
Czech Technical University in Prague

Faculty of Electrical Engineering
Technická 1902/2, 166 27 Prague 6 - Dejvice-Prague 6

BACHELOR THESIS

2021 Stanislav Kubiš

Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR THESIS

Focus: Open Informatics – Informatics and Computer Science

Topic: Games with Piecewise Affine Utility Functions

Author: Stanislav Kubiš

Supervisor: doc. Ing. Tomáš Kroupa, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474728Personal ID number:Kubiš StanislavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Games with Piecewise Affine Utility Functions

Bachelor’s thesis title in Czech:

Hry s po částech afinními užitkovými funkcemi

Guidelines:

1. Learn the basics of zero-sum strategic games. In particular, pay attention to the algorithm for computation of equilibrium

based on linear programming [1].

2. The goal of this work is to experimentally verify whether infinite two-player zero-sum games with payoff functions in the

form of piecewise affine functions [3] have finite equilibria. This property is known to hold for polynomial games [2].

3. The experimental work is based on the generation of random triangulations together with piecewise affine functions

arising from them. The next step is to approximate such functions over a finite grid and determine the equilibrium of the

respective finite game. Use experiments to assess the convergence of such a solution.

Bibliography / sources:

[1] Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge

University Press, 2008.

[2] P. Parrilo. Polynomial games and sum of squares optimization. In Decision and Control, 2006 45th IEEE Conference

on, pages 2855–2860, 2006.

[3] T. Kroupa and O. Majer. Optimal strategic reasoning with McNaughton functions. International Journal of Approximate

Reasoning, 55(6):1458–1468, 2014.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Kroupa, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 05.01.2021Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

doc. Ing. Tomáš Svoboda, Ph.D.
Head of department’s signature

doc. Ing. Tomáš Kroupa, Ph.D.
Supervisor’s signature

III. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Sincere thank you belongs to the supervisor of my thesis, who was always there to help me with anything from

explaining theoretical content to working with me on building ideas how to approach the thesis.

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační

zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských

závěrečných prací.

 V Praze dne ………………………. ……………………………

 Podpis autora práce

I declare that the presented work was developed independently and that I have listed all sources of information

used within it in accordance with the methodical instructions for observing the ethical principles in the

preparation of university theses.

Prague, date …………………………… ……………………………

 Signature

Abstract
 This bachelor thesis aims to experimentally verify whether infinite two-player zero-sum games [9,

p.89] with payoff functions in the form of piecewise affine functions have finite equilibria. We define

piecewise affine functions over a domain split by a set of continuous affine functions. This domain for the

experiment is limitary to a square [0,1] × [0,1], this is due to zero-sum games using the interval of [0,1] to

represent possible strategies. To verify equilibrium finiteness assumptions, we built an algorithm creating a

new program. Python programming language was chosen for the program creation. The algorithm’s

experimental function is based on random triangulations with piecewise affine functions arising from them.

The algorithm’s next step is to approximate such functions over a finite grid and determine the respective finite

game’s equilibrium. An iterative approach was used in experiments to create larger zero-sum games to assess

such solutions’ convergence in single steps visually. An iterative approach was used to generate larger zero-

sum games in the experiments so that it was possible to visually assess the convergence of the behavior of the

program’s partial outputs in individual steps. To fully understand the program’s functioning, we need to master

zero-sum strategic games’ basics theory. Next problematics, which was necessary to analyze in detail for

program creation, was an algorithm for equilibria computing (based on linear programming). The last area

addressed during this bachelor thesis was the problems arising from our games’ infinite strategy space.

Keywords
Game Theory, Piecewise Affine Games, Zero-Sum Games, Two-player Games, Nash Equilibrium, Linear

Programming

Abstrakt
 Cílem této bakalářské práce je experimentálně ověřit, zda nekonečná hra o dvou hráčích s nulovým

součtem [9, p.89] a s výplatními funkcemi, které jsou reprezentovány ve formě po částech afinních funkcí, má

konečnou rovnováhu. Po částech afinní funkce definujeme přes doménu rozdělenou na sadu spojitých afinních

funkcí. Tato doména je v experimentu ohraničená čtvercem [0,1] × [0,1] z toho důvodu, že hry s nulovým

součtem využívají interval [0,1] pro reprezentaci možných strategií. K tomu, abychom ověřili předpoklad

ohledně konečnosti rovnováhy, byl navržen algoritmus, ze kterého vychází nově vytvořený program. Pro

tvorbu programu byl zvolen programovací jazyk Python. Experimentální funkce algoritmu je založena na

generovaní náhodných triangulací společně s jejich vznikajícími po částech afinními funkcemi. Dalším

krokem algoritmu je aproximace těchto funkcí nad konečnou mřížku a určení rovnováhy dané konečné hry. K

vytváření větších her s nulovým součtem byl v experimentech použit iterační postup, aby bylo možné

v jednotlivých krocích vizuálně posoudit konvergenci chování dílčích výstupů programu. Abychom plně

rozuměli funkčnosti programu, musíme ovládat základy teorie strategických her s nulovým součtem. Další

problematikou, kterou bylo nutné detailně analyzovat pro tvorbu programu, byl algoritmus pro počítání

rovnováhy (založený na principu lineárního programování). Poslední z oblastí, kterou se bylo nutné v průběhu

bakalářské práce zabývat, byly problémy vznikající z nekonečného strategického prostoru naší hry.

Klíčová slova
Teorie her, Po částech affinní hry, Hry s nulovým součtem, Hry o dvou hráčích, Nashova rovnováha, Lineární

programování

Table of Contents

1 Introduction .. 1

1.1 History ... 1

1.2 Strategy space ... 1

1.3 Solution ... 1

1.4 Algorithm overview ... 2

2 Strategic games .. 3

2.1 Finite games .. 3

2.2 Continuous games .. 3

2.3 Utility and strategies .. 4
2.3.1 Utility theory ... 4
2.3.2 Utility function .. 4
2.3.3 Mixed strategies ... 4
2.3.4 Expected utility ... 4

2.4 Why is finding solutions hard? .. 5
2.4.1 Convex/concave games special equilibria .. 5
2.4.2 An infinite number of strategies ... 5

2.5 Zero-Sum Games and Their Uses .. 6
2.5.1 Description .. 6
2.5.2 Matching pennies ... 7
2.5.3 Other uses ... 7

3 Nash Equilibrium .. 9

3.1 Definition .. 9

3.2 Linear program .. 9

4 How to Deal with Games Having Piecewise-Affine (PA) Utility Functions 11

4.1 Domains of linearity are polyhedra ... 11

4.2 Triangulations .. 11
4.2.1 Delaunay triangulation ... 12

4.3 Equilibrium existence ... 13
4.3.1 Piecewise-affine functions .. 13
4.3.2 Existence and computation of finitely supported mixed strategy equilibria .. 14

5 Program Explanation .. 16

5.1 Summary ... 16

5.2 Triangulation ... 19
5.2.1 Square creation ... 19
5.2.2 Value assigning ... 20
5.2.3 Triangulation function .. 21

5.3 Creating and Solving Zero-Sum Game ... 23
5.3.1 Line information.. 23
5.3.2 Height .. 23
5.3.3 Intersections ... 24
5.3.4 Zero-sum game ... 26
5.3.5 Point Storing ... 29
5.3.6 Visual Output .. 29
5.3.7 Other examples ... 30

6 Conclusion .. 34

7 Resources ... 35

 1

1 Introduction

1.1 History
 Recently we encountered a vast space of mathematical and algorithmic tools, which come from

mathematical optimization and numerical methodology to the quickly evolving field of artificial

intelligence. This would not have been possible without a shared work brought to us by John von Neumann

and Oskar Morgenstern. They introduced us to a game-theoretical methodology [2], which is now being

solved for some highly complex games. The possibility of the game-theory area having such a big impact

nowadays is attributed to a rapidly improving infrastructure, which provides almost exponentially

improving computational power1 needed for solving a vast range of complex problems. The rise of game

theory paved the way for it to intertwine with other science and economics fields. As the rise of technology

is relatively recent and Neumann-Morgenstern popularized game-theory only in 1944, another important

discovery was attributed for problems to be solved and expanded. The discovery mentioned is the one of

Nash equilibrium by John Forbes Nash, Jr. We describe its properties more in section 3.

1.2 Strategy space
 It is important to note that searching for Nash equilibria in the space of large or even infinite game

is infamously difficult to solve [3]. To minimize this, it helps to identify the problem’s key components

once it is formulated. The construction of a game involves a realization of who participates in a game. In

our case, the game involves agents (called players in the thesis) whose objectives may discord. Specifically,

we have two players who evaluate their strategies depending on utility function values keeping in mind that

a number of strategies may be infinite. However, many definitions in use are based on games with only

finitely many actions, since theory about them has been expanded to a great extent [4] even though many

naturally appearing games where strategy sets are uncountable. Still, many obstacles arise by switching to

games with infinite action spaces. This results in the game’s mixed strategies unable to be represented as

finite-dimensional probability vectors. Instead, they become probability measures supported by possibly

infinite sets.

1.3 Solution
 Generalization of the Nash theorem, Glicksberg’s theorem [6], guarantees Nash equilibria in

continuous games. When finding Nash equilibrium in our Zero-Sum games, we use a method of solving

with linear programming. The algorithm at use in the experiment is based on a dual form of linear

programming introduced by Koller, Megiddo, and von Stengel [24], more described in section 2 because

there is a need to search for standard Nash equilibrium with a single solution of linear programming. Its

extended option form, which searched for a proper normal form Nash equilibrium with iterative solving

[26] cannot be used since a different type of iterative approach is used as our iteration consists of changing

the game set to create a new game and not iterating over the same. This helps us to get the solution without

any computational barriers quickly. The algorithm used to verify equilibria's finiteness has been only

recently discovered for polynomial games by Dresher, Karlin, and Shapley [25]. Polynomial games are part

1 http://www.singularity.com/charts/page70.html

http://www.singularity.com/charts/page70.html

 2

of the family called separable games. Every utility function is a finite sum of products, where a product

component is a function of actions for each player separately. It is known that separable games also include

the zero-sum games [8]. Putting it together, we arrive at our case of zero-sum games with piecewise-affine

functions representing our utility functions. Ultimately, we want to check whether these similar

characteristics will yield a finite Nash equilibrium as expected. Before explaining the algorithm, we explain

key components of our game.

1.4 Algorithm overview
 We have mentioned our algorithm is based around random triangulations together with piecewise

affine functions arising from them. Edges of these triangles are used to create new points. New points are

created by checking vertical, and a horizontal straight line passing through an edge and see whether it

intersects with any line segment from the triangulation. New points and the original edges create a grid to

approximate our functions and calculate equilibrium for the respective finite game. Before calculation, all

points were assigned a value of interpolated functions, called heights throughout the thesis. Iterations of the

algorithm, together with detailed methods of how finite equilibrium is checked, are described in section 5.

 3

2 Strategic games
 In our experiment, we encounter many terms that need to be understood to solve games with

piecewise-affine utility functions. First, we introduce types of games (finite and continuous) and their

properties. One of these properties describes players playing the game. In our case, our game consists of

two self-interested players. This does not necessarily describe that they want to cause harm to one another

or that they only care about themselves. Instead, it means that each player has his description of which

states of the world he likes. [9, p.47]

2.1 Finite games
Let us have a strategic game G = (𝑁, 𝐴, 𝑢), where

• N is a finite set of 𝑛;

• 𝐴 = 𝐴1 × … × 𝐴𝑛, where 𝐴𝑖 is a finite set of actions available to player 𝑖 ∈ 𝑁. Each vector 𝑎 =

(𝑎1 … 𝑎𝑛) ∈ 𝐴 is called an action profile;

• 𝑢 = (𝑢1 … 𝑢𝑛) where 𝑢𝑖: 𝐴 → 𝑅 is a real-valued utility (or payoff) function for player 𝑖 ∈ 𝑁.

The game is called finite because of the finite size of 𝐴.2 A natural way to represent games with an n-

dimensional matrix. Therefore, for our two-player game, it utilizes a two-dimensional matrix. Here, each

row corresponds to a possible action that player 1 can choose, each column corresponding to a possible

action of player 2. [9, p.56] These players decide how to play based on utility values stored in the matrix.

This decision is referred to as a strategy.

2.2 Continuous games
 Now we consider strategic games in which players may have infinitely many pure strategies. A

strategy is called pure if a player decides to play it with probability one when exposed to his strategy set.

We want to include a possibility that the real-valued interval [0, 1] is the pure strategy set. A continuous

game is G = (N, S, u), where

• N is a finite set of 𝑛 players indexed by 𝑖;

• 𝑆 = 𝑆1 × … × 𝑆𝑛, where 𝑆𝑖 is a nonempty compact metric space;

• 𝑢 = (𝑢1 … 𝑢𝑛) where 𝑢𝑖: 𝑆 → 𝑅 is a continuous utility (or payoff) function for player 𝑖 ∈ 𝑁.

A compact metric space is a general mathematical structure used to represent infinite sets that can be

approximated by large finite sets. Moreover, suppose there is any close bounded subset of a finite-

dimensional Euclidean space or any closed bounded interval of the real line. In that case, we are talking

about a compact metric space, where the distance between two points 𝑥 and 𝑦 is given by ||𝑥 − 𝑦||2. In

such metric space, any infinite sequence has a convergent subsequence. As we are trying to verify equilibria

finiteness in this game type, it is useful to mention Glickberg’s theorem, which guarantees Nash equilibria

for every continuous game. [23]

2 http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/aait-03-strategic-games.pdf

http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/aait-03-strategic-games.pdf

 4

2.3 Utility and strategies
 The utility contains important information about a player's decision-making. Utility characteristics

and mixed strategies are introduced here.

2.3.1 Utility theory
 Utility theory is the leading approach to model player's desires. It aims to describe its preferences

across a set of available options. It does so by focusing on understanding how preferences change when a

player deals with uncertainty about alternatives it may receive. [9, p.47]

2.3.1.1 Preferences and utility
 How do we express preferences? The utility is deeply intertwined with game solving and sometimes

hard to grasp. It claims to provide a sensible formal model for reasoning about an agent’s happiness in a

variety of situations. Why should a game with a player’s uncertainty presented in the form of the expected

value of utility function, or expected utility, be enough to justify his response and not also depend on other

properties of the distribution such as its standard deviation? Theorists researching utility properties ground

relative questions in a more basic concept of preferences. The most influential of these theories is the one

developed by John von Neumann and Oscar Morgenstern in their book Theory of Games and Economic

Behavior. [10]. Let 𝑂 denote a finite set of outcomes, then when we take 𝑜1, 𝑜2 ∈ 𝑂 let 𝑜1 ≥ 𝑜2 denote the

fact that the agent weakly prefers 𝑜1 compared to 𝑜2. Let 𝑜1~ 𝑜2 denote that the agent is indifferent between

both 𝑜1 and 𝑜1. Lastly, with 𝑜1 > 𝑜2 we describe that agents strictly prefers 𝑜1 to 𝑜2. [9, p.49] More rules

that also include transitivity rules, but also completeness, and others can be reviewed in [11] or [9, p.50].

2.3.2 Utility function
 When we refer to utility functions, as will be done throughout the text, we will be trying

to make a specific assumption that our player’s desires how to behave are consistent with utility-theoretic

assumptions. Moreover, the utility function is mapping states of the world to real numbers. These values

can be interpreted as measurements of a player’s level of happiness in the given states. When a player is

uncertain, then his utility is defined as the expected utility with respect to the appropriate probability

distribution over states in the specific game. [9, p.47,48]

2.3.3 Mixed strategies
 We already came across pure strategies, but there is a second type called mixed strategies.

Due to an uncertain game environment, they are encountered more often. For each player, they consist of

randomizing over a set of available options according to some probability distribution. Formally this is

written as follows:

The set of mixed strategies for player 𝑖 is 𝑆𝑖 ∶= ∆(𝐴𝑖), where ∆(𝐴𝑖) is the set of all probability distributions

with each 𝑝𝑖 ∈ 𝑆𝑖 representing one such distribution over 𝐴𝑖.

If 𝑝𝑖 ∈ 𝑆𝑖 is a mixed strategy such that 𝑝𝑖(𝑎𝑖) = 1 for some 𝑎𝑖 ∈ 𝐴𝑖, then 𝑝𝑖 is called a pure strategy [9,

p.60]. The strategy describes how a player is trying to achieve the best utility (payoff) from the game.

Remember that there exists an expected value that a player will reach.

2.3.4 Expected utility
 Expected utility calculates the probability for each strategy in our set of strategies. These are used

for measuring average payoff, which is then weighted by each probability. This can be formally defined as

follows:

 5

Given a normal-form game (𝑁, 𝐴, 𝑢), the expected utility 𝑢𝑖 for player 𝑖 of the mixed-strategy profile 𝑠 =

(𝑠1 … 𝑠𝑛) is defined as [9, p.60]

𝑢𝑖(𝑠) = ∑ 𝑢𝑖(𝑎)
𝑎 ∈ 𝐴

∏ 𝑠𝑗(𝑎𝑗)

𝑗 𝜖 𝑁

2.4 Why is finding solutions hard?
 Let us look at some properties that make continuous games, especially ones with infinite strategy

spaces, hard to solve. Firstly, global minimization and maximization of a polynomial is hard as these

optimization problems are typically non-convex and highly nonlinear. Complexity usually has a non-

deterministic polynomial-time hardness, even for special cases such as maximizing a quadratic form in

binary variables. It is also difficult to find a solution due to its complex content (a combination of heuristics,

a need for an insight into the special structure of the game, and also the existence of different types of games

with a special equilibrium). We show convex-concave games as an example for special equilibria, where

the first player minimizes and the second maximizes to find a saddle-point. Another special example is

games of timing. Here, a game starts at a time equal to zero with players' probabilities increasing over time

together with a priori probabilities remembered for the past. Another example is games with bell-shaped

utility functions or invariants under symmetries3.

2.4.1 Convex/concave games special equilibria
 Convex-concave games are built on a similar principle compared to our games, where one player

minimizes, and the other maximizes their payments. It is a type of two-player, zero-sum game of 𝑅𝑝 × 𝑅𝑞

with payoff function 𝑓: 𝑅𝑝+𝑞 → 𝑅. If we mark one payment as 𝑢 and other as 𝑣, we end up with 𝑓(𝑢, 𝑣).

Lastly, a solution to the game is defined as (𝑢∗, 𝑣∗) if

𝑓(𝑢∗, 𝑣) ≤ 𝑓(𝑢∗, 𝑣∗) ≤ 𝑓(𝑢, 𝑣∗), ∀𝑢, 𝑣 ∈ 𝑅𝑝 × 𝑅𝑞

At this saddle point, neither player wants to deviate since it would only worsen his standings. The name

convex-concave has to do with the function graphs of 𝑢 and 𝑣. Therefore, we need for each 𝑣, 𝑓(𝑢, 𝑣) to

be a convex function of 𝑢, and for each 𝑢, 𝑓(𝑢, 𝑣) to be a concave function of 𝑣. When 𝑓 is differentiable,

our saddle-point will be characterized by a gradient: ∇(𝑢∗, 𝑣∗) = 0 [4].

2.4.2 An infinite number of strategies
 This subsection will analyze a particular class of infinite strategic games where each player makes

his choice from the real unit interval [0,1] (as is the case in our experiment). In the algorithm, each iteration

consists of a finite set, as we only add a countable number of strategies, but it inevitably approaches the

mentioned infinity. The matrix can hold any number of strategies in the interval [0,1]. This part is described

throughout in section 5. We now go more in-depth on why infinite strategies cause difficulty.

 Finding Nash equilibrium (defined in section 3) in an infinite or a very large game is known to be

difficult to solve. [28] In this subsection, we reinstitute why a message from pioneers Kuhn and Tucker,

who wrote in the preface of [29] that finding constructive methods for solving games with infinite strategy

spaces “would constitute a considerable contribution” still holds today where the difficulty is based.

3https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source

=gbs_navlinks_s page 6

https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s
https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s

 6

 Let us have a strategic game with infinite strategy sets. In general, mixed strategies in such a game

cannot be represented as finite-dimensional probability vectors. What happens instead is that they become

probability measures supported by a possibly infinite set. Hence, a purely mathematical concept that is not

a priori computable. Therefore, we need to mention Glicksberg’s theorem [6], which is a generalization of

the Nash theorem guaranteeing Nash equilibria in continuous games. This, however, may not be used in

computations directly as it is a fully general model of continuous games due to a number of reasons, in

particular:

• Glicksbergs’s theorem is a purely existential statement proved in a non-constructive manner, which

provides no information about the specific equilibrium strategies.

• Mixed strategies cannot be directly represented in any computer since they may pose complicated

probability measures.

• Players may be forced to randomize over an infinitely large set of pure strategies. This happens due

to relatively simple games where no single finitely supported mixed strategy equilibrium is present.

 After Karlin’s book [29], continuous games' research has been pursued in several directions.

Among the most studied continuous games classes were the strategy spaces with real one-dimensional

compact intervals, particularly the interval of [0,1]. On the one hand, some carefully crafted solutions to

particular examples of these games were developed, such as for games with bell-shaped kernels or games

of timing. On the other hand, we may identify efforts to single out entire classes of games where equilibria

with finite supports exist and have efficient solution methods for their computation. In the paper [1] Parillo

showed that finding an equilibrium of a two-player zero-sum polynomial game over [−1,1] can be obtained

by solving a single semidefinite programming problem. Parillo’s result was further expanded to include

polynomial games with basic semi-algebraic strategy sets by Laraki and Lasserre [30]. Their method

consists of solving a hierarchy of semidefinite relaxations with a possibly high number of decision

variables.

 Since polynomial games are part of the family called separable games, every utility function is a

finite sum of products with a product component being a function of each player's actions separately. We

remember that separable games also include the zero-sum games [8] and should therefore yield the same

results. The class of separable games allows us to have finite mixed equilibria and algorithms for computing

its approximate equilibria of two-player separable games in polynomial time in the game's rank.

2.5 Zero-Sum Games and Their Uses
2.5.1 Description
 As mentioned previously, we are experimenting with two-player games. Furthermore, our players'

game belongs to the group of games referred to as constant sum games since our player’s utilities always

add up to zero. These zero-sum games refer to games of pure conflict, where the payoff of one player is

equal to a negative value of the other player. In other words, one player’s gain is another’s player loss. [12;

13] Unlike common-payoff games, where each payoff for each action is the same for both players, constant-

sum games are primarily useful in the context of two-player games. [9, p.57] This needs to be mentioned

as the experiment is built on a two-player zero-sum game. As said, every iteration adds a countable number

of actions available to players into a matrix representing their possibly infinite set in its interval, in our case

[0,1].

 7

Each value in this matrix represents a utility. We mark the matrix M.

𝑀 = [𝑚𝑖𝑗] ∈ 𝑅𝑚∗𝑛

Formally, we can then define it as follows. Let there be a finite number of strategies denoted by 𝐼 and 𝐽.

There is always an action player chooses, which is called a play. Players choose what they play

simultaneously, with one choosing from 𝑖 ∈ 𝐼 and the other 𝑗 ∈ 𝐽. Value 𝑚𝑖𝑗 is called a gain for player 𝐴,

which equals to a loss for player 𝐵. Note that a rational player 𝑖 ∈ 𝑁 chooses a strategy that maximizes 𝑢𝑖

gain4. Specifically,

0 = 𝑚𝑖𝑗 + (−𝑚𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝐼, 𝐽

Here we see the reason why it is called zero-sum games.

2.5.2 Matching pennies
 To strengthen our environment's understanding, we show an example of a zero-sum game, which

is called Matching Pennies. This game consists of two players, each having one personal coin, who

simultaneously choose to display either heads or tails, then the two players compare what they have chosen.

If coins are the same, then player 1 takes them both, and otherwise, player 2 receives them. The payoff of

all possible outcomes is displayed below:

Another popular game, which can be used as an example for this game type, is Rock, Paper, Scissors. It is

widely regarded as a three-strategy generalization of the above-explained Matching Pennies game and

needs to be acknowledged. Here if two players choose the same option, then the utilities are zero. Otherwise,

each action wins only against one of the remaining two actions and loses to the other. [9, p.58]

2.5.3 Other uses
 So far, we have covered some specific uses of game theory in mathematical problems, but this field

has already expanded elsewhere. For example, it is extensively used in economics, sociology, political

science, and others because of the versatile nature and applications in many conflicts and problems. Another

property is robustness, causing game theory’s extensive use in computer science fields, which we show

examples of. The two uses which we will mention are fields of cyber security and cloud computing. [14]

2.5.3.1 Cloud computing
 The NIST, or National Institute of Standards and Technology, defines cloud computing as a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computer

resources (we regard these as mostly storage, applications, and services, but resources also include networks

or servers). Remaining available on-demand provides a rapid speed of provisioning and releasing with

minimal management overhead or service provider interaction. [15] As cloud computing is becoming more

popular, more challenges rise along. Here are two problems that are being solved with games theory.

2.5.3.1.1 Cloud Cyber Space Security
 Cloud cyber space has expanded into a multi-dimensional space that extends over various areas. It

is due to this reason that conventional methods cannot be used for their security.

4 https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/13games.pdf

https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/13games.pdf

 8

The first approach is called secure virtual machines, which use Nash Equilibria to analyze cause-

effect interdependencies in the public cloud. [16] Another is called the scalable security risk assessment

model. This model was created to respond to a vast number of attacks such as data breaches, data loss,

hacked interfaces, insecure APIs and DDOS attacks. It works by evaluating the risk and deciding whether

the provider or the client causes it. [17]

 The last problem is cloud security transparency problem. [16] It can be modeled as a non-

cooperative stochastic problem where the client and cloud provider are considered players. This is also a

Nash Equilibrium problem with the client deciding whether to choose the provider or not based solely on

the level of transparency provided.

2.5.3.1.2 Pricing Strategies
 Cloud beneficiaries compete with each other for maximum financial gain advantage. The market

model depicts the provider’s and the client’s potential behavior and rewards involved. We will now describe

one of these models.

 An extensive form game [18] is a model where a provider makes an offer to the client, who is free

to accept it or not. We arrive at Nash equilibria with two players, each viewing the situation differently. On

the one hand, the client wants an offer cheaper than making his data center or at least at the same price. On

the other hand, the provider wants to make the most significant possible profit.

 Other models include Discriminatory pricing policy, Uniform Pricing Policy, or Resource pricing.

[14]

2.5.3.2 Cyber security
 An interesting approach in solving cyber security attacks like Denial of Service, Brute force, or

SQL injection [19] is with game theory in which the ubiquitous attacker is considered a player system

administrators are considered as a player on the opposite side.

 Two models portray the approach, one of which is with static games, where players make decisions

based on prior knowledge about the opponent's behavior. In [16], they mention various economic problems

in cyber security for resource allocation or overall investment in security protection for divergent defense

mechanisms, which can be solved using these static game models.

 The second model is with imperfect information stochastic model. We have two functions for

portraying this model [16]. The first is Min-max Q, which wants to improve decision-making for a player

in multi-player games with players described previously using zero-sum equilibrium. [20] Nash-Q is the

second one, built on the fact that Nash equilibrium is a baseline answer to all general sum games presented

in [21]. Every player has some correct expectation for the behavior of other players. It adopts the Markov

decision process and has many applications in multiagent environments, for example, robotic soccer games.

 Overall, there are five models. The remaining two are the cooperative model and the static

prisoner’s problem. [14]

 To summarize, we need to note that even with these computer science uses. We stumble upon some

limitations. Precisely, cyber security can't quantify the parameters of cyber space, affecting the decision-

making process. [19] We work with equilibrium created from a very small number of cloud service

providers and clients for cloud services. Therefore, we need to make these models more scalable for their

more practical usage. [22]

 9

3 Nash Equilibrium
 As we have now discussed games in game theory, there is a need to define the term Nash

Equilibrium formally. What makes Nash’s theorem so crucial is its wide usage in many real-life examples

usually presented in a famous Prisoner’s dilemma. It is also essential to understand it before explaining

what we are trying to find in our experiment. Now we consider a game from a player’s point of view rather

than from an outside observer.

3.1 Definition
 A Nash equilibrium describes a set of strategies, one for each player 𝑖, where none of the players

has the incentive to deviate since it would result in his loss of payoff. It can be written formally as follows:

The best response of player 𝑖 to the strategy profile 𝑠−𝑖 is a mixed strategy 𝑠𝑖
∗ ∈ 𝑆𝑖 such that 𝑢𝑖(𝑠𝑖

∗, 𝑠−𝑖) ≥

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) for all strategies 𝑠𝑖 ∈ 𝑆𝑖.

A strategy profile 𝑠 = (𝑠1 … 𝑠𝑛), where if for every player 𝑖 is 𝑠𝑖 the best response to 𝑠−𝑖 can be called Nash

Equilibrium. [9, p.62]

3.2 Linear program
 Our program uses an algorithm that utilizes finding Nash equilibria with linear programming (LP).

This method results in solving equilibria in polynomial time.

 Let us consider a two-player, zero-sum game 𝐺 = ({1, 2}, 𝐴1 × 𝐴2, (𝑢1, 𝑢2)). We set 𝑈∗
𝑖 to be the

expected utility for player 𝑖 in equilibrium, it is also known as the game's value. As we pointed out in our

zero-sum game definition 𝑈∗
2, or the expected utility for the second player, needs to be a negative of 𝑈∗

1,

resulting in their combined sum is zero. The min-max theorem (in Section 3.4.1 and Theorem 3.4.4. in [9])

tells us that our expected utility remains constant in all equilibria. It also explains why player 1 achieves

the same value as under a min-max strategy by player 2. Using this, we construct the linear program as

follows.

 10

min 𝑈1
∗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑘 ∈ 𝐴2

∗ 𝑠2
𝑘 ≤ 𝑈1

∗ ∀𝑗 ∈ 𝐴1

∑ 𝑠2
𝑘 = 1

𝑘 ∈ 𝐴2

𝑠2
𝑘 ≥ 0 ∀𝑘 ∈ 𝐴2

Having minimization for one player, we can transform it into its dual program form and create a

maximization program for the other player [9, p.89-90].

max 𝑈1
∗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑗 ∈ 𝐴1

∗ 𝑠1
𝑗

≥ 𝑈1
∗ ∀𝑘 ∈ 𝐴2

∑ 𝑠1
𝑗

= 1

𝑗 ∈ 𝐴1

𝑠1
𝑗

≥ 0 ∀𝑗 ∈ 𝐴1

 11

4 How to Deal with Games Having Piecewise-

Affine (PA) Utility Functions
 We already mentioned what piecewise-affine functions are. This section introduces them more in

section 4.4, along with methods to solve our strategic zero-sum game. [27, p.79-80]

4.1 Domains of linearity are polyhedra
 Before we define polyhedra, let us realize that our game shape has constraints in the form of affine

functions. A polyhedron is defined as an intersection of half-spaces (in our case represented by affine

functions), creating a set of linear inequalities. Formally we define it as follows:

{𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏}

where 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

𝐴 representing a matrix of 𝑚 rows and 𝑛 columns, and 𝑏 is a vector of 𝑚 entries. Here is an example of

convex polyhedron on the left and non-convex on the right.

[27, p.157]

In our experiments, we have a square of size [0,1] × [0,1] where we have random points with random

heights placed. Therefore, by connecting our vertices, they form half of possibly non-convex polyhedra

with triangular faces. [29, p.156-160] We have become more familiar with this shape as it is used to

calculate the probability distribution for our players.

4.2 Triangulations
 We describe a triangulation for a set of points 𝑃. The term edge is used when discussing a line

segment containing exactly two points from 𝑃 as endpoints. A triangulation of 𝑃 is its subdivision into a

maximal possible set of non-intersecting edges, where the set of these vertices are points from 𝑃. Maximal

meaning that for every other possible connection of points from 𝑃 an intersection informed with other

already existing lines. [29, p.59].

 12

4.2.1 Delaunay triangulation
 There are many different algorithms to triangulate a specific space. However, for our space

decomposition Delaunay algorithm is the best as it is mainly used for terrain reconstruction, which our

program is also technically representing. The question to ask is which of the possible triangulations is the

most suitable from sampled heights. Even in real life, we do not know the Earth's exact shape, but only at

the sample points presented. The choice will, therefore, have a major impact on what will be the terrain's

appearance. The example below shows a different way of connecting points with different heights. We can

either connect high or low positioned points, and therefore if we imagine this layout, in reality, get either a

hill or a valley.

[27, p.97]

 For a triangulation to be Delaunay, it needs to meet some conditions. One of which says that no

four points are cocircular. Cocircularity describes a case where if we make a circle passing through all three

vertices constructing one triangle, the circle does not pass through any other point. [6, p.81] In our case as

we have a square [0,1] × [0,1] this requirement is mostly satisfied since we experiment with a smaller

number of points in a grid with many free spaces. This results in no square present unless the chosen number

of points fills most of these spaces in a setting creating it. If that is the case, then our triangulation cannot

be rightfully called Delaunay. Still, the algorithm in use will create a triangulation for every setting due to

it always using the same heuristics for a specific set of points. However, all experiments verifying the finite

equilibria will be triangulated using the Delaunay triangulation.

 Now, we will go over the steps that make the definite shape of our triangulation. Let us have

triangulation 𝑇 of our point set 𝑃, suppose 𝑇 has 𝑛 triangles. Therefore there are 3𝑛 angles which create a

sorted angle sequence (𝛼1. . . 𝛼𝑛), where the first being the smallest angle and the last being the largest one.

Why do we want to have angles for a specific triangulation sorted? As seen in the picture above, we have

two triangulations, if points B (height 7) and D (height 8) were positioned lower, then middle triangulations

would appear less natural terrain, and therefore larger angles result in a more realistic generation. When a

triangulation has a larger sorted angle sequence, then it is called a fatter triangulation. For the two

triangulations 𝑇1 and 𝑇2 of 𝑃, we say 𝑇1 is fatter than 𝑇2 if 𝑇1 has a lexicographically greater angle

sequence than 𝑇2. We will present two sequences with 𝑇1 being (10,20,30) and 𝑇2 being (10,25,30). We

 13

see that a second angle in the second sorted list is greater than the one in 𝑇1. Therefore, we would mark 𝑇2

as a fatter triangulation. When the fattest triangulation is what we seek, how do we go about finding it?

Edge flipping is one elegant way of finding such desired triangulation.

“Definition: Let 𝑒 be an edge of a triangulation 𝑇1, and let 𝑄 be the quadrilateral in 𝑇1 formed by the two

triangles having 𝑒 as their common edge. If 𝑄 is convex, let 𝑇2 be the triangulation after flipping edge 𝑒 in

𝑇1. We say 𝑒 is a legal edge if 𝑇1 ≥ 𝑇2 and 𝑒 is an illegal edge if 𝑇1 < 𝑇2.”[6, p.82]

Flipping of one 𝑒 changes six angles in 𝑇1 angle sequence and replaces them with their counterparts in 𝑇2.

However, this counts on the lexicographical ordering of angles. It helps complete the definition mentioned

above with a declaration that all hull edges of triangulation are legal. We are looking for the fattest one. We

tend to avoid illegal edges. Therefore, a Delaunay triangulation of 𝑃, noted as 𝐷𝑒𝑙(𝑃), has only legal edges.

[29, p.81-82]

4.3 Equilibrium existence
 To explain the process, we need to mention the type of games we are using are nondegenerate

games. Our two-player game is called nondegenerate if there exists no mixed strategy of specific size 𝑘

with more than 𝑘 pure strategies. Here we further explain piecewise-affine functions and ideas behind

solving.

4.3.1 Piecewise-affine functions
 For our strategic zero-sum game to be piecewise affine, it needs strategy sets that are [0,1] and

𝑢: [0,1]2 → 𝑅 to be a piecewise affine function. Piecewise affine functions are sometimes generalized under

the common, and less accurate, name of piecewise linear functions. The name linear only applies when

there is no offset to the function. Let us recall the term piecewise. It refers to a case where a function is

represented by a combination of equations that create a full domain rather than a typical single equation,

which might not represent real-world examples.5 Formally:

“A continuous function 𝑓: ℝ𝑛 → ℝ𝑚 is called piecewise affine if there exists a finite set of affine functions

𝑓𝑖(𝑥) = 𝐴𝑖𝑥 + 𝑏𝑖”[30], 𝑖 = 1, … , 𝑘, such that the inclusion 𝑓(𝑥) ∈ {𝑓1(𝑥), … 𝑓𝑘(𝑥)} holds for every 𝑥 ∈

ℝ𝑛. The affine functions 𝑓𝑖(𝑥), are called selection functions, the set of pairs (𝐴𝑖, 𝑏𝑖), is called a collection

of matrix-vector pairs corresponding to 𝑓. The function 𝑓 is called piecewise affine if there exists a

corresponding set of linear selection functions.[30]

To visualize piecewise-affine functions, we show an example for a function 𝑦 = |𝑥 + 1| (a function

split along 𝑦 axis). Absolute value sets every 𝑥 smaller than zero to −𝑥, and every larger value is kept as 𝑥.

Though we only use the interval [0,1], we introduce the formal definition applicable to the whole of ℝ:

𝑓: 𝑦 = |𝑥| + 1 is −𝑥 + 1 𝑖𝑓 𝑥 ≤ 0 and 𝑥 + 1 𝑖𝑓 𝑥 > 0

This fact is depicted in the graph below:

5 https://www.classzone.com/eservices/home/pdf/student/LA202GAD.pdf

https://www.classzone.com/eservices/home/pdf/student/LA202GAD.pdf

 14

4.3.2 Existence and computation of finitely supported mixed strategy
equilibria

 Let us have 𝑓 ∈ 𝑃𝐴2 as a two-variable piecewise-affine function. Such strategic game with

piecewise-affine payoff functions 𝑓 is the strategic game Γ𝑓 with the player set 𝑁 = {1,2}, the strategy

spaces A1 = A2 = [0,1], and the payoff functions f1 = −f2. We want to prove that 𝑓 be such that every

line segment in 𝐺(𝑓) is part of some polytope 𝑃(𝑓). Then the game Γ𝑓 has to have a Nash equilibrium

consisting of finitely supported mixed strategies. To prove a two-player constant-sum game is used with

the strategy spaces of 𝑋𝑓 and 𝑌𝑓. The payoff function of player 1 is the restriction 𝑓0 of 𝑓 to 𝑋𝑓 × 𝑌𝑓, and

the payoff function for the second player is it's negative noted as ¬𝑓0. Here each strategy set is finite,

making this game solvable in mixed strategies by the Nash Theorem [29]. Next, assume that the probability

vectors give an optimal pair of strategies of players 1 and 2 (𝛼1 … 𝛼𝑝) and (𝛽1 … 𝛽𝑞) respectively and 𝛿 as

the symbol for Dirac measure. Put

(6)

𝜇∗ = ∑ 𝛼𝑖

𝑝

𝑖=1

𝛿𝑥𝑖
 𝐴𝑁𝐷 𝜐∗ = ∑ 𝛽𝑗

𝑞

𝑗=1

𝛿𝑦𝑗

Where 𝑥𝑖 ∈ 𝑥 and 𝑦𝑗 ∈ 𝑦 with 𝑥, 𝑦 defined as follows:

0 = 𝑥1 ≤ ⋯ ≤ 𝑥𝑝 ≤ 1 and 0 = 𝑦1 ≤ ⋯ ≤ 𝑦𝑞 ≤ 1

We will show that (𝜇∗, 𝜐∗) ∈ ∆2 is a finitely supported Nash equilibrium in the game Γ𝑓.

Firstly, the inequality for expected payoffs is:

(7)

𝐸𝑓(𝜇∗, 𝜐∗) ≥ 𝐸𝑓(𝑥, 𝜐∗)

This holds for every choice of pure strategy 𝑥 ∈ [0,1]. Moreover, inequality

(8)

 15

𝐸𝑓(𝜇∗, 𝜐∗) ≥ 𝐸𝑓(𝑥𝑖, 𝜐∗)

Will be true for every 𝑖 = 1, … , 𝑝 since (𝜇∗, 𝜐∗) is an equilibrium of the game associated with 𝑓0 and the

value of this game is 𝐸𝑓(𝜇∗, 𝜐∗). For every 𝑥, there exist some 𝛾 ∈ [0,1] and some 𝑖 = 1, … , 𝑝 − 1 such that

𝑥 = 𝛾𝑥𝑖 + (1 − 𝛾)𝑥𝑖+1. Hence

(9)

𝐸𝑓(𝑥, 𝜐∗) = ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥, 𝑦𝑗) = ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝛾𝑥𝑖 + (1 − 𝛾)𝑥𝑖+1, 𝑦𝑗)

For every 𝑗 = 1, … , 𝑞, the line segment with endpoints (𝑥𝑖, 𝑦𝑗) and (𝑥𝑖+1, 𝑦𝑗) is included in some polytope

𝐴𝑗 ∈ 𝑃(𝑓) As the function f is linear over 𝐴𝑗, the sum defined earlier for 𝐸𝑓 becomes

(10)

∑ 𝛽𝑗

𝑞

𝑗=1

(𝛾𝑓(𝑥𝑖, 𝑦𝑗) + (1 − 𝛾)𝑓(𝑥𝑖+1, 𝑦𝑗)) = 𝛾 ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥𝑖, 𝑦𝑗) + (1 − 𝛾) ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥𝑖+1, 𝑦𝑗)

= 𝛾𝐸𝑓(𝑥𝑖 , 𝜐∗) + (1 − 𝛾)𝐸𝑓(𝑥𝑖+1, 𝜐∗) ≤ 𝛾𝐸𝑓(𝜇∗, 𝜐∗) + (1 − 𝛾)𝐸𝑓(𝜇∗, 𝜐∗) = 𝐸𝑓(𝜇∗, 𝜐∗)

Where the inequality follows from (8), proving (7). The proof that 𝜐∗ is an optimal strategy for the second

player can be proven in the same matter.

 As we have gone through this proof, we have not assumed the integer values of linear coefficients

of our function 𝑓. Therefore, this theory holds for piecewise-affine continuous functions with real

coefficients. Also, there were only two players, with their payoffs always remaining constant. The task

specified is standardly solved with linear programming as introduced in section 3.

 16

5 Program Explanation
 The following program is built to confirm whether infinite two-player zero-sum games have finite

equilibria. We chose a Python programming language to program it. The decision to code in Python was

mainly for language readability, even for users unfamiliar with it. The user’s input is used to build the

experiment and specify the base game's appearance. The algorithm has four inputs (points_number,

heights_number, kernel_sizer, steps), which are more specified in section 5.1. Experimental

work is based on the generation of random triangulations, together with their piecewise affine functions.

Their shapes are directly dependent on how inputs are set (specifically points_number,

kernel_sizer). The following approximation of these functions over a finite grid and determination of

the game’s equilibria are iteratively checked. Iterations are used to see if game results are stabilizing to

verify the finiteness of such equilibria. There are four examples shown—one described in detail to visualize

the algorithm’s process. The rest is used as follows: first to show five rounds of stabilization to support the

detailed example; second mainly to show all points generated in later iterations, as they cannot typically be

visualized properly due to their large number; third shows iterations until testing computer’s memory runs

out.

5.1 Summary
 We have explained the theory used in our experiment. Now it is high time to dismantle the

algorithm into a detailed description to see how it solves the problem. Altogether, the algorithm consists of

two main parts. In the first part, we have to create an environment where the game is to be played. This

means creating a square [0,1] × [0,1], which will hold the points building strategies for the players. The

second part focuses on using these points in a game and solving it for both players. The goal is to monitor

whether the results stabilize and approach equilibria for players whilst we perform more iterations. Let us

introduce variables required for starting the run of the algorithm. The program needs four parameters as

input:

points_number – This parameter is used to set a number of points to populate the square [0,1] × [0,1].

The minimum required number of points is four as we always put four points into corners.

heights_number – The number changing the possible value of interpolated functions of our points is

called heights_number. These values are called height, as mentioned. This value is assigned to each

point. Note that heights_number must be greater than 0.

kernel_sizer – As we work with a square [0,1] × [0,1] we need to specify the sizes of our bins to set

points on. Moreover, points could be placed anywhere inside of the square. However, it is better to have

them placed in an orderly manner as we plan to make a finer grid out of them. Kernel_sizer specifies

a grid's dimensions between the numbers 0 and 1, where the points will be placed. This number needs to

be a divider of 1, since we want these dimensions to divide the game space evenly. If this is not satisfied,

then it is changed to the default value of 0.2.

steps – Lastly, we use steps to indicate how many iterations we want our algorithm to run. Each iteration

consists of the second part of the algorithm. As our program needs to compare some values for our

verification, it is suggested to choose a value of 2 or greater, but no smaller than 1.

 17

If a user wants to run the algorithm according to the chosen value, they need to fulfill the requirements

specified above. Otherwise, they are changes to the lowest possible or default value. Many pictures are

staged for visualization as the default Python output takes an unreasonable amount of space. All of these

values are taken from outputs.

 18

In the first part, we use:

Input: points_number, height_number, kernel_sizer

Output: Triangulated square [0,1] × [0,1] with randomly placed points and heights along each gridline

corner

The second part uses an output of the first one; therefore we end up with:

Input: Triangulated square [0,1] × [0,1] with randomly placed points and heights along each gridline

corner

Output: 𝑥 = (𝑥1, … , 𝑥𝑛) is a mixed strategy of Alice, where we show only those 𝑥𝑖 > 0

 𝑦 = (𝑦1, … , 𝑦𝑛) is a mixed strategy of Bob, where we show only those 𝑦𝑖 > 0

Together with our printable outputs, we show a triangulated space, intersection points for each iteration,

and probability distribution over players' mixed strategies. To put the algorithm into perspective, we follow

a random example for a generation of 10 points, with kernel_sizer set to 0.2 and height_number

set to 50 to avoid an overwhelming number of decimal places from heights calculation. Code is split into

functions, one for each job needed. There is one function arching over all calculations of both parts, which

is called runner. This prevents having code in the main function. Firstly, we describe steps done for the

first part of the program titled Triangulation Part.

 19

5.2 Triangulation
 The triangulation part starts with taking the first three manual inputs (points_number,

heights_number, and kernel_sizer) and passing them into pa_games_watch. It returns tri,

coords, coords_tri, threedim_coords, heights_orig, visual_heights, and

visual_grid. We will now explain each function and explain what these variables hold.

5.2.1 Square creation

5.2.1.1 Kernel_number
 Firstly, to transform our inputs into a more intuitive form, we use kernel_sizer (now called

kernel_size) to calculate how many boxes there are between 0 and 1. This is done by dividing 1 by

the kernel_size. For our example with 0.2 we have
1

0.2
= 5 boxes to store into kernel_number.

5.2.1.2 Indexes
 Secondly, we call make_indexes with numvars (points_number renamed for the function)

and kernel_number from earlier. Indexes begin at zero and go up to the kernel_number plus one

squared minus one. For our example, this is (5 + 1)2 − 1 = 35. The function starts with setting corners as

chosen points and then uses np.sort together with np.random.choice to return a list of unique

sorted placements for points. This array will have a size of points_number minus four as corners are

chosen by default.

5.2.1.3 Visual_grid
 In the last part of square creation, we call visualize_grid with kernel_number and

indexes from previously. This function creates a one-dimensional array populated with zeros using

np.zeros with an argument size of kernel_number plus one. Function substitutes ones for zeros on

all indexes from indexes. The next step is to create a two-dimensional square from the one-dimensional

array and add corners since they are not in indexes. This is done with np.reshape.

We have a two-dimensional array/square with dimensions of 6 × 6 to satisfy 0 − 5 indexes holding our

points on randomly assigned indexes.

Input: points_number, height_number, kernel_sizer

 20

Output: Square [0,1] × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with

randomly assigned points (with visualization)

5.2.2 Value assigning
 We need to set random interpolated functions values, which are called heights in the program, for

our points.

5.2.2.1 Coords
 Before we go over the heights, there is a variable called coords, which stands for a list holding

coordinates of all points. This is done using np.argwhere for the two-dimensional variable

visual_grid, finding where values are greater than zero since we used an array with only zeroes and

changed them to ones only for spots where the points were assigned. Afterward, we end up with a list of

lists with the size equal to the number of points specified in points_number. This list will be used in

this part for triangulating our square space.

5.2.2.2 Heights
 Similarly to how we chose the points, we will choose values for the points' heights—calling a

function make_heights with numvars and max_height (known earlier as heights_number).

Random generation of values is done using np.random.randint. It takes in a minimum and maximum

value but chooses between them; therefore, we use max_height plus one as a maximum. The values are

represented in an array which is saved as heights. After returning from the function, it is renamed to

heights_orig.

5.2.2.3 Visual heights
 To visualize our heights we call a function called visualize_heights with heights and

visual_grid as parameters. To make it more readable when copying the two-dimensional array using

np.copy we subtract one from it to have it as a clear indicator of where the points are not present. Using

pattern matching, we assign a value from the heights array for each value greater than minus one.

Input: Square [0,1] × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1)

Output: Square [0,1] × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with

randomly assigned points and heights (with visualization)

 21

5.2.3 Triangulation function

5.2.3.1 Tri
 Now when we have all points and heights for the triangulation, we use a

scipy.spatial.Delaunay to create triangles from our points. This library uses Qhull algorithms.

The convex hull of a set of points 𝑃 in 𝑛 dimensions is 𝑅𝑛. A set 𝑄 ∈ 𝑅𝑛 is convex if for all 𝑞1, 𝑞2 ∈ 𝑄

the line 𝑞1𝑞2 is fully within 𝑄. The Convex hull of the set of points P can be described as the smallest

wrapping of such points6. When asked how many triangles we have in triangulation, we look at our wrapped

points, shaped like a half polyhedra, and mark the number of points it consists of as 𝑛 corners. The rest of

the points which are inside our half polyhedra will be 𝑚. We can find a triangulation of a pivot corner 𝑝 by

drawing a line to 𝑛 − 3 corners with no edge to 𝑝. This, together with half polyhedra edges, gives us 𝑛 +

(𝑛 − 3) = 2𝑛 − 3 edges and 𝑛 − 2 triangles. The next step is for us to take each of the inner points 𝑚 and

do the following:

For a point 𝑞 ∈ 𝑚 we find the triangle it lies in and connects it with its edges. This gives us another 3

edges and 2 more triangles. After pursuing this for all the points in 𝑚 we get 2𝑛 − 3 + 3𝑚 = 2𝑛 + 3𝑚 −

3 edges and 𝑛 + 2𝑚 − 2 triangles7.

Even though this is a special way of creating triangles, the number of them and edges remains constant for

all other triangulation forms. The plane we perform this in is not without special cases. For this triangulation

to stay omnipresent, there need to be no four points along a circle circumference. To avoid a square of

points, we set a small kernel_sizer, creating many options for placements and points_number. To

clarify, imagine having a square 𝐴𝐵𝐶𝐷. When you want to triangulate it, you can either connect 𝐴𝐶 or 𝐵𝐷.

These dual options for edges are always done in the same way. This is due to points being iterated through

in the same order. Therefore, even though not triangulated by Delaunay, the triangulation will always be

the same. We call this function with parameter coords. Since a library does the calculation is stores more

than single information into tri. Calling tri.simplices returns triangles marked by indices of the

points in an array coords with coordinates.

5.2.3.2 Threedim_coords
 To better view how our triangles are subdividing the square space, we use np.insert. Calling

coords with tri.simplices we now, instead of having just indices of the coordinates, have triangles

with both coordinates and heights. This creates a list with lists of lists. Threedim_coords represents

three-dimensional information about all our triangles.

6 http://www.qhull.org/
7 https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-

hull.pdf

http://www.qhull.org/
https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf

 22

5.2.3.3 Coords_tri
 Coords_tri is very similar to threedim_coords, but now we only want two-dimensional

coordinates for our triangles. To do this, we call tri.simplices on coords, and get a list with lists

of lists for only coordinates of all vertices for each triangle.

Input: Square [0,1] × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with randomly

assigned points and heights (with visualization)

Output: List of coordinates and list of triangles as an array describing indices from the list of coordinates

 23

5.3 Creating and Solving Zero-Sum Game

5.3.1 Line information
 To clarify the work, we call a function line_info with coords and tri.simplices as

parameters, which iterates through all triangles describing every line from them into the information array.

Important to remember is that triangle is marked by indices of the points in coords array. Information

about a line segment looks as follows:

Let us have a triangle 𝐴𝐵𝐶 with two-dimensional coordinates. Firstly, for a line segment 𝐴𝐵 we take the

index of 𝐴 from a triangle and use it as the first value. Now we do the same with an index of point 𝐵 and

place it in the second position. The third index consists of an array of size two with 𝑥 coordinates for 𝐴 and

𝐵. The fourth index similar to the third instead now with 𝑦 coordinates. This is also done for 𝐵𝐶 and 𝐶𝐴.

This array, called all_lines in our program, allows us to search for intersections much better than if we

had to search for this information every time.

Input: List of coordinates and list of triangles as an array describing indices from the list of coordinates

Output: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each line

5.3.2 Height
 The next function called is find_A_b with coords(all_coords),

tri.simplices(triangles), heights_orig(heights). It is used to find a function for each

triangle in our triangulated plane. To do this we create an array full of zeros with the size equal to triangles.

What we calculate is y = Ax + b or y1, y2, y3 = (x1x, x2x, x3x) * a1 + (x1y, x2y,

x3y) * a2 + b, where 𝑦𝑖 stands for a height of vertices in a triangle, 𝑥𝑖𝑥 and 𝑥𝑖𝑦 are 𝑥 and 𝑦 coordinates

for each vertex in a triangle. To solve this equation, we use np.linalg.solve(x, y), which

calculates both 𝐴 and 𝑏, and we need to split it with the first two being 𝐴 (𝑎1, 𝑎2) and the last being 𝑏.

When we know 𝐴 and 𝑏 for a triangle, if we give it point’s coordinates, we can calculate its height very

precisely. This array of arrays is returned into triangle_equations. Before we can call for

find_height it is necessary to look for new points to assign them these heights.

 24

Input: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each line

Output: List of 𝐴𝑥 + 𝑏 = 𝑦 for describing each triangle to return more precise height for future

intersections

5.3.3 Intersections
 The function quadratic_direction is called by two functions first_round and

next_rounds. It is split for the ability to see the process more clearly. First_round calls it for initial

randomly generated points, while next_rounds calls it for all points available in the following iterations,

consisting of all points from the grid as explained in 5.3.4.1. It is rerun steps minus twice as

first_round and next_rounds did two iterations already. Since these two functions are a little

different, let us go over them in more detail. Before that, we explain how the intersections are searched for.

5.3.3.1 Quadratic direction
 We use quadratic_direction to find intersections of a horizontal and a vertical line from a

point. It checks with every line that our triangulation has created. This is very computationally intensive.

Therefore as an improvement to the computation time, we added the direction from which the point was

found. If the point was found as a horizontal intersection, there is no need to search for horizontal

intersections. As mentioned, quadratic_direction checks each line segment for possible

intersections, and there are a few different types of possible intersections from a point to a line segment.

The easiest are the ones where either 𝑥 or 𝑦 coordinate is the same for both ends of the line segment. Then

we can set new point’s coordinates, being 𝑥 or 𝑦, as from one of the points from the line segment and the

other from the point that was searching intersections. Another option is when the line segment is scute to

the pivot. In that case, we can use analytic geometry to count the slope or the segment and plug it into the

equation. If our point were any one of four corners, we would skip it because it does not have any new

intersections. The function is split into vertical and horizontal checking. We will go over an example in

more detail. For this, we use one of the initial points [4,1,35,0] and look at how it intersects the line from

[0,0] to [5,5], where 𝐴 will be [0,0], and 𝐵 will be [5,5]. The line will be intersected at coordinates 1 (by a

horizontal line) and 4 (by a vertical one), creating two new points, where the missing coordinate will be

calculated using the line equation. Since the original points are predetermined, they are the only points that

need to check both directions. Others will only check the direction by which they were not made. This is

noted on the fourth index of the point’s array with initial points having this value set to zero with one

meaning horizontal checking is needed and two being used for the vertical one. Therefore, if a point is

 25

deemed to be the one to go through the horizontal part, then before calculating, we check if the point has 𝑦

coordinate between the line edges. Otherwise, it could not intersect this line. If it passes this condition, we

check if 𝑦 coordinates of the points ' coordinates are not the same since that would mean the imaginary line

from a point in a horizontal direction towards the line segment does not intersect but instead create a line.

Lastly, we check if this potential point is already present in our point collection. If that is not the case, we

can add it to the collection. This collection saves all coordinates in a set called new_candidate_check,

named in the round functions as candidates. A similar is done for vertical direction to get all four

options mentioned above.

5.3.3.2 Coords extended
 Coords_extended combines values for point coordinates and their respective heights. This is

done by creating a list of lists with size for the number of points 3 using np.zeros and plugging

coordinates to the first and second indexes and heights to the third. These values can be seen in

threedim_coords, where they are put into triangles.

5.3.3.3 First round
 The parameters used are coords, coords_extended, all_lines, kernel_sizer,

heights_orig, sample_array, precision_check, intro, coords_tri,

triangle_equations. We now know all but three of them. Sample_array is an array of size four

consisting of only zeros, and it is used as a sample for some other array, for example, intro, which holds

points found in the first round. Precision_check describes the precision of calculations. Setting this

number to two, we then round to this number of decimal places. First_round goes over all the initial

points and checks the existence of intersections using quadratic_directions. If there is any new

point found, then it is added into intro points with np.append. After all points have been checked, we

use np.unique to find unique 𝑥 and 𝑦 from both intro and coords coordinates, in case numerical

error caused the dual appearance of the same point. Then we make a list of them using np.unique and

np.append to run grid_maker. We will explain it in more detail in 5.3.4.1, but to summarize, it creates

a grid by calculating the Cartesian product from all points. It uses the heights of these points in linear

programming to evaluate probability distribution for the game. The function first_round returns

intro, candidates, A, and gridpoints. In the runner function, they keep their name, but

gridpoints changes to temp_gridpoints. A is the matrix keeping the values for the mentioned

linear programming. Gridpoints are all points creating the game grid in that round.

5.3.3.4 Next rounds

 This function uses candidates, steps, coords, coords_extended, all_lines,

intro, sample_array, kernel_sizer, heights_orig, precision_check, coords_tri,

temp_gridpoints, myDict, triangle_equations as parameter. New here is myDict, which

collects what points exist in each round to get a clearer view of how the game is developing.

Next_rounds runs the same algorithm as first_round, but inside there is a for loop running steps

minus one time. It returns newer, newest, tester, A, gridpoints, myDict, with newer

representing all points from all rounds and newest represents a grid these points make. Tester is a copy

 26

of three-dimensional points from the beginning used mainly to check that our code is running properly and

have this information available on hand throughout the process. The rest of the returns is already known.

Input: All points in the set and the list, information about lines and heights, storage for points in each

round, number of iterations to run (for next_rounds, first_round only does round 1)

Output: Found intersection and updated grid from them with updated lists and sets of point

5.3.4 Zero-sum game

5.3.4.1 Grid maker
 This function gets called with xn, yn, coords, coords_tri, tester, triangle_info by

previously explained rounds functions, but since it consists of calculating the game, it is kept in the second

part. 𝑋𝑛 and 𝑦𝑛 are lists of unique 𝑥 and 𝑦 coordinates of all points, respectively, and triangle_info

is triangle_equations. With all-new points, we again use the Cartesian product to create a grid from

all unique 𝑋 and 𝑌. This is done using itertools.product(𝑋, 𝑌). Gridsmooth_points are all

grid points, but new_gridsmooth_points represent our grided points without the initial ones that have

their height values already. Grid_maker does two things. At first, it assigns grid points to their triangles

to be able to assign them a height using the find_height mentioned above. From triangles, we calculate

𝑐1, 𝑐2, 𝑐3 for our points. If their coordinates together all sum up to either non-negative or non-positive, we

found a triangle for the point.

 c1 = (x2 - x1) * (yp - y1) - (y2 - y1) * (xp - x1)

 c2 = (x3 - x2) * (yp - y2) - (y3 - y2) * (xp - x2)

 c3 = (x1 - x3) * (yp - y3) - (y1 - y3) * (xp - x3)8

Now we add initial points back into new_gridsmooth_points. Because we need all of their heights

to represent values for our zero-sum game. Next, the program computes a game for Alice and Bob, finding

8 https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php

https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php

 27

their probability distribution. Here, we came across an issue with the possibility of solving the problem

using Python libraries. Firstly, we set up a linprog() library, where one only needs to insert specific

values into a function receiving an output. After getting various outputs and some research, we found this

is not as robust as its Matlab programming language counterpart. We moved on to nashpy(), which was

meant to be more stable with our examples. It held up better, but we could not test if there is something

wrong or it is simply not robust enough. Lastly, before founding the library used (pulp()), we tried

several other libraries, which did not work as needed. PuLP is the most stable out of all tested. It is harder

to set up but easier to comprehend once all values are properly represented. When we wanted to put our

dual program into a pulp problem, we needed to do each part manually.

Alice = np.rot90(A, -1) # We use a different orientation for dual program

x_names = [format(x, '02d') for x in range(np.shape(Alice)[1] + 1)]

x = pulp.LpVariable.dicts("x", x_names, cat="Continuous")

for i in x.keys():

 if i == np.shape(Alice)[1]:

 continue # x0 has no bounds

 else:

 x[i].lowBound = 0 # BOUNDS x1-xn >= 0

prob = pulp.LpProblem("Alice", LpMaximize) # MAX

prob += x[x_names[np.shape(Alice)[1]]] # (max) x0

for i in range(np.shape(Alice)[0]):

 prob += lpSum(Alice[i, k] * x[j] for k, j in enumerate(x_names[:-1])) - 1 *

x[x_names[np.shape(Alice)[1]]] >= 0 # Ax – 1x1 >= 0

prob += lpSum(1 * x[i] for i in x_names[:-1]) == 1 # Sum of xs is 1

prob.solve()

For our dual program, we have a maximizing Alice. Therefore we create LpProblem(“Alice”,

LpMaximize). In this style, we add more equations to the problem. We can use a for cycle to help us

add 𝐴𝑥 ≤ 1𝑥0and constraints. The last thing is to call solve() on our problem. The values printed are

for the strategies, which received more than 0 probability of being played. Here is one example of the first

five rounds. To visualize, we also create a graph from these probabilities.

 28

Input: Grid of points with all information for this iteration

Output: Mixed strategies for Alice and Bob in this iteration and visual output showing these values

 29

5.3.5 Point Storing
 We already mentioned a dictionary myDict storing points for each round. We also use

gridpoints to get a list of all points with their information about height and destination from where they

were created to see them all in one place. The difference between them is that myDict as a dictionary

remembers the situation for each round separately, but gridpoints only all of the points after iterations

have been done. The most useful besides myDict is coords, which all_lines uses to access all

triangle information at one place and is used throughout the code. Bellow, you can see part of myDict

after the first_round as the number of points is really high.

Input: Coordinates current for iteration

Output: New dictionary key with all values stored

5.3.6 Visual Output
 Now when all the steps are finished. The first thing to be drawn is a probability distribution over

each player's possible strategies side by side (seen above). The second thing is to show points active in each

round with a triangulated original picture in the background. Below are the first two rounds (original points

in green, intersections from the first round in red, and points created by Cartesian product in blue).

Input: Triangulated space with a dictionary with points in each iteration

 30

Output: Triangulated space with grid points for each iteration

5.3.7 Other examples
The first example is used to verify the results in a detailed visualization above.

 31

The second example is used to present all points in later iterations since usually such a large number of

them is generated they become impossible to visualize.

 32

For the last example, we decided to let the algorithm run until our computer runs out of memory. Here we

can observe some probabilities becoming so small algorithm starts putting minus before them. However,

we see our results being stable.

 33

 34

6 Conclusion
 Our goal was to experimentally verify whether infinite two-player zero-sum games with piecewise

affine payoff functions have finite equilibria. After introducing the problem, we started explaining the

backgrounds of zero-sum games as we began to understand how to approach it. The experiment is based

on the generation of random triangulations with their affine functions. It is needed to approximate such

functions over a finite grid and determine the respective finite game’s equilibrium. The approximation of

Nash equilibria for the game is made using linear programming. Before the start of the experiment, it was

known that polynomial games hold the property of finite equilibria. Since zero-sum games belong to the

same family and have similar properties as polynomial ones, we strengthened the belief equilibria finiteness

would hold for them too.

 The experiment is set on a square [0,1] × [0,1] holding all strategy spaces for our players. To

represent the square, a two-dimensional array was created in Python. Its size is determined by the user’s

input, specifically by kernel_sizer, setting each box’s size to space out the [0,1] interval evenly. All

randomization and most other mathematical instruments are done using the NumPy library, which is widely

used in similar cases. The algorithm uses points_number to randomly assign points to a place with their

generated value of interpolated functions or heights. Then the algorithm continues by creating a

triangulation from these randomly generated points inside the square. Triangles created in the process

represent affine functions in the game with values in the form of heights. To triangulate such space, it was

needed to choose a library for creating triangulations. Our research led us to use the Delaunay function

from the scipy library. With triangles now in place, we had to count equations of affine functions to

represent them to find heights for new points generated in each iteration. The mentioned iteration starts

with a search for intersections, which is done by checking every point present to see if it crosses any line

created by the triangulation mentioned above. A new point is added to the pool of points if it has not been

found previously. Once all possible intersections have been checked, we create a grid from all now available

points using their unique 𝑥, 𝑦 coordinates’ Cartesian product. For all points in the grid, there is a specific

height value. To assign it to them, each point checks in what triangle it lies and uses this triangle’s function

equation plugs its coordinates to find the height. After it is done for all of them, we put grid height values

into a matrix to represent strategies in the game and solve it for our two players using linear programming.

This all happens in one iteration. The user-specified the number of them. We expect it to converge with a

result for our game while adding the rest of the iterations. Here each new iteration adds a countable number

of points (later used as strategies), which enabled us to use theory based on finite games even when our

game ultimately approaches infinity.

 For the games tested, we monitored the player’s probability distributions stabilizing with increasing

strategy sets. This was needed to say that if we observed a finite equilibrium of a zero-sum game, then we

could use the initial grid to represent a game, as it is the case for polynomial games, and save computational

power. Looking back at the experiment, we learned that Python might not be the greatest programming

language for this calculation type. Furthermore, this is due to many libraries' encounter for linear

programming, which could not calculate needed probability distributions, showed inconsistent or wrong

results before using PuLP for the algorithm. For these reasons, Matlab will be preferred in future research

of similar problems since we needed to investigate which library had the best implementation to show the

required results.

 35

7 Resources
1. PARRILO P.: Polynomial games and sum of squares optimization. In Decision and Control.

2006. 45th IEEE Conference on, pages 2855–2860. [ref. 12-09-2020].

2. HANAPPI H.: The Neumann-Morgenstern Project – Game Theory as a Formal Language for

the Social Sciences. 2013. Game Theory Relaunched, Hardy Hanappi, IntechOpen, DOI:

10.5772/56106. [ref. 12-09-2020]. Available from: https://www.intechopen.com/books/game-

theory-relaunched/the-neumann-morgenstern-project-game-theory-as-a-formal-language-for-

the-social-sciences

3. NISAN N.; ROUGHGARDEN T.; TARDOS E.; and VAZIRANI V. V.: Algorithmic game

theory. 2007. Cambridge University Press Cambridge. [ref. 12-09-2020].

4. SHOHAM Y.; and LEYTON-BROWN K.: Multiagent systems: Algorithmic, game-theoretic,

and logical foundations. 2008. Cambridge University Press. [ref. 12-09-2020].

5. LEMKE C.; and HOWSON J.: Equilibrium points of bimatrix games. 1964. Journal of the

Society for Industrial and Applied Mathematics, pages 413–423. [ref. 12-09-2020].

6. GLICKSBERG I. L.: A further generalization of the Kakutani fixed point theorem, with

application to Nash equilibrium points. 1952. Proceedings of the American Mathematical

Society, pages 170–174. [ref. 12-09-2020].

7. DRESHER S. K. W.; and SHAPLEY L. S.: Polynomial games. In H. W. Kuhn and A. W.

Tucker, editors, Contributions to the Theory of Games, volume I of Annals of Mathematics

Studies. 1950. Princeton University Press. pages 161–180. [ref. 12-09-2020].

8. STEIN D.N.; OZDAGLAR A.; and PARRILO A.P.: Separable and Low-Rank Continuous

Games [online]. [ref. 11-09-2020]. Accessed from:

http://www.mit.edu/~nstein/documents/SeparableGamesCDC2006Extended.pdf

9. SHOHAM, Y. and LEYTON-BROWN, K.: MULTIAGENT SYSTEMS Algorithmic, Game-

Theoretic, and Logical Foundations [online]. 2009. Cambridge: Cambridge University Press.

[ref. 25-07-2020]. Accessed from: http://www.masfoundations.org/mas.pdf

10. LEVIN J.:Choice under Uncertainty [online]. 2006. [ref. 11-09-2020]. Accessed from:

http://web.stanford.edu/~jdlevin/Econ%20202/Uncertainty.pdf

11. BOARD S.:Choice under Uncertainty [online]. 2009. [ref. 11-09-2020]. Accessed from:

http://www.econ.ucla.edu/sboard/teaching/econ11_09/econ11_09_lecture2.pdf

12. Linear Programming Notes IX: Two-Person Zero-Sum Game Theory [online]. [ref. 11-09-

2020]. Accessed from: https://econweb.ucsd.edu/~jsobel/172aw02/notes9.pdf

13. Zero-Sum (and Constant Sum) Games [online]. [ref. 11-09-2020]. Accessed from:

https://www3.nd.edu/~apilking/math10170/information/Lectures/14%20Zero%20Sum%20Games

.pdf

14. KAKKAD, V.; SHAH, H.; PATEL R. and DOSHI N.: A Comparative study of applications of

Game Theory in Cyber Security and Cloud Computing [online]. 2019. Pandit Deendayal

Petroleum University, Gandhinagar, India. [ref. 26-07-2020]. Accessed from:

https://www.sciencedirect.com/science/article/pii/S1877050919310130, pages 681-684

15. MELL P.; and GRANCE T.: The NIST Definition of Cloud Computing [online]. 2011. National

Institute of Standards and Technology. [ref. 29-11-2020]

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

https://www.intechopen.com/books/game-theory-relaunched/the-neumann-morgenstern-project-game-theory-as-a-formal-language-for-the-social-sciences
https://www.intechopen.com/books/game-theory-relaunched/the-neumann-morgenstern-project-game-theory-as-a-formal-language-for-the-social-sciences
https://www.intechopen.com/books/game-theory-relaunched/the-neumann-morgenstern-project-game-theory-as-a-formal-language-for-the-social-sciences
http://www.mit.edu/~nstein/documents/SeparableGamesCDC2006Extended.pdf
http://www.masfoundations.org/mas.pdf
http://web.stanford.edu/~jdlevin/Econ%20202/Uncertainty.pdf
http://www.econ.ucla.edu/sboard/teaching/econ11_09/econ11_09_lecture2.pdf
https://econweb.ucsd.edu/~jsobel/172aw02/notes9.pdf
https://www3.nd.edu/~apilking/math10170/information/Lectures/14%20Zero%20Sum%20Games.pdf
https://www3.nd.edu/~apilking/math10170/information/Lectures/14%20Zero%20Sum%20Games.pdf
https://www.sciencedirect.com/science/article/pii/S1877050919310130
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

 36

16. YUAN W.; YONGJUN W.; JING L.; ZHIJIAN H.; and PEIDAI X.: A Survey of Game

Theoretic Methods for Cyber Security. 2016. IEEE First International Conference on Data

Science in Cyberspace. [ref. 12-09-2020].

17. BURCH N.: Time and Space: Why Imperfect Information Games are Hard. 2017. Ph.D.

Dissertation, University of Alberta. [ref. 12-09-2020].

18. KÜNSEMOELLER J.; and HOLGER K.: A game-theoretical approach to the benefits of cloud

computing. 2012. Economics of Grids, Clouds, Systems, and Services. Springer Berlin

Heidelberg. pages 148-160. [ref. 12-09-2020].

19. AMADI CH.; EZE U.; and IKERIONWU CH.: Game Theory Basics and Its Application in

Cyber Security. 2017. Advances in Wireless Communications and Networks. pages 45-49. [ref.

12-09-2020].

20. SHIVA S.; SANKARDAS R.; and DIPANKAR D.: Game theory for cyber security. 2010.

ACM Comput. Surv. [ref. 12-09-2020].

21. HU J.; and P. WELLMAN M,: Nash Q-Learning for General-Sum Stochastic Games. 2003.

Journal of Machine Learning Research, pages 1039-1069. [ref. 12-09-2020].

22. BING S.; HUANG; YALONG; WANG; JINWEN; and SHENGWU X.: A Game-Theoretic

Analysis of Pricing Strategies for Competing Cloud Platforms. 2016. pages 653-660.

23. OZDAGLAR A.: Continuous and Discontinuous Games [online]. [ref. 11-09-2020]. Accessed

from: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-254-game-

theory-with-engineering-applications-spring-2010/lecture-notes/MIT6_254S10_lec06b.pdf

24. KOLLER D.; MEGIDDO N.; and STENGEL von B.: Fast algorithms for finding randomized

strategies in game trees. 1994. In Proc. 26thSTOC, pages 750-759. [ref. 12-09-2020].

25. MILTERSEN P.; and SØRENSEN T.: Fast algorithms for finding proper strategies in game

trees. 2008. In Proc. 19th SODA, pages 874-883. [ref. 12-09-2020].

26. WIMPEE J.: Finding Nash equilibria in two-player, zero sum games. 2008. Computer Science

Graduate and UndergraduateStudent Scholarship. 3. [online]. [ref. 11-09-2020]. Accessed

from:

https://cedar.wwu.edu/cgi/viewcontent.cgi?article=1002&context=computerscience_stupubs

27. DEVADOSS L.S.; and O’ROURKE J.: Discrete and Computational Geometry. Princeton

University Press Princeton and Oxford. [ref. 11-09-2020].

28. NISAN N.; ROUGHGARDEN T.; TARDOS E.; and VAZIRANI V.V.: Algorithmic game

theory. 2007. Cambridge University Press Cambridge. [ref. 29-11-2020]

29. NASH j.: Non-cooperative games. 1951. Ann. Math, pages 286-295. [ref. 29-11-2020]
30. RADONS M.: A note on surjectivity of piecewise affine mappings. 2018. [ref. 29-11-2020].

Accessed from: https://arxiv.org/pdf/1707.08786.pdf

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-254-game-theory-with-engineering-applications-spring-2010/lecture-notes/MIT6_254S10_lec06b.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-254-game-theory-with-engineering-applications-spring-2010/lecture-notes/MIT6_254S10_lec06b.pdf
https://cedar.wwu.edu/cgi/viewcontent.cgi?article=1002&context=computerscience_stupubs
https://arxiv.org/pdf/1707.08786.pdf

