
i | P a g e

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF MEASUREMENT

MASTER THESIS

CAN FD Gateway

By: Srinath Rangarajan

Supervisor: doc. Ing. Jiří Novák, Ph.D.,

ii | P a g e

iii | P a g e

DECLARATION

I hereby declare that this master’s thesis is the product of my own independent work and

that I have clearly stated all information sources used in the thesis according to

Methodological Instruction No. 1/2009 – “On maintaining ethical principles when working

on a university final project, CTU in Prague“.

Date: Signature

iv | P a g e

ACKNOWLEDGEMENT

In academic life, a student will get exposed to a numerous amount of intellectual influences,

making a path to countless ideas and perspectives. In my academic life, one of those

influences came from doc. Ing. Jan Fischer, who taught videometry and contactless

measurements and doc. Ing. Jiří Novák, Ph.D, who taught the subject Computer Interfaces in

the third semester of my masters at Czech Technical University, the subjects aroused my

curiosity to explore the concepts and technologies related to sensors and microcontrollers

respectively.

I express my utmost gratitude to doc. Ing. Jiří Novák, Ph.D for being my thesis supervisor

and for providing essential guidance throughout the course of my thesis.

I am sincerely thankful to all the staffs of the Faculty of Electrical Engineering for providing a

base to formulate my thesis.

Lastly, I would like to express my gratitude to my precious family for their impeccable

support throughout my life.

v | P a g e

Abstract

The diploma thesis deals with design of hardware and implementation of software for

CAN FD Gateway. The device is designed for the purpose of testing in automotive industry,

where the device acts as a gateway between two CAN FD networks. The device will block,

forward or modify the messages between the networks. The rules are provided to the

application via the third Control CAN FD network. This work deals with realization of

hardware according the application requirements and development of application on the

hardware. Several tests are performed and verified to ensure that the gateway satisfies all

the functions needed.

vi | P a g e

Abstrakt

Diplomová práce se zabývá návrhem a implementací softwaru pro CAN FD Gateway. Přístroj

je určen pro účely testování v automobilovém průmyslu, kde zařízení funguje jako brána

mezi dvěma sítěmi CAN FD. Gatewayumožňuje blokovat, předávat nebo modifikovat zprávy

předávané mezi mezi sítěmi. Pravidla jsou aplikaci poskytována prostřednictvím třetí (řídicí)

sítě CAN FD. Tato práce se zabývá realizací hardware podle požadavků aplikace a vývojem

aplikace pro tento hardware. Dále popisuje provedení vybraných testů a jejich výsledky.

vii | P a g e

Table of Contents

1. INTRODUCTION .. 1

2. SCOPE & OBJECTIVES .. 2

3. CAN COMMUNICATION PROTOCOL ... 3

3.1 Principle .. 3

3.2 CAN FD version .. 6

3.3 Merits & Demerits. .. 7

3.4 Application CRC ... 8

4. COMMANDS ... 9

4.1 Definitions .. 9

4.1.1 RESET .. 10

4.1.2 Block/Pass .. 10

4.1.3 MODIFY .. 11

4.1.4 TRIG .. 13

4.1.5 STAT: .. 13

4.1.6 ACK/NACK: .. 14

4.1.7 Trig Broadcast ... 14

4.1.8 SEND ... 14

4.1.9 READ ... 15

4.2 Gateway Identifier: ... 16

5.Software Design .. 17

5.1 Outline .. 17

5.1.1 GW_transfer_msg: .. 19

5.1.2 Parsing_Rule: .. 20

5.2 Statistics Implementation: ... 21

6. HARDWARE .. 22

6.1 Microcontroller ... 24

6.2 Voltage regulator .. 25

6.3 CAN Transceiver .. 26

7. IMPLEMENTATION in HARDWARE ... 26

7.1 Development environment - STM32CUBE .. 27

7.2 Clock setting .. 28

7.3 NVIC Interrupt Handler .. 29

viii | P a g e

7.4 Peripheral Settings .. 31

7.4.1 GPIO ... 31

7.4.2 CAN Interface: ... 32

7.4.3 Independent Watchdog ... 35

7.5 Debugging tools .. 36

8. Structure of software implementation .. 36

9. Testing ... 40

9.1 Testing Methods.. 41

9.3 Test conclusions. ... 43

10. Conclusion .. 45

Appendix .. 49

A. Schematic .. 49

B. PCB layout.. 50

ix | P a g e

List of Figures

Figure 1- CAN Arbitration.. 3

Figure 2- Classic CAN data frame ... 5

Figure 3- Classic CAN vs CAN FD –with BRS .. 6

Figure 4- CAN Classic Vs CAN FD .. 7

Figure 5- Gateway Application Overview .. 18

Figure 6 - Hardware .. 23

Figure 7- Microcontroller -STM32G4474CB ... 25

Figure 8- Voltage Regulator .. 25

Figure 9- CAN transceiver ... 26

Figure 10- STM32CUBE-Layer .. 27

Figure 11- STM32 CUBE Framework .. 28

Figure 12- Clock setting ... 28

Figure 13- PLL Engine .. 29

Figure 14- NVIC Configuration ... 30

Figure 15- GPIO configuration ... 32

Figure 16- FDCAN Configuration .. 33

Figure 17- ST-link Debugger .. 36

Figure 18- Project structure .. 37

Figure 19- STM32 Program flow .. 38

Figure 20- HAL_init() flow ... 39

Figure 21- Kvaser Memorator Pro ... 42

file:///C:/Users/srinath/Downloads/THESIS.docx%23_Toc60725835

x | P a g e

List of Tables

Table 1- Command types .. 10

Table 2- RESET command parameters ... 10

Table 3- Block/Pass command parameters. ... 11

Table 4 - MODIFY command and its parameters .. 13

Table 5 - STAT command Parameter ... 13

Table 6 - ACK/NACK commands .. 14

Table 7 - SEND command parameters ... 15

Table 8 - READ command parameters ... 15

Table 9- Identifier Structure .. 16

Table 10 - Pin Mapping ... 33

Table 11- FDCAN parameter settings ... 34

Table 12 - Watchdog Parameter settings ... 35

Table 13 - Source files summary .. 40

Table 14 - Test cases Block/Pass commands .. 43

Table 15 - Test cases modify command ... 44

xi | P a g e

1 | P a g e

1. INTRODUCTION

Automotive networks strive to satisfy safety and bandwidth needs. A quiet revolution is

sweeping through automotive in-vehicle, vehicle-to-vehicle, and vehicle to-infrastructure

communications and networking. Companies as well as standards organizations continue to

successfully tackle major design challenges, such as the adaption of hardware and software

approaches to meet demanding bandwidth, fault-tolerance, determinism, and reliability

requirements.

In fact, there’s marked improvement among several communications and control protocols,

both hardware and software. Designers are now attempting to slim a vehicle’s typical 35 to

40 MCUs (up to 100 in some cases) down to about 20 to 25 units that pack the same

functionality. As for body, powertrain, chassis, and other controls, no one protocol, and

architecture can be considered as a “one size fits all” solution.

Vehicles must pass many tests to meet all demanding and new requirements. This diploma

work is focused on designing a CAN FD gateway module for testing in-vehicle networks. The

module acts as a bridge between two networks and it is designed considering the current

industrial needs, especially low cost and low power consumption.

2 | P a g e

2. SCOPE & OBJECTIVES

As said by Dr. NIK Dimitrakopolous from Rohde-Schwarz “Autonomous driving and on-board

computing technology creates a demand for higher data rate traffic within vehicle

communication systems. To verify the functionality and quality of these data streams

automotive engineers need to be able to search for specific signals, trigger, decode,

measure crosstalk and performance compliance testing” [5]. However, not every

component can easily induce an error condition, so the topic of this work is to design and

verify a compact and low power module in CAN FD communication protocol which is able to

block, modify, or pass messages between two networks and also to create a possibility to

simulate the disconnection of some units from the network, or to intentionally disrupt their

communication, to send meaningless data, or even valid but incorrect data.

A gateway is a device that separates two networks operating with not necessarily different

communication protocols [1]. Within the application, there are 2 FD CAN networks, where

within one network the units exchange CAN FD frames. The task of the gateway is then to

interconnect 2 such networks - to forward messages according to the requirements of the

frame, and to block, release, or modify according to rules provided by the third CAN FD

interface, which receives commands from the control system. There are some rules to be

active only for a certain period (determined by time or number of frames). Gateway also

supports application layer CRC and reports number of transmitted messages. The hardware

should be designed and developed using STM32 family of microcontrollers with three

CAN FD interfaces along with overvoltage and polarity inversion protection. In order to

control the gateway module using UART (alternatively to the third CAN FD interface) it is

also necessary to add a slot for UART transceivers.

3 | P a g e

3. CAN COMMUNICATION PROTOCOL

CAN is a protocol developed by Bosch in 1983 and officially released in 1986. It was released

in a later version 2.0 in 1991 (version 2.0A with a standard 11 bit identifier and 2.0B with an

extended 29 bit identifier). The main area of application of the CAN protocol is especially in

automotive industry, where it is used for communication between electronic components of

the vehicles (brakes, engine, steering wheel, etc.)[3].

3.1 Principle

The protocol itself works based on collision resolution (CSMA / CR Carrier Sense Multiple

Access with Collision Resolution) method [4], where the transmission uses the so-called wire

product. In the idle state, there is a logic 1, or recessive state, on the CAN bus. As soon as a

device on the bus wants to start transmitting, it pulls the bus to a logic 0, or to a dominant

state. Arbitration of CAN messages resolves the collision, if many devices start

communicating at same time Following figure explains aribitration .

Figure 1- CAN Arbitration

The arbitration of which CAN devices will be transmitting at a given time and the overall

addressing of the units are determined using the message identifier (11 or 29 bits). Logic 0

as the dominant bit has a higher priority, so the lower the identifier, the higher the priority.

Each device on the bus also reads data from the bus backwards during the transmission, and

if, for example, a unit has currently sent a recessive bit of its identifier but reads a dominant

bit on the bus, arbitration ends for that unit because it is likely on the bus that the other

4 | P a g e

device wants to transmit with a higher priority message identifier. To ensure that no

collision occurs after arbitration, the identifier must be unique in the CAN network [20][2].

For a node to start communication, it must detect an idle state on the bus. When

communication is detected, it may not transmit and, on the contrary, it acknowledges

receipt of the message from the bus already within the given message (ACK bit and only

after it comes the End of the frame). If the unit detects an error in communication, it also

announces it on the bus (by sending 6 consecutive recessive or dominant bits - dominant

only if the unit is not in the so-called error passive state). This will also destroy

communication for other nodes so that they no longer receive the message, because they

do not have to detect the error as well - ie the system works here, when one device detect

the error, no one will have the message. Then the message must be sent again. This

behavior also has the negative consequence that a faulty unit would constantly destroy

communication on the bus. Therefore, error states are also implemented - these are simply

counters, how many times the unit has detected an error on the bus and according to the

set constants switches between error states (error active state - default error-free, error

passive and bus off). In bus off - the unit is practically separated from the bus, it can neither

send nor receive, and controller reset is required). From the point of view of the ISO OSI

model, the CAN protocol can be classified as follows [2][20]:

• Application layer

i) Content of frames

ii) When and under what conditions the frames are sent.

• Data link layer

i) CAN protocol,

ii) Media access control - collision

iii) Addressing - arbitration

iv) Security

v) Response to error conditions

• Physical Layer

i) Bit representation and signal level

ii) Transmission medium

iii) Line parameters, connectors, speed

5 | P a g e

CAN works with four types of frames - data frame (for data transmission with a length of 0 -

8 bytes), data request frame (remote request frame unit requests data with a given

identifier), error frame (6 dominant or recessive bits are sent in in case of error detection),

overload frame (not used today - same format as error, but the unit thus asks to postpone

another frame) [3].

For data security and error detection, CAN uses a CRC checksum (if the received and

calculated CRC code differs, an error is detected). NRZ (not return to zero) encoding as well

as a bit stuffing is used. transmitting If 5 or more bits of the same level are transmitted, the

opposite bit is inserted - because CAN is not synchronous (ie the clock signal to which the

bus would be synchronized is not distributed), it is necessary to change the state of the bus

so that the synchronization is available and data is read correctly. Another effect of bit

stuffing is that 6 bits of the same value in a row are already detected as an error [20].

Figure 2- Classic CAN data frame

As mentioned above, CAN is not synchronous, but due to the different distances of the units

on the bus, it is necessary to compensate for the delay of the signals given by their

propagation over the physical channel. To do this, CAN uses so-called Time quanta - short

time periods to compensate for signal propagation. In essence, there is a pre-divider of the

frequency on which the unit runs, and within the settings, the number of these quanta is

determined to correctly define the Sample point - the point where the current state of the

bus is taken as a valid bit value within the bit interval. This process also synchronizes the

units with each other. However, if the devices are too far apart when using a given nominal

baud rate, then the maximum number of time quanta may not be enough to compensate,

and it is necessary to reduce the overall communication speed [22].

It is also necessary to add terminating resistors - terminators for the correct function of the

CAN bus. They prevent signal reflections on the bus ends by simply converting electric

6 | P a g e

energy into heat and thus attenuating the reflection. Usually a 120 Ohm resistor inserted on

both sides of the bus between the CAN_H and CAN_L wires is used. The channel then uses

differential (logic level is given by voltage difference) communication between these

conductors [20].

It also follows from the description above that at least two units are required for the CAN

bus to function properly. One that broadcasts and another that acknowledges the frames.

3.2 CAN FD version

Because today's vehicles demand more and more data throughput, the original 1 Mbit/s

CAN specification may no longer be enough. Therefore, in 2012, Bosch came up with

another extension that covers the area between standard CAN and more expensive

technologies such as FlexRay, Ethernet, etc. At the same time, switching from CAN to

FlexRay or other technology could be costly for hardware and implementation. Therefore,

the FD version has higher throughput, but still provides backward compatibility with classic

CAN units [19]. Compatibility only works if standard CAN frames are transmitted, the older

unit does not recognize the FD frames and reports errors. As for arbitration and message

acknowledgment, CAN FD does not change this function in any way. What has changed is

the bit rate switch, the data frames in CAN FD version transfer from the original 0 - 8 bytes

the new 0 - 8, 12, 16, 20, 24, 32, 48, 64 bytes encoded in the length field (DLC field).

Therefore, it is now possible to transfer much more data per time period corresponding to

the transmission of up to 8 bytes of the original CAN protocol. From a software perspective,

nothing needs to be changed unless higher speeds are required. From the hardware point of

view, it is necessary to change the physical transceiver (driver) - if a speed higher than

1 Mbit/s is used [5][24].

Figure 3- Classic CAN vs CAN FD –with BRS

7 | P a g e

With the classical 11 bit and extended 29-bit identifiers, the beginning of the frame is the

same for both CAN versions. The difference between RTR and RRS (Remote request) is only

in the rename and is usually dominant for data frames. The real change is in bit r0 / FDF, in

the original CAN this bit was reserved and in log. 0, in CAN FD it means Flexible Data Format

- it determines whether it is a standard or CAN FD frame. This bit is followed by DLC for

standard and res bit for FD, so the classical CAN units at this point misinterpret the frame

and report an error. Conversely, CAN FD units can work with both formats. The last parts of

both the CAN frames are identical[27].

Figure 4- CAN Classic Vs CAN FD

3.3 Merits & Demerits.

Like any other network protocol used in automotive industry CAN and CAN FD has its own

constraints and advantages. It is used to reduce wiring in various automotive applications.

Due to less complex interface, it is widely used across various industries. It supports auto

retransmission of lost messages; it works in various electrical environments without any

issues.

Though maximum number of nodes is not specified for the network, it supports up to 64

nodes due to electrical loading. Node removal requires use of termination resistors of 120

Ohm value at appropriate places on the CAN bus. Network should be wired in topology

which limits stubs as much as possible.

8 | P a g e

3.4 Application CRC

CRC, or Cyclic Redundancy Check is a function most often used in communication protocols

to ensure error-free data transmission - resp. to detect a transmission error (due to noise

and other negative effects on the transmission channel). The goal is to maximize the

Hamming distance (the number of bits by which one codeword is changed to another

codeword - the greater the distance, the greater the probability of error detection) and to

minimize the size of redundant (redundant) data.

In general, the data is represented as a binary polynomial 𝑀 (𝑥) of degree 𝑛 - 1 where the

values of the coefficients of the polynomial correspond to the individual data bits. This data

polynomial is then divided by the generating polynomial 𝐺 (𝑥) of degree k. The remainder

after dividing the polynomial 𝑀 (𝑥) by a polynomial 𝐺 (𝑥) = 𝑅 (𝑥) of length k is added as

redundant information to the data and the whole codeword of length 𝑛 + 𝑘 is then sent. As

soon as the other party receives this data, it also calculates the CRC, and if the residues after

division differ, an error has occurred. If they are equal, an error could still have occurred,

but it was not detected and depends on the CRC used and the probability of the error,

whether it is enough for the given application requirements.

Because the checksum at the CAN protocol level is sometimes not enough in terms of

application requirements (the probability of error is still too high), the application CRC is

also introduced, so the CAN peripheral automatically calculates and verifies the CRC and

reports the error when receiving the frame.

9 | P a g e

4. COMMANDS

As mentioned in previous chapters, the application acts as a Gateway on the CAN FD

protocol. Materials of older version of CAN Gateway, CAN FD gateway with UART interface

and CAN FD gateway module based on different microcontroller were provided for this

work. The aim of this work is to design and develop a module capable of working with three

CAN FD interfaces up to 2 Mbits/s bitrate. A gateway module between networks will have

many tasks to perform according to requirements. Firstly, it is necessary to understand the

requirements for the gateway module, which are blocking, forwarding and modification of

messages passed between the networks. The above processes may be depending on some

variables which are called parameters. We use commands to represent these processes and

each command will have its individual parameters. All the commands are sent to the

module via user or tester during the testing of network. By default, the application passes all

frames in both directions. If it receives a command from the third CAN (FD) interface, it will

be preserved as follows - the commands defining the new rule will only be saved for the

time being, only after receiving the Trig command the new rules are applied. There is also a

Reset command that clears saved rules and sets only the default rule for working with

frames (block or forward all). All commands are described in more detail on the following

pages.

4.1 Definitions

The CMD field is one byte of data, each configuration command contains a CMD field and

then up to 7 parameters (depending on the command type). CMD byte is further divided

into the command itself (its type is encoded in the upper 4 bits) and the decreasing frame

sequence number - if it is necessary to divide the configuration message into multiple

frames (data exceeding 8 or 64 bytes - for FD). In such a case the first packet has the

sequence number N-1, where N denotes the number of frames. The value therefore

gradually decreases to 0. The CMD field is therefore included in each frame to ensure the

correct delivery of all data. The following table shows the commands and their codes[21]:

Command Code Name Function

0x00 Reset Reset the module to default state.

10 | P a g e

Table 1Command types

At the same time, because the CMD field also contains the type of command, it simplifies

the implementation of data breakdown. Parameters have a variable length and number,

depending on the type of command. The minimum size of the parameter is 1 byte. The

following format is used to confirm the command - again the CMD field (upper 4 bits of the

command type to which it corresponds, lower 4 bits always 0 - there is no need to count

frames here). The confirmation also has 2 parameters, where the status register of the CAN

peripherals is inserted, or statistics [21].

4.1.1 RESET

The single parameter Reset command sets the default blocking or forwarding rule. It deletes

specific rules (currently being developed). The following table describes the Reset command

and its parameters [21]:

Table 2- RESET command parameters

4.1.2 Block/Pass

The Block / Pass command specifies a rule for exception to the default behavior (specified

after power-up or with the Reset command) for certain messages with a given identifier.

0x01 Block/Pass Request to block/forward message.

0x02 Modify Request to modify the forward message.

0x03 Trig Request to activate he preset function.

0x04 Stat Request to send the statistics.

0x05 Send Sends a message to the specified CAN once

0x06 Read Activates message mirroring on CAN control

Parameter Size Value Function

State 1B 0x00 After the Trig command, all frames are forwarded in both directions.

 0x01 After the Trig command, all frames are blocked in both directions.

11 | P a g e

Rules of this type are saved and are active after the Trig command. The Reset command

clears the pending rules. The following table clearly describes the functions of the Block /

Pass command [21]:

Table 3- Block/Pass command parameters.

4.1.3 MODIFY

The Modify command is probably the most complex, but also the "most powerful" rule in

the application. It has several functions, such as modification of data based on the mask and

rule data, it is possible to modify the application CRC, either to correctly calculate the new

CRC, or intentionally wrong. Like the Block / Pass command, modify has parameters for a

time- or number-limited duration. Unlike Block / Pass, however, modify is not dependent on

the default rule given by the activation or Reset command.

However, there are some pitfalls with this command, if for some reason it would be

necessary to transfer the rule only with packets smaller than 8 bytes, then it would not be

possible to use the frame counter as designed (at 8 bytes, where the first byte is always an

Parameter Size Value Function

ID 4B 11- or 29-bit ID Identifier whose frames will be blocked or

released using this rule - the opposite of the

default rule.

Type 1B 0x00 Permanent rule without time limit

 0x01 A rule limited by the number of frames in the

Length parameter.

 0x02 A rule limited by the time given in the Length

parameter

Length 2B Number of times When Type = 0x01, the Length parameter

specifies the number of frames to which the rule

applies and then terminates.

 Usage time(ms) When Type = 0x02, the Length parameter

specifies the time in milliseconds for which the

rule is active and then ends.

12 | P a g e

array CMD, so effectively 7 bytes is necessary to transfer 138 bytes of data Modify, which is

20 frames, but the counter is only 4 bits, ie a maximum of 16 frames).

Therefore, the counter would have to be 5 bits for the frame order and 3 bits for the

command type. If it is ensured that at least 12 bytes of data are transferred (11 bytes

effectively, ie 13 Modify rule frames) in each frame, the CMD field does not need to be

changed. The below table again clearly describes the parameters of the Modify command

[21].

Parameter Size Value Function

ID 4B 11- or 29-bit ID An identifier whose frames will be modified using this

rule

Mask 64B Mask Data mask, to replace the rule data.

Data 64B Data Rule data to replace frame data (by mask).

DLC/CRC 1B Data length/CRC The upper 4 bits determine the modification of the data

length, here in the original application the range 0-8

applied, the value 0xF left the original length. New for

CAN FD, this field must be extended to use standard

length coding (see 2.3.2). In the new application, 0x10

means size without change and, among other things, it is

necessary to change the encoding to the upper 5 bits are

the length and the lower 3 bits the CRC. If CRC = 0x00,

only data and mask modifications are performed. If CRC

= 0x01, the CRC is correctly calculated from the modified

data, and finally, if CRC = 0x02, then the calculation is

intentionally incorrect (correctly calculated and

incremented by 1).

Seed 16B CRC Seed Initialization vector for application CRC calculation.

Type 1B 0x00 Permanent rule without time limit

13 | P a g e

Table 4 - MODIFY command and its parameters

4.1.4 TRIG

The Trig command has no parameters, so far it only activates saved settings obtained after

the previous Trig command or after switching on the device.

4.1.5 STAT:

This command has a single parameter that decides whether it is to activate or deactivate the

sending of statistics on the number of messages on both CAN interfaces. After receiving this

command, the application confirms by default using ACK / NACK, but the parameters do not

contain the CAN (FD) status registers of the controllers, but statistics for both interfaces.

The average number of frames that pass-through a given interface per second is

calculated[21].

Parameter Value Description

Type (1B) 0x00
Statistics transmission is off

content_copy

share

star_border

 0x01 Statistics transmission is ON

Table 5 -STAT command Parameter

 0x01 A rule limited by the number of frames in the Length

parameter

 0x02 A rule limited by the time given in the Length parameter.

Length 2B Number of Usages When Type = 0x01 Length parameter determines the

number of frames to which the rule applies, and then

ends

 Time of Usage(ms) When Type = 0x02, the Length parameter specifies the

time in milliseconds that the rule is active and then ends.

14 | P a g e

4.1.6 ACK/NACK:

After each command, the module sends an acknowledgment at the application level,

together with the error ID that may have occurred and with the status registers of both CAN

(FD) interfaces. The following table summarizes the format of the confirmation message:

Table 6 -ACK/NACK commands

4.1.7 Trig Broadcast

The Trig command also supports broadcasting, where module address 0 is reserved for

broadcasts. On Trig, either the unicast or broadcast, the module responds in the standard

manner described above [21].

4.1.8 SEND

This command can be used to immediately send a message from the control CAN to the required

CAN FD interface. If the entire command does not fit in a single frame, it is divided into two, just as

with the Modify command. A detailed description is provided by the table:

Parameter Size Value Description

ID 4B Frame Identifier Identifier of the frame to be sent. The frame in the extended

identifier format has the highest bit in one, the standard in

zero.

Parameter Size Value Function

ErrID 1B Error ID Indicates the error ID that has occurred since the last ACK /

NACK acknowledgment. If no problem occurs, the ID is 0

CAN1 FD ERR 2B Error register Status error register CAN1 FD interface

CAN2 FD ERR 2B Error register Status error register CAN2 FD interface

15 | P a g e

DLC 1B Length/Target The length of the frame data is encoded in the lower 4 bits.

The next bit in ascending order (5thbit.) determines the

frame format: 1 - CAN FD, 0 -Standard CAN. (6thbit) specifies

BRS, only make sense for FD frame. (7thbit) specifies target

CAN interface: 1 CAN2, 0- CAN 1 (8thBit) not used

Data 64B Data Generated frame data

Table 7 – SEND command parameters

4.1.9 READ

This command can be used to listen to selected messages, ie to mirror them on the control CAN. A

detailed description is provided by the following table:

Parameter Size Value Description

ID 4B Frame Identifier Identifier of the frame that we want to mirror on the control CAN.

The frame in the extended identifier format has the highest bit in

one, the standard in zero.

Type 1B 0x00 A parameter without time limit

 0x01 A rule limited by the number of frames in the Length parameter.

 0x02 A rule limited by the time in the Length parameter.

Length 2B Number of usages If Type == 0x01, the parameter defines how many times the frame

should be forwarded.

 Time of usage(ms) If Type == 0x02, the parameter defines the time in milliseconds for

which the frame is to be forwarded.

Table 8 – READ command parameters

16 | P a g e

4.2 Gateway Identifier:

The Gateway module identifier is an extended 29 bit. The 20 highest bits are 0x40000,

followed by 5 bits - the module address determined by the hardware DIP switch. The next 3

bits are again zero, the last bit has a value of 0 if it is a command and a value of 1 if it is an

ACK / NACK acknowledgment. The following table summarizes the identifier format [21]:

20bits

010…..00

5bits

DIP address

3bits

000

1bit

ACK/NACK

Table 9- Identifier Structure

17 | P a g e

5.Software Design

Even though the software layer has been designed previously and verified, it is necessary to

understand how the software is designed so that it will be easy to select the microcontroller

with exact features which will ensure smooth functioning of the application layer.The

application has several functions, after switching on the application it is necessary to

initialize and activate all interfaces (CAN FD peripherals, timers, Internal watchdog). Then

follows an infinite loop, which gradually asks all CAN FD interfaces for new data, if there are

any, it is necessary to process them accordingly. First, the application queries the control

CAN FD interface, where the system commands and rules come from. Data processing of the

control CAN FD interface takes place in the function Parsing_Rule. Furthermore, the

application queries both CAN FD peripherals, between which messages are forwarded. For

both interfaces, the GW_transfer_msg function is used to process new data. This ends the

main loop and at the end of every loop the watchdog is refreshed [21].

5.1 Outline

The main part of the application is hidden inside the functions Parsing_Rule and

GW_transfer_msg. For the whole application to work as it should, there are several more

functions between Transmit / Receive and forwarding / parsing functions. Here the idea is

very easy, it is the actual execution of the command, or its decoding. In the case of Block /

Pass, the data of a given message is simply copied to the data to be sent on the second

interface than the one from which the message came (function GW_Passing_msg). For the

Modify command, there is the GW_Modify_msg function, which in addition to copying also

modifies the data based on the mask and rule data, or shortens or lengthens the length (DLC

parameter) and finally calculates the CRC if required - either correctly or intentionally

incorrectly (according to the command CRC parameter) with the help of the initialization

vector (CRC Seed). The last important function is GW_Progress_Mod_rule, which uses the

global indexes of the developed rule (index for the position in the sheet and index for the

position within the structure of the rule) and processes the parameters of the Modify

command, which must be divided into several frames (max. data length is 64 bytes, ie at

least 3 frames for Modify). The function gradually completes the structure of the new rule,

once it is completed, the indexes are reset. Only one Modify rule can be developed at a time

[21].

18 | P a g e

 YES

Start

Clock,

NVIC,

Watchdog

Initialize FDCAN

peripherals,

GPIOS

New CAN

message

FDCAN 3

New CAN

message

FDCAN 1

New CAN

message

FDCAN 2

Refresh

watchdog

Parsing_Rule

GW_transfer_msg

GW_transfer_msg

YES

YES

Figure 5- Gateway Application Overview

19 | P a g e

5.1.1 GW_transfer_msg:

The GW_transfer_msg function (see Figure 9) takes care of the actual message forwarding

between CAN FD 1 and 2 interfaces. It is decided on the basis of currently valid rules given

within the static sheet up to 10 items (theoretically you can specify any number of rules,

because it is given a constant, how many rules can be applied at one time - of course with a

large number of rules it can affect the overall performance of the application and it is also

necessary to make sure that there is enough memory).

The implementation of the GW_transfer_msg function proceeds as follows. First, the

necessary variables are initialized and mainly the ID of the message to be decided is taken. It

is also necessary to go through the entire active rule sheet to see if there is a special rule for

the given message ID. If no such one is found, the default rule is followed (blocking or

passing rule given after activation or the last Reset command). If the ID matches one of the

rule IDs in the worksheet, it is further decided which rule it is and how to handle the

message. It is decided using an enumeration type that defines the state of the rule. The

state is a combination of several parameters of the rule for easier breakdown. Rules can be

of the block / pass, modify, or read type and can be valid indefinitely, for a certain time, or

the number of messages - a total of 6 types of rules [21].

For Block / pass rules, the status of the default rule must also be considered, as the

application must be reversed - a release Reset blocks the message with the given ID. For

Modify rules, the rule is applied independently of the default Reset rule.

In terms of time types of rules, unlimited ones always apply to the given ID, but for rules

limited by number, the Length parameter must be reduced, as soon as 0 occurs, the rule is

deleted and the message is already processed as without a special rule. Time-limited rules

are deleted by the timing function (the timer ISR takes care of deleting the rule). Again, the

Length parameter is reduced here, and the ISR function clears the rule when 0 occurs. So, in

decision-making, the time rule is applied just like the unlimited one [21].

20 | P a g e

5.1.2 Parsing_Rule:

The Parsing_Rule function is the second important part of the application. As the name

suggests, it is used to decode a new rule that came from the control CAN FD interface. All

rules can be transferred in a single frame (64 bytes), except for the Modify rule, which must

be split in 3 frames. Implementation first, the variables are initialized and the command

itself is selected from the data area of the message, which is always contained in the first

byte of data - this also facilitates the breakdown. According to the order code, it is then

decided which order it is, and it is then processed accordingly. The easiest rules in terms of

processing are Reset, Trig, Stat. The reset simply sets the flag that it has been executed and

also sets a new default rule (only saved, applied only after the Trig command) given by the

second byte of the message data. The Trig command acts as a trigger for a new saved

setting, so its processing is also very simple. If the Reset flag has been set, the Trig command

activates the new default rule and the pointers to the active and new setting sheets are

swapped. The new sheet (at the moment with the old settings) is deleted [21].

A Block / Pass rule already has more parameters than simple statements, and it is also one

of the types of rules that are stored in a worksheet. First, you must specify the ID to which

the rule will apply. The entire sheet must be searched if a rule with the same ID no longer

exists, if so, an error ID is set, and an error is sent in the next confirmation. The error is also

generated if no space is found in the worksheet. If the place exists and there is no conflicting

ID, it is only necessary to determine the status of the rule (ie enumeration type -

combination of command code and validity type). Once the status is set, a confirmation is

sent, and the new Block / Pass rule is processed [21].

The most complicated implementation is the processing of the Modify rule because it is

divided into several frames. Therefore, auxiliary global variables have been introduced that

specify the index of the rule in progress and the index into the structure of the rule itself, to

which additional data is written to the appropriate parameters. First, it is necessary to find

out, on the basis of the mentioned global variables, whether a Modify rule is already being

processed - that is, whether it is another frame of one rule or a new one is accepted. If this

is a new rule, it is necessary, as with the Block / Pass rule, to find an empty space in the

worksheet (otherwise error), then set the empty space ID to 0, initialize global variables 0).

Subsequent calls to the GW_Progress_Mod_rule function move the data from the message

21 | P a g e

into the rule structure. Only at this point is it possible to verify whether the rule with this ID

is no longer in the worksheet. If such a rule already exists, an error is set and the unfinished

rule is discarded and deleted from the worksheet. If there is no problem, the next frame is

waiting, ie the next part of the Modify rule. When the next part arrives, the

GW_Progress_Mod_rule function takes care of inserting the data into the structure again. If

the rule is complete, it is necessary to decide again on the status of the rule, and since the

time type is already known, it is possible to determine the status at this time. Global

variables are set to invalid values, which handles the Modify rule[21].

5.2 Statistics Implementation:

To monitor the load of individual CAN FD interfaces, between which messages are

forwarded, a simple statistic has been implemented. This function is again taken care of by a

timing function (Timer interrupt service routine), which, in addition to monitoring time

rules, simply adds to the circular buffer every 100 millisecond the number of received

messages on each interface separately. If statistics are subsequently requested, the average

number of received messages per second is sent instead of the error register. The averaging

is taken over the entire circular buffer [21].

22 | P a g e

6. HARDWARE

Hardware is designed and developed specifically for this project. The components are

carefully selected in order to maintain the operating voltage of individual components at

3.3V. The board itself contains only a few basic components. The main heart of the system is

a microcontroller that controls the entire application and communication, while the test

system itself has a distribution of 12 volts, so it is necessary to use a voltage regulator for

the microcontroller. For debugging purposes SWD is used. LEDs are used for indicating

various states of the system. The CAN interface is used for communication with the world,

but it also needs a so-called transceiver as the periphery of the microcontroller - or

conversion of CAN signals to differential signals CAN_H and CAN_L.

We have only few requirements for our work. We must focus only on power, cost and

availability of the suitable components. Following the guidelines from the project guide and

some references from arm community [14], there are some steps to be followed before

selecting hardware components. After following the steps such as identifying memory

needs, cost effectiveness, availability of peripheral interfaces, code development

environment and resources from microcontroller manufacturer few microcontrollers from

ST’s STM32G0 Series, STM32G4 Series, STM32H7 Series, STM32L5 Series[15],[15] NXP’s

LPC546xx MCU family, Cypress Traveo family MCU’s were some of the shortlisted

microcontrollers shortlisted during the initial stages of the work.

All these MCU’s have Cortex processors of various generations and versions. We must select

microcontroller which has to be suitable for our work, also having a more powerful

processor which is not required for our work and it will increase the cost. The previous

version of the gateway module was implemented using Cypress’s Traveo family [17].

According to the guidelines given for this work is, to design a hardware using STM32 family

because ST’s resources, online community, documentation and the MCU’s are suitable for

the application requirement therefore we have decided to proceed with MCU from STMG4

series Microcontrollers. ST not only provides better resources for coding, it also provides

better development environment [18].

23 | P a g e

Figure 6 - Hardware

24 | P a g e

The hardware shown in the above Figure is designed using KICAD software. The board

schematic and PCB layout are attached in the appendix of this document (A) (B). The

hardware is designed for controlling the gateway using a third control CAN FD and

(alternatively) the UART interface. In order to switch between these two interfaces easily

the UART and CANFD transceivers are connected the same pin outs of the microcontroller.

Here in this work the gateway module is implemented using only CAN FD interfaces. There

are totally 8 LEDs used; out of those 6 LEDs in pairs are used to indicate the error states and

reception of messages respectively of the three CANFD interfaces. One LED is used to

indicate power and other is used to indicate any other errors state of the system.

6.1 Microcontroller

The board is equipped with a STM electronics microcontroller. The basis is ARM Cortex-M4

core. In order to understand more about the peripherals and programming the chip for user

application it is necessary to refer to the programming manual provided for this chip. The

exact variant is STM32G474CB [8], its key features are:

• External memory interface for static memories FSMC supporting SRAM, PSRAM, NOR

and NAND memories

• 12 Kbytes of Flash memory with ECC support, two banks read-while-write.

• Up to 107 fast I/Os

• 5 x 12-bit ADCs 0.25 µs, up to 42 channels.

• 6-channel DMA controller

• x ultra-fast rail-to-rail analog comparators

• 5 x USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control)

• 17 timers

• 3 x FDCAN controller supporting flexible data rate

• 6 x operational amplifiers that can be used in PGA mode, all terminals accessible

• Internal voltage reference buffer (VREFBUF)

• True random number generator (RNG)

• CRC calculation unit, 96-bit unique ID

• Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™

25 | P a g e

Figure 7-Microcontroller -STM32G4474CB

6.2 Voltage regulator

A voltage regulator is required for the processor to function, which converts the 12-volt

input voltage to 3.3V, from which the processor is powered. To meet out voltage constraints

the board is equipped with TPS6217x device family from Texas instruments, an easy to use

synchronous step-down DC-DC converters optimized for applications with high power

density [9]. The key features are:

• Wide input voltage range - from 3Volts up to 17 Volts.

• Up to 500-mA Output Current, Adjustable Output Voltage from 0.9 V to 6 V

• Three outputs - one with a current of 2 A, two with a current of 1 A.

• Operation at up to 100% duty cycle.

• Short-circuit protection.

• Overtemperature protection

• Applications - Standard 12-V Rail Supplies, POL Supply from Single or Multiple Li-Ion

Battery, LDO Replacement, Embedded Systems

Figure 8-Voltage Regulator

26 | P a g e

6.3 CAN Transceiver

For the processor to be able to communicate with the rest of the world, and to

communicate with the connected CAN networks, a transceiver is required with CAN FD

support. For this sole purpose the board is equipped with TCAN337G transceivers from

Texas Instruments. The key features are [10]:

• 3.3-V Single supply operation

• Data rates up to 5 Mbps

• Four operating Modes

• Wide common mode range of operation ±12 V

• Undervoltage protection on VCC

• Thermal shutdown protection

• Current limiting on bus pins

Figure 9- CAN transceiver

7. IMPLEMENTATION in HARDWARE

The implementation of the firmware architecture of the CAN FD Gateway on real hardware -

the board described in the previous chapter, will be the last step of the diploma. This step is

broadly classified, the selection of the programming environment and then the activation of

individual peripherals for our application requirement.

27 | P a g e

7.1 Development environment - STM32CUBE

C is much more suitable for programming and assembler more debugging of the program,

where the compiled code can be read in the so-called disassembly view also, C language is

the most widespread in the field of microcontrollers. The whole application is written in C

language. The STM32 family of processors is currently supported by many environments

such as the IAR Embedded Workbench, Atollic, STM32CubeIDE etc. For this work

STM32CubeIDE – part of STM32CUBE package, is used. This environment is like one-stop

solution for embedded developers. It is a set of tools and embedded software bricks

available free of charge to enable fast and easy development on the STM32 platform which

simplifies and speeds up developers’ work. In the following Figure from ST, the advantage of

CUBE library is shown graphically[26].

Figure 10– STM32CUBE-Layer

Generally, we need Standard peripheral libraries for the specific MCUs and MPUs. The STM

has created an abstraction layer which enables the developer’s code to migrate from one

MCU to the other easily. The STM32Cube comes with STM32Cube MCU and MPU packages

for each individual STM32 MCU and MPU series. This package includes the Hardware

abstraction Layer (HAL) and CMSIS- CORE enabling portability between different STM32

devices via standardized API calls [13]. HAL for cortex-M processor registers includes

28 | P a g e

standardized register definitions for NVIC, system control Block registers, SYSTICK register,

MPU Registers and several NVIC and core feature access functions [14]. Low-layer (LL) APIs,

a lightweight, optimized, expert oriented set of APIs designed for both performance and

runtime efficiency. The below Figure will give a birds-eye view of the points discussed

above.

Figure 11- STM32 CUBE Framework

The gist of this diploma work can be easily conveyed using the above Figure[25]. The
application code layer contains our source codes which is written to work as gateway. The
application layer will call the API’s from HAL driver files which enables the application to
make use of the microcontroller’s peripherals. Then, the HAL layer will also call the API’s
related to processors using CMSIS’s APIs.

7.2 Clock setting

Figure 12- Clock setting

29 | P a g e

The STM32CubeMx project manager allows configuring the system clock from configuration

tab. The internal oscillator in the selected microprocessor is 16 MHz which is not sufficient

for our high-speed application. In order to navigate through the Cube Mx software the step

by step instructions are provided in the reference manual [12]. We need to switch from

internal oscillator to external high frequency RC Oscillator as source for phase lock loop

engine (PLL) to further increase the frequency.

Figure 13- PLL Engine

To change the clock setting to a higher or lower frequency is possible, by modifying the

parameters PLL engine. The system clock is derived from the PLL and other peripheral clocks

are derived from the system clock. The parameters of PLL engine such as R/Q/M/N are

2/2/1/40 respectively for this application. The processor can handle up to 170MHz. In the

RCC tab of system core settings we need to select ceramic oscillator as HSE. Also, make sure

LSE (low speed External) is disabled. The Cube MX will automatically modify respective RCC

registers during project creation. All the peripheral clocks are supplied with 160 MHz for

minor changes of the firmware in future.

7.3 NVIC Interrupt Handler

The Nested Vector Interrupt Controller (NVIC) is one of the internal interrupt peripherals of

the STM32 MPU micro processor’s interrupt controller. The NVIC and Cortex-M4 processor

are closely coupled which enables low latency interrupt processing and efficient processing

of late arriving interrupts. All the interrupts including the Cortex-M4 core exceptions are

managed by the NVIC. The features of NVIC include 150 makeable interrupt channels, 16

30 | P a g e

programmable priority levels and implementation of system control registers. For this

application the priority levels are set using NVIC tab under system core setting in pin and

configuration setting window of STM32CubeMx. All the information regarding NVIC

programming is in Cortex – M4 programming manual [15].

Figure 14- NVIC Configuration

There are nine interrupts enabled in the NVIC interrupt controller table for this application.

They are:

• Hard fault interrupt

• Memory management fault

• Prefetch fault, memory access fault

• Undefined instruction or illegal state

• Time base: System tick timer.

• System service call via SWI instruction

• Debug monitor

• Pendable request for system service

• Non Maskable interrupt.

All the interrupt handler APIs and theirscall backs are included in the project during initial

code generation by Cube Mx/ STM32CubeIDE. A source file is generated separately which

31 | P a g e

have function definitions to handle each interrupt, the respective call backs can be called

from these functions.

7.4 Peripheral Settings

To get started with programming the microcontroller there two ways, either we can use

STM32CubeMx or we can use STM32CubeIDE directly. In this work we use STM32CubeMx

for configuration settings and the initialization codes are generated for STM32CubeIDE.

Firstly, with help of project manager we can choose microcontroller. Now the

STM32CubeMx software will download respective driver files of the microcontroller. We can

also choose one of the example projects for the microcontroller.

7.4.1 GPIO

To set the I/O port, you only need to specify a few things. What type of GPIO will it be -

analog or digital input or output, use of pull-up or pull-down resistors and data source or

receiver - GPIO data register or some alternative function (peripherals). All these settings

can be found in the manual [16] together with the procedure how to set the pin correctly.

For a signaling LED, its location must be found.

According to the board diagram, the user LEDs are located on pins 8-15 - but these are the

housing numbers, so it is necessary to find out the number of the processor pin directly. Pins

8-15 correspond to pins PA0 – PA7 according to the manual [16]. Once it is known where

the LED is connected, it is necessary to set the pin as an output, without any pull resistors

and use the default value as a data source. It is also necessary to set transfer and receive

GPIO pins of FDCAN peripherals which are described in detail in (7.3.4) The following Figure

will show screen shot of graphical user interface which helps to configure GPIOs.

32 | P a g e

Figure 15- GPIO configuration

7.4.2 CAN Interface:

In order to work with CAN FD peripheral, it is necessary to understand the CAN-FD

implementation in STM32 microcontrollers and microprocessors. The FDCAN on STM32

devices are compliant with CAN protocol version 2.0-part A, B and ISO 11898-1: 2015, -4

[22].

FDCAN offers many advantages over the traditional BxCAN (basic c extended CAN), including

faster data rates and the extension of the number of data bytes that decreases the frame

overhead. The bus load can be also reduced. There is an increase on the number of

messages in transmission and reception that requires an improvement of the RAM memory.

BxCAN developers can easily migrate to FDCAN given its BxCAN compatibility and as the

FDCAN can be implemented without imposing a revision of the entire system design.

The FDCAN contains all BxCAN features in an improved manner and meets the requirements

for our application. The various operating modes and RAM management of FDCAN refer to

the resource from STM32 [13]. Some of the main features are:

• Improved acceptance filtering

• Two configurable receive FIFOs

• Up to 64 dedicated receive buffers

• Up to 32 dedicated transmit buffers

33 | P a g e

• Configurable transmit FIFO and transmit queue

• Configurable transmit event FIFO

• Transceiver delay compensation

The selected STM32G4 series MPC have three FDCAN interface. All the 3 interfaces share a

common core, Tx handler, Rx handler and message RAM interface. According the reference

manual [16] and data sheet from ST for this microcontroller pin numbers are mapped as

mentioned in the below table ().

FDCAN interface RX - pin Port pin TX - pin Port pin

FDCAN1 33 PA11 34 PA11

FDCAN2 26 PB12 27 PB13

FDCAN3 40 PB3 39 PA15

Table 10– Pin Mapping

The FDCAN peripheral is configured using connectivity tab in pin & configuration window of

the Cube MX/ STMCube IDE. The corresponding pin outs in the microcontroller is enabled

using graphical user interface by just selecting the pins with help of the above table. To start

the CAN peripheral, it is necessary to initiate the peripheral related registers and configuring

the registers to required operating settings. The Cube Mx software allows us to configure

the parameter settings, Mode, GPIO settings of the peripherals.

Figure 16- FDCAN Configuration

34 | P a g e

The input frequency to the FDCAN peripheral from PCLK1 is 160 MHz. The basic parameters

of the FDCAN peripheral are calculated carefully according to the application requirements.

As a safeguard against programming errors, the configuration of the Bit timing register is

only possible while the device is in Standby mode. Configuration settings for both FDCAN1

and FDCAN2 are exactly same. Since FDCAN3 interface is used for controlling the gateway it

must be initialized with different parameters. It is necessary to set the internal CAN divider,

both Time segments and the synchronization jump correctly. The following table will

summarize the settings.

Parameters FDCAN1/FDCAN2 FDCAN3

Nominal prescalar 4 2

Nominal sync jumpwidth 3 3

Nominal Tseg1 15 15

Nominal Tseg2 4 4

Data prescalar 1 2

Data sync jump width 3 2

Data Tseg1 15 15

Data Tseg2 4 4

Table 11- FDCAN parameter settings

For the given speed requirements - standard speed 500 kBit/s, speed at FD Bit rate switch

2 Mbit/s. So, if the divider is set to 4 for standard speed, the output is 10 MHz, or 100 ns. If

the value is divided by 500 kBit /s or 2𝜇s, 20-time quanta are needed to reach the desired

speed. Since the Sample point should be around 80%, TSeg1 is set to 15 and TSeg2 to 4. This

gives (with a synchronization segment) a total of 20-time quanta. For the FD BRS speed,

division 1 is used, 25 ns, so for a speed of 2 Mbit/s, or 500 ns, 20-time quanta must be used

again. So, the TSeg1 and TSeg2 settings are the same as for the standard speed. The sync

jump is set to 4 at both speeds.

All messages must be received for the FD CAN Gateway application, so this filter has been

removed and the Accept All filter has been introduced and saved in the Rx FIFO. Against a

35 | P a g e

dedicated buffer, the FIFO has the advantage that it is able to store several messages (up to

64 FD CAN messages) at once, against this buffer only one and must be emptied before the

next reception (used mainly for storing special messages that do not go as often). FIFO is

also much more suitable for the application, because when processing messages in the main

loop (without interruption) it takes different processes to process (for example, blocked

message vs message with rule for modification and CRC calculation), so messages must be

stored so that some are not lost.

7.4.3 Independent Watchdog

A watchdog timer is a specialized timer module that helps a microprocessor to recover from

malfunctions. A watchdog timer is based on a counter that counts down from some initial

value to zero. If a watchdog timer reaches the end of its counting period, it resets the entire

processor system. In order to prevent this, a processor must perform some type of specific

action that resets the watchdog. Thus, a watchdog timer can be configured such that it will

reach the end of its counting period only if a processor failure has occurred, and by forcing a

system reset, the watchdog timer helps the processor to escape from the failure mode and

continue normal operation[16].

In STM32 microcontrollers the independent watchdog (IWDG) is a 12-bit down-counter

timer clocked by its own dedicated low-speed clock (LSI) and thus stays active even if the

main clock fails.

Prescalar 4

Window 4095

Reload 4095

Table 12– Watchdog Parameter settings

36 | P a g e

7.5 Debugging tools

In order to be able to communicate with the board and load the code into it, it is necessary

to have a so-called debugger. Since we use STM32CubeIDE we can use the ST-Link debugger

from ST-family.

Figure 17- ST-link Debugger

ST’s ST-Link debugger is supported by all popular IDEs such as IAR, Keil, Eclipse, and more.

Works under all used OS - Windows, Linux, Mac. Includes JTAG and SWD interfaces for

connection to a microcontroller. ST-LINK is a USB device and has to be connected to a PC

host. It can be either embedded on ST boards or provided as standalone dongle. One Such

dongle is provided for this work [10]. Unfortunately, the ST-link debugger didn’t come with

SWD 4-pin wire and our hardware does not have the same pinout as the large classic 20-pin

connector, so a reduction is needed. We had to look for the exact pins in 20-pin output from

ST’s debugger to SWD pins in the hardware.

8. Structure of software implementation

After configuration of GPIOs, Timers, system clock, interrupt timers and FDCAN peripherals

in the STM32CubeMx the project is created using project manager for suitable coding

platform. For this application the initial codes are generated for STM32CubeIDE platform.

The project workspace and STM32 repositories are selected according to user requirements.

The code generator will include all the necessary CMSIS files, startup files and also includes

HAL driver files. Once project has been created it is opened using STM32Cube IDE in a

workspace. Many projects can be created in a workspace it is better to get familiar with the

IDE from the resources provided by STM [11].

37 | P a g e

Figure 18– Project structure

So, before you start working on STM32 based board using STM32 cube framework, you

should understand the program flow of the project. We cannot start working with

peripheral directly by calling its associated driver APIs as soon as you reach main function of

the project. Generally, there are some mandatory and optional MCU initializations must be

done. They are:

• Flash controller Initializations

• Floating point unit initialization (if supported)

• Setting up stack (mandatory)

• System clock settings (optional), in this project it is taken care by STM32Cube MX

• Flash wait state settings when system clock is more(mandatory)

• Systick Timer Initializations to trigger interrupt for every 1ms (required when STM32

HAL APIs are used)

All these initializations are taken care by STM32CubeMx project creator it is necessary to

understand the program flow to create application layer program. There are three

important source codes generated namely, main.c, stm32g4xx_msp.c and stm32g4xx_it.c

38 | P a g e

along with peripheral specific source code file. Generally peripheral initialization is done in

two steps and the following figure shows the program flow[25]:

• High level initialization (this code goes into main.c or peripheral source code file)

such as clock divider and other peripheral settings (see 7.)

• Low level Initialization (this code goes to msp.c) such as enabling FDCAN IRQ in NVIC

and conFigureuring GPIO pins to behave as FDCAN Rx and Tx pin (see 7.)

Figure 19– STM32 Program flow

The main logic of application goes here in the main.c. And in the main.c, if we want to talk

to the micro-controller specific peripherals then we will use driver APIs like

HAL_FDCAN_transmit, HAL_FDCAN_recieve or timer start, timer stop etc... So, those are

exposed by the respective driver file of the peripheral which is present in the STM32 HAL

layer. Let's say we want to communicate with the CANFD peripheral of the micro-controller.

Now, after all the initialization in the main.c, it calls the FDCAN_init() which is actually a

driver API provided by the FDCAN driver, Stm32g4xx_hal_fdcan.c which is present in the

STM32 Cube layer. Once application calls FDCAN_init() that is the high level initialization.

The cube layer calls back FDCAN_Msp_int() function, which must be implemented in msp.c

in order to accomplish the low level initialization. So, that is step number two. So,

collectively step number one and step number two completes the initialization of a

peripheral. So, after that application can go ahead and transmit the data.

Let's say, application uses FDCAN_transmit_it() that is FDCAN transmit with interrupt in

order to transmit some data over the CAN peripheral. So, HAL_FDCAN_transmit_it will be

39 | P a g e

implemented in Stm32g4xx_hal_FDCAN.c and that function or that API will take care of

sending data over the FDCAN to the external world. Now, once the data is transmitted

successfully then what the peripheral does is, it issues interrupts to the processor Hence

your interrupt handler which is written in the stm32g4xx_It.c will run.

As soon as you enter the main function of the project which is implemented in main.c, the

first function to be executed from main function has to be HAL_Init(). So, the HAL_Init()

function is actually used in order to initialize the device HAL layer or cube HAL layer of

STM32 cube framework. The HAL_Init() function does three things it initializes the flash

interface unit, which is actually provided by the Stm32f4xx_hal_conf.h means for every

device family there will be conf.h which is provided by the ST's Cube layer and that conf.h

will have all the configuration required in order to properly initialize a micro-controller.

Following figure shows the flow of the API[25].

Figure 20– HAL_init() flow

The second thing the HAL_Init() does is very important that is SysTick timer initialization. So,

basically it initializes the SysTick peripheral of the processor to generate interrupt for one

millisecond. So, that means a background clock will be always it will be ticking in Cube Mx

generated code, it is like a heartbeat. For every 1ms SysTick timer will be generating

interrupts. So, this is actually a requirement for Cube HAL APIs to work properly, like the

APIs to transmit data over FDCAN or APIs to transmit data over SPI, I2C so almost all data

transfer and other APIs, they actually depend upon this SysTick timer. That's the reason why

HAL_Init() actually configures the SysTick timer to generate interrupt for every 1ms.

The third important thing what HAL_Init() does is, it actually calls HAL_MspInit() in order to

perform other Processor Specific Low Level Initialization. So, this is to deal with some of the

40 | P a g e

processor level details and this is application specific. So, that's why HAL_Init() actually calls

HAL_MspInit(), MSP stands for Micro-Controller Support Package.

File or Folder Description

Main.c The main program loop contains APIs for initializing HAL, system

clock configuration, peripherals and then call main application

process.
Msp.c Microcontroller support package source file where low-level

initialization such as GPIO and NVIC

It.c Contains the interrupt handler function call backs of systick timer,

NVIC handler APIs

Fdcan.c FDCAN initialization and contains HAL call backs to transmit, receive

and other peripheral functions

Gpio.c Initialization of GPIO pins for LED and DIP switch

Iwdg.c Initialization of Individual watchdog contain function definition

MX_IWDG_Init()

Gateway.c The main part of the application, message processing and rules.

Table 13– Source files summary

9. Testing

For complete testing, it is possible to generate all combinations of input parameters, in this

case all rule parameters. However, such testing is very demanding and overall, there are

many combinations, it takes up memory, testing can be time consuming before all

combinations are performed, and finally manual checking of each test case is very difficult

for a person not to miss any mistake. Since all the functionality has been implemented and

verified in the previous versions it is enough consider few test cases for our work.

41 | P a g e

9.1 Testing Methods

Even though all the functionality has been implemented and verified in previous versions it

is necessary to understand the testing techniques which were done to benchmark the ability

of the software [21]. There are many testing techniques followed by embedded community

and the most demanding but most covering testing, using all the combinations is called MCC

- Multiple Condition Coverage. Another technique is called MC/DC - Modified

Condition/Decision Coverage respectively, here all combinations that affect the result of the

decision expression are tested, means each of the results of all conditions in the logical

expression is tested at least once and at the same time each of the conditions

independently affects the resulting logical expression. Another technique is Pairwise testing,

all combinations are covered in each pair of inputs. Other techniques such as C /DC, CC, DC

have only a small test coverage, so they are used for non-critical parts of the application -

they work on the principle of meeting/not fulfilling the whole condition (DC - Decision

Coverage) or part of the logical expression (CC - Condition Coverage) [21].

The Pairwise testing method was chosen for testing the application, because it is not so

demanding like MCC, but at the same time it will cover enough cases to test the entire

application. For Pairwise testing, it is first necessary to determine the so-called equivalence

classes - the system should behave in the same way for all values from an equivalence class

according to the specification (based on which it is tested). Depending on the type of input,

it can be defined by interval such as amount, age or by discrete values such as browser type,

payment method, menu item [21].

Messages and commands are input for the CAN FD Gateway application, so it is possible to

specify equivalence classes. The general messages depend on the identifier, which can be

standard, extended, and from the application's point of view, it can run the application by

any rule. Parameters such as data and length are one equivalence class, there is no

difference whether 8 bytes will be sent, or 64, as well as no difference in what data is sent.

In terms of commands - rules, the impact is different. The Trig command has no parameters,

but it needs to be tested, the Reset command has a single parameter and that is the type of

reset. More interesting commands to test are Block/Pass and Modify. Both have the

parameters like identifier, type (unlimited, time-limited, limited by the number of frames)

42 | P a g e

and duration (zero length, any 16-bit number except 0). For an identifier, equivalence

classes can be specified as standard, extended, or already included in a rule, because each

class will test a different part of the application. Similarly, a type with three classes always

has a different impact on the application. Finally, the Modify command has even more

parameters that should be tested. Data and mask are again parameters that do not matter

what they will be, resp. their impact is always the same, ie they can be summarized into one

equivalence class. In contrast, the DLC and CRC parameters again have a different impact on

the application depending on the value of the parameter. DLC could be classified as follows -

shortening, non-shortening, lengthening the length of the message. CRC - do not count,

correctly or incorrectly calculate. In total, there are only 18 options for the Block/Pass

command (which is still well done manually), but the Modify command has 162

combinations [21].

To test the final application, Kvaser Memorator Pro was provided - a logging tool, but also as

an active unit on the CAN bus with support for filtering, error detection and generation. It

has two CAN FD interfaces (communication speed in the range of 50-1000 kbps) galvanically

separated from the board itself and uses USB to connect to a PC. In terms of software, the

CAN King programm and the SDK (Software Development Kit) are available for free

download on the manufacturer's website for easy implementation of this tool within the

application.

Figure 21-Kvaser Memorator Pro

43 | P a g e

The CAN King program is used to easily monitor the connected CAN network, but the unit

can also actively participate in communication and acknowledge received frames and, also

send user-defined frames. For initial testing, the CAN King program was used, when both

CAN interfaces were connected using a terminated jumper (for physical communication in

the CAN network, a 9-pin connector is used and there must also be a CAN_H, CAN_L 120Ω

resistor between the wires for termination, otherwise there would be reflections on the

line). The connection created the so-called Loopback - when one interface sends a frame,

the other receives it and vice versa. In Loopback mode, both interfaces within the network

must also be active, because CAN requires each frame to be acknowledged by someone.

After connecting and pressing the Start Run button to activate both interfaces with the

given settings, it is then very easy to generate a test report. After verifying that the tool

works, the next step was to send and receive messages using the SDK, so that in the end it is

possible to test the real application.

9.3 Test conclusions.

Firstly, it is necessary to test all the three FDCAN peripherals. So random messages were

generated and sent to each FDCAN interfaces using SDK and CAN king. By doing this we can

also test whether right LEDs are switching ON and OFF according to timer value set and

verify the functionality of systick timer interrupts. Each interface has a pair of LEDs, yellow

to indicate any message received and red LED to indicate any error. From the testing

methods as discussed above also from previous versions of gateway there are some test

cases for block/pass and modify commands[21].

Table 14 –Test cases Block/Pass commands

Cases ID Type Length

1 standard Without rule 0

2 standard Timewise Any num

3 extended Without rule Any num

4 extended Timewise 0

5 existing Number of 0

6 existing Without rule Any num

7 standard Number of Any num

8 extended Number of ~0

9 existing Timewise ~0

44 | P a g e

Cases ID Type Duration DLC CRC

1 standard Without rule 0 Shortening Don’t count

2 standard timewise Any num Extending Calculate correctly

3 Extended Without rule 0 Extending miscalculate

4 Extended timewise Any num Shortening Don’t count

5 Existing Without rule Any num Same length Calculate correctly

6 existing timewise 0 Same length miscalculate

7 standard Number of Any num Same length miscalculate

8 Extended Number of 0 Shortening Calculate correctly

9 Existing Number of ~0 Extending Don’t count

10 Extended Without rule ~Any num Same length Don’t count

11 existing timewise ~Any num Shortening miscalculate

Table 15 – Test cases modify command

All the above test cases were generated for testing and to verify the previous gateway

module which is using CANFD protocol, it is enough to test any one or few cases from each

table to make sure the functionality of this gateway module. Firstly, the reset command is

checked, then followed by block/pass commands here, a rule is set to block a message with

extended ID or standard ID then using SDK the messages are sent to the module. Similarly

pass command is also checked. Then for modify command a message with DLC of 64B is sent

to the gateway.

The gateway is set to modify this message to 8B for only 3 messages of this type. This

ensures the functionality of the gateway for modify command. The same test case is also

done for extended ID. Since trig command is used to set the gateway according to the rules

set by modify and block/pass commands its functionality is also verified simultaneously.

Read command is checked by sending can messages to both FDCAN1 and FDCAN2 one after

the other using SDK.

Read command enables message mirroring of control FDCAN or FDCAN3 we can read the

messages sent to FDCANs in the output window of the CAN King software. The message

with statistical data is not transmitted, the transmission must be activated by the Stat

command. if the sending of statistics has been activated the module regularly sends a frame

every 100 ms with the number of messages forwarded in both directions.

45 | P a g e

During testing there were some strange behavior of the gateway due to some undeclared

parameters in FDCANs initialization structure. Even though the importance of this

parameter were least important it is necessary to define some value and should be declared

in the structure of FDCAN handle. Therefore, above results verify the functionality of the

software module implemented in the developed hardware for this diploma work.

10. Conclusion

The proposed application uses a defined Gateway management protocol. 3 networks are

defined - 2 between which frames are forwarded and the third, which controls the rules for

processing (the rules are of the type blocking, transmission, message modification).

The resulting application on real hardware which has been specifically designed for this

work to operate in lower voltage and it has also passed all tests and in the future, it is

expected that it will be used in the CAN FD network for which the solution is designed. Thus,

all points of the assignment are met and the application, in laboratory conditions, seems to

be fully functional.

46 | P a g e

References

[1]. Wikipedia. CAN bus. 2020. URL: https://en.wikipedia.org/wiki/CAN_bus (cit.

23.12.2020).

[2]. Wikipedia. Vehicle bus. 2020. URL: https://en.wikipedia.org/wiki/Vehicle_bus (cit.

23.12.2020).

[3]. Reutlingen Robert Bosch GmbH. CAN FD - CAN with Flexible Data-rate. 2012.

https://www.cancia.org/fileadmin/resources/documents/proceedings/2012_hartwich.

pdf

[4]. Wikipedia. Carrier-sense multiple access. URL: https://en.wikipedia.org/wiki/Carrier-

sense_multiple_access (23.4.2020)

[5]. Rohde_Schwarz.com. URL: https://www.rohde-schwarz.com/us/solutions/test-and-

measurement/automotive/in-vehicle-networks-and-ecu-testing/overview/in-vehicle-

networks-and-ecu-testing-overview_231834.html

[6]. Arm Community. URL: https://community.arm.com/developer/ip-

products/system/b/embedded-blog/posts/10-steps-to-selecting-a-microcontroller

(12.01.2014)

[7]. ST Microcontrollers.URL:https://www.st.com/en/microcontrollers-

microprocessors/stm32-32-bit-arm-cortex-mcus.html

[8]. ST Microcontrollers. URL:

https://www.st.com/resource/en/datasheet/stm32g474cb.pdf

[9]. Texas Instruments. URL:

https://www.ti.com/lit/ds/symlink/tps62172.pdf?ts=1608959229349

[10]. Texas Instruments: URL: https://www.ti.com/document-

viewer/TCAN337G/datasheet/device-options-sllseq75783#SLLSEQ75783

[11]. ST Electronics. URL: https://www.st.com/resource/en/user_manual/dm00629856-

stm32cubeide-user-guide-stmicroelectronics.pdf

https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/Vehicle_bus
https://www.cancia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://www.cancia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/automotive/in-vehicle-networks-and-ecu-testing/overview/in-vehicle-networks-and-ecu-testing-overview_231834.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/automotive/in-vehicle-networks-and-ecu-testing/overview/in-vehicle-networks-and-ecu-testing-overview_231834.html
https://www.rohde-schwarz.com/us/solutions/test-and-measurement/automotive/in-vehicle-networks-and-ecu-testing/overview/in-vehicle-networks-and-ecu-testing-overview_231834.html
https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/10-steps-to-selecting-a-microcontroller
https://community.arm.com/developer/ip-products/system/b/embedded-blog/posts/10-steps-to-selecting-a-microcontroller
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/resource/en/datasheet/stm32g474cb.pdf
https://www.ti.com/lit/ds/symlink/tps62172.pdf?ts=1608959229349
https://www.ti.com/document-viewer/TCAN337G/datasheet/device-options-sllseq75783#SLLSEQ75783
https://www.ti.com/document-viewer/TCAN337G/datasheet/device-options-sllseq75783#SLLSEQ75783
https://www.st.com/resource/en/user_manual/dm00629856-stm32cubeide-user-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00629856-stm32cubeide-user-guide-stmicroelectronics.pdf

47 | P a g e

[12]. ST Resources. URL: https://www.st.com/resource/en/user_manual/dm00104712-

stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-

stmicroelectronics.pdf

[13]. ST Resources. URL: https://www.st.com/resource/en/user_manual/dm00610707-

description-of-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf

[14]. Science Direct. URL: https://www.sciencedirect.com/topics/computer-

science/hardware-abstraction-

layer#:~:text=In%20computers%2C%20a%20hardware%20abstraction,or%20from%20

a%20device%20driver

[15]. ST Resources. URL:

https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-

m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf

[16]. ST Resources. URL:

https://www.st.com/resource/en/reference_manual/dm00355726-stm32g4-series-

advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

[17]. Cypress Traveo. URL: https://www.cypress.com/file/354851/download

[18]. ST Resources. URL: STM32G4 Series of mixed-signal MCUs with DSP and FPU

instructions - STMicroelectronics

[19]. Reutlingen Robert Bosch GmbH. CAN FD - CAN with Flexible Data-rate. 2012. URL:

https://www.can-

cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf

[20]. J. Novák. Lecture KRP – Automotive CAN 2019. URL:

https://moodle.fel.cvut.cz/pluginfile.php/216202/mod_resource/content/2/Automoti

ve%20CAN%20English.pdf

[21]. CAN Gateway. URL: https://dspace.cvut.cz/handle/10467/76275

[22]. Text book. Control Area Network by Konard Etschberger. ISBN: 978-3000073762

https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00610707-description-of-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00610707-description-of-stm32g4-hal-and-lowlayer-drivers--stmicroelectronics.pdf
https://www.sciencedirect.com/topics/computer-science/hardware-abstraction-layer#:~:text=In%20computers%2C%20a%20hardware%20abstraction,or%20from%20a%20device%20driver
https://www.sciencedirect.com/topics/computer-science/hardware-abstraction-layer#:~:text=In%20computers%2C%20a%20hardware%20abstraction,or%20from%20a%20device%20driver
https://www.sciencedirect.com/topics/computer-science/hardware-abstraction-layer#:~:text=In%20computers%2C%20a%20hardware%20abstraction,or%20from%20a%20device%20driver
https://www.sciencedirect.com/topics/computer-science/hardware-abstraction-layer#:~:text=In%20computers%2C%20a%20hardware%20abstraction,or%20from%20a%20device%20driver
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00355726-stm32g4-series-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00355726-stm32g4-series-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.cypress.com/file/354851/download
https://www.st.com/en/microcontrollers-microprocessors/stm32g4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32g4-series.html
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf
https://moodle.fel.cvut.cz/pluginfile.php/216202/mod_resource/content/2/Automotive%20CAN%20English.pdf
https://moodle.fel.cvut.cz/pluginfile.php/216202/mod_resource/content/2/Automotive%20CAN%20English.pdf
https://dspace.cvut.cz/handle/10467/76275

48 | P a g e

[23]. Copper Hill technologies, URL: https://copperhilltech.com/blog/controller-area-

network-can-bus-bus-

arbitration/#:~:text=Not%20only%20is%20the%20CAN,the%20bus%20is%20available

%20again.

[24]. CSS Electronics. URL: https://www.csselectronics.com/screen/page/can-fd-flexible-

data-rate-intro

[25]. Udemy Online Course. URL: https://www.udemy.com/course/microcontroller-

programming-stm32-timers-pwm-can-bus-

protocol/learn/lecture/11647222?start=225#content

[26]. STM32 Cube layer. URL: http://www.emcu.it/STM32Cube/STM32Cube.html

[27]. CAN & CANFD online resource. URL:

https://elearning.vector.com/mod/page/view.php?id=363

https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/#:~:text=Not%20only%20is%20the%20CAN,the%20bus%20is%20available%20again.
https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/#:~:text=Not%20only%20is%20the%20CAN,the%20bus%20is%20available%20again.
https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/#:~:text=Not%20only%20is%20the%20CAN,the%20bus%20is%20available%20again.
https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/#:~:text=Not%20only%20is%20the%20CAN,the%20bus%20is%20available%20again.
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro
https://www.udemy.com/course/microcontroller-programming-stm32-timers-pwm-can-bus-protocol/learn/lecture/11647222?start=225#content
https://www.udemy.com/course/microcontroller-programming-stm32-timers-pwm-can-bus-protocol/learn/lecture/11647222?start=225#content
https://www.udemy.com/course/microcontroller-programming-stm32-timers-pwm-can-bus-protocol/learn/lecture/11647222?start=225#content
http://www.emcu.it/STM32Cube/STM32Cube.html
https://elearning.vector.com/mod/page/view.php?id=363

49 | P a g e

Appendix

A. Schematic

50 | P a g e

B. PCB layout

