Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

System for Automatic Checking of Solved
Mathematical Equations in Raster Images

Daria Tunina

Supervisor: doc. RNDr. Daniel Prasa, Ph.D.
January 2021

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N\
Student's name: Tunina Daria Personal ID number: 474530

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

System for Automatic Checking of Solved Mathematical Equations in Raster Images

Bachelor’s thesis title in Czech:

Systém pro automatickou kontrolu vyfeSenych matematickych rovnic v rastrovych obrazcich

Guidelines:

Summary: The goal is to implement an application that checks correctness of simple mathematical equations (addition,
subtraction, multiplication and division of two integers up to 99) solved by a user. The equations are printed on a sheet of
paper, their solutions are filled in by hand. A camera is used to capture raster images of the assignment and its (partial)
solution. The application interacts with the user and gives him hints if some of the equations are miscalculated.
Instructions:

. Implement procedures that generate synthetic training data.

. Use YOLO system [2] to train a detector of printed equations and handwritten digits.

. Use suitable OCR libraries [3,4] for recognition of printed and handwritten symbols.

. Propose and implement an application that interacts with a user.

. Evaluate accuracy of the detection/recognition methods.

. Test the application and analyse its usefulness for children practising to solve mathematical equations.

. Document the procedures and results from the above points.

NOoO O~ WN -

Bibliography / sources:

[1] R. Sedgewick, K. Wayne, R. Dondero: Introduction to Programming in Python: An Interdisciplinary Approach,
Addison-Wesley Professional, 2015.

[2] YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolo/

[3] N. Kumar, H. Beniwal: Survey on Handwritten Digit Recognition using Machine Learning, International Journal of
Computer Sciences and Engineering, 2018.

[4] Tesseract Open Source OCR Engine, https://github.com/tesseract-ocr/

Name and workplace of bachelor’s thesis supervisor:

doc. RNDr. Daniel Prasa, Ph.D., Machine Learning, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 10.01.2020 Deadline for bachelor thesis submission: 05.01.2021

Assignment valid until: 30.09.2021

doc. RNDr. Daniel PrG$a, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

With this, I would like to express my
gratitude to my supervisor, doc. RNDr.
Daniel Prisa, Ph.D., for his patience, valu-
able advice, and friendly and helpful su-
pervision during this project. I am grate-
ful for the given opportunity to work un-
der his guidance.

I am also grateful for the encouragement
and support that my friends and family
gave throughout my studies.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, January 5, 2021

Abstract

This project solves the problem of recog-
nising mathematic equations and hand-
written digits in an raster image. It is
a popular problem. This project varies
from other projects that are developed to
recognise text. A system that automati-
cally checks correctness of completed or
partially completed simple mathematical
tests is developed. The localisation of
mathematical expressions is implemented
by the object localisation system YOLO.
The detection of printed digits is imple-
mented by OCR system Tesseract. And
lastly, the detection of handwritten digits
is implemented by the CNN algorithm.
A user interface for interacting with the
application is also developed.

Keywords: recognition, YOLO,
Tesseract, CNN, mathematical equation,
handwritten digit

Supervisor: doc. RNDr. Daniel Prusa,

Ph.D.

vi

Abstrakt

V tomto projektu je vytesen problém roz-
poznavani matematickych rovnic a rucné
psanych ¢islic na obrazku. Je to popularni
problém. Tento projekt se lisi od ostatnich
projektu, které byly vyvinuty pro rozpo-
znavani textu. V tomto projektu je vyvi-
nut systém, ktery automaticky kontroluje
spravnost dokoncenych a c¢astecné dokon-
¢enych matematickych testu. Lokalizace
matematickych vyrazu a ¢islic je imple-
mentovana systémem lokalizace objektu
YOLO. Detekci tisténych ¢islic implemen-
tuje OCR systém Tesseract. A konecné,
detekce ru¢né psanych ¢islic je implemen-
tovana algoritmem CNN.Je vyvinuto také
uzivatelské rozhrani pro interakci s apli-
kaci.

Klic¢ova slova: rozpoznavani, YOLO,
Tesseract, CNN, matematické rovnice,
ruc¢né napsané cislice

Preklad nazvu: Systém pro
automatickou kontrolu vyresenych
matematickych rovnic v rastrovych
obrazcich

Contents

1 Introduction 1
1.1 The problem explanation
1.2 Similar applications

2 Localisation of mathematical
expressions 3
2.1 Problem explanation
2.2 Generating images
2.3 Labels and objects 6
24YOLO [7l
2.4.1 Before training custom data . .
2.4.2 Training in YOLOvV3
2.4.3 Testing in YOLOvV3 9|

3 Detection of mathematical
expressions 11
3.1 Detection of handwritten digits .

3.1.1 Pre-processing of an image . .
3.2 Detection of mathematical

equations 13
3.2.1 Pre-processing
3.2.2 Tesseract and Python-tesseract
3.2.3 Post-processing
4 Evaluation and results
4.1 Evaluation dataset 15
4.1.1 Bounding box annotation ...
4.1.2 Text annotation 18]
4.2 Processing recognised objects. . .
4.3 Results of evaluation

4.3.1 Probability of recognition . ..
4.3.2 Count of incorrectly recognised
objects

5 Application 23
5.1 Application concept
5.2 The application creation
521 0penCV
5.2.2 Problems of the application .
5.2.3 Contour of an image........
5.2.4 Frontend of the application. .
5.2.5 Usage of the application
53 Real test
31

33

6 Conclusion
6.1 Suggestions on improvement . ..

Literature

vii

Chapter 1

Introduction

Computer vision has different tasks that many people are trying to solve.
Object Localisation and Detection is one of the most significant ones. In
this problem, "given an image, the algorithm has to decide the locations of
one or more target objects, outputting bounding boxes for each that appears
in the image or video frame" [1]. Recognition of text in a raster image can
be seen as object localisation and detection. The localisation of text means
that the algorithm will give the location of blocks of text in the image. The
output of the said algorithm is a list of coordinates of bounding boxes for
each block of text on the image. When a location of the text is know, the
next stage, text recognition, follows. Optical Character Recognition (OCR)
is used for converting "images of typed, handwritten, or printed text into
machine-encoded text" [2].

B 11 The problem explanation

This project will concentrate on recognising mathematical equations and their
handwritten answers on a raster image. The recognition of mathematical
equations can be seen as the text recognition. The considered mathematical
expressions will be addition and subtraction. They are simple and designed
for younger pupils to solve (around 2nd grade of an elementary school).
The localisation of mathematical equations and handwritten answers will be
done with a system for object detection YOLO. It will be trained on custom
generated data. The detection of printed mathematical equations will be
done by an OCR engine Tesseract. The CNN algorithm will be used for the
detection of the handwritten answers.

The goal is to implement a system that will be used for checking correctness
of completed and partially completed mathematical tests automatically. The
system will provide a user interface for interaction. The user is supposed to be
a young pupil who can solve the mathematical tests. The tests will be located
on a piece of white paper. The application will work with a photograph of
the paper made by a camera. After the system got the image it will run it
through the recognition algorithm. After that, the system will calculate the
correct result of the mathematical equation and then compare it with a given

1

1. Introduction

handwritten answer.

The system can work on different platforms. To simplify the project, it will
only be implemented as a desktop application. The application will guide
the user to the correct answer by checking their progress and putting an
encouraging message near the assigned mathematical equation. The message
will differ depending on the user’s results.

This implementation can be divided into three steps: recognise a printed
mathematical equation, recognise handwritten number and implement a
program that informs user if written answer to the equation is correct or not.

B 12 Similar applications

The algorithms for (mathematical) text localisation and detection are com-
monly used e.g., in translation programs and programs that help solve math-
ematical equations. Some of the examples are MyScript |, which can convert
handwritten text, figures, and math equations to a digital form. Another
example is MathPix Snip and MathPix OCR . They can convert typed
and handwritten text from different languages, mathematical and chemical
equations into popular document formats, such as LaTeX, Microsoft Word,
and Microsoft Excel.

These systems can recognise mathematical expressions and handwritten digits.
They are not able to automatically check the correctness of the answer. It is
the main difference between the system of this project and these systems.

"https://webdemo.myscript.com /views/math /index.html
https://mathpix.com

Chapter 2

Localisation of mathematical expressions

. 2.1 Problem explanation

The recognition of printed mathematical equations will be implemented with
a library for object detection in images. Object detection means that the
algorithm can localise an object (find a bounding box around it) and classify
it (in other words, assign a class from the predefined list to the object). The
library YOLO (You Only Look Once) will be used. The specifications of this
library will be discussed later.

There are a couple of ways how to implement recognition of equations. The
first solution is to identify individual numbers and arithmetical operators by
YOLO and after that combine them to get an equation. But there can be
a problem with correctly recognising symbols of addition, subtraction and
the equality symbol, so it will be useful to find out where these symbols are
located. The second solution is to identify the entire equation by YOLO.
Because of the complications of the first method, the second solution will be
implemented in this work.

B 22 Generating images

A large training dataset is needed for the training. This dataset will consist
of images for recognition and their annotation. The dataset should be large
(around 25000 of different images), because of that, creating dataset of real
data would take a lot of time. So the first step is to create this dataset by
implementing a program that automatically generates synthetic images that
contain the equations.

The expected look for the paper is described below.

The paper has an A4 size. It can have a portrait or landscape orientation.
The paper contains the mathematical equations that are located in columns.
Text that explains to a student what they are supposed to do can be before
or after the columns of mathematical expressions. There is a space after a
mathematical equation that is enough to write an answer to the problem.
Blue pens are commonly used by a lot of people. Therefore, the answer will
be expected to be written with a blue pen. Most of the mathematical tests

3

2. Localisation of mathematical expressions

for children found on the internet have the same number of mathematical
expressions in columns. Therefore, for simpler implementation, it was decided
to follow this layout. A focus is also on the mathematical equations for the
youngest pupils. For more uniform implementation, the maximum possible
answer will be 99 and the minimum possible answer will be 0. Therefore,
each digit in the mathematical equation is between 0 and 99.

Also, before implementation, it is worth noting that photographs of a doc-
ument do not look as good as that original document in real life. The
conditions of taking a photograph such as lighting, camera quality and angle
are essential to have a dissent photograph. These conditions should be noted
when developing a program that generates images replicating photographs.
Implementation of the synthetic images generator requires background images,
which are images that replicate different types of paper (see Figure [2.1).

" |
| |
Figure 2.1: Examples of the initial images [3]]4]]5].

The program is developed in Python using additional libraries. First of all,
library PIL (Python Image Library) is used for handling images. With the
help of this library equations can be pasted on an initial image.

Secondly, a data augmenting application | is used for image rotation and
shearing to make it look similar to photographs that are taken from different
angles.

Thirdly, library scikit-image is used to make images blurrier with Gaussian
noise, which simulates different qualities of cameras.

Correctly generated text is also important for a believable generated image.
Library loremipsum is used for this task. The text can be pasted before
or after equations. On the subject of equations, they are put in columns.
The recognition will better work with larger fonts for the equation symbols.
There are also needed to be spaces for the handwritten digits between the
mathematical equation. Therefore, the number of columns will vary from
1 to 3 to keep the equations large enough for correct recognition. Reasons
for keeping the number of equations in each column between 3 and 9 are
the same. If the number of columns and the number of equations in each
column is larger than the proposed limits, mathematical expressions will still
be recognised. But the quality of the prediction will go down the smaller the
equation will get. Text is pasted on the image in a colour on a grayscale from

"https://github.com/Paperspace/DataAugmentationForObjectDetection

4

2.2. Generating images

black to dark-grey (from (0, 0,0) to (50,50, 50) respectively in RGB colour
model).

And last but not least, images of handwritten digits are pasted to the right-
hand sides of the equations. Handwritten digits are taken from the MNIST
database (Modified National Institute of Standards and Technology database)
[6], which is a large database of handwritten digits. Images of this database
are white digits on a black background, therefore, images need to be modified
before pasting them. Firstly, each image is inverted before pasting, so it
becomes an image of a black digit on a white background. Secondly, the white
background needs to be changed to the background of an image that the
picture with the digit will be pasted on. Thirdly, the colour of handwritten
digits should resemble the colour of a blue pen, therefore all of the black
pixels on an image are changed to blue pixels. All of this is done with the
help of the NumPy library.

With this implementation a large dataset can be created. Dataset is divided
into training data and validation data. Training data is used for training
YOLO on it, and validation data is used to validate the trained detector.
Training data consists of 90% of all images, and test data is 10% of the initial
dataset.

{

Curae netus per class sapien magnis vivamus cras a

nibh adipiscing turpis per ut neque. sliiin ¥
A=

9= 20

|

6 518 20-1

18+6=
6-2=
3+33= 8%
5+6=
37+30= 3

Nulla netus:

DOnec i
Justo
Per cubjjia lorem pyp, Ullamg

Figure 2.2: Examples of images generated using the method described in [2.2.

2. Localisation of mathematical expressions

B 2.3 Labels and objects

The program that automatically produces training data images should also
generate a text file, that contains information on the objects in the image.
In this case, these objects are equations. Training of the object detector is
done by using YOLO system. Therefore the text files should contain this
information:

< object > < center-x > < center-y > < width > < height >, where

B < object > is an integer in the range 0, .., (classes - 1), where classes is
the number of different objects. In this work, the number of classes will
be 2. YOLO will be trained to detect equations and handwritten digits
separately

B < center-x > is a float number between 0.0 and 1.0 that represents
x — coordinate of the object’s border divided by the image width

B < center-y > is a float number between 0.0 and 1.0 that represents a
y — coordinate of object’s border divided by the image height

B < width > is a float number between 0.0 and 1.0 that represents width
of object’s border divided by the image width

B < height > is a float number between 0.0 and 1.0 that represents height
of object’s border divided by the image height

YOLO requires text files to be in the same folder and to have an identical
name as the image that corresponds to the text file. For example, for an
image "img_ 01.jpg" (see Figure 2.3)) the information will be in the file with
the name "img_01.txt", that contains a line:

0 0.14222873900293256 0.42130987292277616
0.26099706744868034 0.06647116324535679

200 1

B'orci’ b'at’.

1+6 =

400

s00 {B'diam' b'ad' b'a’ b'in’
b

800 4

1000
T T T
0 200 400 600

Figure 2.3: img_01.jpg

2.4. YOLO

B 24 voLo

The first version of this library (YOLOv1) was created by Joseph Redmon
in 2016. YOLO uses a single neural network that predicts bounding boxes
and class probabilities directly from full images in one evaluation [7|. Neural
network divides an image into regions and predicts bounding boxes and
probabilities for each region. YOLO is fast, and its main advantage is that it
can accurately detect objects in real-time detection.

The second version YOLOv2 was released in 2017 [8]. YOLOv2 has new
features that were not in YOLOv1 such as Batch Normalization, Higher
Resolution Classifier, Anchor Boxes, Multi-Scale Training, Fine-Grained
Features.

The third and last version of YOLO by Joseph Redmon was released in 2018
[9]. Here are some features that were improved in YOLOv3: Bounding Box
Predictions, Class Predictions, Feature Pyramid Networks (FPN) [10]. After
this realease, Joseph Redmond stopped working on new versions of YOLO.

Since YOLO is an open-source library [, many other developers decided to
work on improving YOLO. Alexey Bochkovsky has been working on updated
variants of YOLOv2 and YOLOv3 since 2018 °. His updated variants provide
useful functions that the original YOLO does not have. Alexey Bochkovskiy’s
version of YOLOv3 was used in this project since it was the most advanced
YOLO version at the start of this project.

But since the project was started, newer, and in some ways better versions
of YOLO were released. In April of 2020, Alexey Bochkovskiy released his
version of YOLO, which he calls YOLOv4 [11]. In June of 2020, Glenn
Jocher released a version of YOLO called YOLOv5. He is not associated
with Joseph Redmon nor with Alexey Bochkovskiy [12]. In August of 2020,
another version of YOLO was released called PP-YOLO [13].

B 2.4.1 Before training custom data

Some actions need to take place before training custom data.

Firstly, in Makefile set a graphical processing unit (GPU) to 1. The program
will be built with Compute Unified Device Architecture (CUDA) to accelerate
by using GPU. Without this, training will be immensely slow. After this, the
program can be built by running make in the darknet folder.

Secondly, file yolov3-obj.cfg should be created. It is a file that has the
same contents as the cfg/yolov3.cfg file. File yolov3-obj.cfg differs from
cfg/yolov3.cfg file in some lines:

® [t is needed to change the number of classes in [yolo]-layers and to change
value filters, that is located before each [yolo]-layer. Value of filters is
calculated by the formula: filters = (classes +5) - 3.

Zhttps:/ /github.com/pjreddie/darknet.git
3https://github.com/Alexey AB/darknet.git

7

2. Localisation of mathematical expressions

® Value of maz_batches requires a change. It is usually 2000 - classes.
For one class value, max_ batches is better to be equal to 6000. After

changing value of max_ batches, value of steps is required to be equal to
80% of max_batches, 90% of max_ batches.

® To solve the problem with the error: "CUDA Error: out of memory",
value of subdivisions requires a change. It is a number equal to a power
of 2.

Thirdly, files obj.data, obj.names, train.txt, test.txt need to be created.
File obj.data contains information about custom training data (see Figure 2.4)).

1. The first line of that file is the number of classes that the training model
has.

2. The second line is the path to the file train.txzt.
3. The third line is the path to the file test.txt.

4. The fourth line is a path to file obj.names, which contains names of
classes, each name on a separate line.

5. The fifth line is the path to folder backup/, where calculated weights will
be saved to.

Files train.txt and test.txt contain paths to the files for training and testing
respectively. Each path is on a separate line and refers to the image for
training.

= data/train.txt

data/test.txt
= data/obj.names
= backup/

Figure 2.4: Example of obj.data file.

B 2.4.2 Training in YOLOvV3

After completing the initialisation part, training of custom objects can begin.
Training is started by command:

./darknet detector train data/obj.data cfg/yolov3.cfg
darknetb3.conv.74 -dont_show -map

The example of one iteration is shown in Figure [2.5

It starts with (subdivisions - number_of _[yolo] layers) lines, that are
followed by line that contains the number of the current iteration and average
loss. So for subdivisions = 8 there will be 8 - 3 = 24 lines.
In the above example, the number 1001 on the last line is the iteration number,

8

2.4. YOLO

loss, Normalizer: on 16 Avg (IOU: 0.414291, GIOU: 0.351674), Class: ©.991535, Obj: ©.498203, No Obj: 0.005226, .5R:
, count: 116, los s .916817
se loss, Normalizer: .7 00, 000000) gion 23 Avg (IOU: ©.555270, : 0.534085), Class: ©0.993542, Obj: ©.630071, No Obj: 0.002530, .
, count: 166, loss 4.162060, iou_loss = 5.561445
se loss, Normalize (i 750000, 000000) Region 16 Avg (IOU: ©.404356, : 330007), Class: ©.991194, Obj: ©.554272, No Obj: ©.004037, .5R: ©.
, count: 64, 1 B s 1.823359, iou_loss = 3.063670
loss, Normal o o 000000) Region 23 Avg (IOU: ©.556025, 3 8), C 0.998025, Obj: ©.612872, No Obj: ©.003339, .
, count: 293, 70, iou_los 777291

se loss, Normal (.750000, 000) Region 16 A (IOU: ©.425222, : ©.371545), Class: 0.993190, Obj: ©.528104, No Obj: 0.003666, .
3 812

, count: 61, 1 o class_loss 37079, iou_lo:
loss, Normal : 0.750000, cls: 1. 0 .549 . H 522102), Class: ©.996184, Obj: ©.620947, No Obj: ©.002315, .5
, count: 187, 89332, class_loss = 3.580398, iou_loss 4
(iou: 0.7500 cls: 1.000000) Region 16 A 3 - : 0.293826), Class: 0.994692, Obj: ©.499860, No Obj: ©.003530,
. = 2.400966, iou_loss 3.289514
se loss, Normal 1 0. 1.000000) Region 23 A .3 , GIOU: ©.501073), Class: ©.997112, Obj: ©.548995, No Obj: ©.002447, .5 0.587629, .
046392, count: 194, B loss = 5.094310, iou_ 426216

mAP calculation at 2687 iterations)
8.844472, 8.844472 avg loss, 0.001000 rate, 5.679337 seconds, 64064 images

Figure 2.5: Example of one training iteration.

and the second number 8.844472 is the average loss number. The lower this
number is the better the training goes.
If the average loss error is equal to -nan, it means that training is not going
well. If all of the lines before iteration number have -nan on every place,
besides No Obj value, then training is probably going wrong as well.

In addition to training command the second repository has these flags:

® The preciseness of written label files can be checked by using training
command with a flag -show__imgs, that saves some images with borders
around the objects to the darknet/ directory.

® Flag -map calculates mean average precision for each class using files for
testing. With the help of mean average precision, it is easier to know,
when to stop training. If mean average precision stops decreasing, then
training can be stopped. Map flag also saves best weights, so there is no
need to check every iteration for the best weights.

Training is automatically stopped, when the number of iterations exceedes
value of max_batches. But it can also be stopped manually. If training was
started with flag -map, last weights will be saved to backup/ folder.
Training should be stopped when the number of average loss stops decreasing.

For this project classes calculated mean average precision is 99.035% for
the class of a mathematical equation and 97.854% for the class of handwritten
digits. It is not the most precisely calculated recognition accuracy, but it
gives an understanding of the accomplishments of the recognition algorithm.

B 2.4.3 Testingin YOLOvV3

After training is done, and there are some weights in the backup/ folder,
testing can be started. It is activated be command:

./darknet detector test data/obj.data
cfg/yolov3.cfg backup/yolov3_best.weights

Program asks for a path to an image. After receiving it, the program
returns a prediction. The prediction is information about recognised objects.
This information consists of coordinates of the objects and probability of

9

2. Localisation of mathematical expressions

accuracy of the prediction. This prediction is written in a command line.
The program also draws borders of recognised objects in the image and saves
a new image with the name predictions.jpg (see Figure 2.6)).

Enter Image Path: /datagrid/personal/tunindar/number
s-eqs/2356_3.jpg
/datagrid/personal/tunindar/numbers-eqs/2356_3.jpg
Predicted in 409.204000 milli-seconds.

equations: 100%

e i : 100%

e : 100%
handwritten: 99%
handwritten: 99%
= : 100%

: 100%
g : 100%
handwritten: 100%

handwritten

Figure 2.6: Examples of prediction in a command line and the predictions image.

Testing can also be done with command:

./darknet detector test data/obj.data
cfg/yolov3.cfg backup/yolov3_best.weights
-dont_show -ext_output < data/test.txt > result.txt

File test.txt contains paths to images. Predictions of that images as well as all
of the information from the command line about that predictions are written
to result.tzt file.

Command

./darknet detector test data/obj.data
cfg/yolov3.cfg backup/yolov3_best.weights
-ext_output -out result.json < data/test.txt

writes information about recognised objects to result.json file. Example of
information about one image in result.json file is shown in Figure [2.7]

.id/personal/tunindar/nunbers-gas/2722_0.jpg",

"equation", "relative_coordinates" ":0.222176, " 10, "wi H'B "heigh “confidence"
"equatio "relative_coordinates" 13083, "center, I ,» "height" 2189}, "confiden

lative_coordinat . "center, . " "confiden
lative_coordinat - “center. - - ,» "confiden
relative_coordinates "center, . " i , "confiden:
"relative_coordinates" " , "center_) - - , "hei 0 , "confiden:

Figure 2.7: Examples of predictions of one image in result.json file.

10

Chapter 3

Detection of mathematical expressions

After getting the results of YOLO recognition, additional recognition of
equations and handwritten digits is needed to be done. YOLO can show
where equations and handwritten digits are, but not what are the equations
and handwritten digits.

B 3.1 Detection of handwritten digits

There are methods that can recognise each handwritten digit. For exam-
ple, methods from can be used for this task. This repository offers
an implementation of four methods for recognising handwritten digits: K-
Nearest Neighbours, Supervised Vector Machine, Random Forest Classifier
and Convolutional Neural Network (CNN).

Since the CNN implementation gives the best results out of these four
methods (see Table and Table 3.2)), it will be used in this work. Firstly,
the CNN model should be trained, and its weights should be saved for later
use. It is done by the command:

python CNN_MNIST.py --save_model 1 --save_weights cnn_weights.hdf53}

The CNN model is trained on the MNIST dataset.

After that, the saved weights can be used for the recognition of handwritten
digits. The algorithm that is used in the project was taken from . Either
one image or a list of images can be passed through the algorithm.

B 3.1.1 Pre-processing of an image

The image from the MNIST dataset differs from the custom image of a
handwritten digit. Therefore, the image for recognition requires some pre-
processing to make it resemble the image from the MNIST dataset. If the
changes take place, the recognition results will be better.

Firstly, the sizes of the images from the MNIST dataset are 28 by 28 pixels.
This means that the image for recognition is also required to have this size.
Secondly, the MNIST images contain a white digit on a black background.
The custom images for recognition have a dark number written on a light
background. This means that the image for recognition needs to be turned

11

3. Detection of mathematical expressions

| RFC | KNN | SVM | CNN

99.71% | 97.88% | 99.91% | 99.98%
96.89% | 96.67% | 97.91% | 98.72%

Trained Classifier Accuracy
Accuracy on Test Images

Table 3.1: Percent Accuracy of Each Classification Technique [15).

Model Test Error Rate
Random Forest Classifier 3.11%
K-Nearest Neighbors 3.33%
Supervised Vector Machine 2.09%
Convolutional Neural Network 1.28%

Table 3.2: Classifier Error Rate Comparison |15].

to greyscale. Its colours need to be inverted as well. Now the image has a
light number written on a dark background. Unfortunately, this still differs
from the MNIST image. With the help of functions cv2.GaussianBlur, cv2.
adaptiveThreshold and cv2.morphologyEx from OpenCV the image will be
converted to an image that has an almost all-white number written on an
almost all-black background.

Thirdly, the digits from the MNIST image are always in the center of the
image. The same does not apply to the images for recognition. To make
images similar, the following steps took place. All-black rows and columns at
each end of the image were deleted. The new image was resized. Some of the
all-black columns and rows were added back in a way, that makes the digit
be in the center of the image.

Another obstacle for a better result of prediction was that some bounding
box predictions are not perfect. Some of them cut part of the number off.
Because of that, the number will be recognised incorrectly. The solution is
to look around the bounding box for lightly coloured pixels. If the amount
of pixels on one side is greater than the decided acceptable number, the
bounding box will be extended on that side. The acceptable number is the
same for each image. It was decided based on the results of the testing
images. The previously described algorithm will continue until there are no
more lightly coloured pixels around the bounding box. This workaround
helps with recognition for most images, but there is a possibility that it will
ruin good results of prediction for others. If the bounding box for the image
is large, the algorithm can count pixels of another digit that was close to
the original number. Therefore, at the end of the algorithm, the bounding
box will include both digits. Because of that, the image is not going to be
recognised correctly.

12

3.2. Detection of mathematical equations

B 3.2 Detection of mathematical equations

B 3.2.1 Pre-processing

Similar to the images of a handwritten digit, the images of mathematical
equations require pre-processing for better results. The pre-processing is done
with the help of a function from OpenCV. Firstly, the image is turned to
greyscale. Then the image is put through a Gaussian blur.

B 3.2.2 Tesseract and Python-tesseract

Recognition of the equation is done by Tesseract |'. Tesseract is an optical
recognition engine that is released under Apache Licence. It was originally
developed by Hewlett-Packard as proprietary software [16]. In 2005 it was
released as an open source to the public. Since 2006 the development of
Tesseract is sponsored by Google [17]. At the moment, the latest stable
version is 4.1.1, released on December 26, 2019. Tesseract can be trained on
custom data, but it is not needed for the purpose of this application.

For this application, Python-tesseract?| will be used. Python-tesseract is a
wrapper for Tesseract. With the help of it, Tesseract can be used in a Python
script. The following line will start a Tesseract algorithm in Python:

pytesseract.image_to_string(image)l,

where the image is an OpenCV, NumPy, or Pillow image with a text that is
needed to be recognised. OpenCV, NumPy, and Pillow are Python libraries
that are most commonly used to process images in Python. This command
returns a string that has a prediction of the text in the image. Unfortunately,
it will look through all of the known for Tesseract symbols to find the
best solution. Additional arguments can be used to limit the number of
symbols that Tesseract will go through. Argument “config” can take different
configurations, which are useful for modifying Tesseract recognition without
the need to train Tesseract. With argument

—-Cc tessedit_char_whitelist=

types of characters that will be recognised are specified.
For example, with

-c tessedit_char_whitelist=0123456789+-=

Tesseract will only look for numbers, addition, division, and equation signs.

Another useful argument is —psm, which stands for page segmentation
modes. There are 14 different page segmentation modes. The ones that apply
to this projects are:

Thttps://github.com /tesseract-ocr /tesseract
Zhttps:/ /pypi.org/project /pytesseract/

13

3. Detection of mathematical expressions

® 6 - Assume a single uniform block of text.
B 7 - Treat the image as a single text line.
® 8 - Treat the image as a single word.

® 13 - Raw line. Treat the image as a single text line, bypassing hacks that
are Tesseract-specific. [18]

While testing all of the different modes in recognition, different results were
achieved. That happened because the image with the mathematical equation
contains an equation on one line, so it can be perceived as a single text line
or as a single word. In some cases, psm 13 worked better. In others - psm
7. The first solution was to use different types of page segmentation modes
and combine their results. This method has accurate results, but calculation
takes more time since the same image goes through the Tesseract algorithm
multiple times.

To save time one mode will be used. Mode 7 is the most accurate for the
images of the equations. This mode treats the image as a single text line.

B 3.2.3 Post-processing

Sometimes YOLO does not recognise the bounding box of the image correctly.
It can divide digits in half or does not include some of the digits of the
equation. In that case, Tesseract would not give the right answer. That
means that some post-processing must take place. The bounding box will be
enlarged to the left and the right by the size of the width of one symbol. This
width can be calculated since it is known what Tesseract has recognised. To
get an approximate width of one symbol, the width of the image is divided
by the number of recognised symbols. If Tesseract is not able to recognise
any of the symbols on the image, the approximate width of symbols on the
image will not be calculated. In that case, the default symbol width will be
used. This width was calculated using testing images.

Even with these modifications, Tesseract can still have problems recognising
some of the symbols. For example, a sign of addition is sometimes recognised
as number four. This problem can be solved by looking at the predicted
string. For example, if the predicted string looks like 2345 =, there is a large
possibility that the actual equation is 23 + 5 =. Another example is when
Tesseract recognises string 36 + 37 = as 364 + 37 =. Since it was previously
established that numbers lay in the range from 0 to 99, an extra digit 4 in the
first number can be deleted. With that in mind, post-processing will become
more complicated, but overall results will be more accurate.

14

Chapter 4

Evaluation and results

The recognition accuracy of YOLO and recognition accuracy of the CNN
algorithm is known. As was previously established the mean average preci-
sion of YOLO for a mathematical equation is 99.035%. The mean average
precision for handwritten digits is 97.854%. The recognition accuracy of
the CNN is 98.72%. These are unfortunately not a recognition accuracy of
the whole application. After the YOLO and CNN algorithms, additional
post-processing and Tesseract recognition for mathematical equations are
done. Because of that, the final recognition accuracy of the application is
unknown.

. 4.1 Evaluation dataset

Figure 4.1: Example of two types of papers with different answers.

There are several steps in order to find the final recognition accuracy of
the application. Firstly, a database of testing images is needed to be created.
Each image is a photograph of a paper that lies on a desk. The photograph
is taken by phone iPhone 7 Plus, which has Dual 12MP Wide and Telephoto

15

4. Evaluation and results

76-0= 4+8=12 4+4=3 76-0= 4+8=

43+1=/4 5 8=72 43+1=/ 53-29=

61-21= =90 61-21= 47+2=49

4+4=8 76-0= 4+8=12
5+8=7.) 43+1=4 53-29=

2-1=2 61-21= 47+2=47

Figure 4.2: Example of one type of papers with different lighting.

cameras . The papers are similar to the papers from the generated dataset.
They have rows with mathematical equations and handwritten answers on
them. Suppose that type of paper is different if the mathematical equations
on it differ from other papers. In this dataset, there are 20 different types
of papers. Each type is filled with answers (handwritten digits) 2 times (see
Figure . Each paper was photographed 5 times with different lighting or
camera position (see Figure . In the end, the database consists of 200
images.

Secondly, evaluation needs to compare recognised results with the ground
truth results (what objects the photograph actually has). These results can
be divided into the outcome of bounding box recognition and the recognition
results of handwritten digits and mathematical equations.

B 4.1.1 Bounding box annotation

Image annotation is the process of labelling data in the image [20]. Annotation
tools are widespread applications that vary, for example, in types of image
annotation they produce (bounding box annotation, point annotation, polygon
annotation, etc.). For this work, a bounding box annotation tool was needed,

16

4.1. Evaluation dataset

[JOX]

Image Dir: Load

Bounding boxes: Choose Class

0: (252, 385) -> (856, 570) |1 '
0: (261, 837) -> (1017, 1041
0: (261, 1284) -> (846, 1483
1:(879,1265) -> (1041, 148

Delete
ClearAll Add Class
<< Prev Next >> 0001/0001 Go to Image No. Go x: 239, y: 361

Figure 4.3: Annotation Tool interface.

essentially an application that will simplify the process of creating files with
correct bounding box coordinates in them. For this work, Annotation Tool
El was used. It is based on BBox-Label-Tool El which is another popular
bounding box annotation tool. The first tool modifies the second one in
many ways. One of the added functionalities is the YOLO annotation format
converter, which was useful in this project.

While working with this annotation tool, some problems were encountered.
Therefore, the code of the tool required modifications. The adjustments were
done in three instances. First of all, this tool requires that the images to be
labelled reside in specifically named folders . Second of all, the application
of the project modifies an image (cuts paper from an image). That means
that annotation should be made out of a modified image rather than the
original. Third of all, this tool was not written to work with large images.
Because of that, only part of a large image was shown.

To work with this tool, setting of parameters in config.py is required. These
parameters include the path to the folder with images to be labelled, the path
to the folder where output files will be added to, extensions of the images, and
names of the objects’ classes. The program is launched by python main.py.
The interface of the annotation tool is simple and straightforward (see Figure
. The application will show one image at a time from the selected folder.
The user can choose the object’s class and then draw a bounding box around
the object by dragging the cursor. The annotation file is saved with the

"https://github.com /maverickjoy /bounding-box-annotation-tool
Zhttps://github.com/puzzledqs/BBox-Label-Tool

17

4. Evaluation and results

same name as the image. If the user goes to the next image or closes the
application, the output file is updated.

The annotation file has N lines, where N is the number of objects in the
image. The first number in each row is a class of that object. Then there
are four numbers that represent the bounding box coordinates. The first two
numbers are X Y-coordinates of the upper-left corner of the bounding box.
The second two are the width and height of the box.

B 4.1.2 Text annotation

Text annotation does not have coordinates that it bounds to. Therefore, a
system was created to indicate different objects and how they are located in
relation to each other.

The mathematical equations have numeric answers that are non-negative
integers less than 100. It is thus correct to say that there can be at most
two handwritten digits together. The annotation file consists of several lines.
The number of lines equals to the number of rows of text in the image. Each
line contains the same amount of text blocks. This amount is equal to the
number of the columns in the image. There are three elements in each block.
The first one is always a mathematical equation. The last two are either a
handwritten digit or a blank space (see Figure [4.4| for examples of the blocks).
In the annotation file, every two consecutive objects are separated by the ’|
symbol, and each row starts on a new line (see Figure [4.5)).

44
76-0+

Figure 4.4: Examples of image blocks and their text block analogs: 1. block
with two handwritten digits; 2. block with one handwritten digit; 3. block
without handwritten digits.

)

The number of blocks per a line is the same within the whole annotation
file. Because of that, it is possible to create a matrix of the size M x N,
where N equals the number of blocks on the line multiplied by three and M
is the number of lines. This matrix can contain all of the objects of the image
(see Table [4.1| for an example of a matrix).

18

4.2. Processing recognised objects

7+9=77 40-10=
2_:: 30+5= 7+9=|1|7|40-10=|2|0|
+21= 6+9=
_ore= BN 8.55|3||30+5=|
53-42= 81-40="_ 3+21=|||6+9=|7"
53-42=|(|81-40=|4|0]

Figure 4.5: Image and its text annotation file.

7T+9= |1|7]40-10=]2]|0
8-5= |3 30 + 5=
3+ 21= 6+9= |7
53 - 42= 81-40=141]0

Table 4.1: Matrix of annotated objects of the image in Figure .

B a2 Processing recognised objects

After the image went through YOLO recognition, there is a list of recognised
objects. The recognised objects in the list are not sorted in the order they
appear in the processed image. It is a disadvantage, because the order is
needed for displaying the objects by the application. The objects should be
shown in the application as they are located in the image. That means that
objects need to be sorted by rows and columns.

Firstly, the recognised objects are divided by rows using their y-coordinates
coordination. If two objects’ y-coordinates are close enough to each other,
then they are on the same row. The closeness of the elements is decided by
the constant variable, the value of which was determined while testing the
application.

After that lines are sorted in ascending order. Lastly, elements in each line
are sorted by their x-coordinates. Also, some bounding boxes can overlap
(e.g., the bounding box of a mathematical equation can overlap with the
bounding box of a handwritten digit).

There is a complication with making a matrix out of recognised objects.
YOLO and Tesseract are not perfect algorithms. Because of that, some
objects will not be recognised. That means that some of the created lines
will be shorter or longer than the others. It was previously established that
there are up to two handwritten digits after a mathematical expression. If a
line has two mathematical expressions that follow each other, it will mean
that two handwritten digits are missing. If there are three handwritten digits
in a row, that will mean that a mathematical equation is missing. It also can
just be the user writing three handwritten digits in a row. Because of that,
the x-coordinates of these objects should be compared. The placement of
that equation can be found by comparing the x-coordinates of found objects.

19

4. Evaluation and results

An empty object is placed in the matrix at the place where a mathematical
equation or handwritten digit should be.

The resulted matrix resembles the matrix processed from text annotation.
Because of that, an evaluation is possible.

. 4.3 Results of evaluation

B 4.3.1 Probability of recognition

The created dataset was used for evaluation. The resulted percentage is
following. The probability that the bounding box will be recognised correctly
is 88%, the probability that a mathematical equation will be recognised
correctly is 78%, probability of recognising handwritten digits correctly is
59%. The overall probability of correct prediction of an object is 65%. Keep
in mind that to recognise mathematical equations and handwritten digits
correctly, at first, the bounding box should be recognised correctly. And only
then, Tesseract or CNN algorithms are used.

How to make it better? Some results can be worse than others due to
lighting, camera position, or quality of the photograph. The outcome of the
recognition can be improved by combining results from multiple photographs
of the same paper. Because of that, a missed recognition in one image will
not affect overall results.

New calculated probabilities are following. The probability that a math-
ematical equation will be recognised correctly is 88%, the probability of
recognising handwritten digits correctly is 68%. The overall probability of
correct prediction of an object is 75%.

As it can be seen, the probability of correct prediction in all cases went up
by 10% (see results in Figure 4.6). These results were achieved by combining
results from 5 images.

B 4.3.2 Count of incorrectly recognised objects

The previously described evaluation looks at all of the objects from all of
the test images at the same time. This type of evaluation does not give
information about separate images. Therefore, another evaluation should be
done.

Another way to evaluate results is to count all of the mistakes made while
recognising objects. There are multiple mistakes that recognition can make:
recognising bounding box wrongly (the box is too big/small or placed where
there is no object), not recognising objects (there is no bounding box around
the object), mistaken a symbol between numbers in an expression, mixing up
one or two numbers in the mathematical equation, mistaken a handwritten
digit. Counting all of these mistakes and their combinations in all testing
files will help to evaluate results.

Figure 4.6 shows for each mistake its percentage as well as its total number

20

4.3. Results of evaluation

in the processed images. As can be seen on the figure, most of the text
recognised object mistakes are with handwritten digits. Concerning the
printed mathematical equation, the most problematic is to recognise one
number or numbers of the equation. The latter is fixed by merging the results.

Wrong text object recognition

mincorrect symbol in math equation

10%, 179

4
one number is incorrect in math
1%, 14 equation
10%,175 ® two numbers are incorrect in math
equation

m incorrect number and symbol in
math eguation

78%,1391 ® mathematical equation is incorrect

mincorrect handwritten digit

Wrong text object recognition with merged
results

m incorrect symbol in math equation

10%, 30 one number is incorrect in math

4%, 12 equation
M two numbers are incorrect in math
equation

m incorrect number and symbol in
math equation

85%, 257 = mathematical equation is incorrect
»

mincorrect handwritten digit

Figure 4.6: Counts of incorrectly recognised objects.

To evaluate the results, a decision was made to create a rating system
that expresses how well/bad the application has recognised objects in a given
image. Each mistake costs a specified number of points. The amount of points
for mistakes is different due to their severity. For example, if a mistake was
made in recognising the bounding box of the image, it would affect the latter
recognition of handwritten digits or mathematical equations. Because of that,
the mistake of wrongly recognising the bounding box will cost more than a
mistake of wrongly recognising one number in a mathematical equation. A
score for an image is obtained by summuning particular points. The points
are determined by following rules. Not localising the bounding box correctly
costs 5 points. Not detecting the handwritten digit correctly costs 3 points.
If the application recognises a sign in the mathematical expression incorrectly,
it costs 1 point. Not recognising one of the numbers costs 2 points. Not
recognising one number and a symbol in the math equation costs 3 points. Not
recognising the whole mathematical equation costs 4 points. Not recognising

21

4. Evaluation and results

two numbers in a mathematical equation costs 3 points. The points will be
counted for each image.

Different images have a different number of objects in them. That means
that just dividing images by points is inaccurate. The sum of points for each
image will be divided by the number of objects in the image. Figure does
not provide comprehendible information about overall success or failure of
image recognition. Because of that, the graph was divided into four parts.
The first category includes images with the calculated number less than 1.
The second category includes images with the calculated number greater than
1, but less than 2. The third category includes images with the calculated
number greater than 2, but less than 3. And the last category includes the
rest of the images. The number of objects in these parts was counted. Counts
of images in the categories are depicted in Figure |4.8

Count of files

e
RN
—

15
1.55

0.05555555555555555
0.2777777777777778
0.43333333333333335
05

0.6
0.7198067632850242
0.8083333333333333
0.8819444444444444
0.9444444444444444
1.0277777777771777
1.0691489361702127
1.1041666666666667
1.138157894736842
1.1666666666666665
1.1984126984126984
125
1.286634460547504
1.3037037037037038
1.3703703703703702
1.4444444444444044
1.5833333333333335
1.6340996168582376
1.719298245614035
1.7692307692307692
1.8925925925925926
1.9305555555555556
2.0229885057471266
2.0935672514619883
2.1954022988505746
2.3472222222222223
2.5657894736842106
2.8509615384615383
3.3472222222222223

s Count of files

Figure 4.7: Count of incorrectly recognised objects.

Count of files
120

100

<0,1) <1,2) <2,3) <3,5)

e Count of files

Figure 4.8: Count of incorrectly recognised objects.

The most numerous category is <1, 2) category. It means that each object
of the image from this category costs around 1 point. The second largest
category is <0, 1) category. This category means that each object of the
image from this category costs less than 1 point. It would be best if most of
the images are in the <0, 1) category.

22

Chapter 5
Application

This project requires an application that allows a user to use the functionality
of written algorithms. The application will allow user to check the correctness
of their answers from the image that the user will input. Since the Python
language was used to implement the dataset generator, it was decided to
write this application in Python as well.

B 51 Application concept

The system can be implemented in an application on multiple platforms. The
application can be mobile. In that case, the camera on the phone is used
for capturing the current state of the paper. Another way is to implement a
desktop application that will take an image from a web camera, or the image
will be sent from a phone. Only one kind of application will be implemented
to simplify work.

Before the implementation of the application, it is a good practice to create
a concept of this application. The interface of the application as well as the
desired use case scenario will be described here.

The description of the usage of the application is following. This application
is a desktop application. The idea is that the user will sit in front of the
computer. They will photograph the current state of the problems on paper.
This photograph will be sent to the program, where it will be processed. The
application will react based on the recognition results. The user can then
send another picture for processing. Recognition results of all of the following
photographs will be merged to gain better recognition results.

The application has two modes. The first one is a simple model that will only
react to the accuracy of the user’s answers by showing a face that will smile
for good results and frown for bad ones. The second one is a more complicated
mode that will show all of the recognised equations and their answers. It will
react by writing a response next to the mathematical equation.

The application will have four different windows. The first one is the main
window that has a button called "Start". If the user presses this button, the
recognition of the first image will start. In this window, the user can change
the modes of the application. Another one is the final window. It shows
the results and a picture of a face that will smile widely if the results are

23

5. Application

satisfactory. The face will have a smaller smile if the user makes a lot of
mistakes.

Both of the other windows show a reaction to the results based on the mode
the application is in. They have a button called "Next". If the user presses
this button, the application will process the next image. If there are no more
images to process, the application will write overall results (see Figure for
the vl%ilndows concepts). The concept images were created by using MockFlow
tool

Application - O X

Mode

Simple Mode

Complicated Mode

START

(a) : the main window

Complicated Mode - 0O X
Mode
CORRECT CORRECT
1+1=2 8+1=9
INCORRECT INCORRECT
3+3=7 3-2=7
9-9= 9-0=
CORRECT CORRECT
3+1=4 3+6=9
Next
(b) : the widow with the detailed results

Figure 5.1: Concept of the application windows.

"https://www.mockflow.com

24

5.2. The application creation

Simple Mode - O x

Mode

Next

(c) : the window with the simple results

Results o X

Mode

Good job!
6 out of 8 are correct

(d) : the final window

Figure 5.1: Concept of the application windows.

B 52 The application creation

There are a couple of ways to use YOLO algorithms in an application written
in Python. The first one is to write a bash script that will activate the YOLO
recognition algorithm through the terminal. That script will save the results
of YOLO recognition to a file with a JSON extension. This file will be then
processed in the application. This way is complicated and slow, especially
while trying to run multiple photos through recognition. Because of that,
another solution is used in this project. The second solution is to write an

25

5. Application

application with the help of the functions from OpenCV. OpenCV can start
a YOLO algorithm. Files such as yolov3.weights, obj.data and yolov3.cfg are
needed for the OpenCV computation.

B 521 OpenCV

The solution for creating the application with OpenCV is based on | code.
The description of the functions in OpenCV that are used in this application
are following.

First, function

cv2.dnn.readNetFromDarknet (config_path, weights_path)

is used to load weights from the model. config path is a variable that contains
path to the file yolov3.cfg, weights_path is a variable that contains path to
the yolov3.weights file. The result of this function is saved to the variable
named net. Then function

cv2.dnn.blobFromImage (image, scalefactor, size, swapRB, crop)

“creates 4-dimensional blob from image” [22]. image is an input image that
requires preprocessing for latter recognition. scalefactor is a factor by which
the image is scaled by. In this project “it scales the image pizel values to a
target range of 0 to 1 using a scale factor of 1/255” |23], size is a desired size
for an output image. swapRB is a “flag which indicates that swap first and
last channels in 3-channel image is necessary”. crop is a “flag which indicates
whether image will be cropped after resize or not”.

The next part is to run the function

net.setInput (blob)

that sets the blob (that was created from the second function) to the network
(that was created from the first function).
Then, with the help of the function

net.forward(layer_names)

the predicted objects are obtained. layer names is the list with the names
of the possible recognised classes. The output from this function contains
bounding boxes, class ids, and confidences of a prediction. The latter will
help to remove wrongly predicted objects. They are the ones with confidences
of the prediction smaller than 10%.

Bl 5.2.2 Problems of the application

Some problems were encountered during the process of writing an application
with OpenCV. The first problem is related to the bounding box recognition.
The algorithm returns multiple bounding boxes around one object on the

https://gilberttanner.com/blog/yolo-object-detection-with-opencv

26

5.2. The application creation

image. This problem was solved with the help of the Non-maximum Sup-
pression (NMS) algorithm. NMS uses prediction confidences of objects and
coordinates of their bounding boxes. Intersection over Union (IoU) is needed
to be calculated for the NMS algorithm. It is a value that is determined by
dividing the intersection area of two bounding boxes by the union area of two
bounding boxes (see Figure 5.2) [24].

Intersection Union

Figure 5.2: Example of intersection and union of two bounding boxes.

IoU is compared to the overlap threshold. An overlap threshold is another
value that is needed to use NMS. It tells NMS how big overlap of the bounding
boxes is acceptable. NMS algorithm travels from the object with the highest
prediction confidence to the object with the smallest prediction confidence.
Each bounding box of an object is compared to bounding boxes of the objects
that have already gone through the algorithm and were excepted. That way,
only objects with the highest prediction confidence will be excepted.

NMS is implemented in OpenCV function:

cv2.dnn.NMSBoxes (boxes, confidences, confidence, threshold).

The second problem was that the application with OpenCV YOLOvV3 recog-
nised objects worse than the darknet YOLOvV3 in the terminal. This problem
was solved by changing the value of accepted confidence and overlap threshold
to a smaller number.

B 5.2.3 Contour of an image

The photograph portrays a picture of a paper that lies on the table. Some
additional processes needed to be performed to gain a better recognition
result. It was decided to crop the paper from the image. It was done by
implementing the method | of scanning a paper. The OpenCV library is used
in this method. The goal is to find a contour of the images. That means the
image has to have 4 straight lines that close an area of the required size (it is
assumed that the paper will take more than one-fourth of the photograph
area). The process of getting the contour is following. First, convert the
image into the greyscale by using function

grey_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).

Then functions

3https:/ /bretahajek.com/2017/01 /scanning-documents-photos-opencv/

27

5. Application

cv2.bilateralFilter(image, d, sigmaColor, sigmaSpace)
cv2.adaptiveThreshold(image, maxValue, adaptiveMethod,
thresholdType, blockSize, C)
cv2.medianBlur (image, ksize)

will blur the image and then distinguish the darkest pixels to make the edges
of the paper more visible. Then

grey_image = cv2.copyMakeBorder (grey_image, 5, 5, 5, 5,
cv2.BORDER_CONSTANT, value=[0, 0, 0])

is used in case the page is touching an image border. This function adds
black border to the image. Then edges are find by

edges = cv2.Canny(img, 200, 250)

function. After that, the program will try to find the contour that will have
4 lines connecting to each other. All of the values in these functions were
calculated on test data to gain better results.

Bl 5.2.4 Frontend of the application

The frontend of the application was also written in Python. Multiple libraries
implement Graphical User Interface (GUI) in Python. The library choice
for this project was made between Tkinter and PyQt5 libraries. They are
the most popular GUI toolkits for Python. Library Tkinter is one of the
oldest GUI toolkits for Python. It comes with Python, so it is not needed
to be separately installed. Tkinter is easy to use and easy to understand
library, so it is commonly used. Because of that, it is fairly simple to find
any information about this GUI toolkit. Unfortunately, it has disadvantages
such as old looking interface and lack of advanced widgets. On the other
hand, PyQt5 has a modern-looking interface, many advanced widgets. But
this library has a smaller number of tutorials that are written about it.
This application is supposed to appeal to younger users. Therefore, the main
choice criteria between these two libraries was appearance. Because of that,
PyQt5 was chosen.

Bl 5.2.5 Usage of the application

The application was created for this project. It will not be sold for profit or
used elsewhere. Because of that, the application does not have an icon that
can be pressed for the start. The application is started in the terminal by
the command

python3 start_application.py.

The images for the recognition are taken from the specific folder. The
path for the folder can be set, if the user starts the program with the
argument -p. If the program started without the argument, the application
will use the default folder path. The application also requires a copied
repository Handwritten-Digit-Recognition-using-Deep-Learning, that is used
for recognising handwritten digits.

28

5.3. Real test

. 5.3 Real test

This application is supposed to be used by children. Up to this point, there
was only contemplation of what would children like and how they would react.
Therefore, it was decided to test the application with a child. Due to the
current situation in the world (this part was written in December of 2020),
the application could not be tested with many children. The application was
tested with only one child aged 10 years.

The process of testing was following. The child was given a paper with nine
simple mathematical expressions on it. She wrote her answers with a blue pen.
She was instructed on when to take a photograph of her work. There were
times when the picture needed to be taken multiple times due to inadequate
lighting in the room. Some numbers were recognised incorrectly, so the child
was asked to white out these numbers and write them again. After the second
try, the numbers were recognised.

She was also asked to make a mistake in the answer so she could see what
the program would say to this. The wrong number was whited out and the
new number was written in its place (see Figure [5.3 for this).

I N . / \
| tions (3—-1=
equations (3—1=) i - dililione [0 = /
e — || dica

Figure 5.3: Examples of whited out number

The child enjoyed the experience. She said that “it was fun watching the
numbers change on the screen”. She also liked the design of the application.
The motivational text that is printed along with the recognised mathematical
equations was also praised.

There were some things that the child was not satisfied with. One of them is
the amount of time it takes to take the picture, send it, and then wait for the
results. It was also frustrating for her when her correct answer was marked
as incorrect. The application was working that way due to the mistake in the
recognition.

But overall, she was satisfied with the experience of using the application.

29

30

Chapter 6

Conclusion

The project was divided into three parts: implementing localisation on the
image, implementing detection of the objects, and developing an application
to use the created system. The results of localisation on the generated data
are exceptional. Unfortunately, the results on real data are slightly worse. It
could be because of the generated dataset. The dataset could be more diverse.

Thanks to the performed evaluation, the accuracy of the system can be
judged. Accuracy percentage for the evaluation dataset is not ideal. Most of
the mistakes are incorrectly recognised handwritten digits, which could be due
to a wrongly recognised bounding box. CNN was trained upon the MNIST
dataset. And although the image given to the CNN algorithm was converted
to look similar to MINIST dataset images, it is still different. Therefore, it
could be the reason why the greatest number of mistakes are the number of
incorrectly recognised handwritten digits.

Overall, the goal of the project was met. The system that automatically
checks the correctness of completed and partially completed mathematical
tests on a raster image was written. It works good enough for a child to solve
a test alone.

B 61 Suggestions on improvement

The localisation of objects can be improved by training the dataset on one
of the newer versions of the YOLO system. They are superior to YOLOv3.
Unfortunately, they were released after the localisation part of this project
was done. It was decided to move on to improving the detection of the object
rather than focusing on improving localisation.

Another thing to improve is to write an application for a mobile phone.
That way, the user would instantly see the results without spending time
sending a picture from the phone to the computer. Another way is to im-
prove the system, so the user could use a web camera on the computer. The
application also could be more interactive. It could give the user an answer
after their multiple unsuccessful attempts at solving a mathematical equation.

31

32

Literature

[1] Mabher. 6 Significant Computer Vision Problems Solved By ML. Nov.
2020. URL:https://heartbeat.fritz.ai/6-significant-computer+
[vision-problems-solved-by-ml-623eb50544c5.

[2] Wikipedia Contributors. Optical character recognition. Dec. 2020. URL:
https://en.wikipedia.org/wiki/Optical_character_recognition.

[3] Folded Paper Textures. Feb. 2020. URL: https://indieground.net/
product/folded-paper-textures/|

[4] Wrinkled paper. URL: https://www.123rf . com/photo_60605247 _|
wrinkled-paper.html|

[5] NordWood Themes. White wall paint with black line photo. Oct. 2020.
URL: https://unsplash.com/photos/R53t-Tg6J4cl

[6] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. THE
MNIST DATABASE. URL: http://yann.lecun.com/exdb/mnist/|

[7] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object
Detection. May 2016. URL: https://arxiv.org/abs/1506.02640.

[8] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
Dec. 2016. URL: https://arxiv.org/abs/1612.08242,

[9] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. Apr. 2018. URL: https://arxiv.org/abs/1804.02767.

[10] Venkata Krishna Jonnalagadda. Object Detection YOLO v1énbsp;,
v2, v3. Jan. 2019. URL: https : //medium . com/@venkatakrishna |
|jonnalagadda/object-detection-yolo-v1-v2-v3-c3d5eca2312al

[11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection. Apr. 2020.
URL: https://arxiv.org/abs/2004.10934,

[12] Glenn Jocher et al. ultralytics/yolovs: v3.1 - Bug Fizes and Performance
Improvements. Version v3.1. Oct. 2020. DOI: [10.5281/zenodo.4154370.
URL: https://doi.org/10.5281/zenodo.4154370)

[13] Xiang Long et al. PP-YOLO: An Effective and Efficient Implementation
of Object Detector. Aug. 2020. URL: https://arxiv.org/abs/2007|
12099

33

https://heartbeat.fritz.ai/6-significant-computer-vision-problems-solved-by-ml-623eb50544c5
https://heartbeat.fritz.ai/6-significant-computer-vision-problems-solved-by-ml-623eb50544c5
https://en.wikipedia.org/wiki/Optical_character_recognition
https://indieground.net/product/folded-paper-textures/
https://indieground.net/product/folded-paper-textures/
https://www.123rf.com/photo_60605247_wrinkled-paper.html
https://www.123rf.com/photo_60605247_wrinkled-paper.html
https://unsplash.com/photos/R53t-Tg6J4c
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://medium.com/@venkatakrishna.jonnalagadda/object-detection-yolo-v1-v2-v3-c3d5eca2312a
https://medium.com/@venkatakrishna.jonnalagadda/object-detection-yolo-v1-v2-v3-c3d5eca2312a
https://arxiv.org/abs/2004.10934
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.5281/zenodo.4154370
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2007.12099

Literature

[14] Anuj Dutt. Handwritten Digit Recognition using Deep Learning. 2017.
URL:https://github.com/anujdutt9/Handwritten-Digit-Recognition-
using-Deep-Learning,

[15] Anuj Dutt and Aashi Dutt. Handwritten Digit Recognition Using Deep
Learning. July 2017. URL: http://ijarcet.org/7s=990-997|

[16] Google. tesseract-ocr/tesseract. 2008. URL: https://github . com/
tesseract-ocr/tesseract/|

[17] Luc Vincent. Aug. 2006. URL: http://googlecode . blogspot . com/
12006/08/announcing-tesseract-ocr.html|

[18] Filip Zelic. [Tutorial] OCR in Python with Tesseract, OpenCV and
Pytesseract. Dec. 2020. URL: https://nanonets.com/blog/ocr-with+
tesseract/|

[19] Apple. iPhone - Compare Models. URL: https://www .apple . com/
liphone/compare/?devicel=iphone7plus|

[20] Jiayin Low. What is Image Annotation? Jan. 2020. URL:
medium . com/ supahands - techblog/what - is - image - annotation+

[21] Shi Qiu. puzzledqs/BBoz-Label-Tool. 2017. URL: https://github. com/
puzzledqs/BBox-Label-Tooll

[22] Deep Neural Network module. URL: https : //docs . opencv . org/
master/d6/d0f/group__dnn.htmll

[23] Sunita Nayak. Deep Learning based Object Detection using YOLOv3
with OpenCV (Python / C++): Learn OpenCYV. June 2020. URL:
https://www.learnopencv.com/deep-learning-based-object 1
ldetection-using-yolov3-with-opencv-python-c/|

[24] K Sambasivarao. Non-mazimum Suppression (NMS). Oct. 2019. URL:
https : //towardsdatascience . com/non-maximum- suppression ¢
nms-93cel78el77c

34

https://github.com/anujdutt9/Handwritten-Digit-Recognition-using-Deep-Learning
https://github.com/anujdutt9/Handwritten-Digit-Recognition-using-Deep-Learning
http://ijarcet.org/?s=990-997
https://github.com/tesseract-ocr/tesseract/
https://github.com/tesseract-ocr/tesseract/
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
https://nanonets.com/blog/ocr-with-tesseract/
https://nanonets.com/blog/ocr-with-tesseract/
https://www.apple.com/iphone/compare/?device1=iphone7plus
https://www.apple.com/iphone/compare/?device1=iphone7plus
https://medium.com/supahands-techblog/what-is-image-annotation-caf4107601b7
https://medium.com/supahands-techblog/what-is-image-annotation-caf4107601b7
https://medium.com/supahands-techblog/what-is-image-annotation-caf4107601b7
https://github.com/puzzledqs/BBox-Label-Tool
https://github.com/puzzledqs/BBox-Label-Tool
https://docs.opencv.org/master/d6/d0f/group__dnn.html
https://docs.opencv.org/master/d6/d0f/group__dnn.html
https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

	Introduction
	The problem explanation
	Similar applications

	Localisation of mathematical expressions
	Problem explanation
	Generating images
	Labels and objects
	YOLO
	Before training custom data
	Training in YOLOv3
	Testing in YOLOv3

	Detection of mathematical expressions
	Detection of handwritten digits
	Pre-processing of an image

	Detection of mathematical equations
	Pre-processing
	Tesseract and Python-tesseract
	Post-processing

	Evaluation and results
	Evaluation dataset
	Bounding box annotation
	Text annotation

	Processing recognised objects
	Results of evaluation
	Probability of recognition
	Count of incorrectly recognised objects

	Application
	Application concept
	The application creation
	OpenCV
	Problems of the application
	Contour of an image
	Frontend of the application
	Usage of the application

	Real test

	Conclusion
	Suggestions on improvement

	Literature

