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Abstract

This thesis explores the problem of predicting sports results and offers two approaches that
utilize neural networks. The first approach is a traditional artificial neural network with the
embedding of the individual teams. The second one is a relatively new approach that employs
Convolutional Graph Neural Networks for team representation. The innovation of this work is
that the models do not utilize any sport-specific features. Instead, the models are supposed
to learn using merely the results of the past matches. The models are created, trained, and
tested on two sports domains: soccer and ice hockey. The results turned out to be satisfactory,
taking into consideration the generality of the models. However, the resulting models cannot
yet compete with state-of-the-art models and market systems.

Keywords: sports prediction, artificial neural networks, graph neural networks, embedding

Abstrakt

Tato práce prozkoumává problém predikce sportovńıch výsledk̊u a nab́ıźı dva př́ıstupy řešeńı
pomoćı neuronových śıt́ı. Prvńı př́ıstup je tradičńı umělá neuronová śı̌t s embeddingem jed-
notlivých týmu. Druhé řešeńı je relativně nový př́ıstup použ́ıvaj́ıćı Konvolučńı Grafové Neu-
ronové Śıtě pro reprezentaci týmů. Práce je inovativńı t́ım, že modely nepouž́ıvaj́ı vlastnosti
specifické pro jednotlivé sporty. Modely se uč́ı na základě výsledk̊u minulých zápas̊u a jsou
vytvořeny, natrénovány a otestovány na dvou doménách: fotbalu a hokeji. Výsledky model̊u
jsou uspokojivé, pokud se bere v potaz jejich obecnost. Nicméně, výsledné modely ještě nemůžou
soupeřit s nejmoderněǰśımi modely a systémy existuj́ıćımi na trhu.

Kĺıčová slova: predikce sportovńıch výsledk̊u, umělé neuronové śıtě, grafové neuronové śıtě,
embedding
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Chapter 1

Introduction

Sports betting and sports predictions have accompanied humankind for at least a couple of

thousands of years, as the first records of such activity date back to Ancient Greece and Ancient

Rome [1]. Over the years, the popularity of the sport categories changed a lot, and so did the

legal status of the bets. The sports differed across the countries and continents, the rural and

urban areas, changed according to the players’ social statuses. Nowadays, even in the age of

e-sports, predictive analytics in traditional sports is a multi-million dollar industry. With a

recent rise of new machine learning techniques, a new hope was put into resolving the problem

of the accurate sports results predictions, however high accuracy solutions for it is still a hot

topic and a challenge. One possible way to approach this challenge is to use neural networks

that have shown promising results in various other fields.

Those approaches need some input data to describe the teams. These representations can

be either explicitly provided by the data, where different features that may affect the outcome

of the game are supplied to the model, and it learns to weigh these parameters, combine and

transform them in order to output the predictions for the result of the game later; or implicit,

where it is assumed that a model learns the representations of the teams themselves and their

behaviour during a training phase. This work focuses on the implicit method. It is a relatively

new approach, and it has not been actively used for predicting sports results. One way to obtain

these representations is by using an embedding layer for each team, further detailed in Section

2.2. Another method is designing some structure that helps to gain insight into relations be-

tween the teams and turn it into the teams’ representations. That can be achieved using the

Graph Neural Networks (GNNs). The idea behind it is that representing the teams as a spa-

tial structure can stimulate the information passing and support a team’s knowledge about its

strength relative to others while also artificially creating the useful features that will help the

model predict the outcome of the match. This will be further discussed in Sections 2.3 and 4.2.2.

1



CHAPTER 1. INTRODUCTION 2

1.0.1 Goal

This work aims to test several approaches to representation learning using neural methods for

sports analysis. Particularly, it will explore two of such approaches, and train the respective

models using the proposed methods on the acquired data. The data will consist of two data sets:

soccer and ice-hockey. After that, the work will select the models with the best performance

and compare their viability with the state-of-the-art solutions and the market odds.

1.0.2 Problem formulation

The task represents a classification problem with three classes: ’Win’ for the home team, ’Lose’

for the home team, and ’Draw’. In order to bring the problem closer to real life, the predictions

will be made pre-match (as opposed to predicting online, where the predictions of the outcome

of the game can be changed up to n minutes before the game ends).

1.0.3 Constraints

The constraints on the work are the following:

• Predictions: the predictions must only use the information available before the game starts.

• Data: features must be extracted implicitly using embedding. Sport-specific features are

not used.



Chapter 2

Background theory

The following chapter overviews the theoretical basis necessary to understand the work. The

first section reviews the Artificial Neural Networks and technique necessary to train them. The

next sections explain techniques of Embedding and Graph Neural Networks. The last section

addresses the evaluation metrics.

2.1 Artificial Neural Networks

Artificial neural network (ANN) is an attempt to mimic the mammalian brain in solving prob-

lems. The idea behind this is an imitation of the underlying structure of the brain nerve cells

(neurons) and connections between them (axons) that send impulses. This idea is implemented

into the ANNs as nodes resembling the neurons that can later be organized into layers and node

links that operate similarly to the axons. Each node receives some input data, transforms it by

performing a simple operation on it (usually summation, multiplication, exponentiation), and

then produces the output, which can be used as an input to some other nodes. ANN is a learn-

ing algorithm that can lead to better performance in the tasks where the traditional approaches

stall, especially in classification, image and text recognition, and others. When implemented,

neurons are represented as a non-linear function:

f(X) = σ(W TX + b),

where W represents the neuron’s weights, b — bias, and σ is the activation function that adds

the non-linearity.

2.1.1 Backpropagation

Backpropagation is an essential algorithm for updating the neurons’ weights that provides the

actual learning of the network. First, the model computes a result based on its weights, and it

is called a forward pass. For measuring how far the prediction of the network is from the actual

3



CHAPTER 2. BACKGROUND THEORY 4

value, the loss function is used. 1 After that, a backward pass is ready to be performed for every

node from the network’s end to its beginning. It recursively applies the chain rule to calculate

the gradients of the neural network weights with respect to a loss function. More specifically,

two messages are computed for every neuron: a partial derivative of the neuron’s output with

respect to its input and a partial derivative of the neuron’s output with respect to the neuron’s

weights. During the backward pass, the gradient with respect to each of the inputs is multiplied

with the gradient that came back from the output and then passed to the previous neuron. The

gradient with respect to the neuron’s weights are as well multiplied by the gradient returned

from the next layer, and the result can be later used to update the weights of the neuron by

using the gradient methods to find the weights that minimize the loss, for example, gradient

descent with the update function at iteration t+ 1:

θt+1 = θt − ηt∇L(θt), (2.1)

where θ represents the parameters of the network (weight matrices), η — the learning rate and

∇L(θ) is the gradient of the loss function [2]–[4]. Adam is another widely optimization algorithm

that utilizes adaptive learning rate and momentum for a more effective optimization process [5].

2.1.2 Dropout

Dropout is a technique to regularize the network and provide a computationally cheap way

to reduce data overfitting. Dropout essentially helps to simulate network ensembles known to

reduce data overfitting, which, however, in their natural form require a higher computational

cost. This technique operates by randomly dropping some nodes with a predefined probability

during training. During validation and testing, all the nodes and weights associated with them

are present; weights are multiplied by the probability of the node being present during training.

The network of n neurons with applied dropout can be viewed as a combination of 2n possible

reduced architectures. However, all the weights are still shared across them. That is why the

total number of parameters stays within the limit of O(n2) in the case of a fully connected

network [6]. An example of a dropout can be viewed in Figure 2.1.

2.1.3 Cross-entropy loss

A softmax classifier is a multinomial interpretation of the binary logistic regression. For a class

k the computation of the softmax function takes place as follows:

σk(s) =
esk∑N
j e

sj
, (2.2)

1The loss function should satisfy two assumptions:

1. The loss function can be written as an average over all examples: L = 1
n

∑n
i Li.

2. The loss function should be a function of the neural network’s outputs: L = L(ŷ)
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Figure 2.1: Example of dropout applied to a neural network. A graph on the left represents a
neural network with two hidden layers. A graph on the right shows what a network on the left
could look like after applying a dropout to it: the crossed-out neurons and all edges incident to
them are dropped. Image taken from [6].

where s is the vector from a scoring function, for example, a neural network, and N is the number

of classes [2]. The output of the softmax function defines the probability of an observation

belonging to each class. The multinomial cross-entropy loss is then acquired by plugging the

output from the softmax function into the negative log likelihood loss:

Cross Entropy Loss(s) =
N∑
k

yklog(σk(s)), (2.3)

where the yk is the binary indicator if k is the correct classification for the observation s [7].

2.2 Embedding

Embedding is a technique that allows transforming the data into an implicit structure that

behaves in the same way as an explicit ranking system 2: it assigns each input record a high-

dimensional vector and, during training, transforms those vectors so that the records with a

similar meaning get assigned close vectors. Although initially used to meaningfully vectorize

words [8], in the case of one-dimensional output, the output can be interpreted as the relative

power of the record. Embedding can be further defined as a generalization of the rating systems

to n dimensions since each dimension of the resulting vector can represent itself a rating. Another

problem embedding can deal with is helping with sparse matrices by reducing the dimensions of

very high-dimensional data to a sensible amount of dimensions that still reflects all the underlying

relations [9]. An example of word embedding can be found in Figure 2.2.

2A ranking system is usually understood as a system that can order input items in a meaningful way by
comparing them. On the other hand, a rating system assigns a score to those input items based on some standard
scale and does not necessarily compare them. However, in the literature related to sports analytics, these concepts
are used interchangeably because the sports analytics systems both assign a score value to the teams or players
and order them based on that score.
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Figure 2.2: Example of the word embedding. The main idea is that the objects that are close
to each other in natural meaning stay close to each other in embedding projection. Image taken
from [10].

The parameters of the embedding can (and actually need to) be learned using the same method

as used in regards to other layers – backpropagation. The vectors for each sample in the data set

are generated containing small random non-zero values and then updated during the training

phase.

2.3 Graph Neural Networks

GNN is a type of neural network architechture that utilizes the underlying structure of the data.

GNNs can be used for multiple purposes [11]:

• Node-level: node classification usually conducted in a semi-supervised manner where the

nerwork predicts the affiliation of the unlabeled node with a certain class based on labeled

ones. This type of task is often effectively solved by stacks of Graph Convolutional Layers.

• Graph-level: predicting the label for the entire graph. This problem is tackled by combi-

nations of graph convolutional layers, graph pooling layers, and readout layers.

• Edge-level: edge classification, link prediction.

Graphs can be used many problems from real life since they provide important connections

(represented as edges) between individual items (represented as nodes).

A graph G with a total number of nodes n can be defined as a pair of two sets: a set of

vertices V and a set of edges E. Neighbors of a given vertex v constitute a subset of nodes:

N(v) = {u ∈ V |(v, u) ∈ E}. Each vertex can have an ordered set of attributes in a form of a

vector xv.

Wu, Pan, Chen, et al. [11] proposes the following taxonomy of GNNs:

• Recurrent Graph Neural Networks;

• Convolutional Graph Neural Networks;
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• Graph autoencoders;

• Spatial-temporal Graph Neural Networks.

In this work the main focus will be addressed onto the Convolutional Graph Neural Networks

(ConvGNNs), which generalize the process of convolution from grid data (such as images) to

graph structures. The key idea behind ConvGNN is generation of the node’s representation

based on the node’s attributes xv and node’s neighbors’ attributes xu, u ∈ N(v). Multiple Graph

Convolutional layers can be stacked to achieve higher quality representation of the nodes. In

that case each node is constructing its representation from further neighborhoods. An example

of such network can be found in Figure 2.3 Wu, Pan, Chen, et al. [11] distinguishes between two

Figure 2.3: Example of the ConvGNN and how it can be used for node classification. Input
is a graph structure and an attribute (feature) matrix. Each graph convolutional layer of the
ConvGNN (depicted as Gconv) provides feature aggregation, the output of which then under-
goes a non-linear transformation by an activation function (depicted as ReLu). The learned
representations of the nodes can then be used to their classification. Image taken from [11].

streams (types) of convolutional graph neural networks:

1. Spectral-based ConvGNN;

2. Spatial-based ConvGNN.

The foundation for this type of ConvGNNs comes from graph signal processing. Spectral-based

ConvGNNs assume the underlying graphs in the data to be undirected. The mathematical

representation them is based on the normalized graph Laplacian matrix, that can be defined as

the follows:

L = In −D−
1
2AD−

1
2 , (2.4)

where D is a diagonal matrix of node degrees and A is an adjacency matrix for the graph. Since

one of the properties of the normalized graph Laplacian matrix is it being symmetric positive

semidefinite, the matrix can be further factored as:

L = UΛUT , (2.5)
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where U ∈ Rn×n is the matrix of eigenvectors, Λ is a matrix of eigenvalues. Here graph signal

processing offers a concept of filters - a graph convolutional operation that removes noises from

graph signals. A filter gθ can be defined as:

gθ = diag(UT g), (2.6)

where g ∈ Rn is a vector of Fourier coefficients. Then the filter can be applied to an input signal

x as follows:

gθ ? x = UgθU
Tx. (2.7)

All the graph convolutional neural networks follow this definition and are distinguished by the

preference of the filter gθ.

Spatial-based ConvGNN is a method that applies convolution based on the node’s spatial re-

lations. Its key idea is the direct propagation of the information from a node to its neighbors

using the connections.

Graph Convolutional Layer: GraphConv

Morris, Ritzert, Fey, et al. [12] propose a new graph neural network operator as follows:

x′i = Θ1xi + Θ2

∑
j∈N (i)

ej,i · xj , (2.8)

where Θ1,Θ2 ∈ Rk×f define trainable parameters (k is a hyperparameter) different for a node

and for its neighbors, eij denotes weight of an edge from i to j and xi ∈ Rf denotes the

representation of a node i before its update, f is a number of features or, in other words, depth

of representation. The summation in terms of means of aggregation is optional - it can be

changed to the mean or max functions.

GraphConv is a spatial-based ConvGNN.

Graph Convolutional Layer: ChebConv

Defferrard, Bresson, and Vandergheynst [13] describe a spectral-based ConvGNN layer. The

filter is approximated by Chebyshev polynomials of the first kind of degree K.

The Chebyshev polynomials are obtained from a recursive relation as follows [14]:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn1(x).

(2.9)

The filter is then approximated and applied to the feature vector using a scaled and normalized
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Laplacian matrix. The new representation feature vector of a node can be defined as [15]:

X′ =

K∑
k=1

Z(k) ·Θ(k), (2.10)

where Θ is the matrix of trainable parameters, Z(k) is the approximated filter based on the

Chebyshev polynomials (where the polynomials order and filter size K is a hyperparameter)

and is computed recursively according to the following:

Z(1) = X

Z(2) = L̂ ·X

Z(k) = 2 · L̂ · Z(k−1) − Z(k−2),

(2.11)

where L̂ is the modified Laplacian scaled by the largest eigenvalue of the initial L:

L̂ =
2L

λmax
− I (2.12)

Thanks to the fact that the computed filters are localized in space, they are computed efficiently,

without the need to compute the eigenvalues and are universal to the graph structure, meaning

that the filters performance does not depend on the graph size or internal structure.

Graph Convolutional Layer: GCNConv

Kipf and Welling [16] propose a new graph convolutional layer that is a special case of ChebConv

described in Section 2.3. The filter size is fixed to K = 1 and the largest eigenvalue for the

Laplacian matrix normalization is approximated to be λmax = 2. Under this approximation the

application of the filter can be simplified to:

gθ′ ? x ≈ θ
(
IN +D−

1
2AD−

1
2

)
x. (2.13)

The expression can be further normalized by reducing it to the following state:

X′ = D̂−1/2ÂD̂−1/2XΘ, (2.14)

where Â = A + I is an adjacency matrix with self-loops and D̂ii =
∑

j=0 Âij denotes its degree

matrix and Θ is a trainable parameter matrix. The computation can be improved by computing

the Â as A + 2I [17].

Kipf and Welling [16] state that this renormalized propagation model improves both efficiency

and prediction capabilities, however, one can notice that the number of parameters is drastically

lower and a lower number of degrees of freedom can negatively affect generalization.
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2.4 Evaluation

2.4.1 Accuracy

Accuracy is the most commonly used metric for classification tasks. It is a ratio of the correctly

classified instances to the number of all instances.

2.4.2 RPS

One of the metrics used in the 2017 Soccer Prediction Challenge [18] was Rank Probability

Score (RPS). In this work we also adopted it to be able to compare the results achieved. RPS

was introduced in 1969 in Epstein [19] as a scoring system for prediction of ordinal categorical

variables. Later Constantinou and Fenton [20] utilized it for measuring the model performance

on predicting the result of sports events and showed that it is more robust than Brier score and

Geometric score since it measures the difference between cumulative distributions of the model’s

predictions and actual observations.

RPS is calculated according to the following formula:

RPS =
1

r − 1

r∑
i=1

 i∑
j=1

pj −
i∑

j=1

oj

2

, (2.15)

where the pj and oj stand for the predicted probability and actual observation of an instance

belonging to the class j, respectively, the r is the number of classes.

This way the RPS measures not only how correct the model was, but also how sure was the

model in its predictions.



Chapter 3

Research into related work

The following chapter discusses several existing approaches that were considered before designing

the models of this thesis. The models in the following chapter (unless specified differently) were

chosen because they use the same type of data – historical match results – for training and

testing. In the first section of this chapter are discussed statistical models and ratings, then

the focus will turn to the advanced approaches that use machine learning techniques. The last

section will review an approach that uses explicit features using the example of the combined

RPI [21].

3.1 Statistical models and ratings

This section is dedicated to the models that either explicitly assume that the data comes from

some probability distribution or try to learn some implicit distribution using various methods

discussed below. They try to determine how good a team is compared to other teams and give

it a relative score. The prediction for a sports match between two rival teams then can be made

by comparing the scores for those two teams.

3.1.1 The Poisson models

The Poisson models were proposed in 1982 in the article [22]. The paper suggested that the

number of goals scored by each team corresponds to the independent variable from the Poisson

distribution. Following that assumption, the probability of a variable that corresponds to the

number of goals scored by the home team (GH) being x and the respective variable for the away

team (GA) being y is given by

P (GH = x,GA = y|λH , λA) =
λxH · e−λH

x!
·
λyA · e−λA

y!
, (3.1)

where λH and λA represent the means of the Poisson distribution for the home team and the

away team respectively, and can be interpreted as the teams’ scoring rates. The model can be

11



CHAPTER 3. RESEARCH INTO RELATED WORK 12

modified to include multiple parameters for each team such as attack (Att) and defense (Def)

strengths as well field advantage(Adv), which then can be used to calculate the scoring rates:

λH = eAttH−DefA+AdvH

λA = eAttA−DefH .
(3.2)

A recent paper of Ley, Wiele, and Eetvelde [23] argues that the number of parameters can be

effectively reduced using the modified parameters – instead of two parameters that represent

strengths of the team, one complex strength (Str) can be introduced:

λH = eStrH−StrA+H

λA = eStrA−StrH .
(3.3)

There are multiple recent papers [23], [24] that prove the competitiveness of the Poisson model

among other ranking models – both papers concluded that the Poisson model outperformed

other models in the conducted tests.

3.1.2 Elo ratings

Elo rating system is one of the most used one in sports and games since its implementation by

USCF 1 in 1960 [25], . The idea is to quantify the relative skill level of the individual players

[26]. It is done according to this formula [27]:

EH =
1

1 + c(RA−RH)/d

EA = 1− EH
(3.4)

Then the prediction of the result of the match is just simply comparing the expected skill levels

of the individual players:

ESH
=


home team win given EH > EA

a draw given EH = EA

away team win given EH < EA

(3.5)

The ratings of the players are then updated according to this formula:

SH =


1 given a home team win

0.5 given a draw

0 given away team win

(3.6)

1United States Chess Federation
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Rt+1
H = RtH + k(1 + δ)γ · (SH − EH)

Rt+1
A = RtA − k(1 + δ)γ · (SH − EH)

(3.7)

where

• RH and RA stand for rating of home teams and away teams respectively;

• c and d are metaparameters;

• γ is a metaparameters that defines the impact of goal difference on rating update;

• EH and EA are the the expected outcomes for the home and away team respectively;

• ESH
is the expected outcome of the match for the home team;

• SH is the real result of the match for the home team;

• t stands for the order number of the match;

• δ represents an absolute value of the goal difference between the home team and the away

team;

• k is the learning rate.

This kind of rating system is simple and proved to be working in traditional sports, such as

chess and football, as well as e-sports, such as Age of Empires [28].

3.1.3 pi-ratings

Constantinou and Fenton [29] suggest a simpler rating system specifically for soccer, but which is

applicable for any sport where the score is the main indicator of teams strength. The pi-ratings

outperformed Elo rating system, showed to be competitive with the bookmaker’s predictions

and won the 32.81% of the placed bets and in the end made profit of 15.4% of the initial bet. In

pi-rating system, the average score remains 0 and cannot inflate over time. Each team’s rating

consists of two sub-ratings: home and away; the overall team’s rating is just an average of those

two sub-ratings. The mentioned home (RaH) and away (RaA) sub-ratings of a team a are then

updated respectively as follows:

ˆRaH = RaH + λψH(e)

ˆRaA = RaA + υ( ˆRaH −RaH),
(3.8)

where λ, υ are the learning rates, ψ(e) is the fuction that ensures the win has more effect on the

rating that the goal difference e.
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3.1.4 PageRank

The RageRank ratings origin from an algorithm devised for ranking pages in Google Search

engine results [30]. The idea behind it is measuring the importance of a website page by counting

the number and quality of links leading to it. That leads to the assumption that the more

important is a website, the higher number of other websites refer to it.

However, the algorithm can be generalized to be applied to the area of sports ratings [31]. A

series of competitions can be represented as a graph, where the vertices represent the n teams

and the edges represent the matches conducted between the pairs of the individual teams. The

hyperlink (adjacency) matrix H element standing for all the matches played between teams i

and j can be defined as follows [24], [32]:

Hij =

∑
mw(m)Sj(m)∑

mw(m)
, (3.9)

where Sj(m) is the number of points of the team j scored against the team i at match m, w(m) is

the weighing of the match m. From that hyperlink matrix rating of each team can be computed

as described in Govan, Meyer, and Albright [31].

3.1.5 Berrar ratings

Berrar ratings suggest predicting not only the ternary outcome of the match but also the goals

scored by each team [33]. As opposed to Elo, Berrar ratings use offensive and defensive strengths

to rank the team and not the rating itself. Expected number of scored goals for the home and

away teams are calculated according to the following formula [33]:

ĜH =
α

1 + e−βH(oH−dA)−γH

ĜA =
α

1 + e−βH(oA−dH)−γA

(3.10)

Then the offensive and defensive strengths of the home team are updated as follows:

oH+ = ωoH (GH − ĜH)

dH+ = ωdH (GA − ĜA)
(3.11)

The updates for the away team are conducted in the similar fashion.

• ĜH and ĜA stand for the expected goal scores for the home team and away team respec-

tively;

• GH and GA are the actual goal scores for the home team and away team respectively;

• α defies the maximum possible number of goals a team can score

• β and γ are the metaparameters that can be interpreted as slope of the logistic function

and the bias respectively, metaparameters are individual for the home and away team as
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opposed to Elo;

• ω stands for the learning rate for the strengths update.

3.1.6 TVC: Time Varying Coefficients

TVC assume that the points scored throughout the season have different weight on the strength

of the team at the end of the season [34]. To translate this effect into the model, the TVC allows

some coefficients to vary with time. The strength of the team i at time t can be calculated as

follows:

λit =
∑
k∈V

γk(mit)xitk +
∑
k/∈V

βkxitk, (3.12)

where xit is the feature vector associated with the team i at time t, V is the set of coefficients

features that can vary in time and the mit is the number of matches played by i by the time t.

Tsokos, Narayanan, Kosmidis, et al. [34] later embedded this team’s strength into the Bradley-

Terry model to generate predictions:

p(yijt = 1) =
exp(λit)

exp(λit) + exp(λjt)
, (3.13)

where yijt is 1 when team i beats j at time t. This model took the third place of the 2017 Soccer

Prediction Challenge.

3.2 Advanced models

The following chapter reviews some of the resources that used advanced computational tech-

niques to predict sports results.

Arabzad, Tayebi Araghi, Sadi-Nezhad, et al. [35] proposed an earlier attempt to predict the

sports results based on the historical data using ANN. The paper tried to predict the outcome

of 8 matches. To achieve robustness of the model, the predictions were generated 30 times.

The model consisted of 2 hidden layers with 20 neurons in each of them. The 10 input features

included recent average points and all time average points for each team. The goal was to pre-

dict the actual score of the game. The output was then analysed using graphical and statistical

analysis (ANOVA). The result shows that score of 1 of 8 matches was predicted correctly and

the victory team of 5 of 8 matches was predicted correctly.

The article of Nyquist and Pettersson [36] proposes Long Short-Term Memory (LSTM) ar-

chitectures of recurrent neural networks and reports the accuracy of up to 98.63%. However,

this high accuracy is achieved thanks to training the models to predict the next 15 minutes of

the game, meaning that the models predict the match’s outcome with the information about

the whole match minus 15 minutes. This way of evaluation was chosen due to the authors’

goal to predict the result at any given moment and not just at the end of the game. The best
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accuracy of predictions of the outcome of the matches before their start is close to 44%. It is

worth mentioning that this work uses embedding to create input for the network. However, the

embedding used in this paper creates the vector based not only on the team name but also on

the soccer-specific features, such as penalties, card types, goal types, lineup, and substitution.

After the features are embedded, they serve as the input to the recurrent neural network with

LSTM units. The network is then complemented with the softmax classifier to produce the

predictions for each class. The fact that the paper’s authors had access to the data sampled

relatively densely appeals to the idea of modeling their predictor using recurrent neural networks

with LSTM units that work best with sequences and can foresee subtle changes throughout the

timeline.

Pugsee and Pattawong [37] used a Random Forest Classifier (RFC) for predicting the soccer

match results. RFC is a machine learning technique that involves training multiple classifiers

(decision trees) on randomized training data and then combining their results to obtain the

prediction. Each decision tree’s attributes are selected based on the information gain, repre-

senting each attribute’s knowledge value. A set of the selected attributes then divides the data

and produces a prediction for one tree. Combining several decision trees into random forests

helps to tackle the problem of decision tree overfitting the data. The data used to train the

RFC consisted of 18 soccer-specific features from the English Premier League. The accuracy of

predictions on the testing data by the proposed model is 80%.

Hubáček, Šourek, and Železný [38] proposed an approach for prediction of sport matches out-

comes using gradient boosted trees. The proposed model utilized multiple latent features ex-

tracted from the data, such as pi-ratings and PageRank rating, multiple features representing

current and historical strengths when played at home and away venues, features that relate to

leagues. The work discussed in this paper used Xgboost [39] implementation of the gradient

boosted trees. As a result, the pi-ratings showed to be the most influential features, while the

features associated with the teams’ current form were used the least. The paper also proposed

another model where the features were ground facts that defined the relations between teams:

a historical result of the given game between two teams being a home victory, draw or away

victory, matches being played in a league, a team scoring more than a given number of goals in a

given match, and a team belonging to a specific rating group when playing a given match. The

constructed ground facts provided input for the RDN-Boost algorithm, which is an instance of

a relational dependency network function approximators [40]. The Xgboost model got the best

RPS on the validation and testing data and is the winning model of the 2017 Soccer Prediction

Challenge (the accuracy on testing data is 52.43% and average RPS of 0.2063). However, the

relational model performed well as well (average RPS of 0.216).

Constantinou [41] designs a model as a mixture of two models: dynamic ratings and Hybrid

Bayesian Networks. The key idea of Dolores (the proposed model) is predicting the outcome
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of the match between two teams based on the historical data from other (seemingly unrelated)

teams (from other countries, leagues). To accomplish this some more artificially designed data

instances were added for matches with identical rating difference (home team score - away team

score). This approach allowed to tackle several problems at once: temporality of the data (newer

data have higher value for predictions), absence of data for new teams, and predictions for one

league based on a different league. The Hybrid Bayesian Network consists of one observable

node that describes Rating Discrepancy and 4 hidden nodes: Ability Difference, Goals Scored

by Home team, Goals scored by Away team and Predictions. Ability difference can acquire 42

distinct rank values, Rating discrepancy represents a mixture of 42 Gaussian distributions. The

example of how Dolores works is described in Constantinou [41]. The model took the second

place in the 2017 Soccer Prediction Challenge with the average RPS of 0.2083 and accuracy of

51.46%.

3.3 The combined RPI

This section will shortly discuss an approach that uses sport-specific features for sports predic-

tions.

Combined RPI [21] proposes a new rating approach that incorporates 4 statistics applied to

American football matches:

1. RPI;

2. Pythagorean wins;

3. Offensive strategy;

4. Turnover differential.

RPI suggests a score based on the frequency of wins and integrate the score of opponents with

some weights.

The Pythagorean wins construct the score based on how many points are scored or surrendered.

Offensive strategy projects which way the team chooses to move the ball: by passing or by

rushing. The turnover differential is the difference between the takeaways and giveaways for each

team, where takeaways are calculated as a sum of interceptions and fumbles that were recovered,

while giveaways are the sum of lost interceptions and lost fumbles. These four statistics are

normalized (each statistic with individual range) and summed up and produce the output score.

The predicted winner is the team with the highest score.

One can notice that three of the four statistics used to calculate combined RPI use data specific

to American football. This fact explains why this statistic will not be further considered despite

exceptionally high accuracy in predictions (reported accuracy up to 97.14%). Another concern

related to the combined RPI is that the reported accuracy suggests that the model overfits the

testing data.



Chapter 4

Implementation, Experiments,

Evaluation

This chapter is dedicated to the practical part of the work. It reviews the collected data, proposes

the solutions of the stated problem, discusses evaluation frameworks and the evaluation process

itself and the direct implementation.

4.1 Data

The data was searched on free sources on the Internet. According to the assignment, it is

necessary to create models for more than one sport. One obvious candidate was soccer since

it is one of the most popular sports in the Czech Republic, as well as globally [42]; besides,

it is most commonly reviewed in the relevant works discussed earlier in part 3. Another sport

highly popular in the Czech Republic is ice hockey, which also was proved to be a source of

identification for Czechs as a nation [43].

4.1.1 Soccer data set

Soccer overview

A professional soccer match involves two teams of 11 players competing against each other in a

game during 2 periods of 45 minutes.

Matches are chronologically arranged into seasons. Teams are divided into leagues depending

on their professionalism and countries of origin. The structure of leagues is different for each

country; usually the leagues consist of 16 to 20 teams.

According to the rules, the teams are awarded with three points for a game ended with a victory,

no points for a loss and both teams receive one point if the game ended with a draw.

18
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Season League Date
Home
Team

Away
Team

Home
Score

Away
Score

Score
Diffe-
rence

Result Country

2000 GER1 2000-09-16 Bochum Wolfsburg 2 1 1 W Germany

2003 ITA1 2004-03-14 Lazio Udinese 2 2 0 D Italy

2008 SPA2 2009-02-28 Alaves Real Sociedad 2 1 1 W Spain

2008 GRE1 2008-09-28 PAOK Aris 1 0 1 W Greece

2014 FRA1 2014-11-22 Monaco Caen 2 2 0 D France

Table 4.1: Example of the data from the soccer data set.

Soccer data set overview

The soccer data set is acquired from the Open International Soccer Database for machine learn-

ing [44]. It consists of the records from 216743 league soccer matches played in across 52 leagues

in 35 countries during the years 2000-2016. The database was specifically produced for the

2017 Soccer Prediction Challenge [18]. From the Figure 4.1 one can notice that the distribution

between the results is not even for most leagues and there is a slight bias towards the home

victories (40% Home wins, 35% Away wins and 25% Draw). An example of the soccer data

Figure 4.1: Distribution of matches by country and by result: home victory (W), draw (D) and
away victory (A)

set can be seen in Table 4.1. Figure 4.2 shows that the number of leagues varies significantly

from country to country: while England has five leagues, China only has one. When comparing

to Figure 4.1, one can notice that the number of leagues does not necessarily mean a higher

number of games for a country; for example, Scotland has four leagues, but the number of played

matches is lower than the one of Italy that only has 2. That can be explained by the fact that

the data set covers 17 years, and during that time number of leagues can change (for example,

for lack of funding); besides that, the number of teams in leagues varies for different countries.
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Figure 4.2: Distribution of leagues by country

Another high quality data set, containing the matches results as well as significant number

of features and the betting odds, was found at [45], but it will not be further used.

4.1.2 Hockey data set

The hockey data set was acquired by web crawling a web page [46] and then formatted to the

same data structure format as the soccer data set.

Hockey overview

The ice hockey is a winter sports game played between two teams of six players each during 3

periods of 20 minutes. The goal of the game is to shoot a puck into the opponent team’s net

using stick while skating on an ice rink.

National Hockey League (NHL) is a professional ice hockey league that consists currently of

31 teams from United States of America and Canada. Each game plays 82 games during a

season: half at a home field and half as a visiting team. The team ranking is based on a point

system – two points are awarded for a victory, one point for losing during overtime or in a so

called shootout 1 and zero points if the team loses in a regular period.

Hockey data set overview

The table 4.2 shows an example of the data from the hockey data set. The hockey data set

1Both shootout and overtime are measures to solve a draw between the teams. If after an additional period
(overtime) a winner-determining result is not achieved, a shootout is appointed – the teams representatives shoot
the puck until one team prevails.
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Season League Date
Team
home

Team
away

Goals
home

Goals
away

Goal
Dif-
ference

Result
Country
League

1998 NHL 08-10-98 Calgary Flames San Jose Sharks 3 3 0 D NHL

1998 NHL 08-10-98 Florida Panthers Tampa Bay Lightning 4 1 3 W NHL

1998 NHL 08-10-98 New York Rangers Philadelphia Flyers 0 1 -1 L NHL

1998 NHL 09-10-98 Boston Bruins St. Louis Blues 3 3 0 D NHL

1998 NHL 09-10-98 Carolina Hurricanes Tampa Bay Lightning 4 4 0 D NHL

Table 4.2: An example of the data from the hockey data set.

contains 23968 instances of the sports games of the NHL between the seasons 1998-2018. The

number of teams across all those years is only 33 while the current number of teams in the league

is 31. This might implicate the strong competitiveness and the fact that there will not be any

obvious stronger and weaker teams.

The distribution between the three classes of the results is even less equal for the hockey data

set when compared to the soccer data set: Home win 45%, Away win 35%, Draw 20%.

4.2 Proposition of the solution

The purpose of this work is to learn the representations of the teams using embedding. The idea

behind it is that the models learn using artificially created features that are adjusted during the

training phase. By learning the representations of the individual teams, the model is supposed

to simulate the rating systems’ behavior. The main advantage of such an approach is the domain

independence of the models and that it can be used for any set of events with two adversaries

and can later be extended to a higher number of teams or players. Similarly to the simple rating

systems, the models use only the historical data of match results. As opposed to the rating

systems, there are no hardcoded rules in the explored models, and the models have to simulate

the rules by adjusting their parameters during the training phase.

In this work, the following models are proposed and experimented with:

1. Simple ANN with embedding;

2. Graph Neural Network.

The simple ANN model will learn the representation using only an embedding layer. The GNN

will try to improve the embedding learned by the previous model using the additional information

about relations between the teams compiled into a graph structure.

4.2.1 Simple ANN with embedding

A simple classification model can be obtained using multiple Linear (fully-connected) layers

that are closed by a softmax layer to generate predictions. A diagram of such model is shown in

Figure 4.3a. A Linear Layer block represents a combination of a Linear (fully-connected) Layer
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(a) A diagram of the Simple ANN with embedding
model. (b) A diagram of the GNN model.

Figure 4.3: Diagrams of the two models.

with an activation function and a possible dropout layer. The representation of all the teams is

kept in a single embedding layer.

4.2.2 Graph Neural Network

Once the prediction model is improved, the next most reasonable step is improving the repre-

sentation of the teams. As the PageRank ratings discussed in Section 3.1.4, graph structure

can help to learn the strengths of the individual teams. However, it can be beneficial to learn

the representation using the graph structure in higher dimensions. That can be fulfilled by

employing the GNN. At first, the match prediction problem in terms of GNN can be recognized

as a problem of edge labeling since one graph representation of the historical match data can be

described as teams being nodes and matches being connections between two teams. However,

that problem can be reformulated into two successive subproblems:

1. Learning teams representation using a graph structure;

2. Learning to predict a result of the match based on those representations.

One can notice that the first subproblem can be interpreted as node classification, the task that

was proved to be efficiently solved by ConvGNN [47], [48]. The second subproblem was already

tackled by a previous model in Section 4.2.1.

Another problem that needed to be solved was the difference of influence of the game on teams’

representations depending on the time component. It is obvious that the victory that happened
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last season affects the team’s relative strength in the season’s finals with a different intensity

than a loss that occurred right before the decisive game. That was achieved by weighing the

edges of the graph differently depending on the recency of the last game that played between the

two teams in question. That is why when the information is propagated from a team’s neighbors

to the team and from the team to its neighbors, the effect of the information transferred over

the edge from node i to node j at time t on the representation is scaled based on last game’s

recency by multiplying the propagated data with wteij ∈ (0, 1) ⊂ R. The edge weight can be

computed by a linear or an exponential function. Computation by a linear function:

wteij = 1− t− tprev
N

, (4.1)

where the tprev is the time of the previous sport meeting between the two teams and N is the

number of a total number of games. Computation by an exponential function:

wteij = e−(t−tprev). (4.2)

In practice we used the computation by a linear function, because values of the exponential

function were too ”negative” – the values for even not so distant matches went rapidly to zero

and had practically no effect on the representation.

In order to simulate the ranking system between the teams, the propagation of information

should only go one way. In the implementation of this work, the propagation happens from

a losing team to the winning team. By this strategy, the propagated data becomes the rival’s

strength, and it is added to the winner’s strength. This approach’s downside is that the mean of

the ”ranks” is not constant but gradually increasing. It could have been solved by propagating

the values from a winner to the loser with a negative sign.

Running Example

A running example of how the simplified version of the GNN model should work is shown below.

It shows a model without embedding, the features of the teams are saved in the nodes rather

than being trained as parameters in the Embedding layer. This example is very similar to how

the PageRank model works that was discussed in Section 3.1.4, in fact the GNN model can be

understood as a generalization of the PageRank model. Suppose, there is a league of 4 teams

that have to define their ratings through a GNN model. The change of the states of the graph

is shown in Figure 4.4. At time t1 two matches take place: in the first one, a team A wins over

the team B and in the second one, a team C wins over the team D. This means that to the

disconnected graph of 4 vertices (one for each team) two edges are added (one for each match).

The edges are directed – they go from a losing team to the winning team. This state is shown

in Figure 4.4a. In the previous time tick all teams had a starting score of 1. At the end of time

1 the score values of the teams B and D stay the same at this time (since they did not win
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(a) The state of the graph at time
t = 1.

(b) The state of the graph at time
t = 2. (c) The state of the graph at time

t = 3.

Figure 4.4: The example of how a simple GNN works.

t0 t1 t2 t3
A 1 2 2.8 3.4

B 1 1 1 1

C 1 2 3.8 9.2

D 1 1 3 6.24

Table 4.3: The progress of the scores of the individual teams in time for the running example.

over anyone yet) while the score values for the teams A and C are calculated according to the

following formula:

sti = st−1i +
∑

j|eij∈E(G)

wteij · s
t−1
j , (4.3)

where sti is a score for a team i at time t, wteij represents a directed edge from the team j (the

loser of the match) to the team i (the winner of the match). This way the score of the team i

is the weighed sum of the scores of all the teams i won over. The weight of the edges in this

particular example set in the following manner: 1 for the match that ended at time t, 0.8 for the

match that ended at time t− 1 and 0.6 for the match that ended at time t− 2. In the following

time ticks there are matches between all the teams from this league. In the end the team C won

in all of the conducted matches, A and D won in some of them and B won in none of them.

The scores for the teams till the time t3 are shown in Table 4.3.

The resulting scores reflect the number of games for the teams C and B and are expected. The

scores for the teams A and D are different even though they had the same number of victories.

The difference in the scores explains the quality of the victories (if the losing opponent was

good) and the time of the victories.

Model Components

A diagram of the GNN model can be viewed in Figure 4.3b. The label-encoded names of all teams

in the data set across all leagues and seasons are embedded into vectors of higher dimensions.

Those vectors then serve as node features for the first ConvGNN Layer block. A ConvGNN
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Layer block represents a combination of a ConvGNN Layer with an activation function and a

possible dropout layer. There can be multiple ConvGNN Layer blocks stacked on top of each

other. After the information between the teams is propagated, the last ConvGNN Layer block

produces the learned representation for all the teams. However, to make a prediction for a

match, the model only needs to know the representations of the Home team and Away team.

After they are filtered out and concatenated the model is ready to predict the result of the game

using stacked Linear Layer blocks. The output of the last Linear Layer block is then run through

the softmax layer that scales it and generates the predictions for three of the game result classes:

Home team victory, Draw, Away team victory.

4.3 Evaluation frameworks

Usually, when working with data in terms of statistical procedures, one has to assume that the

data are independent and identically distributed, meaning that the samples are drawn from the

population randomly and sequentially. The data is often shuffled to ensure that these groups

are independent when the samples are randomly divided into groups. For example, if someone

made a random poll of a Yes / No question across the country, then shuffled the answers and

divided them into two groups, the groups will have roughly the same ratio of ”yes” to ”no”

votes. However, when using time series data or data with a time component, one cannot assume

that the samples are independent, but rather exactly the opposite – the assumption should be

that the earlier samples affect the later samples. That leads to the assumption about the data

set being only that the data should be independently distributed.

There are two frameworks that can be distinguished to train and evaluate a predicting model:

1. Fixed evaluation. The data is subsequently divided into three categories: a training data

set, validation data set, testing data set. Training data is used for a model to learn

the parameters, the validation data set is used to fine-tune the model’s hyperparameters,

the testing data set is employed to evaluate the actual performance of the model. The

drawback of this approach is that the model ”loses” the validation data, leading to the

model’s inferior performance when dealing with time series.

2. Continuous evaluation. This approach rigorously divides the data set only into two cat-

egories: the training data and the testing data. The model is training gradually from a

portion of the training data set captured from a window sliding with time and can be in-

terpreted as a mini training data set. The model then runs through the mini training data

set in mini-batches for multiple epochs. The validation accuracy and loss are computed

from a portion of the data following the mini training data set. After the training and

validation are performed, the window controlling the data moves, and the process starts

again. An example of this process can be found in Figure 4.5.

The testing can be done in two ways. One way is two fix the testing set and evaluate the
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model on it at once. Another way (which will be called ”sliding testing set” for future

referencing) is evaluating the model on a small portion of the testing data, retraining the

model using this small portion, and then working this process until the end of the training

set. This way of testing is preferred since this approach simulates the real-life conditions –

the prediction for the upcoming event is generated, after the match, the model is updated,

the model generates the prediction for the next match.

Later in this work, the continuous evaluation will be used since it can utilize the latest data into

the prediction.

Finally, the configuration of the Linear layer was taken from the ANN with an embedding

model for training a GNN model.

Figure 4.5: Example of the continuous evaluation. The red section represents the sliding window
for capturing the training data.

4.4 Evaluation

4.4.1 Common setup

To be able to fairly compare the models, some common parameters had to be fixed. The

parameters were settled after some tests and empirical evaluation of the results.

• Mini batch size: 9. For most leagues, this is the number of matches in the season played

between a team’s two successive games (there are 16-20 teams in a league, so if they start

to play with each other, there will be 8-10 played games before a team plays the second

time).

• Optimizer is fixed to be Adam [5].

• Epochs: 30. This value was set to be the initial number of epochs.



CHAPTER 4. IMPLEMENTATION, EXPERIMENTS, EVALUATION 27

• Window size for capturing the training data: 40 mini-batches.

• Window size for capturing the validation data: 10% of the whole data set. Such a number

was chosen to estimate the validation accuracy and loss robustly.

• Window size for capturing the testing data: 1 mini-batch.

• Dropout rate was set to 0.1.

• The learning rate mode refers to one of two approaches of setting the learning:

1. The learning rate is fixed throughout the training phase.

2. The learning rate decreases with time and is computed at time t for each slide of the

sliding window as follows:

λt = λbase(1− γ)k/bs/ws, (4.4)

where λbase is the initial setting of learning rate discussed above, γ represents the

discount factor of the learning rate (it was set to 0.2), k is the ordinal number of

the first match in the sliding window, bs stands for the batch size, ws represents the

number of batches after which the learning rate should be decreased. λbase, γ, ws can

be considered hyperparameters.

The second approach is often used when training Graph Neural Networks [49]. However,

in this case, the adaptable learning rate did not improve the model’s performance. Relying

on this conclusion, the learning rate remained constant over time for all models.

• A subtraction layer instead of a Concatenation layer was tested in both models. However,

with both models, the performance was much poorer than when using a Concatenation

layer.

4.4.2 Learned Hyperparameters

Learned hyperparameters include:

• The number of epochs for fitting data captured from a later sliding window. One approach

is leaving the number of epochs fixed in time. However, to emphasize the importance of

the later data on the predictions, the model can be exposed to the later data a higher

number of iterations. To achieve that, the number of epochs was computed for every slide

of the sliding window at time t according to the following formula:

nt+1
epochs = ntepochs + loglbk, (4.5)

where lb stands for logarithm base and was set to 1.5, k is the ordinal number of the first

match in the sliding window. The logarithm base can be considered another hyperparam-

eter for tuning.
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• The possible values of the learning rate were limited to 0.01, 0.001, 0.0001, 0.00001.

• The maximal possible number of Linear layers was restricted to 5, minimal possible number

was set to 2.

• The space of possible settings for the Linear Layers consisted of the following configura-

tions:

(4, 4, 4, 4, 4), (8, 8, 8, 8, 8), (16, 16, 16, 16, 16), (32, 32, 32, 32, 32), (64, 64, 64, 64, 64),

(4, 8, 16, 32, 64), (4, 8, 4, 16, 4), (32, 64, 32, 128, 4), (16, 32, 4, 16, 8), (16, 4, 16, 4, 16),

(64, 128, 64, 128, 8), (128, 128, 128, 128, 128), where the number represents the number of

neurons in a layer.

During the validation process, it became evident that the models with a constant number

of neurons in all layers have a better performance than the once in which the number of

neurons changes from layer to layer.

• The maximal number of ConvGNN layer was set to 3, the minimal – to 1.

• Possible configurations of the ConvGNN layer included:

(1, 1, 1), (4, 4, 4), (8, 8, 8), (16, 16, 16), (64, 64, 64), (128, 128, 128), (128, 64, 32), (32, 32, 32),

(32, 16, 8), (16, 8, 4), (128, 32, 8), (64, 32, 4), (4, 64, 4), (8, 128, 8),

(8, 128, 64), (64, 32, 64).

As well as in the Linear layer blocks, the constant number of neurons showed much better

performance than with the changing one.

• The choice of activation functions was restricted to

1. ReLu:

ReLu(x) = max(0, x) (4.6)

2. hyperbolic tangent function: tanh(x)

3. Leaky ReLu:

LeakyRelu = max(αx, x), (4.7)

where α was set to 0.1.

4.5 Implementation

The models were implemented in Python using the libraries PyTorch [50], and PyTorch Geo-

metric [51]. The data was imported and examined using the Pandas library data frames [52].

The resulting models are saved into the binary files using a pickle library in Python [53].

The codebase for this work can be found in the attachment and in the public repository 2.

The code is divided into several files:

2https://github.com/perevale/matches_prediction.git

https://github.com/perevale/matches_prediction.git
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• DataTransformer: uploads the input data set, label encodes the teams, divides the data

sets into training, validation and testing data sets;

• Dataset: creates the Data instances for all the leagues in the data set;

• Trainer: trains, validates, and tests the models directly;

• GNNModel, FlatModel: create the GNN and Simple ANN models;

• visualization: helps to visualize the training and embedding;

• utils: provides the utility functions for training.

The fine-tuning of the models’ hyperparameters was executed on the remote server using the

grid search. The scripts for this are located in the folder scripts.

4.5.1 Implementation procedure

The implementation was not linear, and there were multiple dead ends and complications. The

most comprehensible procedure could be approximated as follows:

• The Simple ANN model is created and trained in a fixed manner. An earlier version was

built in Keras, but later transferred to PyTorch because of PyTorch’s higher flexibility

and transparency.

• A simple GNN model is constructed, the model does not have any Linear layers, the

predictions are produced directly by subtracting the two teams’ representations and taking

the sign of the output. Although the model was able to achieve over 50% of the training

accuracy, it did not generalize well, and testing accuracy was close to random. In this

model, there was only one trainable parameter in the ConvGNN Layer; instead of the

edge weighing, there was a manual weighing of the nodes. This model was a starting point

for the resulting GNN model. The implemented version is the same as reviewed in the

running example in Section 4.2.2.

• The GNN model is meant to be a combination of the Simple ANN model and the Simple

GNN model. It was first trained in a fixed way, then the retraining on the validation

set was also applied. The features in the nodes were then changed to the embedding

representation, and the edge weights were applied.

The models can be viewed in the attachment.



Chapter 5

Results

The following chapter is dedicated to reviewing the obtained results. The first section is going to

examine the best achieved results. After that, there are going to be a review of some alternations

to the best models and their effect on the models’ performance.

5.1 Best models

To correctly evaluate the models, several variations of the data sets had to be taken into consid-

eration. There are two data sets discussed in Section 4.1.2. However, both of them were rather

large, and training one model on the soccer data set took up to three days. To fine-tune most

of the hyperparameters, only one randomly chosen league from the soccer data set was chosen

– GER1. It is represented by the name ”1 league soccer”.

The Berrar, Lopes, Davis, et al. [18] also chose only 26 ”bigger” leagues out of 52 for the test

set of the 2017 Soccer Prediction Challenge. They are represented by the name ”chosen leagues

soccer”.

The hockey data set is represented by the name ”NHL”.

The comparison of the best-achieved models performance for the two approaches on the four

data sets can be viewed in Table 5.1.

Table 5.1 shows that the model was able to fit the smallest of the four data sets far bet-

ter than the larger ones. It makes sense intuitively: since the model only predicted the results

for 36 teams from one league and in the next case of all leagues of soccer, the model had to be

far more general to be able to fit the data of 1951 teams and finding the best possible param-

1 league soccer all leagues soccer chosen leagues soccer NHL

ANN with embedding 0.4962 0.4553 0.4894 0.4222

GNN 0.5231 0.4640 0.4926 0.4493

Table 5.1: Best achieved models’ accuracy.

30
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eters is more complicated if not impossible – different parameters work best for different leagues.

The table also proves the superiority of adding a graph structure over the linear layer for

predicting the outcome of sports matches and displays that such an approach indeed helped

to learn a better representation of teams in all four cases.

5.1.1 1 league soccer data set

The best configuration of a simple ANN model with an embedding layer is the following:

• 3 linear layers.

• Each layer consists of 4 neurons.

• The dimension of input embedding is 3.

• The learning rate is set to 0.001.

• The Dropout layers were placed after each Linear layer with the dropout rate of 0.1.

A model that best fit the data of the GER1 soccer league consisted of

• 2 graph convolutional layers of dimension 4.

• Convolutional layers: GraphConv.

• The dimension of input embedding is 3.

• The learning rate is set to 0.001.

• The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.

It can be noticed that a relatively small number of neurons was needed for both of those models.

The resulting embedding can be viewed in Figure 5.1. It was obtained using PCA projection

with two components. One can notice that the representation of the teams before the training

is chaotic. The teams do not seem to be ordered. However, the embedding after the training

shows us that they are represented in some arranged manner. Most teams are lined up in

a noticeable order, which means that the horizontal axis might represent the ranking of the

teams. The Dortmund and Bayern Munich are obviously the leaders since they are the left-

most teams. After comparing some simpler rankings with the one in question in the table 5.2,

one can assume that the vertical axis shows how sure the victories were for the teams throughout

the timeline (the lower, the more sure is the victory) – Bayern Munich got the highest victories

to losses ratio, and it is located in the bottom meaning that the victory is sure for the team.

The PCA projection of the embedding with 1 component and its comparison to the simpler,

more explicit ranking models – the difference between the number of won and the number of

lost matches and the Elo rating 3.1.2 – is shown in the table 5.2.
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Embedding ranking Win-Loss Difference Ranking Elo ranking

Dortmund -157.43285 Bayern Munich 303 Bayern Munich 154735.3

Bayern Munich -154.72981 Dortmund 154 Leverkusen 71330.37

Leverkusen -153.28636 Schalke 04 107 Schalke 04 68776.49

VfB Stuttgart -145.66075 Leverkusen 106 Dortmund 58952.95

Schalke 04 -144.4327 Werder Bremen 55 Werder Bremen 43354.39

Wolfsburg -144.27525 VfB Stuttgart 29 Wolfsburg 30104.49

Hamburger SV -142.38426 RB Leipzig 13 Hertha Berlin 28068.66

Eintracht Frankfurt -134.10876 Wolfsburg 8 RB Leipzig 3805.212

Hannover 96 -133.24687 Hamburger SV -4 Fortuna Dusseldorf -334.153

Werder Bremen -133.03867 Hertha Berlin -5 Hoffenheim -465.699

Monchengladbach -131.78793 Unterhaching -7 Alemannia Aachen -611.405

Nurnberg -124.64906 Alemannia Aachen -9 Braunschweig -963.602

Mainz 05 -121.12248 Hoffenheim -10 Ingolstadt -1886.1

Hertha Berlin -117.85539 Paderborn -10 Greuther Furth -2311.5

Freiburg -112.02846 Fortuna Dusseldorf -11 Hamburger SV -2482.05

Hoffenheim -106.32832 Munich 1860 -12 Unterhaching -3267.8

FC Koln -91.78417 Ingolstadt -14 Paderborn -3313.84

Kaiserslautern -67.60042 Karlsruher SC -15 MSV Duisburg -3689.42

Bochum -47.461567 Braunschweig -15 Darmstadt 98 -4890.84

Augsburg -27.295141 Greuther Furth -17 Karlsruher SC -5344.51

Arminia Bielefeld -4.547561 Augsburg -20 St Pauli -5715.27

Energie Cottbus 0.06291556 Mainz 05 -20 Augsburg -9752.47

Karlsruher SC 21.897686 Darmstadt 98 -21 Arminia Bielefeld -11341.6

Fortuna Dusseldorf 40.037266 MSV Duisburg -25 Kaiserslautern -11988.6

MSV Duisburg 53.142437 Monchengladbach -27 Mainz 05 -12581.5

Hansa Rostock 57.575123 St Pauli -29 Munich 1860 -15113.2

Greuther Furth 79.802826 Kaiserslautern -33 VfB Stuttgart -16361.5

St Pauli 93.84798 Arminia Bielefeld -39 Freiburg -19590.7

Munich 1860 119.45913 Hansa Rostock -41 Hansa Rostock -24236.3

Braunschweig 139.13191 Bochum -42 FC Koln -29456.9

Alemannia Aachen 150.2522 Hannover 96 -47 Bochum -30939.8

Unterhaching 209.98987 Energie Cottbus -49 Energie Cottbus -32774.2

Ingolstadt 312.1592 Freiburg -56 Hannover 96 -41534

Darmstadt 98 329.73306 Eintracht Frankfurt -64 Nurnberg -42820

RB Leipzig 389.7234 Nurnberg -66 Eintracht Frankfurt -43121.1

Paderborn 398.24176 FC Koln -67 Monchengladbach -46239.8

Table 5.2: Comparison of the three approaches to encode the ranking of the German League.
The main trends, are the same for all the three rankings, e.g. Bayern Munich, Dortmund,
Leverkussen are at the top in all the rankings. The difference resides in the mapping of the
teams with poorer performance: for example, FC Koln occupies the positions in the middle of
the rating and in the other rankings it is found in the bottom. This can be influenced by the
fact that the embedding better captures the time trends in the data.
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(a) The embedding representation of the GER1
league before training the GNN model. (b) The embedding representation of the GER1

league after training the GNN model.

Figure 5.1: Embedding of the GER1 league.

5.1.2 All leagues soccer data set

The best simple ANN model for the soccer data set was the following:

• 5 linear layers.

• Each layer consists of 16 neurons.

• The dimension of input embedding is 3.

• The learning rate is set to 0.0001.

• The Dropout layers were placed after each Linear layer with the dropout rate 0.1.

The best simple GNN model for the soccer data set was the following:

• 3 graph convolutional layers of dimension 8.

• Convolutional layers: GraphConv.

• The dimension of input embedding is 3.

• The learning rate is set to 0.0001.

• The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.

The number of neurons in these models is slightly larger than for the models trained for one

league.

5.1.3 Hockey data set

The best simple ANN model for the hockey data set was the following:

• 5 linear layers.
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• Each layer consists of 4 neurons.

• The dimension of input embedding is 10.

• The learning rate is set to 0.00001.

• The Dropout layers were placed after each Linear layer with the dropout rate of 0.1.

The best simple GNN model for the soccer data set was the following:

• 3 graph convolutional layers of dimension 1.

• Convolutional layers: GraphConv.

• The dimension of input embedding is 10.

• The learning rate is set to 0.0001.

• The Dropout layer was placed after the first ConvGNN layer with the dropout rate 0.1.

The number of neurons is smaller than in the case of the soccer data set model, however, the

number of layers is maximal possible – 5 Linear layers and 3 graph convolutional layers.

5.2 Weighed models

As can be seen from Section 4.1.2, both data sets have more matches won by home teams. That

is a known phenomenon called home advantage. The circumstances that may affect the sway in

the home team’s favor can be psychological (such as local fans’ support, known grounds, subcon-

scious referee’s bias) and physiological (visiting team’s fatigue from traveling, different climate

or time zones). Team advantage is even measurable: Marek and Vávra [54] propose a compari-

son method for home advantage based on Jeffrey Divergence, which is a symmetric adaptation

of the Kullback-Leibler divergence. There is an even smaller percentage of the matches ending

with the draw. That can be explained by the fact that if the teams feel that their game end with

a draw, they tend to play riskier. Another reason for this anomaly is that penalty shootouts

can be appointed during competitions as specified by the rules or directed by a referee. The

shootouts continue until one team scores, and another one does not. This measure is often used

as a tiebreaker at the end of the seasons or competitions.

As a result, some models give preference to the home team in their predictions as well, and in-

frequently predicts the draws. To overcome this, the optimizer can punish incorrect predictions

unequally for different classes. Mistakes of the less populated class are penalized proportionately

to the ratio of the number of samples in the class with the highest population Nhpc over the

same number in the class in question Na:

wa =
Nhpc

Na
. (5.1)
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This approach is better in this case than undersampling highly populated classes, since the latter

technique might deprive the model of some insights from the time component of the data.

Draw
prediction

Away
win
prediction

Home
win
prediction

True
draw

6 39 80

True
away
win

2 67 85

True
home
win

1 36 205

(a) The confusion matrix before the weighing.

Draw
prediction

Away
win
prediction

Home
win
prediction

True
draw

29 52 44

True
away
win

30 68 56

True
home
win

50 61 130

(b) The confusion matrix after the weighing.

Table 5.3: The confusion matrices before and after weighing the the optimizer to penalize the
incorrect prediction proportionately to the classes’ population.

The confusion matrices before and after the discussed weighing can be seen in Table 5.3. It can

be noticed that after the weighing, the model stopped giving clear preference to the home team.

The results for all data sets are shown in Table 5.4. If compared to Table 5.1, it can be noticed

that the models’ performance after the weighing is somewhat lower than the best achieved so

far. That was the reason why the models with reported performance were penalized for incorrect

predictions equally for all classes. If the strength between two teams is very similar, the outcome

of the match becomes almost random since the influence of other factors unmentioned in the

data set enhances, and they become game-changing. It will be further discussed in Section 6.

5.3 Choice of ConvGNN Layers

There are many Graph Convolutional layers available. Three of them were selected and discussed

in Section 2.3: ChebConv, GCNConv, GraphConv. These three types of ConvGNN Layers are

the most popular and were used in the multiple scenarios with GNN [11], [13]. The effect of

different Graph Convolutional layers on the models’ performance is shown in Table 5.5. Table

5.5 shows that spatial ConvGNN Layers are more suitable for this task than the spectral ones.

1 league soccer all leagues soccer NHL

weighed ANN 0.4483 0.4259 0.4082

weighed GNN 0.4968 0.4561 0.4183

Table 5.4: The models’ accuracy after the weighing.
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1 league soccer all leagues soccer NHL

GraphConv 0.523076923 0.46401423 0.449328

GCNConv 0.51962 0.46004 0.4396

ChebConv 0.52018 0.46193 0.44532

Table 5.5: Models’ performance with different graph convolutional layers.

5.4 Choice of a testing set

The effect of different choices of testing sets on the models’ resulting accuracy can be viewed in

Table 5.6. Table 5.6 shows that the model indeed utilizes the time component for the predictions

1 league soccer

Sliding testing set 0.523076923

Fixed testing set 10% 0.519230769

Fixed testing set 15% 0.461533434

Fixed testing set 20% 0.456653149

Table 5.6: Experiments with different testing sets.

– the further the match is from the last update of the model, the worse is the quality of the

prediction. The continuous evaluation framework proved to be the best fit for this kind of task.

5.5 Comparison with the bookmaker

5.5.1 Bookmaker’s predictions

Decimal bookmaker’s odds represent the amount of money won for every unit wagered and can

be interpreted as the inverted probability estimation for each of the results of the game. To deal

with the fact that the bookmaker adjusts the odds for personal gain and as a result, the inverted

probabilities of the three outcomes sum up to more than one, the actual predicted probability of

victory of the home team H can be obtained after normalizing the inverted bookmaker’s odds

as in the formula:

P (H) = 1− BOH
BOH +BOA +BOD

, (5.2)

where the BO stands for betting odds.

The data for bookmaker’s predictions were taken from a website [45].

5.5.2 Comparison of the models

Figure 5.2 shows the inferior performance of the acquired model compared to the state-of-the-

art model Xgboost [38] and the market odds on the soccer data set. The poorer performance

compared to the bookmakers’ predictions is expected since the bookmaker operates with a

much more substantial set of relevant features than just the history of the games’ outcomes.

The lower accuracy, when compared to the Xgboost model, might be induced by the absence
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Figure 5.2: The comparison of performance between the bookmaker’s predictions, the Hubáček,
Šourek, and Železný [38] Xgboost model and a GNN model trained within this thesis work. The
vertical axis shows the RPS and should be read ”the lower RPS, the higher the accuracy”.

of the explicit rating scores, such as pi-ratings. It can also be seen that when compared to the

trained Elo rating model, the GNN model has somewhat elevated performance for most leagues.

The metaparameters for the Elo model were chosen the following:

• γ = 1.44;

• k = 2.9;

• c = e;

• d = 400.

The meaning of the metaparameters was discussed in Section 3.1.2.

5.6 Discussion of the results

During the experiments, the proposed models showed satisfactory results, however, there were

several observations that going to be discussed below. The advantages and disadvantages of the

proposed models are going to be reviewed in the end of this section.

5.6.1 Viability of the proposed models

Working with the soccer data set was problematic due to the high number of unconnected

leagues: a model’s performance was drastically changing throughout the leagues. Using such a

high number of disjointed leagues for one model seems unnecessary and even objectionable in

real life since it is preferable to find a model that represents each league in the best possible way

rather than a model that works only satisfactorily for all the leagues.
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Since the different parameters work best for different leagues, the more general models showed

inferior performance, when compared to the models that were trained only on one league in

soccer. This even raises the question about the viability of such a general model – it might be

useful for giving an approximate estimation of the result, however, models fit on more specific

data give much better predictions of a match.

5.6.2 Contributions of the proposed models

The advantage of the suggested models is the fact that they are domain-independent and is a

more general approach than the ones discussed in Section 3.

Another benefit of the discussed approach to sports prediction is that the trained models can be

used as a rating model as well. The representations of the teams are easily extractable, and the

respective ranking can be obtained by using dimensionality reduction algorithms, such as PCA.

The main disadvantage is the fact that the model has multiple hyperparameters that can influ-

ence the performance of the model, and although their behavior was tested on multiple sports,

generally, their optimal value has to be found experimentally.

Another possible shortcoming of the approaches discussed in work is computational and time

demands during the training phase of the algorithm that are much higher when compared to the

ones of the various rating systems. Rating systems usually traverse through the data only once,

while the neural methods discussed in this work used the sliding window for data capturing and

displayed the data to the model for multiple iterations. However, this overhead is typical for all

advanced models discussed in Section 3.2.

One more downside of the created models emerges when using them as rating models. The

justification for the representations of the individual teams is not as transparent as in the case

of the rating models, where the rules that give the score to the teams are created manually.

In this case, the score of the team may be affected by its own playing behavior as well as the

behavior of the teams that are considered neighbors in the spatial graph structure that covers

all the teams. Nonetheless, the discussed approach is not entirely opaque because the general

rule bases on the history of the past games’ results only and can be easily formulated as ”the

more a team wins over stronger opponents, the higher is its score”. This rule is common for all

the models discussed in Section 3.
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Conclusion

Predicting the results of sports matches is a challenging task: Berrar, Lopes, and Dubitzky [55]

warn that gaining more complex data does not necessarily lead to better predictions of sport

results because the narrow margin of victory is inherent in most professional matches in all sports.

Additionally, some details that have a high impact on the game’s outcome, such as penalties, red

cards, are not induced by the teams’ strength, but rather by the quality of refereeing, weather,

and athletic field conditions, intrateam communication, human factors. Due to those aspects

having short-term influence and being somewhat random, it can be challenging to capture and

keep track of them. However, their effect can be game-changing .

6.1 Goal Fulfilment

In this work, I have collected a significant amount of the data necessary to create a predictive

model. The data consisted of two data sets containing the history of the results for the sports

matches for soccer and ice hockey. Then I have discussed the related works that include the

rating systems, statistical models, and several more advanced models that used machine tech-

niques. I have proposed two solutions that might help to predict the results of the matches.

The idea behind it was to learn the representations of the individual teams and then use that

representation as input features to a prediction model. In the first solution, the teams’ represen-

tations were learned using an embedding layer. In the second solution, the embedding solution

was complemented by a spatial graph structure where the vertices were the individual teams,

and the edges represented the past matches. The edges were weighted differently to reflect the

fact that the more recent matches should have more effect on the team representation. The

best prediction came from a GNN model trained on one league of the soccer data set with the

accuracy of 52.31%. The model trained on a chosen number of leagues also showed a good accu-

racy of 49.62%, which is a result comparable with the state-of-the-art model [38]. The models

showed a better performance when compared to the results obtained from the Elo ratings (RPS

of 0.2176 vs. 0.2362). That showed that a more complex representation structure indeed helped

39
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to achieve better predictions of the outcome of future matches. The experiments with the testing

set proved that the so-called sliding testing set is the most suitable type of framework for testing

the model. Besides, this type of framework is a close approximation of how the model might be

used in real life. After that, multiple choices of the most popular ConvGNN layers were explored

and tested. The experiments showed that the GraphConv layer brought the best results for all

three experiments. The reason for this might be the fact that the spatial ConvGNN is a more

suitable layer than the spectral ones. An attempt to balance the class representation in the

data sets did not produce any positive results for any of the data sets. Although in the current

state, the models are not ready to compete with the market odds or the state-of-the-art models,

the conducted experiments demonstrated the viability of the representation learning, and the

insights from this work can later be used in further researches.

That can lead to a conclusion that all the requirements from the thesis assignment are satisfied.



Appendix A

Attachment structure

The attachment contains the following:

• README.md: has instructions for running the code;

• scr folder with the source code;

• scripts folder with the scripts for model training;

• data folder with the input data;

• models folder contains the models trained during the work.

41
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