Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Predicting sports matches with neural models

Diploma thesis

Aleksandra Pereverzeva

Master's programme: Open Informatics
Branch of study: Data Science
Supervisor: Ing. Gustav Sir

Prague, January 2021

Thesis Supervisor:
Ing. Gustav Sir
Intelligent Data Analysis
Faculty of Electrical Engineering
Czech Technical University in Prague
Resslova 307/9
120 00 Prague 2
Czech Republic

ii

Declaration

I hereby declare I have written this diploma thesis independently and quoted all the sources of
information used in accordance with methodological instructions on ethical principles for writing
an academic thesis.

In Prague, January 2021

Aleksandra Pereverzeva

iii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N\
Student's name: Pereverzeva Aleksandra Personal ID number: 453454

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics

Specialisation: Data Science

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Predicting sports matches with neural models

Master’s thesis title in Czech:

Predikce sportovnich zapast s neuralnimi modely

Guidelines:

Advanced statistical methods are rapidly changing the industry of predictive sport analytics. However, much of the area
still relies on the more conservative expert domain knowledge. Similarly, most current predictive sport models rely on
manually crafted features for each sport. The purpose of this project is to employ the latest trends from deep learning
against SotA approaches and actual market odds from the domain of predictive sports. The main focus of this work is to
explore general principles of representation learning (embedding) across variety of sports without any specific features.
Student is expected to encode own insights within the model architectures, analyze, optimize and perform sound experimental
evaluation against real SotA from the industry.

1) Review related work in using statistical and neural models for predictive sports analytics.

2) Collect a statistically significant amount of match results and market odds from different sports.

3) Perform standard filtering, cleansing, and data exploration.

4) Propose different architectures for neural representation learning of players/teams over different competitions and match
structures.

5) Evaluate against SotA, such as selected statistical models and ratings, as well as real market.

6) Assess viability of the representation learning idea within the domain.

Bibliography / sources:

Haghighat, Maral, Hamid Rastegari, and Nasim Nourafza. 'A review of data mining techniques for result prediction in
sports.' Advances in Computer Science: an International Journal 2.5 (2013): 7-12.

Bunker, Rory P., and Fadi Thabtah. 'A machine learning framework for sport result prediction.' Applied computing and
informatics 15.1 (2019): 27-33.

McCabe, Alan, and Jarrod Trevathan. 'Artificial intelligence in sports prediction.' Fifth International Conference on Information
Technology: New Generations (itng 2008). IEEE, 2008.

Hubadek, Ondrej, Gustav Sourek, and Filip Zelezny. 'Exploiting sports-betting market using machine learning.' International
Journal of Forecasting 35.2 (2019): 783-796.

Hubacek, Ondrej, Gustav Sourek, and Filip Zelezny. 'Score-based soccer match outcome modeling—an experimental
review.'

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:

Ing. Gustav Sir, Department of Computer Science, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 24.06.2020 Deadline for master's thesis submission: 05.01.2021

Assignment valid until: 19.02.2022

Ing_ Gustav Sir Head of department's signature
Supervisor’s signature

prof. Mgr. Petr Pata, Ph.D.

Dean’s signature

\
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Abstract

This thesis explores the problem of predicting sports results and offers two approaches that
utilize neural networks. The first approach is a traditional artificial neural network with the
embedding of the individual teams. The second one is a relatively new approach that employs
Convolutional Graph Neural Networks for team representation. The innovation of this work is
that the models do not utilize any sport-specific features. Instead, the models are supposed
to learn using merely the results of the past matches. The models are created, trained, and
tested on two sports domains: soccer and ice hockey. The results turned out to be satisfactory,
taking into consideration the generality of the models. However, the resulting models cannot
yet compete with state-of-the-art models and market systems.

Keywords: sports prediction, artificial neural networks, graph neural networks, embedding

Abstrakt

Tato prace prozkouméava problém predikce sportovnich vysledku a nabizi dva piistupy FeSeni
pomoci neuronovych siti. Prvni piistup je tradiéni uméld neuronové sit s embeddingem jed-
notlivych tymu. Druhé feSeni je relativné novy piistup pouzivajici Konvolu¢ni Grafové Neu-
ronové Sité pro reprezentaci tymu. Prace je inovativni tim, Zze modely nepouzivaji vlastnosti
specifické pro jednotlivé sporty. Modely se uéi na zékladé vysledki minulych zépasi a jsou
vytvofeny, natrénovany a otestovany na dvou doménach: fotbalu a hokeji. Vysledky modelu
jsou uspokojivé, pokud se bere v potaz jejich obecnost. Nicméné, vysledné modely jeSté nemuzou
soupefit s nejmodernéjsimi modely a systémy existujicimi na trhu.

Klicéova slova: predikce sportovnich vysledkt, umélé neuronové sité, grafové neuronové sité,
embedding

vi

Acknowledgements

I thank my supervisor for experienced guidance and thoughtful advice.

The access to the computational infrastructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16-019/0000765 “Research Center for Informatics” is also gratefully ac-
knowledged.

vii

List of Tables

4.1
4.2
4.3

5.1
5.2

5.3

5.4
5.5
5.6

Example of the data from the soccer dataset. 19
An example of the data from the hockey dataset. 21
The progress of the scores of the individual teams in time for the running example. 24

Best achieved models’ accuracy. 30
Comparison of the three approaches to encode the ranking of the German League.
The main trends, are the same for all the three rankings, e.g. Bayern Munich,
Dortmund, Leverkussen are at the top in all the rankings. The difference resides
in the mapping of the teams with poorer performance: for example, FC' Koln
occupies the positions in the middle of the rating and in the other rankings it
is found in the bottom. This can be influenced by the fact that the embedding

better captures the time trends in the data. 32
The confusion matrices before and after weighing the the optimizer to penalize

the incorrect prediction proportionately to the classes’ population. 35
The models’ accuracy after the weighing. 35
Models’ performance with different graph convolutional layers. 36

Experiments with different testing sets.o 36

viii

List of Figures

2.1

2.2

2.3

4.1

4.2
4.3
4.4
4.5

5.1
5.2

Example of dropout applied to a neural network. A graph on the left represents
a neural network with two hidden layers. A graph on the right shows what a
network on the left could look like after applying a dropout to it: the crossed-out
neurons and all edges incident to them are dropped. Image taken from [6].. . . . 5
Example of the word embedding. The main idea is that the objects that are close
to each other in natural meaning stay close to each other in embedding projection.
Image taken from [10]. L 6
Example of the ConvGNN and how it can be used for node classification. Input
is a graph structure and an attribute (feature) matrix. Each graph convolutional
layer of the ConvGNN (depicted as Geonv) provides feature aggregation, the
output of which then undergoes a non-linear transformation by an activation
function (depicted as ReLu). The learned representations of the nodes can then
be used to their classification. Image taken from [11].. 7

Distribution of matches by country and by result: home victory (W), draw (D)

and away victory (A) 19
Distribution of leagues by country 20
Diagrams of the two models. 0oL 22
The example of how a simple GNN works. 24
Example of the continuous evaluation. The red section represents the sliding

window for capturing the training data. 26
Embedding of the GER1 league. 33

The comparison of performance between the bookmaker’s predictions, the Hubacek,
Sourek, and Zelezny [38] Xgboost model and a GNN model trained within this
thesis work. The vertical axis shows the RPS and should be read ”the lower RPS,

the higher the accuracy”. oo 37

X

List of Acronyms

ANN artificial neural network. 3, 15
ANOVA Analysis of Variance. 15

ConvGNN Convolutional Graph Neural Network. ix, xii, 7, 8, 22, 24, 28, 29, 31, 33-35, 40
GNN Graph Neural Network. ix, 1, 6, 21-24, 29, 33, 37, 39

LSTM Long Short-Term Memory. 15, 16

NHL National Hockey League. 20

RFC Random Forest Classifier. 16
RPS Rank Probability Score. 10

Contents

Abstract
Acknowledgements
List of Tables

List of Figures
List of Acronyms

1 Introduction

1.0.1 Goal s
1.0.2 Problem formulation
1.0.3 Constraints

2 Background theory

2.1 Artificial Neural Networks
2.1.1 Backpropagation
2.1.2 Dropout
2.1.3 Cross-entropy loss
2.2 Embedding
2.3 Graph Neural Networks
2.4 Evaluation.
2.4.1 Accuracy
242 RPS
3 Research into related work
3.1 Statistical models and ratings
3.1.1 The Poisson models
3.12 Eloratings
3.1.3 piratings oo
314 PageRank oL
3.1.5 Berrarratings.o oL
3.1.6 TVC: Time Varying Coefficients
3.2 Advancedmodels
3.3 The combined RPT

4 Implementation, Experiments, Evaluation

4.1 Data
4.1.1 Soccerdataset
4.1.2 Hockey dataset

4.2 Proposition of the solution

xi

vi

vii

viii

ix

N NN =

S O W W W

10
10
10

11
11
11
12
13
14
14
15
15
17

CONTENTS

4.2.1 Simple ANN with embedding
4.2.2 Graph Neural Network
4.3 Evaluation frameworks e
4.4 Evaluation L e e e
441 Common setup o« v ot e
4.4.2 Learned Hyperparameters
4.5 Implementationo
4.5.1 Implementation procedure oL
5 Results
5.1 Bestmodels
5.1.1 1league soccer dataset
5.1.2 All leagues soccer dataset
5.1.3 Hockey dataset
5.2 Weighed models e
5.3 Choice of ConvGNN Layers
54 Choice of a testingset Lo
5.5 Comparison with the bookmaker 0.
5.5.1 Bookmaker’s predictions L oL
5.5.2 Comparison of themodels
5.6 Discussion of theresults o
5.6.1 Viability of the proposed models
5.6.2 Contributions of the proposed models

6 Conclusion
6.1 Goal Fulfilment

A Attachment structure

Bibliography

xii

21
22
25
26
26
27
28
29

30
30
31
33
33
34
35
36
36
36
36
37
37
38

39
39

41

45

Chapter 1

Introduction

Sports betting and sports predictions have accompanied humankind for at least a couple of
thousands of years, as the first records of such activity date back to Ancient Greece and Ancient
Rome [1]. Over the years, the popularity of the sport categories changed a lot, and so did the
legal status of the bets. The sports differed across the countries and continents, the rural and
urban areas, changed according to the players’ social statuses. Nowadays, even in the age of
e-sports, predictive analytics in traditional sports is a multi-million dollar industry. With a
recent rise of new machine learning techniques, a new hope was put into resolving the problem
of the accurate sports results predictions, however high accuracy solutions for it is still a hot
topic and a challenge. One possible way to approach this challenge is to use neural networks

that have shown promising results in various other fields.

Those approaches need some input data to describe the teams. These representations can
be either explicitly provided by the data, where different features that may affect the outcome
of the game are supplied to the model, and it learns to weigh these parameters, combine and
transform them in order to output the predictions for the result of the game later; or implicit,
where it is assumed that a model learns the representations of the teams themselves and their
behaviour during a training phase. This work focuses on the implicit method. It is a relatively
new approach, and it has not been actively used for predicting sports results. One way to obtain
these representations is by using an embedding layer for each team, further detailed in Section
2.2. Another method is designing some structure that helps to gain insight into relations be-
tween the teams and turn it into the teams’ representations. That can be achieved using the
Graph Neural Networks (GNNs). The idea behind it is that representing the teams as a spa-
tial structure can stimulate the information passing and support a team’s knowledge about its
strength relative to others while also artificially creating the useful features that will help the

model predict the outcome of the match. This will be further discussed in Sections 2.3 and 4.2.2.

CHAPTER 1. INTRODUCTION 2

1.0.1 Goal

This work aims to test several approaches to representation learning using neural methods for
sports analysis. Particularly, it will explore two of such approaches, and train the respective
models using the proposed methods on the acquired data. The data will consist of two data sets:
soccer and ice-hockey. After that, the work will select the models with the best performance

and compare their viability with the state-of-the-art solutions and the market odds.

1.0.2 Problem formulation

The task represents a classification problem with three classes: "Win’ for the home team, ’Lose’
for the home team, and 'Draw’. In order to bring the problem closer to real life, the predictions
will be made pre-match (as opposed to predicting online, where the predictions of the outcome

of the game can be changed up to n minutes before the game ends).

1.0.3 Constraints
The constraints on the work are the following:
e Predictions: the predictions must only use the information available before the game starts.

e Data: features must be extracted implicitly using embedding. Sport-specific features are

not used.

Chapter 2
Background theory

The following chapter overviews the theoretical basis necessary to understand the work. The
first section reviews the Artificial Neural Networks and technique necessary to train them. The
next sections explain techniques of Embedding and Graph Neural Networks. The last section

addresses the evaluation metrics.

2.1 Artificial Neural Networks

Artificial neural network (ANN) is an attempt to mimic the mammalian brain in solving prob-
lems. The idea behind this is an imitation of the underlying structure of the brain nerve cells
(neurons) and connections between them (axons) that send impulses. This idea is implemented
into the ANNs as nodes resembling the neurons that can later be organized into layers and node
links that operate similarly to the axons. Each node receives some input data, transforms it by
performing a simple operation on it (usually summation, multiplication, exponentiation), and
then produces the output, which can be used as an input to some other nodes. ANN is a learn-
ing algorithm that can lead to better performance in the tasks where the traditional approaches
stall, especially in classification, image and text recognition, and others. When implemented,

neurons are represented as a non-linear function:
F(X)=o(W'X +0),

where W represents the neuron’s weights, b — bias, and ¢ is the activation function that adds

the non-linearity.

2.1.1 Backpropagation

Backpropagation is an essential algorithm for updating the neurons’ weights that provides the
actual learning of the network. First, the model computes a result based on its weights, and it

is called a forward pass. For measuring how far the prediction of the network is from the actual

CHAPTER 2. BACKGROUND THEORY 4

value, the loss function is used. ' After that, a backward pass is ready to be performed for every
node from the network’s end to its beginning. It recursively applies the chain rule to calculate
the gradients of the neural network weights with respect to a loss function. More specifically,
two messages are computed for every neuron: a partial derivative of the neuron’s output with
respect to its input and a partial derivative of the neuron’s output with respect to the neuron’s
weights. During the backward pass, the gradient with respect to each of the inputs is multiplied
with the gradient that came back from the output and then passed to the previous neuron. The
gradient with respect to the neuron’s weights are as well multiplied by the gradient returned
from the next layer, and the result can be later used to update the weights of the neuron by
using the gradient methods to find the weights that minimize the loss, for example, gradient

descent with the update function at iteration ¢ + 1:
ot =0t —ptvL(eh), (2.1)

where 6 represents the parameters of the network (weight matrices), 7 — the learning rate and
V L(0) is the gradient of the loss function [2]-[4]. Adam is another widely optimization algorithm

that utilizes adaptive learning rate and momentum for a more effective optimization process [5].

2.1.2 Dropout

Dropout is a technique to regularize the network and provide a computationally cheap way
to reduce data overfitting. Dropout essentially helps to simulate network ensembles known to
reduce data overfitting, which, however, in their natural form require a higher computational
cost. This technique operates by randomly dropping some nodes with a predefined probability
during training. During validation and testing, all the nodes and weights associated with them
are present; weights are multiplied by the probability of the node being present during training.
The network of n neurons with applied dropout can be viewed as a combination of 2" possible
reduced architectures. However, all the weights are still shared across them. That is why the
total number of parameters stays within the limit of O(n?) in the case of a fully connected

network [6]. An example of a dropout can be viewed in Figure 2.1.

2.1.3 Cross-entropy loss

A softmax classifier is a multinomial interpretation of the binary logistic regression. For a class

k the computation of the softmax function takes place as follows:
e’k
— Z;V ey)

IThe loss function should satisfy two assumptions:

or(s) (2.2)

1. The loss function can be written as an average over all examples: £ = % Z? L;.

2. The loss function should be a function of the neural network’s outputs: £ = L(§)

CHAPTER 2. BACKGROUND THEORY)

,

7
)

PN
S

A
i

:‘ ‘\

W
N

U

S
U

A
\V
0

X
[/

{)
AN
" §"
(X
&
/40
2,
\

X)
0
g

o</
N
X0
" 4, :$ “f
O
Oy
23

Q
\

Figure 2.1: Example of dropout applied to a neural network. A graph on the left represents a
neural network with two hidden layers. A graph on the right shows what a network on the left
could look like after applying a dropout to it: the crossed-out neurons and all edges incident to
them are dropped. Image taken from [6].

where s is the vector from a scoring function, for example, a neural network, and N is the number
of classes [2]. The output of the softmax function defines the probability of an observation
belonging to each class. The multinomial cross-entropy loss is then acquired by plugging the

output from the softmax function into the negative log likelihood loss:

N
Cross Entropy Loss(s) = Z yrlog(ok(s)), (2.3)
k

where the y is the binary indicator if & is the correct classification for the observation s [7].

2.2 Embedding

Embedding is a technique that allows transforming the data into an implicit structure that
behaves in the same way as an explicit ranking system 2: it assigns each input record a high-
dimensional vector and, during training, transforms those vectors so that the records with a
similar meaning get assigned close vectors. Although initially used to meaningfully vectorize
words [8], in the case of one-dimensional output, the output can be interpreted as the relative
power of the record. Embedding can be further defined as a generalization of the rating systems
to n dimensions since each dimension of the resulting vector can represent itself a rating. Another
problem embedding can deal with is helping with sparse matrices by reducing the dimensions of
very high-dimensional data to a sensible amount of dimensions that still reflects all the underlying

relations [9]. An example of word embedding can be found in Figure 2.2.

2A ranking system is usually understood as a system that can order input items in a meaningful way by
comparing them. On the other hand, a rating system assigns a score to those input items based on some standard
scale and does not necessarily compare them. However, in the literature related to sports analytics, these concepts
are used interchangeably because the sports analytics systems both assign a score value to the teams or players
and order them based on that score.

CHAPTER 2. BACKGROUND THEORY

Spain \
Italy \Madrid

Germany \ Rome
man walked Berlin
. @ Turkey \
RRLN woman Ankara
.-~ [O swam Russia
king T Moscow
T walking @ Canada —— Ottawa
queen ——\\—. Japan —— Tokyo
/ / O vietnam ————H0 _ panoi
swimming China Beijing
Male-Female Verb tense Country-Capital

Figure 2.2: Example of the word embedding. The main idea is that the objects that are close
to each other in natural meaning stay close to each other in embedding projection. Image taken
from [10].

The parameters of the embedding can (and actually need to) be learned using the same method
as used in regards to other layers — backpropagation. The vectors for each sample in the data set
are generated containing small random non-zero values and then updated during the training

phase.

2.3 Graph Neural Networks

GNN is a type of neural network architechture that utilizes the underlying structure of the data.

GNNs can be used for multiple purposes [11]:

e Node-level: node classification usually conducted in a semi-supervised manner where the
nerwork predicts the affiliation of the unlabeled node with a certain class based on labeled

ones. This type of task is often effectively solved by stacks of Graph Convolutional Layers.

e Graph-level: predicting the label for the entire graph. This problem is tackled by combi-

nations of graph convolutional layers, graph pooling layers, and readout layers.
e Edge-level: edge classification, link prediction.

Graphs can be used many problems from real life since they provide important connections
(represented as edges) between individual items (represented as nodes).

A graph G with a total number of nodes n can be defined as a pair of two sets: a set of
vertices V' and a set of edges F. Neighbors of a given vertex v constitute a subset of nodes:
N(v) = {u € V|(v,u) € E}. Each vertex can have an ordered set of attributes in a form of a
vector x,.

Wu, Pan, Chen, et al. [11] proposes the following taxonomy of GNNs:
e Recurrent Graph Neural Networks;

e Convolutional Graph Neural Networks;

CHAPTER 2. BACKGROUND THEORY 7

e Graph autoencoders;
e Spatial-temporal Graph Neural Networks.

In this work the main focus will be addressed onto the Convolutional Graph Neural Networks
(ConvGNNSs), which generalize the process of convolution from grid data (such as images) to
graph structures. The key idea behind ConvGNN is generation of the node’s representation
based on the node’s attributes z,, and node’s neighbors’ attributes x,,,u € N(v). Multiple Graph
Convolutional layers can be stacked to achieve higher quality representation of the nodes. In
that case each node is constructing its representation from further neighborhoods. An example

of such network can be found in Figure 2.3 Wu, Pan, Chen, et al. [11] distinguishes between two

Gconv Gconv
Graph ~—
. i -) Outputs
| e RelLu RelLu COL
s) % P~ — e e g9
e —p Tl = | T] e L=
L] L I A e y .- y ._. .
X e

Figure 2.3: Example of the ConvGNN and how it can be used for node classification. Input
is a graph structure and an attribute (feature) matrix. Each graph convolutional layer of the
ConvGNN (depicted as Geonv) provides feature aggregation, the output of which then under-
goes a non-linear transformation by an activation function (depicted as ReLu). The learned
representations of the nodes can then be used to their classification. Image taken from [11].

streams (types) of convolutional graph neural networks:
1. Spectral-based ConvGNN;
2. Spatial-based ConvGNN.

The foundation for this type of ConvGNNs comes from graph signal processing. Spectral-based
ConvGNNs assume the underlying graphs in the data to be undirected. The mathematical
representation them is based on the normalized graph Laplacian matrix, that can be defined as
the follows:

L=1I,-D 2AD 3, (2.4)

where D is a diagonal matrix of node degrees and A is an adjacency matrix for the graph. Since
one of the properties of the normalized graph Laplacian matrix is it being symmetric positive

semidefinite, the matrix can be further factored as:

L=UAUT, (2.5)

CHAPTER 2. BACKGROUND THEORY 8

where U € R™" is the matrix of eigenvectors, A is a matrix of eigenvalues. Here graph signal
processing offers a concept of filters - a graph convolutional operation that removes noises from

graph signals. A filter gy can be defined as:
g0 = diag(U" g), (2.6)

where g € R" is a vector of Fourier coefficients. Then the filter can be applied to an input signal
x as follows:

goxx =UggUTx. (2.7)

All the graph convolutional neural networks follow this definition and are distinguished by the

preference of the filter gy.

Spatial-based ConvGNN is a method that applies convolution based on the node’s spatial re-
lations. Its key idea is the direct propagation of the information from a node to its neighbors

using the connections.

Graph Convolutional Layer: GraphConv

Morris, Ritzert, Fey, et al. [12] propose a new graph neural network operator as follows:

Xg = 0O:1x; + Oy Z €ji " Xj, (28)
JEN(3)

where ®1, @y € RF*/ define trainable parameters (k is a hyperparameter) different for a node
and for its neighbors, e;; denotes weight of an edge from i to j and x; € RS denotes the
representation of a node ¢ before its update, f is a number of features or, in other words, depth
of representation. The summation in terms of means of aggregation is optional - it can be
changed to the mean or max functions.

GraphConv is a spatial-based ConvGNN.

Graph Convolutional Layer: ChebConv

Defferrard, Bresson, and Vandergheynst [13] describe a spectral-based ConvGNN layer. The
filter is approximated by Chebyshev polynomials of the first kind of degree K.

The Chebyshev polynomials are obtained from a recursive relation as follows [14]:

The filter is then approximated and applied to the feature vector using a scaled and normalized

CHAPTER 2. BACKGROUND THEORY 9
Laplacian matrix. The new representation feature vector of a node can be defined as [15]:

K
X'=>"z®. 0", (2.10)

k=1
where © is the matrix of trainable parameters, Z(*) is the approximated filter based on the
Chebyshev polynomials (where the polynomials order and filter size K is a hyperparameter)

and is computed recursively according to the following:

7MW =X
Z® =1L.X (2.11)
z#) = 2.1,z _ z(k-2)

where L is the modified Laplacian scaled by the largest eigenvalue of the initial L:

- 2L
L=

~1 (2.12)

)\max

Thanks to the fact that the computed filters are localized in space, they are computed efficiently,
without the need to compute the eigenvalues and are universal to the graph structure, meaning

that the filters performance does not depend on the graph size or internal structure.

Graph Convolutional Layer: GCNConv

Kipf and Welling [16] propose a new graph convolutional layer that is a special case of ChebConv
described in Section 2.3. The filter size is fixed to K = 1 and the largest eigenvalue for the
Laplacian matrix normalization is approximated to be Apax = 2. Under this approximation the

application of the filter can be simplified to:
gg,*xz9<IN+D—%AD—%) @ (2.13)
The expression can be further normalized by reducing it to the following state:
X' =D 2AD"/?2X @, (2.14)

where A = A +1is an adjacency matrix with self-loops and D = > =0 /lij denotes its degree
matrix and O is a trainable parameter matrix. The computation can be improved by computing
the A as A + 21 [17].

Kipf and Welling [16] state that this renormalized propagation model improves both efficiency
and prediction capabilities, however, one can notice that the number of parameters is drastically

lower and a lower number of degrees of freedom can negatively affect generalization.

CHAPTER 2. BACKGROUND THEORY 10

2.4 Evaluation

2.4.1 Accuracy

Accuracy is the most commonly used metric for classification tasks. It is a ratio of the correctly

classified instances to the number of all instances.

2.4.2 RPS

One of the metrics used in the 2017 Soccer Prediction Challenge [18] was Rank Probability
Score (RPS). In this work we also adopted it to be able to compare the results achieved. RPS
was introduced in 1969 in Epstein [19] as a scoring system for prediction of ordinal categorical
variables. Later Constantinou and Fenton [20] utilized it for measuring the model performance
on predicting the result of sports events and showed that it is more robust than Brier score and
Geometric score since it measures the difference between cumulative distributions of the model’s
predictions and actual observations.

RPS is calculated according to the following formula:

. . 2
1 s 3 7
RPS = — > pj— ;1 oj | . (2.15)

i=1 \ j=1

where the p; and o; stand for the predicted probability and actual observation of an instance
belonging to the class j, respectively, the r is the number of classes.
This way the RPS measures not only how correct the model was, but also how sure was the

model in its predictions.

Chapter 3

Research into related work

The following chapter discusses several existing approaches that were considered before designing
the models of this thesis. The models in the following chapter (unless specified differently) were
chosen because they use the same type of data — historical match results — for training and
testing. In the first section of this chapter are discussed statistical models and ratings, then
the focus will turn to the advanced approaches that use machine learning techniques. The last
section will review an approach that uses explicit features using the example of the combined
RPI [21].

3.1 Statistical models and ratings

This section is dedicated to the models that either explicitly assume that the data comes from
some probability distribution or try to learn some implicit distribution using various methods
discussed below. They try to determine how good a team is compared to other teams and give
it a relative score. The prediction for a sports match between two rival teams then can be made

by comparing the scores for those two teams.

3.1.1 The Poisson models

The Poisson models were proposed in 1982 in the article [22]. The paper suggested that the
number of goals scored by each team corresponds to the independent variable from the Poisson
distribution. Following that assumption, the probability of a variable that corresponds to the
number of goals scored by the home team (Gr) being x and the respective variable for the away

team (G 4) being y is given by

T e \Y e

where Ay and A4 represent the means of the Poisson distribution for the home team and the

away team respectively, and can be interpreted as the teams’ scoring rates. The model can be

11

CHAPTER 3. RESEARCH INTO RELATED WORK 12

modified to include multiple parameters for each team such as attack (Att) and defense (Def)

strengths as well field advantage(Adv), which then can be used to calculate the scoring rates:

)\H — eAttH —DefA+Ade

)\A — eAttAfDefH' (32)

A recent paper of Ley, Wiele, and Eetvelde [23] argues that the number of parameters can be
effectively reduced using the modified parameters — instead of two parameters that represent

strengths of the team, one complex strength (Str) can be introduced:

AH —_ eStTHfstT'A+H

)\A — €StrA—StrH_ (33)

There are multiple recent papers [23], [24] that prove the competitiveness of the Poisson model
among other ranking models — both papers concluded that the Poisson model outperformed

other models in the conducted tests.

3.1.2 Elo ratings

Elo rating system is one of the most used one in sports and games since its implementation by
USCF ! in 1960 [25], . The idea is to quantify the relative skill level of the individual players
[26]. It is done according to this formula [27]:

1
B 1+ c(Ra—Rpy)/d (34)
Es=1—-Fg

Ey

Then the prediction of the result of the match is just simply comparing the expected skill levels
of the individual players:

home team win given EFg > E4
Es, = { a draw given Eg = E4 (3.5)

away team win given Fyg < F4

The ratings of the players are then updated according to this formula:

1 given a home team win
Sg=140.5 given a draw (3.6)
0 given away team win

!United States Chess Federation

CHAPTER 3. RESEARCH INTO RELATED WORK 13

RAY =Ry + k(1 +6) - (Sy — En)
RV =RY —k(1+6)" - (Su — En)
where
e Ry and R4 stand for rating of home teams and away teams respectively;
e c and d are metaparameters;

e 7 is a metaparameters that defines the impact of goal difference on rating update;

Ep and E4 are the the expected outcomes for the home and away team respectively;

e Fg is the expected outcome of the match for the home team;

H

S is the real result of the match for the home team;

t stands for the order number of the match;

e) represents an absolute value of the goal difference between the home team and the away

team;
e [is the learning rate.

This kind of rating system is simple and proved to be working in traditional sports, such as

chess and football, as well as e-sports, such as Age of Empires [28].

3.1.3 pi-ratings

Constantinou and Fenton [29] suggest a simpler rating system specifically for soccer, but which is
applicable for any sport where the score is the main indicator of teams strength. The pi-ratings
outperformed Elo rating system, showed to be competitive with the bookmaker’s predictions
and won the 32.81% of the placed bets and in the end made profit of 15.4% of the initial bet. In
pi-rating system, the average score remains 0 and cannot inflate over time. Each team’s rating
consists of two sub-ratings: home and away; the overall team’s rating is just an average of those
two sub-ratings. The mentioned home (R,z) and away (R,4) sub-ratings of a team a are then

updated respectively as follows:

Rur = Ram + Mm(e)

i . (3.8)
Roa = Roa + U(RaH - R(LH)’

where A\, v are the learning rates, 1(e) is the fuction that ensures the win has more effect on the

rating that the goal difference e.

CHAPTER 3. RESEARCH INTO RELATED WORK 14

3.1.4 PageRank

The RageRank ratings origin from an algorithm devised for ranking pages in Google Search
engine results [30]. The idea behind it is measuring the importance of a website page by counting
the number and quality of links leading to it. That leads to the assumption that the more
important is a website, the higher number of other websites refer to it.

However, the algorithm can be generalized to be applied to the area of sports ratings [31]. A
series of competitions can be represented as a graph, where the vertices represent the n teams
and the edges represent the matches conducted between the pairs of the individual teams. The
hyperlink (adjacency) matrix H element standing for all the matches played between teams i
and j can be defined as follows [24], [32]:

2m w(m)S;(m)

Hig = =0 am)

(3.9)

where S;(m) is the number of points of the team j scored against the team ¢ at match m, w(m) is
the weighing of the match m. From that hyperlink matrix rating of each team can be computed
as described in Govan, Meyer, and Albright [31].

3.1.5 Berrar ratings

Berrar ratings suggest predicting not only the ternary outcome of the match but also the goals
scored by each team [33]. As opposed to Elo, Berrar ratings use offensive and defensive strengths
to rank the team and not the rating itself. Expected number of scored goals for the home and

away teams are calculated according to the following formula [33]:

G N o
AH 14+ e_BHg:H_dA)_'YH (3.10)
Ga= 1+ eBuloa—du)—va
Then the offensive and defensive strengths of the home team are updated as follows:
og+ = w, Gy — GH
o) o

dg+ = WdH(GA — G'A)
The updates for the away team are conducted in the similar fashion.

e G and G4 stand for the expected goal scores for the home team and away team respec-

tively;
e G and G4 are the actual goal scores for the home team and away team respectively;
e « defies the maximum possible number of goals a team can score

e (§ and ~ are the metaparameters that can be interpreted as slope of the logistic function

and the bias respectively, metaparameters are individual for the home and away team as

CHAPTER 3. RESEARCH INTO RELATED WORK 15

opposed to Elo;

e w stands for the learning rate for the strengths update.

3.1.6 TVC: Time Varying Coefficients

TVC assume that the points scored throughout the season have different weight on the strength
of the team at the end of the season [34]. To translate this effect into the model, the TVC allows
some coefficients to vary with time. The strength of the team 4 at time ¢ can be calculated as

follows:

Xt = > k(i) zik + Y Brtisk, (3.12)

keV k¢V
where z;; is the feature vector associated with the team i at time ¢, V is the set of coefficients
features that can vary in time and the m;; is the number of matches played by ¢ by the time t.
Tsokos, Narayanan, Kosmidis, et al. [34] later embedded this team’s strength into the Bradley-

Terry model to generate predictions:

exp(Nit)
exp(Nit) + exp(\jt)’

plyije = 1) = (3.13)
where y;;; is 1 when team i beats j at time ¢. This model took the third place of the 2017 Soccer
Prediction Challenge.

3.2 Advanced models

The following chapter reviews some of the resources that used advanced computational tech-

niques to predict sports results.

Arabzad, Tayebi Araghi, Sadi-Nezhad, et al. [35] proposed an earlier attempt to predict the
sports results based on the historical data using ANN. The paper tried to predict the outcome
of 8 matches. To achieve robustness of the model, the predictions were generated 30 times.
The model consisted of 2 hidden layers with 20 neurons in each of them. The 10 input features
included recent average points and all time average points for each team. The goal was to pre-
dict the actual score of the game. The output was then analysed using graphical and statistical
analysis (ANOVA). The result shows that score of 1 of 8 matches was predicted correctly and

the victory team of 5 of 8 matches was predicted correctly.

The article of Nyquist and Pettersson [36] proposes Long Short-Term Memory (LSTM) ar-
chitectures of recurrent neural networks and reports the accuracy of up to 98.63%. However,
this high accuracy is achieved thanks to training the models to predict the next 15 minutes of
the game, meaning that the models predict the match’s outcome with the information about
the whole match minus 15 minutes. This way of evaluation was chosen due to the authors’

goal to predict the result at any given moment and not just at the end of the game. The best

CHAPTER 3. RESEARCH INTO RELATED WORK 16

accuracy of predictions of the outcome of the matches before their start is close to 44%. It is
worth mentioning that this work uses embedding to create input for the network. However, the
embedding used in this paper creates the vector based not only on the team name but also on
the soccer-specific features, such as penalties, card types, goal types, lineup, and substitution.
After the features are embedded, they serve as the input to the recurrent neural network with
LSTM units. The network is then complemented with the softmax classifier to produce the
predictions for each class. The fact that the paper’s authors had access to the data sampled
relatively densely appeals to the idea of modeling their predictor using recurrent neural networks
with LSTM units that work best with sequences and can foresee subtle changes throughout the

timeline.

Pugsee and Pattawong [37] used a Random Forest Classifier (RFC) for predicting the soccer
match results. RFC is a machine learning technique that involves training multiple classifiers
(decision trees) on randomized training data and then combining their results to obtain the
prediction. Each decision tree’s attributes are selected based on the information gain, repre-
senting each attribute’s knowledge value. A set of the selected attributes then divides the data
and produces a prediction for one tree. Combining several decision trees into random forests
helps to tackle the problem of decision tree overfitting the data. The data used to train the
RFC consisted of 18 soccer-specific features from the English Premier League. The accuracy of

predictions on the testing data by the proposed model is 80%.

Hubéécek, Sourek, and Zelezny [38] proposed an approach for prediction of sport matches out-
comes using gradient boosted trees. The proposed model utilized multiple latent features ex-
tracted from the data, such as pi-ratings and PageRank rating, multiple features representing
current and historical strengths when played at home and away venues, features that relate to
leagues. The work discussed in this paper used Xgboost [39] implementation of the gradient
boosted trees. As a result, the pi-ratings showed to be the most influential features, while the
features associated with the teams’ current form were used the least. The paper also proposed
another model where the features were ground facts that defined the relations between teams:
a historical result of the given game between two teams being a home victory, draw or away
victory, matches being played in a league, a team scoring more than a given number of goals in a
given match, and a team belonging to a specific rating group when playing a given match. The
constructed ground facts provided input for the RDN-Boost algorithm, which is an instance of
a relational dependency network function approximators [40]. The Xgboost model got the best
RPS on the validation and testing data and is the winning model of the 2017 Soccer Prediction
Challenge (the accuracy on testing data is 52.43% and average RPS of 0.2063). However, the

relational model performed well as well (average RPS of 0.216).

Constantinou [41] designs a model as a mixture of two models: dynamic ratings and Hybrid

Bayesian Networks. The key idea of Dolores (the proposed model) is predicting the outcome

CHAPTER 3. RESEARCH INTO RELATED WORK 17

of the match between two teams based on the historical data from other (seemingly unrelated)
teams (from other countries, leagues). To accomplish this some more artificially designed data
instances were added for matches with identical rating difference (home team score - away team
score). This approach allowed to tackle several problems at once: temporality of the data (newer
data have higher value for predictions), absence of data for new teams, and predictions for one
league based on a different league. The Hybrid Bayesian Network consists of one observable
node that describes Rating Discrepancy and 4 hidden nodes: Ability Difference, Goals Scored
by Home team, Goals scored by Away team and Predictions. Ability difference can acquire 42
distinct rank values, Rating discrepancy represents a mixture of 42 Gaussian distributions. The
example of how Dolores works is described in Constantinou [41]. The model took the second
place in the 2017 Soccer Prediction Challenge with the average RPS of 0.2083 and accuracy of
51.46%.

3.3 The combined RPI

This section will shortly discuss an approach that uses sport-specific features for sports predic-
tions.
Combined RPI [21] proposes a new rating approach that incorporates 4 statistics applied to

American football matches:
1. RPI;
2. Pythagorean wins;
3. Offensive strategy;
4. Turnover differential.

RPI suggests a score based on the frequency of wins and integrate the score of opponents with

some weights.

The Pythagorean wins construct the score based on how many points are scored or surrendered.
Offensive strategy projects which way the team chooses to move the ball: by passing or by
rushing. The turnover differential is the difference between the takeaways and giveaways for each
team, where takeaways are calculated as a sum of interceptions and fumbles that were recovered,
while giveaways are the sum of lost interceptions and lost fumbles. These four statistics are
normalized (each statistic with individual range) and summed up and produce the output score.

The predicted winner is the team with the highest score.

One can notice that three of the four statistics used to calculate combined RPI use data specific
to American football. This fact explains why this statistic will not be further considered despite
exceptionally high accuracy in predictions (reported accuracy up to 97.14%). Another concern
related to the combined RPI is that the reported accuracy suggests that the model overfits the
testing data.

Chapter 4

Implementation, Experiments,

Evaluation

This chapter is dedicated to the practical part of the work. It reviews the collected data, proposes
the solutions of the stated problem, discusses evaluation frameworks and the evaluation process

itself and the direct implementation.

4.1 Data

The data was searched on free sources on the Internet. According to the assignment, it is
necessary to create models for more than one sport. One obvious candidate was soccer since
it is one of the most popular sports in the Czech Republic, as well as globally [42]; besides,
it is most commonly reviewed in the relevant works discussed earlier in part 3. Another sport
highly popular in the Czech Republic is ice hockey, which also was proved to be a source of

identification for Czechs as a nation [43].

4.1.1 Soccer data set
Soccer overview

A professional soccer match involves two teams of 11 players competing against each other in a
game during 2 periods of 45 minutes.

Matches are chronologically arranged into seasons. Teams are divided into leagues depending
on their professionalism and countries of origin. The structure of leagues is different for each
country; usually the leagues consist of 16 to 20 teams.

According to the rules, the teams are awarded with three points for a game ended with a victory,

no points for a loss and both teams receive one point if the game ended with a draw.

18

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 19

Home Away Home | Away S(i,ore
Season | League | Date Diffe- | Result | Country

Team Team Score | Score

rence

2000 GER1 | 2000-09-16 | Bochum | Wolfsburg 2 1 1 W Germany
2003 ITA1 2004-03-14 | Lazio Udinese 2 2 0 D Ttaly
2008 SPA2 | 2009-02-28 | Alaves Real Sociedad | 2 1 1 W Spain
2008 GRE1 | 2008-09-28 | PAOK Aris 1 0 1 W Greece
2014 FRA1 | 2014-11-22 | Monaco | Caen 2 2 0 D France

Table 4.1: Example of the data from the soccer data set.

Soccer data set overview

The soccer data set is acquired from the Open International Soccer Database for machine learn-
ing [44]. It consists of the records from 216743 league soccer matches played in across 52 leagues
in 35 countries during the years 2000-2016. The database was specifically produced for the
2017 Soccer Prediction Challenge [18]. From the Figure 4.1 one can notice that the distribution
between the results is not even for most leagues and there is a slight bias towards the home

victories (40% Home wins, 35% Away wins and 25% Draw). An example of the soccer data

40k
35k
30k

25k

count

20k
15k
10k

Sk

O A, S S Aue, Ocpy Moy Lor B, Brs Y35 S0, So,. by Moy o Mo T, &y Vop, Moy Us,
ne St’e/,a/{?e,./ @% » Sff/s /7/’73,27% e/ /7/9/70 92 0@/7 L/(:ﬁ 4’007 e Sw ?@9@0 roCco/?/S’e Us, 470,/75‘8 P, 4
I, 5,
(4

3
0r, 9, Yy ¥
o

]
5
& oy

G, %, G, Mepe Scor S, s By Rpy G Pop, Ary R
o oy, Shg, Vegy Scog, by, sy Oy My Creg Tory, Yo s,
’776,7;’ 9/‘9/70 he*/e,,%”d e gy, %y S /?Uga/ e”(‘/q:’
%
country

Figure 4.1: Distribution of matches by country and by result: home victory (W), draw (D) and
away victory (A)

set can be seen in Table 4.1. Figure 4.2 shows that the number of leagues varies significantly
from country to country: while England has five leagues, China only has one. When comparing
to Figure 4.1, one can notice that the number of leagues does not necessarily mean a higher
number of games for a country; for example, Scotland has four leagues, but the number of played
matches is lower than the one of Italy that only has 2. That can be explained by the fact that
the data set covers 17 years, and during that time number of leagues can change (for example,

for lack of funding); besides that, the number of teams in leagues varies for different countries.

result
"W
=D
mL

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 20

count

| II
1

o7 4/4/@/*07/766/7n*ecer[sr’e%eoeso Soy,., S0y, S0, St Sy Nury, T, Usy e
9% "6, S[,s/ RSN AL RN veg KONCTMCN ro,e Sec 3/ o Ko, Toc, e, & % Ty, Ss/s %,7 V54 4 % 0%, ey, ”f% ke, A ”ee
’c
4

country

Figure 4.2: Distribution of leagues by country

Another high quality data set, containing the matches results as well as significant number
of features and the betting odds, was found at [45], but it will not be further used.

4.1.2 Hockey data set

The hockey data set was acquired by web crawling a web page [46] and then formatted to the

same data structure format as the soccer data set.

Hockey overview

The ice hockey is a winter sports game played between two teams of six players each during 3
periods of 20 minutes. The goal of the game is to shoot a puck into the opponent team’s net

using stick while skating on an ice rink.

National Hockey League (NHL) is a professional ice hockey league that consists currently of
31 teams from United States of America and Canada. Each game plays 82 games during a
season: half at a home field and half as a visiting team. The team ranking is based on a point
system — two points are awarded for a victory, one point for losing during overtime or in a so

called shootout ! and zero points if the team loses in a regular period.

Hockey data set overview

The table 4.2 shows an example of the data from the hockey data set. The hockey data set

Both shootout and overtime are measures to solve a draw between the teams. If after an additional period
(overtime) a winner-determining result is not achieved, a shootout is appointed — the teams representatives shoot
the puck until one team prevails.

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 21

Goal
Season | League | Date Team Team Goals | Goals Dif- Result Country
home away home | away League
ference
1998 NHL 08-10-98 | Calgary Flames San Jose Sharks 3 3 0 D NHL
1998 NHL 08-10-98 | Florida Panthers Tampa Bay Lightning | 4 1 3 W NHL
1998 NHL 08-10-98 | New York Rangers | Philadelphia Flyers 0 1 -1 L NHL
1998 NHL 09-10-98 | Boston Bruins St. Louis Blues 3 3 0 D NHL
1998 NHL 09-10-98 | Carolina Hurricanes | Tampa Bay Lightning | 4 4 0 D NHL

Table 4.2: An example of the data from the hockey data set.

contains 23968 instances of the sports games of the NHL between the seasons 1998-2018. The
number of teams across all those years is only 33 while the current number of teams in the league
is 31. This might implicate the strong competitiveness and the fact that there will not be any

obvious stronger and weaker teams.

The distribution between the three classes of the results is even less equal for the hockey data

set when compared to the soccer data set: Home win 45%, Away win 35%, Draw 20%.

4.2 Proposition of the solution

The purpose of this work is to learn the representations of the teams using embedding. The idea
behind it is that the models learn using artificially created features that are adjusted during the
training phase. By learning the representations of the individual teams, the model is supposed
to simulate the rating systems’ behavior. The main advantage of such an approach is the domain
independence of the models and that it can be used for any set of events with two adversaries
and can later be extended to a higher number of teams or players. Similarly to the simple rating
systems, the models use only the historical data of match results. As opposed to the rating
systems, there are no hardcoded rules in the explored models, and the models have to simulate

the rules by adjusting their parameters during the training phase.

In this work, the following models are proposed and experimented with:
1. Simple ANN with embedding;
2. Graph Neural Network.

The simple ANN model will learn the representation using only an embedding layer. The GNN
will try to improve the embedding learned by the previous model using the additional information

about relations between the teams compiled into a graph structure.

4.2.1 Simple ANN with embedding

A simple classification model can be obtained using multiple Linear (fully-connected) layers
that are closed by a softmax layer to generate predictions. A diagram of such model is shown in

Figure 4.3a. A Linear Layer block represents a combination of a Linear (fully-connected) Layer

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 22

Teams across all
Home team Away team leagues and seasons
Embedding Layer

¢ IConvGNN Layer Blocks

i H t A 1
Concatenation 7
Filtering

* L

Linear Layer Blocks
Concatenation

v

Sofmax Layer

A,

Linear Layer Blocks

l

¢ Sofmax Layer

Predictions i

Predictions

(a) A diagram of the Simple ANN with embedding
model. (b) A diagram of the GNN model.

Figure 4.3: Diagrams of the two models.

with an activation function and a possible dropout layer. The representation of all the teams is

kept in a single embedding layer.

4.2.2 Graph Neural Network

Once the prediction model is improved, the next most reasonable step is improving the repre-
sentation of the teams. As the PageRank ratings discussed in Section 3.1.4, graph structure
can help to learn the strengths of the individual teams. However, it can be beneficial to learn
the representation using the graph structure in higher dimensions. That can be fulfilled by
employing the GNN. At first, the match prediction problem in terms of GNN can be recognized
as a problem of edge labeling since one graph representation of the historical match data can be
described as teams being nodes and matches being connections between two teams. However,

that problem can be reformulated into two successive subproblems:
1. Learning teams representation using a graph structure;
2. Learning to predict a result of the match based on those representations.

One can notice that the first subproblem can be interpreted as node classification, the task that
was proved to be efficiently solved by ConvGNN [47], [48]. The second subproblem was already

tackled by a previous model in Section 4.2.1.

Another problem that needed to be solved was the difference of influence of the game on teams’

representations depending on the time component. It is obvious that the victory that happened

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 23

last season affects the team’s relative strength in the season’s finals with a different intensity
than a loss that occurred right before the decisive game. That was achieved by weighing the
edges of the graph differently depending on the recency of the last game that played between the
two teams in question. That is why when the information is propagated from a team’s neighbors
to the team and from the team to its neighbors, the effect of the information transferred over
the edge from node 7 to node j at time ¢ on the representation is scaled based on last game’s
recency by multiplying the propagated data with wteij € (0,1) € R. The edge weight can be
computed by a linear or an exponential function. Computation by a linear function:

t—tyrev
wt =1— P

ey —N (4.1)

where the ?,rev is the time of the previous sport meeting between the two teams and N is the
number of a total number of games. Computation by an exponential function:

wéij — ¢~ (t=tprev) (4.2)
In practice we used the computation by a linear function, because values of the exponential

function were too "negative” — the values for even not so distant matches went rapidly to zero

and had practically no effect on the representation.

In order to simulate the ranking system between the teams, the propagation of information
should only go one way. In the implementation of this work, the propagation happens from
a losing team to the winning team. By this strategy, the propagated data becomes the rival’s
strength, and it is added to the winner’s strength. This approach’s downside is that the mean of
the "ranks” is not constant but gradually increasing. It could have been solved by propagating

the values from a winner to the loser with a negative sign.

Running Example

A running example of how the simplified version of the GNN model should work is shown below.
It shows a model without embedding, the features of the teams are saved in the nodes rather
than being trained as parameters in the Embedding layer. This example is very similar to how
the PageRank model works that was discussed in Section 3.1.4, in fact the GNN model can be
understood as a generalization of the PageRank model. Suppose, there is a league of 4 teams
that have to define their ratings through a GNN model. The change of the states of the graph
is shown in Figure 4.4. At time t; two matches take place: in the first one, a team A wins over
the team B and in the second one, a team C wins over the team D. This means that to the
disconnected graph of 4 vertices (one for each team) two edges are added (one for each match).
The edges are directed — they go from a losing team to the winning team. This state is shown
in Figure 4.4a. In the previous time tick all teams had a starting score of 1. At the end of time

1 the score values of the teams B and D stay the same at this time (since they did not win

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 24

(a) The state of the graph at time(b) The state of the graph at time
t= t =

(c) The state of the graph at time
t=3.

Figure 4.4: The example of how a simple GNN works.

to | t1] ta | t3
A1 [2 2834
B|1[1]1 [1
Cl1]2138]92
D[1[1]3 [624

Table 4.3: The progress of the scores of the individual teams in time for the running example.

over anyone yet) while the score values for the teams A and C are calculated according to the
following formula:
st=st"14 Z wéij : s§_1, (4.3)
jlei; €E(G)

where s!

is a score for a team i at time ¢, wéij represents a directed edge from the team j (the
loser of the match) to the team ¢ (the winner of the match). This way the score of the team i
is the weighed sum of the scores of all the teams ¢ won over. The weight of the edges in this
particular example set in the following manner: 1 for the match that ended at time ¢, 0.8 for the
match that ended at time t — 1 and 0.6 for the match that ended at time ¢t — 2. In the following
time ticks there are matches between all the teams from this league. In the end the team C won
in all of the conducted matches, A and D won in some of them and B won in none of them.

The scores for the teams till the time t3 are shown in Table 4.3.

The resulting scores reflect the number of games for the teams C' and B and are expected. The
scores for the teams A and D are different even though they had the same number of victories.
The difference in the scores explains the quality of the victories (if the losing opponent was

good) and the time of the victories.

Model Components

A diagram of the GNN model can be viewed in Figure 4.3b. The label-encoded names of all teams
in the data set across all leagues and seasons are embedded into vectors of higher dimensions.

Those vectors then serve as node features for the first ConvGNN Layer block. A ConvGNN

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 25

Layer block represents a combination of a ConvGNN Layer with an activation function and a
possible dropout layer. There can be multiple ConvGNN Layer blocks stacked on top of each
other. After the information between the teams is propagated, the last ConvGNN Layer block
produces the learned representation for all the teams. However, to make a prediction for a
match, the model only needs to know the representations of the Home team and Away team.
After they are filtered out and concatenated the model is ready to predict the result of the game
using stacked Linear Layer blocks. The output of the last Linear Layer block is then run through
the softmax layer that scales it and generates the predictions for three of the game result classes:

Home team victory, Draw, Away team victory.

4.3 Evaluation frameworks

Usually, when working with data in terms of statistical procedures, one has to assume that the
data are independent and identically distributed, meaning that the samples are drawn from the
population randomly and sequentially. The data is often shuffled to ensure that these groups
are independent when the samples are randomly divided into groups. For example, if someone
made a random poll of a Yes / No question across the country, then shuffled the answers and
divided them into two groups, the groups will have roughly the same ratio of ”yes” to "no”
votes. However, when using time series data or data with a time component, one cannot assume
that the samples are independent, but rather exactly the opposite — the assumption should be
that the earlier samples affect the later samples. That leads to the assumption about the data

set being only that the data should be independently distributed.

There are two frameworks that can be distinguished to train and evaluate a predicting model:

1. Fixed evaluation. The data is subsequently divided into three categories: a training data
set, validation data set, testing data set. Training data is used for a model to learn
the parameters, the validation data set is used to fine-tune the model’s hyperparameters,
the testing data set is employed to evaluate the actual performance of the model. The
drawback of this approach is that the model ”loses” the validation data, leading to the

model’s inferior performance when dealing with time series.

2. Continuous evaluation. This approach rigorously divides the data set only into two cat-
egories: the training data and the testing data. The model is training gradually from a
portion of the training data set captured from a window sliding with time and can be in-
terpreted as a mini training data set. The model then runs through the mini training data
set in mini-batches for multiple epochs. The validation accuracy and loss are computed
from a portion of the data following the mini training data set. After the training and
validation are performed, the window controlling the data moves, and the process starts
again. An example of this process can be found in Figure 4.5.

The testing can be done in two ways. One way is two fix the testing set and evaluate the

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 26

model on it at once. Another way (which will be called ”sliding testing set” for future
referencing) is evaluating the model on a small portion of the testing data, retraining the
model using this small portion, and then working this process until the end of the training
set. This way of testing is preferred since this approach simulates the real-life conditions —
the prediction for the upcoming event is generated, after the match, the model is updated,

the model generates the prediction for the next match.

Later in this work, the continuous evaluation will be used since it can utilize the latest data into

the prediction.

Finally, the configuration of the Linear layer was taken from the ANN with an embedding
model for training a GNN model.

I Training data I I Testing data I

) Mini training data Validation batch
timet H
I |

Mini batch

() # iterations

, Mini training data Validation batch
time t+1 %

Figure 4.5: Example of the continuous evaluation. The red section represents the sliding window
for capturing the training data.

4.4 Evaluation

4.4.1 Common setup

To be able to fairly compare the models, some common parameters had to be fixed. The

parameters were settled after some tests and empirical evaluation of the results.

e Mini batch size: 9. For most leagues, this is the number of matches in the season played
between a team’s two successive games (there are 16-20 teams in a league, so if they start
to play with each other, there will be 8-10 played games before a team plays the second

time).
e Optimizer is fixed to be Adam [5].

e Epochs: 30. This value was set to be the initial number of epochs.

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 27

Window size for capturing the training data: 40 mini-batches.

Window size for capturing the validation data: 10% of the whole data set. Such a number

was chosen to estimate the validation accuracy and loss robustly.
Window size for capturing the testing data: 1 mini-batch.
Dropout rate was set to 0.1.
The learning rate mode refers to one of two approaches of setting the learning;:
1. The learning rate is fixed throughout the training phase.
2. The learning rate decreases with time and is computed at time ¢ for each slide of the
sliding window as follows:

)\t _)\base(l o ,y)k/bs/ws, (4'4)

where Apgse is the initial setting of learning rate discussed above, v represents the
discount factor of the learning rate (it was set to 0.2), k is the ordinal number of
the first match in the sliding window, bs stands for the batch size, ws represents the
number of batches after which the learning rate should be decreased. Apgse, Y, ws can

be considered hyperparameters.

The second approach is often used when training Graph Neural Networks [49]. However,
in this case, the adaptable learning rate did not improve the model’s performance. Relying

on this conclusion, the learning rate remained constant over time for all models.

A subtraction layer instead of a Concatenation layer was tested in both models. However,
with both models, the performance was much poorer than when using a Concatenation

layer.

4.4.2 Learned Hyperparameters

Learned hyperparameters include:

The number of epochs for fitting data captured from a later sliding window. One approach
is leaving the number of epochs fixed in time. However, to emphasize the importance of
the later data on the predictions, the model can be exposed to the later data a higher
number of iterations. To achieve that, the number of epochs was computed for every slide
of the sliding window at time ¢ according to the following formula:

pttl —pt + logipk, (4.5)

epochs epochs

where [b stands for logarithm base and was set to 1.5, k is the ordinal number of the first
match in the sliding window. The logarithm base can be considered another hyperparam-

eter for tuning.

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 28

e The possible values of the learning rate were limited to 0.01, 0.001, 0.0001, 0.00001.

e The maximal possible number of Linear layers was restricted to 5, minimal possible number

was set to 2.

e The space of possible settings for the Linear Layers consisted of the following configura-
tions:
(4,4,4,4,4),(8,8,8,8,8), (16, 16, 16, 16, 16), (32, 32, 32, 32, 32), (64, 64, 64, 64, 64),
(4,8,16,32,64), (4,8,4,16,4), (32,64, 32,128, 4), (16, 32,4, 16, 8), (16,4, 16,4, 16),
(64,128,64,128,8), (128,128,128, 128,128), where the number represents the number of
neurons in a layer.
During the validation process, it became evident that the models with a constant number
of neurons in all layers have a better performance than the once in which the number of

neurons changes from layer to layer.
e The maximal number of ConvGNN layer was set to 3, the minimal — to 1.

e Possible configurations of the ConvGNN layer included:
(1,1,1),(4,4,4),(8,8,8), (16,16, 16), (64,64, 64), (128,128,128), (128, 64, 32), (32, 32, 32),
(32,16,8),(16,8,4), (128, 32,8), (64,32,4), (4,64, 4), (8,128, 8),
(8,128,64), (64,32,64).
As well as in the Linear layer blocks, the constant number of neurons showed much better

performance than with the changing one.
e The choice of activation functions was restricted to
1. ReLu:
ReLu(z) = max(0,) (4.6)
2. hyperbolic tangent function: tanh(z)

3. Leaky ReLu:
LeakyRelu = mazx(ax,x), (4.7)

where o was set to 0.1.

4.5 Implementation

The models were implemented in Python using the libraries PyTorch [50], and PyTorch Geo-
metric [51]. The data was imported and examined using the Pandas library data frames [52].

The resulting models are saved into the binary files using a pickle library in Python [53].

The codebase for this work can be found in the attachment and in the public repository 2.

The code is divided into several files:

’https://github.com/perevale/matches_prediction.git

https://github.com/perevale/matches_prediction.git

CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 29

e DataTransformer: uploads the input data set, label encodes the teams, divides the data

sets into training, validation and testing data sets;
e Dataset: creates the Data instances for all the leagues in the data set;
e Trainer: trains, validates, and tests the models directly;
e GNNModel, FlatModel: create the GNN and Simple ANN models;
e visualization: helps to visualize the training and embedding;
e utils: provides the utility functions for training.

The fine-tuning of the models’ hyperparameters was executed on the remote server using the

grid search. The scripts for this are located in the folder scripts.

4.5.1 Implementation procedure

The implementation was not linear, and there were multiple dead ends and complications. The

most comprehensible procedure could be approximated as follows:

e The Simple ANN model is created and trained in a fixed manner. An earlier version was
built in Keras, but later transferred to PyTorch because of PyTorch’s higher flexibility

and transparency.

e A simple GNN model is constructed, the model does not have any Linear layers, the
predictions are produced directly by subtracting the two teams’ representations and taking
the sign of the output. Although the model was able to achieve over 50% of the training
accuracy, it did not generalize well, and testing accuracy was close to random. In this
model, there was only one trainable parameter in the ConvGNN Layer; instead of the
edge weighing, there was a manual weighing of the nodes. This model was a starting point
for the resulting GNN model. The implemented version is the same as reviewed in the

running example in Section 4.2.2.

e The GNN model is meant to be a combination of the Simple ANN model and the Simple
GNN model. It was first trained in a fixed way, then the retraining on the validation
set was also applied. The features in the nodes were then changed to the embedding

representation, and the edge weights were applied.

The models can be viewed in the attachment.

Chapter 5

Results

The following chapter is dedicated to reviewing the obtained results. The first section is going to
examine the best achieved results. After that, there are going to be a review of some alternations

to the best models and their effect on the models’ performance.

5.1 Best models

To correctly evaluate the models, several variations of the data sets had to be taken into consid-
eration. There are two data sets discussed in Section 4.1.2. However, both of them were rather
large, and training one model on the soccer data set took up to three days. To fine-tune most
of the hyperparameters, only one randomly chosen league from the soccer data set was chosen
— GERI1. It is represented by the name ”1 league soccer”.

The Berrar, Lopes, Davis, et al. [18] also chose only 26 "bigger” leagues out of 52 for the test
set of the 2017 Soccer Prediction Challenge. They are represented by the name ”chosen leagues
soccer”.

The hockey data set is represented by the name "NHL”.

The comparison of the best-achieved models performance for the two approaches on the four

data sets can be viewed in Table 5.1.

Table 5.1 shows that the model was able to fit the smallest of the four data sets far bet-
ter than the larger ones. It makes sense intuitively: since the model only predicted the results
for 36 teams from one league and in the next case of all leagues of soccer, the model had to be

far more general to be able to fit the data of 1951 teams and finding the best possible param-

1 league soccer | all leagues soccer | chosen leagues soccer | NHL
ANN with embedding | 0.4962 0.4553 0.4894 0.4222
GNN 0.5231 0.4640 0.4926 0.4493

Table 5.1: Best achieved models’ accuracy.

30

CHAPTER 5. RESULTS 31

eters is more complicated if not impossible — different parameters work best for different leagues.

The table also proves the superiority of adding a graph structure over the linear layer for
predicting the outcome of sports matches and displays that such an approach indeed helped

to learn a better representation of teams in all four cases.

5.1.1 1 league soccer data set
The best configuration of a simple ANN model with an embedding layer is the following:
e 3 linear layers.
e Each layer consists of 4 neurons.
e The dimension of input embedding is 3.
e The learning rate is set to 0.001.
e The Dropout layers were placed after each Linear layer with the dropout rate of 0.1.
A model that best fit the data of the GER1 soccer league consisted of
e 2 graph convolutional layers of dimension 4.
e Convolutional layers: GraphConv.

e The dimension of input embedding is 3.

The learning rate is set to 0.001.
e The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.
It can be noticed that a relatively small number of neurons was needed for both of those models.

The resulting embedding can be viewed in Figure 5.1. It was obtained using PCA projection
with two components. One can notice that the representation of the teams before the training
is chaotic. The teams do not seem to be ordered. However, the embedding after the training
shows us that they are represented in some arranged manner. Most teams are lined up in
a noticeable order, which means that the horizontal axis might represent the ranking of the
teams. The Dortmund and Bayern Munich are obviously the leaders since they are the left-
most teams. After comparing some simpler rankings with the one in question in the table 5.2,
one can assume that the vertical axis shows how sure the victories were for the teams throughout
the timeline (the lower, the more sure is the victory) — Bayern Munich got the highest victories
to losses ratio, and it is located in the bottom meaning that the victory is sure for the team.
The PCA projection of the embedding with 1 component and its comparison to the simpler,
more explicit ranking models — the difference between the number of won and the number of

lost matches and the Elo rating 3.1.2 — is shown in the table 5.2.

CHAPTER 5. RESULTS 32

Embedding ranking Win-Loss Difference Ranking | Elo ranking

Dortmund -157.43285 | Bayern Munich 303 Bayern Munich 154735.3
Bayern Munich -154.72981 | Dortmund 154 Leverkusen 71330.37
Leverkusen -153.28636 | Schalke 04 107 Schalke 04 68776.49
VIB Stuttgart -145.66075 | Leverkusen 106 Dortmund 58952.95
Schalke 04 -144.4327 | Werder Bremen 55 Werder Bremen 43354.39
Wolfsburg -144.27525 | VB Stuttgart 29 Wolfsburg 30104.49
Hamburger SV -142.38426 | RB Leipzig 13 Hertha Berlin 28068.66
Eintracht Frankfurt | -134.10876 | Wolfsburg 8 RB Leipzig 3805.212
Hannover 96 -133.24687 | Hamburger SV -4 Fortuna Dusseldorf | -334.153
Werder Bremen -133.03867 | Hertha Berlin -5 Hoffenheim -465.699
Monchengladbach -131.78793 | Unterhaching -7 Alemannia Aachen | -611.405
Nurnberg -124.64906 | Alemannia Aachen | -9 Braunschweig -963.602
Mainz 05 -121.12248 | Hoffenheim -10 Ingolstadt -1886.1
Hertha Berlin -117.85539 | Paderborn -10 Greuther Furth -2311.5
Freiburg -112.02846 | Fortuna Dusseldorf | -11 Hamburger SV -2482.05
Hoffenheim -106.32832 | Munich 1860 -12 Unterhaching -3267.8
FC Koln -91.78417 | Ingolstadt -14 Paderborn -3313.84
Kaiserslautern -67.60042 | Karlsruher SC -15 MSV Duisburg -3689.42
Bochum -47.461567 | Braunschweig -15 Darmstadt 98 -4890.84
Augsburg -27.295141 | Greuther Furth -17 Karlsruher SC -5344.51
Arminia Bielefeld -4.547561 Augsburg -20 St Pauli -5715.27
Energie Cottbus 0.06291556 | Mainz 05 -20 Augsburg -9752.47
Karlsruher SC 21.897686 | Darmstadt 98 -21 Arminia Bielefeld -11341.6
Fortuna Dusseldorf | 40.037266 | MSV Duisburg -25 Kaiserslautern -11988.6
MSV Duisburg 53.142437 | Monchengladbach =27 Mainz 05 -12581.5
Hansa Rostock 57.575123 | St Pauli -29 Munich 1860 -15113.2
Greuther Furth 79.802826 | Kaiserslautern -33 VIB Stuttgart -16361.5
St Pauli 93.84798 Arminia Bielefeld -39 Freiburg -19590.7
Munich 1860 119.45913 | Hansa Rostock -41 Hansa Rostock -24236.3
Braunschweig 139.13191 | Bochum -42 FC Koln -29456.9
Alemannia Aachen | 150.2522 Hannover 96 -47 Bochum -30939.8
Unterhaching 209.98987 | Energie Cottbus -49 Energie Cottbus -32774.2
Ingolstadt 312.1592 Freiburg -56 Hannover 96 -41534
Darmstadt 98 329.73306 | Eintracht Frankfurt | -64 Nurnberg -42820
RB Leipzig 389.7234 Nurnberg -66 Eintracht Frankfurt | -43121.1
Paderborn 398.24176 | FC Koln -67 Monchengladbach -46239.8

Table 5.2: Comparison of the three approaches to encode the ranking of the German League.
The main trends, are the same for all the three rankings, e.g. Bayern Munich, Dortmund,
Leverkussen are at the top in all the rankings. The difference resides in the mapping of the
teams with poorer performance: for example, F'C' Koln occupies the positions in the middle of
the rating and in the other rankings it is found in the bottom. This can be influenced by the
fact that the embedding better captures the time trends in the data.

CHAPTER 5. RESULTS 33

300 .Hansa Rostock
157 Arminia Bielefeld .Energle Cottbus
o, i Hansa Rostock
chum ®karlsruher sC
10 . 200
Hertha %er\m sy Duisburg
®c Koln gMunich 1860
51 ghlemannia Aachen Kaiserslautern
Leverkusen Kaiserslautern o/ unich 1860 . 1001 wolfsburg Greuther Furth st Pauli
Bagern Munict? Unterhaching Augsburg .
ol Hannuver\?’g‘f Eintracht Frankfurt Arminia
Tttgart rder Bremen cpai B Leipzig VB S " Alemannia Aachen
auli chu
Hap 4 adbach ¢ olstadt] 0 _ Gesglacrothus)
. onchengladbac /.Darmstadt 98 ha-Re o %\E?I MSV Duisgurg Paderborn
Nurnﬁerg Braunschweig Paderborn| el sruher sC Unterhaching ;
o Mainz 05 GSreuther Furth =Fch stadt ® RB Leipzig
Freiburg Hannover 96 m
~104 *— — J
10 100 srkusen Monchengladbach B unschweig
.Augsburg gortuna Dusseldorf Dortmund
—15 4 .I}ayern Munich
T T T T T T T T
—500 —250 0 250 500 750 1000 1250 —200 4 ; . . : ; :
—=100 0 100 200 300 400

(a) The embedding representation of the GERI . .
league before training the GNN model. (b) The embedding representation of the GERI1

league after training the GNN model.

Figure 5.1: Embedding of the GER1 league.

5.1.2 All leagues soccer data set
The best simple ANN model for the soccer data set was the following:

e 5 linear layers.

e Each layer consists of 16 neurons.

e The dimension of input embedding is 3.

e The learning rate is set to 0.0001.

e The Dropout layers were placed after each Linear layer with the dropout rate 0.1.
The best simple GNN model for the soccer data set was the following:

e 3 graph convolutional layers of dimension 8.

e Convolutional layers: GraphConv.

The dimension of input embedding is 3.
e The learning rate is set to 0.0001.
e The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.

The number of neurons in these models is slightly larger than for the models trained for one

league.

5.1.3 Hockey data set
The best simple ANN model for the hockey data set was the following:

e 5 linear layers.

CHAPTER 5. RESULTS 34

e Each layer consists of 4 neurons.

e The dimension of input embedding is 10.

e The learning rate is set to 0.00001.

e The Dropout layers were placed after each Linear layer with the dropout rate of 0.1.
The best simple GNN model for the soccer data set was the following:

e 3 graph convolutional layers of dimension 1.

Convolutional layers: GraphConv.

The dimension of input embedding is 10.

The learning rate is set to 0.0001.

The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.

The number of neurons is smaller than in the case of the soccer data set model, however, the

number of layers is maximal possible — 5 Linear layers and 3 graph convolutional layers.

5.2 Weighed models

As can be seen from Section 4.1.2, both data sets have more matches won by home teams. That
is a known phenomenon called home advantage. The circumstances that may affect the sway in
the home team’s favor can be psychological (such as local fans’ support, known grounds, subcon-
scious referee’s bias) and physiological (visiting team’s fatigue from traveling, different climate
or time zones). Team advantage is even measurable: Marek and Vavra [54] propose a compari-
son method for home advantage based on Jeffrey Divergence, which is a symmetric adaptation
of the Kullback-Leibler divergence. There is an even smaller percentage of the matches ending
with the draw. That can be explained by the fact that if the teams feel that their game end with
a draw, they tend to play riskier. Another reason for this anomaly is that penalty shootouts
can be appointed during competitions as specified by the rules or directed by a referee. The
shootouts continue until one team scores, and another one does not. This measure is often used

as a tiebreaker at the end of the seasons or competitions.

As a result, some models give preference to the home team in their predictions as well, and in-
frequently predicts the draws. To overcome this, the optimizer can punish incorrect predictions
unequally for different classes. Mistakes of the less populated class are penalized proportionately
to the ratio of the number of samples in the class with the highest population Nppc over the

same number in the class in question N,:

N,
Wy = A’;apc (5.1)

CHAPTER 5. RESULTS 35

This approach is better in this case than undersampling highly populated classes, since the latter

technique might deprive the model of some insights from the time component of the data.

Draw A‘vvay H.ome Draw A'vvay Hf)me
N win win _— win win

prediction prediction | prediction prediction prediction | prediction

True 39 80 True o 52 44

draw draw

True True

away | 2 67 85 away | 30 68 56

win win

True True

home | 1 36 205 home | 50 61 130

win win

(a) The confusion matrix before the weighing. (b) The confusion matrix after the weighing.

Table 5.3: The confusion matrices before and after weighing the the optimizer to penalize the
incorrect prediction proportionately to the classes’ population.

The confusion matrices before and after the discussed weighing can be seen in Table 5.3. It can

be noticed that after the weighing, the model stopped giving clear preference to the home team.

The results for all data sets are shown in Table 5.4. If compared to Table 5.1, it can be noticed
that the models’ performance after the weighing is somewhat lower than the best achieved so
far. That was the reason why the models with reported performance were penalized for incorrect
predictions equally for all classes. If the strength between two teams is very similar, the outcome
of the match becomes almost random since the influence of other factors unmentioned in the

data set enhances, and they become game-changing. It will be further discussed in Section 6.

5.3 Choice of ConvGNN Layers

There are many Graph Convolutional layers available. Three of them were selected and discussed
in Section 2.3: ChebConv, GCNConv, GraphConv. These three types of ConvGNN Layers are
the most popular and were used in the multiple scenarios with GNN [11], [13]. The effect of
different Graph Convolutional layers on the models’ performance is shown in Table 5.5. Table

5.5 shows that spatial ConvGNN Layers are more suitable for this task than the spectral ones.

1 league soccer | all leagues soccer | NHL
weighed ANN | 0.4483 0.4259 0.4082
weighed GNN | 0.4968 0.4561 0.4183

Table 5.4: The models’ accuracy after the weighing.

CHAPTER 5. RESULTS 36

1 league soccer | all leagues soccer | NHL
GraphConv | 0.523076923 | 0.46401423 0.449328
GCNConv | 0.51962 0.46004 0.4396
ChebConv | 0.52018 0.46193 0.44532

Table 5.5: Models’ performance with different graph convolutional layers.

5.4 Choice of a testing set

The effect of different choices of testing sets on the models’ resulting accuracy can be viewed in

Table 5.6. Table 5.6 shows that the model indeed utilizes the time component for the predictions

1 league soccer
Sliding testing set 0.523076923
Fixed testing set 10% | 0.519230769
Fixed testing set 15% | 0.461533434
Fixed testing set 20% | 0.456653149

Table 5.6: Experiments with different testing sets.

— the further the match is from the last update of the model, the worse is the quality of the

prediction. The continuous evaluation framework proved to be the best fit for this kind of task.

5.5 Comparison with the bookmaker

5.5.1 Bookmaker’s predictions

Decimal bookmaker’s odds represent the amount of money won for every unit wagered and can
be interpreted as the inverted probability estimation for each of the results of the game. To deal
with the fact that the bookmaker adjusts the odds for personal gain and as a result, the inverted
probabilities of the three outcomes sum up to more than one, the actual predicted probability of
victory of the home team H can be obtained after normalizing the inverted bookmaker’s odds

as in the formula:
BOyg

PH)=1-
(H) BOy + BO4 + BOp’

(5.2)

where the BO stands for betting odds.

The data for bookmaker’s predictions were taken from a website [45].

5.5.2 Comparison of the models

Figure 5.2 shows the inferior performance of the acquired model compared to the state-of-the-
art model Xgboost [38] and the market odds on the soccer data set. The poorer performance
compared to the bookmakers’ predictions is expected since the bookmaker operates with a
much more substantial set of relevant features than just the history of the games’ outcomes.

The lower accuracy, when compared to the Xgboost model, might be induced by the absence

CHAPTER 5. RESULTS 37

POR1 SCO1 SPA1L

Bookmaker's predictions
Xgboost

GNN

Elo

0.25

0.
0.
0.
0.
0 BEL1 ENG1 FRA1 GER1 HOL1

Figure 5.2: The comparison of performance between the bookmaker’s predictions, the Hubacek,
Sourek, and Zelezny [38] Xgboost model and a GNN model trained within this thesis work. The
vertical axis shows the RPS and should be read ”the lower RPS, the higher the accuracy”.

-
- w N

o
(]

ITAL

of the explicit rating scores, such as pi-ratings. It can also be seen that when compared to the
trained Elo rating model, the GNN model has somewhat elevated performance for most leagues.

The metaparameters for the Elo model were chosen the following:

o v = 1.44;
o k=29;

e c=c¢;

e d = 400.

The meaning of the metaparameters was discussed in Section 3.1.2.

5.6 Discussion of the results

During the experiments, the proposed models showed satisfactory results, however, there were
several observations that going to be discussed below. The advantages and disadvantages of the

proposed models are going to be reviewed in the end of this section.

5.6.1 Viability of the proposed models

Working with the soccer data set was problematic due to the high number of unconnected
leagues: a model’s performance was drastically changing throughout the leagues. Using such a
high number of disjointed leagues for one model seems unnecessary and even objectionable in
real life since it is preferable to find a model that represents each league in the best possible way

rather than a model that works only satisfactorily for all the leagues.

CHAPTER 5. RESULTS 38

Since the different parameters work best for different leagues, the more general models showed
inferior performance, when compared to the models that were trained only on one league in
soccer. This even raises the question about the viability of such a general model — it might be
useful for giving an approximate estimation of the result, however, models fit on more specific

data give much better predictions of a match.

5.6.2 Contributions of the proposed models

The advantage of the suggested models is the fact that they are domain-independent and is a
more general approach than the ones discussed in Section 3.

Another benefit of the discussed approach to sports prediction is that the trained models can be
used as a rating model as well. The representations of the teams are easily extractable, and the

respective ranking can be obtained by using dimensionality reduction algorithms, such as PCA.

The main disadvantage is the fact that the model has multiple hyperparameters that can influ-
ence the performance of the model, and although their behavior was tested on multiple sports,
generally, their optimal value has to be found experimentally.

Another possible shortcoming of the approaches discussed in work is computational and time
demands during the training phase of the algorithm that are much higher when compared to the
ones of the various rating systems. Rating systems usually traverse through the data only once,
while the neural methods discussed in this work used the sliding window for data capturing and
displayed the data to the model for multiple iterations. However, this overhead is typical for all
advanced models discussed in Section 3.2.

One more downside of the created models emerges when using them as rating models. The
justification for the representations of the individual teams is not as transparent as in the case
of the rating models, where the rules that give the score to the teams are created manually.
In this case, the score of the team may be affected by its own playing behavior as well as the
behavior of the teams that are considered neighbors in the spatial graph structure that covers
all the teams. Nonetheless, the discussed approach is not entirely opaque because the general
rule bases on the history of the past games’ results only and can be easily formulated as ”the
more a team wins over stronger opponents, the higher is its score”. This rule is common for all

the models discussed in Section 3.

Chapter 6

Conclusion

Predicting the results of sports matches is a challenging task: Berrar, Lopes, and Dubitzky [55]
warn that gaining more complex data does not necessarily lead to better predictions of sport
results because the narrow margin of victory is inherent in most professional matches in all sports.
Additionally, some details that have a high impact on the game’s outcome, such as penalties, red
cards, are not induced by the teams’ strength, but rather by the quality of refereeing, weather,
and athletic field conditions, intrateam communication, human factors. Due to those aspects
having short-term influence and being somewhat random, it can be challenging to capture and

keep track of them. However, their effect can be game-changing .

6.1 Goal Fulfilment

In this work, I have collected a significant amount of the data necessary to create a predictive
model. The data consisted of two data sets containing the history of the results for the sports
matches for soccer and ice hockey. Then I have discussed the related works that include the
rating systems, statistical models, and several more advanced models that used machine tech-
niques. I have proposed two solutions that might help to predict the results of the matches.
The idea behind it was to learn the representations of the individual teams and then use that
representation as input features to a prediction model. In the first solution, the teams’ represen-
tations were learned using an embedding layer. In the second solution, the embedding solution
was complemented by a spatial graph structure where the vertices were the individual teams,
and the edges represented the past matches. The edges were weighted differently to reflect the
fact that the more recent matches should have more effect on the team representation. The
best prediction came from a GNN model trained on one league of the soccer data set with the
accuracy of 52.31%. The model trained on a chosen number of leagues also showed a good accu-
racy of 49.62%, which is a result comparable with the state-of-the-art model [38]. The models
showed a better performance when compared to the results obtained from the Elo ratings (RPS

of 0.2176 vs. 0.2362). That showed that a more complex representation structure indeed helped

39

CHAPTER 6. CONCLUSION 40

to achieve better predictions of the outcome of future matches. The experiments with the testing
set proved that the so-called sliding testing set is the most suitable type of framework for testing
the model. Besides, this type of framework is a close approximation of how the model might be
used in real life. After that, multiple choices of the most popular ConvGNN layers were explored
and tested. The experiments showed that the GraphConv layer brought the best results for all
three experiments. The reason for this might be the fact that the spatial ConvGNN is a more
suitable layer than the spectral ones. An attempt to balance the class representation in the
data sets did not produce any positive results for any of the data sets. Although in the current
state, the models are not ready to compete with the market odds or the state-of-the-art models,
the conducted experiments demonstrated the viability of the representation learning, and the
insights from this work can later be used in further researches.

That can lead to a conclusion that all the requirements from the thesis assignment are satisfied.

Appendix A

Attachment structure

The attachment contains the following:
e README.md: has instructions for running the code;
e scr folder with the source code;
e scripts folder with the scripts for model training;
e data folder with the input data;

e models folder contains the models trained during the work.

41

Bibliography

[12]

[13]

R. Lanciani, “Gambling and cheating in ancient rome”, The North American Review,
vol. 155, no. 428, pp. 97-105, 1892, 1ssN: 00292397. [Online|. Available: http: //www .
jstor.org/stable/25102412.

J. Drchal, Statistical machine learning (bejm33ssu) lecture 5: Artificial neural networks,
2017. [Online|. Available: https://cw.fel.cvut.cz/old/_media/courses/be4m33ssu/
anns_ws2017.pdf.

A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, “Automatic differentiation in ma-
chine learning: A survey”, CoRR, vol. abs/1502.05767, 2015. arXiv: 1502.05767. [Online].
Available: http://arxiv.org/abs/1502.05767.

Intuitive understanding of backpropagation. [Online]. Available: https://cs231n.github.
io/optimization-2/.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.
6980 [cs.LG].

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929-1958, 2014. [Online]. Available: http://jmlr.org/
papers/vib/srivastaval4a.html.

K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012, 1SBN:
0262018020.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations
in vector space, 2013. arXiv: 1301.3781 [cs.CL].

V. Raunak, V. Gupta, and F. Metze, “Effective dimensionality reduction for word embed-
dings”, in Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-
2019), Florence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 235-243.
DOI: 10.18653/v1/W19-4328. [Online]. Available: https://www.aclweb.org/anthology/
W19-4328.

(). Word embeddings, [Online]. Available: https://www.tensorflow.org/tutorials/
text/word_embeddings.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on
graph neural networks”, IEEE Transactions on Neural Networks and Learning Systems,
1-21, 2020, 1SsN: 2162-2388. DOI: 10.1109/tnnls . 2020 .2978386. [Online|. Available:
http://dx.doi.org/10.1109/TNNLS.2020.2978386.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe,
Weisfeiler and leman go neural: Higher-order graph neural networks, 2020. arXiv: 1810.
02244 [cs.LG].

M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs
with fast localized spectral filtering, 2017. arXiv: 1606.09375 [cs.LG].

42

http://www.jstor.org/stable/25102412
http://www.jstor.org/stable/25102412
https://cw.fel.cvut.cz/old/_media/courses/be4m33ssu/anns_ws2017.pdf
https://cw.fel.cvut.cz/old/_media/courses/be4m33ssu/anns_ws2017.pdf
https://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
https://cs231n.github.io/optimization-2/
https://cs231n.github.io/optimization-2/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/W19-4328
https://www.aclweb.org/anthology/W19-4328
https://www.aclweb.org/anthology/W19-4328
https://www.tensorflow.org/tutorials/text/word_embeddings
https://www.tensorflow.org/tutorials/text/word_embeddings
https://doi.org/10.1109/tnnls.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.02244
https://arxiv.org/abs/1810.02244
https://arxiv.org/abs/1606.09375

BIBLIOGRAPHY 43

[14]

[15]

[20]

[21]

[22]

23]

[24]
[25]

[26]

28]

G. Artken, Mathematical Methods for Physicists, Third. San Diego: Academic Press, Inc.,
1985, pp. 731-748.

Source code for torchgeometric.nn.conv.cheb.onv. [Online|. Available: https://pytorch-
geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/cheb_
conv.html.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works”, CoRR, vol. abs/1609.02907, 2016. arXiv: 1609.02907. [Online]. Available: http:
//arxiv.org/abs/1609.02907.

Source code for torchgeometric.nn.conv.genconv. [Online]. Available: https://pytorch-
geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/gecn_
conv.html.

D. Berrar, P. Lopes, J. Davis, and W. Dubitzky, The 2017 soccer prediction challenge,
2017. [Online|. Available: https://osf.io/ftuva/.

E. S. Epstein, “A scoring system for probability forecasts of ranked categories”, Journal
of Applied Meteorology and Climatology, vol. 8, no. 6, pp. 985 —987, 1Dec. 1969. DOTI:
10.1175/1520-0450(1969) 008<0985 : ASSFPF>2.0.C0; 2. [Online|. Available: https:
// journals . ametsoc.org/view/journals/apme/8/6/1520-0450_1969_008_0985_
assfpf_2_0_co_2.xml.

A. C. Constantinou and N. E. Fenton, “Solving the problem of inadequate scoring rules
for assessing probabilistic football forecast models”, Journal of Quantitative Analysis in
Sports, vol. 8, no. 1, 12 Mar. 2012. DOI: https://doi.org/10.1515/1559-0410.1418.
[Online|. Available: https://www.degruyter.com/view/journals/jqas/8/1/article-
15659-0410.1418.xml.xml.

C. Leung and K. Joseph, “Sports data mining: Predicting results for the college football
games”, Procedia Computer Science, vol. 35, 2014. DOI: 10.1016/j.procs.2014.08.153.

M. J. Maher, “Modelling association football scores”, Statistica Neerlandica, vol. 36, no. 3,
pp. 109-118, 1982. por: 10.1111/j.1467-9574.1982.. [Online]. Available: https :
//ideas.repec.org/a/bla/stanee/v36y1982i3p109-118.html.

C. Ley, T. V. de Wiele, and H. V. Eetvelde, “Ranking soccer teams on the basis of their
current strength: A comparison of maximum likelihood approaches”, Statistical Modelling,
vol. 19, no. 1, pp. 55-73, 2019. poI: 10.1177/1471082X18817650. eprint: https://doi.
org/10.1177/1471082X18817650. [Online|. Available: https://doi.org/10. 1177/
1471082X18817650.

O. Hubacek, G. Sourek, and F. Zelezny, “Score-based soccer match outcome modeling—an
experimental review”, MathSport International, 2019.

(). United states chess federation, [Online]. Available: http : / / www . uschess . org/
content/blogsection/12/35/ (visited on 02/02/2020).

A. E. Elo, The Rating of Chessplayers, Past and Present. New York: Arco Pub., 1978,
ISBN: 0668047216 9780668047210. [Online]. Available: http://www.amazon.com/Rating-
Chess-Players-Past-Present/dp/0668047216.

L. M. Hvattum and H. Arntzen, “Using ELO ratings for match result prediction in as-
sociation football”, International Journal of Forecasting, vol. 26, no. 3, pp. 460 —470,
2010, Sports Forecasting, 1SSN: 0169-2070. DoI: 10 . 1016/ j . ijforecast . 2009 . 10 .
002. [Online|. Available: http://www . sciencedirect . com/science/article/pii/
S0169207009001708.

(). Aoe3 simple elo ladders, [Online]. Available: http : // aoe3 . jpcommunity . com /
rating2/ (visited on 02/04/2020).

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/cheb_conv.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/cheb_conv.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/cheb_conv.html
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/gcn_conv.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/gcn_conv.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/gcn_conv.html
https://osf.io/ftuva/
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://journals.ametsoc.org/view/journals/apme/8/6/1520-0450_1969_008_0985_assfpf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/apme/8/6/1520-0450_1969_008_0985_assfpf_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/apme/8/6/1520-0450_1969_008_0985_assfpf_2_0_co_2.xml
https://doi.org/https://doi.org/10.1515/1559-0410.1418
https://www.degruyter.com/view/journals/jqas/8/1/article-1559-0410.1418.xml.xml
https://www.degruyter.com/view/journals/jqas/8/1/article-1559-0410.1418.xml.xml
https://doi.org/10.1016/j.procs.2014.08.153
https://doi.org/10.1111/j.1467-9574.1982.
https://ideas.repec.org/a/bla/stanee/v36y1982i3p109-118.html
https://ideas.repec.org/a/bla/stanee/v36y1982i3p109-118.html
https://doi.org/10.1177/1471082X18817650
https://doi.org/10.1177/1471082X18817650
https://doi.org/10.1177/1471082X18817650
https://doi.org/10.1177/1471082X18817650
https://doi.org/10.1177/1471082X18817650
http://www.uschess.org/content/blogsection/12/35/
http://www.uschess.org/content/blogsection/12/35/
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
https://doi.org/10.1016/j.ijforecast.2009.10.002
https://doi.org/10.1016/j.ijforecast.2009.10.002
http://www.sciencedirect.com/science/article/pii/S0169207009001708
http://www.sciencedirect.com/science/article/pii/S0169207009001708
http://aoe3.jpcommunity.com/rating2/
http://aoe3.jpcommunity.com/rating2/

BIBLIOGRAPHY 44

[29]

[35]

[42]

[43]

A. C. Constantinou and N. E. Fenton, “Determining the level of ability of football teams
by dynamic ratings based on the relative discrepancies in scores between adversaries”,
Journal of Quantitative Analysis in Sports, vol. 9, no. 1, pp. 37 =50, 30 Mar. 2013. DoOT1:
https://doi.org/10.1515/ jgas-2012-0036. [Online]. Available: https: //www .
degruyter.com/view/journals/jqas/9/1/article-p37.xml.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web.”, Stanford InfoLab, Technical Report 1999-66, 1999, Previous number
= SIDL-WP-1999-0120. [Online|. Available: http://ilpubs.stanford.edu:8090/422/.

A. Y. Govan, C. D. Meyer, and R. Albright, “Generalizing google’s pagerank to rank
national football league teams”, 2008.

J. Shi and X.-Y. Tian, “Learning to rank sports teams on a graph”, Applied Sciences,
vol. 10, no. 17, p. 5833, 2020.

D. Berrar, P. Lopes, and W. Dubitzky, “Incorporating domain knowledge in machine
learning for soccer outcome prediction”, Machine Learning, Aug. 2018. DOI: 10. 1007/
510994-018-5747-8.

A. Tsokos, S. Narayanan, I. Kosmidis, G. Baio, M. Cucuringu, G. Whitaker, and F. Kirdly,
“Modeling outcomes of soccer matches”, Machine Learning, vol. 108, no. 1, pp. 77-95,
2019, 1SsN: 1573-0565. DOIL: 10.1007/s10994-018-5741-1. [Online]. Available: https:
//doi.org/10.1007/s10994-018-5741-1.

S. M. Arabzad, M. Tayebi Araghi, S. Sadi-Nezhad, and N. Ghofrani, “Football match re-

sults prediction using artificial neural networks; the case of iran pro league”, Journal of Ap-

plied Research on Industrial Engineering, vol. 1, no. 3, pp. 159-179, 2014, 18SN: 2538-5100.

eprint: http://www. journal-aprie.com/article_43050_3a948ff1c96£37f39f16ec113decc317.
pdf. [Online|. Available: http://www.journal-aprie.com/article_43050.html.

R. Nyquist and D. Pettersson, “Football match prediction using deep learning”, 2017.

P. Pugsee and P. Pattawong, “Football match result prediction using the random forest
classifier”, in Proceedings of the 2nd International Conference on Big Data Technologies,
ser. ICBDT2019, Jinan, China: Association for Computing Machinery, 2019, 154-158,
ISBN: 9781450371926. DOI: 10. 1145/ 3358528 . 3358593. [Online]. Available: https://
doi.org/10.1145/3358528.3358593.

O. Hubécek, G. Sourek, and F. Zelezny, “Learning to predict soccer results from relational
data with gradient boosted trees”, Machine Learning, vol. 108, no. 1, pp. 29-47, 2019. DOI:
10.1007/s10994-018-5704-6.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system”, CoRR, vol. abs/1603.02754,
2016. arXiv: 1603.02754. [Online]. Available: http://arxiv.org/abs/1603.02754.

S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik, “Gradient-based boost-
ing for statistical relational learning: The relational dependency network case”, Machine
Learning, vol. 86, no. 1, pp. 25-56, 2012, 1SSN: 1573-0565. DOI: 10.1007/s10994-011-
5244-9. [Online]. Available: https://doi.org/10.1007/s10994-011-5244-9.

A. C. Constantinou, “Dolores: A model that predicts football match outcomes from all
over the world”, Machine Learning, vol. 108, no. 1, pp. 49-75, 2019, 1ssN: 1573-0565. DOI:
10.1007/s10994-018-5703-7. [Online]. Available: https://doi.org/10.1007/s10994-
018-5703-7.

Sourav, Top 10 most popular sports in the world, 2020. [Online]. Available: https://
sportsshow.net/top-10-most-popular-sports-in-the-world/.

M. Coolman, Sports and identity: Case study czech republic and ice hockey, 2010.

https://doi.org/https://doi.org/10.1515/jqas-2012-0036
https://www.degruyter.com/view/journals/jqas/9/1/article-p37.xml
https://www.degruyter.com/view/journals/jqas/9/1/article-p37.xml
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/s10994-018-5747-8
https://doi.org/10.1007/s10994-018-5747-8
https://doi.org/10.1007/s10994-018-5741-1
https://doi.org/10.1007/s10994-018-5741-1
https://doi.org/10.1007/s10994-018-5741-1
http://www.journal-aprie.com/article_43050_3a948ff1c96f37f39f16ec113decc317.pdf
http://www.journal-aprie.com/article_43050_3a948ff1c96f37f39f16ec113decc317.pdf
http://www.journal-aprie.com/article_43050.html
https://doi.org/10.1145/3358528.3358593
https://doi.org/10.1145/3358528.3358593
https://doi.org/10.1145/3358528.3358593
https://doi.org/10.1007/s10994-018-5704-6
https://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://doi.org/10.1007/s10994-011-5244-9
https://doi.org/10.1007/s10994-011-5244-9
https://doi.org/10.1007/s10994-011-5244-9
https://doi.org/10.1007/s10994-018-5703-7
https://doi.org/10.1007/s10994-018-5703-7
https://doi.org/10.1007/s10994-018-5703-7
https://sportsshow.net/top-10-most-popular-sports-in-the-world/
https://sportsshow.net/top-10-most-popular-sports-in-the-world/

BIBLIOGRAPHY 45

[44]
[45]
[46]
[47]

[48]

W. Dubitzky, P. Lopes, J. Davis, and D. Berrar, “The open international soccer database
for machine learning”, Machine Learning, vol. 108, pp. 9-28, 2018.

Football results, statistics amp; soccer betting odds data. [Online]. Available: https://
www.football-data.co.uk/data.php.

Hockey/usa: Nhl 1998/1999. [Online]. Available: https://www.flashscore.com/nhl-
1998-1999/results/.

M. R. Izadi, Y. Fang, R. Stevenson, and L. Lin, Optimization of graph neural networks
with natural gradient descent, 2020. arXiv: 2008.09624 [cs.LG].

S. Dabhi and M. Parmar, Nodenet: A graph regularised neural network for node classifi-
cation, 2020. arXiv: 2006.09022 [cs.SI].

J. Park, D. Yi, and S. Ji, “A novel learning rate schedule in optimization for neural
networks and it’s convergence”, Symmetry, vol. 12, no. 4, p. 660, 2020.

[Online|. Available: https://pytorch.org/.

Pytorch geometric documentation¥. [Online]. Available: https://pytorch-geometric.
readthedocs.io/en/latest/index.html.

Pandas.dataframeq. [Online]. Available: https://pandas . pydata.org/pandas-docs/
stable/reference/api/pandas.DataFrame.html.

Pickle - python object serializationy. [Online]. Available: https://docs.python.org/3/
library/pickle.html.

P. Marek and F. Vavra, “Comparison of home advantage in european football leagues”,
Risks, vol. 8, no. 3, p. 87, 2020.

D. Berrar, P. Lopes, and W. Dubitzky, “Incorporating domain knowledge in machine
learning for soccer outcome prediction”, Machine Learning, vol. 108, no. 1, pp. 97-126,
2019. DOI: 10.1007/s10994-018-5747-8. [Online]. Available: https://app.dimensions.
ai/details/publication/pub.1106040005andhttps://link.springer.com/content/
pdf/10.1007/s10994-018-5747-8.pdf.

https://www.football-data.co.uk/data.php
https://www.football-data.co.uk/data.php
https://www.flashscore.com/nhl-1998-1999/results/
https://www.flashscore.com/nhl-1998-1999/results/
https://arxiv.org/abs/2008.09624
https://arxiv.org/abs/2006.09022
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1007/s10994-018-5747-8
https://app.dimensions.ai/details/publication/pub.1106040005 and https://link.springer.com/content/pdf/10.1007/s10994-018-5747-8.pdf
https://app.dimensions.ai/details/publication/pub.1106040005 and https://link.springer.com/content/pdf/10.1007/s10994-018-5747-8.pdf
https://app.dimensions.ai/details/publication/pub.1106040005 and https://link.springer.com/content/pdf/10.1007/s10994-018-5747-8.pdf

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Goal
	Problem formulation
	Constraints

	Background theory
	Artificial Neural Networks
	Backpropagation
	Dropout
	Cross-entropy loss

	Embedding
	Graph Neural Networks
	Evaluation
	Accuracy
	RPS

	Research into related work
	Statistical models and ratings
	The Poisson models
	Elo ratings
	pi-ratings
	PageRank
	Berrar ratings
	TVC: Time Varying Coefficients

	Advanced models
	The combined RPI

	Implementation, Experiments, Evaluation
	Data
	Soccer data set
	Hockey data set

	Proposition of the solution
	Simple ANN with embedding
	Graph Neural Network

	Evaluation frameworks
	Evaluation
	Common setup
	Learned Hyperparameters

	Implementation
	Implementation procedure

	Results
	Best models
	1 league soccer data set
	All leagues soccer data set
	Hockey data set

	Weighed models
	Choice of ConvGNN Layers
	Choice of a testing set
	Comparison with the bookmaker
	Bookmaker's predictions
	Comparison of the models

	Discussion of the results
	Viability of the proposed models
	Contributions of the proposed models

	Conclusion
	Goal Fulfilment

	Attachment structure
	Bibliography

