
Automatic Intron Detection in
Metagenomes Using Neural Networks

Bc. Martin Indra
Faculty of Electrical Engineering

Czech Technical University in Prague

Winter Term 2020/2021

Acknowledgements

I would like to thank my supervisor, doc. Ing. Jǐŕı Kléma, Ph.D., for giving
me the opportunity to work on this interesting and valuable project and for all
his support and guidance.

I would also like to thank Ing. Anh Vu Le for providing me with a lot of
valuable data and insights into an existing intron detection pipeline based on
support vector machines.

In addition, I would like to thank my wife who supported me during the
difficult times.

Abstract / Abstrakt

This work is concerned with the detec-
tion of introns in metagenomes with
deep neural networks. Exact biological
mechanisms of intron recognition and
splicing are not fully known yet and
their automated detection has remained
unresolved.
Detection and removal of introns from
DNA sequences is important for the
identification of genes in metagenomes
and for searching for homologs among
the known DNA sequences available in
public databases. Gene prediction and
the discovery of their homologs allows
the identification of known and new
species and their taxonomic classifica-
tion.
Two neural network models were devel-
oped as part of this thesis. The models’
aim is the detection of intron starts
and ends with the so-called donor and
acceptor splice sites. The splice sites are
later combined into candidate introns
which are further filtered by a simple
score-based overlap resolving algorithm.
The work relates to an existing solu-
tion based on support vector machines
(SVM). The resulting neural networks
achieve better results than SVM and
require more than order of magnitude
less computational resources in order to
process equally large genome.

Keywords: fungi, fungal genomes,
neural networks, itron detection,
metagenome

Tato práce se zabývá detekćı intron̊u v
metagenomech hub pomoćı hlubokých
neuronových śıt́ı. Přesné biologické
mechanizmy rozpoznáváńı a vyřezáváńı
intron̊u nejsou zat́ım plně známy a jejich
strojová detekce neńı považovaná za
vyřešený problém.
Rozpoznáváńı a vyřezáváńı intron̊u z
DNA sekvenćı je d̊uležité pro identi-
fikaci gen̊u v metagenomech a hledáńı
jejich homologíı mezi známými DNA
sekvencemi, které jsou dostupné ve
veřejných databáźıch. Rozpoznáńı gen̊u
a nalezeńı jejich př́ıpadných homolog̊u
umožňuje identifikaci jak již známých
tak i nových druh̊u a jejich taxonomické
zařazeńı.
V rámci práce vznikly dva modely neu-
ronových śıt́ı, které detekuj́ı začátky
a konce intron̊u, takzvaná donorová
a akceptorová mı́sta sestřihu. De-
tekovaná mı́sta sestřihu jsou následně
zkombinována do kandidátńıch intron̊u.
Překrývaj́ıćı se kandidátńı introny jsou
poté odstraněny pomoćı jednoduchého
skórovaćıho algoritmu.
Práce navazuje na existuj́ıćı řešeńı, které
využ́ıvá metody podp̊urných vektor̊u
(SVM). Výsledné neuronové śıtě dosahuj́ı
lepš́ıch výsledk̊u než SVM a to při v́ıce
než desetinásobně nižš́ım výpočetńım
čase na zpracováńı stejně obsáhlého
genomu.

Kĺıčová slova: genom hub, neuronové
śıt’e, detekce intron̊u, metagenom

Čestné prohlášeńı

Prohlašuji, že jsem zadanou diplomovou práci zpracoval sám s přispěńım vedoućıho
práce a konzultanta a použ́ıval jsem pouze literaturu v práci uvedenou. Dále
prohlašuji, že nemám námitek proti p̊ujčováńı nebo zveřejňováńı mé diplomové
práce nebo jej́ı části se souhlasem katedry.

. .
datum podpis diplomanta

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

393127Osobní číslo:MartinJméno:IndraPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

BioinformatikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Automatická detekce intronů v metagenomech pomocí neuronových sítí.

Název diplomové práce anglicky:

Automatic intron detection in metagenomes using neural networks.

Pokyny pro vypracování:
1. Seznamte se s obecnou strukturou DNA eukaryot, prostudujte formáty jejich reprezentace v databázích Joint Genome
Institute.
2. Vypracujte rešerši stávajícího použití konvolučních a rekurentních neuronových sítí při automatické segmentaci genomu.
3. Navrhněte a implementujte algoritmus pro detekci intronů v genomech hub.
4. Extrahujte introny ze stanovených genomů pomocí výše navrženého algoritmu, reportujte základní statistiky pro jednotlivé
genomy, závěry zobecněte přes taxonomické třídy hub. Srovnejte je s existující metodou vycházející z detekce donorů a
akceptorů pomocí SVM.
5. Diskutujte použitelnost algoritmu v úloze detekce intronů v metagenomech,
zohledněte zejména hledisko časové náročnosti.

Seznam doporučené literatury:
Lee, B., Lee, T., Na, B., & Yoon, S. (2015). DNA-level splice junction prediction
using deep recurrent neural networks. arXiv preprint arXiv:1512.05135.
Naito, T. (2018): Human splice-site prediction with deep neural networks. Journal
of Computational Biology, pp. 954–961.
Nguyen, Ngoc Giang, et al. (2016): DNA sequence classification by convolutional
neural network. Journal of Biomedical Science and Engineering 9.05 280.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Jiří Kléma, Ph.D., Intelligent Data Analysis FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 16.09.2020

Platnost zadání diplomové práce: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Kléma, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Contents

List of Figures xiii

List of Abbreviations xv

1 Introduction 1
1.1 Text Structure . 3

2 Background 5
2.1 DNA and RNA Structure . 6
2.2 Biological Sequence Alignment and Search 8
2.3 Neural Networks . 9
2.4 Evaluation . 12

2.4.1 Accuracy . 12
2.4.2 Precision and Recall . 13
2.4.3 Area Under Curve . 13

3 Motivation 15

4 Current Research 17

5 Data 21
5.1 File Formats . 21
5.2 Taxonomy . 23
5.3 Data Statistics . 23

6 Recurrent Convolutional Neural Networks 27
6.1 Overview . 28
6.2 Candidate Splice Site Selection . 29
6.3 Sequence Encoding . 30
6.4 Neural Network Architecture . 30
6.5 Model Criteria . 34
6.6 Neural Network Training . 35
6.7 Dataset Size . 37

xi

xii Contents

7 Automation 39
7.1 Overview . 40
7.2 Intron and Gene Extraction . 42
7.3 Candidate Splice Site Extraction 43
7.4 Training Samples Extraction . 43
7.5 Training and Evaluation . 44

8 Evaluation 45
8.1 Datasets . 46
8.2 Basic Metrics . 47
8.3 Comparison with SVM . 50
8.4 Computational Intensity . 51
8.5 Positional Sensitivity . 53
8.6 False Positives in the Proximity to a Splice Site 56
8.7 Introns of Various Lengths . 58
8.8 Donor and Acceptor Model Correlation 60
8.9 Whole Gene Prediction Pipeline . 64

9 Conclusion 65
9.1 Future Work . 66

References 67

List of Figures

2.1 Molecular structure of a nucleotide [15] 6
2.2 Gene structure and processing [17] 7
2.3 Global sequence alignment example 8
2.4 An example of a sequence (second row) locally aligned to a larger

sequence (first row) . 8
2.5 Feed forward artificial neural network [25] 10
2.6 Convolutional layer (top) over preceding layer (bottom) [26] 11

5.1 Phylogenetic tree of fungi with sequenced genomes as displayed on
the website of Joint Genome Institute [44] 24

5.2 Distribution of intron length over all organisms in the dataset . . . 25
5.3 Box plot with intron lengths on all phyla. Whiskers extend to 5%

and 95% percentiles. 26

6.1 Model architecture visualization . 31
6.2 Training and validation loss during training of the donor model.

Locally weighted scatterplot smoothing (LOWESS) is used as a local
regression of the training loss. 36

7.1 Diagram of data extraction and preprocessing, splice site classification
model training and evaluation. 41

7.2 An illustration of a DNA sequence with UTR of exons highlighted
in cyan, CDS highlighted in blue, intra-UTR introns (not extracted)
highlighted in magenta and intra-CDS introns (extracted) highlighted
in red. 42

8.1 Cumulative distribution function with Kolmogorov–Smirnov statistic
of prediction values from NN 400 model on positive and negative
samples of donor splice sites. 49

8.2 Density of prediction values from NN 400 model on positive and
negative samples of donor splice sites. 50

8.3 Cumulative distribution function with Kolmogorov–Smirnov statistic
of prediction values from NN 400 model on positive and negative
samples of acceptor splice sites. 51

xiii

xiv List of Figures

8.4 Density of prediction values from NN 400 model on positive and
negative samples of acceptor splice sites. 52

8.5 Kullback–Leibler divergences between NN 400 donor model inferences
on unmodified input sequences and inferences on sequences with
single nucleotide modifications at various positions. Position-wise
maximum over swaps to adenine, thymine, cytosine, adenine are shown. 54

8.6 Kullback–Leibler divergences between NN 400 donor model inferences
on unmodified input sequences and inferences on sequences with
single nucleotide modifications at various positions. Position-wise
maximum over swaps to adenine, thymine, cytosine, adenine are
shown. Positive samples are limited to the splice site of introns of a
length 60 nucleotides. 55

8.7 Kullback–Leibler divergences between NN 400 acceptor model infer-
ences on unmodified input sequences and inferences on sequences
with single nucleotide modifications at various positions. Position-
wise maximum over swaps to adenine, thymine, cytosine, adenine
are shown. 56

8.8 Kullback–Leibler divergences between NN 400 acceptor model infer-
ences on unmodified input sequences and inferences on sequences
with single nucleotide modifications at various positions. Position-
wise maximum over swaps to adenine, thymine, cytosine, adenine
are shown. Positive samples are limited to the splice site of introns
of a length of 60 nucleotides. 57

8.9 NN 400 donor model error rate dependence on the relative position
of the nearest true donor splice site. 58

8.10 NN 400 donor model error rate dependence on relative position of
the nearest true donor splice site. 59

8.11 NN 400 acceptor model error rate dependence on the relative position
of the nearest true donor splice site. 60

8.12 NN 400 acceptor model error rate dependence on the relative position
of the nearest true donor splice site. 61

8.13 Dependence of the NN 400 donor model error rate on positive splice
site samples and the lengths of associated introns. 62

8.14 Dependence of NN 400 acceptor model error rate on positive splice
site samples and lengths of associated introns. 63

8.15 Dependency of NN 400 donor and NN 400 acceptor model outputs
on the splice sites of the same intron. 64

List of Abbreviations

2D Two dimensional, referring in this thesis to dimensions of data.

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

CDS Coding sequence.

UTR Untranslated region

SGD Stochastic gradient descent

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

RCNN Recurrent Convolutional Neural Network

SVM Support Vector Machine

ReLU Rectified Linear Unit

LSTM Long short-term memory unit in Recurrent Neural Network

BLAST Basic Local Alignment Search Tool

ROC Receiver Operating Characteristic

AUC Area under the curve

xv

xvi

1
Introduction

Contents
1.1 Text Structure . 3

The kingdom of fungi is largely undiscovered and comprises 2.2–3.8 million species

[1]. Only a small fraction of this—around 100 000 species—has been described in the

literature [2]. The kingdom plays a significant role in public health, food biosecurity,

and biodiversity [3]. It is, therefore, important to develop new, computer-aided

methods to bridge the gap between what is known and what is unknown.

A gene is a sequence of DNA nucleotides encoding a gene product. A gene

product is a protein or form of RNA. In most organisms, the DNA or RNA sequence

that encodes the product is not continuous but interleaved with introns, which are

spliced out during gene expression. The remaining parts are called exons [4].

Metagenomics is the study of combined genetic material as retrieved directly

from a natural environment. The collection of genetic material retrieved from a

sample is known as metagenome, which, as opposed to a single genome, consist

of the DNA sequences of multiple organisms.

Gene homology refers to the similarity between the genetic sequences of two

genes due to shared ancestry. Two genes with similar DNA sequences and shared

1

2 1. Introduction

ancestry are called homologous. The identification of homologous genes can be used

in recognizing individual organisms or kinships in the metagenome.

In a study, forest soil samples were extracted and their genetic material sequenced.

Traditional sequence alignment methods were utilized for gene prediction within

the metagenome, leading to the identification of a number of fungal species within

the sample. But the sample was significantly smaller than expectations based

on the estimates of a number of existing fungal species. The present work seeks

to improve the results of the gene prediction procedure. For this, it identifies

and excises introns from the metagenome and keeps only evolutionarily more

preserved exons in the sequences.

The goal of this work is to create a multistep software pipeline that identifies

introns in DNA sequences of potentially unknown fungal organisms. The use of

deep neural networks is elaborated. Their performances and computational resource

usage are compared with previously used methods based on support vector machines

and the potential of using the results in a larger gene prediction pipeline.

The work uses a large preexisting annotated fungal DNA dataset. The solution

is subdivided into the following sub-goals:

• detection of candidate splice site positions with the search for consensus

dinucleotides,

• classification of candidate intron start positions, i.e. donor splice sites,

• classification of candidate intron end positions, i.e. acceptor splice sites,

• combining detected splice sites into intron start-end pairs based on their

mutual distance,

• filtering the intron candidates resulting from the previous step by an overlap-

resolving algorithm.

1. Introduction 3

1.1 Text Structure

This chapter (1) introduces the work by briefly explaining several important

biological concepts and puts the work into its context. Chapter 2 explains biological

phenomena related to the work, some concepts and techniques from computer

science–basics of recurrent and convolutional neural networks (RCNN) and statistical

measures used for evaluation. Chapter 3 talks about further motivation for this

work, and Chapter 4 summarizes current research on the topic. Chapter 5 contains

an overview of the used data, the statistics computed on the data, their source,

and the used file types.

Chapter 6 describes the recurrent convolutional networks used for splice site

classification. It also describes the architecture and training of the networks with

theoretical and practical reasoning. Chapter 7 talks about how data pre-processing

and RCNN training and evaluation were automated for fast and reproducible exper-

imentation. And finally, Chapter 8 talks about the evaluation and achieved results.

Chapter 9 concludes the work and outlines possible further work.

4

2
Background

Contents
2.1 DNA and RNA Structure 6
2.2 Biological Sequence Alignment and Search 8
2.3 Neural Networks . 9
2.4 Evaluation . 12

The nucleic DNA molecules or chromosomes of Eukaryotic organisms play many

roles in cell biology. Different positions (loci) in a chromosome play different,

often overlapping and complex, roles [5]. DNA functions and its structure are

not yet fully understood [6].

The previously mentioned complexity opens up the possibility of novel approaches

like state-of-the-art machine learning techniques in order to study the DNA structure,

its roles and functions, and the detection of already known parts in new DNA

sequences. For example, it has been shown that feed-forward neural networks can

represent a wide variety of functions [7]. The versatility and effectiveness of artificial

neural networks has been practically demonstrated in many fields. Examples of

this are general game play [8], face recognition [9], speech recognition [10], or

medical image classification [11], among others.

5

6 2.1. DNA and RNA Structure

 O

 O

 O

 O O P

 OH

 OH

 Base 5'

 4'

 3'

 1'

 2'

Figure 2.1: Molecular structure of a nucleotide [15]

2.1 DNA and RNA Structure

Polynucleotide is a linear chain of up to 20 different nucleotide monomers joined by

the phosphodiester (covalent) bond [12, p. 308, p. 347]. Deoxyribonucleic acid (DNA)

and ribonucleic acid (RNA) are two types of polynucleotides that are abundant

in natural life. Both have important biological functions. DNA is composed of

individual nucleotides Adenine (A), Thymine (T), Cytosine (C), and Guanine (G)

[13, p. 4, p. 20, p. 107]. RNA is made from nucleotides Adenine (A), Uracil (U),

Cytosine (C), and Guanine (G) [14, p. 11]. RNA molecules first appeared around

four billion years ago as a first form of life [12, p. 412].

The DNA molecule is directional due to asymmetry of individual nucleotides

[13, p. 42]. See Figure 2.1. Based on The chemical convention of naming carbon

atoms in the nucleotide sugar-ring, one side of DNA is called 5'-end and the

other side 3'-end. DNA and RNA are synthesized in the 5' to 3' direction [13,

p. 167, p. 728]. When referring to relative positions in a DNA sequence, upstream

and downstream refer to the 5' and the 3' directions respectively. Similarly, by

convention, DNA sequences are usually written and stored in the 5' to 3' direction,

unless explicitly stated or needed otherwise.

Chromosomes are enormous DNA molecules which encode the majority of genetic

information in fungi and other kingdoms of species. DNA in chromosomes consists

of two coiled chains of polynucleotide strands forming a double helix.

Different parts of a chromosome have different functions in a cell. Within

chromosomes are continuous parts which form genes, which are nucleotide sequences

that encode gene products—either RNA or protein. Genes have a complex structure

2. Background 7

Regulatory sequence Regulatory sequence

Promoter
Enhancer
/silencer

Terminator

Open reading frame5’UTR 3’UTR

Start Stop

Enhancer
/silencer

Transcription

modification

Translation

Pre-
mRNA

Protein

DNA

Mature

Post-transcription

mRNA

CoreProximal

Exon
Intron Intron ExonExon

Protein coding region
Poly-A tail5'cap

Figure 2.2: Gene structure and processing [17]

that contains regulatory sequences, exons, introns, and other areas. The regulatory

sequences of a gene, located at the extremities of the gene, contain a promoter at

the 5' side and a terminator at the 3' side of the gene. The promoter and terminator

mark the beginning and end of the transcribed region of the gene respectively.

In eucaryotic organisms, gene transcription forms a primary transcript, alterna-

tively called precursor mRNA or Pre-mRNA, which consists of exons and introns

and lacks 5' cap and poly(A) tail. 5' cap and poly(A) tail are added at later

stages of gene expression [16]. Afterward, introns are spliced out during the post-

transcriptional modification and the remaining exons form a final mature mRNA

that, in some cases, encodes protein. Both ends of mRNA contain untranslated

regions (UTR) 5'-UTR and 3'-UTR enclosing the final protein coding region [17].

The gene structure and processing are illustrated in Figure 2.2.

Within introns, the donor splice site, branch point, and the acceptor splice

site are used for splicing. The donor splice site lies at the 5'-end of the intron,

the acceptor splice site lies at the 3'-end of the intron, and the branch point lies

18–40 nucleotides upstream from the acceptor site [18]. In the great majority of the

cases, the 5'-end of an intron starts with highly preserved GU nucleotides and the

3'-end of an intron ends with AG nucleotides. The highly preserved dinucleotides,

8 2.2. Biological Sequence Alignment and Search

A-TATCATGA
AGTA-CATGG

Figure 2.3: Global sequence alignment example

ATTATCATGA
TA-CA

Figure 2.4: An example of a sequence (second row) locally aligned to a larger sequence
(first row)

which make first two symbols in an intron (at 5'-end) and last two symbols in an

intron (at 3'-end), are commonly referred to as consensus dinucleotides. The branch

point always contains adenine, but it is otherwise more variable [18]. Cell’s splicing

machinery is called spliceosomes and removes introns in a sequence of complex steps.

The exact end-to-end mechanisms are not yet fully understood [18].

2.2 Biological Sequence Alignment and Search

Sequence alignment is an algorithm which searches for the best scoring alignment

of two or more sequences of symbols by inserting gaps into any of the sequences.

The resulting alignment contains indels (insertions and deletions), mismatches, and

matches. The alignments are usually scored by summing penalties for indels with

(mis)match scores at other positions. The (mis)match scores are taken from a

substitution matrix and the gaps are frequently scored with a gap-open penalty

summed up with a penalty proportional to the gap length. An example pairwise

alignment of two sequences is given in Figure 2.3.

Two types of alignments exist: global and local. A global alignment produces

sequences of equal length, while a local alignment produces an alignment only of

parts of the sequences. See Figure 2.4 with an example of a local pairwise alignment.

There exist exact algorithms like the Needleman-Wunsch algorithm for global

alignments [19] and the Smith-Waterman algorithm for local alignments [20]. The

exact algorithms have large asymptotic time and memory complexity. An optimized

version of the Needleman-Wunsch algorithm has O(mn/ log(n)) asymptotic time

complexity, where m and n are lengths of the sequences [21, p. 35]. The asymptotic

time complexity of the Smith-Waterman algorithm is O(mn) [21, p. 40]. This makes

2. Background 9

their usage for search in large databases unfeasible because their asymptotic time

has to be further multiplied by the number of database entries.

For reasons of efficiency, heuristic sequence alignment algorithms are in wide

use. These algorithms do not guarantee optimal results but have a much shorter

execution time and smaller memory usage. Among the heuristic algorithms is

BLAST (basic local alignment search tool), one of the most used algorithms

for sequence searching [22].

E-value is the expected number of coincidental matches in the database of a given

size with the match score equal or greater than the found score [21, p. 119]. In other

words, a large E-value signifies a high probability that a match is only coincidental.

When searching for a sequence in a database, a local alignment, such as BLAST,

is performed against all available sequences. All matches with a high enough score

giving a sufficiently small E-value are reported as results.

2.3 Neural Networks

The artificial neural network is a network of interconnected artificial neurons. The

activation yq (output) of a simple artificial neuron, q, can be described with Formula

2.1, where g : R→ R is the neuron activation function, xi is either one of the neural

network inputs or the activation of the preceding neuron i, wiq ∈ R is the weight

of the connection from neuron i to neuron q, and bq ∈ R is the bias of neuron q.

The weights and biases are learned during ANN training.

yq = g
(∑

(xi · wiq)− bq
)

(2.1)

The architecture of a neural network consists of the connections between

individual neurons and activation functions, which are specified as meta-parameters

[23, p. 193]. Most neural networks could be organized into layers. The neurons in

each layer connect only to neurons from preceding layers [23, p. 193].

A neural network is considered deep if it consists of more than three levels

of compositions of non-linear operations [24, p. 6]. Therefore, a neural network

structured into layers is deep if it comprises more than one hidden layer.

10 2.3. Neural Networks

Figure 2.5: Feed forward artificial neural network [25]

Training algorithms, often called neural network optimizers, try to minimize

the value of the loss function on training data. The loss function measures how

well the network performs in each individual training sample, for example, the

difference between truth and prediction.

Neural networks are usually trained with a variation of stochastic gradient

descent (SGD) or a derived algorithm [23, p. 149]. SGD repeatedly and randomly

selects several training samples called a mini-batch and computes the loss function

gradient with respect to trained parameters (i.e. weights and biases) with the

back propagation algorithm [23, p. 149]. Backpropagation is an algorithm which

computes the gradient of a loss function with respect to network parameters with

application of the chain rule [23, p. 201]. A multiple, which is called the learning

rate, of the calculated gradient is then subtracted from the parameters [23, p. 150].

A common pattern in the architecture of binary classification neural networks

is to have a single output neuron, with an appropriate activation function and a

discrimination threshold on output neuron activation.

Convolutional neural networks (CNNs) are a class of neural networks that

contain one or more convolution layers (see Figure 2.6). Convolution layers contain

2. Background 11

Figure 2.6: Convolutional layer (top) over preceding layer (bottom) [26]

neurons with shared weights and a limited perceptive field; the weights of the

neurons are shift invariant [23, p. 326]. Thanks to its features, CNNs greatly

reduce a number of learnable parameters and are therefore easier to train and

less prone to overfitting [23, p. 339].

Formula 2.2 provides the activation of neurons in a 2D convolutional layer,

where yi,j is the activation of the neuron at position (i, j) in a 2D grid of neurons,

g : R → R is the activation function, km,n ∈ R is a shared weight from kernel

k ∈ RM×N , xi+m,j+n is the output of neuron (i + m, j + n) from the preceding

2D layer, and b ∈ R is the shared bias [23, p. 328].

yi,j = g

(∑
m

∑
n

km,n · xi+m,j+n − b
)

(2.2)

Recurrent neural networks (RNNs) are a family of neural networks where the

connections between nodes form a directed graph along a sequence [23, p. 368].

In other words, the computational graph of these networks contain loops that

unfold over a time variable. This architecture allows for the processing of possibly

arbitrarily long sequences of data [23, p. 367].

12 2.4. Evaluation

2.4 Evaluation

The four following basic metrics can be estimated for any binary classification

algorithm with respect to truth data:

• true positive rate (TPR) – probability of a positive sample being classified as

positive by the classification algorithm,

• true negative rate (TNR) – probability of a negative sample being classified

as negative,

• false positive rate (FPR) – probability of a negative sample being classified

as positive,

• false negative rate (FNR) – probability of a positive sample being classified

as negative.

These constants are estimated with formulas TPR = TP
P

, TNR = TN
N

, FPR = FP
N

and FNR = FN
P

, where TP, TN , FP, FN , P , and N are the number of true

positives, true negatives, false positive, false negatives, the number of positive

samples, and the number of negative samples, respectively, and obtained by running

the algorithm on a test dataset.

Many other metrics could be derived from these constants.

2.4.1 Accuracy

The accuracy of an algorithm is the probability of a sample being classified correctly,

given by Formula 2.3, where p is the prior probability of the positive class.

Accuracy = TPR · p+ TNR · (1− p) (2.3)

This metric is of limited use in case of highly unbalanced data. For example,

an algorithm classifying all samples as negative would have 99% accuracy on data

with 99% of the samples being negative.

2. Background 13

2.4.2 Precision and Recall

Precision is a fraction of the true positive classifications in all positive classifications

given by Formula 2.4, where p is the prior probability of the positive class.

Precision = TPR · p
TPR · p+ FPR · (1− p) (2.4)

Recall is a fraction of the positive samples classified as positive. Recall is

independent of class prior probabilities. See Formula 2.5.

Recall = TPR
TPR + FNR = TPR (2.5)

Both precision and recall might be calculated directly from TP, FP, TN , FN

counts measured on a test dataset. In such a scenario, calculated precision would

differ from 2.4 if a fraction of positive sample was different from positive class prior p.

2.4.3 Area Under Curve

The area under curve (AUC) is an area under a receiver characteristic curve (ROC).

An ROC curve gives dependence of a true positive rate on the false positive rate

obtained on the different threshold settings of a binary classification algorithm.

14

3
Motivation

DNA sequencing costs are sharply decreasing [27]. GenBank is a genetic sequence

database of all publicly available DNA sequences [28]. The number of bases in the

GenBank database has doubled approximately every 18 months from 1982 to present

(2019), and its database consists of over 366 billion bases [29]. The consequence

of ever-cheaper DNA sequencing and exponential sequence database growth is the

need for an increased capacity for DNA data handling and analysis. An automated

and scalable solution to DNA annotation would partially fulfill this need.

Fungal and bacterial organisms play an important role in various ecosystems

including the floor and soil of forests [30][31]. Some fungal species are capable of

decomposing cellulose and various biopolymers and are involved in the decomposition

of deadwood and litter. The decomposition goes in stages, and in each stage

different organisms with varying diversity contribute to the process [31]. Nontrivial

dependencies of different fungal organisms and decomposition stages were identified

and a lot of the relationships are yet to be known [31]. Decomposed wood and

litter is important for some plant species [31]. The presence of wood inhabiting

fungi might be a good indicator of overall forest biodiversity [30].

Not only for the previously mentioned reasons, the ability to identify fungal

species in metagenomes recovered from soil and other environmental samples is

a potent tool in the biological study of forests and other ecosystems. The task

15

16 3. Motivation

of fungal species identification in a metagenome is approached by searching for

homologous genes in the DNA sequences by applying sequence alignment algorithms

to all known protein and gene sequence databases. The search for homologs does

not only allow the identification of known species, but also searches for novel,

evolutionary related species.

To achieve good search results, we detect and remove introns in long DNA

sequence scaffolds before the search. This should improve protein sequence match

scores because introns are spliced before RNA to protein translation. A reason for

the improvement is that the match score of alignment algorithms for homologous

DNA sequences is the highest in most preserved parts of such DNA sequences—

i.e. exons. The functional regions of DNA sequences tend to be more highly

conserved than the remaining parts of the DNA [32]. See Section 2.2 for more

information on sequence alignment.

4
Current Research

Research on automated splice site detection goes back to at least 1987. For example,

the work [33] used the probability of occurrence of particular nucleic bases at

particular positions for splice site detection.

The hidden Markov model and the AdaBoost classifier to detect an intron

splice site were used in [34]. The hidden Markov model was also used in [35]

for sequence pre-processing and the support vector machine for intron splice site

detection. A multilayered recurrent neural network applied on triplets from original

sequence is described in [36]. A convolutional neural network and its interpretation

is described in [37], which reports that the network is most sensitive to nucleotides

close to a splice site.

Good performance of recurrent convolutional neural networks in detecting the

protein binding motifs in DNA sequences is reported in [38]. The algorithm is

named DeeperBind. DeeperBind encodes DNA sequences with one-hot-encoding.

The network consists of one convolutional layer, followed by two LSTM layers, and

finally, the LSTM output is connected to two fully connected layers with dropout.

The convolutional layers are not followed by max pooling layers common in CNN

architectures. Strides of convolution is set to one. The paper reports that the

following LSTM layers are able to deal with increased redundancy produced with

convolutional layers with stride one and without max pooling.

17

18 4. Current Research

The paper [39] takes a different approach to RNA sequence encoding. The

authors report diminished generalization when learning one-hot-encoded sequences

and overcoming this issue by embedding each nucleotide to a four-dimensional

dense vector. The input is followed by two RNN layers whose output is fed to

a fully connected layer with dropout. The paper compares the performances of

ReLU, LSTM, and GRU recurrent units. It is concluded that the addition of

more RNN layers does not further improve the performance and that LSTM units

show the best performance.

The use of recurrent convolutional neural networks for splice site detection in

the human genome is described in [40]. Two convolutional layers, each succeeded

by a max-pooling layer, are followed by a bidirectional LSTM recurrent layer. The

output of the RNN layer is fed to two fully connected layers with soft-max at the

final output. Dropout is applied on the outputs of all layers. One-hot-encoding is

used on the inputs. The paper reports improved performance of the network with

the RNN layer as compared with the same network without that layer.

Past research is mostly based on classical methods; the use of deep neural

networks for splice site detection is rare. Some methods show almost perfect

performance [36]. However, these methods are usually trained and tested on a

single or a few organisms—for example, Homo Sapiens—and training-testing data is

split on the level of individual samples as opposed to organism or higher taxonomic

ranks. The ability of these algorithms to generalize to the DNA sequences of species

not present in training data is largely unreported.

It has been described that the splice site recognition process is complex and

tissue-specific in humans [41]. This complexity may limit the maximum achievable

accuracy of splice site detection algorithms that work with DNA sequences only

on out-of-sample organisms.

Performance of convolutional neural networks on various classification problems

of DNA sequences was evaluated in [42]. The neural networks were evaluated on

12 different datasets and 3 different classification tasks:

4. Current Research 19

• classification of sequences into histone-wrapping and non-histone-wrapping

sequences,

• classification of sequences into three groups: sequences containing a donor

splice site, sequences containing an acceptor splice site and other sequences,

• classification of DNA sequences into those containing nucleotides of a gene

promoter and other sequences.

The input to the neural networks is a sequence of one-hot-encoded 3-mers. The

networks consist of two convolutional layers followed by a fully connected layer

with dropout of 0.5. Softmax output layer is used. Modest accuracy is reported in

the paper. Accuracy over 96% is reported for classification of the splice sites. The

splice site classification task described in the paper is different to the one in the

thesis because the paper does not solve the detection of exact splice site position.

Convolutional neural networks are used in work [43] for predicting the discrete

probability distribution of distances and torsions of amino acid residues based on

pre-processed protein sequences. The neural network is structurally similar to the

networks used in image-recognition tasks. The predicted distances were used as a

seed for a gradient-descent algorithm that predicts the three-dimensional structure

of a protein by minimizing the potential. The paper reports the state-of-the-art

performance and demonstrates the ability of deep neural networks to predict the

physical shapes of biological polymers.

The specifics of fungal DNA are exploited in the thesis. The ability of various

neural networks to generalize across various taxonomic ranks is studied. The sheer

amount of available annotated data enables the use of more complex neural networks,

which, in turn, can learn more subtle or complex features.

20

5
Data

Contents
5.1 File Formats . 21
5.2 Taxonomy . 23
5.3 Data Statistics . 23

Source DNA sequence data and its annotations were downloaded from the Joint

Genome Institute1 [44]. The data contains FASTA files with the DNA sequence

scaffolds of individual organisms and GFF files with DNA feature annotations.

As part of this work, all data was uploaded to Google Cloud Storage in a

compressed form, and an automated download and extraction script was created.

5.1 File Formats

A FASTA file is a text-based representation of DNA sequences. Such a file contains

header lines beginning with character >, followed by an identifier of the sequence

on successive lines. The sequence itself consists of characters ATCGN that represent

adenine, thymine, cytosine, guanine, and “any character” respectively. In the data,

each sequence within a FASTA file represents a scaffold.
1https://jgi.doe.gov/fungi

21

22 5.1. File Formats

The sequences in FASTA files represent scaffolds. A scaffold links together a

non-contiguous series of genomic sequences, comprising sequences separated by

gaps of known length. The linked sequences are typically contiguous sequences

corresponding to read overlaps [45].

The following sample is the first four lines of the FASTA file with the DNA

sequence of the organism Verticillium dahliae.

>Supercontig_1.1
AGTATCATGAAGGAAGAACAAGTTGAGGGACATAATTACCTGGGGTGCGGCGCTTACAAGTAAGGGTCGC
TGGGACATCGACCTGGAGGAGGAGAATCATGTAACGCCCCAGCCCGGTCGTCACCAGGACACCAGGCAGG
ACACCCCGCAGGCGATCGGACGCGCCGCACGGACCCACAGGATCACTCACGTGACCGTGACCAGATCACG

General Feature Format (GFF) is a file with DNA feature annotations. The

file format has three versions. The latest version 3 is used in the data. GFF is a

text-based file in which each line represents a feature annotation. An annotation

consists of nine tab-delimited attributes [46]:

• sequence – name of the sequence, scaffold in our case, where the sequence is

located,

• source – source of the feature, for example, name an institution,

• feature – type of the feature, only feature type exon are used in this work,

• start – 1-based, inclusive offset of start of the feature,

• end – 1-based, inclusive offset of end of the feature,

• score – confidence in validity of the feature,

• strand – DNA strand where the feature is located. It is one of +, - or . for

positive, negative, and undetermined respectively,

• phase – phase of CDS features which is always one of 0, 1 or 2,

• attributes – additional feature attributes. Format of this field is not generally

determined. In GFF files used in this work, it contains colon-delimited list of

attributes, where each is space-delimited attribute name and value.

5. Data 23

Phylum Number of Organisms
Ascomycota 479
Basidiomycota 295
Blastocladiomycota 4
Cryptomycota 1
Chytridiomycota 21
Microsporidia 8
Mucoromycota 38
Zoopagomycota 16

Table 5.1: Phyla in the dataset

Taxonomy Rank Number of Taxa
Phylum 8
Class 46
Order 124
Family 307
Genus 566
Species 862

Table 5.2: Number of taxa on different taxonomy ranks

The following sample is the first four lines of a GFF file with annotations of

the DNA sequence of the organism Verticillium dahliae.

Supercontig_1 JGI exon 76 572 . + . name "VDBG_00001T0"; transcriptId 224
Supercontig_1 JGI CDS 406 572 . + 0 name "VDBG_00001T0"; proteinId 1; exonNumber 1
Supercontig_1 JGI start_codon 406 408 . + 0 name "VDBG_00001T0"
Supercontig_1 JGI exon 631 1621 . + . name "VDBG_00001T0"; transcriptId 224

5.2 Taxonomy

The data consists of eight different phyla, but 89.8% of the organisms (774 of

862) are from Ascomycota and Basidiomycota phyla which make the Dikarya

subkingdom. See Table 5.1 with the number of organisms per phylum and Figure

5.1 with a phylogenetic tree of available fungi.

5.3 Data Statistics

In total, 16 067 492 introns, distributed over 5 557 272 individual genes, were

identified from exon annotations on all 862 organisms in the dataset. This number

24 5.3. Data Statistics

Figure 5.1: Phylogenetic tree of fungi with sequenced genomes as displayed on the
website of Joint Genome Institute [44]

includes only introns inside coding sequences, see Section 7.2. Also see Section

7.1 which includes the definition of gene used in this thesis.

The cumulative length of all genes is 8 396 757 084 or 8 371 133 149, with over-

laps counted only once. The cumulative length of all introns is 1 296 667 885 or

1 293 833 629, with counting overlaps only once or roughly 15% of genes.

The mean gene length is 1510.9 nucleotides and the mean intron length is 80.7

nucleotides. As much as 93.5% of the introns are 150 nucleotides long or less

with a distinct peek in length distribution around 50 nucleotides. See Figure 5.2

with intron length distribution and Figure 5.3 that depicts a box plot of intron

lengths on all available phyla.

In this work, only donors and acceptors with consensus dinucleotides were used,

see Section 6.2 for more information on this topic.

5. Data 25

0 20 40 60 80 100 120 140
Intron length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns

ity
Intron Length Distribution

Figure 5.2: Distribution of intron length over all organisms in the dataset

In total, 15 792 942 donors and 15 828 432 acceptors were identified in the data.

All occurrences of GT for donors and AG for acceptors at positions different from

the positions of true splice sites were considered as false donors and false acceptors.

Moreover, 411 393 734 false donors and 498 273 594 false acceptors were found inside

genes—this gives the frequency of one false donor per 20.3 nucleotides and one

false acceptor per 16.8 nucleotides. False donors are 26.0 times more frequent

than true donors, and false acceptors are 31.2 times more frequent than true

acceptors in exon-intron areas.

26 5.3. Data Statistics

Ascomycota

Basidiomycota

Mucoromycota

Blastocladiomycota

Chytrid
iomycota

Micro
sporidia

Zoopagomycota

Cryptomycota

50

100

150

200

250

300

Per Phylum Intron Lenghts

Figure 5.3: Box plot with intron lengths on all phyla. Whiskers extend to 5% and 95%
percentiles.

6
Recurrent Convolutional Neural Networks

Contents
6.1 Overview . 28
6.2 Candidate Splice Site Selection 29
6.3 Sequence Encoding . 30
6.4 Neural Network Architecture 30
6.5 Model Criteria . 34
6.6 Neural Network Training 35
6.7 Dataset Size . 37

This work aims to develop a method based on deep neural networks which would

detect and remove introns from the DNA sequences of various fungal organisms.

Removal of introns is done in these steps:

1. all candidate donor and acceptor splice sites are identified based on consensus

dinucleotides,

2. these candidate splice sites are classified as true and false splice sites with

separate donor and acceptor recurrent neural networks,

3. positive classifications are combined to form candidate introns,

4. candidate introns are assigned a score equal to the multiple of the respective

donor and acceptor splice site model confidence,

27

28 6.1. Overview

5. and overlapping candidate introns with non-highest score are filtered out.

Section 6.1 gives an overview of the neural networks used and the overall pipeline.

Section 6.2 talks about the selection of candidate splice sites—i.e. locations in source

DNA sequences (from a metagenome) which are considered as potential donors

and acceptors. These locations are then classified with the splice site networks.

Section 6.3 describes how the DNA sequences are encoded in matrices so that

they could be used as inputs to the neural networks. Section 6.4 talks about

the architecture and other aspects of the splice site classification neural network.

Section 6.5 defines the criteria used during network selection. Finally, Section 6.6

describes the training of the neural networks.

6.1 Overview

All critical sections in the aforementioned intron detection and deletion of the

pipeline—i.e. two neural networks—are created as part of this work. An existing

pipeline from work [47] (which originally used the support vector machines in the

critical section) was adapted to obtain a complete pipeline.

Two separately trained neural networks with equal architecture were used for

the classification of donor and acceptor splice sites within original DNA sequences

(i.e. in full DNA sequence and before transcription to RNA). To accompany

the complexity of all regulatory and other sequences involved in intron splicing,

convolutional layers were utilized in target neural networks. Recurrent layers

with long short-term memory (LSMT) units were used to enable the detection of

partially shift invariant inter-dependencies and redundancies between non-adjacent

parts of the intron sequences.

The neural networks were trained to distinguish between true and false splice

sites. The input to the neural network is a window spanning some distance to

both sides around the candidate splice site. The window size has been selected

to be large enough so that the network can detect all important features within

6. Recurrent Convolutional Neural Networks 29

the DNA sequence. The output of the network is the confidence of the input

sample being a true splice site.

The pipeline reported in [47] requires a third model which further filters candidate

introns. The need for this additional step was motivated by the high false positive

rate of splice site classification models. In this work, the additional filtering step

was assessed as counterproductive because splice site classification models based on

neural networks have a smaller false positive rate and further filtering of introns

would impact the overall intron recall. See Section 8.3 for evaluation metrics.

6.2 Candidate Splice Site Selection

Only splice sites with the consensus dinucleotides were used during the training,

evaluation, and testing of the networks. These are GT for donor and AG for acceptor

splice sites. This decision was made because non-consensus splice sites are rare, and

therefore, there was not enough training and evaluation data to be included. In fact,

its inclusion would drastically increase the number of false positive classifications.

It omission has only a minuscule negative effect on the number of false negative

classifications. See Section 5.3 which contains more related statistics.

False splice sites included in training, validation, and test datasets are selected

only from the gene areas in source DNA sequences. See Section 7.1 for the definition

of “gene” used in this thesis. Filtering to genes is motivated by the fact that

intra-genetic DNA does not play an important role during sequence alignment and

homologous gene search in the larger gene prediction pipeline. Therefore, removal

of presumed introns from these intra-genetic areas should not have a large impact

on overall results. Only the ability to recognize false splice site within genetic

areas was assumed to play an important role. Furthermore, sequences which would

be biologically processed as introns might be present in intra-genetic areas and

are therefore labeled as negative examples. This would lead to confusion of the

trained network as well as a worse performance.

30 6.3. Sequence Encoding

6.3 Sequence Encoding

Splice site classification neural networks were trained to map an input sequence

window to a value between 0 and 1. The sequence is encoded as a matrix of

dimensions N × 5, where the N rows represent relative positions along the DNA

sequence and the columns represent one-hot-encoded nucleotides. Various input

window sizes N = Nupstream +Ndownstream were evaluated, see Table 6.1 and Table

6.2. Each nucleotide is encoded as a 5-dimensional vector, with value 1.0 at the

dimension of the represented nucleotide and values 0.0 at other dimensions. The

first four dimensions represent the nucleotides adenine (A), thymine (T), cytosine

(C), and guanine (G). The fifth dimension represents “any symbol” (usually missing

or corrupt data).



1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0


(6.1)

Matrix 6.1 illustrates a six-nucleotide long, one-hot-encoded DNA sequence

window that reads AGTNAA, which contains the consensus donor dinucleotide

GT at position 1.

6.4 Neural Network Architecture

This section reports selected splice site classification network architecture, see Figure

6.1 and explains the theoretical background and motivation behind the input and

each selected layer, as well as the empirical findings.

Table 6.1 and Table 6.2 show the dependency between the shape of the input

window to the neural network and its performance. The tables clearly demonstrate

that the window overlap with the associated intron – located at the downstream

direction for donors and upstream direction for acceptors – plays a dominant role

and that classifications performed on windows with no overlap with the associated

6. Recurrent Convolutional Neural Networks 31

input_1: InputLayer
input:

output:

[(?, 100, 5)]

[(?, 100, 5)]

concatenate: Concatenate
input:

output:

[(?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5), (?, 100, 5)]

(?, 100, 60)

conv1d: Conv1D
input:

output:

(?, 100, 60)

(?, 100, 60)

add: Add
input:

output:

[(?, 100, 60), (?, 100, 60)]

(?, 100, 60)

leaky_re_lu: LeakyReLU
input:

output:

(?, 100, 60)

(?, 100, 60)

conv1d_1: Conv1D
input:

output:

(?, 100, 60)

(?, 100, 60)

leaky_re_lu_1: LeakyReLU
input:

output:

(?, 100, 60)

(?, 100, 60)

conv1d_2: Conv1D
input:

output:

(?, 100, 60)

(?, 100, 60)

add_1: Add
input:

output:

[(?, 100, 60), (?, 100, 60)]

(?, 100, 60)

leaky_re_lu_2: LeakyReLU
input:

output:

(?, 100, 60)

(?, 100, 60)

conv1d_3: Conv1D
input:

output:

(?, 100, 60)

(?, 100, 60)

leaky_re_lu_3: LeakyReLU
input:

output:

(?, 100, 60)

(?, 100, 60)

bidirectional(lstm): Bidirectional(LSTM)
input:

output:

(?, 100, 60)

(?, 100, 20)

flatten: Flatten
input:

output:

(?, 100, 20)

(?, 2000)

dropout: Dropout
input:

output:

(?, 2000)

(?, 2000)

dense: Dense
input:

output:

(?, 2000)

(?, 1)

Figure 6.1: Model architecture visualization

32 6.4. Neural Network Architecture

0 100 200
Precision Recall Precision Recall Precision Recall

0 - - 51.8% 85.2% 52.2% 85.4%
100 14.3% 32.2% 62.4% 87.8% 63.3% 88.0%
200 14.6% 34.0% 63.6% 88.1% 64.6% 87.9%

Table 6.1: Dependency between classification performance on donors and the number of
nucleotides upstream (rows) and downstream (columns) from the candidate splice site
included in the input window.

0 100 200
Precision Recall Precision Recall Precision Recall

0 - - 10.2% 22.1% 10.4% 24.3%
100 53.1% 86.3% 57.7% 87.2% 56.6% 87.2%
200 56.1% 86.4% 58.6% 87.3% 58.8% 87.4%

Table 6.2: Dependency between classification performance on acceptors and the number
of nucleotides upstream (rows) and downstream (columns) from the candidate splice site
included in the input window.

intron have very poor performance. This finding is in agreement with the biological

understanding of splicing, which is mostly dependent on DNA sequences inside

the intron. See Section 2.1 which covers the biological background and Section 8.5

which explores the sensitivity of the trained network at various input positions.

The convolutional layer allows for sparse connectivity between successive layers

and parameter sharing by applying the same kernel parameters to a limited receptive

field [23, p. 330]. This leads to drastic reduction of the number of trainable

parameters which, in turn, decreases the computing time and needed training

dataset size. Convolutions are equivariant to translation [23, p. 334] and are

therefore theoretically capable of learning various features at different relative

positions inside input DNA sequence windows from fewer samples. It is hypothesized

that such position-independent features exist in the data, which motivated the use

of convolutional layers in the resulting network architecture. It has been empirically

verified that convolutional layers improved various network performance metrics

at low additional computational costs.

6. Recurrent Convolutional Neural Networks 33

Leaky rectified linear activation functions (Leaky ReLU) were used throughout

the network. Use of the ReLU activation function and its variations has many

benefits. ReLU was among the most frequently used and successful activation

function as of 2017 [48]; it leads to extensive research on them. Networks using

ReLU units are more easily trained because they do not have problems with

vanishing and exploding gradients [48]. Leaky ReLU was used instead of plain

ReLU because it provides similar computational complexity but avoids 0 gradient

[49], thereby leading to improved performance.

Skip connections forming residential networks (ResNet) are introduced in the

convolutional part of the network. Deep networks may suffer from the vanishing

gradient and the degradation problem, which could be resolved by using ResNet [50].

Recurrent neural networks (RNNs) are capable of recognizing same features

at various positions in the input sequence and even recognize their repetition and

mutual dependence [23, p. 367]. To some extent, it is possible to achieve similar

position-independent feature recognition with convolutional layers. However, their

processing is shallower and disallows greater interdependence between different

positions in the sequence [23, p. 368]. As of 2016, gated RNNs, which include

networks with long short-term memory (LSTM) units, were the most effective type of

RNNs [23, p. 404]. LSTM units allow the retention of information over large number

of time steps without any problems with vanishing or exploding gradients [23, p. 404].

Other works also report the successful use of RNN layers for splice site detection [39].

For these reasons, a bidirectional RNN layer was used in the selected architecture.

The work [39] reports no improvement after adding more recurrent layers.

The same finding of no statistically significant improvement after adding another

recurrent layer was observed in this work.

The used recurrent layer produces output at each step. This decision has been

motivated by the need to distinguish true splice sites that are located exactly in

the middle of the input sequence from those located in close proximity in the

middle. Bidirectional RNN was used to allow the recognition of both downstream

and upstream dependencies.

34 6.5. Model Criteria

The aforementioned multilayered architecture allows for the learning of complex,

highly non-linear mappings between input DNA sequences and output splice site

confidences. The network has 49 921 learnable parameters, which give large learning

capacity. However, neural networks with large capacities tend to overfit the training

data [51]. This effect was empirically observed and confirmed during experiments

on neural network architectures without sufficient regularization techniques. A

dropout layer was successfully used in the final architecture to completely over-

come overfitting.

Dropout is a technique of omission of a given fraction of neural units in a

given layer during training. A different stochastic unit selection is done during

each training mini-batch. Classical optimization based on backpropagation is then

applied to this reduced network [51]. All neurons are applied with a scaling factor

during the later inference of a trained network. Dropout is an approximation of

an equally weighted geometric mean of the predictions of multiple neural networks

with shared parameters [51]. The number of dropouts and therefore the number

of synthetic networks are exponential with the number of neural units [51]. This

technique is highly efficient from the point of view of computational resources

and prevents overfitting [51].

6.5 Model Criteria

Model selection was based on the following criteria:

• ability of the model to generalize and perform consistently among different

fungal organisms,

• good performance metrics, namely its precision and recall,

• model complexity and computational intensity during inference.

The generalization capability of the model was an important aspect because the

model would be applied to a wide variety of previously unknown fungal genomes.

For this reason, all experimental models were evaluated on individual organisms

6. Recurrent Convolutional Neural Networks 35

separately as well as on larger sets of organisms. Consistency was taken into

account in this regard.

Precision and recall were used to evaluate the performance of the models.

Small false positive rate was emphasized during the development of the network

architecture and the selection of binary classification threshold values. This is

because consensus dinucleotides are more than an order of magnitude more frequent

in target DNA sequences than true splice sites, see Section 5.3 for more details.

Final production computational resource utilization was also an important

consideration during the design of the network architecture and pre-processing and

post-processing procedures. This aspect is important because metagenomes on

which they will be applied are enormous and might go well beyond 109 nucleotides.

The possible use of the results of this work in an automated online annotation tool

is another consideration, and high computational requirement would make such a

goal economically unfeasible. This criterion has led to the selection of a sub-optimal

network from the point of view of accuracy as networks with larger complexity and

window size had slightly better results. But the improvement was not significant

and would lead to a large increase in computational requirements.

6.6 Neural Network Training

Stochastic gradient descent (SGD) was used for the optimization during network

training. Other optimization techniques, such as the adaptive methods AdaGrad,

RMSProp, or Adam, were also tested, but SGD yielded superior results. It has

been reported that adaptive methods converge faster during the initial phases of

training; but given enough training time, it may lead to worse generalization [52].

This effect was empirically confirmed in this work.

The initial learning rate was set to α = 0.01 and multiplied by the factor of

0.2 after every epoch which did not lead to a decrease in validation loss. The

training was automatically stopped after 10 successive epochs with no significant

decrease in validation loss. The model with the lowest after-epoch validation loss

was used during successive evaluation and tests.

36 6.6. Neural Network Training

5000 10000 15000 20000 25000 30000 35000 40000
Number of Samples [Thousands]

0.155

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

Lo
ss

Training Loss
LOWESS of training loss
training loss
validation loss

Figure 6.2: Training and validation loss during training of the donor model. Locally
weighted scatterplot smoothing (LOWESS) is used as a local regression of the training
loss.

Binary cross-entropy was chosen as a surrogate loss function.

It has been reported that small batch sizes (m ≤ 32) lead to better test results

and generalization. For some networks and tasks, this effect might go down to the

batch size as small as m = 2 [53]. The batch size of m = 16 was used during training.

Source data comprises of 862 organisms, see Section 5.2. These were randomly

split into training (769 or 90%), validation (85 or 9%) and test (8 or 1%) datasets.

See Section 8.1 for more information on the test dataset.

Over three million samples were used in the training dataset and over 85 000

samples were used in the validation dataset. The number of samples included in the

validation dataset is 1000 per organism and is greater than the minimum required

number of 75 759 samples as derived in Section 6.7.

Per organism stratified random sampling was used for the creation of the

6. Recurrent Convolutional Neural Networks 37

datasets. Donor and acceptor samples were selected independently, i.e. some

introns might be only half-included.

The training dataset comprises of 30% of positive samples and the validation

dataset comprises of 50% of positive samples. Overrepresentation of the negative

samples in the training dataset was selected to achieve low false positive rate. This

is motivated by the low ratio of the number of true splice sites to the number of

false splice sites in the real-world data. See Section 5.3 which reports various

data statistics.

After each epoch, training samples were randomly reshuffled. Training and

validation loss progression is illustrated by Figure 6.2.

Keras [54] with TensorFlow [55] backend was used for training and prediction.

Preprocessed data in the form of Numpy NPZ files with input matrices and desired

outputs is used during training, see Section 7.4. Data was loaded gradually from

the disk and not kept in memory because of the large number of samples used

during the training.

See Chapter 8 for detailed evaluation of achieved results.

6.7 Dataset Size

The validation dataset always consisted of 50% of negative samples and 50% of

positive samples. The validation dataset size l was chosen so that the probability

of empirical true positive rate (TPR) or empirical true negative rate (TNR) being

more than ε, different from the true TPR or the true TNR in any of n experiments,

was smaller or equal to R. See Section 2.4 for more information on evaluation.

Formula 6.2 gives the maximum probability R1 of seeing a “bad” TPR or TNR

measurement in a single evaluation for the above condition to hold. This is derived

from the fact that 2 · n measurements need to be performed to obtain empirical

TPR and empirical TNR for n different model setups.

Formula 6.3 is derived from Hoeffding’s inequality [56] and gives the minimum

dataset size l. The right part of the equation is multiplied by 2 because the dataset

is split into half between positive and negative samples.

38 6.7. Dataset Size

A dataset comprising l = 75759 samples is needed for n = 25, R = 0.05

(5%) and ε = 0.01 (1%).

R1 = 1− (1−R) 1
2·n (6.2)

l =
⌈
2 · log 2− logR1

2 · ε2

⌉
(6.3)

7
Automation

Contents
7.1 Overview . 40
7.2 Intron and Gene Extraction 42
7.3 Candidate Splice Site Extraction 43
7.4 Training Samples Extraction 43
7.5 Training and Evaluation 44

This chapter describes various automation software developed as part of this

work, including data pre-processing and extraction, neural network training, and

evaluation. It explains how the work was split into a multi-step pipeline and

further describes some technical details that have implications on how the neural

networks were trained or evaluated.

Source data, as described in Chapter 5, contains assembled DNA sequence

scaffolds in FASTA files and various feature annotations in general feature format

(GFF) files. A multistep data pre-processing pipeline was created to extract

target training, evaluation, and testing data from the source data. This pipeline

is split into multiple steps to reduce its complexity, increase the time-efficiency,

and to enable efficient reproducibility with varying configuration parameters like

extracted window size. A set of fully automated training, evaluation, inspection,

and visualization scripts were also created.

39

40 7.1. Overview

Throughout the work, 0-based indexing is used for sequence positions and start

inclusive, end exclusive intervals are used.

All source codes are published in GitHub repository https://github.com/

Indy2222/introns/. Source data, trained neural networks, and other large binary

materials are uploaded to Google Cloud Storage which is linked from the repository.

7.1 Overview

In the text of this chapter, in the source code and in file naming the term “gene”

is often used for a continuous area withing a DNA sequence that spans from the

beginning of the first annotated CDS to the end of the last annotated CDS of an

actual gene. This is a simplification that does not fully correspond to actual genes

in all their complexities as understood by biology.

The pre-processing pipeline consists of the following steps:

1. Within each organism, start and end positions of individual genes and introns

are extracted. These are collectively referred to as feature, see Section 7.2.

2. Positions of positive and negative examples of donor and acceptor Splice sites

are generated. See Section 7.3.

3. Final data samples, which map DNA sequence windows to scores 0.0 or 1.0,

are created. See Section 7.4.

The data pre-processing pipeline is implemented in the Rust programming

language for its high performance, reliability, and “fearless concurrency” [57][58].

All CPU-intensive parts of the pipeline are parallelized to improve the processing

time on multicore computers.

Training, evaluation, inspection, and visualization are described in Section 7.5.

Diagram of the preprocessing, training and evaluation pipeline is depicted in Fig-

ure 7.1.

https://github.com/Indy2222/introns/
https://github.com/Indy2222/introns/

7. Automation 41

original
annotations
(GFF files)

original sequences
(FASTA files)

Organisms
CSV

extract genes &
introns

features
(CSV files)

extract splice-
site positions

extract splice-
site samples

positions
(NPZ files)

samples
(NPZ files)

prepare datasetdataset
description
(JSON file)

train

evaluate

model
(HDF5 file)

evaluation
(PDF + other)

Figure 7.1: Diagram of data extraction and preprocessing, splice site classification model
training and evaluation.

42 7.2. Intron and Gene Extraction

AGTATCATGAAGGAAGAACAAGTTGAGTGACATAATTACCAGGGGTGCGGCG

Figure 7.2: An illustration of a DNA sequence with UTR of exons highlighted in cyan,
CDS highlighted in blue, intra-UTR introns (not extracted) highlighted in magenta and
intra-CDS introns (extracted) highlighted in red.

7.2 Intron and Gene Extraction

Start and end positions of individual protein coding genes and introns are extracted

from the source GFF files by iterating over a sorted list of all annotated coding

sequences (CDS). Each CDS has a protein ID attribute, a start position, an end

position, and a scaffold name. Gene boundaries are obtained from the start position

of its first CDS and the end position of its last CDS. All gaps within the gene

not covered by any of its CDS are considered and stored as intros. See Figure

7.2 illustrating extracted and non-extracted introns.

CDS makes a subset of exons but not vice versa, as exons close to both the 5'

and 3' sites of a gene contain UTR and may contain only UTR [59]. The use of

CDS for intron detection implies that only intra-CDS introns are extracted.

Only genes and introns on the positive strand were considered in the data

extraction pipeline and data analysis. This simplifies the pipeline but reduces

the amount of extracted data into half. The smaller dataset without reduction of

variability in the data does not have any impact on the results due to the large

size of the dataset. See Section 5.3 with dataset statistics.

Gene direction is close to random in fungal DNA [60], and it is further supposed

that intron-specific differences between two DNA strands are weak or non-existent.

This possible effect on the data is further weakened by the non-systematic selection

of strands during DNA sequencing. However, some of these assumptions deserve

a deeper analysis.

A CSV file with genes and introns is produced for each organism. Each gene

and intron has an ID and a parent ID—this allow detailed analysis at later stages.

7. Automation 43

7.3 Candidate Splice Site Extraction

Positions of all candidate splice sites within genes ,as described by Section 7.2, are

detected. Candidate splice sites are divided into donors and acceptors; they are

further divided into positive examples—i.e. where true splice sites are located—

and negative examples. Not all candidate splice sites are included, see Section

6.2. The intersecting areas of overlapping genes are processed only once to avoid

the duplication of candidate splice site positions. Splice sites from all genes are

considered within these areas.

Consensus dinucleotide, which does coincide with a respective splice site of

an intron of any gene, is not included in the set of negative splice site samples

even if it is included in another overlapping gene at a non-splice site position.

This prevents inconsistent labeling of training data in cases of alternative splicing

and overlapping genes.

Four Numpy NPZ files are generated for each organism:

• positive donor positions,

• positive acceptor positions,

• negative donor positions,

• negative acceptor positions.

Each of these NPZ files maps the scaffold name to a list of 0-indexed positions

and feature IDs.

7.4 Training Samples Extraction

Candidate splice site positions, as described in Section 7.3, are used for the extraction

of actual training, validation, and testing data. The generation of samples is the

first step in the pre-processing pipeline which includes some kind of sub-sampling

(i.e. no positions are skipped by the previous pipeline steps). The intermediate

data is utilized to avoid the scanning of large amounts of source files with DNA

44 7.5. Training and Evaluation

sequences and annotations when regenerating training data on various filtering,

sampling, and windowing criteria.

Sample window size, i.e. the number of nucleotides in it, splice site relative

offset, the maximum number of examples, and other criteria are all configurable.

Stratified sampling is done on groups defined by organism, splice site type, and

true/false positivity to avoid any over-representation of organisms. Under this

constraint, examples were selected stochastically.

The samples are stored in numbered sub-sub directories as NPZ files map the

encoded input sequences to labels. This nested structure is used to obtain good

performance on some Linux file systems as the performance on large directories

might be very low [61]. A CSV index file, coupling the file paths with sample

types and other properties, is created for quick access and further sub-sampling

for experiments that do not require a large amount of data.

7.5 Training and Evaluation

There is a script for automatic neural network training, other script for generation

and persistence of training-validation-test data split with various other dataset

configurations.

A program which automatically evaluates a trained neural network on validation

and test datasets was created to allow fast experimentation and comparability among

experiments. A PDF with various network performance metrics on whole datasets

as well as on individual organisms is produced by the program. This program

is extended with more programs that do more detailed inspections, evaluations,

and visualization—for example, the analysis of sensitivity of the networks to one

nucleotide mutations.

Training, evaluation, and other related automation are implemented in Python

for its ease of use, widespread usage among scientists, and abundance of relevant

deep learning, statistical and data science libraries.

8
Evaluation

Contents
8.1 Datasets . 46
8.2 Basic Metrics . 47
8.3 Comparison with SVM 50
8.4 Computational Intensity 51
8.5 Positional Sensitivity . 53
8.6 False Positives in the Proximity to a Splice Site 56
8.7 Introns of Various Lengths 58
8.8 Donor and Acceptor Model Correlation 60
8.9 Whole Gene Prediction Pipeline 64

Detailed evaluation, inspection, and analysis of splice site classification networks,

as well as the performance of the overall intron detection pipeline, is reported

and discussed in this chapter.

Section 8.1 gives details of test sample selection and puts that into the context

of other existing research, specific needs, and goals of this work. Section 8.2 reports

several basic per-organism evaluation metrics, such as precision and recall, as well

as prediction confidence distributions. Section 8.3 compares the performance of

the neural networks with the SVM developed in [47]. Section 8.4 describes the

CPU usage of the neural networks and SVM; it also evaluates the possible cost

of using the pipeline in the Google Cloud Platform.

45

46 8.1. Datasets

Phylum Species Organism ID
Ascomycota Aspergillus wentii Aspwe1
Basidiomycota Mycena albidolilacea Mycalb1
Blastocladiomycota Allomyces macrogynus Allma1
Chytridiomycota Chytriomyces sp. MP71 Chytri1
Cryptomycota Rozella allomycis Rozal SC1
Microsporidia Encephalitozoon hellem Enche1
Mucoromycota Lichtheimia corymbifera Liccor1
Zoopagomycota Coemansia reversa Coere1

Table 8.1: Organisms included in the test dataset

Section 8.5 analyzes the sensitivity of the neural networks to single nucleotide

mutations/swaps and compares that to known biological phenomena. Section 8.6

reports the error rate of the networks on negative samples in proximity to a true

splice site. Section 8.7 describes the error rate of the network on introns of various

lengths. Section 8.8 evaluates the dependency of donor and acceptor splice site

models. And finally, Section 8.9 discusses the overall gene prediction pipeline.

8.1 Datasets

Prior to all experiments, the data was split into training, validation, and test

datasets. The performance of splice site classification networks was evaluated on

organisms that were not included in the training and validation datasets. The test

dataset consists of eight organisms, each belonging to a different phylum. Data

from organisms included in training datasets was not used in any experiment or

evaluation before the final evaluation reported in this chapter. The selected test

organisms are the same as in the work [47] to allow for good comparison. See Table

8.1 which lists all organisms included in the test dataset.

The decision to split datasets on the organism lever rather than the sample level

is motivated by the need to test the network ability in order to generalize previously

unseen organisms. The network will be used in a pipeline executed on metagenomes

containing large number of previously unseen organisms. This sharply contrasts

8. Evaluation 47

NN 100 NN 400
Precision Recall AUC Precision Recall AUC

Allma1 55.8% 74.0% 96.1% 62.8% 82.3% 97.2%
Aspwe1 53.3% 92.5% 98.3% 68.1% 94.0% 98.5%
Chytri1 49.4% 71.4% 95.5% 65.1% 85.0% 97.7%
Coere1 7.1% 61.8% 85.5% 9.0% 64.7% 87.8%
Enche1 0.8% 100.0% 99.4% 1.0% 95.0% 98.2%
Liccor1 56.2% 89.9% 98.0% 75.8% 94.8% 98.9%
Mycalb1 61.9% 78.1% 95.2% 75.3% 82.4% 96.6%
Rozal SC1 25.6% 40.3% 86.6% 35.7% 45.3% 90.0%

Table 8.2: Performance of donor classification models. Model NN 100 has input window
size of 100 nucleotides, starting at the splice site and going downstream. Model NN 400
has input window size of 400 nucleotides, spanning exactly 200 nucleotides to both sides
from the splice site.

with some studies on automated intron detection because it usually reports the

results measured on organisms included in the training dataset [37].

8.2 Basic Metrics

One final neural network architecture was selected for the classification of both

candidate donor splice sites and candidate acceptor splice sites. See Section 6.4.

Two versions of the model with different input window sizes were selected for

the final evaluation and usage. Model NN 100 has an input window size of 100

nucleotides and model NN 400 has an input window size of 400 nucleotides. The

larger model, unsurprisingly, has better performance but at the cost of roughly 2.9×

higher CPU usage per classification. See Table 6.1 and Table 6.2 which compare

the performance of the models with various input window sizes (evaluated on the

validation dataset during the experimentation phase).

The performances of donor splice site classification models are reported in

Table 8.2 and the performances of acceptor splice site models are reported in

Table 8.3 1. The low precision on some organisms is largely due to the high ratio

of the number of candidate splice sites to the number of true splice sites. See

Section 5.3 on data statistics. Also see Section 6.2 that describes which splice

sites were included in the datasets.

48 8.2. Basic Metrics

NN 100 NN 400
Precision Recall AUC Precision Recall AUC

Allma1 70.6% 80.2% 97.2% 66.3% 83.7% 97.4%
Aspwe1 54.6% 93.4% 98.5% 56.9% 93.9% 98.6%
Chytri1 59.1% 82.0% 97.3% 60.3% 84.9% 97.7%
Coere1 5.9% 46.6% 83.5% 7.1% 57.0% 85.3%
Enche1 0.3% 42.1% 91.9% 0.3% 42.1% 94.3%
Liccor1 68.5% 93.5% 98.8% 72.3% 93.8% 98.9%
Mycalb1 65.4% 80.8% 96.3% 63.9% 83.0% 96.7%
Rozal SC1 12.0% 22.7% 79.6% 19.5% 30.1% 84.1%

Table 8.3: Performance of acceptor classification models. Model NN 100 has input
window size of 100 nucleotides, starting 100 nucleotides upstream from the splice site and
going downstream. Model NN 400 has input window size of 400 nucleotides, spanning
exactly 200 nucleotides to both sides from the splice site.

The neural networks output values between 0 and 1. This value needs to be

compared to a threshold to obtain a binary classification. During the evaluation of

all splice site classification models, the threshold was set to 0.5. See Figure 8.1 and

Figure 8.2 which depict the distribution of the prediction values on both positive

and negative samples of the donor model. Figure 8.3 and Figure 8.4 visualize

the same properties on the acceptor model.

The confidence intervals visualized in Figure 8.2 and Figure 8.4 are calculated

with Formula 8.1 and Formula 8.2 derived in [62, p. 176].

θL = 0.5χ2
2k,α/2 (8.1)

θU = 0.5χ2
2k+2,1−α/2 (8.2)

Kolmogorov–Smirnov statistic computed on the cumulative distribution functions

of the prediction values on positive and negative samples is 0.83 at 0.18 for the donor

model and 0.79 at 0.18 for the acceptor model. The values imply the high ability of

the model to discriminate positive and negative samples at the threshold point of
1Only 20 positive donor samples and 19 positive acceptor samples were used during the

evaluation of organism Enche1.

8. Evaluation 49

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

m
ax

 0

.8
3

at
 0

.1
8

Prediction CDF

positive
negative

Figure 8.1: Cumulative distribution function with Kolmogorov–Smirnov statistic of
prediction values from NN 400 model on positive and negative samples of donor splice
sites.

0.18. During the evaluation and production use of the models, a higher threshold

of 0.5 was used to compensate for the high positive to negative sample rate ratio.

The prediction distributions were measured over samples from all organisms

included in the test dataset. In total, 10 000 positive samples and 10 000 negative

samples were included from each organism, except those which did not have enough

annotated features. The only organism which was largely underrepresented was

Enche1. Prediction distribution on different organisms, especially organisms from

different phyla, differ. Likewise, the used sample set does not represent true

organism distribution in nature or in extracted metagenomes. This implies the

need for a careful interpretation of the plots.

50 8.3. Comparison with SVM

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

10 3

10 2

10 1

De
ns

ity

Prediction Distribution

positive
negative
positive 95% CI
negative 95% CI

Figure 8.2: Density of prediction values from NN 400 model on positive and negative
samples of donor splice sites.

8.3 Comparison with SVM

Table 8.4 compares the true positive rate and true negative rate of two neural

networks with different input window sizes and SVM, as initially developed in [47].

The smaller neural network (NN 100) had an input window of 100 nucleotides going

from the splice site in the intron direction (downstream in the case of a donor and

upstream in the case of an acceptor). The larger neural network (NN 400) had

a window size of 400 nucleotides and spanned 200 nucleotides to both directions

from the splice site. The SVM used for the evaluation was trained solely on data

from the Basidiomycota phylum.

Both neural networks produce much less false positive predictions compared

to the SVM. Furthermore, the NN 400 model outperforms the SVM in every

measurement, except for TPR on donors in the Basidiomycota phylum.

8. Evaluation 51

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

m
ax

 0

.7
9

at
 0

.1
8

Prediction CDF

positive
negative

Figure 8.3: Cumulative distribution function with Kolmogorov–Smirnov statistic of
prediction values from NN 400 model on positive and negative samples of acceptor splice
sites.

The improvement in TNR achieved with the neural networks is very im-

portant due to the large ratio of the false candidate splice sites to the true

candidate splice sites.

All classification methods in Table 8.4 were evaluated on the same dataset.

Negative samples were taken from genetic regions defined as the area between

the beginning of the first exon of the gene and the end of the last exon of the

gene. These regions are wider than the CDS and intra-CDS regions used in other

parts of this work, see Section 7.1.

8.4 Computational Intensity

The NN 400 model uses 2.88× more CPU time per inference than the NN 100 model.

The SVM uses 46.4× more CPU time per inference than the NN 100 model. This

52 8.4. Computational Intensity

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

10 3

10 2

10 1

De
ns

ity

Prediction Distribution

positive
negative
positive 95% CI
negative 95% CI

Figure 8.4: Density of prediction values from NN 400 model on positive and negative
samples of acceptor splice sites.

Ascomycota Basidiomycota
SVM NN 100 NN 400 SVM NN 100 NN 400

Donor TPR 86.6% 84.9% 87.2% 91.6% 86.3% 89.9%
TNR 94.9% 97.2% 97.7% 95.9% 97.6% 98.1%

Acceptor TPR 83.4% 85.3% 86.4% 88.1% 87.7% 88.8%
TNR 93.8% 97.7% 97.9% 93.8% 97.8% 97.7%

Table 8.4: Comparison of true positive rate (TPR) and true negative rate (TNR) between
SVM, neural network with window size 100 (NN 100) and neural network with window
size 400 (NN 400).

8. Evaluation 53

makes the use of the neural networks more practical on large metagenomes.

The NN 100 model uses 1.37 CPU seconds per 1000 predictions, while the NN 400

model uses 3.94 CPU seconds per 1000 predictions. The measurement was performed

on the laptop ThinkPad T490 with Intel® Core™ i5-8265U CPU @ 1.60GHz. The

measurement was performed with all samples loaded in memory. TensorFlow version

2.3.1 compiled with instructions AVX2 and FMA enabled was used. The measurement

included only the CPU time usage of Python call model.predict(inputs).

There is around 108 donor and acceptor candidate splice sites in a metagenome

of size of 109 nucleotides. Using the NN 100 model, all candidate splice sites

in this hypothetical dataset could be classified in 137 000 CPU seconds or 9.5

hours on four CPU cores. Both CPU and real time would be much smaller on

a server CPU, GPU or TPU.

One hour of a single CPU on an E2 machine type in Google Cloud Platform

costs 0.021811 USD [63]. Using this price and ignoring the differences between

CPUs, any inefficiencies, or overhead, all introns in the aforementioned hypothetical

metagenome could be classified for 0.83 USD.

8.5 Positional Sensitivity

Figure 8.5 visualizes an estimation of the Kullback–Leibler divergence between

the distributions of donor model inferences made on unmodified sequences and

sequences with single nucleotide symbol swaps.

The figure illustrates that the network is highly sensitive in the close vicinity

of the splice site with decreasing sensitivity in the downstream (intron) direction.

Almost no sensitivity could be found to one nucleotide swaps 9 nucleotides and

further upstream from the splice site. Part of this sensitivity spike around the

splice site is consistent with the literature which reports that the 5'-terminus of

the U1 snRNA component of spliceosome binds to the nearly perfect Watson-Crick

complement sequence CAGGURAGU that spans -3 to +6 around 5'-end of an intron [64].

The second peak of sensitivity is found around 40 nucleotides downstream from

the splice site. There is a high frequency of introns of a length between 40 and

54 8.5. Positional Sensitivity

20 0 20 40 60
distance from splice-site

0.0

0.5

1.0

1.5

2.0

2.5

Ku
llb

ac
k

Le
ib

le
r d

iv
er

ge
nc

e

Sensitivity to Swap to Symbol max(ATCG)
positive samples
negative samples

Figure 8.5: Kullback–Leibler divergences between NN 400 donor model inferences
on unmodified input sequences and inferences on sequences with single nucleotide
modifications at various positions. Position-wise maximum over swaps to adenine, thymine,
cytosine, adenine are shown.

75 nucleotides, see Figure 5.2. The branch point is located 18 to 40 nucleotides

upstream from the acceptor splice site [18]. The relative location of the second

peak likely implies that the network is learned to recognize area around branch

point. This is further supported by Figure 8.6, where positive samples were limited

to the splice sites of introns of a length of 60 nucleotides. Figure 8.6 also displays

a sensitivity peak at the location of the acceptor splice site.

Figure 8.7 visualizes an estimation of the Kullback–Leibler divergence between

the distributions of acceptor model inferences made on unmodified sequences

and sequences with single nucleotide symbol swaps. Figure 8.8 visualizes the

divergence on introns of a length of 60 nucleotides. The acceptor sensitivity

plot largely overlaps with the donor sensitivity plot, with a notable difference

of the sensitivity decreasing more steeply near the opposite splice site and vice

8. Evaluation 55

20 0 20 40 60
distance from splice-site

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ku
llb

ac
k

Le
ib

le
r d

iv
er

ge
nc

e
Sensitivity to Swap to Symbol max(ATCG)

positive samples
negative samples

Figure 8.6: Kullback–Leibler divergences between NN 400 donor model inferences
on unmodified input sequences and inferences on sequences with single nucleotide
modifications at various positions. Position-wise maximum over swaps to adenine, thymine,
cytosine, adenine are shown. Positive samples are limited to the splice site of introns of a
length 60 nucleotides.

versa. Compared to the donor model, the acceptor model is more sensitive to

one nucleotide swap in the negative samples.

A similar analysis based on different techniques was done in [37] which used a

CNN trained and evaluated on Arabidopsis and human. Visualizations reported

in that paper, however, differ with the results reported in this section, especially

in the areas more than 10 nucleotides distant from the splice sites.

Kullback–Leibler divergence estimation is calculated with Formula 8.3 on two

n-tuples of samples i.i.d. drawn from distributions p and q respectively. νk(i) is

distance of the i-th sample from the first n-tuple to the k-th nearest neighbor

from the second n-tuple; ρk(i) is distance of the i-th sample from the first n-tuple

to the k + 1 nearest neighbor from the same n-tuple. This equation was derived

56 8.6. False Positives in the Proximity to a Splice Site

60 40 20 0 20
distance from splice-site

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ku
llb

ac
k

Le
ib

le
r d

iv
er

ge
nc

e

Sensitivity to Swap to Symbol max(ATCG)
positive samples
negative samples

Figure 8.7: Kullback–Leibler divergences between NN 400 acceptor model inferences
on unmodified input sequences and inferences on sequences with single nucleotide
modifications at various positions. Position-wise maximum over swaps to adenine, thymine,
cytosine, adenine are shown.

from [65], n = 1000 and k = 10 were used.

Dn(p ‖ q) = 1
n

n∑
i=1

log
νk(i)
ρk(i)

+ log n

n− 1 (8.3)

8.6 False Positives in the Proximity to a Splice
Site

Figure 8.9 shows the dependence of the donor model performance on negative splice

site examples to the distance to the closest real donor splice site. Figure 8.10

displays this dependence only in a narrow neighborhood of true splice sites.

The plots display the mean predicted value and the false positive rate for each

distance bin. The mean predicted value is equal to the mean prediction error

8. Evaluation 57

60 40 20 0 20
distance from splice-site

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ku
llb

ac
k

Le
ib

le
r d

iv
er

ge
nc

e
Sensitivity to Swap to Symbol max(ATCG)

positive samples
negative samples

Figure 8.8: Kullback–Leibler divergences between NN 400 acceptor model inferences
on unmodified input sequences and inferences on sequences with single nucleotide
modifications at various positions. Position-wise maximum over swaps to adenine, thymine,
cytosine, adenine are shown. Positive samples are limited to the splice site of introns of a
length of 60 nucleotides.

because only negative samples are used. The measurements are done on bins of

size 5 in Figure 8.9 and on bins of size 3 in Figure 8.10. The figures differ due to

the overall captured distance range and different bin sizes.

This data was generated on the validation dataset because there were not

enough samples in the test dataset to calculate the unbiased report without too

much noise. Only splice sites with consensus dinucleotides were included among

the negative samples. However, the closest true splice site was selected from

the set of all splice sites.

Figure 8.11 and Figure 8.12 visualize the same dependency for the acceptor

splice site model. An interesting difference from the donor model is that the error

spike around the true splice site is higher and wider.

58 8.7. Introns of Various Lengths

100 75 50 25 0 25 50 75 100
Distance to Nearest Splice Site

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n
Er

ro
r

Error Rate in Splice Site Neighborhood
mean error
false positive rate
mean error SEM

Figure 8.9: NN 400 donor model error rate dependence on the relative position of the
nearest true donor splice site.

The error spike around true splice sites leads to the higher than uniform presence

of false intron detections with an almost perfect overlap with the true introns

compared to introns with a low overlap with the true introns.

After the detected splice sites are combined into whole introns, among the

overlapping intron detections only those detected with the largest splice site

prediction values are kept. It is expected that this would lead to the selection

of the true introns in the majority of the cases.

Likewise, a small negative effect on gene prediction from incorrect intron

detections which large relative overlap with the true introns is expected.

8.7 Introns of Various Lengths

Figure 8.13 and Figure 8.14 show the dependency of the error rates of donor and

acceptor models, respectively, on the splice sites associated with introns of various

8. Evaluation 59

30 20 10 0 10 20 30
Distance to Nearest Splice Site

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
ea

n
Er

ro
r

Error Rate in Splice Site Neighborhood
mean error
false positive rate
mean error SEM

Figure 8.10: NN 400 donor model error rate dependence on relative position of the
nearest true donor splice site.

lengths. The figures demonstrate that the models are systematically not recognizing

the splice sites of introns shorter than 40 nucleotides. The error rate is the smallest

in the area around 55 nucleotides and goes up for splice sites of longer introns. Low

performance on short introns is more pronounced in the acceptor model.

The effect could be, in part, explained by the distribution of intron lengths in

the data, see Figure 5.2. Training samples of the models were randomly drawn

from the dataset of training organisms. Therefore, the lengths of most of the

introns associated with the positive splice sites the model “saw” during training

were concentrated around 55 nucleotides.

Introns having lengths shorter than 30 nucleotides are extremely rare in the

gene databases across all eukaryotic organisms [66]. Their existence in the data

might be a result of incorrect annotation, and it is hypothesized that they do not

exist in nature due to the minimum sequence elements needed for their splicing

60 8.8. Donor and Acceptor Model Correlation

100 75 50 25 0 25 50 75 100
Distance to Nearest Splice Site

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Er

ro
r

Error Rate in Splice Site Neighborhood
mean error
false positive rate
mean error SEM

Figure 8.11: NN 400 acceptor model error rate dependence on the relative position of
the nearest true donor splice site.

[66]. Introns shorter than 30 nucleotides are rare, but they are present in the data

used in this work. In light of this, the high error rate on the splice sites of very

short introns could be caused by data quality.

8.8 Donor and Acceptor Model Correlation

Figure 8.15 depicts the output dependency of the donor splice site model and

the acceptor splice site model when predictions are performed on the (opposite)

splice sites of the same intron. Per organisms correlations of the outputs are

given in Table 8.5.

The correlation is negative only for Rozal SC1 and Enche1; it is larger than 0.6

for all other test organisms. This might be related to the fact that the performance

on the organisms Rozal SC1 and Enche1 is lower by a big margin compared to

all the other test organisms, see Table 8.2 and Table 8.3.

8. Evaluation 61

30 20 10 0 10 20 30
Distance to Nearest Splice Site

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Er

ro
r

Error Rate in Splice Site Neighborhood
mean error
false positive rate
mean error SEM

Figure 8.12: NN 400 acceptor model error rate dependence on the relative position of
the nearest true donor splice site.

Organism ID Correlation
Aspwe1 0.69
Mycalb1 0.63
Allma1 0.73
Chytri1 0.65
Rozal SC1 −0.05
Enche1 −0.13
Liccor1 0.64
Coere1 0.66

Table 8.5: The Pearson correlation coefficient of NN 400 donor and NN 400 acceptor
model outputs on the splice sites of the same intron.

62 8.8. Donor and Acceptor Model Correlation

25 50 75 100 125 150 175 200
Intron Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Er

ro
r

Error and Intron Length Dependency
mean error
false negative rate
mean error SEM

Figure 8.13: Dependence of the NN 400 donor model error rate on positive splice site
samples and the lengths of associated introns.

The data illustrates that an intron with a “hard-to-recognize” splice site is of

diminished “visibility” even for the model of the opposite splice site. In Section

8.5, it is demonstrated that both the donor splice site model and the acceptor

splice site model are sensitive in the region of the opposite splice site—this likely

explains the correlations.

If donor and acceptor models were independent, the probability of the detection

of an intron would be a multiplication of the probabilities of its splice sites being

detected (independently). With strong correlation of donor and acceptor model

outputs, the overall likelihood of the detection of a true intron is much higher.

This is shown by Table 8.6 that gives a percentage of introns with both splice sites

detected by the real models and by hypothetical statistically independent models.

8. Evaluation 63

25 50 75 100 125 150 175 200
Intron Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
Er

ro
r

Error and Intron Length Dependency
mean error
false negative rate
mean error SEM

Figure 8.14: Dependence of NN 400 acceptor model error rate on positive splice site
samples and lengths of associated introns.

Organism ID Detected Introns Multiplication
Aspwe1 91.6% 88.0%
Mycalb1 72.8% 65.2%
Allma1 78.0% 69.8%
Chytri1 79.2% 72.7%
Rozal SC1 12.5% 13.6%
Enche1 42.1% 42.1%
Liccor1 92.0% 89.2%
Coere1 51.1% 37.2%

Table 8.6: The percentage of introns whose splice sites were recognized by both the
NN 400 donor model and the NN 400 acceptor model and the percentage of detected
introns, if the models were statistically independent but with the same true positive rate.

64 8.9. Whole Gene Prediction Pipeline

0.0 0.2 0.4 0.6 0.8 1.0
Donor Model Output

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
or

 M
od

el
 O

ut
pu

t

Donor/Acceptor Models Dependency
mean
median
±

Figure 8.15: Dependency of NN 400 donor and NN 400 acceptor model outputs on the
splice sites of the same intron.

8.9 Whole Gene Prediction Pipeline

As discussed in Chapter 1 and Chapter 3, the primary purpose of splice site detection

models and their combination to the full intron detection pipeline is to improve the

performance of a larger gene prediction pipeline, which is utilized to detect gene

homologies in novel and known fungal DNA sequences in metagenomes.

Utilization of the intron detection pipeline based on SVM, as developed in [47],

has significantly improved the gene prediction by increasing the number of discovered

gene homologies when the gene prediction pipeline was executed separately with

and without the intron detection.

Based on the results with SVM models and better performance of the neural

networks compared to SVM, it is expected that the gene prediction will further

benefit with the introduction of the neural network-based intron detection pipeline.

9
Conclusion

Contents

9.1 Future Work . 66

The goal of this work was to develop an algorithm for automated intron detection

in fungal metagenomes with the use of neural networks. Emphasis was put on

computational requirements and comparison with an existing intron detection

pipeline based on support vector machines (SVM).

The resulting pipeline contains two splice site classification models based on

deep recurrent convolutional neural networks. As opposed to the pipeline based

on SVM, no third intron model is used. The solution outperforms the approach

based on SVM and requires 46 times less computational resources for classification.

The neural networks also generalize in a better way than the SVM models, and

therefore, only one model is used for all phyla.

Up to 91.6% introns on the Ascomycota phylum and 72.8% introns on the

Basidiomycota phylum are detected with the neural network-based pipeline.

65

66 9.1. Future Work

9.1 Future Work

This work opens a possibility to implement an online, web-based service for intron

detection and/or removal. This could be done as a simple webpage where the user

uploads a FASTA file and gets a GFF file with automatically annotated introns

within minutes. All computations could easily be distributed thanks to the design

of the pipeline and characteristics of the data. Low CPU usage of the developed

classification models makes this possibility economically feasible, see Chapter 8.

A direction for further investigation is the generalization of the developed

models. Interesting results could be obtained by evaluating the model performance

on different kingdoms and analyzing the errors it makes. This raises two questions:

how well and consistently the model performs when trained and evaluated on

distant organisms and whether the same model architecture and approach works

well on different kingdoms.

Using the pre-trained models and utilizing transfer learning on organisms with

a low amount of annotated data is also a possibility for future investigation.

Using the models in quality assurance procedures of non-automated genome

annotation is also an interesting topic worth further exploration. Paying more

attention to the annotations that are in disagreement with the model predictions

might improve the overall data quality with fixed effort spent.

Performing in vitro or in vivo experiments might be laborious, time-consuming,

and expensive. Using the developed in silico methods before the “wet” research is

started might save resources, time, and help future research to focus on promising

areas. This is yet another area of potential future research.

Biodiversity is our most valuable but least appreciated
resource.

— Edward O. Wilson

References

[1] David L Hawksworth and Robert Lücking. “Fungal diversity revisited: 2.2 to 3.8
million species”. In: The fungal kingdom (2017), pp. 79–95.

[2] DL Hawksworth. “Global species numbers of fungi: are tropical studies and
molecular approaches contributing to a more robust estimate?” In: Biodiversity
and Conservation 21.9 (2012), pp. 2425–2433.

[3] Nature Microbiology. “Stop neglecting fungi”. In: Nat Microbiol 2 (2017), p. 17120.
[4] Bruce Alberts et al. “Molecular biology of the cell”. In: (2018).
[5] Elizabeth Pennisi. “DNA study forces rethink of what it means to be a gene”. In:

Science 316.5831 (2007), pp. 1556–1557.
[6] Predrag Slijepcevic. “Genome dynamics over evolutionary time:“C-value enigma”

in light of chromosome structure”. In: Mutation Research/Genetic Toxicology and
Environmental Mutagenesis 836 (2018), pp. 22–27.

[7] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[8] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), p. 484.

[9] Yi Sun et al. “Deepid3: Face recognition with very deep neural networks”. In:
arXiv preprint arXiv:1502.00873 (2015).

[10] Wayne Xiong et al. “Achieving human parity in conversational speech recognition”.
In: arXiv preprint arXiv:1610.05256 (2016).

[11] Dmitrii Bychkov et al. “Deep learning based tissue analysis predicts outcome in
colorectal cancer”. In: Scientific reports 8.1 (2018), p. 3395.

[12] Robert C King, William D Stansfield, Pamela Khipple Mulligan, et al. A
dictionary of genetics. Oxford University Press, USA, 2006.

[13] Thomas D Pollard et al. Cell Biology. Third Edition. Elsevier Health Sciences,
2016.

[14] Janusz AZ Jankowski and Julia M Polak. Clinical gene analysis and manipulation:
Tools, techniques and troubleshooting. Cambridge University Press, 1996.

[15] NEUROtiker. Generic structure of nucleotides. 2008. url:
https://commons.wikimedia.org/wiki/File:Nukleotid_num.svg (visited on
10/18/2020).

[16] GM Cooper and RE Hausman. “The cell: a molecular approach, 2nd edn
Sunderland”. In: MA: Sinauer Associates.[Google Scholar] (2000).

[17] Thomas Shafee and Rohan Lowe. “Eukaryotic and prokaryotic gene structure”. In:
WikiJournal of Medicine 4.1 (2017), p. 2.

67

https://commons.wikimedia.org/wiki/File:Nukleotid_num.svg

68 References

[18] Suzanne Clancy. “RNA splicing: introns, exons and spliceosome”. In: Nature
Education 1.1 (2008), p. 31.

[19] Saul B Needleman and Christian D Wunsch. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins”. In: Journal of
molecular biology 48.3 (1970), pp. 443–453.

[20] Temple F Smith, Michael S Waterman, et al. “Identification of common molecular
subsequences”. In: Journal of molecular biology 147.1 (1981), pp. 195–197.

[21] Wing-Kin Sung. Algorithms in bioinformatics: A practical introduction. CRC Press,
2009.

[22] RM Casey. “BLAST sequences aid in genomics and proteomics”. In: Business
Intelligence Network (2005).

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[24] Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.
[25] Glosser.ca. Artificial neural network with layer coloring. 2013. url:

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
(visited on 10/18/2020).

[26] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for
deep learning”. In: arXiv preprint arXiv:1603.07285 (2016).

[27] M.S. Kris A. Wetterstrand. DNA Sequencing Costs: Data. 2019. url:
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-
Costs-Data (visited on 10/30/2019).

[28] Dennis A Benson et al. “GenBank”. In: Nucleic acids research 41.D1 (2012),
pp. D36–D42.

[29] Release Notes For GenBank Release 233. GenBank. 2019. url:
https://www.ncbi.nlm.nih.gov/genbank/release/233/ (visited on
11/09/2019).

[30] M Christensen et al. “Wood-inhabiting fungi as indicators of nature value in
European beech forests”. In: Monitoring and Indicators of Forest Biodiversity in
Europe–From Ideas to Operationality 229 (2005).

[31] Alessia Bani et al. “The role of microbial community in the decomposition of leaf
litter and deadwood”. In: Applied Soil Ecology 126 (2018), pp. 75–84.

[32] Burkhard Morgenstern et al. “Exon discovery by genomic sequence alignment”. In:
Bioinformatics 18.6 (2002), pp. 777–787.

[33] Marvin B Shapiro and Periannan Senapathy. “RNA splice junctions of different
classes of eukaryotes: sequence statistics and functional implications in gene
expression”. In: Nucleic acids research 15.17 (1987), pp. 7155–7174.

[34] Elham Pashaei et al. “A novel method for splice sites prediction using sequence
component and hidden markov model”. In: 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE. 2016, pp. 3076–3079.

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.ncbi.nlm.nih.gov/genbank/release/233/

References 69

[35] Neelam Goel, Shailendra Singh, and Trilok Chand Aseri. “An improved method for
splice site prediction in DNA sequences using support vector machines”. In:
Procedia Computer Science 57 (2015), pp. 358–367.

[36] Rahul Sarkar et al. “Splice Junction Prediction in DNA Sequence Using
Multilayered RNN Model”. In: International Conference on E-Business and
Telecommunications. Springer. 2019, pp. 39–47.

[37] Jasper Zuallaert et al. “SpliceRover: interpretable convolutional neural networks for
improved splice site prediction”. In: Bioinformatics 34.24 (2018), pp. 4180–4188.

[38] Hamid Reza Hassanzadeh and May D Wang. “DeeperBind: Enhancing prediction
of sequence specificities of DNA binding proteins”. In: 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE. 2016, pp. 178–183.

[39] Byunghan Lee et al. “DNA-level splice junction prediction using deep recurrent
neural networks”. In: arXiv preprint arXiv:1512.05135 (2015).

[40] Tatsuhiko Naito. “Human splice-site prediction with deep neural networks”. In:
Journal of Computational Biology 25.8 (2018), pp. 954–961.

[41] Jose Mario Bello Pineda and Robert K Bradley. “Most human introns are
recognized via multiple and tissue-specific branchpoints”. In: Genes & development
32.7-8 (2018), pp. 577–591.

[42] Ngoc Giang Nguyen et al. “DNA sequence classification by convolutional neural
network”. In: Journal of Biomedical Science and Engineering 9.05 (2016), p. 280.

[43] Andrew W Senior et al. “Improved protein structure prediction using potentials
from deep learning”. In: Nature 577.7792 (2020), pp. 706–710.

[44] Igor V Grigoriev et al. “MycoCosm portal: gearing up for 1000 fungal genomes”. In:
Nucleic acids research 42.D1 (2014), pp. D699–D704.

[45] Jon Ison et al. “EDAM: an ontology of bioinformatics operations, types of data and
identifiers, topics and formats”. In: Bioinformatics 29.10 (2013), pp. 1325–1332.

[46] GFF3. Generic Model Organism Database. 2016. url:
http://gmod.org/wiki/GFF3 (visited on 12/03/2020).

[47] Denis Baručić. “Automatic intron detection in fungal genomes using machine
learning”. Czech Techincal University in Prague, 2019.

[48] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation
functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[49] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[50] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[51] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[52] Ashia C Wilson et al. “The marginal value of adaptive gradient methods in
machine learning”. In: Advances in neural information processing systems. 2017,
pp. 4148–4158.

http://gmod.org/wiki/GFF3

70 References

[53] Dominic Masters and Carlo Luschi. “Revisiting small batch training for deep
neural networks”. In: arXiv preprint arXiv:1804.07612 (2018).

[54] François Chollet et al. Keras. https://keras.io. 2015.
[55] Martin Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).
[56] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”.

In: The Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–426.
[57] Nicholas D Matsakis and Felix S Klock. “The rust language”. In: ACM SIGAda

Ada Letters 34.3 (2014), pp. 103–104.
[58] Rust Programming Language. 2020. url: https://www.rust-lang.org/ (visited

on 09/14/2020).
[59] Alicia A Bicknell et al. “Introns in UTRs: why we should stop ignoring them”. In:

Bioessays 34.12 (2012), pp. 1025–1034.
[60] Xiu-Qing Li and Donglei Du. “Gene direction in living organisms”. In: Scientific

Reports 2.1 (2012), pp. 1–4.
[61] Borislav Djordjevic and Valentina Timcenko. “Ext4 file system in linux

environment: Features and performance analysis”. In: International Journal of
Computers 1.6 (2012), p. 2012.

[62] Norman L Johnson, Adrienne W Kemp, and Samuel Kotz. Univariate discrete
distributions. Vol. 444. John Wiley & Sons, 2005.

[63] VM instances pricing. 2020. url:
https://cloud.google.com/compute/vm-instance-pricing (visited on
11/24/2020).

[64] Laura De Conti, Marco Baralle, and Emanuele Buratti. “Exon and intron
definition in pre-mRNA splicing”. In: Wiley Interdisciplinary Reviews: RNA 4.1
(2013), pp. 49–60.

[65] Qing Wang, Sanjeev R Kulkarni, and Sergio Verdú. “A nearest-neighbor approach
to estimating divergence between continuous random vectors”. In: 2006 IEEE
International Symposium on Information Theory. IEEE. 2006, pp. 242–246.

[66] Allison Piovesan et al. “Identification of minimal eukaryotic introns through
GeneBase, a user-friendly tool for parsing the NCBI Gene databank”. In: DNA
Research 22.6 (2015), pp. 495–503.

https://keras.io
https://www.rust-lang.org/
https://cloud.google.com/compute/vm-instance-pricing

	List of Figures
	List of Abbreviations
	Introduction
	Text Structure

	Background
	DNA and RNA Structure
	Biological Sequence Alignment and Search
	Neural Networks
	Evaluation
	Accuracy
	Precision and Recall
	Area Under Curve

	Motivation
	Current Research
	Data
	File Formats
	Taxonomy
	Data Statistics

	Recurrent Convolutional Neural Networks
	Overview
	Candidate Splice Site Selection
	Sequence Encoding
	Neural Network Architecture
	Model Criteria
	Neural Network Training
	Dataset Size

	Automation
	Overview
	Intron and Gene Extraction
	Candidate Splice Site Extraction
	Training Samples Extraction
	Training and Evaluation

	Evaluation
	Datasets
	Basic Metrics
	Comparison with SVM
	Computational Intensity
	Positional Sensitivity
	False Positives in the Proximity to a Splice Site
	Introns of Various Lengths
	Donor and Acceptor Model Correlation
	Whole Gene Prediction Pipeline

	Conclusion
	Future Work

	References

