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Abstract 
 This bachelor thesis aims to experimentally verify whether infinite two-player zero-sum games [9, 

p.89] with payoff functions in the form of piecewise affine functions have finite equilibria. We define 

piecewise affine functions over a domain split by a set of continuous affine functions. This domain for the 

experiment is limitary to a square [0,1]  ×  [0,1], this is due to zero-sum games using the interval of [0,1] to 

represent possible strategies. To verify equilibrium finiteness assumptions, we built an algorithm creating a 

new program. Python programming language was chosen for the program creation. The algorithm’s 

experimental function is based on random triangulations with piecewise affine functions arising from them. 

The algorithm’s next step is to approximate such functions over a finite grid and determine the respective finite 

game’s equilibrium. An iterative approach was used in experiments to create larger zero-sum games to assess 

such solutions’ convergence in single steps visually. An iterative approach was used to generate larger zero-

sum games in the experiments so that it was possible to visually assess the convergence of the behavior of the 

program’s partial outputs in individual steps. To fully understand the program’s functioning, we need to master 

zero-sum strategic games’ basics theory. Next problematics, which was necessary to analyze in detail for 

program creation, was an algorithm for equilibria computing (based on linear programming). The last area 

addressed during this bachelor thesis was the problems arising from our games’ infinite strategy space. 

 

Keywords 
Game Theory, Piecewise Affine Games, Zero-Sum Games, Two-player Games, Nash Equilibrium, Linear 

Programming 

  



Abstrakt 
 Cílem této bakalářské práce je experimentálně ověřit, zda nekonečná hra o dvou hráčích s nulovým 

součtem [9, p.89] a s výplatními funkcemi, které jsou reprezentovány ve formě po částech afinních funkcí, má 

konečnou rovnováhu. Po částech afinní funkce definujeme přes doménu rozdělenou na sadu spojitých afinních 

funkcí. Tato doména je v experimentu ohraničená čtvercem [0,1]  × [0,1] z toho důvodu, že hry s nulovým 

součtem využívají interval [0,1] pro reprezentaci možných strategií. K tomu, abychom ověřili předpoklad 

ohledně konečnosti rovnováhy, byl navržen algoritmus, ze kterého vychází nově vytvořený program. Pro 

tvorbu programu byl zvolen programovací jazyk Python. Experimentální funkce algoritmu je založena na 

generovaní náhodných triangulací společně s jejich vznikajícími po částech afinními funkcemi. Dalším 

krokem algoritmu je aproximace těchto funkcí nad konečnou mřížku a určení rovnováhy dané konečné hry. K 

vytváření větších her s nulovým součtem byl v experimentech použit iterační postup, aby bylo možné 

v jednotlivých krocích vizuálně posoudit konvergenci chování dílčích výstupů programu. Abychom plně 

rozuměli funkčnosti programu, musíme ovládat základy teorie strategických her s nulovým součtem. Další 

problematikou, kterou bylo nutné detailně analyzovat pro tvorbu programu, byl algoritmus pro počítání 

rovnováhy (založený na principu lineárního programování). Poslední z oblastí, kterou se bylo nutné v průběhu 

bakalářské práce zabývat, byly problémy vznikající z nekonečného strategického prostoru naší hry. 

 

Klíčová slova 
Teorie her, Po částech affinní hry, Hry s nulovým součtem, Hry o dvou hráčích, Nashova rovnováha, Lineární 

programování 
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1 Introduction 

1.1 History 
 Recently we encountered a vast space of mathematical and algorithmic tools, which come from 

mathematical optimization and numerical methodology to the quickly evolving field of artificial 

intelligence. This would not have been possible without a shared work brought to us by John von Neumann 

and Oskar Morgenstern. They introduced us to a game-theoretical methodology [2], which is now being 

solved for some highly complex games. The possibility of the game-theory area having such a big impact 

nowadays is attributed to a rapidly improving infrastructure, which provides almost exponentially 

improving computational power1 needed for solving a vast range of complex problems. The rise of game 

theory paved the way for it to intertwine with other science and economics fields. As the rise of technology 

is relatively recent and Neumann-Morgenstern popularized game-theory only in 1944, another important 

discovery was attributed for problems to be solved and expanded. The discovery mentioned is the one of 

Nash equilibrium by John Forbes Nash, Jr. We describe its properties more in section 3. 

 

1.2 Strategy space 
 It is important to note that searching for Nash equilibria in the space of large or even infinite game 

is infamously difficult to solve [3]. To minimize this, it helps to identify the problem’s key components 

once it is formulated. The construction of a game involves a realization of who participates in a game. In 

our case, the game involves agents (called players in the thesis) whose objectives may discord. Specifically, 

we have two players who evaluate their strategies depending on utility function values keeping in mind that 

a number of strategies may be infinite. However, many definitions in use are based on games with only 

finitely many actions, since theory about them has been expanded to a great extent [4] even though many 

naturally appearing games where strategy sets are uncountable. Still, many obstacles arise by switching to 

games with infinite action spaces. This results in the game’s mixed strategies unable to be represented as 

finite-dimensional probability vectors. Instead, they become probability measures supported by possibly 

infinite sets. 

 

1.3 Solution 
 Generalization of the Nash theorem, Glicksberg’s theorem [6], guarantees Nash equilibria in 

continuous games. When finding Nash equilibrium in our Zero-Sum games, we use a method of solving 

with linear programming. The algorithm at use in the experiment is based on a dual form of linear 

programming introduced by Koller, Megiddo, and von Stengel [24], more described in section 2 because 

there is a need to search for standard Nash equilibrium with a single solution of linear programming. Its 

extended option form, which searched for a proper normal form Nash equilibrium with iterative solving 

[26] cannot be used since a different type of iterative approach is used as our iteration consists of changing 

the game set to create a new game and not iterating over the same. This helps us to get the solution without 

any computational barriers quickly. The algorithm used to verify equilibria's finiteness has been only 

recently discovered for polynomial games by Dresher, Karlin, and Shapley [25]. Polynomial games are part 

 
1 http://www.singularity.com/charts/page70.html 

http://www.singularity.com/charts/page70.html
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of the family called separable games. Every utility function is a finite sum of products, where a product 

component is a function of actions for each player separately. It is known that separable games also include 

the zero-sum games [8]. Putting it together, we arrive at our case of zero-sum games with piecewise-affine 

functions representing our utility functions. Ultimately, we want to check whether these similar 

characteristics will yield a finite Nash equilibrium as expected. Before explaining the algorithm, we explain 

key components of our game. 

 

1.4 Algorithm overview 
 We have mentioned our algorithm is based around random triangulations together with piecewise 

affine functions arising from them. Edges of these triangles are used to create new points. New points are 

created by checking vertical, and a horizontal straight line passing through an edge and see whether it 

intersects with any line segment from the triangulation. New points and the original edges create a grid to 

approximate our functions and calculate equilibrium for the respective finite game. Before calculation, all 

points were assigned a value of interpolated functions, called heights throughout the thesis. Iterations of the 

algorithm, together with detailed methods of how finite equilibrium is checked, are described in section 5. 
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2 Strategic games 
 In our experiment, we encounter many terms that need to be understood to solve games with 

piecewise-affine utility functions. First, we introduce types of games (finite and continuous) and their 

properties. One of these properties describes players playing the game. In our case, our game consists of 

two self-interested players. This does not necessarily describe that they want to cause harm to one another 

or that they only care about themselves. Instead, it means that each player has his description of which 

states of the world he likes. [9, p.47]  

 

2.1 Finite games 
Let us have a strategic game G = (𝑁, 𝐴, 𝑢), where 

• N is a finite set of 𝑛; 

• 𝐴 = 𝐴1 × … × 𝐴𝑛, where 𝐴𝑖 is a finite set of actions available to player 𝑖 ∈ 𝑁. Each vector 𝑎 =

(𝑎1 … 𝑎𝑛) ∈ 𝐴 is called an action profile; 

• 𝑢 = (𝑢1 … 𝑢𝑛) where 𝑢𝑖: 𝐴 → 𝑅 is a real-valued utility (or payoff) function for player 𝑖 ∈ 𝑁. 

The game is called finite because of the finite size of 𝐴.2 A natural way to represent games with an n-

dimensional matrix. Therefore, for our two-player game, it utilizes a two-dimensional matrix. Here, each 

row corresponds to a possible action that player 1 can choose, each column corresponding to a possible 

action of player 2. [9, p.56] These players decide how to play based on utility values stored in the matrix. 

This decision is referred to as a strategy. 

 

2.2 Continuous games 
 Now we consider strategic games in which players may have infinitely many pure strategies. A 

strategy is called pure if a player decides to play it with probability one when exposed to his strategy set. 

We want to include a possibility that the real-valued interval [0, 1] is the pure strategy set. A continuous 

game is G = (N, S, u), where 

• N is a finite set of 𝑛 players indexed by 𝑖; 

• 𝑆 = 𝑆1 × … × 𝑆𝑛, where 𝑆𝑖 is a nonempty compact metric space; 

• 𝑢 = (𝑢1 … 𝑢𝑛) where 𝑢𝑖: 𝑆 → 𝑅 is a continuous utility (or payoff) function for player 𝑖 ∈ 𝑁. 

A compact metric space is a general mathematical structure used to represent infinite sets that can be 

approximated by large finite sets. Moreover, suppose there is any close bounded subset of a finite-

dimensional Euclidean space or any closed bounded interval of the real line. In that case, we are talking 

about a compact metric space, where the distance between two points 𝑥 and 𝑦 is given by ||𝑥 − 𝑦||2. In 

such metric space, any infinite sequence has a convergent subsequence. As we are trying to verify equilibria 

finiteness in this game type, it is useful to mention Glickberg’s theorem, which guarantees Nash equilibria 

for every continuous game. [23] 

 

 
2 http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/aait-03-strategic-games.pdf 

http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/aait-03-strategic-games.pdf
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2.3 Utility and strategies 
 The utility contains important information about a player's decision-making. Utility characteristics 

and mixed strategies are introduced here. 

2.3.1 Utility theory 
 Utility theory is the leading approach to model player's desires. It aims to describe its preferences 

across a set of available options. It does so by focusing on understanding how preferences change when a 

player deals with uncertainty about alternatives it may receive. [9, p.47] 

2.3.1.1 Preferences and utility 
 How do we express preferences? The utility is deeply intertwined with game solving and sometimes 

hard to grasp. It claims to provide a sensible formal model for reasoning about an agent’s happiness in a 

variety of situations. Why should a game with a player’s uncertainty presented in the form of the expected 

value of utility function, or expected utility, be enough to justify his response and not also depend on other 

properties of the distribution such as its standard deviation? Theorists researching utility properties ground 

relative questions in a more basic concept of preferences. The most influential of these theories is the one 

developed by John von Neumann and Oscar Morgenstern in their book Theory of Games and Economic 

Behavior. [10]. Let 𝑂 denote a finite set of outcomes, then when we take 𝑜1, 𝑜2 ∈ 𝑂 let 𝑜1 ≥  𝑜2 denote the 

fact that the agent weakly prefers 𝑜1 compared to 𝑜2. Let 𝑜1~ 𝑜2 denote that the agent is indifferent between 

both 𝑜1 and 𝑜1. Lastly, with 𝑜1 > 𝑜2 we describe that agents strictly prefers 𝑜1 to 𝑜2. [9, p.49] More rules 

that also include transitivity rules, but also completeness, and others can be reviewed in [11] or [9, p.50]. 

2.3.2 Utility function 
 When we refer to utility functions, as will be done throughout the text, we will be trying 

to make a specific assumption that our player’s desires how to behave are consistent with utility-theoretic 

assumptions. Moreover, the utility function is mapping states of the world to real numbers. These values 

can be interpreted as measurements of a player’s level of happiness in the given states. When a player is 

uncertain, then his utility is defined as the expected utility with respect to the appropriate probability 

distribution over states in the specific game. [9, p.47,48] 

2.3.3 Mixed strategies 
 We already came across pure strategies, but there is a second type called mixed strategies.  

Due to an uncertain game environment, they are encountered more often. For each player, they consist of 

randomizing over a set of available options according to some probability distribution. Formally this is 

written as follows: 

The set of mixed strategies for player 𝑖 is 𝑆𝑖 ∶= ∆(𝐴𝑖), where ∆(𝐴𝑖) is the set of all probability distributions 

with each 𝑝𝑖 ∈ 𝑆𝑖 representing one such distribution over 𝐴𝑖. 

If 𝑝𝑖 ∈ 𝑆𝑖 is a mixed strategy such that 𝑝𝑖(𝑎𝑖) = 1 for some 𝑎𝑖 ∈ 𝐴𝑖, then 𝑝𝑖 is called a pure strategy [9, 

p.60]. The strategy describes how a player is trying to achieve the best utility (payoff) from the game. 

Remember that there exists an expected value that a player will reach. 

2.3.4 Expected utility 
 Expected utility calculates the probability for each strategy in our set of strategies. These are used 

for measuring average payoff, which is then weighted by each probability. This can be formally defined as 

follows: 
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Given a normal-form game (𝑁, 𝐴, 𝑢), the expected utility 𝑢𝑖 for player 𝑖 of the mixed-strategy profile 𝑠 =

(𝑠1 … 𝑠𝑛) is defined as [9, p.60] 

𝑢𝑖(𝑠) = ∑ 𝑢𝑖(𝑎)
𝑎 ∈ 𝐴

∏ 𝑠𝑗(𝑎𝑗)

𝑗 𝜖 𝑁

 

 

 

2.4 Why is finding solutions hard? 
 Let us look at some properties that make continuous games, especially ones with infinite strategy 

spaces, hard to solve. Firstly, global minimization and maximization of a polynomial is hard as these 

optimization problems are typically non-convex and highly nonlinear. Complexity usually has a non-

deterministic polynomial-time hardness, even for special cases such as maximizing a quadratic form in 

binary variables. It is also difficult to find a solution due to its complex content (a combination of heuristics, 

a need for an insight into the special structure of the game, and also the existence of different types of games 

with a special equilibrium). We show convex-concave games as an example for special equilibria, where 

the first player minimizes and the second maximizes to find a saddle-point. Another special example is 

games of timing. Here, a game starts at a time equal to zero with players' probabilities increasing over time 

together with a priori probabilities remembered for the past. Another example is games with bell-shaped 

utility functions or invariants under symmetries3. 

2.4.1 Convex/concave games special equilibria 
 Convex-concave games are built on a similar principle compared to our games, where one player 

minimizes, and the other maximizes their payments. It is a type of two-player, zero-sum game of 𝑅𝑝 × 𝑅𝑞 

with payoff function 𝑓: 𝑅𝑝+𝑞 → 𝑅. If we mark one payment as 𝑢 and other as 𝑣, we end up with 𝑓(𝑢, 𝑣). 

Lastly, a solution to the game is defined as (𝑢∗, 𝑣∗) if 

𝑓(𝑢∗, 𝑣) ≤  𝑓(𝑢∗, 𝑣∗) ≤  𝑓(𝑢, 𝑣∗), ∀𝑢, 𝑣 ∈  𝑅𝑝 × 𝑅𝑞 

At this saddle point, neither player wants to deviate since it would only worsen his standings. The name 

convex-concave has to do with the function graphs of 𝑢 and 𝑣. Therefore, we need for each 𝑣, 𝑓(𝑢, 𝑣) to 

be a convex function of 𝑢, and for each 𝑢, 𝑓(𝑢, 𝑣) to be a concave function of 𝑣. When 𝑓 is differentiable, 

our saddle-point will be characterized by a gradient: ∇(𝑢∗, 𝑣∗) = 0 [4]. 

2.4.2 An infinite number of strategies 
 This subsection will analyze a particular class of infinite strategic games where each player makes 

his choice from the real unit interval [0,1] (as is the case in our experiment). In the algorithm, each iteration 

consists of a finite set, as we only add a countable number of strategies, but it inevitably approaches the 

mentioned infinity. The matrix can hold any number of strategies in the interval [0,1]. This part is described 

throughout in section 5. We now go more in-depth on why infinite strategies cause difficulty. 

 Finding Nash equilibrium (defined in section 3) in an infinite or a very large game is known to be 

difficult to solve. [28] In this subsection, we reinstitute why a message from pioneers Kuhn and Tucker, 

who wrote in the preface of [29] that finding constructive methods for solving games with infinite strategy 

spaces “would constitute a considerable contribution” still holds today where the difficulty is based. 

 
3https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source

=gbs_navlinks_s page 6 

https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s
https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s
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 Let us have a strategic game with infinite strategy sets. In general, mixed strategies in such a game 

cannot be represented as finite-dimensional probability vectors. What happens instead is that they become 

probability measures supported by a possibly infinite set. Hence, a purely mathematical concept that is not 

a priori computable. Therefore, we need to mention Glicksberg’s theorem [6], which is a generalization of 

the Nash theorem guaranteeing Nash equilibria in continuous games. This, however, may not be used in 

computations directly as it is a fully general model of continuous games due to a number of reasons, in 

particular: 

• Glicksbergs’s theorem is a purely existential statement proved in a non-constructive manner, which 

provides no information about the specific equilibrium strategies. 

• Mixed strategies cannot be directly represented in any computer since they may pose complicated 

probability measures. 

• Players may be forced to randomize over an infinitely large set of pure strategies. This happens due 

to relatively simple games where no single finitely supported mixed strategy equilibrium is present. 

 After Karlin’s book [29], continuous games' research has been pursued in several directions. 

Among the most studied continuous games classes were the strategy spaces with real one-dimensional 

compact intervals, particularly the interval of [0,1]. On the one hand, some carefully crafted solutions to 

particular examples of these games were developed, such as for games with bell-shaped kernels or games 

of timing. On the other hand, we may identify efforts to single out entire classes of games where equilibria 

with finite supports exist and have efficient solution methods for their computation. In the paper [1] Parillo 

showed that finding an equilibrium of a two-player zero-sum polynomial game over [−1,1] can be obtained 

by solving a single semidefinite programming problem. Parillo’s result was further expanded to include 

polynomial games with basic semi-algebraic strategy sets by Laraki and Lasserre [30]. Their method 

consists of solving a hierarchy of semidefinite relaxations with a possibly high number of decision 

variables. 

 Since polynomial games are part of the family called separable games, every utility function is a 

finite sum of products with a product component being a function of each player's actions separately. We 

remember that separable games also include the zero-sum games [8] and should therefore yield the same 

results. The class of separable games allows us to have finite mixed equilibria and algorithms for computing 

its approximate equilibria of two-player separable games in polynomial time in the game's rank. 

 

2.5 Zero-Sum Games and Their Uses 
2.5.1 Description 
 As mentioned previously, we are experimenting with two-player games. Furthermore, our players' 

game belongs to the group of games referred to as constant sum games since our player’s utilities always 

add up to zero. These zero-sum games refer to games of pure conflict, where the payoff of one player is 

equal to a negative value of the other player. In other words, one player’s gain is another’s player loss. [12; 

13] Unlike common-payoff games, where each payoff for each action is the same for both players, constant-

sum games are primarily useful in the context of two-player games. [9, p.57] This needs to be mentioned 

as the experiment is built on a two-player zero-sum game. As said, every iteration adds a countable number 

of actions available to players into a matrix representing their possibly infinite set in its interval, in our case 

[0,1]. 
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Each value in this matrix represents a utility. We mark the matrix M. 

𝑀 = [𝑚𝑖𝑗]  ∈ 𝑅𝑚∗𝑛 

Formally, we can then define it as follows. Let there be a finite number of strategies denoted by 𝐼 and 𝐽. 

There is always an action player chooses, which is called a play. Players choose what they play 

simultaneously, with one choosing from 𝑖 ∈ 𝐼 and the other 𝑗 ∈ 𝐽. Value 𝑚𝑖𝑗 is called a gain for player 𝐴, 

which equals to a loss for player 𝐵. Note that a rational player 𝑖 ∈ 𝑁 chooses a strategy that maximizes 𝑢𝑖 

gain4. Specifically, 

0 = 𝑚𝑖𝑗 +  (−𝑚𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝐼, 𝐽 

Here we see the reason why it is called zero-sum games.  

2.5.2 Matching pennies 
 To strengthen our environment's understanding, we show an example of a zero-sum game, which 

is called Matching Pennies. This game consists of two players, each having one personal coin, who 

simultaneously choose to display either heads or tails, then the two players compare what they have chosen. 

If coins are the same, then player 1 takes them both, and otherwise, player 2 receives them. The payoff of 

all possible outcomes is displayed below: 

 
Another popular game, which can be used as an example for this game type, is Rock, Paper, Scissors. It is 

widely regarded as a three-strategy generalization of the above-explained Matching Pennies game and 

needs to be acknowledged. Here if two players choose the same option, then the utilities are zero. Otherwise, 

each action wins only against one of the remaining two actions and loses to the other. [9, p.58] 

2.5.3 Other uses 
 So far, we have covered some specific uses of game theory in mathematical problems, but this field 

has already expanded elsewhere. For example, it is extensively used in economics, sociology, political 

science, and others because of the versatile nature and applications in many conflicts and problems. Another 

property is robustness, causing game theory’s extensive use in computer science fields, which we show 

examples of. The two uses which we will mention are fields of cyber security and cloud computing. [14] 

2.5.3.1 Cloud computing 
 The NIST, or National Institute of Standards and Technology, defines cloud computing as a model 

for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computer 

resources (we regard these as mostly storage, applications, and services, but resources also include networks 

or servers). Remaining available on-demand provides a rapid speed of provisioning and releasing with 

minimal management overhead or service provider interaction. [15] As cloud computing is becoming more 

popular, more challenges rise along. Here are two problems that are being solved with games theory. 

2.5.3.1.1 Cloud Cyber Space Security 
 Cloud cyber space has expanded into a multi-dimensional space that extends over various areas. It 

is due to this reason that conventional methods cannot be used for their security. 

 
4 https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/13games.pdf 

https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/13games.pdf
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The first approach is called secure virtual machines, which use Nash Equilibria to analyze cause-

effect interdependencies in the public cloud. [16] Another is called the scalable security risk assessment 

model. This model was created to respond to a vast number of attacks such as data breaches, data loss, 

hacked interfaces, insecure APIs and DDOS attacks. It works by evaluating the risk and deciding whether 

the provider or the client causes it. [17] 

 The last problem is cloud security transparency problem. [16] It can be modeled as a non-

cooperative stochastic problem where the client and cloud provider are considered players. This is also a 

Nash Equilibrium problem with the client deciding whether to choose the provider or not based solely on 

the level of transparency provided.  

2.5.3.1.2 Pricing Strategies 
 Cloud beneficiaries compete with each other for maximum financial gain advantage. The market 

model depicts the provider’s and the client’s potential behavior and rewards involved. We will now describe 

one of these models. 

 An extensive form game [18] is a model where a provider makes an offer to the client, who is free 

to accept it or not. We arrive at Nash equilibria with two players, each viewing the situation differently. On 

the one hand, the client wants an offer cheaper than making his data center or at least at the same price. On 

the other hand, the provider wants to make the most significant possible profit. 

 Other models include Discriminatory pricing policy, Uniform Pricing Policy, or Resource pricing. 

[14] 

2.5.3.2 Cyber security 
 An interesting approach in solving cyber security attacks like Denial of Service, Brute force, or 

SQL injection [19] is with game theory in which the ubiquitous attacker is considered a player system 

administrators are considered as a player on the opposite side. 

 Two models portray the approach, one of which is with static games, where players make decisions 

based on prior knowledge about the opponent's behavior. In [16], they mention various economic problems 

in cyber security for resource allocation or overall investment in security protection for divergent defense 

mechanisms, which can be solved using these static game models. 

 The second model is with imperfect information stochastic model. We have two functions for 

portraying this model [16]. The first is Min-max Q, which wants to improve decision-making for a player 

in multi-player games with players described previously using zero-sum equilibrium. [20] Nash-Q is the 

second one, built on the fact that Nash equilibrium is a baseline answer to all general sum games presented 

in [21]. Every player has some correct expectation for the behavior of other players. It adopts the Markov 

decision process and has many applications in multiagent environments, for example, robotic soccer games. 

 Overall, there are five models. The remaining two are the cooperative model and the static 

prisoner’s problem. [14] 

 

 To summarize, we need to note that even with these computer science uses. We stumble upon some 

limitations. Precisely, cyber security can't quantify the parameters of cyber space, affecting the decision-

making process. [19] We work with equilibrium created from a very small number of cloud service 

providers and clients for cloud services. Therefore, we need to make these models more scalable for their 

more practical usage. [22]  
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3 Nash Equilibrium 
 As we have now discussed games in game theory, there is a need to define the term Nash 

Equilibrium formally. What makes Nash’s theorem so crucial is its wide usage in many real-life examples 

usually presented in a famous Prisoner’s dilemma. It is also essential to understand it before explaining 

what we are trying to find in our experiment. Now we consider a game from a player’s point of view rather 

than from an outside observer. 

 

3.1 Definition 
 A Nash equilibrium describes a set of strategies, one for each player 𝑖, where none of the players 

has the incentive to deviate since it would result in his loss of payoff. It can be written formally as follows: 

The best response of player 𝑖 to the strategy profile 𝑠−𝑖 is a mixed strategy 𝑠𝑖
∗ ∈ 𝑆𝑖 such that 𝑢𝑖(𝑠𝑖

∗, 𝑠−𝑖) ≥

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) for all strategies 𝑠𝑖 ∈ 𝑆𝑖. 

A strategy profile 𝑠 = (𝑠1 … 𝑠𝑛), where if for every player 𝑖 is 𝑠𝑖 the best response to 𝑠−𝑖 can be called Nash 

Equilibrium. [9, p.62] 

 

3.2 Linear program 
 Our program uses an algorithm that utilizes finding Nash equilibria with linear programming (LP). 

This method results in solving equilibria in polynomial time. 

 Let us consider a two-player, zero-sum game 𝐺 = ({1, 2}, 𝐴1 × 𝐴2, (𝑢1, 𝑢2)). We set 𝑈∗
𝑖 to be the 

expected utility for player 𝑖 in equilibrium, it is also known as the game's value. As we pointed out in our 

zero-sum game definition 𝑈∗
2, or the expected utility for the second player, needs to be a negative of 𝑈∗

1, 

resulting in their combined sum is zero. The min-max theorem (in Section 3.4.1 and Theorem 3.4.4. in [9]) 

tells us that our expected utility remains constant in all equilibria. It also explains why player 1 achieves 

the same value as under a min-max strategy by player 2. Using this, we construct the linear program as 

follows. 
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min 𝑈1
∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑘 ∈ 𝐴2

∗  𝑠2
𝑘 ≤ 𝑈1

∗       ∀𝑗 ∈  𝐴1 

∑ 𝑠2
𝑘 = 1

𝑘 ∈ 𝐴2

 

𝑠2
𝑘 ≥ 0      ∀𝑘 ∈  𝐴2 

 

Having minimization for one player, we can transform it into its dual program form and create a 

maximization program for the other player [9, p.89-90]. 

max 𝑈1
∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑗 ∈ 𝐴1

∗  𝑠1
𝑗

≥ 𝑈1
∗       ∀𝑘 ∈  𝐴2 

∑ 𝑠1
𝑗

= 1

𝑗 ∈ 𝐴1

 

𝑠1
𝑗

≥ 0      ∀𝑗 ∈  𝐴1 
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4 How to Deal with Games Having Piecewise-

Affine (PA) Utility Functions 
 We already mentioned what piecewise-affine functions are. This section introduces them more in 

section 4.4, along with methods to solve our strategic zero-sum game. [27, p.79-80] 

 

4.1 Domains of linearity are polyhedra 
 Before we define polyhedra, let us realize that our game shape has constraints in the form of affine 

functions. A polyhedron is defined as an intersection of half-spaces (in our case represented by affine 

functions), creating a set of linear inequalities. Formally we define it as follows: 

{𝑥 ∈ ℝ𝑛 | 𝐴𝑥 ≤ 𝑏} 

where 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚 

𝐴 representing a matrix of 𝑚 rows and 𝑛 columns, and 𝑏 is a vector of 𝑚 entries. Here is an example of 

convex polyhedron on the left and non-convex on the right. 

[27, p.157] 

In our experiments, we have a square of size [0,1] ×  [0,1] where we have random points with random 

heights placed. Therefore, by connecting our vertices, they form half of possibly non-convex polyhedra 

with triangular faces. [29, p.156-160] We have become more familiar with this shape as it is used to 

calculate the probability distribution for our players. 

4.2 Triangulations 
 We describe a triangulation for a set of points 𝑃. The term edge is used when discussing a line 

segment containing exactly two points from 𝑃 as endpoints. A triangulation of 𝑃 is its subdivision into a 

maximal possible set of non-intersecting edges, where the set of these vertices are points from 𝑃. Maximal 

meaning that for every other possible connection of points from 𝑃 an intersection informed with other 

already existing lines. [29, p.59]. 
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4.2.1 Delaunay triangulation 
 There are many different algorithms to triangulate a specific space. However, for our space 

decomposition Delaunay algorithm is the best as it is mainly used for terrain reconstruction, which our 

program is also technically representing. The question to ask is which of the possible triangulations is the 

most suitable from sampled heights. Even in real life, we do not know the Earth's exact shape, but only at 

the sample points presented. The choice will, therefore, have a major impact on what will be the terrain's 

appearance. The example below shows a different way of connecting points with different heights. We can 

either connect high or low positioned points, and therefore if we imagine this layout, in reality, get either a 

hill or a valley. 

[27, p.97] 

 For a triangulation to be Delaunay, it needs to meet some conditions. One of which says that no 

four points are cocircular. Cocircularity describes a case where if we make a circle passing through all three 

vertices constructing one triangle, the circle does not pass through any other point. [6, p.81] In our case as 

we have a square [0,1] × [0,1] this requirement is mostly satisfied since we experiment with a smaller 

number of points in a grid with many free spaces. This results in no square present unless the chosen number 

of points fills most of these spaces in a setting creating it. If that is the case, then our triangulation cannot 

be rightfully called Delaunay. Still, the algorithm in use will create a triangulation for every setting due to 

it always using the same heuristics for a specific set of points. However, all experiments verifying the finite 

equilibria will be triangulated using the Delaunay triangulation. 

 Now, we will go over the steps that make the definite shape of our triangulation. Let us have 

triangulation 𝑇 of our point set 𝑃, suppose 𝑇 has 𝑛 triangles. Therefore there are 3𝑛 angles which create a 

sorted angle sequence (𝛼1. . . 𝛼𝑛), where the first being the smallest angle and the last being the largest one. 

Why do we want to have angles for a specific triangulation sorted? As seen in the picture above, we have 

two triangulations, if points B (height 7) and D (height 8) were positioned lower, then middle triangulations 

would appear less natural terrain, and therefore larger angles result in a more realistic generation. When a 

triangulation has a larger sorted angle sequence, then it is called a fatter triangulation. For the two 

triangulations 𝑇1 and 𝑇2 of 𝑃, we say 𝑇1 is fatter than 𝑇2 if 𝑇1 has a lexicographically greater angle 

sequence than 𝑇2. We will present two sequences with 𝑇1 being (10,20,30) and 𝑇2 being (10,25,30). We 
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see that a second angle in the second sorted list is greater than the one in 𝑇1. Therefore, we would mark 𝑇2 

as a fatter triangulation. When the fattest triangulation is what we seek, how do we go about finding it? 

Edge flipping is one elegant way of finding such desired triangulation. 

 

“Definition: Let 𝑒 be an edge of a triangulation 𝑇1, and let 𝑄 be the quadrilateral in 𝑇1 formed by the two 

triangles having 𝑒 as their common edge. If 𝑄 is convex, let 𝑇2 be the triangulation after flipping edge 𝑒 in 

𝑇1. We say 𝑒 is a legal edge if 𝑇1 ≥ 𝑇2 and 𝑒 is an illegal edge if 𝑇1 < 𝑇2.”[6, p.82] 

 

Flipping of one 𝑒 changes six angles in 𝑇1 angle sequence and replaces them with their counterparts in 𝑇2. 

However, this counts on the lexicographical ordering of angles. It helps complete the definition mentioned 

above with a declaration that all hull edges of triangulation are legal. We are looking for the fattest one. We 

tend to avoid illegal edges. Therefore, a Delaunay triangulation of 𝑃, noted as 𝐷𝑒𝑙(𝑃), has only legal edges. 

[29, p.81-82] 

 

4.3 Equilibrium existence 
 To explain the process, we need to mention the type of games we are using are nondegenerate 

games. Our two-player game is called nondegenerate if there exists no mixed strategy of specific size 𝑘 

with more than 𝑘 pure strategies. Here we further explain piecewise-affine functions and ideas behind 

solving. 

4.3.1 Piecewise-affine functions 
 For our strategic zero-sum game to be piecewise affine, it needs strategy sets that are [0,1] and 

𝑢: [0,1]2 → 𝑅 to be a piecewise affine function. Piecewise affine functions are sometimes generalized under 

the common, and less accurate, name of piecewise linear functions. The name linear only applies when 

there is no offset to the function. Let us recall the term piecewise. It refers to a case where a function is 

represented by a combination of equations that create a full domain rather than a typical single equation, 

which might not represent real-world examples.5 Formally: 

“A continuous function 𝑓: ℝ𝑛 → ℝ𝑚 is called piecewise affine if there exists a finite set of affine functions 

𝑓𝑖(𝑥) = 𝐴𝑖𝑥 + 𝑏𝑖”[30], 𝑖 = 1, … , 𝑘, such that the inclusion 𝑓(𝑥) ∈ {𝑓1(𝑥), … 𝑓𝑘(𝑥)} holds for every 𝑥 ∈

ℝ𝑛. The affine functions 𝑓𝑖(𝑥), are called selection functions, the set of pairs (𝐴𝑖, 𝑏𝑖), is called a collection 

of matrix-vector pairs corresponding to 𝑓. The function 𝑓 is called piecewise affine if there exists a 

corresponding set of linear selection functions.[30] 

To visualize piecewise-affine functions, we show an example for a function 𝑦 = |𝑥 + 1| (a function 

split along 𝑦 axis). Absolute value sets every 𝑥 smaller than zero to −𝑥, and every larger value is kept as 𝑥. 

Though we only use the interval [0,1], we introduce the formal definition applicable to the whole of ℝ: 

𝑓: 𝑦 = |𝑥| + 1 is −𝑥 + 1 𝑖𝑓 𝑥 ≤ 0 and 𝑥 + 1 𝑖𝑓 𝑥 > 0 

This fact is depicted in the graph below: 

 
5 https://www.classzone.com/eservices/home/pdf/student/LA202GAD.pdf 

https://www.classzone.com/eservices/home/pdf/student/LA202GAD.pdf
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4.3.2 Existence and computation of finitely supported mixed strategy 
equilibria 

 Let us have 𝑓 ∈ 𝑃𝐴2 as a two-variable piecewise-affine function. Such strategic game with 

piecewise-affine payoff functions 𝑓 is the strategic game Γ𝑓 with the player set 𝑁 = {1,2}, the strategy 

spaces A1 = A2 = [0,1], and the payoff functions f1 = −f2. We want to prove that 𝑓 be such that every 

line segment in 𝐺(𝑓) is part of some polytope 𝑃(𝑓). Then the game Γ𝑓 has to have a Nash equilibrium 

consisting of finitely supported mixed strategies. To prove a two-player constant-sum game is used with 

the strategy spaces of 𝑋𝑓 and 𝑌𝑓. The payoff function of player 1 is the restriction 𝑓0 of 𝑓 to 𝑋𝑓 × 𝑌𝑓, and 

the payoff function for the second player is it's negative noted as ¬𝑓0. Here each strategy set is finite, 

making this game solvable in mixed strategies by the Nash Theorem [29]. Next, assume that the probability 

vectors give an optimal pair of strategies of players 1 and 2 (𝛼1 … 𝛼𝑝) and (𝛽1 … 𝛽𝑞) respectively and 𝛿 as 

the symbol for Dirac measure. Put 

(6) 

𝜇∗ = ∑ 𝛼𝑖

𝑝

𝑖=1

𝛿𝑥𝑖
 𝐴𝑁𝐷 𝜐∗ = ∑ 𝛽𝑗

𝑞

𝑗=1

𝛿𝑦𝑗
 

 

Where 𝑥𝑖 ∈ 𝑥 and 𝑦𝑗 ∈ 𝑦 with 𝑥, 𝑦 defined as follows: 

0 = 𝑥1 ≤ ⋯ ≤ 𝑥𝑝 ≤ 1 and 0 = 𝑦1 ≤ ⋯ ≤ 𝑦𝑞 ≤ 1 

We will show that (𝜇∗, 𝜐∗) ∈ ∆2 is a finitely supported Nash equilibrium in the game Γ𝑓. 

Firstly, the inequality for expected payoffs is: 

(7) 

𝐸𝑓(𝜇∗, 𝜐∗) ≥ 𝐸𝑓(𝑥, 𝜐∗) 

This holds for every choice of pure strategy 𝑥 ∈ [0,1]. Moreover, inequality 

(8) 
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𝐸𝑓(𝜇∗, 𝜐∗) ≥ 𝐸𝑓(𝑥𝑖, 𝜐∗) 

Will be true for every 𝑖 = 1, … , 𝑝 since (𝜇∗, 𝜐∗) is an equilibrium of the game associated with 𝑓0 and the 

value of this game is 𝐸𝑓(𝜇∗, 𝜐∗). For every 𝑥, there exist some 𝛾 ∈ [0,1] and some 𝑖 = 1, … , 𝑝 − 1 such that 

𝑥 = 𝛾𝑥𝑖 + (1 − 𝛾)𝑥𝑖+1. Hence 

(9) 

𝐸𝑓(𝑥, 𝜐∗) = ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥, 𝑦𝑗) = ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝛾𝑥𝑖 + (1 − 𝛾)𝑥𝑖+1, 𝑦𝑗) 

For every 𝑗 = 1, … , 𝑞, the line segment with endpoints (𝑥𝑖, 𝑦𝑗) and (𝑥𝑖+1, 𝑦𝑗) is included in some polytope 

𝐴𝑗 ∈ 𝑃(𝑓) As the function f is linear over 𝐴𝑗, the sum defined earlier for 𝐸𝑓 becomes 

(10) 

∑ 𝛽𝑗

𝑞

𝑗=1

(𝛾𝑓(𝑥𝑖, 𝑦𝑗) + (1 − 𝛾)𝑓(𝑥𝑖+1, 𝑦𝑗)) = 𝛾 ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥𝑖, 𝑦𝑗) + (1 − 𝛾) ∑ 𝛽𝑗

𝑞

𝑗=1

𝑓(𝑥𝑖+1, 𝑦𝑗)

= 𝛾𝐸𝑓(𝑥𝑖 , 𝜐∗) + (1 − 𝛾)𝐸𝑓(𝑥𝑖+1, 𝜐∗) ≤ 𝛾𝐸𝑓(𝜇∗, 𝜐∗) + (1 − 𝛾)𝐸𝑓(𝜇∗, 𝜐∗) = 𝐸𝑓(𝜇∗, 𝜐∗) 

Where the inequality follows from (8), proving (7). The proof that 𝜐∗ is an optimal strategy for the second 

player can be proven in the same matter. 

 

 As we have gone through this proof, we have not assumed the integer values of linear coefficients 

of our function 𝑓. Therefore, this theory holds for piecewise-affine continuous functions with real 

coefficients. Also, there were only two players, with their payoffs always remaining constant. The task 

specified is standardly solved with linear programming as introduced in section 3.  
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5 Program Explanation 
 The following program is built to confirm whether infinite two-player zero-sum games have finite 

equilibria. We chose a Python programming language to program it. The decision to code in Python was 

mainly for language readability, even for users unfamiliar with it. The user’s input is used to build the 

experiment and specify the base game's appearance. The algorithm has four inputs (points_number, 

heights_number, kernel_sizer, steps), which are more specified in section 5.1. Experimental 

work is based on the generation of random triangulations, together with their piecewise affine functions. 

Their shapes are directly dependent on how inputs are set (specifically points_number, 

kernel_sizer). The following approximation of these functions over a finite grid and determination of 

the game’s equilibria are iteratively checked. Iterations are used to see if game results are stabilizing to 

verify the finiteness of such equilibria. There are four examples shown—one described in detail to visualize 

the algorithm’s process. The rest is used as follows: first to show five rounds of stabilization to support the 

detailed example; second mainly to show all points generated in later iterations, as they cannot typically be 

visualized properly due to their large number; third shows iterations until testing computer’s memory runs 

out. 

5.1 Summary 
 We have explained the theory used in our experiment. Now it is high time to dismantle the 

algorithm into a detailed description to see how it solves the problem. Altogether, the algorithm consists of 

two main parts. In the first part, we have to create an environment where the game is to be played. This 

means creating a square [0,1] × [0,1], which will hold the points building strategies for the players. The 

second part focuses on using these points in a game and solving it for both players. The goal is to monitor 

whether the results stabilize and approach equilibria for players whilst we perform more iterations. Let us 

introduce variables required for starting the run of the algorithm. The program needs four parameters as 

input: 

points_number – This parameter is used to set a number of points to populate the square [0,1] × [0,1]. 

The minimum required number of points is four as we always put four points into corners. 

heights_number – The number changing the possible value of interpolated functions of our points is 

called heights_number. These values are called height, as mentioned. This value is assigned to each 

point. Note that heights_number must be greater than 0. 

kernel_sizer – As we work with a square [0,1] × [0,1] we need to specify the sizes of our bins to set 

points on. Moreover, points could be placed anywhere inside of the square. However, it is better to have 

them placed in an orderly manner as we plan to make a finer grid out of them. Kernel_sizer specifies 

a grid's dimensions between the numbers 0 and 1, where the points will be placed. This number needs to 

be a divider of 1, since we want these dimensions to divide the game space evenly. If this is not satisfied, 

then it is changed to the default value of 0.2. 

steps – Lastly, we use steps to indicate how many iterations we want our algorithm to run. Each iteration 

consists of the second part of the algorithm. As our program needs to compare some values for our 

verification, it is suggested to choose a value of 2 or greater, but no smaller than 1.  
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If a user wants to run the algorithm according to the chosen value, they need to fulfill the requirements 

specified above. Otherwise, they are changes to the lowest possible or default value. Many pictures are 

staged for visualization as the default Python output takes an unreasonable amount of space. All of these 

values are taken from outputs. 
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In the first part, we use: 

Input: points_number, height_number, kernel_sizer 

Output: Triangulated square [0,1]  ×  [0,1] with randomly placed points and heights along each gridline 

corner 

The second part uses an output of the first one; therefore we end up with: 

Input: Triangulated square [0,1]  ×  [0,1] with randomly placed points and heights along each gridline 

corner 

Output:  𝑥 = (𝑥1, … , 𝑥𝑛) is a mixed strategy of Alice, where we show only those 𝑥𝑖 > 0 

  𝑦 = (𝑦1, … , 𝑦𝑛) is a mixed strategy of Bob, where we show only those 𝑦𝑖 > 0  

Together with our printable outputs, we show a triangulated space, intersection points for each iteration, 

and probability distribution over players' mixed strategies. To put the algorithm into perspective, we follow 

a random example for a generation of 10 points, with kernel_sizer set to 0.2 and height_number 

set to 50 to avoid an overwhelming number of decimal places from heights calculation. Code is split into 

functions, one for each job needed. There is one function arching over all calculations of both parts, which 

is called runner. This prevents having code in the main function. Firstly, we describe steps done for the 

first part of the program titled Triangulation Part. 
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5.2 Triangulation 
 The triangulation part starts with taking the first three manual inputs (points_number, 

heights_number, and kernel_sizer) and passing them into pa_games_watch. It returns tri, 

coords, coords_tri, threedim_coords, heights_orig, visual_heights, and 

visual_grid. We will now explain each function and explain what these variables hold. 

 

5.2.1 Square creation 

5.2.1.1 Kernel_number 
 Firstly, to transform our inputs into a more intuitive form, we use kernel_sizer (now called 

kernel_size) to calculate how many boxes there are between 0 and 1. This is done by dividing 1 by 

the kernel_size. For our example with 0.2 we have 
1

0.2
= 5 boxes to store into kernel_number. 

 

5.2.1.2 Indexes 
 Secondly, we call make_indexes with numvars (points_number renamed for the function) 

and kernel_number from earlier. Indexes begin at zero and go up to the kernel_number plus one 

squared minus one. For our example, this is (5 + 1)2 − 1 = 35. The function starts with setting corners as 

chosen points and then uses np.sort together with np.random.choice to return a list of unique 

sorted placements for points. This array will have a size of points_number minus four as corners are 

chosen by default. 

 

5.2.1.3 Visual_grid 
 In the last part of square creation, we call visualize_grid with kernel_number and 

indexes from previously. This function creates a one-dimensional array populated with zeros using 

np.zeros with an argument size of kernel_number plus one. Function substitutes ones for zeros on 

all indexes from indexes. The next step is to create a two-dimensional square from the one-dimensional 

array and add corners since they are not in indexes. This is done with np.reshape.  

 
 

We have a two-dimensional array/square with dimensions of 6 × 6 to satisfy 0 − 5 indexes holding our 

points on randomly assigned indexes.  

 

Input: points_number, height_number, kernel_sizer 
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Output: Square [0,1]  ×  [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with 

randomly assigned points (with visualization) 

5.2.2 Value assigning 
 We need to set random interpolated functions values, which are called heights in the program, for 

our points. 

 

5.2.2.1 Coords 
 Before we go over the heights, there is a variable called coords, which stands for a list holding 

coordinates of all points. This is done using np.argwhere for the two-dimensional variable 

visual_grid, finding where values are greater than zero since we used an array with only zeroes and 

changed them to ones only for spots where the points were assigned. Afterward, we end up with a list of 

lists with the size equal to the number of points specified in points_number. This list will be used in 

this part for triangulating our square space. 

 
 

5.2.2.2 Heights 
 Similarly to how we chose the points, we will choose values for the points' heights—calling a 

function make_heights with numvars and max_height (known earlier as heights_number). 

Random generation of values is done using np.random.randint. It takes in a minimum and maximum 

value but chooses between them; therefore, we use max_height plus one as a maximum. The values are 

represented in an array which is saved as heights. After returning from the function, it is renamed to 

heights_orig. 

 

5.2.2.3 Visual heights 
 To visualize our heights we call a function called visualize_heights with heights and 

visual_grid as parameters. To make it more readable when copying the two-dimensional array using 

np.copy we subtract one from it to have it as a clear indicator of where the points are not present. Using 

pattern matching, we assign a value from the heights array for each value greater than minus one. 

 

Input: Square [0,1]  ×  [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) 

Output: Square [0,1]  ×  [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with 

randomly assigned points and heights (with visualization) 
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5.2.3 Triangulation function 

5.2.3.1 Tri 
 Now when we have all points and heights for the triangulation, we use a 

scipy.spatial.Delaunay to create triangles from our points. This library uses Qhull algorithms. 

The convex hull of a set of points 𝑃 in 𝑛 dimensions is 𝑅𝑛. A set 𝑄 ∈ 𝑅𝑛 is convex if for all 𝑞1,  𝑞2 ∈ 𝑄 

the line 𝑞1𝑞2 is fully within 𝑄. The Convex hull of the set of points P can be described as the smallest 

wrapping of such points6. When asked how many triangles we have in triangulation, we look at our wrapped 

points, shaped like a half polyhedra, and mark the number of points it consists of as 𝑛 corners. The rest of 

the points which are inside our half polyhedra will be 𝑚. We can find a triangulation of a pivot corner 𝑝 by 

drawing a line to 𝑛 − 3 corners with no edge to 𝑝. This, together with half polyhedra edges, gives us 𝑛 +

(𝑛 − 3) = 2𝑛 − 3 edges and 𝑛 − 2 triangles. The next step is for us to take each of the inner points 𝑚 and 

do the following: 

For a point 𝑞 ∈  𝑚 we find the triangle it lies in and connects it with its edges. This gives us another 3 

edges and 2 more triangles. After pursuing this for all the points in 𝑚 we get 2𝑛 − 3 + 3𝑚 = 2𝑛 + 3𝑚 −

3 edges and 𝑛 + 2𝑚 − 2 triangles7. 

Even though this is a special way of creating triangles, the number of them and edges remains constant for 

all other triangulation forms. The plane we perform this in is not without special cases. For this triangulation 

to stay omnipresent, there need to be no four points along a circle circumference. To avoid a square of 

points, we set a small kernel_sizer, creating many options for placements and points_number. To 

clarify, imagine having a square 𝐴𝐵𝐶𝐷. When you want to triangulate it, you can either connect 𝐴𝐶 or 𝐵𝐷. 

These dual options for edges are always done in the same way. This is due to points being iterated through 

in the same order. Therefore, even though not triangulated by Delaunay, the triangulation will always be 

the same. We call this function with parameter coords. Since a library does the calculation is stores more 

than single information into tri. Calling tri.simplices returns triangles marked by indices of the 

points in an array coords with coordinates. 

 

5.2.3.2 Threedim_coords 
 To better view how our triangles are subdividing the square space, we use np.insert. Calling 

coords with tri.simplices we now, instead of having just indices of the coordinates, have triangles 

with both coordinates and heights. This creates a list with lists of lists. Threedim_coords represents 

three-dimensional information about all our triangles. 

 
6 http://www.qhull.org/ 
7 https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-

hull.pdf 

 

http://www.qhull.org/
https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf
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5.2.3.3 Coords_tri 
 Coords_tri is very similar to threedim_coords, but now we only want two-dimensional 

coordinates for our triangles. To do this, we call tri.simplices on coords, and get a list with lists 

of lists for only coordinates of all vertices for each triangle. 

 
 

Input: Square [0,1]  ×  [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with randomly 

assigned points and heights (with visualization) 

Output: List of coordinates and list of triangles as an array describing indices from the list of coordinates 
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5.3 Creating and Solving Zero-Sum Game 

5.3.1 Line information 
 To clarify the work, we call a function line_info with coords and tri.simplices as 

parameters, which iterates through all triangles describing every line from them into the information array. 

Important to remember is that triangle is marked by indices of the points in coords array. Information 

about a line segment looks as follows: 

Let us have a triangle 𝐴𝐵𝐶 with two-dimensional coordinates. Firstly, for a line segment 𝐴𝐵 we take the 

index of 𝐴 from a triangle and use it as the first value. Now we do the same with an index of point 𝐵 and 

place it in the second position. The third index consists of an array of size two with 𝑥 coordinates for 𝐴 and 

𝐵. The fourth index similar to the third instead now with 𝑦 coordinates. This is also done for 𝐵𝐶 and 𝐶𝐴. 

This array, called all_lines in our program, allows us to search for intersections much better than if we 

had to search for this information every time. 

 

Input: List of coordinates and list of triangles as an array describing indices from the list of coordinates 

Output: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each line 

 
 

5.3.2 Height 
 The next function called is find_A_b with coords(all_coords), 

tri.simplices(triangles), heights_orig(heights). It is used to find a function for each 

triangle in our triangulated plane. To do this we create an array full of zeros with the size equal to triangles. 

What we calculate is y = Ax + b or y1, y2, y3 = (x1x, x2x, x3x) * a1 + (x1y, x2y, 

x3y) * a2 + b, where 𝑦𝑖 stands for a height of vertices in a triangle, 𝑥𝑖𝑥 and 𝑥𝑖𝑦 are 𝑥 and 𝑦 coordinates 

for each vertex in a triangle. To solve this equation, we use np.linalg.solve(x, y), which 

calculates both 𝐴 and 𝑏, and we need to split it with the first two being 𝐴 (𝑎1, 𝑎2) and the last being 𝑏. 

When we know 𝐴 and 𝑏 for a triangle, if we give it point’s coordinates, we can calculate its height very 

precisely. This array of arrays is returned into triangle_equations. Before we can call for 

find_height it is necessary to look for new points to assign them these heights. 
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Input: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each line 

Output: List of 𝐴𝑥 +  𝑏 =  𝑦 for describing each triangle to return more precise height for future 

intersections 

 

5.3.3 Intersections 
 The function quadratic_direction is called by two functions first_round and 

next_rounds. It is split for the ability to see the process more clearly. First_round calls it for initial 

randomly generated points, while next_rounds calls it for all points available in the following iterations, 

consisting of all points from the grid as explained in 5.3.4.1. It is rerun steps minus twice as 

first_round and next_rounds did two iterations already. Since these two functions are a little 

different, let us go over them in more detail. Before that, we explain how the intersections are searched for. 

 

5.3.3.1 Quadratic direction 
 We use quadratic_direction to find intersections of a horizontal and a vertical line from a 

point. It checks with every line that our triangulation has created. This is very computationally intensive. 

Therefore as an improvement to the computation time, we added the direction from which the point was 

found. If the point was found as a horizontal intersection, there is no need to search for horizontal 

intersections. As mentioned, quadratic_direction checks each line segment for possible 

intersections, and there are a few different types of possible intersections from a point to a line segment. 

The easiest are the ones where either 𝑥 or 𝑦 coordinate is the same for both ends of the line segment. Then 

we can set new point’s coordinates, being 𝑥 or 𝑦, as from one of the points from the line segment and the 

other from the point that was searching intersections. Another option is when the line segment is scute to 

the pivot. In that case, we can use analytic geometry to count the slope or the segment and plug it into the 

equation. If our point were any one of four corners, we would skip it because it does not have any new 

intersections. The function is split into vertical and horizontal checking. We will go over an example in 

more detail. For this, we use one of the initial points [4,1,35,0] and look at how it intersects the line from 

[0,0] to [5,5], where 𝐴 will be [0,0], and 𝐵 will be [5,5]. The line will be intersected at coordinates 1 (by a 

horizontal line) and 4 (by a vertical one), creating two new points, where the missing coordinate will be 

calculated using the line equation. Since the original points are predetermined, they are the only points that 

need to check both directions. Others will only check the direction by which they were not made. This is 

noted on the fourth index of the point’s array with initial points having this value set to zero with one 

meaning horizontal checking is needed and two being used for the vertical one. Therefore, if a point is 
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deemed to be the one to go through the horizontal part, then before calculating, we check if the point has 𝑦 

coordinate between the line edges. Otherwise, it could not intersect this line. If it passes this condition, we 

check if 𝑦 coordinates of the points ' coordinates are not the same since that would mean the imaginary line 

from a point in a horizontal direction towards the line segment does not intersect but instead create a line. 

Lastly, we check if this potential point is already present in our point collection. If that is not the case, we 

can add it to the collection. This collection saves all coordinates in a set called new_candidate_check, 

named in the round functions as candidates. A similar is done for vertical direction to get all four 

options mentioned above. 

 

5.3.3.2 Coords extended 
 Coords_extended combines values for point coordinates and their respective heights. This is 

done by creating a list of lists with size for the number of points 3 using np.zeros and plugging 

coordinates to the first and second indexes and heights to the third. These values can be seen in 

threedim_coords, where they are put into triangles. 

 

5.3.3.3 First round 
 The parameters used are coords, coords_extended, all_lines, kernel_sizer, 

heights_orig, sample_array, precision_check, intro, coords_tri, 

triangle_equations. We now know all but three of them. Sample_array is an array of size four 

consisting of only zeros, and it is used as a sample for some other array, for example, intro, which holds 

points found in the first round. Precision_check describes the precision of calculations. Setting this 

number to two, we then round to this number of decimal places. First_round goes over all the initial 

points and checks the existence of intersections using quadratic_directions. If there is any new 

point found, then it is added into intro points with np.append. After all points have been checked, we 

use np.unique to find unique 𝑥 and 𝑦 from both intro and coords coordinates, in case numerical 

error caused the dual appearance of the same point. Then we make a list of them using np.unique and 

np.append to run grid_maker. We will explain it in more detail in 5.3.4.1, but to summarize, it creates 

a grid by calculating the Cartesian product from all points. It uses the heights of these points in linear 

programming to evaluate probability distribution for the game. The function first_round returns 

intro, candidates, A, and gridpoints. In the runner function, they keep their name, but 

gridpoints changes to temp_gridpoints. A is the matrix keeping the values for the mentioned 

linear programming. Gridpoints are all points creating the game grid in that round. 

 

5.3.3.4 Next rounds 

 This function uses candidates, steps, coords, coords_extended, all_lines, 

intro, sample_array, kernel_sizer, heights_orig, precision_check, coords_tri, 

temp_gridpoints, myDict, triangle_equations as parameter. New here is myDict, which 

collects what points exist in each round to get a clearer view of how the game is developing. 

Next_rounds runs the same algorithm as first_round, but inside there is a for loop running steps 

minus one time. It returns newer, newest, tester, A, gridpoints, myDict, with newer 

representing all points from all rounds and newest represents a grid these points make. Tester is a copy 



 26 

of three-dimensional points from the beginning used mainly to check that our code is running properly and 

have this information available on hand throughout the process. The rest of the returns is already known. 

 

Input: All points in the set and the list, information about lines and heights, storage for points in each 

round, number of iterations to run (for next_rounds, first_round only does round 1)   

 

Output: Found intersection and updated grid from them with updated lists and sets of point  

 
 

5.3.4 Zero-sum game 

5.3.4.1 Grid maker 
 This function gets called with xn, yn, coords, coords_tri, tester, triangle_info by 

previously explained rounds functions, but since it consists of calculating the game, it is kept in the second 

part. 𝑋𝑛 and 𝑦𝑛 are lists of unique 𝑥 and 𝑦 coordinates of all points, respectively, and triangle_info 

is triangle_equations. With all-new points, we again use the Cartesian product to create a grid from 

all unique 𝑋 and 𝑌. This is done using itertools.product(𝑋, 𝑌). Gridsmooth_points are all 

grid points, but new_gridsmooth_points represent our grided points without the initial ones that have 

their height values already. Grid_maker does two things. At first, it assigns grid points to their triangles 

to be able to assign them a height using the find_height mentioned above. From triangles, we calculate 

𝑐1, 𝑐2, 𝑐3 for our points. If their coordinates together all sum up to either non-negative or non-positive, we 

found a triangle for the point. 

 c1 = (x2 - x1) * (yp - y1) - (y2 - y1) * (xp - x1) 

 c2 = (x3 - x2) * (yp - y2) - (y3 - y2) * (xp - x2) 

     c3 = (x1 - x3) * (yp - y3) - (y1 - y3) * (xp - x3)8 

Now we add initial points back into new_gridsmooth_points. Because we need all of their heights 

to represent values for our zero-sum game. Next, the program computes a game for Alice and Bob, finding 

 
8 https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php 

https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php
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their probability distribution. Here, we came across an issue with the possibility of solving the problem 

using Python libraries. Firstly, we set up a linprog() library, where one only needs to insert specific 

values into a function receiving an output. After getting various outputs and some research, we found this 

is not as robust as its Matlab programming language counterpart. We moved on to nashpy(), which was 

meant to be more stable with our examples. It held up better, but we could not test if there is something 

wrong or it is simply not robust enough. Lastly, before founding the library used ( pulp()), we tried 

several other libraries, which did not work as needed. PuLP is the most stable out of all tested. It is harder 

to set up but easier to comprehend once all values are properly represented. When we wanted to put our 

dual program into a pulp problem, we needed to do each part manually.  

 
Alice = np.rot90(A, -1) # We use a different orientation for dual program 

x_names = [format(x, '02d') for x in range(np.shape(Alice)[1] + 1)] 

x = pulp.LpVariable.dicts("x", x_names, cat="Continuous") 

for i in x.keys(): 

    if i == np.shape(Alice)[1]: 

        continue # x0 has no bounds 

    else: 

        x[i].lowBound = 0  # BOUNDS x1-xn >= 0 

 

prob = pulp.LpProblem("Alice", LpMaximize)  # MAX 

prob += x[x_names[np.shape(Alice)[1]]]  # (max) x0 

 

for i in range(np.shape(Alice)[0]): 

 prob += lpSum(Alice[i, k] * x[j] for k, j in enumerate(x_names[:-1])) - 1 * 

x[x_names[np.shape(Alice)[1]]] >= 0 # Ax – 1x1 >= 0 

prob += lpSum(1 * x[i] for i in x_names[:-1]) == 1 # Sum of xs is 1 

prob.solve() 

 

For our dual program, we have a maximizing Alice. Therefore we create LpProblem(“Alice”, 

LpMaximize). In this style, we add more equations to the problem. We can use a for cycle to help us 

add 𝐴𝑥 ≤ 1𝑥0and constraints. The last thing is to call solve() on our problem. The values printed are 

for the strategies, which received more than 0 probability of being played. Here is one example of the first 

five rounds. To visualize, we also create a graph from these probabilities. 
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Input: Grid of points with all information for this iteration 

Output: Mixed strategies for Alice and Bob in this iteration and visual output showing these values 
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5.3.5 Point Storing 
 We already mentioned a dictionary myDict storing points for each round. We also use 

gridpoints to get a list of all points with their information about height and destination from where they 

were created to see them all in one place. The difference between them is that myDict as a dictionary 

remembers the situation for each round separately, but gridpoints only all of the points after iterations 

have been done. The most useful besides myDict is coords, which all_lines uses to access all 

triangle information at one place and is used throughout the code. Bellow, you can see part of myDict 

after the first_round as the number of points is really high. 

 

Input: Coordinates current for iteration 

Output: New dictionary key with all values stored  

 
 

5.3.6 Visual Output 
 Now when all the steps are finished. The first thing to be drawn is a probability distribution over 

each player's possible strategies side by side (seen above). The second thing is to show points active in each 

round with a triangulated original picture in the background. Below are the first two rounds (original points 

in green, intersections from the first round in red, and points created by Cartesian product in blue).  

Input: Triangulated space with a dictionary with points in each iteration 
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Output: Triangulated space with grid points for each iteration 

 

 

5.3.7 Other examples 
The first example is used to verify the results in a detailed visualization above. 
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The second example is used to present all points in later iterations since usually such a large number of 

them is generated they become impossible to visualize.  
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For the last example, we decided to let the algorithm run until our computer runs out of memory. Here we 

can observe some probabilities becoming so small algorithm starts putting minus before them. However, 

we see our results being stable. 
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6 Conclusion 
 Our goal was to experimentally verify whether infinite two-player zero-sum games with piecewise 

affine payoff functions have finite equilibria. After introducing the problem, we started explaining the 

backgrounds of zero-sum games as we began to understand how to approach it. The experiment is based 

on the generation of random triangulations with their affine functions. It is needed to approximate such 

functions over a finite grid and determine the respective finite game’s equilibrium. The approximation of 

Nash equilibria for the game is made using linear programming. Before the start of the experiment, it was 

known that polynomial games hold the property of finite equilibria. Since zero-sum games belong to the 

same family and have similar properties as polynomial ones, we strengthened the belief equilibria finiteness 

would hold for them too. 

 The experiment is set on a square [0,1] × [0,1] holding all strategy spaces for our players. To 

represent the square, a two-dimensional array was created in Python. Its size is determined by the user’s 

input, specifically by kernel_sizer, setting each box’s size to space out the [0,1] interval evenly. All 

randomization and most other mathematical instruments are done using the NumPy library, which is widely 

used in similar cases. The algorithm uses points_number to randomly assign points to a place with their 

generated value of interpolated functions or heights. Then the algorithm continues by creating a 

triangulation from these randomly generated points inside the square. Triangles created in the process 

represent affine functions in the game with values in the form of heights. To triangulate such space, it was 

needed to choose a library for creating triangulations. Our research led us to use the Delaunay function 

from the scipy library. With triangles now in place, we had to count equations of affine functions to 

represent them to find heights for new points generated in each iteration. The mentioned iteration starts 

with a search for intersections, which is done by checking every point present to see if it crosses any line 

created by the triangulation mentioned above. A new point is added to the pool of points if it has not been 

found previously. Once all possible intersections have been checked, we create a grid from all now available 

points using their unique 𝑥, 𝑦 coordinates’ Cartesian product. For all points in the grid, there is a specific 

height value. To assign it to them, each point checks in what triangle it lies and uses this triangle’s function 

equation plugs its coordinates to find the height. After it is done for all of them, we put grid height values 

into a matrix to represent strategies in the game and solve it for our two players using linear programming. 

This all happens in one iteration. The user-specified the number of them. We expect it to converge with a 

result for our game while adding the rest of the iterations. Here each new iteration adds a countable number 

of points (later used as strategies), which enabled us to use theory based on finite games even when our 

game ultimately approaches infinity. 

 For the games tested, we monitored the player’s probability distributions stabilizing with increasing 

strategy sets. This was needed to say that if we observed a finite equilibrium of a zero-sum game, then we 

could use the initial grid to represent a game, as it is the case for polynomial games, and save computational 

power. Looking back at the experiment, we learned that Python might not be the greatest programming 

language for this calculation type. Furthermore, this is due to many libraries' encounter for linear 

programming, which could not calculate needed probability distributions, showed inconsistent or wrong 

results before using PuLP for the algorithm. For these reasons, Matlab will be preferred in future research 

of similar problems since we needed to investigate which library had the best implementation to show the 

required results. 
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