Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Sensor Fusion for Mobile Robot Localization

Vaclav Plavec

Supervisor: Ing. Vladimir Smutny, PhD.
Subfield: Cybernetics and Robotics
January 2021

ii

Acknowledgements

I would like to thank the CTU for being
such an excellent alma mater for me. I
would also like to express my thanks to my
supervisor of this project, Ing. Vladimir
Smutny, PhD., not only for his valuable
advice, but also for his enormous patience
he had with me during by work on this
project. Last but not least, I would like
to express my thanks and gratefulness to
my girlfriend, who held my hand during
both the most joyful and the most difficult
times, which were caused by the pandemic
during the time I was working on this
project.

iii

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 5 January 2021

Abstract

This work is dedicated to studying of un-
certainty of the estimation of a pose of the
mobile robot Clearpath Robotics Jackal,
based on information from various sensors.
Not only the estimation of a pose, yet also
the uncertainty of this estimation are im-
potant not only as a primary source of the
information about the robot’s pose, but
primarily for application in various more
complex algorithms for localization of a
robot and for mapping of the surrounding
space.

The goal of this work is modeling of
the uncertainty of the estimation of the
pose, based on experimantal results, and
its approximation, depending on velocities
of the robot and on the driven distance.
Partial goals are also the study of charac-
teristics of data of the particular sensors,
which provide information about the pose
of the robot, such as rotary encoders on
the motors, which provide information
about their rotation, or a gyroscope and
an accelerometer of an inertial measure-
ment unit (IMU).

The output of the work is an estimated
approximated model of the uncertainty
of the estimation of the pose, obtained
by fusing information from the rotary en-
coders mounted on the motors of the robot
and of the IMU, which is used by the
robot. This model is finally expressed so,
that it is possible to compose it into the al-
gorithm for simultaneous localisation and
mapping (SLAM), which is actually runs
on the robot and which uses the estima-
tion of the pose for its initialization, yet
it should use also the uncertainty of the
estimation, which it does not do. This
algorithm localizes the robot based on the

iv

data from a LiDAR and simultaneously
creates a map of its surrounding space.

Keywords: robot, uncertainty, pose,
odometry, EKF, Leica, HTC Vive, sensor,
normal distribution, error, covariance,

SLAM, ROS, IMU, rotary encoder

Supervisor: Ing. Vladimir Smutny,
PhD.

Department of Robotics and Machine
Perception,

Czech Institute of Informatics, Robotics
and Cybernetics,

Jugosldvskych partyzanu 1580/3,
Prague 6

Abstrakt

Tato prace se vénuje studiu nejistoty od-
hadu polohy mobilniho robotu Clearpath
Robotics Jackal na zakladé informaci z
nékolika senzorti. Nejen odhad polohy, ale
i nejistota tohoto odhadu jsou dulezité
nejen jako primarni zdroj informace o po-
loze robotu, ale predevsim pro aplikaci
v riznych komplexnejsich algorimtmech
pro lokalizaci robotu a mapovani okolniho
prostoru.

Cilem této prace je modelovani nejis-
toty odhadu polohy na zédkladé experimen-
talnich vysledkt a jeji aproximace v zavis-
losti na rychlostech robota a ujeté vzda-
lenosti. Dil¢imi cili jsou rovnéz studium
charakteristik dat jednotlivych senzoru,
poskytujicich informaci o poloze robotu,
jako jsou rotac¢ni enkodéry na motorech,
které poskytuji informaci o jejich otaceni,
¢i gyroskop a akcelerometr v ramci inerci-
alni méftici jednotky (IMU).

Vystupem prace je odhadnuty aproxi-
movany model nejistoty odhadu polohy
ziskaného sloucenim informaci z rotacnich
enkodéri na motorech robota a z IMU,
kterou robot uziva. Tento model je na-
konec vyjadren tak, aby bylo mozné jej
pozdéji zakomponovat v algoritmu pro si-
multédnni lokalizaci a mapovani (SLAM),
ktery aktualné na robotu bézi a ktery
uziva odhad polohy pro svou inicializaci,
avSsak mél by uvazovat také nejistotu to-
hoto odhadu, coz nedéla. Tento algoritmus
na zakladé dat z LiDARu lokalizuje ro-
bota a soucasné vytvaii mapu okolniho
prostoru.

Klicova slova: robot, nejistota, poloha,
odometrie, EKF, Leica, HTC Vive,
senzor, normalni rozdéleni, chyba,
kovariance, SLAM, ROS, IMU, rotac¢ni
enkodér

Preklad nazvu: Slucovani informaci z
vice senzoru

Contents
1 Introduction 1
2 State of the Art 3

2.1 Probabilistic methods and
uncertainty representation

2.2 Estimating odometry from dead
reckoning using only proprioceptive
Sensors or a compass

2.3 Simultaneous localization and
mapping (SLAM) and combining
data from exteroceptive sensors with

data from proprioceptive sensors. . .

2.4 Multi-robot coordination and
cooperation

2.5 Neural networks and machine
learning in the process of robot
localization

2.6 Types of wheeled unmanned
ground vehicles (UGV’s) in terms of
their movement..................

2.6.1 Differential drive kinematic

2.6.2 Skid-steering model

2.6.3 Ackermann steering kinematic
model L

o

vi

2.7 More accurate model of the

skid-steering kinematics
2.8 The base of this work
3 Used Hardware and Software 13
3.1 The Clearpath Robotics Jackal
UGV ssetupcoivin...
3.1.1 The hardware 15
3.1.2 The software
3.1.3 Data sources providing
information about the pose and
velocities of the robot 18

3.2 HW and SW equipment for the
experiments

3.2.1 HTC Vive tracker

3.2.2 Leica AT403 absolute tracker 20

3.2.3 Measuring the robot’s pose with
the laser tracker guided by the
tracking system

4 Theory

4.1 Extended Kalman Filter and the

EKF-fused odometry
4.2 The robot’s kinematic model and
S uUsSe . ..o 27

4.2.1 The Skid-Steering kinematic

model 27
4.2.2 The controller’s mathematical
background
4.3 Boxan’s extension of Novacek’s
NDT SLAM

4.4 Finding a transform between 2 sets

of corresponding points
4.5 Estimating poses of the
retroreflectors for guiding the laser
tracker using the tracking system .
4.6 Modeling the uncertainty of the
robot’s EKF-filtered odometry. . ..

4.6.1 Modeling of the mean error
vector and covariance matrix from
the experimental data

4.6.2 Approximation of the
contribution to the mean error
vector and to the covariance matrix
depending on the velocities and the
increment of driven distance

5 Implementation

5.1 The control of the robot’s

movement 45|
5.1.1 The EKF-fused odometry ...

5.1.2 Jackal’s driving controller and
its optional setup parameters ...

vii

5.2 Libraries used in the scripts

5.3 The script for controlling the
robot’s driving and generally its
measurement

5.3.1 Command line arguments of the
script

5.3.2 Commands of the gamepad. .
5.4 The script for evaluating the
measured data..................
5.4.1 Evaluating the results of the
2nd experiment................

5.4.2 Plotting the data from the
odometry and IMU topics for a
repeated movement during the 3rd
experiment

5.4.3 Extraction of the data from
baglists (lists of rosbags)

5.4.4 Computing and approximating
the resulting mean error vectors and
covariance matrices from the

extracted data 55l
5.4.5 Replotting the saved data of

odometries from the topics......

6 Experiments
6.1 The reference coordinate frames

considered in the experiments

6.2 Observing the characteristics of the
proprioceptive sensors of the robot

6.2.1 Results of the experiment . ..

6.2.2 Implications

6.3 Measuring the accuracy of the
tracking system data

6.3.1 Performing the experiment . .

6.3.2 Results of the experiment . . .

6.4 Measuring and estimating the
uncertainty of the EKF-fused
odometry of the robot

6.4.1 Performing the experiment . .

6.4.2 Processing the data

6.4.3 Results of the partial
experiments for the different
commanded velocities 79

6.4.4 Results of the whole
experiment 138

7 Suggestions for the Further Use
of the Results 143

8 Conclusion 145

Bibliography

A Structure of the CD

B Project Specification

151

Chapter 1

Introduction

The odometry is the fundamental source of information about a robot’s pose. There exist
many methods enabling a robot to determine or rather estimate its pose, yet a significant
amount of them does not perform their proper update cycle with sufficiently high frequency.
The encoder odometry is computed from the information about the rotation of robot’s
motors and thus its wheels, taken from rotary encoders attached to the motors. It is then
employed to estimate the robot’s pose with sufficiently high frequency, while using more
advanced and complex methods, between the 2 subsequent proper update cycles of the
particular method’s algorithm performing. It is usually due to the fact that such an advanced
algorithm is computationally and time demanding. In order to make the encoder odometry
more accurate, its data can be fused with data of another sensor, providing similar kind
of information about the robot’s pose, or velocities or accelerations, with comparably high
frequency. One example of such a sensor is an inertial measurement unit (“IMU”), which
may provide information about the robot’s accelerations and its angular velocities. The
most widely used method of fusing such 2 or more sources of information about robot’s pose
is the Extended Kalman filter (“EKF”), providing the EKF-fused odometry, which
considers not only the information about pose from the sensor, yet also the uncertainty of the
information.

Another case when the use of the encoder odometry is necessary is when localization
methods maintained by other types of sensors are not accurate enough, especially
under certain conditions. One example of such combination of a sensor method and adverse
conditions is using visual localization (using a camera and computer vision methods) in
a long visually monotonous corridor. It is by the way the case of corridors in the B
building of the CIIRC (Czech Institute of Informatics, Robotics and Cybernetics). Next
example directly related to this work is performing Simultaneous Localization and Mapping
(SLAM) using LiDAR scan in a long narrow corridor, as the LiDAR data tend to curve
the perceived corridor with increasing angle between the LiDAR ray and the wall surface,

1. Introduction

which is again related to the corridors in the B building of the CIIRC.

The main goal of this work is to estimate a probabilistic model of the uncertainty of the
EKF-fused odometry of the Clearpath Robotics Jackal Unmanned Ground Vehicle
(“the robot”). The particular goals are to estimate it, to model it and to approximate
its dependence on the commanded linear and angular velocity of the robot, as well as
on the driven distance. It shall be approximated and expressed in such a way that it can
be integrated into the SLAM algorithm, which is currently running on the robot and
currently does not use any probabilistic model of the uncertainty of the EKF-fused odometry.

Chapter 2

State of the Art

. 2.1 Probabilistic methods and uncertainty representation

The 2-dimensional normal distribution is used for the representation of a mobile robot’s
position estimation uncertainty. Durant-Whyte and Leonard [I0] studied the uncertainty
of mobile robot’s position acquisition from an exteroceptive sensor (sonars and infra-red
sensors) and visualized it as gradually evolving ellipsis of confidence along with a method of
correcting it after obtaining information about the position from a beacon using the extended
Kalman filter (EKF'). This work provided a versatile tool and description of how the EKF
uncertainty evolves in terms of its geometrical representation. Watanabe and Yuta
[35] built on this work, using also the the angles of the rotation of motors read by a rotary
encoder attached to the motors assuming a 1:1 gear ratio used to determine the robot’s planar
pose and driven distance (“encoder odometry”) for dead reckoning in terms of their
required speeds. They modeled the uncertainty of a mobile robot’s encoder odometry used
for the dead reckoning and expressed the error ellipsoid visualizing the uncertainty directly
in the analytic matrix form from the total covariance matrix. They also used lighthouses as
means of correction of the robot’s pose estimation uncertainty. Komoriya et al. [I§]
extended that work and as means of the pose estimation uncertainty correction they
used point and line type landmarks. Choi, Lee and Lee [5] continued with this work
and based on it they designed and realized a method of such landmark-corrected mobile
robot’s position estimation using RFID landmarks besides the encoder odometry. They
also made the uncertainty ellipsoid computing more effective by applying the SVD of
the covariance matrix.

Julier [I7] suggested several algorithms for the distributed fusion of Gaussian Mixture
Models using the Chernoff Information. He used the Bayes rule and the Chernoff

3

2. State of the Art

information and provided a versatile tool for combining the Gaussians.

. 2.2 Estimating odometry from dead reckoning using only
proprioceptive sensors or a compass

What concerns more recent work in the field of fusing information from more types of
sensors, Hoang et al. [14] used the EKF for estimating the mobile 2-wheeled robot’s position
from the the encoder odometry, a compass, a laser range finder (“LiDAR”) and an
omni-directional camera. This work provided a detailed depiction of how the trajectory
estimation of each single sensor and of their EKF-fused information evolve through the
increasing time of the robot’s movement and how they differ from the true path. They also
provided a detailed depiction of principles of each sensor’s function as well as the idea how to
work with the covariances not only along with the EKF. Recently, Cheng et al. [8] proposed
an advanced mobile robot self localization algorithm, Limited memory Kalman filter
(LMKF) with exponential fading factor, which uses the exponentially fading weights of
recent sensor measurements in order to improve the localization errors. They use it to fuse
data from wheel odometer, a 3-axis digital gyroscope, a 3-axis acceleration sensor and
a 3-dimensional magnetoresistance electronic compass. They provide a detailed mathematical
description of the algorithm and show that it is capable of filtering out random compass
errors and reducing the cumulative errors of the gyroscope and the odometer.

B 2.3 Simultaneous localization and mapping (SLAM) and
combining data from exteroceptive sensors with data from
proprioceptive sensors

Concerning the recent proceedings in the Simultaneous Localization and Mapping
(SLAM), Cai and Zhong [7] proposed a SLAM algorithm based on the Adaptive square
root cubature Kalman filter. In their work they provided a detailed description of their
algorithm and they showed that it has quite decent performance. Lee et al. [21] examine
the observability of conventional SLAM by using the Fischer Information Matrix and
improve its observability by proposing their Dual-sensor-based Vector-field SLAM
(DV-SLAM) along with a special (so called Rao-Blackwellized) Particle filter, which is
fully observable, applied on compass/magnetometer sensors. They analyze its performance
on a platform of a robotic vacuum cleaner with 1 or 2 magnetometers mounted on it in
various angles towards each other, data of which are fused along with the estimated odometry
from wheels control input, and found out that a setup of 2 magnetometers placed in angle
of m rad towards each other is fully observable and the best solution among all possible

4

2.3. Simultaneous localization and mapping (SLAM) and combining data from exteroceptive sensors with data from propriocepti

placements. Bedkowski et al. [6] propose an open source robotic 3D mapping framework
with a vast library of tools to work with point clouds, their analysis, importing, exporting
etc., distributed along with a bunch of datasets. It has been tested on Clearpath Husky
mobile robot. They depict how the odometry and SLAM uncertainties evolve through
time in a detailed way unless they are properly processed. Bahreinian et al. [I2] examine
the performance of RMF-SLAM and AMF-SLAM dealing with relative and absolute
landmark positions respectively. They found out that both the methods reach significantly
better results that just pure EKF. Yuan et al. [37] deal with the RGB-D sensor based
Visual SLAM for localizing and navigating a restaurant serving robot. They use the
Microsoft Kinect (RGB-D camera) for landmark detection, SICK (laser scanner) for
the map matching and the wheels odometry data and combine it all in the EKF, which they
proved to be quite an effective combination. Similarly, Fan et al. [I1] use a laser range sensor
for metric mapping, a barometric pressure sensor for detecting floor transition and the
Microsoft Kinect sensor (RGB-D camera) for collecting 3D environment information.
They use the Monte Carlo localization (a particle filter localization) for the localization
based on the laser range sensor. They showed that such combination is indeed convenient
for this task. In their work they also describe how they use and combine the data in the
EKF.

One of the most suitable works to proceed from in this work is the work of Zhou et al. [39],
in which they use a LIDAR odometry along with NDT based scan matching for outdoor
mobile robots localization in environments where the GPS localization is not available, as well
as with the 3D kinematics model based on encoder and IMU (Inertial Measuerment Unit -
accelerometer and gyroscope) data used for the dead reckoning. They conveniently describe
how the NDT (Normal Distribution Transform) algorithm works and what it actually does.
The main contribution for this work is their description of how they fuse all the data together
in the EKF. They use the LIDAR/NDT odometry at low frequency to periodically correct
the dead reckoning accumulated uncertainty/error. They showed that when using recent
20 frames to match the position is efficient comparably with using all frames to match the
map and that this combination of sensors is more than suitable for solving such localization
problem. Another contributive work is done by Akai et al. [3], where they implement accurate
localization of an autonomous car by fusing data from 3D LiDAR matched by 3D NDT
after having split the map into voxels along with the resulting Hessian matrix computed
during the optimization process and dead reckoning based on the encoder odometry
and on IMU data (there were also data from other sensors, but they didn’t use it) with
the EKF. In the work they visualize the uncertainty with the uncertainty ellipsoid. Their
results include formulated facts about that method, including the idea that robust localization
could be achieved by fusing the NDT and dead reckoning results with EKF even if
the pose estimated by NDT was disturbed. Also Uyulan et al. [33] made significant
contribution to this field, fusing information from dead reckoning based on the 4-wheeled
mobile robot encoder odometry with localization based on LiDAR scan matching with
an occupancy grid map. They treat the position error accumulation by comparing
performance of Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),
Unscented Information Filter (UIF) and Extended Information Filter (EIF). They
provide a detailed depiction of how the error ellipsoid evolves through time and after a
correction from an accurate measurement as well as a detailed description of how each of

2. State of the Art

the examined algorithms work. They concluded with the discovery that the UIF performs
with better accuracy and the EIF performs with better stability than the Kalman
filters. Returning to the autonomous vehicles, Li et al. [22] propose a rigid point set
registration based on Cubature Kalman filter (CKF'), which they describe in a very
detailed way and apply it in the process of localization of an autonomous car based on fusion
of 3D LiDAR, GPS, IMU and wheel encoder data. They show that it approximates
the nonlinearities better than the ordinary EKF as well as it is more robust to noise,
initialization misalignment and outliers along with their proposed correspondence
between 2 point sets based on local feature vector in comparison with another methods
like the ICP (Iterative closest point) or the NDT.

As another promising proceeding related to problems being treated in this work, Yu
and Zhang [36] propose an Improved Hector SLAM Algorithm based on Information
Fusion for Mobile Robot, fusing wheel encoder and IMU odometry along with the LIDAR
SLAM. As a main problem, they studied the problem of SLAM from degenerated LIiDAR
data in a long corridor, which is one of the main problem this work is trying to deal with,
and showed that its performance is significantly better than the conventional SLAM. A
very similar problem has been studied by Laconte et al. [20] who focused on the problems
of LiDAR localization in a long narrow tunnel, yet in a context of 3D mapping. They
first show that the bias causing a curvature of a LiDAR-measured corridor depends on
where in terms of the corridor width the robot is situated, whether in the middle or closer to
either wall. They examined the problem and discovered that the distance measured by the
LiDAR strongly depends on the angle between the ray and the wall. They studied
the cause of this phenomenon and finally came with a solution, modelling the laser ray as
a Gaussian light beam, which explains why the LiDAR senses the point on the wall to
be closer than really is. In fact, the error is up to 20 cm at a distance less than 10 m, so
they propose a method of removing the bias of points of surfaces scanned under larger
incidence angle.

Toroslu and Dogan [32] are among others who deal with finding an effective algorithm for
a mobile robot SLAM fusing data from an ultrasonic sensor with data from IMU and
wheel encoder written in Python for a platform based on Raspberry Pi. They show that
the IMU data are affected by signal noise and wibrations from wheels and they filter
the encoder and IMU data using a complementary filter in order to remove noise and
errors. Liu et al. [24] propose the Unscented Kalman filter (UKF), Augmented Monte
Carlo localization (AMCL) and 2D Distribution-to-Distribution (D2D) NDT for
improving the accuracy of fusion of 2D LiDAR, IMU and encoder odometry of a mobile
robot as well as of the SLAM. They experiment with the Clearpath Husky robot and provide
a detailed description of their algorithm combining all the mentioned methods and show that
it reaches very high accuracy in comparison with the sole methods.

6

2.4. Multi-robot coordination and cooperation

. 2.4 Multi-robot coordination and cooperation

Proceedings have been also made in the field of multi-robot coordination and SLAM.
Lin et al. [23] propose a hybrid positioning method for multi-robot SLAM allowing to
simultaneously coordinate multiple robots as well as to let them simultaneously create one
common map based on the LIDAR NDT-matched measurement using visual markers for
their cooperative identification, producing decent results. A detailed description of obtaining
and computing sensor data variances for the sensor information fusion is proposed by
Inoue et al. [I5]. They study swarm robot systems consisting of large numbers of cooperative
simple physical robots, which have only the exteroceptive information about distances
towards one another and the velocity control input, and propose an algorithm for their
position estimation that they show to be more accurate than fusion of encoder odometry and
exteroceptive sensors.

B 2.5 Neural networks and machine learning in the process of
robot localization

Another branch of research recent proceedings concerns learning of mobile robots with or
without the use of neural networks either in decision or in sensor information processing in
terms of both camera or lidar data processing and sensor information fusion. Ostafew et al.
[28] experimented with the Clearpath Husky robot in rough and various outdoor terrain.
They implemented a control algorithm that uses visual odometry for the localization and
estimates its states and uncertainties based on an apriori Gauss-probability-distributed
model along with learned model, which the robot learns while moving. They also model a
430 boundaries representing the uncertainty of its position along with its mean based on the
Monte Carlo localization. Cho et al. [9] for example apply a three-dimensional Con-
volutional neural network (3D CNN) for estimating robot’s six-degrees-of-freedom
(6DOF) odometry from sparse 3D LiDAR data using deep learning.

B 2.6 Types of wheeled unmanned ground vehicles (UGV’s) in
terms of their movement

In the area of wheeled unmanned ground vehicles (UGV), there exist many different kinds
and models. They can be generally divided into the following 3 groups of kinematic models
models.

2. State of the Art

B 2.6.1 Differential drive kinematic model

This kinematic model of UGV’s has usually, but not necessarily a round shape of its base.
Such UGV’s feature

8 A set of 2 independent wheels aligned in one axis, typically situated along the
minor symmetry axis (in case of rectangular robot) or along the robot’s diameter (in
case of a robot with a circle base

® 2 possible options of third support point:

1. A glider, which means typically a round object with smooth rounded surface gliding
on the wall

This is very beneficial compared to the second option below, because apart from
the fact that it means friction, it does not significantly affect the movement of
the robot i.e. during steering

2. A trailing wheel, which is the kind of a rotary wheel that can be found i.e. on a
shopping cart
Although it results in much less friction during a straightforward movement, it
significantly affects the robot movement direction during its steering, because
it is typically in such form that the rolling axis of the wheel does not intersect
the turning axis

This model of UGV is the easiest for modeling its steering, because (apart from the case of
sharp change of the movement direction in the case of a base with a trailing wheel) it is only
about moving 2 wheels around circles with 2 different peripheral speeds. For this ease of the
movement modeling, it is often used in basic robotic courses,

B 2.6.2 Skid-steering model

This kinematic model of an UGV is more complex that the TurtleBot model and is represented
by the robot studied in this work, the Jackal UGV, which will be described later in the
subsection |3.1. Its complexity is not only caused by its more complex construction, but also
by the more complex modeling of its movement, especially the steering. This model’s base
features typically 2 independent pairs of linked wheels, one linked pair on each side. The
complexity of the steering of this model is in the fact that in order to steer, the wheels have
to skid.

That leads to significant nonlineary of the movement model, which is described in detail
below in the subsection [4.2l This nonlinearity means a problem for proper localization of the

8

2.6. Types of wheeled unmanned ground vehicles (UGV's) in terms of their movement

robot only from the encoder odometry, because the IRC’s of the motors can sense only the
rotation of the wheels and thus their forward speed, but not their skidding and thus their
lateral speed. Yet the lateral speed of the wheels makes a significant contribution to the
movement of the robot and thus has to be considered.

There are 2 mainly used methods of considering the skidding and the consequent lateral
speed of the robot’s wheels in the self localization.

The first method, which is used in the majority of cases, is to perform a method of sensor
data fusion from the encoder odometry and another device such as IMU, which gives more
accurate information about the robot’s direction and its change. This method has been
described and analyzed among others by Wang et al. [34], whose work is studied below in
the subsection [4.2. Their article provides an overview of the mathematical background
for this model, which will be used later in this work.

The second method has been proposed among others by Koztowski and Pazderski [19], by
Wang et al. [34] or by Rabiee and Biswas [29], who studied the skid-steer kinematic model
particularly of the Clearpath Robotics Jackal UGV and created quite an accurate model of
the Jackal’s movement, considering actually the friction of the wheels and their skidding,
which is mentioned below in the subsection [2.7.

B 2.6.3 Ackermann steering kinematic model

This kinematic model represents the model that is mainly found in a car. It features a pair of
diferentially driven rear wheels on a common axis and a special construction of the support
for the pair of front wheels. The specialty about the construction of the support for the front
wheels is about the geometry that allows the car to steer so that the axis of the rear wheels
and both the axes of each of the front wheels intersect in one point representing
the actual center of the rotation. This mechanism of the construction is referred to as the
Ackermann steering geometry. Its scheme can be seen in the figure 2.1, Zhao et al. [3§]
suggested, among others, a decent method of design of such model.

This model requires a more complex construction of the steering mechanism, yet the steering
itself can be modeled very easily. In addition, during steering of this model, almost zero
friction is created in comparison with the skid-steering model.

9

2. State of the Art

Figure 2.1: Ackermann turning geometry scheme in car-like model [38]

. 2.7 More accurate model of the skid-steering kinematics

In terms of the the friction-based dynamical and kinematical model of a skid-steering
wheeled mobile robots, Kozlowski and Pazderski [19] studied the problem of dynamic modeling
and proposed a driving algorithm considering the friction and lateral velocities of the
robot’s wheels during skidding. Their algorithm considers kinematics and dynamics of
a 4-wheeled skid-steering mobile robot and to solve the kinematic problem and maintain
stabilization it uses the idea of a kinematic oscillator for the regulation.

Also Wang et al. studied the skid-steering kinematic model first from the view of an
approximation as an ideal differentially driven robot, which has been mentioned. They also
studied the dynamics of such model and proposed a model considering the robot’s dynamics
in terms of friction and rolling resistance, which is able to achieve relatively accurate
results without using any additional sensors.

Later, Rabiee and Biswas [29] studied the Clearpath Jackal’s friction-based kinemat-
ics and proposed a method of its skidding lateral velocity compensation, which showed
significantly better accuracy in terms of the dead reckoning odometry in comparison with
the odometry predicted based on the encoder odometry.

10

2.8. The base of this work

. 2.8 The base of this work

One of methods of robot localization, which cannot be performed with sufficient update
rate, as has been described in the introduction, is the NDT SLAM (Normal Distribution
Transform Simultaneous Localization And Mapping) proposed by Novacek [27], who extended
and improved Jelinek’s work [16]. He uses the LIDAR data matched by the NDT with the
occupancy grid created from CAD drawing of the map of the 6th floor in the building B
of the Czech Institute of Informatics Robotics and Cybernetics (CIIRC) for the localization
of the Clearpath Robotics Jackal Unmanned Groung Vehicle (Jackal UGV), which
will be studied in this work. Each update of the algorithm’s execution is performed only
after having driven certain minimum distance or turned certain minimum angle, because it is
so computationally demanding that is has to be run on an external computer. It uses the
data of the encoder odometry fused with data from the robot’s IMU by the EKF
for the higher-rate estimation of the robot’s pose between the 2 subsequent updates of the
algorithm.

The problem with his work is the fact that he uses the robot’s odometry only for the robot’s
pose initialization in the SLAM and to estimate the robot’s pose between the algorithm’s
2 subsequent updates, as has been mentioned, yet his algorithm immediately forgets the
odometry as well as its uncertainty before the following algorithm’s initialization and
thus has no prior information helping the algorithm to converge to the correct solution. This
imperfection manifests in the most significant way when the robot is trying to localize itself
in a long narrow corridor, which tends to have repetitive patterns in its relief.

Later, another work about Jackal’s localization has been written by Boxan [4], who solved
the problem of respecting visibility of the map entities during the NDT SLAM. He
extended Novacek’s work, particularly his score function, which is optimized during
the SLAM processing and will be described in the Chapter |4} in the section [4.3 on page 32| by
adding information about the visibility to it. He also proposed an approximation of
the score function, which improved the performance of the SLAM algorithm and particularly
its results in long narrow corridors. Besides it he learned that the CAD drawing of the
CITIRC’s 6th floor is inaccurate. He therefore corrected the CAD drawing, which improved
the accuracy of the NDT SLAM running on the Jackal UGV. Last but not least, he did
not consider the real model of the uncertainty of the EKF-fused odometry of the Jackal
UGV, but he prepared his program for the further integration of the information about
the uncertainty of Jackal’s odometry, where he temporarily a null covariance matrix.
Therefore he prepared great background for this work. He also prepared software for the
visualization of the score function and of the behavior of the SLAM optimizing cycle.

11

12

Chapter 3

Used Hardware and Software

This work is solving the problem of accurate indoor localization of the Clearpath Robotics
Jackal Unmanned Ground Vehicle (UGV) based on information from both propriocep-
tive and exteroceptive sensors.

As has been mentioned in subsection [2.8 on page 11|, there has been already done an
implementation of NDT-SLAM by Novacek [27], who extended and improved Jelinek’s work
[16]. The problem is that the Novacek’s implementation uses the robot’s odometry only
for the position initialization in the SLAM and then forgets the odometry as well
as its uncertainty. This defect manifests in the most significant way when the robot is
trying to localize itself in a long narrow corridor.

It has been also mentioned that Boxan [4] made a significant progress originating from
the Novacek’s work. He namely approximated the Novacek’s score function and added
information about visibility to it. His visibility algorithm considers the information about
the movement taken from the odometry for the estimation of the most probable next
position before the next NDT SLAM algorithm run, which runs once per 15 centimeters
driven. Although he uses the odometry, he tries to eliminate its uncertainty only by tuning
a multiplier of the wheel diameter used by the robot’s driving controller, which will be
further described below in the subsection |5.1.2. He thus does not use the probabilistic
model of the uncertainty, but he prepared his code of the SLAM to integrate the
information about the odometry uncertainty into by filling in the actual covariance
matrix.

This work will thus try to measure, model and approximate the uncertainty of the
odometry and its evolution along the trajectory in time so, that it could be integrated
to the SLAM algorithm.

13

3. Used Hardware and Software

First the evolution of the odometry uncertainty will be studied and properly probabilistically
modeled based on proper measurements and experiments. It will be subsequently rigorously
expressed, modelled and then its evaluation’s implementation and integration of it to the
existing Boxan’s program (extending the Novacek’s NDT SLAM), which the Jackal UGV
already uses for its localization, will be performed.

The accuracy of the improved SLAM algorithm will be then measured. In the conclusion,
the results of the measurement will be studied, evaluated and discussed.

14

3.1. The Clearpath Robotics Jackal UGV setup

B 3.1 The Clearpath Robotics Jackal UGV setup

B 3.1.1 The hardware

The used robotic platform is the Clearpath Robotics Jackal Unmanned Ground Vehicle (“the
robot” from now on) with several additions, which can be seen in the figure 3.1, This robot’s
design represents the Skid-steering model mentioned above. The steering model will be
further described and studied below in the subsection 4.2l

The robot contains the following sensors:

1. motor rotary encoders - on both the motors, as both the lateral pairs of wheels are
driven each by one motor and are connected with a belt, use as a source of data for the
encoder odometry

2. IMU (Inertial Measurement Unit) - A sensor combining a gyroscope, an accelerome-
ter and a compass (which is not used and has not been much tested) - a component
originally mounted by Clearpath

3. GPS - not used in the indoor navigation
4. LiDAR (SiCK TiM561-2050101) - Laser-based 2D LiDAR

5. omnidirectional camera (Basler daA2500-14uc with fish-eye lens Sunex PN DSL215)
- Colleague Péanek is just in a process of development of visual odometry using this

6. HTC Vive tracker - used for experimental measurement, described in a more detailed
way below, in the subsection |3.2.1 on page 20

The computational, controlling and communication intelligence of the robot is divided into
these major parts:

1. MCU (Microcontroller Unit, original internal component) - controls the motors, power
etc. and reads data from the sensors (odometry, IMU, LiDAR, ...)

2. Internal PC (Aimb 274) - communicates with and controls the MCU, LiDAR, Bluetooth
joystick, LED strips controller (which will be described) and runs the lower-level programs,
such as ROS (Robot Operating System, will be described) movement controllers and
collision avoidance

15

3. Used Hardware and Software

Figure 3.1: Clearpath Robotics Jackal UGV platform

3. Router - maintains communication between the internal PC, NUC and possible wired
connection

4. Intel NUC PC - establishes the wireless access point to communicate with all the PC’s,
takes image from the camera and runs the higher-level programs such as motion planning,
mapping etc.

This mobile robot contains a 28-V 270-Wh Lithium battery, which significantly contributes
to the robot’s weight of about 16 kg.

This setup contains also the option to control the robot manually with the Sony Dualshock
4 V2 Controller, which is a wireless Bluetooth gamepad and will be referred as “the
gamepad” in the further text. Besides the manual controlling function, the gamepad also
serves as such a “dead man switch”, meaning that a user has to keep the R1 button on the
gamepad pressed in order to allow any other software to publish commanded velocities, as
well as to be able to control the robot with the gamepad.

16

3.1. The Clearpath Robotics Jackal UGV setup

B 3.1.2 The software

The core of all the software running on the robot’s PC’s is the Robot Operating System
(ROS), which is described below. The internal robot’s PC runs the ROS Indigo version and
the NUC

The controllers controlling the robot’s movement are described below in the subsection
o.1.2

The Intel NUC PC, running the Ubuntu 16.04, runs the ROS Kinetic version, whereas
the internal PC Aimb 274, running the older Ubuntu 14.04, runs the older ROS Indigo
version.

B The controllers driving the robot

The driving of the robot is maintained by the diff_drive_controller ROS package. This
package represents a controller for driving a skid-steering UGV and is well parametrizable.
It is described in detail below in the subsection |5.1.2 on page 45. This controller is used by
the jackal__velocity__controller node.

After launching the bringup__all launch file, which initializes all the additional hardware
including the camera, the LiDAR, the collision__avoidance node, maintaining the collision
avoidance of the robot when being controlled by the movement planner, launches along with
the node maintaining the communication with the gamepad.

Let us now study the robot’s ROS topics bearing information related to this work.

17

3. Used Hardware and Software

B 3.1.3 Data sources providing information about the pose and velocities of
the robot

During the experiments and in the scripts for measurement and for evaluation of the measured
data, data from the following ROS topics were taken:

1. /jackal_velocity_controller/odom - raw encoder odometry,
2. /imu/data - prefiltered IMU data, including

#® The accelerometer data double integrated for computing the position and

® The gyroscope data integrated for computing the angle 8, and

3. /jackal_velocity_controller/odom - odometry as EKF-fused encoder odometry and
IMU data.

Another meaningful secondary source about the pose of the robot, used by the SLAM
algorithm, is the topic /scan/filtered, where the filtered data of the LiDAR are published.
Next important topic is the topic /set_pose, which enables to reset the pose published by
the EKF-fused odometry or to set it to a wanted pose. The topics, where the commanded
velocities may be published, are the following:

1. /cmd_vel_safe - topic, where the velocities can and should be preferably published from
any ROS node running on the hardware contained on and in the robot. These data then
go through a security phase, where the following is verified in order to determine whether
to let the commanded velocities apply:

a. whether the robot is not in front of an obstacle (detected by the collision avoidance
ROS node according to the actual LiDAR data) and

b. whether the R2 button on the gamepad is pressed.

2. /cmd_vel - the topic where only the commanded velocities gone through the security
phase described right above go and should only go.

18

3.2. HW and SW equipment for the experiments

B 32 HW and sw equipment for the experiments

This work aims to

1. correctly probabilistically model the uncertainty of the robot’s odometry and
to

2. approximate the dependence of the contribution to the uncertainty depending
on the commanded linear and angular velocity and the distance driven from the previous
update of the Boxan’s extension [4] of Novacéek’s NDT SLAM algorithm [27]

3. express the approximation so that it can be used to implement an improved SLAM
algorithm by integrating the approximation to Boxan’s version of the SLAM algorithm

During the experiments we will record the evolution of the robot’s EKF-filtered odometry
from the /odometry/filtered topic and evaluate its accuracy against the robot’s referential
position measured by the laser tracker described below.

The Leica AT403 absolute tracker will be periodically used for accurately measuring
the robot’s absolute pose in the global coordinates defined by the tracker itself.

Also the HT'C Vive tracking system will be used for 2 purposes. First we will try to
use it as another referential measurement device providing information about the robot’s pose.
Second purpose is the automatization of the Leica AT403 absolute tracker’s measurement, as
colleagues David Stych and Dimitrij Sojma made a set of ROS tools enabling the HTC Vive
tracking system to guide the laser tracker to positions where the retro-reflectors are placed on
the robot, which will be described below.

The robot is controlled either automatically by the measurement script or manually by the
gamepad.

19

3. Used Hardware and Software

Il 3.2.1 HTC Vive tracker

The Vive tracker is a part of HTC’s virtual reality (VR) equipment called HTC Vive. It
is a device attachable to a physical object in order to track its 6DOF pose, with the primary
aim to project the object’s position and orientation to virtual reality. The Vive tracker must
be combined with at least 2 so called Vive base stations in order to track its 6DOF pose. A
base station placed on a high tripod will be further referred as “the lighthouse”. The Vive
tracker can be see in the figure 3.2al and the base station (without a tripod) can be seen in
the figure [3.2bl Each Vive tracker has its unique USB dongle called the Watchman dongle,
which enables a PC to communicate wireless with the particular paired Vive tracker and with
all the Lighthouses.

Although the original libraries for communication with HT'C Vive devices are protected by
HTC and available only for use in applications and games at the gaming platform Steam, a
group of engineers have reverse-engineered the communication and wrote a set of ROS
tools and libraries enabling to integrate the tracking system to ROS'. The ROS
node is capable of both mutually calibrating the Vive trackers and lighthouses and
publishing their 6DOF poses in dedicated topics in ROS, yet it has some imperfections.
It seems that while the original HT'C’s library maintains seamless tracking of all the Vive
devices, this ROS node, despite mostly working without problems, produces errors and refuses
to work in certain conditions. This will be discussed further in this chapter.

In the further text, the HTC Vive system tracking the pose of the Vive tracker attached to
the robot will be referred to as “the tracking system”.

B 3.2.2 Leica AT403 absolute tracker

The Leica AT403 absolute tracker is a high-accuracy portable laser tracker able to
measure an absolute position of a Leica-trackable object (see below) in its own reference frame.
It measures a position of the measured point in spherical coordinates, but it recomputes the
measured spherical coordinates of the measured point to the Cartesian coordinates in its own
reference frame. In the further text, the Leica absolute tracker will be referred to as “the
laser tracker”.

The laser tracker measures a 3D position of a measurable object distant at least 0.8 m from
the laser tracker with accuracy of +(14 ym + 6pm/m) (6 pm per 1 m of distance from the
laser tracker) in each of the 3D coordinates [I, p. 14].

! Available at [https://github.com/cntools/libsurvive

20

https://github.com/cntools/libsurvive

3.2. HW and SW equipment for the experiments

(a) : HTC Vive tracker (Image taken from (b) : HTC Vive Dbase sta-

https://www.vive.com/us/accessory/vive- tion 1.0 (Image taken from

tracker/)) https://www.vive.com/eu/accessory/base-
station/))

Figure 3.2: Used HTC Vive devices

The used Leica-trackable devices are either the retroreflectors mentioned above .

The retroreflectors are spherical objects with retroreflective prism in its aperture,
as is seen in the figures |3.3al and [3.3bl. The typical distance in which the retroreflectors
are measured without problems is written in [I, p. 14] to be 320 m, which is beneficial
for various applications. There are 2 main types of available retroreflectors. The first type
are the retroreflectors for standard application, which can be seen in the figure [3.3al The
second type are the retroreflectors for fixed installation, which can be seen in the figure |3.3bl
These retroreflectors do not provide as precise placement of the inner prism as the standard
retroreflectors, yet such deep sub-millimeter precision is not needed in the experiments. The
use case of the retroreflectors for fixed installation is generally the placement of more than
one of them on an object or surface in order to measure its deformation or to study i. e.
repeatability of an experiment [2]. Therefore these retroreflectors are used in the experiments,
fixed on the robot in the way depicted in the figures [3.4al and [3.4b|

B 3.2.3 Measuring the robot’s pose with the laser tracker guided by the
tracking system

During the measurement, we want to guide the laser tracker programmatically so that it
does the measurement automatically and the user does not have to guide it manually to the
retroreflectors he or she wants to measure. In case of only one retroreflector, there would be no
need to guide the laser tracker in any way after having guided it to the reflector (unless it gets
covered by an obstacle), because the laser tracker tracks a moving retroreflector automatically
by itself. Yet in case of aiming to measure the robot’s position and orientation in space by

21

https://www.vive.com/us/accessory/vive-tracker/
https://www.vive.com/us/accessory/vive-tracker/
https://www.vive.com/eu/accessory/base-station/
https://www.vive.com/eu/accessory/base-station/

3. Used Hardware and Software

(a) : Standard Leica retroreflectors [I, p. (b) : Leica retroreflectors for fixed instal-
14] lation [2]

Figure 3.3: Leica-trackable devices

the laser tracker, a group of 3 retroreflectors for fixer installation has been mounted on each
the robot’s side symetrically (2 groups of 3, thus 6 retroreflectors in total).

As has been mentioned, for the purpose of measuring the robot’s 6DOF pose (position
and orientation), colleagues Stych and Sojma wrote a dedicated set of ROS tool First one
of them is a tool for guiding the laser tracker to the wanted lateral (left or right) group of
retroreflectors by publishing their estimated 3D positions in the laser tracker’s Euclidean
coordinate frame in the way described in the Chapter |4, in the section This
tool will be further referred as “the guidance tool”. The second tool is for the estimation of

~L
the transform T, described also in the section @ This tool will be further referred as “the
guidance calibration tool”. The placement of the retroreflectors on the robot and their
respective order can be seen in the figures and [3.4b.

Stych [40] studied the accuracy of the HTC Vive tracking ROS node and generally the
accuracy of the tracking system in combination with the laser tracker. He learned that if the
tracking system is not obscurred by external radiation, it tracks the pose very accurately. Yet
he learned that the measurement of the laser tracker significantly interferes with the tracking
system, especially when trying to find a retroreflector, whose position is sent to it from a
computer. Then it interferes so that the poses of the tracking systems are significantly noised
and the ROS library for communication with the tracking system may even halt.

Internal package found on CIIRC’s GitLab

22

3.2. HW and SW equipment for the experiments

(b) : Retroreflectors on the left side of the robot an their numbered order

Figure 3.4: Placement of the retroreflectors on the robot (with numbered order)

23

24

Chapter 4

Theory

B 4.1 Extended Kalman Filter and the EKF-fused odometry

Reid provides a detailed and comprehensive overview of the probabilistic background, the
derivation and basic usage of the EKF in his lecture notes for the subject Estimation [30, [31].
According to his lecture notes, we can generally consider that a system can be represented by
a nonlinear discrete-time state-space model in form of

Tr+1 = f (a:k,uk, k) + wyg, (4.1)

where xj, is the state at time k, u is an input control vector, wy, is additive system or process
noise, and f (xx, uk, k) is the not necessarily linear state transition vector function [31 p.
39]. We may also consider that the states are observed by certain measurement as

z = h(zy, k) + v, (42)

where zj is the observation or measurement made at time k , xj is the state at time &,
h (@, k) is the nonlinear observation matrix and vy, is additive measurement noise [31], p.
39]. This observation means the particular measurement of a sensor.

Assuming that the noises are Gaussian, uncorrelated, zero-mean and without cross-
correlation, the Extended Kalman Filter has the following optimal form [31} p. 41]. Assuming
X as the estimated state vector and P as the estimated covariance matrix representing the
uncertainty of the state vector, the equations are the following.

25

4. Theory

Prediction:
Ry = F (azk|k,uk, k) ,
P = B}f(] P [SHT + Qg -
Update:
K1kl = Reg1pp + Kitr {szrl —h (ﬁk+1|ka k)} ;
Piiijert = Py — Kpr1Sen Ky 1
where T
K1 =Pri 8){} Siti
is the Kalman gain matrix,
Sk+1 = [g)}j Pkt g)}:r + Rit1

is the innovation covariance matrix,
Q) is the process noise covariance matrix at time k£ and

Ry 1 is the measurement noise covariance matrix at time k+1.

26

(4.3)

(4.4)

4.2. The robot’s kinematic model and its use

. 4.2 The robot’s kinematic model and its use

The kinematics of the robot can be described by the Skid-Steering kinematic model,
as has been mentioned above.

B 4.2.1 The Skid-Steering kinematic model

The model used by the controller driving the robot, which is described below in the subsection
5.1.2 does not consider any deeper physical relations such as friction or rolling resistance,
in contrast with the model that has been proposed by [29]. The skid-steering kinematic
model which the controller considers can be expressed as follows.

The mathematical description of this model has been described many times in many
publications. Let us thus use the description written in the article of Koztowski and Pazderski
[19].

Let’s suppose that we have a skid-steering mobile robot (“SSMR”) in a global reference
frame with the orthonormal basis {Xg Y, Z4|. The robot has its center of mass (“COM”),

which determines its position in the global reference frame by a vector X = {X Y Z}
The position of the COM determines the origin of the robot’s local reference frame with
the orthonormal basis [wl Yl zl], in which coordinates of a point are determined by a

vector x = | y z|. The vector x; is in the robot’s forward direction. The vector y; is

perpendicular to the vector x; and is in the robot’s left lateral direction. The vector z; is
parallel to the vector Z;. We consider only a planar movement of the robot. Therefore we
consider the Z coordinate of the robot’s COM to be a constant (Z = const.). We also denote
the angle 0 as the planar tilt of the robot, meaning the angle between the vectors Xy and x;.
All the reference frames and coordinates are depicted in the figure [4.1)

Combined together, as we consider the robot’s planar movement, we may denote a vector

T
of generalized coordinates as q = {X Y 9} and the corresponding vector of generalized
. . AT
velocities ¢ = {X Y 9} . We also define the vector of local linear velocity as v =
T
{vx Uy 0} , where v, and v, are the forward and lateral linear velocities, respectively, and

the vector of local angular velocity w = [0 0 w]T, where w is the angular velocity of the
robot meaning the angular velocity around the z-axis. All those coordinates and velocities
are depicted in the figure |4.2, where ¢ denotes a half of the distance between the centers of
the left and of the right pair of wheels (half of the “wheel separation”) and the meaning

27

4. Theory

Xg

Figure 4.1: Reference frames of a SSMR [19, p. 2]

of the dimensions a, b is depicted. It is then obvious that we may consider the state-space
model of the robot as
X cosf) —sinf 0 |vy
Y| =|sin® cos® Of |v,]. (4.9)
0 0 0 1| |ws

Let us now focus on the velocities of the wheels. All the wheels have radius r; and twist
with angular velocity of w;, where i € {1,..., N} and N is the count of the wheels. Therefore
the forward velocity of each of the N wheels can be computed as

Vig =— WiT; . (4'10)

Different velocities of the wheels may create either straightforward movement or circular
movement of the robot, determined by its instantaneous center of rotation (“ICR”) with

T
coordinates in the robot’s local reference frame |x;jcr yicr 0} . It is depicted in the figure

T
4.3, where v; = [Um Viy 0} is the vector of local linear velocities of the i-th wheel, P; is

the position of its center and d; is the distance of its center from the ICR. The distance of
the COM from the ICR is there denoted as dc.

In this work we assume a 4-wheeled SSMR, whose model is depicted in the figures 4.1
through [4.3. We also neglect the lateral velocities and we assume that both the left wheels
have the same angular velocity wy = w; = ws, because they are bounded, as well as both the
right wheels have the same angular velocity wp = w3 = w4. Assuming that all the wheels have
the same radius r, according to Kozlowski and Pazderski [19], we may express the control

28

4.2. The robot’s kinematic model and its use

'

e

Figure 4.2: Planar reference frames and generalized coordinates and velocities of a SSMR[I9] p. 2]

input vector
Vg wrtwr
n — =T 7WL2+WR 5 (411)

where v, is the commanded linear velocity, w is the commanded angular velocity of the robot
and 2c is the wheel separation mentioned above. We may thus express the dependence of the
angular velocities of the lateral pairs of wheels on the control input from the equation (4.11)
as
wr| |5 (vp — cw)
WR o

o+ o) (4.12)

S

29

4. Theory

—

X

g

Figure 4.3: Planar reference frames and generalized coordinates and velocities of a SSMR[I9] p. 2]

30

4.2. The robot’s kinematic model and its use

B 4.2.2 The controller’'s mathematical background

the robot uses the diff_drive_controller ROS package, which is described in the Imple-
mentation chapter in the subsection |5.1.2 on page 45, It is obvious from the controller’s code
written by Magyar [25, downloaded package| that besides the velocity, acceleration and jerk
limiting, it performs the following computations.

Having applied the optional limits, it first computes the adjusted wheel separation as
s*=ks-so, (4.13)

where sg is the real wheel separation (2¢) taken from the wheel__separation parameter
and kg is the wheel separation multiplier taken from the wheel__separation__multiplier
parameter. Then it computes the adjusted wheel radius as

r* =k 1o, (4.14)

where ry is the real wheel radius taken from the wheel_radius parameter and k, is the
wheel separation multiplier taken from the wheel__radius_ multiplier parameter.

After the adjusted wheel separation and the adjusted wheel radius used for the approxima-
tion as ideal differentially driven robot are computed, the controller computes the resulting
left and right commanded wheel angular velocities as

[WL] _ = (e — Fw
WR T% Vg + %w
where v, is the wanted limited forward velocity and w, is the wanted limited angular velocity
of the robot.

: (4.15)

It is apparent that the controller uses the model explained above in the subsection 4.2.1l
It only applies the wheel radius coefficient k, to compute the adjusted wheel radius,
which may physically express for example non-standard inflation of the wheels, and the
wheel separation coefficient k; to compute the adjusted wheel separation, a half of
which represents the absolute value of the local y-coordinate of the ICR’s. Indeed, if we
compare the equations (4.12) and (4.15), we obtain the substitution relation

(4.16)

which is applied by the controller to the equation (4.12]).

31

4. Theory

. 4.3 Boxan’s extension of Novacek’s NDT SLAM

Novacek [27] and Boxan [4] use the Normal distribution transform (NDT) for matching
the point cloud scanned by the LiDAR to the map. The idea behind it is following.

First the map is split into a grid of identically formed square cells. Then the points in the
map contained in each of the cells are approximated with a Gaussian in each cell. Each cell
of the map is thus represented by the mean of the points g and their respective covariance
matrix ¥. After each scan of the LiDAR, the resulting point cloud is fitted in the NDT grid
by optimizing the score function evaluating the accuracy of the match between the point cloud
and the map for the pose, which is being found by the optimization of the score function.

Novéacek’s score function [27), p. 14] is expressed by Boxan [4, p. 5] as
1 T —
s(p) =) _exp (—2 (@] — pi)” =71 (@] — m)) : (4.17)
i

T
where p = [tm ty 0} is the vector coordinates representing the matched scan’s alignment
in the map, @} is the i-th scanned point transformed by the transformation

] = [cos@ e 91 x; + [th] (4.18)
Y

sinf cos@

and p; and X; are the mean and covariance matrix, respectively, of the map’s NDT grid cell
corresponding to the transformed scanned point /.

The score function s(p) is then optimized by minimizing its negative value —s(p) iteratively
by the Newton’s algorithm, solving the equation

HAp = —g, (4.19)

where H and g are the Hessian matrix and gradient, respectively, detailed information about
which can be found in Novacek’s work [27, p. 14-15], as well as the information about the
NDT.

Boxan approximates Novacek score function with a multivariate normal distribution around
the pose taken from the EKF-fused odometry originating in the pose obtained from the
algorithm’s previous result as [4, p. 13]:

Mz %) = s(p)we (5 @ = w57 @ =) | (4.20)

T
where @ is the variable representing the robot’s pose & = [:B Y 9} representing the scan
match and g and X are the estimated pose from the odometry and its covariance matrix,

32

4.3. Boxan's extension of Novacek’s NDT SLAM

respectively. For the improved optimisation he uses the improved score function consisting
of a sum of (4.17) and (4.20)):

s*(x) =s(x) + M(x,p,X), (4.21)

where « is the searched robot’s pose. This function tends to look more like a single peak being
found, even in a long narrow corridor. For its better performance and smaller computational
complexity Boxan also considers the visibility of objects from the current estimated pose.

After each run of the algorithm it is checked whether the determinant of the Hessian
matrix of the improved score function is negative or not. In case that it is negative, the new
covariance matrix is set as

2= —H (s(pi)|t + M(pi, p, Z)t) (4.22)

where p; is the final pose found by the algorithm. Otherwise, the covariance matrix is
left-multiplied by a matrix C, values of which have been set temporarily to the guessed ones.

Now it remains to accurately model the odometry uncertainty along with its evolution over
time and the trajectory and to improve the uncertainty consideration in the SLAM algorithm.

33

4. Theory

B a4 Finding a transform between 2 sets of corresponding
points

Sometimes we need to match 2 corresponding sets of points by finding a transform between
them. The method for finding it mentioned by Ho [I3] can be expressed using homogeneous
coordinates as follows.

Assume that we have 2 matrices of n 3D points, where necessarily n > 3, expressed in
homogeneous coordinates as

Tal -+ Tan
A= Yal - Yan 7 (423)
Zal v Zan
11
E R
B = Yv1 T Ybn , (424)
21 T Rbn

where A, B € R**" are the matrices of homogeneous coordinates of the respective sets of
points. We want to find a homogemeous transform

R t
e o .

between them, with rotation matrix R and translation vector ¢, such that
TA=B. (4.26)
If the points are noisy, we want to find T', which minimizes the least squares error

2

e= Xn: HTAi - B[, (4.27)
=1

where A® and B? are the i-th columns of the matrices A and B, respectively, and n is the
count of the points in each of the corresponding sets.

In order to find it, we first define the non-homogeneous representation of the points in the
matrices as

§= [ﬂcai Yai Zai]T) (4.28)

Bj = [Uﬂbi Ybi sz']T ; (4.29)

34

4.4. Finding a transform between 2 sets of corresponding points

which together create the matrices of non-homogeneous points As and Bs, respectively. Then
we compute the centroids

1,
ca=— > AL, (4.30)
i=1
1,
cg=—)» Bj. (4.31)
i

Next we compute the covariance matrix H as
H=(Acca)(Bocp), (4.32)

where the operator X © y denotes a subtraction of a vector y from each of the columns of
a matrix X. Subsequently we apply the SVD decomposition to the matrix H, obtaining
matrices U, S and V:

[U,S,V]=SVD(H) . (4.33)

Now, we obtain the rotation matrix R as
R=VvU". (4.34)

It is then necessary to check, whether a reflection matrix was not computed, which would be
a non-sense in the real world. So, if det (R) < 0, it means that the R is a reflection matrix.
Therefore the computation of R must be adjusted in the following way. The 3rd column of V'
has to be multiplied by —1 and then the R is computed like in (4.34]). Put all together, the
adjusted equation (4.34) can be expressed as

vuT det (VUT) > 0
R = Loo T . (4.35)
VIio 1 0 |U" otherwise
0 0 -1
Finally we can compute the translation vector t as
t=cp— Rca. (4.36)

35

4. Theory

B a5 Estimating poses of the retroreflectors for guiding the
laser tracker using the tracking system

The laser tracker and the tracking system are described in the Chapter|[6], in the subsections|3.2.1
on page 20/ and |3.2.2 on page 20, respectively. Their relation in the experiments is then
described in the subsection |3.2.3 on page 21. The tracking system is used to guide the laser
tracker to positions of a triplet out of the 6 retroreflectors (described also in the subsection |3.2.2
on page 20|) mounted on the robot, which are estimated by the tracking system. The placement
of the retroreflectors on the robot and their respective order can be seen in the figures|3.4b
and |3.4a on page 23| Let us now study the way the positions of the retroreflectors in the
reference frame of the laser tracker are estimated from the pose estimated by the tracking
system by the tool written by colleagues Stych and Sojma. This tool will be further referred as
“the guidance tool”. They also wrote a tool for estimation of a crucial transform needed in
this tool, which will be described below. This tool will be further referred as “the guidance
calibration tool”.

The reference frames and transforms are depicted in the diagram in the figure |4.4. The
referential coordinate frames are all orthonormal Cartesian coordinate frames and are denoted
as: W (the world coordinate frame), L (Cartesian coordinate frame of the laser tracker),
V (the coordinate frame of the tracking system (V for Vive)) and T (the local coordinate
frame of the HTC Vive Tracker attached to the robot). The poses of the retroreflectors are
expressed by the following vectors. For the i-th retroreflector (i € {1,...,6}), the vector r;r,
denotes its position in the coordinate frame L (of the laser tracker), which is measured by
the laser tracker, and the vector r;7 denotes its position in the coordinate frame T (of the
tracker attached to the robot), which is constant and known from a manual measurement.
Generally a transform TE denotes a homogeneous transform from a coordinate frame A to a
coordinate frame B. The transforms T% and Thy are not known, but they are not needed
and thus are ignored. The transform T\T/ is obtained from the tracking system, yet primarily
as a 6DOF pose expressed by a set of a translation vector and a quaternion expressing the
rotation. Finally, the transforms TI\“/ and thus also Tlfw are primarily unknown, yet we can
express the latter as

T: = TYTY.. (4.37)

Therefore the only important unknown transform is the T, which is needed to be estimated.

The problem is to estimate the vectors 711, through rgp, from the pose of the frame T
in the frame V denoted by the transform T¥, obtained from the tracking system, so that
the laser tracker can be guided to measure their accurate position within its frame L. The
guidance tool solves this problem using the mathematical tool described in the section |4.4
for subsequent estimation of the transform TI{,. It uses the known vectors rir through rgp
and measured positions of a triplet out of 6 retroreflectors mounted on the robot to find a
particular transforms as the transform best aligning 2 sets of 3 points.

36

4.5. Estimating poses of the retroreflectors for guiding the laser tracker using the tracking system

First, keeping the robot still, positions of a triplet of retroreflectors, either of the first 3 or
the last 3, are gradually manually measured by the laser tracker with help of a user, depending
on which side of the robot faces the laser tracker. At the same time, the transform T,
obtained from the 6DOF pose obtained from the tracking system is saved as T’ }F/ Then, in
order to estimate the transform T{;, the equations (4.23) through (4.36)) are used to estimate

the transform T{J/ from the triplet of known constant vectors (7i,r, 7 (io41)T> T (i +2)T> and

the triplet of measured vectors <'r,-0L, T(io4+1)Ls r(i0+2)L), where ig = 1 or ig = 4. There, if we
consider the notation of vectors

T

riT = [xiT YiT zzﬂ : (4.38)
T

L = [IEiL Yil, ZiL} ; (4.39)

the matrices A and B, expressed by the equations (4.23)) and (4.24), respectively, can be
substituted by the matrices

TigT L(ig+1)T L(ig+2)T

A= YT YT YGo+T | (4.40)
ZigT Z(ip+1)T Z(ig+2)T
|1 1 1
_%L L(ig+1)L L(ig+2)L

B — (Yol YGo+)L Yo+2)L | (4.41)
ZigL R(ig+1)L Z(ig+2)L
1 1 1

Using these matrices A and B as substitution in the equations (4.23) through (4.36), the

~L
transform T} is estimated as T by the rotation matrix and translation vector, expressed in
the equations (4.35) and (4.36), respectively. From there, expressed from the equation (4.37),
the estimation of the wanted transform T% is computed as

Ty = T (T’¥)71 , (4.42)

where the transform T' ¥ is the transform T¥ obtained from the 6DOF pose, which was
published by the tracking system at the time right before the measurement of the position
of the first retroreflector in the measured triplet. All this calibration is maintained by the
guidance calibration tool.

~T
This estimated transform Ty is then used in order to estimate the positions of all the 6
retroreflectors in the reference frame L in real time. Subsequently, the estimated transform

T = TuTY., (4.43)

where TY. is the actual transform obtained from the actual 6DOF pose obtained from the
tracking system, is applied on the constant known vectors i1 through rgr, transformed to
homogeneous 3-dimensional vectors as 717 through 7g1. Then, the estimated positions of

37

4. Theory

the retroreflectors in the coordinate frame of the laser tracker, L, expressed as homogeneous

vectors are obtained as R L
FiL = TT'FiTa 7€ {1,...,6} , (4.44)

from where we obtain the estimated coordinates of each retroreflector 71y, through 7gr,. These
estimated positions are continuously published by the guidance tool to guide the laser
tracker.

38

4.5. Estimating poses of the retroreflectors for guiding the laser tracker using the tracking system

(7

Figure 4.4: Diagram of referential coordinate frames, transforms between them and positions of
retroreflectors towards the referential frames. The referential coordinate frames are all orthonormal
Cartesian coordinate frames and are denoted as: W (the world coordinate frame), L (Cartesian
coordinate frame of the laser tracker), V (the coordinate frame of the tracking system (V for
Vive)) and T (the local coordinate frame of the HTC Vive Tracker attached to the robot). The
poses of the retroreflectors are expressed by the following vectors. For the i-th retroreflector
(1 € {1,...,6}), the vector 7,1, denotes its position in the coordinate frame L (of the laser tracker),
which is measured by the laser tracker, and the vector r;r denotes its position in the coordinate
frame T (of the tracker attached to the robot), which is constant and known from a manual

measurement.

39

4. Theory

B 46 Modeling the uncertainty of the robot’s EKF-filtered
odometry

In the experiment described in the Chapter 6 in the section 77 on page 77, we need first to
model the uncertainty of the EKF-filtered odometry by a mean error vector and an error
covariance matrix, based on the experimental data and the commanded velocities and driven
distances. Subsequently, we need to approximate the contribution to the mean error vector
and the error covariance matrix based on the commanded forward and angular velocities and
the increment of the driven distance. All that is needed in order to make the SLAM more
accurate. Here are the steps needed to render it.

B 4.6.1 Modeling of the mean error vector and covariance matrix from the
experimental data

Let us assume that for each final pose of each evaluated odometry, which is further described

in the section 6.4 on page 77, we have:

® Assumed the coordinate system in the originating 3DOF null pose of the odom-
etry represented by a two-dimensional homogeneous transformation matrix

1 00
Too=Ez3=1]0 1 0 (4.45)
0 01

T
8 Saved the coordinate system in the final 3DOF null pose zp = {xp YR HF}
subsequently represented by a two-dimensional homogeneous transformation matrix

cos(frp) —sin(fp) zp
TOF = Sin(ep) COS(QF) Yr (4.46)
0 0 1
® Measured triplet of retroreflectors’ positions in the beginning of actually studied
T
trajectory (@p1, @bz, Tv3) : Toi = {xbi Ybi Zb@-]
8 Measured triplet of retroreflectors’ positions in the end of actually studied trajec-

T
tory (melvme% 3383) cLej = [l'ei Yei zez}

Since we want to study the uncertainty of the robot’s odometry only in terms of the planar
3DOF pose, we may transform the triplets of measured retroreflectors’ positions into transforms

40

4.6. Modeling the uncertainty of the robot's EKF-filtered odometry

expressing the robot’s referential poses in the beginning and at the end of the studied partial
partial trajectory the following way. We may assume

B the 3rd retroreflector’s zy-coordinates as the robot’s zy-coordinates and

B the zy-coordinates of the vector leading from the 2nd to the 1st retroreflector as the
vector of the robot’s orientation

Then the 2D homogeneous transforms describing coordinate systems representing the robot’s
referential poses from Leica measurements can be expressed as

[cos(0r0) —sin(fr0) i3

Tro = |sin(fro) cos(fro) w3 (4.47)
i 0 0 1 |
[cos(ALr) —sin(frr) es]

TLF = sin(@LF) COS(QLF) Ye3 (4.48)
0 0 1 |

where
Oro = arctan2 (yp1 — Y2, o1 — Tp2) (4.49)
Orr = arctan2 (Yer — Ye2, Tel — Te2) 4.50)

Having expressed all the transforms, we may now express the robot’s absolute 3DOF pose
error as follows. We express the homogeneous transform representing the robot’s
referential pose, taken from Leica’s measurements, as if Leica began in the null pose in
order to reasonably compare Leica and odometry final poses (because the odometry also
begins in the null pose) as

Ty =T TLr (4.51)

This transform represents the robot’s referential pose in the end of the studied trajectory.

Now we want to express the error of the odometry by comparing the transform describing
its final pose Top = Tor (because Tpo is an unit matrix) to Leica’s Tr,. Let us consider a
function which transforms a 2D homogeneous transform matrix to a 3DOF planar pose

Ty T Ti3 T13 T,
pl| |11 T2 Tos| | = To3 = |Ty (4.52)
0 0 1 arctan2 (Tgl, TH) Tg

Now we may express the absolute error of the odometry as
€abs = P (TO) 4 (TL) (453)

41

4. Theory

yet mainly we want to study the error seen relatively from the view in the robot’s
referential pose. Therefore we express the relative error of the odometry as

e=p(T;'To) (4.54)

As (at least partial) result of this measurement we want to estimate the mean vector
e and the covariance matrix ¥, of the error of the robot’s raw and EKF-filtered
(also referred to as EKF-fused) odometries and how they evolve based on the robot’s
forward and angular speed (and thus also the direction of its drive). They can be expressed
for each of the odometries as

1 n
pe=—> e (4.55)
n =1
1 n
e==) ele (4.56)
n:
1=1

where n denotes the count of measured samples for the current trajectory.

B 4.6.2 Approximation of the contribution to the mean error vector and to
the covariance matrix depending on the velocities and the increment of
driven distance

The mean error vectors and error covariance matrices corresponding to the data from trajec-
tories driven with properly initialized IMU have been computed for each of the trajectories
except the trajectory of forward velocities v, = 0.5 m/s and vg = —0.1 rad/s. They were
generally expressed as pre;(vVzi,vg,i, true) and e ;(vy 4, vg 4, true) by the expressions (6.3))
through (6.30)), where

ie{l,...,N} (4.57)

will be referred to as the index, where IN is the count of the suitable 3 meters long trajectories
driven at certain commanded forward velocity v, and angular velocity vg. Suitable trajectories
are considered those driven with the IMU properly initialized. The dependency of the
values of the components of the mean error vector and error covariance matrix on the given
velocities can be therefore now approximated by quadratic functions for each of the mentioned
components.

All of the trajectories were driven at the forward velocity of 0.5 m/s (—0.5 m/s when
driving backward). Therefore the dependency of the values on the linear velocity will not
be expressed numerically, yet the values will be distinguished by the sign of the forward
velocity meaning the forward (when positive) or backward (when negative) drive. Let us
then compute the values of the coefficients of the resulting quadratic terms for each of the

42

4.6. Modeling the uncertainty of the robot’'s EKF-filtered odometry

components, expressing the dependency of the values of the components on the commanded
angular velocity.

The values of the coefficients can be simply approximated by means of the least squares
method, generally approximating a solution of the matrix equation

AX =B (4.58)

for a variable matrix X, where A and B are known matrices, in terms of the least sum of
the 2-norms of the error vectors expressing the distance of real values from the approximated
ones.

In this case, we may make use of the knowledge that the (error) covariance matrices are
symmetrical. They can be thus generally expressed as

mig; M2; M3,
Yei= |ma; ma; msil| , (4.59)
m3q Msi Me;

which means that a covariance matrix can be equally represented by a vectorized form of its
upper diagonal block. If we then express an error vector as

Hei = |:ex,i Cy,i e@,i}T (460)

where ez ;, e,; and eg ;, respectively, are the means of errors of the z-, y- and §-components,
respectively, we may define a row function creating a row of the B matrix, corresponding to
a pair of an error mean vector p.; and error covariance matrix X ;, for the purposes of the
least squares as

TB (He,iaze,i):[ew,i €yi €9i M1; Mo M3 My; M5y m6,i} (4.61)

Subsequently, we will want to approximate generally coefficients ay, by and cy for quadratic
terms of the general form
Y = ayvi + byvg + cy (4.62)

where
Y € {61’7 eya €g, MmMi, M2, M3, M4, Ms, mG} (4-63)

for every variable Y, wherefore we may define a row function creating a row of the A matrix,
corresponding to a value of the angular velocity vy, as

TA(vo,i) = [ng vg; 1

Having defined the row functions, the solved approximation problem can be transformed to
the least squares method with

r4(vo,1) vi, ven 1
A= : = | Do (4.64)

ra(vo.N) vin von 1

43

4. Theory

and

[B (/‘1‘6,17 2671)

7B (He,N, Xe,N)

€zl €yl €91 Mi1 M21 M31 M41 M51 Mgl

=1 : : : : : : : : : (4.65)
[6x,N €y,N €sN MIN M2N M3N M4N M5 N MEN
which will then return the matrix with resulting coefficients
Ae, Ge, Gey Qmy Gmy Gmg Gmy Gms Gmg
X = |be, be, bey bmy bmy bimg bmy bmg bmg (4.66)
Cey Cey Cey Cmi Cmy Cms Cmy Cms Cmg

and it is then also possible to compute the sum of 2-norms of the approximation errors,
referred to as residuals,

€= e, €c, € €mi Cmy C€ms Cmy Cms emG} (4.67)

expressing how accurate the resulting approximation is.

In the last step, it is necessary to consider that those results (the matrix X) correspond to
the approximation of the uncertainty after having driven a specific distance d’, which is in
this case d’ = 3m. Yet we need to obtain an approximation for the unit distance dy = 1 m,
which could be used to compute an actual contribution to the uncertainty after one step of
the update of the result of the EKF processing data of the robot’s wheel encoders and IMU. It
means we need to use those values to make a formula to be multiplied by the distance driven
between 2 updates of the EKF. It is simple. We only divide the values of X by d’ (and adjust
the units of the values in the representation of X)), as it will be multiplied by a difference
of distance, which is expressed in meters. Therefore the approximated contribution to
the error mean vector and the vectorized upper diagonal block of the symmetric
covariance matrix corresponding to the error mean vector can be expressed as

T
2
vyd

A[ex ey €9 M1 Mg M3 My Ms mg} (d,vg,v9) = JX(%) vpd , (4.68)
d

where vy is the commanded angular velocity, v, is the commanded forward velocity, X (v;)
is the matrix of coefficient expressed by (4.66) depending on the commanded v,, d is the
amount of driven distance between 2 consecutive updates of the EKF and d’ is the distance
driven to obtain the X (vy).

44

Chapter 5

Implementation

. 5.1 The control of the robot’s movement

B 5.1.1 The EKF-fused odometry

The odometry, whose data are published in the topic /odometry/filtered (with average rate
of 50 Hz*), is a result of applying the Extended Kalman Filter (EKF) to data of the
encoder odometry (read from the topic /jackal_velocity_controler/odom with average
rate of 50 Hz*) and to data of the IMU’s gyroscope (read from the topic /imu/data with
average rate of 76 Hz*)ﬂ It is maintained by the robot__pose__ekf ROS package (for
details of the package please refer to [26]). The EKF is described in the Chapter , in the

section 4.1 on page

B 5.1.2 Jackal's driving controller and its optional setup parameters

Jackal’s movement is driven from the jackal_velocity_controller node using the
diff_drive_controller ROS package, as has been already mentioned, which is run by
Jackal’s internal PC. This controller package uses the ideal differential drive model described
above for the approximation of the skid-steering model being driven.

L% Average rates of the published topics are computed by the rostopic hz <topic name> ROS Linux
command

45

5. Implementation

When it is launched, it loads its configuration from a local configuration file. There are
several options by which the controller may be configured.

B Configurable parameters of the diff_drive_controller ROS package

Here is the official list of all the configurable parameters with their data types, default values
and explanation taken from [25], logically divided into groups of parameters and reordered:

Wheels and joints names:

1. left_wheel (string | string]...])
® Left wheel joint name or list of joint names
2. right__wheel (string | string]...])

® Right wheel joint name or list of joint names

Covariance matrices:

1. pose__covariance__diagonal (double[6])

® Vectorized upper diagonal block of the covariance matrix for publishing of the pose
of the odometry

2. twist__covariance__diagonal (double[6])

B Vectorized upper diagonal block of the covariance matrix for publishing of the twist
(basically a vector of velocities) of the odometry

Wheels and ICR settings:

1. wheel__separation (double)

® The distance of the left and right wheel(s). The diff _drive_controller will attempt
to read the value from the URDF if this parameter is not specified

2. wheel__radius (double)

46

5.1. The control of the robot’s movement
® Radius of the wheels. It is expected they all have the same size. The diff _drive_ controller
will attempt to read the value from the URDF if this parameter is not specified.
3. wheel__separation_ multiplier (double, default: 1.0)

® Multiplier applied to the wheel separation parameter. This is used to account for a
difference between the robot model and a real robot.

4. wheel__radius_ multiplier (double, default: 1.0)

® Multiplier applied to the wheel radius parameter. This is used to account for a
difference between the robot model and a real robot.

Linear movement limits:

1. linear/x/has_ velocity_ limits (bool, default: false)

® Whether the controller should limit linear speed or not.
2. linear/x/max__velocity (double)

® Maximum linear velocity (in m/s)
3. linear/x/min__velocity (double)

® Minimum linear velocity (in m/s). Setting this to 0.0 will disable backwards motion.
When unspecified, -max__velocity is used.

4. linear/x/has__acceleration__limits (bool, default: false)

® Whether the controller should limit linear acceleration or not.
5. linear/x/max_ acceleration (double)

® Maximum linear acceleration (in m/s?)
6. linear/x/min__ acceleration (double)

® Minimum linear acceleration (in m/s?). When unspecified, -max__acceleration is
used.

7. linear/x/has_ jerk_ limits (bool, default: false)
® Whether the controller should limit linear jerk or not.
8. linear/x/max_ jerk (double)

® Maximum linear jerk (in m/s?).

47

5. Implementation

Angular movement limits:

1. angular/z/has_ velocity_ limits (bool, default: false)

8 Whether the controller should limit angular velocity or not.
2. angular/z/max__velocity (double)

® Maximum angular velocity (in rad/s)
3. angular/z/min_ velocity (double)

® Minimum angular velocity (in rad/s). Setting this to 0.0 will disable counter-
clockwise rotation. When unspecified, -max_ velocity is used.

4. angular/z/has__acceleration__ limits (bool, default: false)

Whether the controller should limit angular acceleration or not.
5. angular/z/max__acceleration (double)

® Maximum angular acceleration (in rad/s?)
6. angular/z/min__acceleration (double)

® Minimum angular acceleration (in rad/s?). When unspecified, -max_ acceleration is
used.

7. angular/z/has_ jerk_ limits (bool, default: false)
8 Whether the controller should limit angular jerk or not.
8. angular/z/max__jerk (double)

® Maximum angular jerk (in rad/s?).

Publishing and subscribing settings.

1. enable__odom__tf (bool, default: true)
® Publish to TF directly or not
2. base__frame__id (string, default: base_link)

® Base frame_ id, which is used to fill in the child_ frame_ id of the Odometry messages
and TF.

3. odom_ frame_ id (string, default: "/odom")

48

5.1. The control of the robot’s movement

® Name of frame to publish odometry in.
4. publish_ rate (double, default: 50.0)

® Frequency (in Hz) at which the odometry is published. Used for both tf and odom
5. cmd__vel timeout (double, default: 0.5)

® Allowed period (in s) allowed between two successive velocity commands. After this
delay, a zero speed command will be sent to the wheels.

6. publish__cmd (bool, default: False)

® Publish the velocity command to be executed. It is to monitor the effect of limiters
on the controller input.

7. allow__multiple__cmd__vel__publishers (bool, default: False)

B Setting this to true will allow more than one publisher on the input topic, ~/cmd_vel.
Setting this to false will cause the controller to brake if there is more than one
publisher on ~/cmd_vel.

B Problems with the driving controller

There was once an attempt to limit the speeding-up acceleration of the robot, but we wanted
the robot to keep slowing down (virtually braking) quickly enough not to collide with an
obstacle. Therefore the linear/x/max_ acceleration was decreased to +5.0 m/s?, but the
original linear /x/min__acceleration negative value was kept at its original negative value
of —20.0 m/s?. Afterwards the limit’s effect has been tested in experiments.

The forward ride showed that the robot’s acceleration has been truly limited while the
slowing down was kept rapid as before, which was correct. But during effort to test the the
robot’s acceleration limit during the backward ride, it has shown that there is an error in the
driving controller’s code. Instead of the same slow acceleration and rapid deceleration,
the robot did it vice versa. It accelerated rapidly and when there was the need to stop it, it
decelerated slowly, which almost caused its collision with a cabinet.

Apparently, the driving controller does not distinguish whether the robot is currently riding
forward or backward, when the controller should swap the limit constants. Instead of it the
controller takes the limit constants as they are, which means that the upper and lower limit,
respectively, don’t mean the limit of acceleration and deceleration, respectively, but it only
blindly limits the actual value of the derivative of the robot’s forward speed.

There was an attempt to correct the controller’s code, to recompile it and to integrate
it to the robot’s jackal__velocity__controller node. The code was corrected, but it could not

49

5. Implementation

be integrated to the robot’s driving node, because it is secured by Clearpath and integrated
deeply in the internal PC’s system as a secured daemon. Therefore the robot is still driven
by the original controller with the conception of the acceleration limiting not distinguishing
the acceleration and deceleration.

B 5.2 Libraries used in the scripts

The scripts are written in the Python language. Is reflects in the libraries used in them. The
used libraries besides the standard python libraries are:

1. Nump - the famous Python library to perform algebraic computations,
2. Matplotli - the famous Python library to plot graphs,

3. Rospy + ROS message description - the ROS interface library for Python along
with the specifications of the ROS messages,

4. Pyrosba - a Python class enabling the script to play a rosbag (= an archive containing
chronologically recorded ROS messages from topics selected by a user) and

D. KBHITﬁ - a Python class implementing the keyboard interrupt manager KBHIT,
enabling to check for and read pending keyboard keys pressed by a user

2 Available at [https://numpy.org/install /|

3 Available at https://matplotlib.org/users/ installing.htmll
* Available at http://wiki.ros.org/rospy]

® Available at [https://pypi.org/project/pyrosbag/|
6 Available at https://gist.github.com/michelbl/efdad8b19d3e587685e3441a74457024

50

https://numpy.org/install/
https://matplotlib.org/users/installing.html
http://wiki.ros.org/rospy
https://pypi.org/project/pyrosbag/
https://gist.github.com/michelbl/efda48b19d3e587685e3441a74457024

5.3. The script for controlling the robot’s driving and generally its measurement

B 53 The script for controlling the robot’s driving and generally
its measurement

As a part of this work, a measurement script, represented by the file print_odom.py, has
been programmed. This script enables to command the robot to drive automatically and
to do automatically other things, such as commanding the laser tracker to measure the
retroreflectors or capturing and saving periodically images from the camera after each n
driven meters. The measurement script also limits the accelerations and jerk, which would
be caused by the commanded linear and angular velocity. Having been initialized, the script
virtually resets the pose of the EKF-fused odometry by publishing a null pose to the topic
/set_pose.

During the measurement, another ROS node, written by colleague Libor Wagner, is used.
It is a ROS node maintaining communication with the laser tracker and providing a service for
measuring an accurate position of a retroreflector with Leica by passing it the retroreflector’s
approximate coordinates in Leica’s frame as an argument.

This script has been written entirely by the author of this work except for 1 item. The
function measure_with_leica(), enabling the script to measure the positions of the wanted
triplet of retroreflectors, has been written by colleague David Stych, during experiments with
the tracking system, and then slightly extended by the author of this work so, that it can
save data for the 2nd experiment.

In order to be able to use the laser tracker, it has to be calibrated. The only thing, which
the laser tracker needs for its calibration, is a solidly placed retroreflector, which may be also
one of the retroreflectors placed on the robot. Then the at4xx-cli program, which has been
also written by Libor Wagner, is called with the arguments --init and --ip <the laser
tracker’s IP address>. Then the laser tracker begins to automatically calibrate itself.

B 5.3.1 Command line arguments of the script
The measurement script can be run with the following arguments:

--trajectory=<line|circle|planned|vive-leica-calibration|none> Specification of how
the following arguments should be taken. Meaning of the values of this argument are:

line means that the --vel-1lin and --vel-ang arguments are commanded.

o1

5. Implementation

circle means that the commanded linear and angular velocities are computed from the
arguments --radius and --angle-rad.

planned means that the robot is controlled by an external source of commanded velocities
and this script is used only for i. e. taking data.

vive-leica-calibration means that the robot is driven manually by the gamepad in
order to obtain data for the 2nd experiment.

none (default) means that the robot is normally driven manually by the gamepad.
--vel-lin=<m_s> Specification of the commanded linear velocity - default 0.5 (m/s).
--vel-ang=<rad_s> Specification of the commanded angular velocity - default 0 (rad/s).

--distance=<meters> Specification of the distance to drive and stop after only when the
line trajectory is specified.

--radius=<meters> Specification of the radius of the circular trajectory only when the
circle trajectory is specified.

--angle-rad=<radians> Specification of the angle to drive and stop after only when the
circle trajectory is specified.

--acc-coef=<n> Specification of the acceleration and deceleration when starting and stopping
automatically

--stop-period-m=<meters> Specification of the distance after which to automatically stop
the robot.

--stop-period-rad=<radians> Specification of the angle in radians after which to auto-
matically stop when the circle trajectory is specified.

--stop-period-deg=<degrees> Specification of the angle in degrees after which to auto-
matically stop when the circle trajectory is specified.

—--photo-period-m=<meters> Specification of the distance after which to automatically
capture an image from the camera.

--photo-period-rad=<radians> Specification of the angle in radians after which to auto-
matically capture an image from the camera when the circle trajectory is specified.

--photo-period-deg=<degrees> Specification of the angle in degrees after which to auto-
matically capture an image from the camera when the circle trajectory is specified.

--auto-reaccelerate=<true|false> Specification of whether to automatically reaccelerate
after having been automatically stopped.

--images-pgm Specification of whether to save captured images in the pgm format.
--images-ppm Specification of whether to save captured images in the ppm format.

--images-npy Specification of whether to save the ROS messages containing the captured
images as a packed Numpy array file (.npy).

52

5.3. The script for controlling the robot’s driving and generally its measurement

--images-folder=<path> Specification of the folder where to save the captured images.
--use-vive Specification of whether to record also poses of the tracking system.

--vive-side=<left|right> Specification of the side of the robot on which positions of the
retroreflectors will be measured by the laser tracker.

—--no-graph Specification of whether not to show the graphs of recorded poses after the
measurement is done.

--use-leica Specification of whether to use the laser tracker to measure positions of the
retroreflectors.

—--print-when-stopped Specification of whether to mark moments when the robot stopped
to the final graph.

--auto-go-forward-and-backward-count=<n> Specification of the count of loops to drive
periodically forward and backward based on the above specified arguments.

--measure-vive-topic=<topic_name> Specification of the name of the topic from which to
record data.

B 5.3.2 Commands of the gamepad

The controls of the gamepad used in this script are the following:

Left joystick Manual driving of the robot.

L2 Dead man switch for this script.

L1 Increased velocity of the manual driving.

X + (O Capture an image by the camera and save it.
X + [0 Terminate the script.

X Decelerate and stop.

A (Re)accelerate and go.

A Start the movement forward.

V Start the movement backward.

(O Measure the positions of the retroreflectors - when the vive-leica-calibration trajec-
tory is speified.

53

5. Implementation

B 54 The script for evaluating the measured data

This script, represented by the file plot_path.py, generally uses the mathematics described
in the chapter It has the following 5 functions. Generally, if it is needed in the
particular functionality it may study data from one or more of the topics mentioned in the
Chapter [3, in the subsection [3.1.3 on page 18|

Bl 5.4.1 Evaluating the results of the 2nd experiment

This functionality is run as python plot_path.py calibrate_vive_leica <datafile_path>,
where the datafile is the file saved after running the script print_odom.py with argument
--trajectory=vive-leica-calibration, described above. It visualizes the error of the pose
of the tracking system towards the referential data measured by the laser tracker in the way
described in the Chapter [6, in the subsection [6.3.2 on page 72l

Bl 5.4.2 Plotting the data from the odometry and IMU topics for a repeated
movement during the 3rd experiment

This functionality is run as python plot_path.py extract_rosbag_data [--save]
[--no-animation] <baglist_path>. There the optional argument --save determines,
whether also data of the IMU have to be visualized. This function is trying to detect
a change of the direction (forward/backward) of the robot’s movement only by observing the
velocities. Whenever the change of the direction is detected in data of one of the observed
odometries, an inverse transform corresponding to the pose of the odometry is computed,
which will be further applied to the poses obtained from the particular odometry in order to
virtually reset it to a null pose when the change of the direction is detected. This is done due
to the fact that during the experiments, this work is trying to study the data of the odometries
as if the robot repeatedly started from the origin, in order to estimate the probabilistic model
of the uncertainty.

B 5.4.3 Extraction of the data from baglists (lists of rosbags)

This functionality is run as python plot_path.py extract_rosbag_data [--save]
[--no-animation] <baglist_path>. There the optional arguments are:

o4

5.4. The script for evaluating the measured data

--save Determines that the user wants to save the recorded data of the odometries for their
further visualization.

--no-animation Determines that the user does not want to visualize the data during their
extraction.

The script extracts data from all the rosbags in the corresponding baglist (see the description
below). It first saves the currently received set of positions of the retroreflectors
measured by the laser tracker, as well as the actual final poses of the odometries.
Then it waits for the next measured positions of the retroreflectors. At the time of receiving
them, the script saves the poses obtained from the data of the studied odometries along with
the positions of the retroreflectors measured by the laser tracker. When the script ends, it
informs the user in the standard output about the location, where it saved the extracted data
as a Numpy packed object (*.npy).

B Description of a baglist

A baglist is a text file containing information about list of input bagfiles. It has the following
format:

® The first row contains 2 items separated by a space:

1. LEFT or RIGHT denoting the side of the robot containing the measured retroreflectors
and

2. a title of the baglist, preferably in quotes
8 The following rows have again a structure of 2 items separated by a space:

1. name of the rosbag file and

2. count of wanted successfully finished loops

® The rows may be commented out by prepending a hashtag (#) sign to it.

Bl 5.4.4 Computing and approximating the resulting mean error vectors and
covariance matrices from the extracted data

This functionality is run in 2 steps. First, the mean error vectors and covariance matrices
are computed and the results are visualized gradually for all the extracted data contained

55

5. Implementation

in datafiles, which were saved during the extraction from the considered partial exper-
iments of the 3rd experiment in the previous step, by running python plot_path.py
evaluate_extracted_data [--no-vive] [--save-statistics] <datafile_path>. There
the optional arguments are:

--no-vive Determines that the extracted data of the tracking system are ignored and are
not processed.

--save-statistics Determines that the user wants to save the mean error vector and the
covariance matrix for further processing in the next step. Therefore this argument has
to be passed.

This informs the user, where it saved the resulting statistics during each run for each of the
saved datafiles extracted from the recorded partial experiments. The mean error vectors and
covariance matrices are computed in the way described in the Chapter 4, in the subsection [4.6.1
on page 40.

Finally, the user obtains the final quadratic approximation of the dependence of the
mean error vector and error covariance matrix on the commanded angular velocity, split
for the positive and for the negative forward velocity, by running python plot_path.py
evaluate_statistics <list of output files from the previous step>. The result-
ing matrices of coefficients of the quadratic approximation are printed to the standard output.
They are computed in the way described in the Chapter |4, in the subsection [4.6.2 on page 42|

B 5.4.5 Replotting the saved data of odometries from the topics

This functionality is run as python plot_path.py replot_saved_odometries [--next]
[--no-xy] <datafile_path>. There the optional arguments are:

--next Determines that the user wants to automatically show the secondarily plot graphs of
angles, velocities and accelerations.

--no-xy Determines that the user does not want to visualize the zy-components of data of
the odometries and just wants to show the secondarily plot graphs of angles, velocities
and accelerations.

It just loads the plot data saved during the extraction step and visualizes them in the
corresponding graphs.

56

Chapter 6

Experiments

. 6.1 The reference coordinate frames considered in the
experiments

The diagram of referential coordinate frames, transforms between them and positions of
retroreflectors towards the referential frames, considered in the experiments, can be seen in
the figure The referential coordinate frames are all orthonormal Cartesian coordinate
frames and are denoted as follows:

W is the world coordinate frame,

L is the Cartesian coordinate frame of the laser tracker,

V is the coordinate frame of the tracking system (V for Vive),

T is the local coordinate frame of the HT'C Vive Tracker attached to the robot,

F is the coordinate frame of the EKF-fused odometry), f (the local coordinate frame of the
robot in the EKF-fused odometry,

R is the coordinate frame of the raw encoder odometry and

r is the local coordinate frame of the robot in the raw encoder odometry.

In the following experiments, the major studied transforms from the point of view of the
accuracy of their sources are

o7

6. Experiments

yI

s

Figure 6.1: Diagram of referential coordinate frames, transforms between them and positions
of retroreflectors towards the referential frames, considered in the experiments. The referential
coordinate frames are all orthonormal Cartesian coordinate frames and are denoted as: W (the
world coordinate frame), L (Cartesian coordinate frame of the laser tracker), V (the coordinate
frame of the tracking system (V for Vive)), T (the local coordinate frame of the HTC Vive
Tracker attached to the robot), F (the coordinate frame of the EKF-fused odometry), f (the local
coordinate frame of the robot in the EKF-fused odometry), R (the coordinate frame of the raw
encoder odometry) and r (the local coordinate frame of the robot in the raw encoder odometry).
The poses of the retroreflectors are expressed by the following vectors. For the i-th retroreflector
(1 € {1,...,6}), the vector 7,1, denotes its position in the coordinate frame L (of the laser tracker),
which is measured by the laser tracker, and the vector r;1 denotes its position in the coordinate
frame T (of the tracker attached to the robot), which is constant and known from a manual
measurement.

Tf‘ obtained from the pose of the raw encoder odometry

TF obtained from the pose of the EKF-fused odometry

T¥ obtained from the pose published by the tracking system

The poses of the retroreflectors are expressed by the following vectors. For the i-th retroreflector
(1 € {1,...,6}), the vector r;;, denotes its position in the coordinate frame L (of the laser
tracker), which is measured by the laser tracker, and the vector r;7 denotes its position in
the coordinate frame T (of the tracker attached to the robot), which is constant and known
from a prior manual measurement.

o8

6.2. Observing the characteristics of the proprioceptive sensors of the robot

B 62 Observing the characteristics of the proprioceptive
sensors of the robot

The robot was driven around a lecture hall (room B-670 on the 6th floor of CIIRC’s building
B, floor plan of which can be seen in the figures through in closed loops. It was
commanded to depart from an accurately defined pose, to drive the planned amount of loops
without returning to the originating pose and to eventually return back to that originating
pose. The robot set out from the spot under the sink next to the room’s main door, facing
the wall with its bottom, and was manually controlled by the gamepad to drive around the
room on the following trajectories:

1. One round around the room driven in the way mentioned above

2. Five rounds around the room driven in the way mentioned above

During this experiment, the following data were recorded and then visualized, observed and
evaluated:

1. raw encoder odometry (denoted by TX)
2. prefiltered IMU data

8 The accelerometer data double integrated for computing the position

B8 The gyroscope data integrated for computing the angle 6

3. filtered odometry as EKF-fused encoder odometry with IMU data (denoted by T})

99

6. Experiments

(a) : Front left view

(b) : Front right view

Figure 6.2: Lecture hall B-670 at CIIRC - front wiews

60

6.2. Observing the characteristics of the proprioceptive sensors of the robot

(a) : Bottom left view

(b) : Bottom right view

Figure 6.3: Lecture hall B670 at CIIRC - bottom views

61

6. Experiments

B 6.2.1 Results of the experiment

B 1 loop around the B-670

Having driven 1 round around the room, the recorded data of the odometries and integrated
IMU data can be seen the graphs in the figures [6.4} 6.5 and [6.6.

It is apparent from the plots of data seen in the figures |6.4] through [6.9| when having driven
1 loop, that:

1. The raw encoder odometry keeps the information about driven distance relatively
accurately, but not the information about the robot’s orientation.

2. The IMU integrated data (including single- and double-integrated accelera-
tions and single-integrated angular velocities obtained from the IMU) keeps
the information about the robot’s orientation relatively accurately (the only differ-
ences are caused by the fact that at some time intervals, the angles of IMU and the
EKF-fused odometry are wrapped to 7 differently), but not the information about
the robot’s position.

3. The EKF-fused odometry keeps the information about both the driven distance
and the robot’s orientation relatively accurately.

It implies that the EKF-fused odometry apparently counts with the distance data from the
encoder odometry and with the orientation data from the IMU.

It is also apparent from the graphs in the figures 6.4, [6.5] and [6.7] through [6.9) that the
IMU has biased accelerations. It is probably caused by a slight tilt of the IMU device
from the ideal horizontal position. If we study the velocities and accelerations, graphs of
which are shown in the figures |6.7 and 6.8, respectively, it appears that both the x and y
components of the acceleration vector are biased, as the velocities, obtained by integrating
the IMU accelerations, keep growing. In order to prove this claiming, the acceleration means
were computed as

n
a==> a, (6.1)
i=1
where a; is the respective z- or y-component of the i-th processed item of acceleration vectors
published by the IMU and n is the total count of those processed acceleration vectors. The
results

SRS

iz = 0.0693 m/s?
@, = 0.0565 m/s>

62

6.2. Observing the characteristics of the proprioceptive sensors of the robot

T T
odometry_filtered

odometry_raw
odometry_IMU

10

e : e

y [m]

—20

—30

—50

=50 —=40 =30 -20 -10 0 10 20 30
x [m]

Figure 6.4: X-Y-data of odometries and IMU (1 round)

prove the claiming, as the non-zero mean accelerations mean that the accelerations will always
have values such that they keep integrating, which results in permanent virtual acceleration
seen in the trajectories taken from the double-integrated accelerations.

If we take another look at the graph of the velocities in the figure we can see that
the y-velocity of the integrated IMU accelerations is non-zero, whereas the y-velocities of
the raw and filtered odometry are always zero. It explains the phenomenon that the path of
the double-integrated IMU accelerations, shown in the figure [6.4, is significantly rotated in
comparison with the EKF-fused path. It is so because the non-zero values of the y-components
of the accelerations sensed by the IMU integrate into the non-zero lateral velocities and thus
manifest in the tilt of the estimated trajectory against the real trajectory. In addition, since
the accelerations are in the robot’s local coordinate system, the local estimated trajectory
contributions from the double-integrated IMU accelerations are always rotated by the actual
estimated angle 6.

As it is apparent from the graph in the figure that both the raw encoder odometry
and the filtered odometry do not consider the y-component of the velocity. Eliminating the

63

6. Experiments

T
odometry_filtered
odometry_raw
odometry_IMU

P
.:"'"

y [m]

-10

-15

0 5 10 15 20
x [m]

Figure 6.5: X-Y-data of odometries and IMU (1 round, detail)
y-component of the velocity of IMU, we get the following graph in the figure There we
can see that the orientation of the trajectory computed from the IMU data corresponds to

the orientation of the trajectory obtained from the data of the filtered odometry and also
apparently reflects robot’s real trajectory.

B 5 loops around the B-670

Driving 5 rounds around the room has only proven the deductions. It can be seen in the
graphs in the figures through that the EKF-fused odometry agrees

1. with the raw encoder odometry in distances, but not angles, and

2. with the IMU-integrated-data odometry in angles (orientation), but not dis-
tances.

64

6.2. Observing the characteristics of the proprioceptive sensors of the robot

— theta_raw
— theta_filtered
— theta_IMU

5.0

2.5

B[rad]

25

5.0

4 10 20 30 40 50 60
time [s]

Figure 6.6: §-t-data of odometries and IMU (1 round)

B 6.2.2 Implications

The results of this measurement lead to the following implications about the sources of
the uncertainty of the robot’s odometry:

1. The accuracy of the estimated distance depends explicitly on the encoder odome-
try.

2. The accuracy of the estimated orientation depends explicitly on the IMU.

65

6. Experiments

Vi [m/s]

a,[m/s?]

T T 4 T T
— mw — w
—— filtered —— filtered 06
— mMu ,f\“ — My ,JMJN
A Md /\JJ ! o
A r\' v
4 ¥ 3 I
04
A
v) 02
o o
E E
B T oo l'
1 '/
{ / -02 I
\J I .
L i
W L] — rw
o — filtered
—
!
o 0 20 3 40 50 60 0 0 20 30 4 50 60 [0 20 30 4 50 60

time [s]

time [s]

time [s]

Figure 6.7: Robot’s velocities from data of odometries and IMU (1 round)

T
— nw

T
— nw

15
—— fletered —— fletered
— MU — MU
| 1.0
” | il
% %
E B
< &
0.0 +
q Fr
| | ‘l
Ji——
Lo —— filetered |
— IMU
10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

time [s]

time [s]

time [s]

Figure 6.8: Accelerations from data of odometries and IMU (1 round)

66

y [m]

6.2. Observing the characteristics of the proprioceptive sensors of the robot

- odometry_filtered
- odometry_IMU

- odometry_raw
;

-30 -20 -10

Figure 6.9: X-Y-data of odometries and IMU (eliminated y-velocities, 1 round)

T
odometry_filtered
odometry_raw
odometry_IMU

100

y [m]

-100

—200

—300 —200 —100

x [m]

Figure 6.10: X-Y-data of odometries and IMU (5 rounds)

67

6. Experiments

BERF IR

odometry_filtered
odometry raw
odometry_IMU

[; -
- ; .
T .

y [m]

-10

] : B T DY T S ST, G S
. ._rp:hl::‘.. Chaa ..‘-1"\'-.___.-’ o
e h . ."'-:-‘.'.. 1"
.) : . . o T "\'.‘

10

Figure 6.11: X-Y-data of odometries and IMU (5 rounds, detail)

68

20

y [m]

6.2. Observing the characteristics of the proprioceptive sensors of the robot

— theta_raw
— theta filtered

75

— theta_IMU

6lrad]
1
D)
{
I
1

Figure 6.12: #-t-data of odometries and IMU (5 rounds)

- odometry_filtered
- odometry_IMU
T - odometry_raw

-200 -100 0 100

Figure 6.13: X-Y-data of odometries and IMU (eliminated y-velocities, 5 rounds)

69

70

6.3. Measuring the accuracy of the tracking system data

. 6.3 Measuring the accuracy of the tracking system data

The goal of this experiment is to determine how accurately the tracking system’s estimated
pose, determining the transform T\T/, reflects the actual pose of the tracker attached to the

robot, depending on the robot’s distance from the pose where the transform ’_ZA“%, used in
the guidance system has been estimated during the calibration. The calibration is further
described back in the Chapter [4] in the section [4.5 on page 36l According to the result of this
experiment, the processing of the next experiment will be adjusted.

B 6.3.1 Performing the experiment

The experiment was performed in a closed area such that the tracker system does not start
halting, which happens when the robot gets to a position that is not well observable by the
tracker system. For the experiment, a grid of 8 x 3 visual markers, placed in an area of 2 m
x 3.5 m, which can be seen in the figure [6.14, has been prepared on the floor. This grid serves
only for marking the approximate stopping points of the robot, being controlled manually
with the gamepad during this experiment.

The principle of the experiment is the following. The robot is being manually controlled
by the gamepad to stop at each of the grid’s land markers, driving so that there is an effort
to keep the direction of its local z-axis (its facing direction) parallel to the lines connecting
the longer edge of the land markers grid. During each of the stops, the positions of the
set of retroreflectors on the robot’s right side are measured by the laser tracker, facing the
mentioned longer edge perpendicularly so that it sees the robot from the side, as can be seen
in the figure [6.15al.

The positions of the retroreflectors on the right side of the robot measured by the laser
tracker, ri1, through 731, are saved along with the actual corresponding set of estimated
positions of the retrorflectors, 711, through 731, , estimated by the previously calibrated
guidance tool from the tracking system’s 6DOF pose, as has been described in the Chapter
4] in the section |4.5 on page 36. The triplet of the positions of the retroreflectors mounted on
the side of the robot, which faces the laser tracker, estimated by the guidance tool system
unequivocally determines the 6DOF pose of the tracker, mounted on the robot, estimated by
the tracking system. The reference frames related to this experiment and relations among
them are depicted in the diagram in the figure 4.4 on page 39. From there and from the
description in the mentioned section 4.5 on page 36, it is apparent that we can evaluate the
accuracy of the tracking system by comparing the corresponding triplets of the measured
and of the estimated positions of the retroreflectors, 11, through 31, and 711, through 73p,,
respectively. Doing the comparison, we may particularly study how the accuracy of the pose

71

6. Experiments

Figure 6.14: Land markers grid for approximate stopping

of the tracker, mounted on the robot, estimated by the tracking system evolves with increasing
distance from the pose of the robot, where the guidance tool was calibrated.

During this experiment, the tracking system Lighthouses are placed and tilted so that their
view ranges can include the entire measurement scene and the tracking system’s pose can be
thus estimated without problems, as can be seen in the figures [6.15a and [6.15bl As has been
mentioned, the tracking system is sensitive to external radiation. Therefore the experiment
was performed with drawn curtains and dimmed light.

B 6.3.2 Results of the experiment

The characteristics of the X Y-data of centroids of position vectors ri1, through r31, and 71y,
through 731, obtained at each of the landmarks of the grid described above, can be seen in the
following graph in the figure Those centroids ¢; and ¢&;, respectively, are computed using

the equation (4.30) with substitutions A} = [rilL rh réL] and A} = |7}, 7 ’?QL],

72

6.3. Measuring the accuracy of the tracking system data

respectively, where 7 denotes the number of the measurement. There we may see

1. the geometric centers c; of triplets of retroreflector poses r’iL through rgL mea-
sured by the laser tracker as “diamonds”,

2. the geometric centers ¢; of triplets of retroreflector poses 7}, through 74 esti-
mated from the tracking system by the guidance tool as blue points and

3. the error vectors from centroids ¢; of ri; through r%; to centroids ¢; of 711 through
751, having their length multiplied by 25 (for better illustration), this computed as

vl =25(¢ — ¢;) (6.2)

as black arrows.

The resulting figure shows that the tracking system odometry is not accurate enough
to be used as a referential source of odometry, yet that it is accurate enough to be
used for guiging the laser tracker to the approximate locations of retroreflectors,
as it can be seen from the figure that the largest error vector is only about 90 mm long, which
is good enough for the laser tracker to adjust itself to the retroreflector (which is proven by
the fact that the laser tracker was automatically guided by the tracking system-estimated
retroreflector poses during this experiment). The tracking system odometry is thus enabling us
to automatize the measurement process of the following experiment with use of the guidance
tool.

73

6. Experiments

(a) : the laser tracker and the first Lighthouse

(b) : The second Lighthouse

Figure 6.15: Setup of the measurement of the tracking system’s linearity and accuracy

74

4000

3000

2000

y [mm)]

1000

6.3. Measuring the accuracy of the tracking system data

| | |
® Vive centroids

= - & Leica centroids -

e

N

L .

e

1000 1500 2000 2500 3000

X [mm]

Figure 6.16: XY -characteristics of the tracking system centroids compared to the laser tracker
centroids (arrows denote the error vectors mutliplied by 25) through the landmark grid

75

76

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

. 6.4 Measuring and estimating the uncertainty of the
EKF-fused odometry of the robot

The goal of this experiment is to determine the probabilistic model of the uncertainty of the
robot’s odometry and to approximate the contribution to the ucertainty depending on the
commanded liner and angular velocity and on the driven distance. The reference data, for
comparing the odometry with which, were taken from the laser tracker measurement. The
odometry is thus compared with the laser tracker data in order to model its uncertainty.

During this experiment, we need first to model the uncertainty of the EKF-filtered odometry
by a mean error vector and an error covariance matrix, based on the experimental data and
the commanded velocities and driven distances. Subsequently, we need to approximate the
contribution to the mean error vector and the error covariance matrix based on the commanded
forward and angular velocities and the increment of the driven distance. The mathematical
background for this experiment is described in the Chapter 4, in the section 4.6 on page 40.

B 6.4.1 Performing the experiment

During this experiment, the robot was controlled by the measurement script to drive repeatedly
forward and backward for at least 50 times the distance of 3 m with the commanded forward
velocities of 0.5 m/s and -0.5 m/s and the following commanded angular velocities: 0 rad/s,
0.1 rad/s, 0.2 rad/s, -0.1 rad/s and -0.2 rad/s.

Please note that the velocities, respectively the accelerations were limited during the
acceleration and deceleration so that the robot smoothly accelerates and stops, doesn’t skid
and drives the distance of 3 m as accurately as possible (at least what concerns the estimated
distance from the EKF-fused odometry).

Before the first acceleration and after each following deceleration, the positions of the
retroreflectors mounted on the robot’s side facing the laser tracker were automatically measured
by the laser tracker. the laser tracker faced roughly perpendicularly the baseline of the
robot’s movement during this experiment in order to maintain sufficiently small reflection
angles bettween the laser tracker and the prisms of the retroreflectors. the laser tracker
was commanded by the measurement script to measure the 3D point corresponding to the
estimated positions of the retroreflectors, which were estimated by the node guiding the laser
tracker according to the tracking system’s pose.

We want to reset the pose of an odometry to the origin with null orientation every time the

77

6. Experiments

robot changes its direction of movement. Originally the measurement script reset the pose
of an odometry when a change of the direction in that odometry was detected, but it has
proved to be inaccurate. So the actual version resets poses of all odometries when a message
containing a triplet of positions of the retroreflectors is received.

When the experiment was performed, data from various sources of information about the
pose of the robot were recorded, including

1. raw encoder odometry determining the transform T?,
2. EKF-fused odometry determining the transform TF ,
3. the 6DOF pose of the tracking system determining the transform T¥,

4. estimated positions of the retroreflectors denoted by the vectors 711, through 7¢,,
published by the guidance tool and

5. positions of retroreflectors measured by the laser tracker denoted by the vectors
711, through rgr.

As has been mentioned, the tracking system is sensitive to external radiation. Therefore the
experiment was performed with drawn curtains and dimmed light.

B 6.4.2 Processing the data

Besides studying how the odometries and the robot’s real pose evolve during the repeated
movement, we want to study mainly the characteristics of relative errors of the data of the
odometries during the robot’s repeated movement as if the robot set out each time from
the origin, both during its forward and backward movement. The data are first
extracted from the recorded rosbags and subsequently, the extracted data are studied and
evaluated.

The measured data data are extracted in the way described in the Chapter |5, in the subsec-
tion [5.4.3 on page 54l During the extraction, the sets of positions of the retroreflectors
measured by the laser tracker and the actual final poses of the odometries are
obtained.

These final poses and measured positions of the retroreflectors are processed and evaluated
in the way described in the Chapter |4, in the section 4.6 on page 40.

78

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

B 6.4.3 Results of the partial experiments for the different commanded
velocities

The visualization of results of this experiment can be seen in the graphs in the following
figures through [6.104, described in a more detailed way below.

The main goal of this experiment is to obtain a set of

® means of error vectors pe(vy, Vg, irpyy) (“mean error vectors”) of the data of the
filtered odometry towards the reference data measured by the laser tracker and

® their respective error covariance matrices X¢ (v, vy, irpu),

where

® 9, is the commanded forward velocity (expressed in m/s),
® 9y is the commanded angular velocity (expressed in rad/s) and

® ;v is a Boolean value of whether the IMU has been initialized properly or not
(true/false)

The problem of proper or improper initialization of the IMU is described below. Briefly,
sometime it happens that the IMU does not initialize properly during the booting of the
robot, which has a significant impact on the accuracy of the filtered odometry, which was
learned after the experiments were done from the recorded data. Let us then briefly study
the results of each of the 5 kinds of trajectory (and their respective commanded velocities
and states of the initialization of the IMU).

B Driving straight 3 meters forward and backward at 0.5 m/s

This trajectory was driven in 53 successfully recorded loops. Particularly this experiment
was performed with 2 several hours long breaks after first 13 and first 32 successfully
measured entire loops, which showed one important source of errors. Depending on whether
the IMU initializes properly during the robot’s boot-up, the filtered odometry is
either significantly accurate or much less accurate. The effect of the IMU’s improper
initialization can be seen in the graphs in the figures and [6.18], respectively, where we

79

6. Experiments

Riding forward and backward STRAIGHT 3m 0.5m/s
Relative errors graph

0.10
0.05
Odometry forward errors
e Odometry backward errors
- 0.00 SRR EREEE M - Vive forward errors 1
' - I ! - . - . .. - Vive backward errors
-0.05 s e B :
-0.10

0 10 20 30 40 50
Experiment no. [-]

Figure 6.17: Dependency of the y-component of the local error of the odometry on the loop’s
order number (straight trajectory)

can see the y-components and f-components, respectively, of the local error vector (in the
final pose of the trajectory) depending on the loop’s order number. The same goes for the
accuracy of the tracking system’s odometry according to the calibration accuracy. Whereas
the filtered odometry was more accurate during the first 32 loops and then the
improperly reinitialized IMU caused the increase in the values of the error vector components,
the tracking system’s odometry was more accurate from the 14th to the 32nd
loop.

It leads to the implication that the uncertainty of the filtered odometry has 2
distinct probabilistic distributions, depending on whether the IMU has been
initialized properly or not. It will have to be determined whether the IMU is initialized
properly or not in the resulting improved localization algorithm. As will be seen further, it can
be determined from the behavior of the difference between the 8-components of
the filtered odometry and of the raw encoder odometry. If the difference is constantly
null or a very small number, which does not change, as may be seen in the figure [6.33], it
means that the IMU has not been initialized properly, whereas if the difference changes in
time, as may be seen in the figure |6.25 (where the angles have even different signs), it means
that the IMU has been initialized properly.

80

Brad]

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s
Relative errors graph

0.04
0.02
0.00
] 1]
; .
L]
-0.02
Odometry forward errors
—0.04 4+ Odometry backward errors
Vive forward errors
Vive backward errors
| |

0 10 20 30 40 50
Experiment no. [-]

Figure 6.18: Dependency of the f-component of the local error of the odometry on the loop’s
order number (straight trajectory)

81

6. Experiments

The robot’s trajectories and their final poses were read from:

1. the raw encoder odometry (only in some of the figures),
2. the filtered odometry and

3. the the tracking system odometry.

The final poses correspond to the poses at the moment right before the robot changes the
direction of its drive from forward to backward or vice versa, which is assumed to right after
having had its pose measured by the laser tracker. The plots of the robot’s final poses,
or of the entire trajectories (if specified in the captions), adjusted always to the null
position when changing its direction, along with the respective graphs of errors,
can be seen

1. in the figures |6.19"| through |6.24| for all the loops (including both first interval with
smaller error (first 32 loops) and second interval with larger error (last 21 loops)),

® There is apparent that some trajectories of the filtered odometry (in the first interval)
are outlying from the raw encoder odometry trajectories, whereas other trajectories
of the filtered odometry (in the second interval) correlate with the raw encoder
odometry trajectories, which means that no information from the IMU was then
received.

2. in the figures 6.25| through |6.32| with details for the first interval of loops and

3. in the figures [6.33| through |6.40) with details for the second interval of loops.

The graphs show that the robot keeps subtly steering left it the direction of its
driving, even though it is commanded to drive straight with null angular velocity. In reality
it results in permanently increasing tilt of the direction of the robot’s straight
trajectory counter-clockwise, which may be seen in the graph in the figures|6.41] and |6.42
where the the poses are not adjusted to the null position when changing the robot’s direction.
Also final poses estimated from the laser tracker measurement appear in some of the graphs
(marked in the legends of the particular graphs).

In the plots, it can be seen that even the raw encoder odometry notices slight steering
leading to a zig-zag-like trajectory instead of straight trajectory. This means that it is sensed
by the IRC’s of the robot’s motors, which leads to the conclusion that this phenomenon
is not caused only by the robot’s physics, yet it is caused also by a sort of error in the

!Please note that the outlier points in the graphs of trajectories are caused only by an imperfection in the
data processing script.

82

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

odometry_VIVE_WMO_pose
odometry_raw ~y
odometry_filtered

y [m]

x [m]

Figure 6.19: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving straight
forward and backward (both intervals; straight trajectory - null angular velocity)

Differential driving controller (described above in the subsection , which controls
the robot’s skid-steering driving. In addition, in case of properly initialized IMU, we may
see in the graph of #-components of the odometries in the figure that the real value
of 6 estimated by the filtered odometry (of course with some uncertainty) has signs mostly
opposite of the signs of #-components of the raw encoder odometry.

83

6. Experiments

A

I
l
T |
[0
5 |
-1
-2
— theta_raw
— theta_filtered
—— theta_VIVE_WMO_pose
_3 +
0 2500 5000 7500 10000 12500 15000 17500
time [s]

Figure 6.20: Plot of -data of the robot’s adjusted trajectories when repeatedly driving straight
forward and backward (both intervals; not much legible, rather for the idea of breaks between the
sub-intervals - detailed graphs will follow below)

Riding forward and backward STRAIGHT 3m 0.5m/s
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses
mmm Odometry forward poses
Leica backward poses
2.0 mmm Odometry backward poses |
mmm Odometry forward errors
mmm Odometry backward errors
mmm Vive forward poses
mmm Vive backward poses
15 Vive forward errors 1
mmm Vive backward errors
— 10
E
<
0.5
-l
-0.5
-3 -2 -1 o 1 2 3
x[m]

Figure 6.21: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of odometries (both intervals; straight trajectory - null angular
velocity)

84

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s
Absolute values and errors graph
(direction of the arrows means the angle)

T
Leica forward poses
EEm Odometry forward poses
mm Leica backward poses
mmm Odometry backward poses
mmm Odometry forward errors
mmm Odometry backward errors
0.15 mmm Vive forward poses 4
B Vive backward poses
Vive forward errors
Emm Vive backward errors
0.10
E
-
—
0.05
N
|——
.
—
==
J ey
—
—
0.00

x[m]

Figure 6.22: Plot of final poses of the robot’s adjusted trajectories of odometries (both intervals;
straight trajectory - null angular velocity, forward detail)

Riding forward and backward STRAIGHT 3m 0.5m/s
Absolute values and errors graph
(direction of the arrows means the angle)

0.100
Leica forward poses
Emm Odometry forward poses
mmm Leica backward poses
mmm Odometry backward poses
0.075 mmm Odometry forward errors [|
mmm Odometry backward errors
mmm Vive forward poses
mE Vive backward poses
0.050 Vive forward errors H
mmm Vive backward errors
—
—s —
2
0.025 %"
E o000 -
> e
-0.025 % — e
= T
=
=
> —
= 13
—0.050 7?’_@%3—5
=
—0.075 "’
—0.100
-3.050 -3.025 -3.000 -2.975 —2.950 -2.925 -2.900 -2.875 -2.850
x[m]

Figure 6.23: Plot of final poses of the robot’s adjusted trajectories of odometries (both intervals;
straight trajectory - null angular velocity, backward detail)

85

6. Experiments

Riding forward and backward STRAIGHT 3m 0.5m/s
Relative errors graph
(direction of the arrows means the angle)

Em Odometry forward errors
mmm Odometry backward errors
mmm Vive forward errors.

mmm Vive backward errors

y [m]
o
o
<]

—0.05

-0.10

-0.15
—0.05 0.00 0.05 0.10 0.15 0.20 0.25

x [m]

Figure 6.24: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (both intervals; straight trajectory - null angular velocity)

— theta_raw

— theta_filtered
— theta VIVE_WMO_pose (" u”"’"

L
P,

¥
I
%T‘-

6lrad]

|
s g
N N% IEEANEARTEN

—0.01 - ,
LR VWLVVRVWV 1% A
([

time [s]

Figure 6.25: Plot of f-data of the robot’s adjusted trajectories when repeatedly driving straight
forward and backward (first part of the first interval; note that here the raw encoder odometry
has even values with opposite signs)

86

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s first
Absolute values and errors graph
(direction of the arrows means the angle)

y [m]

150
Leica forward poses
= Odometry forward poses
125 mmm Leica backward poses il
mmm Odometry backward poses
100 B Odometry forward errors
g BEm Odometry backward errors
m Vive forward poses
075 = Vive backward poses J
Vive forward errors
. Vive backward errors
0.50
0.25
am—p
oo | — Ty —-_—
=025
-3 -2 -1 0 1 2 3
x[m]

Figure 6.26: Plot of final poses and error vectors (towards the laser tracker final poses) of

the robot’s adjusted trajectories of odometries (first interval; straight trajectory - null angular
velocity)

Riding forward and backward STRAIGHT 3m 0.5m/s first
Absolute values and errors graph
(direction of the arrows means the angle)

T T
Leica forward poses
= Odometry forward poses
0.16 m Leica poses B
EEm Odometry backward poses
= Odometry forward errors
= Odometry backward errors
0.14 mmm vive forward poses i
I Vive backward poses
Vive forward errors
Hm vive backward errors
0.12
0.10
E
-
0.08
0.06 —
>
0.04 =
===,
—
e =
0.02 1
—
—
294 2.96 2.98 3.00 3.02 3.04 3.06 3.08
x[m]

Figure 6.27: Plot of final poses of the robot’s adjusted trajectories of odometries (first interval;
straight trajectory - null angular velocity, forward detail)

87

6. Experiments

Riding forward and backward STRAIGHT 3m 0.5m/s first
Absolute values and errors graph
(direction of the arrows means the angle)

T T
Leica forward poses
mmm odometry forward poses
Leica backward poses
BB Odometry backward poses
0.06 mmm Odometry forward errors |
Em Odometry backward errors
mmm vive forward poses
mEm Vive backward poses
_ Vive forward errors
0.04 = Vive backward errors 7
P p— —
——
1 ——
> —=a 5 o
———==
0.02 —
E
=
0.00 ——
—0.02
—0.04
—0.06
—3.02 —3.00 -2.98 —2.96 —2.94 -2.92 -2.90

x[m]

Figure 6.28: Plot of final poses of the robot’s adjusted trajectories of odometries (first interval;
straight trajectory - null angular velocity, backward detail)

Riding forward and backward STRAIGHT 3m 0.5m/s first
Relative errors graph

T T T T T
[1o
0.06 - ©T73 20 |
] 0 30
0.04 1 - Odometry forward errors |
. + Odometry backward errors
0.02
— 1 s S e
-E- 0.00
- |
—-0.02
-0.04
-0.06 -

-0.06 -0.04 —0.02 0.00 0.02 0.04 0.06
% [m]

Figure 6.29: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; straight trajectory - null angular velocity)

88

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s first
Relative errors graph

T T T T T
[1o
0.06 £ 20 i
) I 30
0.04] Odometry forward errors |
T Odometry backward errors
0.02 -
E=)]
E o000
=)
—-0.02
-0.04 1
-0.06 -

-0.06 —0.04 -0.02 0.00 0.02 0.04 0.06
x [m]

Figure 6.30: Plot of z and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; straight trajectory - null angular velocity)

Riding forward and backward STRAIGHT 3m 0.5m/s first
Relative errors graph

T
0.03 7 3 1o
] oo 20
0.02 1 L 30 M
Odometry forward errors
1 Odometry backward errors
0.01 1 i 7
= 0.00
- 4
E
)]
—0.01 |
-0.02 1
-0.03 1
~0.04

—0.04 —0.03 —-0.02 —0.01 0.00 001 002 0.03
y [m]

Figure 6.31: Plot of y and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; straight trajectory - null angular velocity)

89

6. Experiments

Riding forward and backward STRAIGHT 3m 0.5my/s first
Relative errors graph
(direction of the arrows means the angle)

Odometry forward errors
= Odometry backward errors |
= Vive forward errors

mmm Vive backward errors

y[m]

—0.05

=0.10

-0.10 —0.05 0.00 0.05 0.10
x[m]

Figure 6.32: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (first interval; straight trajectory trajectory - null angular velocity)

— —
— theta_raw

—— theta filtered

—— theta_VIVE_WMO_pose

TIHHAREHER T T HL LR U

-0.02

-0.04

!

15800 16000 16200 16400 16600 16800 17000
time [s]

Figure 6.33: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving straight
forward and backward (the entire second interval; note that here, the filtered odometry has the
same values as the raw encoder odometry)

90

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s second
Absolute values and errors graph
(direction of the arrows means the angle)

150
Leica forward poses
mmm Odometry forward poses
125 mem Leica backward poses -
mmm Odometry backward poses
mmm Odometry forward errors
1.00 mmm Odometry backward errors |

mmm Vive forward poses

075 = Vive backward poses 1
Vive forward errors

mmm Vive backward errors

0.50
0.25
—
0.00 ﬁ = s —
-0.25
5 3 7 0 1 2 3

x[m]

Figure 6.34: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of odometries (second interval; straight trajectory - null angular
velocity)

Riding forward and backward STRAIGHT 3m 0.5m/s second
Absolute values and errors graph
(direction of the arrows means the angle)

T T
Leica forward poses
EEm Odometry forward poses
0.150 m Leica backward poses
EEm Odometry backward poses
Em Odometry forward errors
EEm Odometry backward errors
0125 Bl Vive forward poses |
. Em Vive backward poses
Vive forward errors
Bl Vive backward errors
0.100
0.075
E
>
0.050
0.025
0.000
—0.025 g
=
—0.050
2.950 2.975 3.000 3.025 3.050 3.075 3.100 3125 3.150
x [m]

Figure 6.35: Plot of final poses of the robot’s adjusted trajectories of odometries (second interval;
straight trajectory - null angular velocity, forward detail)

91

. Experiments

Riding forward and backward STRAIGHT 3m 0.5m/s second
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses.
= Odometry forward poses

Leica backward poses
= Odometry backward poses
= Odometry forward errors
0.02 = Odometry backward errors
W Vive forward poses
B Vive backward poses

Vive forward errors

EEm Vive backward errors

-0.04

—0.06

-0.08
-3.02 -3.00 —2.98 —2.96 —-2.94 —-2.92 —2.90
x[m]

Figure 6.36: Plot of final poses of the robot’s adjusted trajectories of odometries (second interval;
straight trajectory - null angular velocity, backward detail)

Riding forward and backward STRAIGHT 3m 0.5m/s second
Relative errors graph

T
1o
0.00 L0 20 i
i 30

. Odometry forward errors
- Odometry backward errors |

—-0.02

y [m]
&
o
s

—0.08

-0.04 -0.02 0.00 0.02 0.04
x [m]

Figure 6.37: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (second interval; straight trajectory - null angular velocity)

92

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward STRAIGHT 3m 0.5m/s second
Relative errors graph

T T T
] [T
0.04 1 {‘C-@?‘,‘"} 20 T
N 3y
p Odometry forward errors
0.02 + Odometry backward errors
= 0.00
E]
=]
—-0.02
—0.04 IFcx 33 i
| LS

-0.04 —0.02 0.00 0.02 0.04
x [m]

Figure 6.38: Plot of z and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (second interval; straight trajectory - null angular velocity)

Riding forward and backward STRAIGHT 3m 0.5m/s second
Relative errors graph

0.04

0.02

0.00

Blrad]

—0.02

—-0.04

Odometry forward errors

Odometry backward errors

| | | |
T T T T T T T T T T

T T T T T T T T T T T
-0.08 -0.06 -0.04 -0.02 0.00 0.02
y [m]

—0.06

Figure 6.39: Plot of y and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (second interval; straight trajectory - null angular velocity)

93

6. Experiments

Riding forward and backward STRAIGHT 3m 0.5m/s second
Relative errors graph
(direction of the arrows means the angle)

T
0.10 — i
fA— BN Odometry forward errors
@ M Odometry backward errors
= = Vive forward errors
M mmm Vive backward errors
0.05
E
> 0.00
—0.05
f ——
¥
-0.10 =
—0.05 0.00 0.05 0.10 0.15

x[m]

Figure 6.40: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (second interval; straight trajectory - null angular velocity)

T
odometry filtered

06 - odometry_VIVE_WMO_pose |
odometry_raw

0.4

0.2

0.0

y [m]

0.0 0.5 1.0 15 2.0 2.5 3.0
x[m]

Figure 6.41: Plot of XY-data the robot’s trajectories of unadjusted odometries when repeatedly
driving straight forward and backward (first 12 successful rounds)

94

B[rad]

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

T
—— theta_raw

—— theta filtered

—— theta_VIVE_WM0_pose

” o
L

) YiavE
FWWWWI%WN
=~ o~

0 100 200 300 400 500 600 700

time [s]

Figure 6.42: Plot of #-data of the robot’s trajectories of unadjusted odometries when repeatedly
driving forward and backward (first 12 successful rounds)

95

6. Experiments

Results from the part with properly initialized IMU. All the data from the part of the
experiment, where the IMU had been properly initialized and thus had led to smaller error
vectors, have been measured and processed. We can see from the plots of relative error vectors
in the figures |6.29 through [6.31 that the distribution of the relative error vector can
be approximated by a 3-dimensional normal distribution (as of z, y,). The claiming
is based on the fact that all the 3 pairs of the z-components, y-components and #-components
of the error vectors lie mostly within the 20-ellipses of confidence, of course with some
appearances within the 3o-ellipses, and at the same time it is obvious that they appear to
be evenly distributed and do not form visible distinct sets of points. There are also
some occasional outliers, but they are so few that we can neglect them for the approximation
purposes of this work. Eventually the #-components appear to keep normally distributed
around a certain mean value. Therefore the probabilistic distribution of the EKF-filtered
odometry of the relative error vector for this set of velocities during the forward movement

®m oy, =0.5m/s

® vy = 0.0rad/s

with properly initialized IMU can be characterized by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
(0.5, 0, true) = [0.0484m —0.0086 m —0.0070 rad (6.3)
10.540 - 1076 m? —1.810-107%m? —2.978-10%rad - m
3(0.5,0,true) = | —1.810-107%m? 28.213-107%m? 13.164-10 %rad - m
—2.978-10%rad -m 13.164-10%rad-m 19.737- 106 rad?
(6.4)

2. The backward movement errors mean vector and covariance matrix:

T
pe(=0.5,0, true) = [~0.0493m 0.0059m —0.0059 rad] (6.5)
14.533 - 1076 m? —3.483 - 1076 m? 10.948 - 10~ % rad - m
3e(—0.5,0,true) = | —3.483 - 1076 m? 13.197 - 1075 m? —10.703 - 10 %rad - m
10.948 - 107 %rad -m —10.703-10%rad-m 29.023 - 1076 rad?
(6.6)

Results from the part with improperly initialized IMU. All the data from the part of the
experiment, where the IMU had not been properly initialized and thus had led to larger error
vectors, have been measured and processed. We can see from the plots of relative error vectors
in the figures [6.37] through [6.39| that the relative error vector can be approximated

96

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

by a 3-dimensional normal distribution in the same way and from the same reason as
the error vectors from the interval of properly initialized IMU. Therefore the probabilistic
distribution of the EKF-filtered odometry of the relative error vector for this set of velocities
during the forward movement

=y, =0.5m/s

® vy = 0.0rad/s

with improperly initialized IMU can be characterized by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
1e(0.5,0, true) = [0.0454m —0.0744m —0.0438 rad| (6.7)
11.176 - 1075 m? —2.600-107m? —1.395-10"%rad-m
3(0.5,0, true) = | —2.600 - 1076 m? 20.601-107°m? 8.722-10 %rad-m
~1.395-10%rad-m 8.722-10%rad-m 4.522-107%rad?
(6.8)

2. The backward movement errors mean vector and covariance matrix:

T
pe(—0.5,0, true) = {—0.0466111 —0.0505m 0.0365 rad (6.9)
3.814 - 1079 m? 0.299 - 1075 m? —0.237-10"%rad - m
3e(—0.5,0,true) = | 0.299 - 1076 m? 4.204 - 1075 m? —1.341-107%rad - m
—0.237-107%rad-m —1.341-10%rad - m 1.590 - 1076 rad?
(6.10)

For the purposes and scope of this work, the statistics of the tracking system odometry will
not be studied, as the graphs depicting them for the straight direction have provided us with
a sufficient overview of those statistics and the tracking system will not be present during
the robot’s ordinary operation. Therefore the tracking system characteristics will not be
plotted anymore in the graphs corresponding to the following trajectories, besides
other reasons in order to make the graphs also more legible and clearer.

97

6. Experiments

B Driving 3 meters forward and backward at 0.5 m/s with angular velocity of 0.1
rad/s

This trajectory was driven in 57 successfully recorded loops, with only 1 rejected
outlier in the forward direction. Particularly this experiment was performed with 2 several
minutes long breaks after first 20 and first 38 successfully measured entire loops, respectively,
during which the robot was not rebooted, unlike during the the significantly longer breaks
during recording data for the straight trajectory described above, which thus did not lead
to the improper initialization of the IMU, described above. Therefore only data of the
odometries with properly initialized IMU were recorded for this trajectory, which
is apparent from the plots of f-components of the odometries in the figures |6.44| and |6.45|
The reason for this claiming is that the values of the #-component of the filtered odometry in
the plots appear to be significantly different from the values of the raw encoder odometry,
which has been marked to be an evidence that the IMU is properly initialized.

The plot of the robot’s paths (at least their final poses) read from the raw encoder
odometry (only in some of the figures) and the filtered odometry, adjusted always to
the null position when changing its direction from forward to backward or vice versa
(assumed just after having had its pose measured by the laser tracker), with the respective
graphs of errors, can be seen in the figures 6.437| through |6.52. Also final poses estimated
from the laser tracker measurement appear in some of the graphs (marked in the legends of
the particular graphs).

The graphs show that the robot keeps again subtly steering slightly more left it
the direction of its driving, in addition to the commanded angular velocity. In reality
it results in a sawtooth-like trajectory, which may be seen in the plot of XY-data of
odometries in the figure [6.43| from the fact that the forward branch is more tilted in the
positive y-direction than the backward branch. This forces the user to stop the robot, lead it
back to the original pose and start the measurement process again after a certain count of
loops, because otherwise the robot would get to the angles exceeding those under which the
laser tracker is able to measure the positions of the attached retroreflectors. It is the cause
for the mentioned several minutes long breaks.

2Please note that the outlier points in the graphs of trajectories are caused only by an imperfection in the
data processing script.

98

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

T
« odometry_filtered
- odometry VIVE_WMO_pose

. odometry_raw M

y [m]
[=]

-2

-3 -2 -1 0 1 2 3
x [m]

Figure 6.43: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of 0.1 rad/s)

T
—— theta_raw

—— theta filtered

—— theta_VIVE_WMO_pose

time [s]

Figure 6.44: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of 0.1 rad/s)

99

6. Experiments

3
— theta_raw
— theta_filtered
—— theta_VIVE_WMO_pose

Blrad]

900 950 dime [s] 1000 1050 1100
Figure 6.45: Plot of f-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of a sub-interval between times of 850 s and 1100 s; forward angular velocity
of 0.1 rad/s)

Riding forward and backward 3m 0.5m/s 0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

T
20 Leica forward poses
Odometry forward poses
Leica backward poses
odometry backward poses
Odometry forward errors
odometry backward errors

7

7l

-3 -2 -1 0 1 2 3
x[m]

Figure 6.46: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of the filtered odometry (both intervals; forward angular velocity of
0.1 rad/s)

100

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s 0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)
T

105 T
Leica forward poses
=W Odometry forward poses
= Leica backward poses
W Odometry backward poses
oo = Odometry forward errors |
B mmm Odometry backward errors
0.95
0.90
E
>
0.85
0.80
0.75
0.70

275 2.80 2.85] Z.‘BD 2.95 3.00 3.05
Figure 6.47: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of 0.1 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s 0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

0.80
Leica forward poses
B Odometry forward poses
== Leica backward poses
mmm Odometry backward poses
mmm Odometry forward errors
\\ mmm Odometry backward errors
-
\ L
0.70
£ ™~
>
0.65
0.60
0.55
-2.95 —2.90 -2.85 —2.80 —2.75 —2.70

% [m]

Figure 6.48: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of 0.1 rad/s, backward detail)

101

6. Experiments

Riding forward and backward 3m 0.5m/s 0.1rad/s
Relative errors graph

1 1o

0.10 1 'ﬁ' L.d120 H
_ " e o

Odometry forward errors

1 Odometry backward errors
0.05 .

0.00 1

y [m]

—0.05

—-0.10

-0.10 —-0.05 0.00 0.05 0.10
x [m]

Figure 6.49: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.1 rad/s)

Riding forward and backward 3m 0.5m/s 0.1rad/s
Relative errors graph

T T T T T
] [1o
0.04 .
0.02 1 . Odometry forward errors
1 Odometry backward errors
0.00 o
5 -0.02 B ot
il] "I". —i’;':
® —0.041
-0.06 1
-0.08
~0.10 1

—0.100 —-0.075 —0.050 —0.025 0.000 0.025 0.050
% [m]

Figure 6.50: Plot of z and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.1 rad/s)

102

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s 0.1rad/s
Relative errors graph

T T T T
] 1o
N
0.10 ~-=d 20 i
30
Odometry forward errors
1 Odometry backward errors
0.05 a
= |
E 0004 Ty
—0.05
-0.10

-0.10 -0.05 0.00 0.05 0.10
y [m]

Figure 6.51: Plot of y and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.1 rad/s)

Riding forward and backward 3m 0.5m/s 0.1rad/s
Relative errors graph
(direction of the arrows means the angle)

1o
C2 20
I 30 1
mmm Odometry forward errors

mm odometry backward errors

y [m]

-0.05

-0.10

-0.10 —0.05 0.00 0.05 0.10
x [m]

Figure 6.52: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (forward angular velocity of 0.1 rad/s)

103

6. Experiments

Results of the experiment for this set of velocities. All the data from the experiment
have been measured and processed. We can see from the plots of relative error vectors in
the figures [6.49| through |6.51| that the relative error vector can be approximated by a
3-dimensional normal distribution in the same way and from the same reason described
at the end of the previous subsection on the page [96. Therefore the probabilistic distribution
of the EKF-filtered odometry of the relative error vector for this set of velocities during the
forward movement

®m oy, =0.5m/s

® vy =0.1rad/s

with properly initialized IMU can be characterized by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
ue(0.5,0.1,true):[0.0303m —0.0988 m —0.0183rad] (6.11)
8.675-107% m?2 5.523 - 107 m?2 3.078 - 107 %rad - m
3.(0.5,0.1,true) = | 5.523 - 1076 m? 31.378-107°m? 14.943-10%rad-m
3.078 10 %rad -m 14.943-10"%rad -m 43.138 - 106 rad?
(6.12)

2. The backward movement errors mean vector and covariance matrix:

T
pe(=0.5, 0.1, true) = [~0.0843m 0.1073m —0.0168 rad] (6.13)
15.025 - 107 m? —4.117-10"%m? 3.251-10"%rad - m
3e(—0.5,—0.1, true) = | —4.117-1075m? 16.345-107°m? —6.048-107%rad - m
3.251-10%rad-m —6.048-10"%rad-m 18.006 - 1075 rad?
(6.14)

These results correspond to the data after having removed 1 outlier measured in the
forward direction.

104

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

B Driving 3 meters forward and backward at 0.5 m/s with angular velocity of -0.1
rad/s

This trajectory was driven in 73 successfully recorded loops. Particularly this experiment
was performed with 3 several minutes long breaks after first 8, first 17 and first 43 successfully
measured entire loops, respectively, during which the robot was not rebooted, unlike during the
the significantly longer breaks during recording data for the straight trajectory described above,
which thus did not lead to the improper initialization of the IMU, described above. Therefore
only data of the odometries with improperly initialized IMU were recorded for
this trajectory, which is apparent from the plots of -components of the odometries in the
figures [6.54] through |6.64l The reason for this claiming is that the values of the #-component
of the filtered odometry and the values of the -component of the raw encoder odometry in
the plots appear to be identical, which has been marked to be an evidence that the IMU is
properly initialized.

The plot of the robot’s paths (at least their final poses) read from the raw encoder
odometry (only in some of the figures) and the filtered odometry, adjusted always to
the null position when changing its direction from forward to backward or vice versa,
with the respective graphs of errors, can be seen in the figures 6.53° through [6.57. Also
final poses estimated from the laser tracker measurement appear in graphs in the figures |6.58
through 6.60| (marked in the legends of the graphs).

The graphs show that the robot keeps again subtly steering slightly more left it
the direction of its driving, in addition to the commanded angular velocity, which has
the same consequences as during the previous parts of the experiment.

3Please note that the outlier points in the graphs of trajectories are caused only by an imperfection in the
data processing script.

105

6. Experiments

T
odometry_filtered
odometry_VIVE_WMO0_pose
odometry_raw

v [m]

-1

-3 -2 -1 0 1 2 3

Figure 6.53: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of —0.1 rad/s)

15
— theta_raw

— theta_filtered
— theta_VIVE_WMO_pose

1.0

| n
ol

0 1000 2000 3000 4000
time [s]

6[rad]

Figure 6.54: Plot of f-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of —0.1 rad/s)

106

6[rad]

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

1
]
“_

A
I
— -
—
11
1
13
=
s
1t
T
=
T
=
|

../
M\
\

— theta_raw
— —— theta filtered
—— theta VIVE_WM0_pose

0 200 400 600 800 1000 1200
time [s]

Figure 6.55: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of first 2 sub-intervals between times of 0 s and 1200 s; forward angular
velocity of —0.1 rad/s)

1 met:-:V\VE;:v—‘Moipof r- | n . _L i ..J _L i N a L_ | | r_J m H H' ’_/
LA At R R r[rrrr AR R RPN R
Igipags i o

= i I - MM RN N

1400 1600 1800 2000 2200 2400 2600
time [s]

Figure 6.56: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of the 3rd sub-interval between times of 1400 s and 2800 s; forward angular
velocity of —0.1 rad/s)

107

6.

6lrad]

y[m]

Experiments

— theta_raw
— theta_filtered
—— theta_VIVE_WMO_pose

05

0.0

3000 3200 3400 3600 3800 4000 4200 4400
time [s]

Figure 6.57: Plot of 6-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of the 4th sub-interval between times of 2900 s and 4500 s; forward angular
velocity of —0.1 rad/s)

Riding forward and backward 3m 0.5m/s -0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses
mmm Odometry forward poses
W Leica backward poses
mmm Odometry backward poses
N Odometry forward errors
mmm Odometry backward errors |

-1.0

x

-1.5

-3 -2 -1 0 1 2 3
x[m]

Figure 6.58: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of the filtered odometry (forward angular velocity of —0.1 rad/s)

108

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

-0.60
—
—0.65
-0.70 :
E
~ -
-0.75
Leica forward poses
mmm Odometry forward poses
—0.80 mmw Leica backward poses
mmm Odometry backward poses
mm Odometry forward errors
H Odometry backward errors
—-0.85 ; .
2.80 2.85 2.90 2.95 3.00 3.05

Figure 6.59: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of —0.1 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s -0.1rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

—-0.54
-0.56
—0.58
E —0.60
= j
—-0.62
1 Leica forward poses
—0.64 j mmm Odometry forward poses
mm Leica backward poses
—0.66 1 mmm Odometry backward poses |
1 mmm Odometry forward errors
j E Odometry backward errors
_0‘68 il il i i

N T T A B L L EL L R B
—-2.96 —-2.94 -292 -290 -2.88 -2.86 -2.84
x [m]

Figure 6.60: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of —0.1 rad/s, backward detail)

109

6. Experiments

Riding forward and backward 3m 0.5m/s -0.1rad/s
Relative errors graph

0.15
0.10 N
X
T 005
>~
0.00
lo
I
i i‘» g 20
—-0.05 = ¢ 30 y
] Odometry forward errors
Odometry backward errors
| | | |

T T L T —
-0.05 0.00 0.05 0.10 0.15
% [m]

Figure 6.61: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of —0.1 rad/s)

Riding forward and backward 3m 0.5m/s -0.1rad/s
Relative errors graph

j T T T T
0.06 1 3 10
1 CZZ1 20
0.04 + 30
Odometry forward errors 1o
0.02 L + Odometry backward errors -’i\-t.s
0.00 1
=
E 4
T 0021 -
1 "‘g}‘_‘ -
-0.04 e
~0.06
-0.08

-0.075 —0.050 —-0.025 0.000 0.025 0.050
x [m]

Figure 6.62: Plot of z and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of —0.1 rad/s)

110

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.1rad/s
Relative errors graph

T T T
1 1o
0.15 2o 0
) i 3o
- Odometry forward errors
_ « Odometry backward errors
0.10
E=)
E |
T 0051
0.00
4 s
-0.05
—0.05 0.00 0.05 0.10 0.15
y [m]

Figure 6.63: Plot of y and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of —0.1 rad/s)

Riding forward and backward 3m 0.5m/s -0.1rad/s
Relative errors graph
(direction of the arrows means the angle)

4 (3 1o
21 20
Lo 30 4
mm Odometry forward errors

= Odometry backward errors

0.150

0.125

0.100

0.075

y[m]

0.050

0.025

0.000

—0.025

—0.050

-0.100 -0.075 -0.050 —0.025 0.000 0.025 0.050 0.075 0.100
x[m]

Figure 6.64: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (forward angular velocity of —0.1 rad/s)

111

6. Experiments

Results of the experiment for this set of velocities. All the data from the experiment
have been measured and processed. We can see from the plots of relative error vectors in
the figures [6.61| through |6.63| that the relative error vector can be approximated by a
3-dimensional normal distribution in the same way and from the same reason described
at the end of the subsection about the part of this experiment driven with null angular velocity
on the page 96 Therefore the probabilistic distribution of the EKF-filtered odometry of the
relative error vector for this set of velocities during the forward movement

®m oy, =0.5m/s

B vy = —0.1rad/s

with improperly initialized IMU can be characterized by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
pe(0.5, 0.1, false) = [0.0406111 0.0975m 0.0172 rad] (6.15)
11.768 - 1076 m? —25.337-107%m2 —8.731-10%rad-m
3.(0.5,—0.1, false) = | —25.337-1076 m? 94.871-107°m? 30.003-10"%rad - m
—8.731-10%rad-m 30.003-10%rad-m 11.835-107% rad?
(6.16)

2. The backward movement errors mean vector and covariance matrix:

T
te(—0.5,0.1, false) = [—0.0725m —0.0362m —0.0324 rad (6.17)
6.539 - 1076 m? 2.018 - 1076 m? —3.702-10"%rad - m
3e(—0.5,0.1,false) = | 2.018 - 1075 m? 11.665-107°m? —5.332-107%rad - m
—3.702-10%rad-m —5.332-10%rad-m 7.505- 1076 rad?
(6.18)

Unfortunately, the entire experiment was led with improperly initialized IMU. It means
that the statistics essential to estimate the final dependent probabilistic model, which is
primarily meant to be determined for the properly initialized IMU, are not available and will
have to be at least approximated, which will be solved later in this work.

112

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

B Driving 3 meters forward and backward at 0.5 m/s with angular velocity of 0.2
rad/s

This trajectory was driven in 46 successfully recorded loops. Particularly this experiment
was performed with 4 several minutes long breaks after first 6, first 22, first 36 and first 43
successfully measured entire loops, respectively, during which the robot was not rebooted,
unlike during the the significantly longer breaks during recording data for the straight trajectory
described above, which thus did not lead to the improper initialization of the IMU, described
above. Therefore only data of the odometries with properly initialized IMU were
recorded for this trajectory, which is apparent from the plots of #-components of the
odometries in the figures [6.66| through [6.69. The reason for this claiming is that the values
of the 6-component of the filtered odometry in the plots appear to be significantly different
from the values of the raw encoder odometry, which has been marked to be an evidence that
the IMU is properly initialized.

The plot of the robot’s paths (at least their final poses) read from the raw encoder
odometry (only in some of the figures) and the filtered odometry, adjusted always to
the null position when changing its direction from forward to backward or vice versa,
with the respective graphs of errors, can be seen in the figures 6.65* through 6.76. Also
final poses estimated from the laser tracker measurement appear in graphs in the figures|6.70
through 6.72 (marked in the legends of the graphs).

The graphs show that the robot keeps again subtly steering slightly more left it
the direction of its driving, in addition to the commanded angular velocity, which has
the same consequences as during the previous parts of the experiment.

4Please note that the outlier points in the graphs of trajectories are caused only by an imperfection in the
data processing script.

113

6. Experiments

T
odometry_filtered
odometry_VIVE_WMO_pose

2 . d try_raw 4

v e

-2

=2 -1 [} 1 2
x [m]

Figure 6.65: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of 0.2 rad/s)

T
3 —— theta_raw

—— theta_filtered

—— theta_VIVE_WMO_pose

6[rad]
o

-1

0 1000 2000 3000 4000
time [s]

Figure 6.66: Plot of 6-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (forward angular velocity of 0.2 rad/s)

114

@[rad]

Blrad]

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

T ——
15 —— theta_raw
— theta_filtered

—— theta_VIVE_WMO_pose
F_- NRNiNe ininAiRiainnn ilili¥ :l
H 1 B

H— 1 = TH T =

11

[T

{1

1o H - L HEy s N (NN th_}EL—Nk __/
4 | 4 U U4 MY :q\

4 200 400 600 800 1000 1200 1400
time [s]

Figure 6.67: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of first 2 sub-intervals between times of 0 s and 1500 s; forward angular
velocity of 0.2 rad/s)

L5 — theta_raw
— theta_filtered
— theta_VIVE_WMO_pose

I i R A O
B B 1 EEEE

L
1]

i o 5]

1900 2000 2100 2200 2300 2400 2500 2600 2700
time [s]

Figure 6.68: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of the 3rd sub-interval between times of 1900 s and 2700 s; forward angular
velocity of 0.2 rad/s)

115

6[rad]

. Experiments

1.0

05

b=

-
03 [
L L L L | L i
B [i l: l: l:
L 2 2 — e = U
—— theta_filtered
—— theta_VIVE_WMO0_pose
‘
3400 3600 3800 4000 4200 4400

time [s]

Figure 6.69: Plot of 6-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (detail of the last 2 sub-intervals between times of 3300 s and 4500 s; forward
angular velocity of 0.2 rad/s)

Riding forward and backward 3m 0.5m/s 0.2rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses

mmm Odometry forward poses
Leica backward poses

mmm Odometry backward poses |

mmm Odometry forward errors

B Odometry backward errors

25

2.0 A

/,

B

0.5

0.0

-3 -2 -1 0 1 2
x [m]

Figure 6.70: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of the filtered odometry (forward angular velocity of 0.2 rad/s)

116

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s 0.2rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

19 — :
Leica forward poses
= Odometry forward poses.
mm Leica backward poses
mmm Odometry backward poses
mmm odometry forward errors
mm Odometry backward errors
18
17 /
E
) /
16 /
15 /
14

x [m]

Figure 6.71: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of 0.2 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s 0.2rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

T T
160 Leica forward poses
mmm Odometry forward poses
mem Leica backward poses
mmm Odometry backward poses
1.55 Em Odometry forward errors |
\ mmm Odometry backward errors
1.50 % \
145
E 140
B
135
130
125
120
—-2.60 255 -2.50 —2.45 —2.40 235 —2.30 —2.25 —-2.20

x [m]

Figure 6.72: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry
(forward angular velocity of 0.2 rad/s, backward detail)

117

6. Experiments

Riding forward and backward 3m 0.5m/s 0.2rad/s
Relative errors graph

i T T
) d‘ —/ 1o
0.15 +—F% o053 20 i
) b i 30
0.10 . Odometry forward errors |
1 Odometry backward errors
0.05]
— 0.00]
E]
=)
-0.05 1
-0.10 1
-0.15 1
: i
—0.20 A
-0.2 -0.1 0.0 0.1
x [m]

Figure 6.73: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.2 rad/s)

Riding forward and backward 3m 0.5m/s 0.2rad/s
Relative errors graph

0.00
-0.05
= —-0.10
E i
Y
-0.15
| lo
g 20
0.20 4 4
o Odometry forward errors
Odometry backward errors
| | |

T L LI A T T T
-0.20 -0.15 -0.10 —0.05 0.00
% [m]

Figure 6.74: Plot of z and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.2 rad/s)

118

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s 0.2rad/s
Relative errors graph

T T
[1o
0.15 Coo0 20 il
T 30
0.10 Odometry forward errors
Odometry backward errors
0.05
E=)
E 0.00
©]
—0.05]
-0.10]
-0.15
—-0.20]
-0.2 -0.1 0.0 0.1
y [m]

Figure 6.75: Plot of y and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (forward angular velocity of 0.2 rad/s)

Riding forward and backward 3m 0.5m/s 0.2rad/s
Relative errors graph
(direction of the arrows means the angle)
T T

T T
020 1o 1
- CI23 20
i g [y
".‘\ mmm Odometry forward errors

015 S B Odometry backward errors |
010
0.05
E o000
=
-0.05
-0.10
-0.15
=
-0.20
~0.30 —0.25 -0.20 ~0.15 ~0.10 ~0.05 0.00 0.05 0.10

x[m]

Figure 6.76: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (forward angular velocity of 0.2 rad/s)

119

6. Experiments

Results of the experiment for this set of velocities.

All the data from this part of the

experiment, where the IMU had been properly initialized, have been measured and processed.
We can see from the plots of relative error vectors in the figures |6.73| through [6.75 that the
relative error vector can be approximated by a 3-dimensional normal distribution
in the same way and from the same reason described at the end of the subsection about
the part of this experiment driven with null angular velocity on the page [96. Therefore the
probabilistic distribution of the EKF-filtered odometry of the relative error vector for this set
of velocities during the forward movement

® oy, =0.5m/s

® vy =0.2rad/s

with properly initialized IMU can be characterized by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
ue(0.5,0.1,true):[—0.0291m ~0.1804m —0.0192 rad

12.467 - 1076 m?
28.322 - 106 m?
9.528 10 %rad-m 8.855-10"%rad - m

¥(0.5,0.1, true) =

34.330 - 1076 m?2
12.467 - 1075 m?2

(6.19)

9.528 - 10~ %rad - m
8.855-10 % rad - m
22.033 - 1076 rad?

2. The backward movement errors mean vector and covariance matrix:

pe(=0.5, 0.1, true) = [~0.2033m 0.1644 m

Ye(—0.5,—0.1, true) =

25.706 - 1076 m?
—10.281 - 106 m?
—0.087-10"%rad - m

120

(6.20)
T
~0.0141 rad] (6.21)
—10.281-107%m? —0.087-10"%rad - m
26.042 - 1076 m?2 —7.910-10"%rad - m

28.926 - 106 rad?
(6.22)

—7.910-10"%rad - m

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

B Driving 3 meters forward and backward at 0.5 m/s with angular velocity of -0.2
rad/s

This trajectory was driven in 33 successfully recorded loops split into 2 whole intervals of
17 and 16, respectively, driven loops. It is apparent from the plots of #-components of the
odometries in the figures|6.82/and |6.97| that 2 different setups of the IMU appear in the
data. In the first 17 loops, the IMU was improperly initialized, whereas in the last
16 loops, the IMU was not properly initialized. It is also apparent from the following
plots of the final positions and relative error vectors, respectively, of both intervals at once in
the figures |6.77 and [6.78], respectively, where the vectors form rather 2 distinct significantly
different Gaussians than 1 throughout the loops.

The plot of the robot’s paths (at least their final poses) read from

1. Raw encoder odometry (only in some of the figures),
2. Filtered odometry and

3. the tracking system odometry (only in some of the figures),

adjusted always to the null position when changing its direction from forward
to backward or vice versa (assumed just after having had its pose measured by the laser
tracker), with the respective graphs of errors of the filtered odometry towards the
laser tracker can be seen

1. in the figures |6.79 through 6.93 with details for the first interval of loops

2. in the figures 6.94| through [6.104) with details for the second interval of loops

The graphs show that the robot keeps subtly steering left it the direction of its
driving, even though it is commanded to drive straight with null angular velocity. In reality
it results in permanently increasing tilt of the direction of the robot’s straight tra-
jectory counter-clockwise. Also final poses estimated from the laser tracker measurement
appear in some of the graphs (marked in the legends of the particular graphs).

The graphs show that the robot keeps again subtly steering slightly more left it
the direction of its driving, in addition to the commanded angular velocity, which has
the same consequences as during the previous parts of the experiment.

121

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses

mmm Odometry forward poses
Leica backward poses

0.5 mmm Odometry backward poses

mmm Forward errors

mm Backward errors

>
0.0 —_—
—_—

—~0.5

y [m]

-1.04

~1.5 a\\\

D

-2.0

x[m]

Figure 6.77: Plot of final poses and error vectors (towards the laser tracker final poses) of the

robot’s adjusted trajectories of the filtered odometry (both intervals; forward angular velocity of
—0.2 rad/s)

Riding forward and backward 3m 0.5m/s -0.2rad/s
Relative errors graph
(direction of the arrows means the angle)

320
i 30
Emm Forward errors
0.4 4 B Backward errors
0.2 4
E
= 0.0+
-
—p.24
—0.44

-0.4 -0.2 0.0 02 0.4
x[m]

Figure 6.78: Plot of final error vectors of odometries towards the laser tracker reference data and
their confidence ellipses (both intervals; forward angular velocity of —0.2 rad/s)

122

y [m]

6lrad]

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

T
odometry_filtered
R odometry_VIVE_WMO_pose
1.5 - odometry_raw +
1.0
0.5
0.0 -
'_‘_..—-;::;?-';’“
- g .
g -
e
0.5 ’w" o~
. o A
4 i
10 o
2 A
v i
o+
-15 £
-2.0
=2 -1 0 1 2 3

x [m]

Figure 6.79: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (first interval; forward angular velocity of —0.2 rad/s)

T
—— theta_raw

— theta filtered

—— theta_VIVE_WMO_pose

dmr

71
[

-1.5

[200 400 600 800 1000
time [s]

Figure 6.80: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (first interval; note that here the raw encoder odometry has even values with
opposite signs; forward angular velocity of —0.2 rad/s)

123

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Absolute values and errors graph
(direction of the arrows means the angle)

05
Leica forward poses
W Odometry forward poses
— Leica backward poses
mm Odometry backward poses
mm Odometry forward errors
0.0 mmm Odometry backward errors -|
—_—
—0.5
£
>
-10

\
\ ¥

x [m]

Figure 6.81: Plot of final poses and error vectors (towards the laser tracker final poses) of the

robot’s adjusted trajectories of the filtered odometry (first interval; forward angular velocity of
—0.2 rad/s)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Absolute values and errors graph
(direction of the arrows means the angle)

T T
Leica forward poses
mmm Odometry forward poses
12 Leica backward poses 4
mmm Odometry backward poses
mm Odometry forward errors
Em Odometry backward errors
-13
-14
E s
>
-1.6
-17
-1.8

2.2 23 2.4 25 2.6 2.7 2.8
x [m]

Figure 6.82: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry (first
interval; forward angular velocity of —0.2 rad/s, forward detail)

124

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Absolute values and errors graph
(direction of the arrows means the angle)

-1.20

T T
Leica forward poses
Odometry forward poses
Leica backward poses
Odometry backward poses
Odometry forward errors |
Odometry backward errors

-1.22

-1.24

-1.26

-1.28

y [m]
\

-1.30

-1.32

Ui

-1.34

-1.36

—2.62 —2.60 -2.58 —2.56 —2.54

x[m]

—2.52 —2.50 —2.48 —2.46

Figure 6.83: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry (first
interval; forward angular velocity of —0.2 rad/s, backward detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

0.35 f f f
1 1 1o
1 R CTh 20
0.30 1 30 3
- Odometry forward errors
1 - Odometry backward errors
0.25 8
E 0207
=
0.15
0.10
0.05 —~?

0.0 010 015 0.20

x [m]

—-0.10 -0.05 0.00

Figure 6.84: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s)

125

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

0.35
0.34 1
0.33
E 0.32]
==
0.311
] 1o
0.30 20
1 : 30
0.29 1 Odometry forward errors
T Odometry backward errors
1 | 1 | |

T T T L T T
-0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03
x [m]

Figure 6.85: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

0.065 i
] 3 1o
0060: ti=d 20
R " 30
] Odometry forward errors
0.055 7 + Odometry backward errors |
0.050 B B
—_ b] i o~ = \“\
£ v0as ~ { N oY
= 1 M "-,,'___,_._-/ £
0.035]
0.030 1

-0.120-0.115-0.110-0.105-0.100-0.095-0.090-0.085
x [m]

Figure 6.86: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, backward detail)

126

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

0.10
0.05
—)
E 0.00_
[*s]
-0.05
| 1o
20
-0.10 i 3a R
i il Odometry forward errors
7"" - Odometry backward errors
| | | |
T T

-0.10 —-0.05 0.00 0.05 0.10
x [m]

Figure 6.87: Plot of z and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

T T T
) 1 1o
0.13 ——"s —
1 i 30
Odometry forward errors
1 Odometry backward errors
0.12 -
=
E
T 011
0.10
0.09
—-0.08 —-0.07 —0.06 —0.05 —-0.04
x [m]

Figure 6.88: Plot of 2 and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, forward detail)

127

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

T T T T
) 1 1o
—0.105 4 - | 1
) i1 30
) Odometry forward errors
—0.110 7 - Odometry backward errors ||
~0.115 1
]]
©] N e
s 01201 \-'L\‘\
—0.125 1 e IR
—0.130 1
~0.135 1

-0.120-0.115-0.110-0.105-0.100-0.095-0.090-0.085
x [m]

Figure 6.89: Plot of z and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, backward detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

T T T
— T
0.3 o0 20]
1 77 30
Odometry forward errors
1 Odometry backward errors
0.2
- J
E o1 »
) |
0.0
-0.1
%
-0.1 0.0 0.1 0.2 0.3

y [m]

Figure 6.90: Plot of y and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s)

128

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph

0.125

0.120

0.115 - B Bt

Blrad]
et
\\
v
E] "
O N :
\\\

0.110 el -

0.105

0.100 7 Odometry forward errors

Odometry backward errors
| | | |

B T T L T
0.305 0310 0.315 0320 0325 0.330 0.335
y [m]

Figure 6.91: Plot of y and # components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errars graph

] T T T T T
1 [1o
-0.105 —— -
] 20
1 s 30
-0.110 « Odometry forward errors
Odometry backward errors
-0.115 1 -
, —0.120 - A
-0.125 e e
-0.130
-0.135

0.030 0.035 0.040 0.045 0.050 0.055 0.060
y [m]

Figure 6.92: Plot of y and 6 components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (first interval; forward angular velocity of —0.2 rad/s, backward detail)

129

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s first
Relative errors graph
(direction of the arrows means the angle)
T T

g odometry forward errors

-
030 EEm Odometry backward errors

y [m]

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
x[m]

Figure 6.93: Plot of final error vectors of the filtered odometry towards the laser tracker reference
data and their confidence ellipses (first interval; forward angular velocity of —0.2 rad/s)

T
odometry_VIVE_WMO_pose -
odometry_filtered
odometry_raw

E . W
> =22
-"/.'
s
ey
et
|~
1 ,*‘.f'{
P
N
-1 PLIN S
AR s
RS
P,
I" ;‘.;’.
&
-2
-3 -2 -1 o 1 2

x[m]

Figure 6.94: Plot of XY-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (second interval; forward angular velocity of —0.2 rad/s)

130

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

A

Blrad]

| — theta_raw
— theta filtered
—— theta_VIVE_WMO_pose

°
8
8
3
2
8
m
g
8

time [s]

Figure 6.95: Plot of #-data of the robot’s adjusted trajectories when repeatedly driving forward
and backward (second interval; forward angular velocity of —0.2 rad/s; note that here, the filtered
odometry has the same values as the raw encoder odometry)

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Absolute values and errors graph
(direction of the arrows means the angle)

Leica forward poses
mmm Odometry forward poses

0.00 > e Leica backward poses
BB Odometry backward poses
mmm Odometry forward errors
— mmm Odometry backward errors
-0.25 ~ .
—0.50
-0.75
£
ES
A
-1.00 > i

7 i
\N

-1.75
N

-2 -1 4 1 2
x[m]

Figure 6.96: Plot of final poses and error vectors (towards the laser tracker final poses) of the
robot’s adjusted trajectories of the filtered odometry (second interval; forward angular velocity of
—0.2 rad/s)

131

6. Experiments

Riding forward and backward 3m 0.5my/s -0.2rad/s second
Absolute values and errors graph
(direction of the arrows means the angle)

T
Leica forward poses

T
~-1.40 1
mmm Odometry forward poses
Leica backward poses
mmm Odometry backward poses
W Odometry forward errors
EEm Odometry backward errors
\
-1.45 \
\
SR
AW
1 \
\ \
bl
-1.50 T
E
-
-1.55 A
y
-1.60
-1.65
2.20 2.25 2.30 2.35 2.40 245

x [m]

Figure 6.97: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry (second
interval; forward angular velocity of —0.2 rad/s, forward detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Absolute values and errors graph
(direction of the arrows means the angle)

~1.20 T m
Leica forward poses
EEm Odometry forward poses
Leica backward poses
mmm Odometry backward poses
mmm Odometry forward errors
= Odometry backward errors
-1.25 il
-1.30
£ -1.35
-
-1.40
-1.45 % 7

-2.55 —-2.50 -2.45 —2.40 -2.35 -2.30 -2.25
x[m]

Figure 6.98: Plot of final poses of the robot’s adjusted trajectories of the filtered odometry (second
interval; forward angular velocity of —0.2 rad/s, backward detail)

132

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Relative errors graph

0.15 1 #
0.10 1
0.05 1
— 0.00
IE‘ 4
>]
—0.05 1
-0.10 1 lo E
1|3k 320
]| o 3
-0.15 Il ' r
) Odometry forward errors
] Odometry backward errors
B e it B S S e S
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

*x [m]

Figure 6.99: Plot of z and y components of relative errors of the final poses of the robot’s adjusted
trajectories of odometries (second interval; forward angular velocity of —0.2 rad/s)

Riding forward and backward 3m 0.5my/s -0.2rad/s second
Relative errors graph

T T T
1 1o
[T

........

Odometry forward errors
Odometry backward errors

0.16 =
. U
AR
0.14 " £
0.13

-0.01 0.00 0.01 0.02 0.03 0.04
x [m]

Figure 6.100: Plot of z and y components of relative errors of the final poses of the robot’s

adjusted trajectories of odometries (second interval; forward angular velocity of —0.2 rad/s, forward
detail)

133

6. Experiments

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Relative errors graph

—-0.10 T T T]
1 1 1o
C_23 20
1 i 30
—0.11] Odometry forward errors
Odometry backward errors
-0.12
= _0.13 {t - . "l
4 __' ! |l
i o
!]
] I AR
—0.14 1 T 7
-0.15

2020 -019 -018 -017 -0.16
x [m]
Figure 6.101: Plot of z and y components of relative errors of the final poses of the robot’s adjusted

trajectories of odometries (second interval; forward angular velocity of —0.2 rad/s, backward
detail)

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Relative errors graph

0.00
' A
—0.05
£l
E]
© —p.10
j lo
—0.15 +r--3 20
] i 30
Odometry forward errors
020 H
-0.20 -0.15 -0.10 —-0.05 0.00
x [m]

Figure 6.102: Plot of z and 6 components of relative errors of the final poses of the robot’s
adjusted trajectories of odometries (second interval; forward angular velocity of —0.2 rad/s)

134

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Relative errors graph

T T T T
0.15 1 1o il
I— e
1 i 30
0.10 1 - Odometry forward errors
Odometry backward errors
0.05
=)]
L 0.00 1
©] Qi.ﬁ
—0.05
~0.10 1
-0.15

-0.15 -0.10 -0.05 000 005 010 0.15
y [m]

Figure 6.103: Plot of y and 6 components of relative errors of the final poses of the robot’s
adjusted trajectories of odometries (second interval; forward angular velocity of —0.2 rad/s)

Riding forward and backward 3m 0.5m/s -0.2rad/s second
Relative errors graph
(direction of the arrows means the angle)

| — o
015 5775 20 =
mmm Odometry forward errors T
mmm Odometry backward errors
0.10
0.05
E
> 0.00
-0.05
-0.10
-0.15 et
-0.25 -0.20 —-0.15 -0.10 -0.05 0.00 0.05

x[m]

Figure 6.104: Plot of final error vectors of the filtered odometry towards the laser tracker reference
data and their confidence ellipses (second interval; forward angular velocity of —0.2 rad/s)

135

6. Experiments

Results from the part with improperly initialized IMU. All the data from the part of the
experiment, where the IMU had not been properly initialized and thus had led to larger error
vectors, have been measured and processed. We can see from the plots of relative error vectors
in the figures |6.84] through 6.92 that the relative error vector can be approximated
by a 3-dimensional normal distribution in the same way and from the same reason
described at the end of the subsection about the part of this experiment driven with null
angular velocity on the page |96. Therefore the probabilistic distribution of the EKF-filtered
odometry of the relative error vector for this set of velocities during the forward movement

® oy, =05m/s

® vy = —0.2rad/s

with improperly initialized IMU corresponding to the first interval can be characterized
by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
ue(0.5,—0.2,fa1se):[—0.0621m 0.3221m 0.1122 rad (6.23)
20.490 - 10~ m? —7.057-107%m2 —7.019-10%rad - m
3(0.5,-0.2,false) = | —7.057- 1076 m? 5.639 - 1076 m? 2.637-10"%rad - m
—7.019-10%rad-m 2.637-10%rad-m 3.685-1076 rad?
(6.24)

2. The backward movement errors mean vector and covariance matrix:

T
ue(—0.5,0.2,false):[—0.1025m 0.0458 m —0.1213rad] (6.25)
12.788 - 1079 m? —1.282-107%m? —5.811-10"%rad-m
3e(—0.5,0.2,false) = | —1.282- 1076 m? 5.022 - 1076 m? —~1.341-107%rad - m
—5.811-10%rad -m —1.341-10"%rad-m 4.152-107% rad?
(6.26)

These results correspond to the data after having removed 1 outlier measured in the
forward direction.

Results from the part with properly initialized IMU. All the data from the part of the
experiment, where the IMU had been properly initialized and thus had led to smaller error

136

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

vectors, have been measured and processed. We can see from the plots of relative error vectors
in the figures [6.99 through 6.103| that the relative error vector can be approximated
by a 3-dimensional normal distribution in the same way and from the same reason
described at the end of the subsection about the part of this experiment driven with null
angular velocity on the page 96. Therefore the probabilistic distribution of the EKF-filtered
odometry of the relative error vector for this set of velocities during the forward movement

® v, =0.5m/s

® vy = —0.2rad/s

with properly initialized IMU corresponding to the second interval can be characterized
by the following statistics:

1. The forward movement errors mean vector and covariance matrix:

T
p,e(O.S,fO.Z,true):[0.0121111 0.1462m —0.0087 rad (6.27)
6.131 - 107 m?2 —0.352-107%m?2 1.740-10%rad - m
3.(0.5,-0.2, true) = | —0.352- 1076 m? 15.345-107°m? 5.881-10%rad-m
1.740 - 107 %rad -m 5.881-10"%rad-m 27.326-10% rad?
(6.28)

2. The backward movement errors mean vector and covariance matrix:

T
ue(—o.5,0.2,true)=[—0.1822111 —0.13461 m 0.0052 rad (6.29)
15.481 - 1076 m? 3.550 - 1079 m? —7.233-10"%rad - m
3e(—0.5,0.2,true) = | 3.550 - 1076 m? 25.236-10%m? —9.690-10"®rad - m
—7.233-107%rad-m —9.690-10%rad-m 27.157-10% rad?
(6.30)

These results correspond to the data after having removed 1 outlier measured in the
backward direction.

137

6. Experiments

B 6.4.4 Results of the whole experiment

The mean error vectors and error covariance matrices have been computed for totally 8 pairs
of velocities (4 for the positive and 4 for the negative forward velocity):

® v, =0.5m/s and vy € {0,0.1,0.2, —0.2} rad/s

® v, =—0.5m/s and vy € {0,—-0.1,—0.2,0.2} rad/s

Having used the matrices A and B expressed in (4.64) and (4.65)), 2 different matrices of
quadratic coefficients expressed by (4.66) have been approximated for the positive and for
the negative forward velocity (+0.5 m/s) by the least squares method. They approximate
the quadratic dependency of the values of components of the mean error vector and error
covariance matrix on the commanded angular velocity, all that per 3 meters driven.

Assume that ey means a sum of squared errors of the approximated model from the actual
instances of parameter Y, where parameter Y means any of the parameters described in the
term (4.64). Then the resulting approximated matrices can be approximated as follows:

138

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

® For the forward velocity v, = 0.5 m/s the resulting matrix of coefficients expressed by
(4.66) (transposed here for better notation) is:

X (0.5m/s) =

_aez beI Ce, 17
ae, be, Ce,
Gey bey Cey
Gm; bmy Cmy
Gmy bmy Cmgy
Qms bms Cmg
Gmy bmy Cmy
Qms bms Cmg
LGmg Dmg Cmg
2
—1.4798 5
—0.1538 25
—0.1099 =
345.325 - 1070 %)
177.028 - 10~° %
197.523 - 1076 I;l;;
~173.266 - 1076 15

—171.513 - 1076 ms

| —899.730 - 106 s?

—0.0983 22
m-s
—0.8210 22
—0.0311 s
—6 m?
62.251 - 10) H;?
— m-s
33.620- 1076 ms
—6 2
33.546 - 1076 ==
8.618-10%m-s
3.848-10% rad - s

with the corresponding vector of residuals

€e, |
ee,
€ey
€m,
Cms
€ms
€ma

€ms

€me |

24.128 - 1076 m?
24.367 - 1076 m?
28.067 - 1076 rad?
74.785- 10712 m*
2.719 - 10712 m*
2.226 - 10712 rad?m?
1.338 1072 m?
3.801 - 10712 rad?m?

—0.0114 m
—0.0101 rad
5.593 - 1076 m?
—0.867 - 1076 m?
20.892-10%m-s —2.125-10%rad-m
28.874 - 1075 m?
14.279 - 1076 rad - m
29.987 - 1076 rad? |

| 321.006 - 10712 rad* |

139

(6.31)

(6.32)

6. Experiments

® For the forward velocity v, = —0.5 m/s the resulting matrix of coefficients expressed by
(4.66) (transposed here for better notation) is:

S o o
[Q)
< 8

('B
=

X (—0.5m/s) =

Amyy

S
3
w
@@g@@
w

H

bimg

0.003

3
o
3

3
o
5

g
o
K

Cms

Cmg |

—3.6423

184.040 - 1076

m-s
rad?

—0.0816 =%

rad

=1-22473-1076

—312.181 - 106
312.538 - 106

13.634 - 1076
77.413-1076 §2

m-s?
rad?

m

ra
m-s

ray

0.0483 =2

rad

—0.7654 1

0.0154 s
~92.959 . 106 m’s

rad
P

32.546 - 1076 =s
—13.624-107%m-s
—6 m?
—1.896 - 1070 ==
—7.166-10"%m-s
3.734-10% rad - s

with the corresponding vector of residuals

22.608 - 1076 m?
347.429 - 1076 m?
40.689 - 1076 rad?
7.454-10712 m*
4.543 10712 m*
19.788 - 10712 rad?m?
0.016 - 10712 m*
8.110 - 1072 rad®m?

| 73.170- 1072 rad* |

—0.0466 m
—0.0166 m
—0.0096 rad
12.971 - 1076 m?
—2.264 - 1076 m?
8.403-107% rad - m
13.125- 107 m?
—9.074-10"% rad - m
24.129 - 1076 rad?

(6.33)

(6.34)

It has been verified that this result is computed numerically stably by computing also the
same quadratic coefficients yet separated for the values of the error mean vector and of the
vectorized upper diagonal block of the covariance matrix, which yielded the same results
(even also not rounded unlike the results here). It implies that the used method is numerically
stable for the varying decadical orders of values contained in both the matrices A and B.

140

6.4. Measuring and estimating the uncertainty of the EKF-fused odometry of the robot

If we consider that the residuals are all sums of 4 instances of squared errors for a driven
distance of 3 meters, the actual values of the residuals of each of the approximated parameter
dependencies show that the computed quadratic dependency approximation can be used in
order to determine the error mean vector and the covariance matrix during the robot’s drive.
Indeed, even the largest of the values of residuals of e., = 347.429 - 1075 m2divided by 4 (as
the count of summed squared errors), square-rooted and divided by 3 (as the driven distance

in meters) yields a result of %\ / %eey = % €e, = @ = 3.11 millimeter mean absolute value
of the errors of the lateral direction of the error mean vector per 1 meter of distance driven
backward. This is in addition the largest of the residuals, the other having their values at
least 10 times smaller. It yields sub-millimeter and sub-milliradian means of absolute values
of the approximation errors of all error mean vector components and values of the mean
approximation errors of the covariance matrix parameters of orders of around 107 of their
respective units.

Finally, the approximated contribution to the error mean vector and the vectorized upper
diagonal block of the symmetric covariance matrix corresponding to the error mean vector
can be expressed as

141

6. Experiments

T
A{er ey €9 M1 My M3 My Ms mﬁ} (Ad, vy, v9) =

T
[Aew Aey Aeg Aml Amg Amg Am4 Am5 Amg} =

viAd
+X (0.5m/s) |vpAd vy >0
= Ad (6.35)
viAd ,
+X (-0.5m/s) [vgAd| v, <0
Ad
~0.4933 5, ~0.0328 5 0.0171
—0.0513 =, —0.2737 5 ~0.0038
—0.0366 25— ~0.0104 —0.0034 £2d
115.108 - 1076 257 207501076 25 1.864-10°m | [v3Ad
59.009 - 1076 M2 112071076 M2 _0.289-107 % m | |vpAd| v >0
65.841-1076 = 6.964-1070s —0.708- 100 rad| | Ad
~57.755-1070 ™57 111821076 @5 9.625-10 % m
—57.171-1076 & 2.873.10%s 4.760- 1076 rad
L) | —29.991-1076 2 1.283.1076 2ds 9.996.1076 rad® (6.36)
I B 3 V) 0.0161 2 ~0.0155 '
0.0012 = —0.2551 5 ~0.0055
—0.0272 5 0.0051 & —0.0032 t2d
61.347-1076 ™ _7.653.1076 ™3 4324100 m | [v3Ad
—7.491-1076 ™57 10.849-1076 ™5 _0.755-10 6 m | |vpAd| vy <0
~104.060-1076 = 45411005 2.801-10 % rad | | Ad
104.179 - 1076 257 _0.632-1070 % 4.375.10% m
4.545-1076 = —2.389-107%s —3.025-107° rad
| 25.804-1076 £ 1.245.1076 ads g 43.1076 rad

where vy is the commanded angular velocity, v, is the commanded forward velocity, X (v;)
is the matrix of coefficient expressed by (4.66) depending on the commanded v, and Ad is
the amount of driven distance between 2 subsequent updates of the pose of the EKF-fused
odometry and d’ = 3 is the distance driven to obtain the X (v;).

It is also apparent that the non-zero values of the components of the error vector can be

used in order to adjust the actual considered pose of the filtered odometry in the SLAM
algorithm.

142

Chapter 7

Suggestions for the Further Use of the Results

The result of the last experiment may be now adapted in the actual SLAM algorithm, which
for now does not consider the uncertainty of the pose of the robot estimated by the EKF-
fused odometry. Here is a suggestion how to do it.

First, it is needed to determine by comparison of the data of the raw encoder odometry
and of the EKF-fused odometry, whether the IMU has been properly initialized or not. If
the IMU is initialized properly, after having driven several centimeters from the pose where
the robot had been booted up, the positions estimated by the raw wheel odometry and by
the EKF-fused odometry should be distant at least 0.1 mm from each other. In other case it
means that the IMU has not been properly initialized and therefore the following algorithm
should not be used, yet the actual algorithm not considering the uncertainty should be used
instead.

If the IMU has been initialized properly, the following algorithm should be used. Assume

T
having remembered the last estimation of the pose denoted by p, = [:Uk Yk Hk] and the
corresponding last estimated covariance matrix 3, which is initially a 3 x 3 matrix of zeros,

T
and having received an update of the estimated pose py,; = [ka Yk+1 9k+1] . First, the
contribution to the error vector and the covatiance matrix of the estimated pose of the robot

{Aex Aey, Aeg Ami Amg Amgz Amy Ams Amﬁ}T should be computed using the
equation 7?7 from the actually read commanded linear and angular velocities v, and vy, which
have to be obtained from the topic /cmd_vel, and from the distance Ad driven from the last
remembered pose p; to the newly received estimated pose update py, . The driven distance
can be computed as

Ad = \/(LL’k+1 - fL’k)Q + (yk+1 - yk)z . (7.1)

143

7. Suggestions for the Further Use of the Results

Now, the update of the estimated pose p,; obtained from the EKF-fused odometry, should
be corrected by the estimated error vector as

Tpy1 — Aex
Pir1 = |Yk+1 — Aey| . (7.2)
Ok+1 — Aeg

This corrected pose will be used after the next update cycle of the EKF-fused odometry as py,
or as an input to the SLAM algorithm. Also the contribution of the covariance matrix can be
used, as by subtracting the error vector, we can consider an unbiased normal distribution of
the uncertainty of the estimated pose, represented by the covariance matrix. Then the new
covariance matrix, which will be used after the next update cycle of the EKF-fused odometry
as X, or as an uncertainty input during the following update of the SLAM algorithm, can be
computed as
Am1 ATTlQ ATTl3
Y1 =2 + Ams Amy Ams| . (73)
Amg Am5 Am6

Finally, when the update of the SLAM algorithm is about to happen, the gradually corrected
pose p;, and the corrected covariance matrix 3, shall be used as the inputs to the update
cycle of the slam algorithm, where n denotes the count of updates of the pose estimated by
the EKF-fused odometry from the last update of the SLAM algorithm. Finally the SLAM
algorithm will return the newly estimated pose, which will be assumed as the new originating
pose py. Also, the new originating covariance matrix 3y will be set to be a 3 x 3 matrix of
Zeros.

144

Chapter 8

Conclusion

The experiments have revealed some interesting pieces of information about the odometry of
the robot and about its behaviour, as well as about the accuracy of the HTC Vive tracking
system.

The first experiment has shown that the EKF-fused odometry of the robot composes its
estimation of the pose of the robot separately from the data of the wheel odometry and of
the IMU, in terms of the distances and orientation angles. It has been observed, that the
information about the orientation of the robot is taken purely from the data of the IMU,
whereas the information about the driven distance is taken purely from the encoder odometry.

The second experiment has shown that the HT'C Vive tracking system is not suitable to
be used as a source of the odometry. Besides the already known fact that it is sensible to
external light radiation, the accuracy of the tracking system decreases significantly with the
increasing distance from the pose, where it has been calibrated.

The third and at the same time the largest experiment has revealed some interesting
information about the behavior of the driving of the robot and of the odometries. It has been
observed that the robot keeps always subtly steering more left in the direction of its driving,
than is commanded, even if it is commanded to drive straight and not to steer at all. It has
been also observed that the IMU sometimes does not initialize properly, which seems to be a
non-deterministic phenomenon. Yet it has been learned that it can be detected by comparison
of the data of the EKF-fused odometry and of the raw encoder odometry. If the data of these
2 odometries are identical even after a few centimeters of driving and steering, regardless of
some sub-millimeter floating point errors, then it means that the IMU has not been properly
initialized, and therefore the EKF-fused odometry takes only the data of the raw wheel
odometry, wherefore the data are identical. It has been therefore observed, that depending

145

8. Conclusion

on whether the IMU has been properly initialized or not, the error and the uncertainty of the
EKF-fused odometry forms 2 distinct probabilistic distributions. The wrong initialization
of the IMU can be solved simply by rebooting the robot. Another interesting information,
which has been observed and which is caused by the observed slight omnipresent steering, is
the fact, that the uncertainty of the EKF-fused odometry during forward driving of the robot
is not analogically comparable to the uncertainty when driving backward.

As the result of the third experiment, based on the observations mentioned above, the
contribution to the error vector and to the covariance matrix between 2 subsequent updates of
the SLAM algorithm, running on the robot, has been approximated. This approximation is a
complex dependence, consisting of a binary dependence on the sign of the commanded linear
velocity, of a quadratic dependence on the value of the commanded angular velocity and of a
pure unbiased linear dependence on the distance driven from the last update of the pose from
the EKF-fused odometry. Subsequently, it has been suggested how to use this result in the
SLAM to correct the pose taken from the EKF-fused odometry, using the contribution to the
error vector, and how to use the contribution to the covariance matrix in order to consider
the uncertainty of the estimated pose in the actual SLAM algorithm, which now does not
consider any uncertainty of the pose represented by its covariance matrix at all.

146

1]

2]

3]

Bibliography

Hexagon AB. Leica Absolute Tracker AT403. Hexagon AB, 2017. Available at

www.creativeinfocom.com/pdfs/leica-absolute-tracker-at403-brochure.pdf|

Leica Geosystems AG. Laser Tracker Accessories in All Dimensions. Leica Geosystems
AG, 2002. Available at https://w3.leica-geosystems.com/media/new/product_|
|[solution/L3_Accessories_Laser_Tracke.pdf|

N. Akai, L. Y. Morales, T. Yamaguchi, E. Takeuchi, Y. Yoshihara, H. Okuda, T. Suzuki,
and Y. Ninomiya. Autonomous driving based on accurate localization using multilayer
lidar and dead reckoning. In 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pages 1-6, Oct 2017.

Matéj Boxan. NDT SLAM Respecting Visibility. Bachelor thesis, Faculty of Electrical
Engineering, Czech Technical University in Prague, May 2020.

Byoung-Suk Choi, Joon-Woo Lee, and Ju-Jang Lee. Localization and map-building
of mobile robot based on rfid sensor fusion system. In 2008 6th IEEE International
Conference on Industrial Informatics, pages 412—417, July 2008.

J. Bedkowski, M. Petka, K. Majek, T. Fitri, and J. Naruniec. Open source robotic
3d mapping framework with ros — robot operating system, pcl — point cloud library
and cloud compare. In 2015 International Conference on Electrical Engineering and
Informatics (ICEEI), pages 644-649, Aug 2015.

J. Cai and X. Zhong. An adaptive square root cubature kalman filter based slam
algorithm for mobile robots. In 2015 IEEE International Conference on Mechatronics
and Automation (ICMA), pages 22152219, Aug 2015.

Xueli Cheng, Wanli Liu, Meng Guo, and Zhenhua Zhang. Mobile robot self-localization
based on multi-sensor fusion using limited memory kalman filter with exponential fading
factor. journal of Engineering Science and Technology Review, 11:187-196, 12 2018.

147

https://www.creativeinfocom.com/pdfs/leica-absolute-tracker-at403-brochure.pdf
https://www.creativeinfocom.com/pdfs/leica-absolute-tracker-at403-brochure.pdf
https://w3.leica-geosystems.com/media/new/product_solution/L3_Accessories_Laser_Tracke.pdf
https://w3.leica-geosystems.com/media/new/product_solution/L3_Accessories_Laser_Tracke.pdf

Bibliography

[9]

[10]

[11]

H. M. Cho, H. Jo, S. Lee, and E. Kim. Odometry estimation via cnn using sparse lidar
data. In 2019 16th International Conference on Ubiquitous Robots (UR), pages 124-127,
June 2019.

H. F. Durrant-Whyte and J. J. Leonard. Navigation by correlating geometric sensor data.
In Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '
(IROS ’89) 'The Autonomous Mobile Robots and Its Applications, pages 440-447, Sep.
1989.

Z. Fan, C. Li, Y. Wang, L. Zhao, L. Yao, G. Zhu, Z. Li, H. Xie, and Y. Xiao. 3d
mapping of multi-floor buildings based on sensor fusion. In 2017 International Conference
on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial
Information Integration (ICIICII), pages 10-15, Dec 2017.

S. Farzad Bahreinian, M. Palhang, and M. R. Taban. Investigation of rmf-slam and
amf-slam in closed loop and open loop paths. In 2016 2nd International Conference of
Signal Processing and Intelligent Systems (ICSPIS), pages 1-5, Dec 2016.

Nghia Ho. Finding optimal rotation and translation between corresponding 3D points,
2011. Available at http://nghiaho.com/?page_id=671|

T. T. Hoang, P. M. Duong, N. T. T. Van, D. A. Viet, and T. Q. Vinh. Multi-sensor
perceptual system for mobile robot and sensor fusion-based localization. In 2012 Inter-

national Conference on Control, Automation and Information Sciences (ICCAIS), pages
259-264, Nov 2012.

Daisuke Inoue, Daisuke Murai, Yasuhiro Ikuta, and Hiroaki Yoshida. Distributed

range-based localization for swarm robot systems using sensor-fusion technique. In
SENSORNETS, 2019.

Lukas Jelinek. Graph-based SLAM on Normal Distributions Transform Occupancy Map.
Bachelor thesis, Faculty of Mathematics and Physics, Charles University in Prague,
September 2016.

S. J. Julier. An empirical study into the use of chernoff information for robust, distributed
fusion of gaussian mixture models. In 2006 9th International Conference on Information
Fusion, pages 1-8, July 2006.

K. Komoriya, E. Oyama, and K. Tani. Planning of landmark measurement for the
navigation a mobile robot. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 2, pages 1476-1481, July 1992.

Krzysztof Koztowski and Dariusz Pazderski. Modeling and control of a 4-wheel skid-
steering mobile robot. International Journal of Applied Mathematics and Computer
Science, 14, 01 2004.

J. Laconte, S. Deschénes, M. Labussiere, and F. Pomerleau. Lidar measurement bias esti-
mation via return waveform modelling in a context of 3d mapping. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8100-8106, May 2019.

148

http://nghiaho.com/?page_id=671

[21]

[22]

23]

[24]

[33]

[34]

Bibliography

S. Lee, J. Jung, S. Kim, I. Kim, and H. Myung. Dv-slam (dual-sensor-based vector-
field slam) and observability analysis. IEEE Transactions on Industrial Electronics,
62(2):1101-1112, Feb 2015.

L. Li, M. Yang, C. Wang, and B. Wang. Rigid point set registration based on cubature
kalman filter and its application in intelligent vehicles. IEEE Transactions on Intelligent
Transportation Systems, 19(6):1754-1765, June 2018.

J. Lin, Y. Liao, Y. Wang, Z. Chen, and B. Liang. A hybrid positioning method for multi-
robot simultaneous location and mapping. In 2018 37th Chinese Control Conference
(CCC), pages 4739-4743, July 2018.

Y. Liu, L. Zuo, C. Zhang, and F. Liu. Fast and accurate robot localization through
multi-layer pose correction. In 2019 IEEE International Conference on Mechatronics
and Automation (ICMA), pages 2487-2492, Aug 2019.

Bence Magyar. diff drive_controller. ROS Wiki, 2020. Available at http://wiki.ros!
org/diff_drive_controller|

Wim Meeussen. robot_pose ekf. ROS Wiki, 2020. Available at http://wiki.ros.org/
robot_pose_ekf]

David Novacek. Localization of Mobile Robot Using Multiple Sensors. Master thesis,
Faculty of Electrical Engineering, Czech Technical University in Prague, May 2019.

C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot. Conservative to confident: Treating un-
certainty robustly within learning-based control. In 2015 IEEFE International Conference
on Robotics and Automation (ICRA), pages 421-427, May 2015.

S. Rabiee and J. Biswas. A friction-based kinematic model for skid-steer wheeled mobile
robots. In 2019 International Conference on Robotics and Automation (ICRA), pages
8563-8569, May 2019.

Tan Reid. Estimation I. Department of Engineering Science, University of Oxford, Hilary
term 2001. Available at http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/
LectureNotesl.pdf|

Tan Reid. Estimation II. Department of Engineering Science, University of Oxford, Hilary
term 2001. Available at http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/
LectureNotes2.pdf|

L. Toroslu and M. Dogan. Effective sensor fusion of a mobile robot for slam implementation.
In 2018 4th International Conference on Control, Automation and Robotics (ICCAR),
pages 76-81, April 2018.

C. Uyulan, T. Erguzel, and E. Arslan. Mobile robot localization via sensor fusion
algorithms. In 2017 Intelligent Systems Conference (IntelliSys), pages 955-960, Sep.
2017.

Tianmiao Wang, Yao Wu, Jianhong Liang, Chenhao Han, Jiao Chen, and Qiteng Zhao.
Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser
scanner sensor. Sensors, 15:9681-9702, 05 2015.

149

http://wiki.ros.org/diff_drive_controller
http://wiki.ros.org/diff_drive_controller
http://wiki.ros.org/robot_pose_ekf
http://wiki.ros.org/robot_pose_ekf
http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes1.pdf
http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes1.pdf
http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf
http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf

Bibliography

[35]

[36]

[40]

Y. Watanabe and S. Yuta. Position estimation of mobile robots with internal and external
sensors using uncertainty evolution technique. In Proceedings., IEEE International
Conference on Robotics and Automation, pages 2011-2016 vol.3, May 1990.

N. Yu and B. Zhang. An improved hector slam algorithm based on information fusion
for mobile robot. In 2018 5th IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS), pages 279284, Nov 2018.

W. Yuan, Z. Li, and C. Su. Rgb-d sensor-based visual slam for localization and navigation
of indoor mobile robot. In 2016 International Conference on Advanced Robotics and
Mechatronics (ICARM), pages 8287, Aug 2016.

Jing-Shan Zhao, Zhi-Jing Liu, and Jian Dai. Design of an ackermann type steering
mechanism. Journal of Mechanical Engineering Science, 227, 11 2013.

B. Zhou, Z. Tang, K. Qian, F. Fang, and X. Ma. A lidar odometry for outdoor mobile
robots using ndt based scan matching in gps-denied environments. In 2017 IEEE 7th

Annual International Conference on CYBER Technology in Automation, Control, and
Intelligent Systems (CYBER), pages 1230-1235, July 2017.

David Stych. HTC Vive testing. report, Robotic and Machine Perception group, Czech
Institute of Informatics, Robotics and Cybernetics, Feb 2020. Available internally at
https://gitlab.ciirc.cvut.cz/stychdav/htc_vive_testing,

150

https://gitlab.ciirc.cvut.cz/stychdav/htc_vive_testing

Appendix A

Structure of the CD

t—experiments
+— 2nd_experiment_data

L—VIVE_Leica_measured_calibration_points—1582756196459412097.npy

v 3rd_experiment_extracted_data

L—*.data.npy - numpy-packed extracted data of the 3rd experiment

«— 3rd_experiment_figures

L,.'. folders containing all the resulting figures from the 3rd experiment

+— scripts

+— find_transform.py - script implementing the theory from 4.4
+— kbhit.py - external class for reading the keyboard queue mentioned in 5.2
+— odometry_classes.py - odometry classes for use in the scripts

+— plot_path.py - visualization and evaluation script descrined in 5.4

»— print_odom.py - measurement and driving script described in 4.3

151

152

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N\
Student's name: Plavec Vaclav Personal ID number: 474436

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

_ Y,
Il. Bachelor’s thesis details
4 N

Bachelor’s thesis title in English:

Sensor Fusion for Mobile Robot Localization

Bachelor’s thesis title in Czech:

Sluéovani informaci z vice senzort

Guidelines:

1. Get familiar with the mobile robot Jackal and the Robot Operating System.
2. Search the literature on combining information from different sources.

3. Design and implement algorithm for sensor fusion.

4. Perform experiments and evaluate them.

5. Make conclusions

Bibliography / sources:

1. Ehab I. Al Khatib ; Mohammad A. Jaradat ; Mamoun Abdel-Hafez ; Milad Roigari: Multiple sensor fusion for mobile robot
localization and navigation using the Extended Kalman Filter, January 2016, 2015 10th International Symposium on
Mechatronics and its Applications

2. Caglar UyulanCaglar UyulanTurker Tekin ErguzelTurker Tekin ErguzelErsen ArslanErsen Arslan: Mobile Robot
Localization Via Sensor Fusion Algorithms, Intelligent Systems Conference 2017

3. Leonardo Marin *, Marina Vallés, Angel Soriano, Angel Valera and Pedro Albertos: Multi Sensor Fusion Framework for
Indoor-Outdoor Localization of Limited Resource Mobile Robots, Sensors 2013

Name and workplace of bachelor’s thesis supervisor:

Ing. Vladimir Smutny, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 23.09.2019 Deadline for bachelor thesis submission: 06.01.2021

Assignment valid until: 30.09.2021

Ing. Vladimir Smutny, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature Head of department’s signature Dean’s signature
\ J
lll. Assignment receipt
é The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others, h
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.
S Date of assignment receipt Student’s signature)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

154

	Introduction
	State of the Art
	Probabilistic methods and uncertainty representation
	Estimating odometry from dead reckoning using only proprioceptive sensors or a compass
	Simultaneous localization and mapping (SLAM) and combining data from exteroceptive sensors with data from proprioceptive sensors
	Multi-robot coordination and cooperation
	Neural networks and machine learning in the process of robot localization
	Types of wheeled unmanned ground vehicles (UGV's) in terms of their movement
	Differential drive kinematic model
	Skid-steering model
	Ackermann steering kinematic model

	More accurate model of the skid-steering kinematics
	The base of this work

	Used Hardware and Software
	The Clearpath Robotics Jackal UGV setup
	The hardware
	The software
	Data sources providing information about the pose and velocities of the robot

	HW and SW equipment for the experiments
	HTC Vive tracker
	Leica AT403 absolute tracker
	Measuring the robot's pose with the laser tracker guided by the tracking system

	Theory
	Extended Kalman Filter and the EKF-fused odometry
	The robot's kinematic model and its use
	The Skid-Steering kinematic model
	The controller's mathematical background

	Boxan's extension of Novácek's NDT SLAM
	Finding a transform between 2 sets of corresponding points
	Estimating poses of the retroreflectors for guiding the laser tracker using the tracking system
	Modeling the uncertainty of the robot's EKF-filtered odometry
	Modeling of the mean error vector and covariance matrix from the experimental data
	Approximation of the contribution to the mean error vector and to the covariance matrix depending on the velocities and the increment of driven distance

	Implementation
	The control of the robot's movement
	The EKF-fused odometry
	Jackal's driving controller and its optional setup parameters

	Libraries used in the scripts
	The script for controlling the robot's driving and generally its measurement
	Command line arguments of the script
	Commands of the gamepad

	The script for evaluating the measured data
	Evaluating the results of the 2nd experiment
	Plotting the data from the odometry and IMU topics for a repeated movement during the 3rd experiment
	Extraction of the data from baglists (lists of rosbags)
	Computing and approximating the resulting mean error vectors and covariance matrices from the extracted data
	Replotting the saved data of odometries from the topics

	Experiments
	The reference coordinate frames considered in the experiments
	Observing the characteristics of the proprioceptive sensors of the robot
	Results of the experiment
	Implications

	Measuring the accuracy of the tracking system data
	Performing the experiment
	Results of the experiment

	Measuring and estimating the uncertainty of the EKF-fused odometry of the robot
	Performing the experiment
	Processing the data
	Results of the partial experiments for the different commanded velocities
	Results of the whole experiment

	Suggestions for the Further Use of the Results
	Conclusion
	Bibliography
	Structure of the CD
	Project Specification

