibit desired
behavior, such as driving a car for instance. Depending on the problem
and how the neurons are connected, such behavior may require long causal
chains of computational stages, where each stage transforms (of ten in a
non-linear way) the aggregate activation of the network. Deep Learning is
about accurately assigning credit across many such stages. BP-based training
of deep NNs with many layers, however, had been found to be difficult in
practice by the late 1980s and had become an explicit research subject by the
early 1990s. DL became practically feasible to some extent through the help
of Unsupervised Learning (section 2.1.2), further in he 1990s and 2000s also
saw brought many improvements of purely supervised DL and lastly Deep
NNs also have become relevant for the more general field of Reinforcement
Learning (2.1.2). [43]

2.2.5 Topology of ANN

This section is going to focus on common topologies of neural networks and
their names, often abbreviated. The fact that abbreviations are so commonly
spread in this field, makes it rather hard and overwhelming for inexperienced
person to orientate himself. Following chapter will often refer to very useful
sheet by Fjodor van Veen [53], providing well sorted information and visual
representation of topic at hand. Another note - list that will follow further
below won’t (and almost can’t be) complete, but should provide reader with
basic idea of structure and design of NNs, especially those applicable for
image processing (compression).

Feed Forward Neural Networks

Figure 2.11: Feed
forward neural network.
Adapted from [53]

Feed forward neural networks (FF or
FFNN) and perceptrons represent the simplest
examples of neural networks. We already de-
scribed perceptrons in more details under section
2.2.2, but very briefly: it is the fundamental unit
of neural networks, defined by weighted inputs
from other neurons, activation function and its
output.

Putting neurons into layers, we create network.
Each layer containing input, hidden or output
cells in parallel. FF network, as the name sug-
gests, is a one-directional network - feeding the
information from front and it propagates to the end, towards output cells on
the right. All nodes are fully connected, meaning that every node in given

16

................................2.2. Artificial Neural network
layer has connections to all nodes in the next one. The applications of FFNNs
are somewhat limited and they are often paired with other types of networks
for more complex tasks. By itself, they can be used as model for classification.

The decision-making of the network lies in the hidden layer in the middle.
As was mentioned in 2.2.2, every neuron has weights, which represents the
decision-making capabilities, once the information is being propagated through
them. These weights are set by process called training, during which we
feed the network the data on the input and pair them with expected data
on the output (so called supervised learning, 2.1.2). We can go back, to
the input layer, layer by layer comparing layer input with layer error. The
error being propagated is often some variation of the difference between the
input and the output (like MSE or just the linear difference) [53]. Each layer,
no matter how deep it is, contributes to next layer error; therefore, we can
adjust weights by value we can get by multiplying previous layer output by
output error multiplied by current layer output.[47] This process is called
Backpropagation.

Amongst some variations to general FF network we put: Radial Basis
Network (RBF), which is FF network that uses radial basis function 4 as
an activation function.2.2.3.

Another example is Deep feed forward network (DFF) pioneering the
way for deep learning in early 90s. General idea is the same as for FFNs,
adding more hidden layers (therefore deep). Although stacking hidden layers
led to exponential growth of training time causing them to be impractical,
with forthcoming more efficient approaches in early 00s, they now form a core
of modern ML systems.[47][48]

Recurrent Neural Networks

Figure 2.12: Recurrent neu-
ral network. Adapted from
[53]

Recurrent Neural Networks (RNN)
brings new type of nodes, cells - recurrent
cells. Our goal is to represent time implicitly
by its effects on processing rather than ex-
plicitly (as in a spatial representation) [14].
This idea first described by Jordan, M.I. in
1986 [22] allows us to involve the use of re-
current links in order to provide networks
with a dynamic memory.

Neurons are fed information not just from
the previous layer but also from themselves
from the previous pass. This also means that
order in which data are fed to the network matter - feeding it "dog" then "cat"
may yield different results compared to opposite order. One big problem with
RNNs is the vanishing (or exploding) gradient problem where, depending on
the activation functions used, information rapidly gets lost over time, just

4real-valued function ϕ whose value depends only on the distance between the input
and some fixed point, either the origin, or some other fixed point c [12]

17

2. Theoretical part
like very deep FFNNs lose information in depth. To put it in perspective:
if the weight reaches a value of 0 (vanishing) or 1 000 000 (exploding), the
previous state of the cell won’t be very informative. In general, recurrent
networks are a good choice for advancing or completing information, such as
autocompletion. [53]

Variation of RNNs called Long / short term memory (LSTM) aims
to deal with mentioned problem with exploding/vanishing gradient. This is
achieved by an efficient, gradient-based algorithm for an architecture enforcing
constant (thus neither exploding nor vanishing) error flow through internal
states of special units - memory cells. [20] These cells are made composed of
so called gates, which define whether to feed the information forward (and
how much of it) or erase/forget it. [53] They are used in fields such as speech
and writing recognition.
Gated recurrent units (GRU) then are very much similar to LSTMs by

design. They are wired slightly differently, with different gating - introducing
update and reset gates. GRUs are slightly less expressive, but a bit faster;
commonly used in speech (or sound in general) synthesis.

To all networks mention above in this section also exist a bidirectional vari-
ation, called Bidirectional recurrent neural networks, bidirectional
long / short term memory networks and bidirectional gated recur-
rent units (BiRNN, BiLSTM and BiGRU respectively). As for the topology
itself, they appear to be all them same. The difference is in fact that they
can be trained without the limitation of using input information just up to a
preset future frame. This is accomplished by training it simultaneously in
positive and negative time direction. This trains the network to fill in gaps
instead of advancing information, e.g. instead of expanding an image on the
edge, it could fill a hole in the middle of an image. [44][53]

Autoencoders

Figure 2.13: Node map
of an autoencoder net-
work. Adapted from
[53]

Autoencoders (AE) are considerably similar
by their design to FFNNs, applied a bit dif-
ferently. Their aim to encode (compress) the
information on the input. Structurally they re-
semble the hourglass-like shape (as can be seen
on 2.13), and are symmetrical around the (hid-
den) layer in the middle. This smallest layer (or
multiple layers potentially) are the place with
the highest grade of compression of the informa-
tion, and it is so called bottleneck or chokepoint
of the network. Everything up to the middle
layer is called the encoding part, everything af-
ter the decoding and the middle the code. [53]
Bourlard (2000) shows that the nonlinearities
of these hidden units are useless, and that the
optimal parameter values can be derived directly

18

................................2.2. Artificial Neural network
by purely linear techniques relying on singular

value decomposition and low rank matrix approximation, similar in spirit
to the well-known Karhunen-Loève transform (KLT). [5] Autoencoders are
normally used for classification, clustering and feature compression.[48]

Denoising autoencoders (DAE) is variation of AE networks, with a
little spin. Vincent at al. (2008) is investigation specific criterion of AEs
called robustness to partial destruction of the input (basically ability to restore
data with presence of noise on the input). The motivation behind is such: a
good representation is expected to capture stable structures in the form of
dependencies and regularities characteristic of the (unknown) distribution of
its observed input. For high dimensional redundant input (such as images)
at least, such structures are likely to depend on evidence gathered from a
combination of many input dimensions. They should thus be recoverable
from partial observation only. [54]

In simple terms this means that by training with the presence of noise, the
model is encouraged to focus on more broad features in the data (e.g. image),
rather than details, which are often shifting, changing. This leads to higher
robustness to noise.

Figure 2.14: Sparse
autoencoder map.
Adapted from [53]

Sparse autoencoders (SAE) is in a way oppo-
site to standard AEs. The idea is that instead of
compressing the information in the middle (hidden)
layer containing less nodes than input/output layer,
we expand the information through bigger amount
of nodes, as seen in 2.14. These types of networks
can be used to extract many small features from a
data set. To prevent getting identity network each
time, during training we feed back the input plus a
sparsity driver, that can take the form of a threshold
filter, where only a certain error is passed back and
trained, the other error will be “irrelevant” for that
pass and set to zero. [53][42]

Variational Autoencoders

The Variational Autoencoders (VAE) can be
viewed as two coupled, but independently parameterized models: the encoder
or recognition model, and the decoder or generative model. These two models
support each other. The recognition model delivers to the generative model
an approximation to its posterior over latent random variables, which it needs
to update its parameters inside an iteration of “expectation maximization”
learning. Reversely, the generative model is a scaffolding of sorts for the
recognition model to learn meaningful representations of the data, including
possibly class-labels. The recognition model is the approximate inverse of the
generative model according to Bayes rule.

The VAE is inspired by the Helmholtz Machine (Dayan et al., 1995[11])
which was perhaps the first model that employed a recognition model. How-

19

2. Theoretical part
ever, its wake-sleep algorithm5 was inefficient and didn’t optimize a single
objective. The VAE learning rules instead follow from a single approximation
to the maximum likelihood objective. [24]

Convolutional Neural Networks

Convolutional neural networks (CNN or deep convolutional neural net-
works, DCNN) first described by LeCun et al. (1998) [29] are conceptually
bit different. They are often used for image processing, recognition (or audio),
where other networks such as FFNNs could bring big disadvantages.

Firstly, data (images) on the input are typically large, let’s say several
hundred pixels (variables). Fully-connected first layer with 100 hidden cells
would then already contain several tens of thousands weights; increasing
capacity of system, as well as memory requirements and would require large
training set. Although with latest development in CNNs Valueva et al. (2020)
[52] proposed convolutional neural network architecture in which the neural
network is divided into hardware and software parts to further increase
performance and reduce the cost of implementation resources. Secondly,
images (or time-frequency representation of audio signal, speech) have a
strong 2D local structure: variables that are spatially or temporally nearby
are highly correlated. Therefore these correlations are advantageous for
extracting and combining local features. CNNs force the extraction of local
features by restricting the receptive fields of hidden units to be local. [29]

Simply put we start with scanning layer with a smaller dimension in
comparison to input, that is moving (scanning) over the input image, feeding
these data into convolutional layers. These convolutional layers also tend to
shrink as they become deeper, mostly by easily divisible factors of the input
(e.g. if we have layer of 20x20, it’s likely that would be followed by 10, and
5). Besides these convolutional layers, they also often feature pooling layers.
Pooling is a way to filter out details: a commonly found pooling technique is
max pooling, where we take say 2 by 2 pixels and pass on the pixel with the
most amount of red. [53]

Figure 2.15: Architecture of LeNet-5, a CNN, here for digits recongnition. Each
plane is a feature map, i.e. a set of units whose weights are constrained to be
identical. Adapted from [29]

5an unsupervised learning algorithm most common with Helmholtz machines[35]

20

........................... 2.3. Applications in image compression

Generative Adversarial Networks

Framework for estimating generative models via an adversarial process, in
which we simultaneously train two models: a generative model G that captures
the data distribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather than G. The
training procedure for G is to maximize the probability of D making a mistake.
This framework corresponds to a minimax two-player game. In the space of
arbitrary functions G and D, a unique solution exists, with G recovering the
training data distribution and D equal to frac12 everywhere. In the case
where G and D are defined by multilayer perceptrons, the entire system can
be trained with backpropagation. [17]

Figure 2.16: Image generated by deconvolutional layers. Adapted from [23]

In simple terms: GAN is actually two networks designed to compete against
each other. Discriminative network D determines whether the input produced
by the generative network G is good enough (difference from reference data);
through backpropagation G adjust its weights until maximal quality solution.

2.3 Applications in image compression

In recent years learning based methods and especially deep learning approaches
have achieved a great success in many computer vision tasks, and are gradually
used in image compression.

With increasing quality and fidelity of visual content, the raw volume of
such data drastically increase. This content is then stored and/or shared;
accordingly, our bandwidth requirements while consuming/sharing content,
makes effective compression methods huge priority.

In general we distinguish between two main groups of methods - Lossless
and lossy. Lossless refers to compression methods, where data before and
after compression are identical, without losing any information, quality of
our content. On the contrary, lossy methods refers to such methods, that
have impact on the output data and we lose some of the initial information.
While working with audiovisual content we further differentiate between

21

2. Theoretical part

Figure 2.17: Motivation for data encryption/decryption - storing or further
sharing. Adapted from [49]

Figure 2.18: Example of JPEG compression. (Left) raw, uncompressed im-
age, (middle) medium level compression, perceptually lossless, (right) highly
compressed image. Adapted from [38]

perceptually lossless (with limited or non impact on subjective quality) and
perceptually lossy.

Our main goal while designing compression methods (and it’s implemen-
tation - encoder and decoder) is generally to minimize the final size of our
content, while maximizing the subjective quality as close as possible to quality
of raw uncompressed data. Natural images tend to contain a high number of
redundant information; neighbouring pixels tend to exhibit a correlation [25].
Most image compression algorithms tend to take advantage of this correlation
to reduce the size of images stored. [16]

Many models and methods aims to enhance conventional compression
systems or in some cases substitute them completely by introducing whole
end-to-end image compression systems. This brings its pros mostly from
performance point of view - very efficient systems, achieving high compression
ratios, high subjective quality etc.

On the other hand we have to also consider the cons such as: preparing big
enough data set, containing enough examples representative of the information,
features we aim to handle (or rather, to be handled by our network); training
time needed for model preparation - this heavily corresponds with previously
mentioned size of training data, as well as the user’s hardware capabilities or

22

........................... 2.3. Applications in image compression

complexity (depth) of the network we are training.

2.3.1 Examples from practice

This section should represent some real implementations that have been
proposed, and that would further be part of a performance comparison in
practical part of this paper.

Paper of Minnen et al. (2018) [32] introduces they learning-based com-
pression method; they network basically consist of two sub-networks, each
having a different purpose. The first is the core autoencoder, which learns
a quantized latent representation of images (Encoder and Decoder blocks).
The second sub-network is responsible for learning a probabilistic model over
quantized latents used for entropy coding. It combines the Context Model,
an autoregressive model over latents, with the hyper-network (Hyper Encoder
and Hyper Decoder blocks), which learns to represent information useful for
correcting the context-based predictions. The data from these two sources
is combined by the Entropy Parameters network, which generates the mean
and scale parameters for a conditional Gaussian entropy model.

Toderici et al. (2016) proposed an architecture (fig. 2.19)with RNN-based
encoder and decoder, a binarizer, and a neural network for entropy coding.
Their goal was to provide a neural network which is competitive across
compression rates on images of arbitrary size. Also most of autoencoders
of the time were defined by fixed compression rate, based on the size of
bottleneck layer in the middle. [50] extends this idea by supporting variable
rate compression while maintaining high compression rates beyond thumbnail-
sized images.

Figure 2.19: Single iteration of shared RNN architecture from [50]

While the network weights are shared between iterations, the states in the
recurrent components are propagated to the next iteration. Therefore residuals
are encoded and decoded in different contexts in different iterations. Proposed
network incorporates LSTM units, Assoctiative LSTMs 6 (experimentally
proved to be effective only in decoder) and GRU - computation block that
passes residual information around the block in order to speed up convergence.

6Associative LSTM extends LSTM using holographic representation

23

2. Theoretical part
2.3.2 Quality assessment - metrics

The most widely used full-reference7 image quality and distortion assessment
algorithms are peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), which do not correlate well with perceived quality. That is a main
reason for developement of method called Multi-scale structural similar-
ity index measure (abbr. MS-SSIM), that will be further used as main
metric of quality.

Structural similarity provides an alternative and complementary approach
to the problem of image quality assessment.[59][58] The perceivability of
image details depends the sampling density of the image signal, the distance
from the image plane to the observer, and the perceptual capability of the
observer’s visual system. A older single-scale method may be appropriate
only for specific settings and is surpassed by multi-scale version that is a
convenient way to incorporate image details at different resolutions. [55]

As was mentioned before, more simple metrics such as MSE or PSNR
might not as descriptive for the subjective quality assessment, nevertheless
they still might be useful as indicators, e.g. during training our network. So
for the image I (m× n pixels) and its reconstruction K, we define:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.12)

PSNR = 10 · log(MAX2
I

MSE) (2.13)

2.3.3 Data sets

To precisely define the objective quality of compression method at hand, we
should also use suitable testing data, broad enough, various so we can define
what and where are the strengths and weaknesses.

From my research, the most common data set used by many papers is still
Kodak Lossless True Color Image Suite[26], which contains 24 images
in so called "full colour" (24 bits per pixel, 8 bits per colour layer) contained in
lossless format PNG. Each image is of size 768 × 512 pixels (both dimensions
divisible by 32, commonly used factor in compression systems). This set was
released by the Kodak Corporation for unrestricted research usage in 1999.

Although possibly prevalent, it’s hardly the only data set, so let us also
propose other options..Tecnick [2] containing data set of 100 images, size 1200 × 1200..MCL-JCI [21] has 50 images of 1920 × 1080 with 8-bit depth that can

be classified into ten semantic categories such as people, animals, plants,
buildings, water or lake, sky, bridge, transportation vehicles (boats or
cars) and indoor.

7based on an initial uncompressed or distortion-free image as reference

24

.................................2.4. Classification proposal

. LIVE in the Wild [15] with 1162 distorted images from different mobile
devices (therefore different sizes) Images of faces, people, animals, close-
up shots, wide-angle shots, nature scenes, man-made objects, images
with distinct foreground/background configurations and without any
object of interest.

Many others could be listed, the choice heavily depends on the expected
task, what would be the subject of our study.

2.4 Classification proposal

This paper also aims to propose a taxonomy, how to classify and orient
yourself in vest field of neural networks, based on various criteria. This would
also help us with even field on which we could compare various networks and
their implementations. We have to consider that we are discussing very broad
field and different perspectives should be pointed out. Nelson and Rogers
(1992) [36] points out, that there might be different criteria to chose as best
per se, for the same task. Therefore the final criteria should be selected by the
researcher or application specialist depending on the results desired. Their
paper also proposes division of criteria into 3 main groups - topology, training
and performance.

2.4.1 Topology

Let us start with topological point of you; where we are considering the
architecture, design of the network itself. In section 2.2.5 we’ve been describing
different types of network topologies [13] simply defines category Neural
network type, i.e. top level description of the network. Our aim is to create
efficient compression method - do we use AE network? Or some variaton, such
as VAE? Or possibly we could train model through combination of networks,
e.g. GANs? This is also connected to what type of units/neurons/nodes do
we define in our network and their activation functions (2.2.3). Also, what is
the extent of our network in means of end-to-end image compression system -
NN focused on encoding residual part, the entropy coder or combination of
both?

If we were to dissect this idea into smaller problems, we should discuss the
complexity of the network. How many (hidden) layers should our NN -
shallow or deep NN? Considering solely the amount of layers, while assuming
that same performance regardless of this amount, we would prefer fewest
layer amount possible.
How many nodes do we have per layer? Generally speaking the more

nodes a network has the greater the tendency to memorize the training set
and the less tendency to properly generalize. The network with the fewest
nodes, irrespective of how they are arranged or connected could be selected
by this criterion. [36]

25

2. Theoretical part
And lastly, what is the amount of connections between the nodes in

layer. This affects networks ability to solve given (or possibly its inability to
do so) while using too few interconnections. In opposite case the network
tends to produce noise in the system. So we are looking for optimal solution
with fewest possible interconnections.

2.4.2 Training

Training, or learning is unmistakably integral part of neural networks, that
has to be considered, while comparing with other systems. Also, because the
training phase is usually the one which requires the most time, this is a good
area to make comparisons according to [36].

First criterion that comes to mind could be the time efficiency - how
fast can the NN be trained, converging to the optimal solution. If we would
discuss the fact, that learning is iterative process, and we are feeding the
training data to the network in cycles, converging to expected solution; that
aim should be to do so in least epoch/iterations as possible.

Further we can also talk about the actual real clock time, that would
be consumed by training on given hardware. With growing complexity and
depth of NNs, the required hardware capabilities are to be consider. All of
this is in the end defined by the time spent, which we expect to be as short
as possible.

Training also involves the requirements for data set, that would be
descriptive enough for our task. This means, that we need to feed the network
data of some variety, in cases of general tasks, e.g. while training NN for
image compression, feeding the network only portraits of people, we couldn’t
expect good results while compressing (and mainly reconstructing) the image
of scenery in nature. The features extracted might not be general enough for
both, therefore model would have more specific application. Summing up
the idea, our criterion would be smallest possible data set, that would fit the
expected results.

Nelson and Rogers [36] describe a computational complexity of opera-
tions during one epoch of learning algorithm, providing example of so called
Hammering and Stretching Algorithm. This method uses just one epoch
to train, however requires the construction and inversion of a very large
matrix, which might be detrimental during training on bigger data sets. This
implies our desire of least possible computational complexity - the amount of
operations needed.

2.4.3 Performance

The performance is logical context to be discussed as our main aim while
designing learning-based solutions to our task should be based on efficiency.
We already discussed time efficiency, complexity and now quality of final
result, produced by our network. How accurate is the representation, in
our case of this paper: the reconstructed image once decompressed. This

26

.................................2.4. Classification proposal

might be different based on the input data and their relation to the training
data set. What we mean by this, is the possibility that we are might try
to process (compress) content similar to that provided during training, or
vice versa; this might (or might not!) impact the resulting quality, e.g. in
means of MSE or MS-SSIM in our case. Which naturally leads us to another
criterion, which is the ability of network to generalize from the training
data set. As a result, some researches include not only training data set, but
also evaluation data set for purpose of accurate quality assessment (which in
our case is represented by Kodak image set [26]).

We can also describe the dependency on initial setup of weights in
our NN. Since a lot of networks start training phase with random weights,
it leads to the different starting point of finding the optimal solution to our
task, therefore best possible network. This implies that there’s possibility of
training getting stuck on a local minima, instead of being able to find the
most optimal global minimum, and most effective network.
Dependency on data set order fed to NN it also to be considered.

There are basically two ways to train a neural network. The first is to update
the weights after calculating the error for each exemplar. The second is to
accumulate the weight updates as each exemplar in the epoch is presented.
At the end of the epoch (presentation of each training exemplar one time), the
weight updates are made. For epoch training, the order of the presentation of
exemplars will make no difference. Exemplar training can result in different
results, depending on the order of the exemplar presentation. [36] Optima
case would therefore consist of complete independency on order, in which the
data are fed to network during training.

Specifically for image processing networks, we might focus on the final
quality range of our system. In some cases, the trained model might not be
able to achieve best possible quality in relation to target compression rate for
example. Let’s describe it on specific example - Agustsson et al. (2018) [1]
presented GAN compression system, with main focus on low quality images,
i.e. giving best possible quality outcome at extremely high compression
rate. This implies that you might not get satisfying results for higher quality
compression in comparison to other systems (be it ML-based, or conventional).
[13]

Somewhat similar to quality range, we might discuss flexibility of bitrate
control. Our network might be designed in a way, that doesn’t allow vari-
ability and works with fixed bitrate model(s). On the contrary [51][50] both
presents single model, which can specify target bitrate by so called lambda
parameter. Once again situational criterion, that might have a trade-off of
being flexible at the cost of achievable quality. [13]

Lastly coding unit size gives defines the accessibility to spatial context.
With bigger size of coding unit, NN give us better results; on the other hand,
we must consider the representation of input data (image resolution) - since
architecture is usually tailored for a specific coding unit size, which means
that images that have a resolution that is not multiple of this size need to be
adapted.

27

28

Chapter 3
Practical part

Practical part should focus on comparison of implementations of various
ANN systems, for image compression. How the score amongst each other and
against such common compression methods such as JPEG and JPEG2000.
Further we would like to summarize proposed classification, or rather set of
criteria to be considered for classification of learning based systems.

As was described in section 2.3.2, main metric for objective quality assess-
ment was chosen MS-SSIM, implemented in MATLAB:

score = multissim(I,Iref)

where I represents the tested image (compressed one) and Iref referential
one (raw, uncompressed). Further we will also use PSNR for comparison how
purely objective quality metric (PSNR) corresponds with MS-SSIM.

peaksnr = psnr(A,ref)

Johannes Ballé et al. (2018 and further) created a repository and GitHub
containing (amongst others) models from proposals of Minnen [33][32] as
well as their own [4], using Python and package Tensorflow developed by
Google. I’ve been using platform called Anaconda, containing distributions
of Python and R programming languages and many other useful packages for
data science (e.g. SciPy, NumPy, Pandas and many more).

conda create --name ENV_NAME python=3.6 cudatoolkit=10.0 cudnn
conda activate ENV_NAME
pip install tensorflow-gpu==1.15 tensorflow-compression==1.3

Once environment was prepared and initialized, we gained access to pre-
trained models from papers mention before. To compress the image, we
what have define the file, expected in PNG format (convenient for our
use of Kodak testing set [26]), and model we would like to use, such as
mbt2018-mean-msssim-[1-8], last digit defining the target quality of com-
pression (1 for lowest, 8 for highest) and optimised for MS-SSIM metric.
Optionally we could provide the expected output file name.

python tfci.py compress <model> <PNG file>

29

3. Practical part.....................................
Compressed image would be contained in file with .tfci extension. Now

to get the decompressed, reconstructed image:

python tfci.py decompress <TFCI file>

from which we would receive the reconstructed image with target quality
we defined before compression. Thus providing us with data for our quality
measurement and comparison.

In case of models by Toderici et al. [50], variable bitrate control is present,
and we are able to define through lambda parameter to specify what is or
targeted bitrate (bpp).

python encoder.py --input_image=/your/image/here.png
--output_codes=output_codes.npz --iteration=15
--model=/path/to/model/residual_gru.pb

Mentioned lambda parameter is here represented by value –iteration
within range of 0 - 15; where 0 corresponds to a target of 1/8 bpp and every
increment results in an additional 1/8 bpp. Same as before, supplying .npz
file we are able to decompress the data again:

python decoder.py --input_codes=codes.npz
--output_directory=/tmp/decoded/ --model=residual_gru.pb

Figure 3.1: Comparison of (left) conventional compression method JPEG2000
(right) ML-based compression system [50] with identical target compress ratio of
192 : 1 (0.125 bpp)

Once we have all the reconstructed images, we could evaluated the output
quality based on the metrics defined before (MS-SSIM and PSNR). Note
that all result values are averaged over constant quality parameters of given
model (constant QP in case JPEG/JPEG2000 and constant lambda value for
ML-based methods).

Conventional methods JPEG and JPEG 2000 used for compression in
this work were also implemented through MATLAB environment, that is
through imwrite() method, where we are able to specify target compression
method as well as the quality expected; this is shown in code further below,
specifically for JPEG compression, where all 24 images from Kodak data set

30

..................................... 3. Practical part

are compressed with target quality defined by parameter q and immediately
evaluated, filling out matrix with results.

for i=1:24
ref_file = %referential, uncompressed file
A = imread(ref_file);

for q=1:100
test_file = %output file name after compression
imwrite(A, test_file, ’jpg’, ’quality’, q); %
B=imread(test_file);

S=imfinfo(test_file);
w=getfield(S, ’Width’);
h=getfield(S, ’Height’);
size=getfield(S, ’FileSize’)*8;

ms=0;
for k=1:3

ms=ms+multissim(B(:,:,k),A(:,:,k));
end
MS_SSIM(q,i)=ms/3; %MS-SSIM evalutation, avarage for each layer
peaksnr(q,i)=psnr(B,A); %PSNR evaluation
bpp(q,i)=size/(h*w); %target bpp calculation

end

31

3. Practical part.....................................

Figure 3.2: Compression method comparison, MS-SSIM metric

Figure 3.3: Compression method comparison, PSNR metric

32

Chapter 4
Conclusion

ML based compression methods prove to have their use in practice. As
could be evidently seen from comparison results in practical part 3, it is very
promising field, with ability to already qualitatively exceed the conventional
methods of image processing. As is shown in 3.2, main quality metric chosen
for comparison (MS-SSIM) gives us very good quality performance for basically
most of the target quality range (up to 2 bpp, although suggests continuing in
similar manner). As to the results given by simple PSNR metric, they show
comparable results; though in case of JPEG2000 in overcomes most of the
methods, scoring second best. This indicates discussed strength of MS-SSIM
metric, that better correlates with a subjective quality assessment, that we
can experimentally do with naked eye.

This is strictly speaking from performance point of view. The conventional
methods are also characterized by their easy of use, after the years of research
and development. They are flexible as to the format of the input, quality range
provided and implementations in most of the modern systems. Same can’t be
told for ML-based systems; as for now at least. NNs for image compression
are often tailor-made, constricted by definition in advance. Another thing
to consider is possibility of distribution, and hardware requirements on the
consumer/user side. Last but not least, the learning/training of new models
is trivial matter still, and appears to be quite time-consuming, without proper
high-end hardware (GPU).

As for the classification (taxonomy) of ML-based system, there’s plethora
of criteria to look for, extensively described in 2.4. Also many of these criteria
are connected and interlaced, sometimes forcing us to make trade-offs, e.g.
efficiency vs. flexibility etc.. Also not every criterion is applicable to all
problem areas; this implies a lot of decision and criteria application has to
be done in advance with fore knowledge. This implies necessity for deeper
understanding of

This paper tries to navigate the ever-growing field ANNs and their applica-
tion in image compression; that is specifically in comparison to conventional
compression methods. Practical part there is focuses on this fact is holding
possibilities for further improvement, and would be worth of more extensive
research. Specifically considering the platforms used for NN implementations
- this paper solely focused on methods based on Python language and on Ten-

33

4. Conclusion......................................
sorFlow platform. Other (still Python-based) platform are available (such as)
and would be worth of deeper research, such as Theano, PyTorch, OpenCV or
Keras; they might provide valuable data to be compared with those provided
in this paper. Same could be applied for conventional methods - this paper is
covering JPEG and JPEG2000, but some other methods - developed more
recently - could be presented in future. From my research this could include
formats such as BPG (presented by Bellard in 2014) or WebP (by Google),
which might prove to be more efficient, since they are designed to be more
efficient, and to surpass formats like JPEG.

34

Appendix A
List of electronic attachments

. evaluation.m: evaluation MATLAB script for JPEG and JPEG2000
compression, with resulting MS-SSIM, PSNR, bpp. Ballé/tfci.py: python script implementing various compression methods,
downloading related models (availability changes during time); by Ballé
et al.. Toderici/decoder.py: short python script for decoding image file by
Toderici et al. (2016). Toderici/encoder.py: short python script for encoding image file by
Toderici et al. (2016)

35

36

Bibliography

[1] Eirikur Agustsson et al. Generative Adversarial Networks for Extreme
Learned Image Compression. 2019. arXiv: 1804.02958 [cs.CV].

[2] N. Asuni and A. Giachetti. “TESTIMAGES: A large-scale archive for
testing visual devices and basic image processing algorithms (SAM-
PLING 1200 RGB set)”. In: STAG: Smart Tools and Apps for Graph-
ics. 2014. url: https://sourceforge.net/projects/testimages/
files/OLD/OLD_SAMPLING/testimages.zip.

[3] Alejandro Baldominos, Yago Saez, and Pedro Isasi. “A Survey of Hand-
written Character Recognition with MNIST and EMNIST”. In: Applied
Sciences 9.15 (Aug. 2019), p. 3169. issn: 2076-3417. doi: 10.3390/
app9153169. url: http://dx.doi.org/10.3390/app9153169.

[4] Johannes Ballé et al. Variational image compression with a scale hyper-
prior. 2018. arXiv: 1802.01436 [eess.IV].

[5] H. Bourlard and Y. Kamp. “Auto-association by multilayer perceptrons
and singular value decomposition”. In: Biological Cybernetics 59 (2004),
pp. 291–294.

[6] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001),
pp. 5–32.

[7] Yung-Yao Chen et al. “Design and Implementation of Cloud Analytics-
Assisted Smart Power Meters Considering Advanced Artificial Intel-
ligence as Edge Analytics in Demand-Side Management for Smart
Homes”. In: Sensors 19 (May 2019), p. 2047. doi: 10.3390/s19092047.

[8] Common ML Problems | Introduction to Machine Learning Problem
Framing. url: https://developers.google.com/machine-learning/
problem-framing/cases.

[9] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In:
Machine learning 20.3 (1995), pp. 273–297.

[10] Thomas Cover and Peter Hart. “Nearest neighbor pattern classification”.
In: IEEE transactions on information theory 13.1 (1967), pp. 21–27.

[11] Peter Dayan et al. “The Helmholtz Machine”. In: Neural Comput. 7.5
(Sept. 1995), pp. 889–904. issn: 0899-7667. doi: 10.1162/neco.1995.
7.5.889. url: https://doi.org/10.1162/neco.1995.7.5.889.

37

https://arxiv.org/abs/1804.02958
https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip
https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip
https://doi.org/10.3390/app9153169
https://doi.org/10.3390/app9153169
http://dx.doi.org/10.3390/app9153169
https://arxiv.org/abs/1802.01436
https://doi.org/10.3390/s19092047
https://developers.google.com/machine-learning/problem-framing/cases
https://developers.google.com/machine-learning/problem-framing/cases
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1162/neco.1995.7.5.889

A. List of electronic attachments
[12] DeepAI. Radial Basis Functions. May 2019. url: https://deepai.org/

machine-learning-glossary-and-terms/radial-basis-function.
[13] Source Diego et al. “Coding of Still Pictures”. In: (Sept. 2001).
[14] Jeffrey L. Elman. “Finding structure in time”. In: COGNITIVE SCI-

ENCE 14.2 (1990), pp. 179–211.
[15] D. Ghadiyaram and A. C. Bovik. “Massive Online Crowdsourced Study

of Subjective and Objective Picture Quality”. In: IEEE Transactions
on Image Processing 25.1 (2016), pp. 372–387. doi: 10.1109/TIP.2015.
2500021.

[16] Arcadi Gonzalez. IMAGE COMPRESSION USING MACHINE LEARN-
ING TECHNIQUES. Oct. 2015. doi: 10.13140/RG.2.1.1140.7121.

[17] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[19] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means
clustering algorithm”. In: Journal of the royal statistical society. series
c (applied statistics) 28.1 (1979), pp. 100–108.

[20] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.
1997.9.8.1735.

[21] Lina Jin et al. “Statistical Study on Perceived JPEG Image Quality via
MCL-JCI Dataset Construction and Analysis”. In: Electronic Imaging
2016 (Feb. 2016), pp. 1–9. doi: 10.2352/ISSN.2470-1173.2016.13.
IQSP-222.

[22] M I Jordan. “Serial order: a parallel distributed processing approach.
Technical report, June 1985-March 1986”. In: (May 1986). url: https:
//www.osti.gov/biblio/6910294.

[23] Andrej Karpathy.Generative Models. Sept. 2020. url: https://openai.
com/blog/generative-models/.

[24] Diederik P. Kingma and Max Welling. “An Introduction to Variational
Autoencoders”. In: Foundations and Trends® in Machine Learning 12.4
(2019), pp. 307–392. issn: 1935-8245. doi: 10.1561/2200000056. url:
http://dx.doi.org/10.1561/2200000056.

[25] W. Kinsner. “Compression and Its Metrics for Multimedia”. In: Proceed-
ings of the 1st IEEE International Conference on Cognitive Informatics.
ICCI ’02. USA: IEEE Computer Society, 2002, pp. 107–121. isbn:
0769517242.

[26] Eastman Kodak. Kodak Lossless True Color Image Suite (PhotoCD
PCD0992). url: http://r0k.us/graphics/kodak.

[27] David Kriesel. A Brief Introduction to Neural Networks. 2007. url:
http://www.dkriesel.com.

38

https://deepai.org/machine-learning-glossary-and-terms/radial-basis-function
https://deepai.org/machine-learning-glossary-and-terms/radial-basis-function
https://doi.org/10.1109/TIP.2015.2500021
https://doi.org/10.1109/TIP.2015.2500021
https://doi.org/10.13140/RG.2.1.1140.7121
https://arxiv.org/abs/1406.2661
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-222
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-222
https://www.osti.gov/biblio/6910294
https://www.osti.gov/biblio/6910294
https://openai.com/blog/generative-models/
https://openai.com/blog/generative-models/
https://doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
http://r0k.us/graphics/kodak
http://www.dkriesel.com

.............................. A. List of electronic attachments

[28] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. THE
MNIST DATABASE. url: http://yann.lecun.com/exdb/mnist/.

[29] Yann Lecun et al. “Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE 86 (Dec. 1998), pp. 2278–
2324. doi: 10.1109/5.726791.

[30] Machine Learning Glossary | Google Developers. url: https://developers.
google.com/machine-learning/glossary.

[31] Donald Michie. ““Memo” functions and machine learning”. In: Nature
218.5136 (1968), pp. 19–22.

[32] David Minnen, Johannes Ballé, and George Toderici. Joint Autore-
gressive and Hierarchical Priors for Learned Image Compression. 2018.
arXiv: 1809.02736 [cs.CV].

[33] David Minnen et al. Image-Dependent Local Entropy Models for Learned
Image Compression. 2018. arXiv: 1805.12295 [cs.CV].

[34] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.
isbn: 978-0-07-042807-2.

[35] Radford M. Neal and Peter Dayan. “Factor Analysis Using Delta-Rule
Wake-Sleep Learning”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1781–
1803. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1781. url:
https://doi.org/10.1162/neco.1997.9.8.1781.

[36] D. E. Nelson and S. K. Rogers. “A taxonomy of neural network op-
timality”. In: Proceedings of the IEEE 1992 National Aerospace and
Electronics Conference@m_NAECON 1992. 1992, 894–899 vol.3.

[37] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015. url: http://neuralnetworksanddeeplearning.com/.

[38] Jo Plumridge. Are You Losing Too Much of Your Photograph to Com-
pression? July 2020. url: https://www.lifewire.com/the-effect-
of-compression-on-photographs-493726.

[39] David Poole, Alan Mackworth, and Randy Goebel. “Computational
Intelligence”. In: (1998).

[40] Bin Qian et al. Orchestrating the Development Lifecycle of Machine
Learning-Based IoT Applications: A Taxonomy and Survey. 2019. arXiv:
1910.05433 [cs.DC].

[41] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1
(1986), pp. 81–106.

[42] Marc’Aurelio Ranzato et al. “Efficient Learning of Sparse Representa-
tions with an Energy-Based Model”. In: Jan. 2006.

[43] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (Jan. 2015), pp. 85–117. issn: 0893-6080. doi:
10.1016/j.neunet.2014.09.003. url: http://dx.doi.org/10.
1016/j.neunet.2014.09.003.

39

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/5.726791
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary
https://arxiv.org/abs/1809.02736
https://arxiv.org/abs/1805.12295
https://doi.org/10.1162/neco.1997.9.8.1781
https://doi.org/10.1162/neco.1997.9.8.1781
http://neuralnetworksanddeeplearning.com/
https://www.lifewire.com/the-effect-of-compression-on-photographs-493726
https://www.lifewire.com/the-effect-of-compression-on-photographs-493726
https://arxiv.org/abs/1910.05433
https://doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003

A. List of electronic attachments
[44] Mike Schuster and Kuldip Paliwal. “Bidirectional recurrent neural

networks”. In: Signal Processing, IEEE Transactions on 45 (Dec. 1997),
pp. 2673–2681. doi: 10.1109/78.650093.

[45] Jonathon Shlens. “A tutorial on principal component analysis”. In:
arXiv preprint arXiv:1404.1100 (2014).

[46] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge, 1998.

[47] Andrew Tch. DIY AI: An old school matrix NN. July 2017. url: https:
//towardsdatascience.com/diy-ai-an-old-school-matrix-nn-
401a00021a55.

[48] Andrew Tch. The mostly complete chart of Neural Networks, explained.
Aug. 2017. url: https://towardsdatascience.com/the-mostly-
complete-chart-of-neural-networks-explained-3fb6f2367464.

[49] Movavi Blog Team. What is a Video Codec?: A Useful Lesson from
Movavi. Mar. 2020. url: https://movavi.io/codec-2/.

[50] George Toderici et al. Full Resolution Image Compression with Recur-
rent Neural Networks. 2016. arXiv: 1608.05148 [cs.CV].

[51] George Toderici et al. Variable Rate Image Compression with Recurrent
Neural Networks. 2015. arXiv: 1511.06085 [cs.CV].

[52] M.V. Valueva et al. “Application of the residue number system to reduce
hardware costs of the convolutional neural network implementation”.
In: Mathematics and Computers in Simulation 177 (2020), pp. 232–243.
issn: 0378-4754. doi: https://doi.org/10.1016/j.matcom.2020.04.
031. url: http://www.sciencedirect.com/science/article/pii/
S0378475420301580.

[53] Fjodor van Veen. The Neural Network Zoo. Apr. 2019. url: https:
//www.asimovinstitute.org/neural-network-zoo/.

[54] Pascal Vincent et al. “Extracting and Composing Robust Features with
Denoising Autoencoders”. In: ICML ’08. Helsinki, Finland: Association
for Computing Machinery, 2008, pp. 1096–1103. isbn: 9781605582054.
doi: 10.1145/1390156.1390294. url: https://doi.org/10.1145/
1390156.1390294.

[55] Z. Wang, E. P. Simoncelli, and A. C. Bovik. “Multiscale structural
similarity for image quality assessment”. In: The Thrity-Seventh Asilo-
mar Conference on Signals, Systems Computers, 2003. Vol. 2. 2003,
1398–1402 Vol.2. doi: 10.1109/ACSSC.2003.1292216.

[56] What is Machine Learning? A definition. url: https://expertsystem.
com/machine-learning-definition/.

[57] Bill Wilson. url: http://www.cse.unsw.edu.au/~billw/dictionaries/
mldict.html.

[58] Zhou Wang and A. C. Bovik. “A universal image quality index”. In:
IEEE Signal Processing Letters 9.3 (2002), pp. 81–84. doi: 10.1109/
97.995823.

40

https://doi.org/10.1109/78.650093
https://towardsdatascience.com/diy-ai-an-old-school-matrix-nn-401a00021a55
https://towardsdatascience.com/diy-ai-an-old-school-matrix-nn-401a00021a55
https://towardsdatascience.com/diy-ai-an-old-school-matrix-nn-401a00021a55
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://movavi.io/codec-2/
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/1511.06085
https://doi.org/https://doi.org/10.1016/j.matcom.2020.04.031
https://doi.org/https://doi.org/10.1016/j.matcom.2020.04.031
http://www.sciencedirect.com/science/article/pii/S0378475420301580
http://www.sciencedirect.com/science/article/pii/S0378475420301580
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1109/ACSSC.2003.1292216
https://expertsystem.com/machine-learning-definition/
https://expertsystem.com/machine-learning-definition/
http://www.cse.unsw.edu.au/~billw/dictionaries/mldict.html
http://www.cse.unsw.edu.au/~billw/dictionaries/mldict.html
https://doi.org/10.1109/97.995823
https://doi.org/10.1109/97.995823

.............................. A. List of electronic attachments

[59] Zhou Wang et al. “Image quality assessment: from error visibility to
structural similarity”. In: IEEE Transactions on Image Processing 13.4
(2004), pp. 600–612. doi: 10.1109/TIP.2003.819861.

41

https://doi.org/10.1109/TIP.2003.819861

	Introduction
	Theoretical part
	Machine learning
	General idea
	Problem classification in Machine learning

	Artificial Neural network
	Biological background of Neural Networks
	Artificial neuron
	Learning and efficiency
	Deep Learning
	Topology of ANN

	Applications in image compression
	Examples from practice
	Quality assessment - metrics
	Data sets

	Classification proposal
	Topology
	Training
	Performance

	Practical part
	Conclusion
	List of electronic attachments
	Bibliography

