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Abstract
This thesis examines the problem of task scheduling on parallel identi-
cal machines with setup operation for every pair of scheduled consecutive
tasks. The length of the setup is sequence-dependent, and the setup must
be executed in-between the relevant tasks by a machine setter. On any
machine at any given time, there can be only one task or setup processed.
No machine setter can work multiple setups at the same time. The goal is
to minimize the makespan, which is the time when the last machine ends.
We propose Constraint programming (CP) models to find the optimal so-
lution and heuristic algorithms that are suitable for large instances of the
problem. We propose warm start techniques that greatly increase the CP ef-
fectivity. We propose a hybrid algorithm called SMETI, which combines the
mentioned methods with sub-problem CP modeling to provide fast, good
results while being able to reach optimum. Experimental comparisons to
the state-of-the-art solutions of similar problems show the proposed ap-
proaches to be more effective, finding the same quality solution faster or
providing a better solution at the same time limit.

Keywords: Scheduling; Identical parallel machines; Multiple servers;
Sequence-dependent constrained setup times; Constraint programming;
Heuristics; Hybrid algorithm

Abstrakt
Tato diplomová práce se zabývá rozvrhováńım úloh na paralelńı identické
stroje, s operaćı přenastaveńı stroje pro každou dvojici naplánovaných úloh.
Délka této operace je závislá na obou úlohách. Operace muśı být vykonána
pracovńıkem mezi danou dvoj́ıćı úloh. Na každém stroji může být v jeden
okamžik vykonávána právě jedna úloha či operace přenastaveńı. Žádný
pracovńık nesmı́ vykonávat v́ıce operaćı zároveň. Úkolem je minimalizovat
tzv. makespan, což je konec posledńı úlohy na nejpozději konč́ıćı mašině.
V práci navrhujeme Constraint programming (CP) modely které jsou
schopné naj́ıt optimálńı řešeńı a heuristické algoritmy, které jsou vhodné
pro velké instance kde CP neńı dostatečně výkonný. Navrhujeme tzv. warm
start techniky, které výrazně zvyšuj́ı efektivitu CP model̊u. Dále navrhu-
jeme hybridńı algoritmus zvaný SMETI, který kombinuje výše zmı́něné
metody s tzv. subproblem CP modelováńım, který poskytuje velmi kval-
itńı výsledky v dobrém čase a zároveň má schopnost dosáhnout optimálńıho
řešeńı. Experimentálńı porovnáńı s tzv. state-of-the-art př́ıstupy ukazuje,
že navržené metody jsou efektivněǰśı, dosahuj́ı stejné kvality řešeńı rychleji
či lepš́ıho řešeńı ve stejném čase.

Kĺıčová slova: Rozvrhováńı; Identické paralelńı stroje; Vı́cero server̊u;
Operace závislé na pořad́ı; Constraint programming; Heuristiky; Hybridńı
algoritmus
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1 INTRODUCTION

1 Introduction

With today’s trends in manufacturing, with factories handling a large variety of products on
multiple production lines, customer’s demand for highly proprietary products of small-batch
volumes, and companies forced to adapt to market shifts constantly, we are in an environment
where the organization of work and effective utilization of production capacities is a crucial,
but also very complex, problem to tackle. Creating a production schedule by trial and error
is often inconvenient and ineffective even for very small productions. From an effective and
efficient solution to this multifaceted problem can benefit almost any type of production,
increasing its possible output and/or reducing costs while seamlessly tailoring the production
to the customer’s needs.

In this thesis, we focus on a typical situation often encountered in production scheduling.
We have a given number of parallel identical machines, which can also represent whole identical
production lines, tasks that are to be executed on these machines, and setups that are to be
performed between those tasks. Any task can be scheduled for any machine. Between any two
consecutive tasks on every machine, a setup operation must be performed by a machine setter.
The setup’s length depends on the particular pair of tasks, referred to as sequence-dependent
setups in the scientific literature. The number of available machine setters in production can
be arbitrary but is set for the whole problem. The machine setters are considered identical,
meaning that any machine setter can perform any setup. This exact problem was solved in one
company manufacturing plastic tubes. The company produced many types of these tubes on
multiple machines, and machine setters were performing setups necessary between producing
two different types. As there were different adjustments needed between every pair of tube
types, the setup times were sequence-dependent. This is just one real-world example of many
possible existing productions that can benefit from a solution to the considered problem.

It might seem that sequence-dependent setups might be a niche restricted to a very narrow
type of productions where frequent mechanical adjustments on machines are needed, but it is
actually a common requirement. We show this on an example of a paint shop. Even though
changing the color tank is always the same operation, the amount of time needed is also
dependent on cleaning up the nozzles spraying the color. This operation always has the same
principle, but it takes a different time depending on how clean we need the nozzles. In case
we would paint using orange color and then red, we might not have to clean the nozzles at
all. However, if we paint red and then white, any residue left in the nozzles would result in
an obvious defect, meaning we have to clean the nozzles very thoroughly. But painting these
in reverse order is also different since little white in red is way less visible than the other way
around. Therefore we do not only care about individual pairs of tasks but also about their
ordering. This is also true for foods, printing, chemical, and many other types of productions.

Below is an example schedule of the problem respecting these constraints. In this case, we
have 3 machines (M1 to M3), 2 machine setters (W 1 and W 2) and 11 tasks (T 1 to T 11). Each
row represents the schedule of one problem’s resource, either a machine or a machine setter.
Tasks are assigned and executed on machines and setups between pairs of tasks performed
by machine setters. Setups on machines are marked by machine setter performing them. The
zero represents the start and Cmax the end of the schedule.

1/60
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Figure 1: A Gantt chart of identical parallel machine production with
non-overlapping sequence-dependent setup times performed by machine setters.

1.1 Problem Statement

In the subsequent text we will use following notation:

• Let T= {T 1, . . . ,Tt} be a set of independent tasks where each task can be executed on
any machine. We index using i and j.

• Let M= {M1, . . . ,Mm} be a set of machines where every machine can execute at most
one task or have one setup performed on itself at a time. Machines are considered to be
identical. We index using k.

• Let W= {W 1, . . . ,Ww} be a set of available machine setters. Machine setters are con-
sidered to be identical. We index using x.

• Let O ∈ Nt×t be a matrix of setup times where indexes i and j will denote the specific
pair of tasks Ti and Tj to which the setup belongs. So the setup time between tasks Ti
and Tj with Ti preceding Tj is denoted oi,j .

We also add following notations for other parameters of the problem. Every task is de-
scribed by its processing time, denoted pi ∈ N. Let si ∈ N0 be start time and ci ∈ N completion
time of that task in the schedule. Every setup is described by its processing time between
tasks, denoted oi,j . Because not every setup between all possible pairs of tasks is used, we
define set of used setups as U= {U1, . . . ,Uu}. We index using y and z. Let sy ∈ N be the
start, py ∈ N the execution and cy ∈ N the completion time of the setup Uy in the schedule.

2/60



1 INTRODUCTION

The constraints of the problem are:

(A1) Every task must be executed.

(A2) Tasks are non-preemptive, i.e., they cannot be suspended during the execution, so
si + pi = ci must hold.

(A3) If task Tj is next after Ti in the machine sequence, setup oi,j must be performed by
machine setter and sj - ci ≥ oi,j must hold. This also means that no setup must be
executed before the first task on each machine. 1

(A4) Setup must be performed by exactly one machine setter.

(A5) Setups are non-preemptive, sy + py = cy must hold for any setup from U .

(A6) If Uy is the setup between tasks Ti and Tj then ci ≤ sy and cy ≤ sj must hold.

(A7) For any two setups Uy, Uz performed by same Wx, sz ≥ cy or sy ≥ cz must hold. 2

(A8) Machine setter can perform at most one setup at a time.

Since machine setters are considered identical, we do not have to represent which specific
machine setter is performing which setup. To simplify the modeling of the problem, rather
than considering each particular machine setter, we will think of it as how many machine
setters we need at a certain time to perform the setups currently scheduled. Later we will
show that this view is very efficient. After solving the problem this way, we can then assign
machine setters to setups by taking arbitrary machine setter from the currently available, not
performing, ones and assign them to the setups. There always exists a solution to machine
setter to setup assignment, which is guaranteed by the found solution. It does not matter
which machine setter we assign to which setup as long as that machine setter was available
at the time of assignment.

The problem’s objective is to minimize the schedule length, also further referred to as
minimizing the makespan. In our case, this means finding a schedule that minimizes the
completion time of the latest ending machine. This, in turn, also means minimizing the latest
task completion time on such a machine. Subsequently, the whole problem looks as follows:

min max
Ti∈T

ci

s.t.

(A1)− (A8)

The formal statement of the considered problem.

1We can also solve instances where setup before the first task is required by adding virtual tasks, which is
explained later.

2This condition can be inferred from other conditions but it is explicitly mentioned for clearer understanding.
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1 INTRODUCTION

1.2 Complexity of the Problem

The problem addressed in this thesis is a more general variant of the NP-hard [19] problem
tackled in Vlk et al. [29], meaning we can do a polynomial reduction of their problem and
solve it using our approaches. The differences are that our problem admits multiple machine
setters instead of just one, and our tasks are not dedicated to a particular machine only.
When reducing their problem to ours, the availability of just one machine setter is not a
problem. However, task dedication to a particular machine is a little trickier. We can enforce
it by setting the setup times between all pairs of tasks dedicated to different machines in
the original instance to be infinity. This makes the solution where two tasks from originally
different machines are placed on the same machine infeasible. This shows that our problem
is at least as hard as the problem in Vlk et al. [29] thus at least NP-hard. We also know
that the problem is in NP because we were successfully able to encode the problem using
Constraint programming, which is NP-complete.

1.3 Approach

To tackle the problem, we first employed Constraint programming (CP) [23]. CP, which will
be described in more detail later, provides much like Mixed-integer programming (MIP) [15],
a way to represent a problem using equations. We developed two CP models of the problem
producing optimal solutions, provided enough time is given.

Unfortunately, most of the real-world problems in scheduling are NP-hard. As shown
before, this applies to the problem considered as well. This means that solving it up to
the optimality is almost always infeasible. It is often more effective to employ a different
approach that does not guarantee optimality but will provide satisfactory results in a far
more reasonable time limit. Or, in case of large problem instances, provide at least some
feasible solution rather than none. While testing various instances of our problem, we verified
that it is simply impossible to use only CP to get a result, which would be satisfactory in every
scenario. Therefore, we developed new constructive heuristic approaches, which can handle big
instances of the problem. This also leads to the idea of a warm starting. Warm starting means
using a solution obtained by another approach as a starting point for the main approach, in
this case, CP, hoping that it improves the whole runtime. We developed a Vehicle Routing
Problem (VRP) warm start by reducing the relaxed version of our problem and solving it
using the OR-Tools [8] library. However, this did not entirely live up to our expectations
of dramatically decreasing the runtime or improving the solution reached in the same time
limit given. On the other hand, solving the instance using our fast proposed constructive
heuristic algorithms and using that solution as a warm start brought huge improvements in
computational speed and solution quality.

However, even with a warm start, CP and constructive heuristic algorithms are suitable
for the opposite extremes of instance sizes. That is why we propose improvements to these
heuristic algorithms, improving their results in exchange for time. However, this still does not
cover every possible instance. More importantly, it also does not address the selection of a
proper approach for a particular instance. We want the approach to adapt to a given instance
and always proceed in a way that is the best for it and the time limit provided.
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1 INTRODUCTION

That is why we developed a hybrid approach combining most of the above with new
additions to create an approach suitable for any problem instance. In this hybrid approach,
constructive heuristic algorithms are used to provide a starting point. After that, CP models
for subproblems of the original problem are built to decrease the model size by lowering the
number of conditions imposed. When there are no more improvements to be had, we use the
CP model of the original problem to further improve the solution up to the optimum. This
approach is called Subproblem Modeling Evolving Through Iteration, shortly SMETI. SMETI
provides fast results while also gradually converging to optimum, providing the ultimate way
of solving the problem without considering which approach is the most suitable for which
instance.

1.4 Contribution and Thesis Outline

The key contributions of this thesis are:

1. Addressing of new scheduling problem with machine setters3, arising as a natural gen-
eralization of particular cases considered in existing literature, combining multiple ma-
chine setters, sequence-dependent setup times, machine-task independence with parallel
identical machines, while also retaining the ability to solve the less general problems.

2. Proposition of CP models utilizing cumulative resource function which can solve in-
stances of up to ten machines and tens of tasks to the optimality usually in a matter of
minutes. Using the warm start technique, CP models can be used on instances of lower
tens of machines and hundreds of tasks.

3. Proposition of domain-specific heuristics which can solve instances of hundreds of ma-
chines and tens of thousands of tasks in under a minute of runtime, with the solution
often just single percents worse than the optimal one. The use of domain-specific heuris-
tics over metaheuristics like Genetic Algorithms was preferred because metaheuristics
are already widely used in scheduling problems like in paper Lunardi et al. [16] with their
effectiveness studied in survey paper Pellerin et al. [20]. We believe that by proposing
domain-specific heuristics, we provide a new angle of approach for similar scheduling
problems and a deeper understanding of the considered problem’s features.

4. Combination of constructive heuristics with CP modeling resulting in hybrid multi-
step procedure SMETI. SMETI provides an effective way of solving any instance of the
considered problem efficiently and adds a way of better solving instances that were not
well suited for neither CP models nor heuristic approaches.

5. Improvement over the state-of-the-art approaches for less general problems. Both CP
models and SMETI show improvements in efficiency over their respective state-of-the-art
counterparts.

3Also referred to as (common) servers in the scientific literature.
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1 INTRODUCTION

The thesis consists of 9 sections. This section described the real-world problematics involved,
formally stated the problem, introduced the naming scheme used in this thesis, and described
the problem’s constraints and connections. Section 2 lists scientific papers on similar thematic
and discusses the current state-of-the-art approaches. Section 3 describes two proposed CP
models used to solve the problem optimally if enough time is provided. Section 4 describes
proposed constructive heuristic approaches best suited for larger instances where CP models
are not fast enough. Section 5 explains the idea behind VRP warm starting and warm start
use of constructive heuristic algorithms to improve CP models effectivity. Section 6 takes an
extra look at the constructed heuristic algorithms’ effectiveness and proposes ways of improv-
ing solution objective value in a trade-off with time. Section 7 describes the hybrid algorithm
SMETI, which combines CP modeling with constructive heuristics. Section 8 discusses the
differences between our approaches and compares the results to calculated bounds. The com-
parison to state-of-the-art approaches is provided in Subsection 8.3. Section 9 contains the
conclusion of findings from this thesis.

6/60



2 RELATED WORK

2 Related Work

As survey paper Allahverdi et al. [3] shows, there are papers on sequence-dependent setup
scheduling. Papers Vallada et al. [27] and Lee et al. [14] focus on heuristic approaches handling
instances of up to lower hundreds of tasks in a few minutes of computation time. But the
research on the problems where the setups require an extra resource is less prominent.

An Integer Linear Programming (ILP) formulation of scheduling problem with a single
server/setup operator and two parallel identical machines is proposed in paper Amir et al. [1].
It is stated in the paper that the computational time of this approach for instances bigger
than 12 jobs (tasks) is too excessive to be used. However, it is shown that if specific conditions
are met, there exist very fast approaches that can be useful in such constraint scenarios.

A scheduling and lot sizing problem with a common setup operator is studied in Tem-
pelmeier et al. [25]. ILP formulations for a problem described as a dynamic capacitated multi-
item multi-machine one-setup-operator lot sizing problem are given. The setups performed
by the operator are considered to be scheduled without overlapping. The setups are associ-
ated with the task following, so setups do not depend on a pair of tasks, which makes them
sequence-independent. The proposed approach can solve instances of tens of tasks, usually
under a 1-minute time limit.

A problem involving machines with setups performed by operators of different capabilities
has been studied in Chen et al. [6]. The problem is modeled using time-indexed formulation
and solved by decomposing the problem into smaller subproblems using Lagrangian relax-
ation. Subproblems are solved using Dynamic Programming (DP) [22]. A feasible solution to
the problem is obtained by the composition of the subproblems’ solutions using a heuristic
algorithm. If that is impossible, the Lagrangian multipliers are updated using the surrogate
subgradient method as in Zhao et al. [30]. This approach’s downside is that the time-indexed
formulation yields a pseudo-polynomial size model, which is especially not suitable if large
processing and setup times are present. The results show that the proposed approach can
handle instances of tens of machines in a matter of minutes.

Papers Vlk et al. [28] and Vlk et al. [29] study problem with sequence-dependent non-
overlapping setups, but tasks are dedicated to machines, and only a single machine setter is
assumed. In both papers, CP models, an ILP model, and heuristics utilizing the problem’s
decomposition are proposed. The resulting subproblems deal with task ordering on machines
independently. The paper results show that proposed CP models can find a solution for
instances of tens of machines and tens of tasks for each machine in 1 minute. However, the
proposed LOFAS algorithm with a heuristic can solve instances of up to 1000 tasks on 5
machines.

The same problem as in Vlk et al. [29] is studied in Huang et al. [24]. Instead of CP,
an ILP model is proposed, and the heuristic approach is realized using a Genetic Algorithm
(GA). It is stated in the paper that ILP formulation is unusable in a real-world scenario. The
GA approach can solve instances of 10 machines and 100 tasks in under 50 seconds.
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The problem in Hamzadayi et al. [4] assumes the assignment of tasks to any machine.
Compared to the two previous papers, setups are sequence-independent, so there is no direct
way to compare this paper’s generality to the aforementioned two. Again, only one machine
setter is allowed. ILP formulations are provided, and the heuristic approach is again realized
using a GA. The results show the MIP model can solve instances of 6 machines and up to 40
tasks optimally or close to the optimum in 3600s. However, our testing suggests that only in
a minority of cases with the optimal solution could the model actually prove its optimality.
The GA solves the same instances in under 1 minute, with 2 to 5 % worse results than the
MIP.

Kim et al. [18] generalize Vlk et al. [29], Huang et al. [24] and Hamzadayi et al. [4], offering
a solution to machine-independent and setup sequence-dependent problems. However, the
problem addressed in this paper still lacks the support of multiple machine setters, which
limits its usage in real-world scenarios. Exact solutions are realized using ILP while heuristic
solution using a genetic algorithm. The results show that the MIP approach can find the
optimal solution in 18000 seconds for the instance of 3 machines and 9 tasks. The GA solution
shows the ability to solve instances of 10 machines and 100 tasks in one minute, providing a
very good solution.

The papers discussed in this section are more or less ordered by their increasing problem
complexity. It is very noticeable that as complexity increases, the ability to solve bigger
instances of a particular problem goes down dramatically. This is especially true for the exact
approaches realized using ILP/MIP. However, the results of the papers provided are only
very general summarizations. The problems often have parameters involved in testing, and
some even have additional conditions in the problem definition. The more detailed analysis
of state-of-the-art approaches performance and how they compare to our approaches is in
Section 8.

To sum up, the research shows that even though papers addressing similar problems exist,
no papers tackle this type of problem with such generality as the proposed solutions in this
thesis. Furthermore, the results from Vlk et al. [29] show that CP seems a far more suitable
approach than MIP even though MIP is so often applied to this type of problem in the
literature. This finding is also further demonstrated in Section 8.
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3 Constraint Programming Approaches

The first approach we use to solve the problem is Constraint programming (CP). We propose
two models differing in the way how they handle the modeling of constraints related to setups.
The presented models extend ideas from models of a less general problem assuming only one
machine setter and lacking non-dedication of tasks described in Vlk et al. [29].

In Subsection 3.1, we introduce basic and used concepts of CP. In Subsection 3.2, we
describe the constraints shared across both models. The following two subsections 3.3 and 3.4
then describe the respective constraints of each model.

3.1 Preliminaries and Notation

First, we briefly introduce the main concepts of CP, and then we will move to the core
parts and specifics of each model. Further information about CP modeling and CP Optimizer
which are beyond the scope of the considered problem can be found in CP Optimizer user’s
manual [12]. The main modeling expression of CP is interval variable. As the name suggests,
it represents some activity with its required time in the schedule. Its length can be set by
expression LengthOf. Its start in the schedule is denoted by expression StartOf and its
completion time by expression EndOf. We use the interval variables to represent the tasks

StartOf EndOf

LengthOf

Figure 2: Interval variable expressions in the machine schedule.

and setups in our problem. The start and completion times of tasks and setups in the schedule
are determined by the CP solver. Their execution time is given by the instance description. We
will denote the set of interval variables representing tasks as IT . Interval variable of specific
task Ti will be denoted ITi .

Another important modeling construct of CP used in the proposed models is the NoOver-
lap constraint. This constraint ensures that for a given set of interval variables, no two interval
variables from this set overlap each other in the produced schedule. In other words, in a se-
quence consisting of interval variables constrained by NoOverlap, only one interval variable
is present at any given time in the schedule. We can also provide a so-called transition matrix
to the NoOverlap constraint, which defines spaces between the end of one interval variable
and the start of the next one. We use our setup times matrix O ∈ Nt×t as the transition
matrix of the NoOverlap constraint to insert setup times between tasks in the sequence.

Another important concept is optional interval variable. This means that depending on
the model’s conditions; the optional interval variable can either be present or absent. The
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absent variable does not have to conform to the model’s constraints. The CP solver decides
if the variable should be present or absent in the solution unless we specifically state other-
wise. We can state the presence and absence of variable manually by introducing constraints
which imply either or by using the constraint Alternative. The Alternative constraint
is assigned a set of variables, and only one of the variables is then chosen to be present in the
solution while others are set to be absent.

3.2 Common Modeling Principles

The core models’ parts are shared over both proposed CP models. First, we need to ensure
that every task is present in the produced schedule. We achieve this by assigning task lengths
given by the problem instance to their respective interval variables representing them:

LengthOf(ITi ) = pi. (CP-C1)

Since we do not know which task will be assigned to which machine, we use the constraint
Alternative mentioned earlier. For every ITi ∈ IT we add a new optional interval variable

IT
Opt

i,k to the schedule of every machine Mk ∈ M . Then, the CP solver decides which of these
interval variables in every set will be present and absent depending on other constraints and
optimization criterion. This way, every task is assigned to exactly one machine. We also need
to ensure that the selected optional interval variable for every task Ti will be associated with
interval ITi representing our task since those are also used in the model’s conditions. This
can be done by passing ITi as an argument of the Alternative constraint representing the
so-called master interval variable. To this variable, the selected present optional variable is
automatically assigned:

∀ITi ∈ IT : Alternative

ITi , ⋃
Mk∈M

{
IT

Opt

i,k

} . (CP-C2)

To ensure that tasks do not overlap on any particular machine, we use aforementioned
NoOverlap constraint for every machine. We use the optional interval variables here because
we do not know yet which task will be assigned to which machine so we let the solver handle
it. We also supply the setup matrix O to ensure that at least the length of setup time between
EndOf one present task and StartOf following present task in the sequence is reserved:

∀Mk ∈M : NoOverlap

 ⋃
ITi ∈IT

{ITOpt

i,k }, O

 . (CP-C3)

In both CP models, we minimize schedule length, also called the makespan, which, as
derived before, is actually the same as minimizing the end of the last task on the machine
with the longest schedule. The interval variable of the task which is to be minimized is:

Max

 ⋃
ITi ∈IT

EndOf(ITi )

 . (CP-OBJ)
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3.3 CP Pairwise: Pairwise Optional Setups

In this model, the concept of optional interval variable is utilized again. We will enforce a
setups’ presence, depending on all pairs of tasks on all machines. We achieve this by using the
expression PresenceOf. If a certain pair of tasks is present on any machine, the optional
setup is put into the expression PresenceOf, which will ensure its presence in the solution.
In the following text, this model will be referred to as CPPairwise.

The optional interval variable representing specific setup between a pair of tasks Ti and
Tj , i 6= j will be denoted as IS

Opt

i,j . The set of all optional interval variables representing

setups between pairs of tasks will be denoted as IS
Opt

. There are t(t − 1) variables in this
set. It is important to note, that while setup spaces in the makespan are already guaranteed
thanks to the setup matrix O passed to the NoOverlap constraint, we need variables from
IS

Opt
to connect setups with machine setters. The lengths of these interval variables are set

to corresponding setup times provided by the problem instance:

∀ISOpt

i,j ∈ ISOpt
: LengthOf(IS

Opt

i,j ) = oi,j . (CPP1)

To guarantee that the setups are processed in between the relevant pair of tasks and
not anywhere else in the schedule, we use the constraint EndBeforeStart(IA, IB). This
constraint ensures that interval variable IA is completed before interval variable IB can start.
If either of the interval variables is absent, the constraint is implicitly satisfied. Thus, the
following constraints are added:

∀ITi , ITj ∈ IT , i 6= j : EndBeforeStart(ITi , I
SOpt

i,j ) ∧ EndBeforeStart(IS
Opt

i,j , ITj ).
(CPP2)

Finally, we ensure the presence of necessary optional interval variables representing setups
between pairs of tasks present in the schedule. We use the expression Next(I ′), which returns
the next interval variable in the sequence. In our case, this is interval variable representing
the task following the task given by the I ′. This way, we can find out which task follows which
in the schedule. According to this, we can enforce the presence of setup in between these two
tasks. Notice that each task which is present will be followed by exactly one setup except for
the last task on each machine, which has no following task:

∀ITi , ITj ∈ IT , i 6= j, ∀Mk ∈M : Next(IT
Opt

i,k ) = IT
Opt

j,k =⇒ PresenceOf(ISi,j). (CPP3)

The last set of constraints limits the maximum number of setups running simultaneously
to the number of machine setters available. There are many ways of achieving this, but the
computationally superior way proposed in Vlk et al. [29] uses the expression Pulse(I ′, a).
This expression specifies that a units of resource, in our case machine setters, is used during
interval I ′. The cumulative function is composed of Pulse terms for each IS

Opt

i,j representing
the usage of exactly one machine setter. The function must remain lower or equal than the
number of machine setters w provided at any point in time in the schedule:∑

∀ISOpt
i,j ∈ISOpt

Pulse(IS
Opt

i,j , 1) ≤ w. (CPP4)
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The complete model using the defined constraints looks as follows:

Minimize (CP-OBJ)

s.t.

(CP-C1)− (CP-C3)

(CPP1)− (CPP4)

The CPPairwise model.

3.4 CP Flexible: Flexible Setup Intervals

The key difference between this model and CPPairwise is that we do not represent every
possible setup by an optional interval variable. We avoid the quadratic number of setup
constraints, which is very important for bigger problem instances. The number of interval
variables representing setups in this model is only equal to the number of tasks. This is
achieved by representing every possible setup following a task by only one interval variable.
To make this possible, we do not set the length of the task and setup interval variables equal
to their respective values given by instance description, but we use inequalities instead. In
the following text, this model will be referred to as CPFlexible.

First, we use inequality to relax the assignment of processing times to interval variables
in IT . The length of interval variable ITi will now be at least its processing time pi. This
way, the interval variable representing task can prolong itself and wait until a machine setter
is available to perform the following setup. This will be useful later. Thus, the task length
constraints imposed in (CP-C1) are relaxed because they must only be greater than the
corresponding processing times:

∀ITi ∈ IT : LengthOf(ITi ) ≥ pi. (CPF1)

We define a set ISi representing setups following their respective task interval variable ITi
from IT . Considering that this way we have an interval variable representing setup after every
task, the setup after the last task on each machine becomes a zero-length dummy setup. Due
to that, we merely set the length of the setup variables to be at least zero and the actual
length of the setup executed will be determined later:

∀ISi ∈ IS : LengthOf(ISi ) ≥ 0. (CPF2)

The cumulative function use is very similar to CPPairwise. The only difference is that we do
not have setups for all pairs and orderings of tasks, so we only demand that the setup interval
variable following every task interval variable ITi will use a unit of resource of cumulative
function. Again the sum must be lower or equal to the number of provided machine setters:∑

ISi ∈IS
Pulse(ISi , 1) ≤ w. (CPF3)
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Next, we synchronize the start and completion times between the tasks and setups. We use
the constraint EndAtStart(IA, IB), which ensures that the interval variable IA is completed
exactly when the interval variable IB starts. We set the end of the task equal to the start of
the following setup:

∀ITi ∈ IT : EndAtStart(ITi , I
S
i ). (CPF4)

It is important to note that this is only possible because we set the task’s length by
inequality. As a result of this, the task interval variable ends exactly as the following setup
starts. This is very important because the execution length of setup between tasks is already
implicitly ensured by the setup times matrix passed to the NoOverlap constraint in the
shared part of the model. No additional conditions are needed.

Now we only have to constraint the end of task setup. This can be done by using the con-
straint StartOfNext(I ′) which returns the start time of the next interval variable following
I ′ in the sequence. In our case, this is the start time of the interval variable representing
following task. As we do not know which task will be assigned to which machine, we have
to use our optional interval variables introduced in (CP-C2). Thus, the constraints are as
follows:

∀ISi ∈ IS ,∀Mk ∈M : EndOf(ISi ) ≥ StartOfNext(IT
Opt

i,k ). (CPF5)

Note that the inequality in constraint (CPF5) is necessary because StartOfNext evalu-

ates 0 for absent IT
Opt

i,k and also for the last task on each machine. The start time of the setup
is forced by condition EndAtStart to be after the end of the interval variable representing
the task, which would never be 0, making the model unsolvable. This way, the last setup’s
completion time is equal to its start time, and the setup’s length is 0.

The complete model using the defined constraints looks as follows:

Minimize (CP-OBJ)

s.t.

(CP-C2)− (CP-C3)

(CPF1)− (CPF5)

The CPFlexible model.
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3.5 Experimental Results

The Table 1 demonstrates computational differences between CPPairwise and CPFlexible. While
small instances can be solved by both models with similar effectivity, as the number of tasks
grows, the number of optional setups in model CPPairwise becomes a problem. This leads to
a sharp increase in makespans differences between models.

Table 1: Comparison of CP exact solutions.

parameters objective value [-]
# m n w CPPairwise CPFlexible

1 6 18 5 92 91
2 6 36 5 1673 175
3 8 32 5 219 128
4 8 32 8 184 126
5 8 64 5 9996 261
6 8 64 8 6321 257
7 10 50 5 5901 173
8 10 50 8 3746 164
9 10 100 5 25146 306
10 10 100 8 15693 299
11 12 72 5 12706 162
12 12 72 8 7928 164
13 12 144 5 ∞ 336
14 12 144 8 32542 338

Every row represents one generated instance of m machines, n tasks, and w machine
setters with the respective model’s objective value. The calculation times given were between
a couple of seconds to one minute. The detailed information about the implementation and
hardware used for testing can be found in Section 8.
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4 Constructive Heuristic Approaches

Since the considered problem is NP-hard, it is infeasible to compute an optimal solution
for many real-world instances. As shown in paper Andrade et al. [5], one of the possible
solutions to such problems is to apply a heuristic approach, obtaining the suboptimal but
still reasonable solution to the instances where other approaches would fail completely. Later
in this section, two heuristic approaches to the problem are proposed:

• Locally Optimal Selection of Setups (LOSOS),

• Resolution of Setup Overlaps Lazily (ROSOL).

Compared to the CP models from the previous section, LOSOS and ROSOL bring consider-
able speed improvements. They can easily solve instances of multiple magnitudes larger than
CP models. Another advantage over CP models is that they do not require a CP solver like
CP Optimizer [11] used in this thesis. On the other hand, LOSOS and ROSOL do not guarantee
the solution’s optimality. However, they usually produce very good results.

Some parts of LOSOS and ROSOL are common to both algorithms. The main difference
between them is that while LOSOS handles machine setters while scheduling tasks, ROSOL
handles machine setters in a separate phase after task assignments and their orderings are
already given.

In the pseudocode of both algorithms, there are three additional functions called, Gen-
erateStartingTasks, SelectNextTask and OptimizeScheduleEnds. These functions
are used to encapsulate parts of the algorithm, where improvements to the algorithms are ap-
plied. They are described in detail in Section 6. The pseudocodes of their base greedy versions
are as follows:

Algorithm 1 Generate starting tasks, one for every machine.

1: function GenerateStartingTasks
2: TStartingTasks ← ∅
3:

4: for each Mm ∈M do
5: TStartingTasks ← TStartingTasks

⋃
Tm

6: end for
7:

8: return TStartingTasks

9: end function
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Algorithm 2 Select next task to follow after a given task.

1: function SelectNextTask(Taskgiven, T
Remaining)

2: Tnext ← TRemaining
1 . TRemaining denotes set of tasks remaining to be scheduled.

3: MinimalSetupLength←∞
4:

5: for each Ti ∈ TRemaining do
6: if ogiven,i < MinimalSetupLength then . If setup time given by matrix is smaller.
7: Tnext ← Ti
8: MinimalSetupLength← ogiven,i
9: end if

10: end for
11:

12: return Tnext, ogiven,next
13: end function

Algorithm 3 Optimize ends of all machines schedules.

1: function OptimizeScheduleEnds
2: SwapFound← True
3:

4: while SwapFound do
5: SwapFound← False
6: Mlongest ←M1

7: LongestMachineLength← 0
8:

9: for each Mm ∈M do
10: if LongestMachineLength < T−1,m.End then . T−1,m denotes last task on Mm.
11: Mlongest ←Mm

12: LongestMachineLength← T−1,m.End . .End denotes end of task in schedule.
13: end if
14: end for
15:

16: for each Mm ∈M do
17: Mm ←Mm

⋃
T−1,longest . Schedule T−1,longest to Mm.

18: if T−1,m.End < T−1,longest.End then
19: Mlongest ←Mlongest \ T−1,longest . Undo scheduling of T−1,longest on Mlongest.
20: SwapFound← True
21: else
22: Mm ←Mm \ T−1,m . Undo scheduling of T−1,longest to Mm if ineffective.
23: end if
24: end for
25: end while
26: end function
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4.1 Locally Optimal Selection of Setups (LOSOS)

The main idea of LOSOS is to create chains of tasks on machines with the best possible setups
between them. This is done by constructing the solution step by step, assigning the setup to
the machine when the currently scheduled task execution on the machine ends. In the baseline
version of the algorithm, the following setup is chosen greedily as the setup with the shortest
execution time after the currently ending task. The pseudocode is given in Algorithm 4.

Algorithm 4 Solve instance using LOSOS algorithm.

1: function LOSOS Solve
2: TStartingTasks ← GenerateStartingTasks . called function
3: for each Mm ∈M do
4: Schedule Mm ← TStartingTasks

m

5: end for
6: TRemaining ← T \ TStartingTasks

7:

8: WorkersFreeFromTime← ∅
9: for each Ww ∈W do

10: WorkersFreeFromTime←WorkersFreeFromTime
⋃

0
11: end for
12:

13: while TRemaining 6= ∅ do
14: ClosestEndingMachine←M1

15: ClosestEndingTask ← T−1,1 . Last currently scheduled task on M1.
16: for each Mm ∈M do
17: if T−1,m.End < ClosestEndingTask.End then
18: ClosestEndingTask ← T−1,m

19: ClosestEndingMachine←Mm

20: end if
21: end for
22: NextTask, SetupLength← SelectNextTask(ClosestEndingTask, TRemaining)
23: . called function
24: NextSetup.Start← ClosestEndingTask.End
25: NextTask.Start← ClosestEndingTask.End+ SetupLength
26: ClosestEndingMachine← ClosestEndingMachine

⋃
NextSetup

27: ClosestEndingMachine← ClosestEndingMachine
⋃
NextTask

28: . Schedule NextSetup and NextTask to ClosestEndingMachine.
29:

30: argmin(WorkersFreeFromTime)← NextTask.Start
31: TRemaining ← T \ ClosestEndingTask
32: end while
33:

34: OptimizeScheduleEnds . called function
35: end function

First, the starting tasks TStartingTasks are chosen for every machine and assigned to them.
There are multiple possible criteria for choosing TStartingTasks which improve the solution
besides the simple ineffective selection method described in Algorithm 1. These other methods
are described in Section 6. After the first tasks are assigned, they are removed from the set
of tasks remaining to be assigned, which is denoted by TRemaining. (see lines 2 - 6)
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Next up, the data structure representing all machine setters is created. It is denoted by
WorkersFreeFromTime in the pseudocode. The best way is to use the priority queue with
the earliest available machine setter on top so it can be easily accessed. At the start, all
machine setters are set to be ready to work, available from time 0. (see lines 8 - 11)

Now, the earliest ending task, denoted by ClosestEndingTask, with its respective ma-
chine, is found. The more effective way than the way proposed in the pseudocode is to use
the priority queue again. Then, we find a suitable task, denoted by NextTask, and its respec-
tive setup length to follow after ClosestEndingTask. The NextTask can be either chosen
greedily as in Algorithm 2 or by one of the selection criteria described in Section 6. Us-
ing the greedy selection strategy, NextTask is a task with the shortest possible setup from
ClosestEndingTask to any other unscheduled tasks. (see lines 13 - 22)

Next up, the earliest ending machine setter is selected to perform the setup between
ClosestEndingTask and NextTask. The setup’s starting time is calculated according to
machine setter’s and machine’s availability and is scheduled to ClosestEndingMachine. After
that NextTask itself is scheduled. Now NextTask is considered scheduled and removed from
TRemaining. (see lines 24 - 32)

Finally, the end of the schedule is optimized by calling the Algorithm 3 or its better version
proposed in Section 6. This is especially important if the Algorithm 2 selection strategy is
used as it tends to leave long setups to the end. (see line 34)

The asymptotic complexity of the baseline version of the algorithm with priority queues
used for machine setters and machines is O(log(w) log(m)n2 +mn).

4.2 Resolution of Setup Overlaps Lazily (ROSOL)

The main idea of ROSOL is to schedule tasks and setups in a locally optimal way and ignore
machine setter overlaps, which are resolved later. In other words, we relax machine setter
constraints and resolve them later by moving the start times of tasks and setups, if necessary.
The pseudocode of ROSOL is in Algorithm 5. H denotes the upper bound of the final makespan
length, and Timep denotes p th time point in the schedule.

The selection and assignment of TStartingTasks are the same as in LOSOS.
(see lines 2 - 6)

The selection of ClosestEndingTask, ClosestEndingMachine and NextTask are also
the same as in LOSOS. The only difference here is that no data structure for machine setters
is present. (see lines 8 - 17)

Next, the NextSetup and NextTask are assigned. In this case, we do not consider machine
setter availability as we did in LOSOS. (see lines 19 - 25)

Now, the problem is solved but without adhering to the constraints of machine setters.
The solution has to be modified, so machine setters are accounted for. So at every time point
in the makespan, the number of currently executed setups is counted. (see lines 27 - 36)
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Algorithm 5 Solve instance using ROSOL algorithm.

1: function ROSOL Solve
2: TStartingTasks ← GenerateStartingTasks . called function
3: for each Mm ∈M do
4: Schedule Mm ← TStartingTasks

m

5: end for
6: TRemaining ← T \ TStartingTasks

7:

8: while TRemaining 6= ∅ do
9: ClosestEndingMachine←M1

10: ClosestEndingTask ← T−1,1 . Last currently scheduled task on M1.
11: for each Mm ∈M do
12: if T−1,m.End < ClosestEndingTask.End then
13: ClosestEndingTask ← T−1,m

14: ClosestEndingMachine←Mm

15: end if
16: end for
17: NextTask, SetupLength← SelectNextTask(ClosestEndingTask, TRemaining)
18: . called function
19: NextSetup.Start← ClosestEndingTask.End
20: NextTask.Start← ClosestEndingTask.End+ SetupLength
21: ClosestEndingMachine← ClosestEndingMachine

⋃
NextSetup

22: ClosestEndingMachine← ClosestEndingMachine
⋃
NextTask

23: . Schedule NextSetup and NextTask to ClosestEndingMachine.
24: TRemaining ← T \ ClosestEndingTask
25: end while
26:

27: p← 0
28: while p 6= H do
29: CurrentSetupsCount← 0
30: for each Mm ∈M do
31: MStartingSetups ← ∅ . Set of machines with setup starting at this time point.
32: if Mm in Timep executes setup then
33: CurrentSetupsCount← CurrentSetupsCount + 1
34: MStartingSetups ←MStartingSetups

⋃
Mm

35: end if
36: end for
37:

38: if NumberOfWorkers < CurrentSetups then
39: SetupsToMove← CurrentSetups−NumberOfWorkers
40: while SetupsToMove 6= 0 do
41: ClosestEndingMachine←MStartingTasks

1

42: ClosestEndingTask ← T−1,1

43: for each Mm ∈M do
44: if T−1,m.End < ClosestEndingTask.End then
45: ClosestEndingTask ← T−1,m

46: ClosestEndingMachine←Mm

47: end if
48: end for
49: Move current ClosestEndingMachine setup one time point forward
50: MStartingTasks ←MStartingTasks \ ClosestEndingMachine
51: SetupsToMove← SetupsToMove− 1
52: end while
53: end if
54: p← p+ 1
55: end while
56:

57: OptimizeScheduleEnds . called function
58: end function
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If the number of concurrent setups running at a certain time point rises above the number
of machine setters provided, it means that one or more setup starting at this time point
are over the machine setter capacity. The start of some of these setups must be moved
one time step forward, so a maximum of machine setters count of setups are performed.

(see lines 38 - 39)

The setup or setups selected to move are the ones on machines with the currently shortest
schedule lengths. It is important to note that once the setup is set to be executed and not
moved, it is considered immovable in the next time point. Otherwise, the algorithm could enter
an infinite loop of setup moves. Machine’s schedule length could become currently shortest
while already executing some setup, which would interrupt it and move it forward. This could
happen in a loop between multiple machines, with every setup being canceled mid execution.
After executing the necessary setup moves, we move one time point forward in the schedule.

(see lines 40 - 55)

The end of the schedule is optimized in the same way as in LOSOS. (see line 57)

The asymptotic complexity of the baseline version of the algorithm with priority queues
used is O(log(m)n2 +Hm(m− w)), where H is the length of the final makespan.

20/60



4 CONSTRUCTIVE HEURISTIC APPROACHES

4.3 Experimental Results

The difference between LOSOS and ROSOL in Table 2 is not very pronounced. Particularly for
the smaller instances, the results tend to be the same. When solving bigger instances, ROSOL
slowly becomes better than LOSOS, but at the cost of increased computational cost as the
complexity is not the same for both algorithms. This is an important takeaway for the next
section, which describes the warm starting of CP models. With barely any result differences
on instances where CP models are used and more taxing computation of ROSOL, LOSOS is
more fitting to be a warm start algorithm of choice for CP models.

Table 2: Comparison of constructive heuristic algorithms.

parameters objective value [-]
# m n w LOSOS ROSOL

1 10 100 4 295 295
2 13 195 4 447 447
3 16 320 4 572 572
4 19 475 4 734 734
5 10 300 4 823 823
6 13 130 4 302 302
7 16 240 4 438 438
8 19 380 4 553 553
9 10 250 4 697 697
10 13 390 4 810 810
11 16 160 4 326 326
12 19 285 4 440 440
13 10 200 4 578 582
14 13 325 4 722 722
15 16 480 4 860 856
16 19 190 4 308 307
17 10 150 4 460 460
18 13 260 4 578 577
19 16 400 4 697 692
20 19 570 4 907 900

Every row represents one generated instance of m machines, n tasks, and w machine
setters, with the respective objective value of the algorithm. The calculation times of algo-
rithms on given instances were up to tens of milliseconds. The detailed information about the
implementation and hardware used for testing can be found in Section 8.
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5 Warm Starting the CP Solver

Since the solution space of the considered problem is large, it is worth considering the warm
starting of the solution. Warm starting is a commonly used technique of obtaining a feasible
starting solution in a reasonable time to improve the computational speed of the algorithm.
It is often used in scheduling as in paper Shahrzad et al. [17] as well in combination with
CP/MIP modeling as in paper Fairbrother et al. [7]. To warm start, we usually need to
reduce our original problem to another more familiar one, to which some good and optimized
algorithms already exist. One such suitable problem which we selected is the Vehicle Routing
Problem (VRP). It is a very well-known and studied problem, with many existing algorithms
and libraries providing solutions with good performances.

5.1 VRP Warm Start

The Vehicle Routing Problem, discussed in detail in the paper Toth et al. [26], has a very close
resemblance to our considered problem. We build routes for vehicles with sequence-dependent
crossings between each pair of points in the problem. The vehicles in VRP can represent our
machines, points our tasks, and crossings our sequence-dependent setups. From the existing
libraries, we chose Google’s OR-Tools [8], which contains support for VRP solving and is freely
available. Before we run the VRP solver, we reduced our problem to the VRP as follows:

1. The machines in the original problem are represented by vehicles in the reduced VRP.
Therefore, the route of the vehicle represents the machine schedule.

2. The tasks in the original problem are represented by points on the routes of vehicles in
the reduced VRP.

3. We add a new point which will represent depot of the VRP. The depot is a special point
in VRP, where all vehicles must start and end their routes. We connect it by edges
(depot, point) to all points in the problem. The weights of these edges are equal to the
processing times of tasks represented by those points.

4. We connect all points to the depot by edges (point, depot). These edges’ weights are
equal to the sum of maximum setup time and maximum task processing time in the
problem. This ensures that we never travel through the depot when going from one
point to another. We have to do this because it would yield a solution that would be
infeasible after reducing to our original problem.

5. All other points are connected with each other by edges (pointa, pointb). The weight is
equal to the sum of the task processing time represented by the pointb and the setup
length between them. Because setups are sequence-dependent we have asymmetric VRP,
meaning that edge (pointa, pointb) can have different length than (pointb, pointa).

6. After OR-Tools solves the problem, we remove the depot in each vehicle route and map
each route as a sequence of tasks on one machine.
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It is important to note that this substitute problem does not consider that machine setter
could be working multiple setups at once. Machine setters are not represented in the VRP at
all. We have to assign the solution extracted from VRP to the CP model and let it complete
it to the feasible starting solution. However, this solution still has a much smaller objective
value compared to the starting solution of the CP model without a warm start. Using VRP
warm start usually leads to better results in the same time limit, even though it uses part of
the time limit provided for its execution.

5.2 LOSOS/ROSOL Warm Start Use

Because both LOSOS and ROSOL shown good and fast results, they were also considered as
warm start candidates. It has been found that they are far more effective for warm starting
than the VRP reduction. Because of that, they are used as warm start algorithms instead of
VRP reduction.

The warm start of choice for CPPairwise and CPFlexible is LOSOS because it is faster and
there is no big difference between results4, with ROSOL being usually only slightly better.
However, both LOSOS and ROSOL are run as a warm start step in SMETIṪhere are two reasons
why:

• There is a difference between the computational complexity of LOSOS (polynomial),
ROSOL (pseudo-polynomial), and CP (NP-hard). For smaller instances, CP models can
improve their incumbent solution very fast with the benefit of systematically cutting
down the solution space. On the other hand, with bigger instances, the nature of NP-
hard problems will make execution times of LOSOS and ROSOL negligible in perspective
to the CP models runtimes.

• SMETI uses local improvements. This means that it is likely that most parts of the
solution will not change very often. This is why it is so important in this case to have
the best possible solution provided at the start.

After LOSOS or ROSOL warm start execution, their solution is then translated into the
model of CPPairwise, CPFlexible or SMETI. This is done by assigning tasks and their orderings
to the machines according to the warm start solution. We also add setup time spaces between
those tasks and set their start and end times according to the warm start.

4This has been shown in Section 4.3.
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5.3 Experimental Results

To distinguish the CP models with and without the warm start, we append ws behind the
model’s name when warm start is used. The Table 3 demonstrates the impact of warm start
on both CPPairwise and CPFlexible. At first glance, three things are noticeable from the table.
First, a warm start helps CPPairwise to find a reasonable solution in instances where it was not
possible before. Second, a warm start solution is sometimes better than CPPairwisews. Third,
the warm start does not seem to affect CPFlexible for small instances, sometimes even giving
a slightly worse solution.

Table 3: Comparison of CP models with CP models using warm starting.

parameters objective value [-]
# m n w CPPairwise CPPairwisews CPFlexible CPFlexiblews LOSOS

1 6 18 5 92 90 91 94 123
2 6 36 5 1673 177 175 168 184
3 8 32 5 219 125 128 120 125
4 8 32 8 184 122 126 120 125
5 8 64 5 9996 268 261 257 263
6 8 64 8 6321 266 257 253 263
7 10 50 5 5901 171 173 164 167
8 10 50 8 3746 177 164 166 167
9 10 100 5 25146 310 306 303 317
10 10 100 8 15693 310 299 302 317
11 12 72 5 12706 171 162 161 184
12 12 72 8 7928 177 164 164 184
13 12 144 5 ∞ 48469 336 338 357
14 12 144 8 32542 31661 338 336 357

Every row represents one generated instance of m machines, n tasks, and w machine
setters, with the respective objective value of CP models and the warm start objective value
provided by LOSOS. The calculation times given were between a couple of seconds and one
minute. The detailed information about the implementation and hardware used for testing
can be found in Section 8.

The first observation is no surprise. However, the second observation is more interesting.
The reason why the results of LOSOS are sometimes better than the results of CPFlexiblews
is that warm start is not being translated to the model entirely. Some things, like the pulse
function, are not encoded into the starting point of the CP model, so the CP solver has to
take the warm start and complete it. In some cases, this takes time, and because CPPairwise

model is generally not very effective, it can happen that the time provided is not enough to
meet the warm start solution.
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The third observation is also affected by this, but there are other reasons as well. We do
not see any significant difference on smaller instances due to the CPFlexible solution already
being close to the optimum, where improvements are generally slow. Also, due to the nature
of the CP solver search, when a solution is built from the warm start, the CP solver uses its
makespan as a bound and expands the search around it. When no warm start is provided, the
CP solver determines the starting point from which it works the solution space down. The
solver may expand different branches of solutions in each scenario, sometimes favoring the no
warm start approach. To prove that warm start also makes the difference for the CPFlexible

model, we have to consider bigger problem instances or reduce the time limit. With bigger
instances, the warm start bound is more efficient as it cuts bigger parts of the solution space.
In the next tests, we decreased the calculation times to a maximum of a couple of seconds
and increased the instance sizes to underline the warm start effectivity.

Table 4: Comparison of the warm started and non warm started CPFlexible model.

parameters objective value [-]
# m n w CPFlexible CPFlexiblews LOSOS

1 14 98 5 2015 204 218
2 14 98 8 484 205 218
3 14 98 13 844 205 218
4 14 196 5 4507 368 379
5 14 196 8 3357 371 379
6 14 196 13 4074 371 379
7 16 128 5 2921 233 250
8 16 128 8 476 231 250
9 16 128 13 932 231 250
10 16 256 5 6203 451 500
11 16 256 8 6017 449 500
12 16 256 13 4697 446 500
13 18 162 5 4052 272 291
14 18 162 8 2392 270 291
15 18 162 13 1818 271 291
16 18 324 5 7985 523 567
17 18 324 8 4656 523 565
18 18 324 13 5551 518 565

We can see that in most cases, CPFlexiblews solution is magnitudes better than the CPFlexible.
Depending on the instance size, time limit, and chance, there is a moment where the CP solver
expands the solution space closer to the optimum, and the makespan radically drops. How-
ever, this happened only in a few of the testing instances in Table 4. Hence, a warm start
helps us get better results faster. It also ensures that our solution will not be way off even
if we tackle big instances or have a small time limit available, which is arguably its most
important benefit.
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6 Constructive Heuristics Improvements

Algorithms LOSOS and ROSOL are straightforward and efficient in most cases, but they are
greedy heuristics. As shown for even less complex NP Integer Knapsack Problem in paper
Kohli et al. [13], bounds and results of certain instances for simple greedy heuristics can be
very far from the optimal solution to the problem. In this section, we focus on how to improve
the effectivity, especially in situations where the greedy nature of the heuristic algorithms
incur substantial losses to the solution quality. We propose these improvements:

• Selecting starting tasks in an informed way.

• Optimizing the endings of machine schedules with additional task swapping.

• Replacing the greedy setup selection with coefficient based selection.

LOSOS can be further improved using task selection driven by the reduction of setup overlaps.
This is not applicable to ROSOL because machine setters are added into the problem when all
the tasks are already assigned to machines.

6.1 Starting Tasks Selection

Picking first m tasks in the problem to be the machines’ starting tasks, as it is done in
the baseline function GenerateStartingTasks 1 in Section 4, will unlikely lead to a good
result. There is no guaranteed way to pick the best possible starting tasks without solving
the whole problem, but we can choose tasks, so they probably yield a better result than the
naive selection. The proposed approaches are:

1. We set starting tasks at random. This option is only mentioned because it is not the
same as the naive selection of m first tasks, but on average, it yields the same results,
and it is the worst out of the proposed methods.

2. We find m tasks, such that the shortest possible setup from any previous task to these
is one of the m longest setups between all shortest setups of all pairs of tasks. Let us
define the set of these tasks as Tm, denote task from this set as Tj and any other task
as Ti. We are looking for Tj such that the shortest possible setup between any Ti and
Tj is one of the m longest setups between all shortest setups of all possible pairs of
tasks. In other words, we are looking for m tasks with their max(min(oi,j)) being one of
the m biggest in the whole problem instance. This way, we will avoid tasks that would
require long setups even when placed after their best compatible preceding task. Since
only setup times have variable length depending on the sequence of tasks, the testing
results show a considerable improvement to the solution length.

3. We find m tasks with minimal processing time, so machine setters can start working as
soon as possible. This way, machine setters will have the possibility to be present over
a greater percentage of the makespan, hopefully preventing future delays. The testing
results also show significant improvement over the random start task selection.
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4. We treat the tasks as they would be dedicated to machines. If problem instance has 3
machines and 15 tasks, tasks T1 to T5 would be assigned to M1, tasks T6 to T10 to M2

and so on. After that, the second or third selection rule is applied to every machine-task
subset. This can be useful if we assume that the instance was already pre-processed or
solved, and the task assignments were made efficiently. An example of this can be a
solved real-world scenario, which we want to improve further.

Both method 2 and method 3 provide very good results, but the final method used in
the LOSOS and ROSOL implementations is the method 2. It provides more stable results than
the method 3, even though in the best-case scenario, the method 3 often provides better
improvements to the solution makespan.

6.2 End of Schedule Optimization

From the solutions examined, it has been observed that the most problematic part of the
schedule is its end. The remaining tasks have only a few possible options where and when to
be scheduled with their best fit preceding tasks usually already used elsewhere. The best fit
preceding task is a task where the setup between the preceding task and the following is the
smallest of all possible preceding tasks. Therefore, it is crucial to re-optimize the end of the
schedule to minimize this as much as possible. Improving is split into two phases:

1. First, we find the machine with the longest schedule denoted Mlongest. We take the
last task and check if the task can be moved to another machine while decreasing the
makespan. We do that by checking every machine and calculating its schedule length
after the task is appended to its schedule. If the resulting schedule length is smaller
than the Mlongest before the task was moved, we move the task to that machine. If
multiple machines meet this condition, one with the shortest resulting schedule length
is selected. Now we check if Mlongest still has the longest schedule. If not, we find the
machine currently having the longest schedule and mark it as Mlongest. We repeat this
step until no machine meets the condition for task swapping. This is already described
in function OptimizeScheduleEnds 3 in Section 4.

2. Second, we switch ending tasks between pairs of machines to achieve further reduction
of the makespan. The pairs of machines are chosen in a way that the makespan decreases
after the switch. This means that both machines have a shorter schedule than the length
of the longer machine’s schedule before the swapping of tasks. If no machine pair can
switch the ending tasks in a way that the makespan decreases, we conclude the end of
schedule optimization.
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6.3 Coefficient of Task Selection Priority

In baseline versions of both LOSOS and ROSOL, when choosing the next task to follow the
currently ending one, the algorithms make a choice greedily based on the setup length mini-
mization. This generally works well, but it has a fundamental flaw. As we deplete tasks with
small setup times, it can happen that tasks with only long setups remaining will stay until
the end and cause huge setbacks to the solution makespan. In other words, instead of taking
minor setbacks to obtain a globally optimal solution, a locally optimal sequence is chosen,
hurting the objective value of the solution. The problem is further amplified because as long
setups stay until the end of the schedule, they cause a shortage of available machine setters.
If long setups were to be dispersed throughout the solution against the shorter ones, the
problem would not occur. Hence, it is often much better to take a locally suboptimal solution
to obtain shorter setup times at the end of the schedule.

Example 1: Let us imagine an example problem. We have tasks T1 and T2 scheduled on M1

and M2 respectively. Tasks T3 and T4 remain to be scheduled with setups o1,3 = 1, o1,4 = 2,
o2,3 = 30 and o2,4 = 100 between pairs of tasks indexed by numbers. For simplicity, we do
not consider setups between T3 and T4 because placing them both on one machine would be
suboptimal anyway.

The first task to end is T1. If we choose greedily, we schedule T3 after T1 because o1,3 <
o1,4. However when task T2 ends, we will have to execute setup o2,4 = 100, last remaining
possibility.

On the other hand, if we were not to pick the task greedily and pick T4 instead to follow
after task T1, we would execute setup o1,4 = 2. Then after task T2 ends, we would schedule
task T3, executing setup o2,3 = 30. In most scenarios, this would produce a solution with a
shorter makespan. So, we are looking for a way of predicting which tasks should be saved for
later and which tasks are to be scheduled now to avoid similar situations.

To achieve this, we propose an evaluation function that produces a coefficient, determining
with which priority we want to schedule which task at a given moment. We need to consider
more than just the best setup time, going from the currently ending task to the task we
choose to follow. We weigh in multiple best setup times from unfinished (both scheduled and
unscheduled) tasks to the task we consider for scheduling. The coefficient is calculated as a
function of those setup times. In other words, when choosing the next task, we consider where
else it could be used and how efficiently. Multiple variations of this function were tested, while
the polynomial function provided below has shown the best results on average.

Coefficient = o4i,j + |oi,j − ox,j | · (oi,j − ox,j) + |oi,j − ox2,j | · (oi,j − ox2,j) + |oi,j − ox3,j |

Ti is the currently ending scheduled task, while Tj is the task considered to be scheduled
next. ox,j denotes the smallest setup time achievable from any Tx to Tj , ox2,j denotes the
second smallest achievable setup, and ox3,j the third smallest one.

This way, the largest emphasis is still on the following setup between the current and next
task, but other future scheduling possibilities are considered. If we get back to the example
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above and calculate the coefficient for it, we get the following results.

CoefficientT1,T3 = 1 + |(1− 1) · (1− 1)|+ |(1− 30) · (1− 30)|+ 0 = −840

CoefficientT1,T4 = 16 + |(2− 2) · (2− 2)|+ |(2− 100) · (2− 100)|+ 0 = −9588

Note that we have zeros as the last element in both equations because only two tasks are
remaining. As before, we do not consider T3 and T4 to have a possible setup between them,
as it would likely not matter anyway. The smaller the coefficient is, the more priority the task
has to be used now, so T4 would be scheduled after T1. We can think of the coefficient value
as a penalty; the lower it is, the better.

Example 2: Let us give one more example. We have four tasks, T5 to T8, with setups
o5,7 = 10, o6,7 = 20, o5,8 = 15, and o6,8 = 17. T5 is currently ending and T6 is still being
executed on another machine. The calculation of coefficients would look as follows.

CoefficientT5,T7 = 10000 + |(10− 10) · (10− 10)|+ |(10− 20) · (10− 20)| − 0 = 9900

CoefficientT5,T8 = 50625 + |(15− 15) · (15− 15)|+ |(15− 17) · (15− 17)| − 0 = 50621

CoeftT5,T7 < CoefT5,T8 so T7 would be picked. In this case, T7 is also a locally optimal choice.

Illustration of the coefficient benefit can be seen in figures 3 and 4 on the next page. Both
executions were on the same problem instance and without any other improvement techniques
used to isolate the coefficient’s effect. The first graph shows the solution produced without the
use of the coefficient, while the second graph shows the solution while using the coefficient.
We can see that while setups in the first half of the first graph might be slightly shorter than
in the second one, almost every setup is costly at the end of the schedule. On the other hand,
in the second graph where the coefficient was used, setups at the end of the schedule are
mostly reduced, and the coefficient solution yields a 9 % decrease in objective value.

However, the effect of the coefficient is not always as profound as it is in the given graphs as
it is largely dependent on the distribution of the setup times. If setups are quite balanced, it has
little to no effect. However, if huge differences between setups are present, then the coefficient
is more useful, i.e., multiple groups of similar products in the real-world scenario. Depending
on the problem domain, the coefficient equation best suited for the concrete problem can
differ. It is also important that coefficient use comes with a computational cost, which is
usually an order of magnitude more expensive than execution without it. On the other hand,
the execution time is still negligible when compared to CP models.
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Figure 3: Instance of 10 machines, 100 tasks and 5 machine setters. Execution
without coefficient took 3 ms, producing solution with makespan 474.

Figure 4: Instance of 10 machines, 100 tasks and 5 machine setters. Execution
with coefficient took 508 ms, producing solution with makespan 432.
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6.4 LOSOS: Setup Overlap Reduction

We can further upgrade the solution of LOSOS by taking into consideration machine setter
availability. Before the explanation, we define the following notation:

• Ti denotes the currently ending task in the schedule.

• Tj denotes the next earliest ending task in the schedule after Ti.

• Wl denotes the only available machine setter at the moment when the setup of the task
following Ti is being scheduled. This is only relevant in situations where only one last
machine setter is free.

• Ws denotes the earliest ending machine setter in the schedule except for Wl.

• oi,x denotes any possible setup from the task Ti to all the tasks not scheduled yet.

• oj,x denotes any possible setup from the task Tj to all the tasks not scheduled yet.

Now, let us consider two following issues with the current way of scheduling:

1. If we assign too long oi,x to Wl, it might happen that when Tj ends, there will be
no machine setter available to start executing oj,x. Therefore, the machine would idle
instead of executing another setup.

2. If we assign too short oi,x toWl, after oi,x is finished, there might be no machine requiring
machine setter, because all machines would still execute other tasks and setups. Then,
Wl would idle instead of possibly executing other longer oi,x, which might have to be
executed later, at a higher cost to the makespan. If we know that we have a long time
available to execute setup, because no other machine requires machine setter, we can
execute longer setup, maximizing usage of the free window and possibly saving task
with shorter setups for later, getting the task with longer setups out of the way.

To address the issue number 1, we have to consider if Tj ends before Ws is available. If
not, meaning Ws will be available before Tj is completed, we do not have to do anything,
machine setter will be available for the execution of oj,x. However, if Tj ends before Ws is
available, the machine where Tj is scheduled would idle. So, we calculate the time difference
between ends of Tj and Ti, cj − ci = t1. Now, we know that we can assign setup oi,x ≤ t1 to
Wl after Ti finishes, so Wl will finish the selected oi,x in time to execute oj,x when Tj finishes.
Obviously, this might not always be possible. If it is not, we will take the smallest possible
oi,x to minimize the time the machine will idle. To illustrate, an example is provided.

We have two tasks T1 and T2 with c1 = 10 and c2 = 15 being executed. We have 2 machine
setters, one available and one busy until Time = 17. When T1 ends at Time = 10, we have
2 possible following setups, o1,3 = 4 and o1,4 = 10. If we would use the coefficient described
in Subsection6.3, the values would be CoefficientT1,T3 = 900 and CoefficientT1,T4 = 400.
According to the coefficients, we would pick setup o1,4 to follow after T1. But we want to
consult the new condition to see if no machine will be left idle. c2 − c1 = 5 so if we used
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o1,4, when the T2 ends at Time = 15, we would have no machine setter available for the next
setup. So we select o1,3 instead.

Now, to address the issue number 2, we again calculate the difference cj−ci = t2. However,
now we will take the size of this difference and recalculate the task coefficient described in
Section 6.3 using the value t2. Instead of using the length of setup between current and
following task as a first member of the coefficient equation, we will use max(0, oi,x− t2). This
way, we only emphasize the portion of the setup time, which is over the size of t2. This makes
the impact of other members of the coefficient function more important. To illustrate, an
example is provided.

We have three tasks T1, T2 and T3 with c1 = 100, c2 = 150 and c3 = 200 being executed.
The possible setups are o1,4 = 20, o1,5 = 50, o2,4 = 5, o2,5 = 60, o3,4 = 40 and o3,5 = 70. In
this case, we assume we have enough available machine setters. Now, T1 ends at Time = 100
and the calculated coefficients are as follows.

CoefficientT1,T4 = max(0, (20−50))4 + |(20−5)| · (20−5)+ |(20−40)| · (20−40)+0 = −175

CoefficientT1,T5 = max(0, (50−50))4+|(50−60)|·(50−60)+|(50−70)|·(50−70)+0 = −500

We pick T5 to follow after T1 according to these new coefficient equations. If we would
not alter the equation, T4 would be calculated as a more suitable candidate instead, which
would be less effective as T4 is more suitable to follow after task T2. Also the saved difference
between o2,4 = 5 and o2,5 = 60 is bigger than difference between o1,4 = 20 and o1,5 = 50 and
because we know we will not need machine setter any time soon, we are guaranteed that this
does not creates a shortage of machine setters.

The important thing to note is that the condition 1 is more important than the condition
2. We rather let machine setter wait while machines work because, in the end, we care about
the makespan, which is affected by the machine schedule length. We can also see that the
improvement of the solution is not guaranteed. If the coefficients were too far apart, and we
chose according to the first condition, we might be worse off. It should be possible to derive
some trade-off thresholds when it is worthy of using these conditions and when not, but this
was not further examined in this thesis.

In conclusion, this improved task selection helps us avoid or reduce idle times of machines
and machine setters. However, it does not guarantee that it always improve the solution
quality. As it relies on using machine setters in the planning phase, it is not possible to use it
with ROSOL.
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6.5 Experimental Results

To test the effectiveness of the improvements proposed, LOSOS algorithm was run on multiple
instances using different improvements. The results can be seen in Table 5. The starting
tasks were always selected according to the method 2 proposed in Subsection 6.1. While
optimization of the schedule ends proposed in Subsection 6.2, denoted as LOSOSEnd, can
never degrade the original solution, use of the priority coefficient proposed in Subsection 6.3,
denoted as LOSOSCoef , and setup overlap reduction proposed in Subsection 6.4, denoted as
LOSOSSetup, can produce worse solution than the one produced without them. We can see
from the table that the improvement with the greatest effect is the priority coefficient. Using
the priority coefficient, together with setup overlap reduction, can also further improve the
solution.

Table 5: Comparison of LOSOS without and with improvements.

parameters objective value [-]
# m n w LOSOS LOSOSEnd LOSOSSetup LOSOSCoef LOSOSSetup+Coef

1 10 100 2 305 303 287 301 301
2 10 100 5 295 295 295 301 301
3 10 122 2 370 365 384 366 372
4 10 122 5 378 358 378 366 366
5 10 144 2 437 421 408 390 390
6 10 144 5 411 404 411 388 388
7 12 100 2 284 284 253 233 234
8 12 100 5 287 269 287 239 239
9 12 122 2 329 315 306 306 298
10 12 122 5 315 313 315 306 306
11 12 144 2 371 371 345 347 333
12 12 144 5 356 341 356 347 347∑

- - - 4138 4045 4025 3890 3875

Every row represents one generated instance of m machines, n tasks, and w machine
setters with the respective objective values of LOSOS executions. The detailed information
about the implementation and hardware used for testing can be found in Section 8.
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6 CONSTRUCTIVE HEURISTICS IMPROVEMENTS

From the graph below, it is clearly visible that the priority coefficient is not only the
most effective but also the most expensive improvement. We can also see that setup overlap
reduction cost can increase rapidly if a small number of machine setters is available. This
is because the smaller the number of available machine setters is, the bigger the number of
conflicts that must be computed is. In conclusion, the ideal improvement to use can vary
depending on the situation. If we are solving a very large instance with a very small time
limit, it might be wise not to use the priority coefficient and instead combine the end of the
schedule optimization with setup overlap reduction. If we also have a very small number of
available machine setters in the problem, it might also be good not to use the setup overlap
reduction because its cost can increase rapidly. However, as the most expensive execution
among the testing examples took only 1 second, in most cases, the time limit is not an issue.
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Figure 5: Computation times of LOSOS executions.

Every grouping of bars represents an instance of m machines, n tasks, and w machine
setters. The height of the bar represents the length of the execution of one LOSOS execution in
the logarithmic scale. The numbering of bars corresponds to the ordering of LOSOS executions
in the Table 5.
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7 SUBPROBLEM MODELING EVOLVING THROUGH ITERATION (SMETI)

7 Subproblem Modeling Evolving Through Iteration (SMETI)

In the previous sections, we proposed CP models and greedy heuristic algorithms. CP models
showed proficiency when solving small instances, while heuristic algorithms excelled when
solving very large ones. However, we would like to have an approach that would be suited
for the remainder of instances in between. This is why we propose a hybrid algorithm called
Subproblem Modeling Evolving Through Iteration (SMETI).

SMETI is a large neighborhood search algorithm [21]. This means we repeatedly transform
current solution into a different one, trying to minimize its objective value. Because the
obtained solution is a result of the previous solution transformation, we call it being in previous
solution’s neighborhood. SMETI repeatedly transforms the solution using various steps of
conditional swaps and CP solver optimizations. This technique was recently applied to a very
similar problem of Clustered Vehicle-Routing Problem by Hintsch et al. [10] and proved to
be promising.

The first step of SMETI is obtaining a feasible solution to the problem. This can be provided
by any means mentioned in the previous sections, but the most effective way is to obtain the
starting solution using LOSOS and ROSOL. After running both LOSOS and ROSOL, the solution
with a shorter makespan is selected as the starting point. Then SMETI constructs the model
according to the starting solution while leaving some parts of the solution unconstrained.
This allows the CP solver to re-optimize it. The lower number of constraints necessary to
solve the subproblem enables the CP solver to handle much larger problems than exact CP
models, locally optimizing parts of them. When one part of the problem is solved into a local
optimum, we move to the next one and repeat this until the time limit runs out or all defined
options are depleted. If the latter is true and there is still time left, the best solution found
so far is passed as a warm start solution to the CPFlexible.

7.1 Algorithm Description

The key question is how to construct the subproblems to bring efficient improvements to the
starting solution; in other words, how to define the search neighborhood. The most logical
aspect to focus on first is the machine with the longest schedule, denoted by Mlongest, which
is the critical path [2] of the problem. The entire problem’s makespan is equal to the schedule
length of Mlongest, so unless we change its length, other changes will not affect the objective
value.

We use this observation when assigning the tasks to the machines according to the start-
ing solution. On all machines but the Mlongest, we fix the task orderings according to the
starting solution. However, on the Mlongest we leave the order of tasks unconstrained. This
way, when the CP solver is started, the tasks on Mlongest can change their order given by the
starting solution, thus potentially improving the schedule length of Mlongest. If the schedule
length of Mlongest is improved, the whole solution’s makespan is improved as well. If, after
re-optimization, another machine becomes the new Mlongest, we repeat the same process for
that machine. After this phase can no longer improve the solution, we know that we cannot
improve the solution using only one machine re-optimization.
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7 SUBPROBLEM MODELING EVOLVING THROUGH ITERATION (SMETI)

After the first phase finishes, to improve the solution further, we need to start swapping
tasks between pairs of machines. There are multiple ways of swapping tasks, and they are
described in the step by step explanation below. Every pair of selected machines contains
Mlongest as we need to reduce its schedule length to improve the solution. These swapping
methods are cyclically repeated until one whole swapping cycle brings no further improvement
to the solution. If there is time left, we use the best-found solution and pass it as a warm
start solution to the CPFlexible.

Before we formally describe the steps of SMETI, we need to define the notation used. We define
two subsets of machines, one without Mlongest and one without both Mlongest and without
Mshortest, which denotes the machine with the shortest schedule length:

ML = M \Mlongest, (1)

ML,S = ML \Mshortest. (2)

We will denote the set of tasks in the starting solution as TWS and the set of tasks in the
CP model as TCP . TWS

a,k will represent task of order a on machine k in the starting solution

and TCP
a,k will represent task of order a on machine k in the CP model. The indexes i and

j will denote the task’s orders within the whole instance, which is the same as in previous
sections.

The steps of SMETI are as follows:

1. Execute LOSOS and ROSOL and set the better solution as the starting solution for SMETI.

2. Set tasks to machines according to the starting solution. We use IT
Opt

i,k as used for
example in constraint (CP-C2) to represent the optional interval variable of a task
assigned to a certain machine in CP model. Notice that the index a is translated to the
task’s index i, indexing the task within the whole instance. This is because we need the
index to be compatible with the indexing used by existing variables in the model:

∀Mk ∈ML, ∀TWS
a,k ∈ TWS

k : PresenceOf
{
IT

Opt

i,k

}
. (3)

We could also set all the other optional interval variables representing tasks on machines
to absent, but no pronounced effect on the solution speed was observed.

3. Set the tasks’ orderings according to the starting solution on every machine except the
Mlongest. The orderings of tasks are enforced by setting the setup between two scheduled
following tasks on the machine to be present. This, in turn, gives the ordering of the
whole task set for the machine. We denote setup between tasks TWS

a,k and TWS
a+1,k as

IS
Opt

i,j . Notice that the indexes a and a + 1 are translated to the task’s indexes i and j
within the whole instance to be compatible with the existing variables in the model:

∀Mk ∈ML, ∀TWS
a,k , TWS

a+1,k ∈ TWS
k : PresenceOf

{
IS

Opt

i,j

}
. (4)

The machine setters are not fixed according to the starting solution because their as-
signments can change thanks to the re-optimization of Mlongest. The rest of the model is
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the same as in CPPairwise, but since there is not a quadratic number of optional setups
between all possible tasks in the problem and most of the model’s conditions are fixed,
CPPairwise has no problem with effectivity.

4. Execute the CP solver. The model gets optimized and Mlongest, which in our case is
the critical path, gets re-optimized according to the constraints. It is important to note
that the retrieved solution can be far from the original problem’s optimal solution, yet
any improvement in this phase brings improvement to the whole makespan.

5. Find the machine with the longest schedule and check if it is the same machine as the
Mlongest.

(a) If Mlongest is the same as the machine with the currently longest schedule, we
proceed to the next step because we know that the Mlongest is already locally
optimal. By re-optimizing it, one would get the same result.

(b) If the machine with the currently longest schedule is a different machine from
Mlongest, it implies that the previous Mlongest was improved and is no longer
the critical path. We set the machine with the currently longest schedule as new
Mlongest and go back to step 2 and rebuild the model. However, before doing so,
we update the starting solution’s orderings according to the result obtained by the
CP solver.

6. Not being able to further improve the solution by changing tasks ordering on one
machine, SMETI starts switching tasks between machine pairs. We find Mlongest and
Mshortest in the solution. Mlongest must be changed to improve the solution to the origi-
nal problem, and Mshortest is heuristically the best candidate for absorbing longer tasks
and setups from Mlongest. If Mshortest would become new Mlongest after re-optimization,
it will be re-optimized again in the next step, so choosing Mshortest should not create a
problem. This time we only set tasks and orderings to machines in ML,S :

∀Mk ∈ML,S , ∀TWS
a,k ∈ TWS

k : PresenceOf
{
IT

Opt

i,k

}
, (5)

∀Mk ∈ML,S , ∀TWS
a,k , TWS

a+1,k ∈ TWS
k : PresenceOf

{
IS

Opt

i,j

}
. (6)

7. Swap tasks between Mlongest and Mshortest according to the current swapping criterion.
There are three swapping criteria to have a better chance of avoiding getting stuck in
a local minimum. These criteria are cyclically changed in the run time after the third
criterion comes the first again. We change to another swapping criterion when we get the
same Mshortest and Mlongest twice in a row for the current swapping criterion selected.
The criteria are as follows:

(a) Swap the task with maximum processing time on Mlongest with the task with
minimum processing time on Mshortest. The goal of this swap is to shorten the
critical path as much as possible regardless of the setup lengths:

TCP
shortest,Mshortest

= TWS
longest,Mlongest

, (7)

TCP
longest,Mlongest

= TWS
shortest,Mshortest

. (8)
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7 SUBPROBLEM MODELING EVOLVING THROUGH ITERATION (SMETI)

(b) Swap the task with maximum processing time onMlongest with the task onMshortest,
which will make the difference between Mshortest and Mlongest machine schedule
lengths as small as possible. The task is denoted by Tbalanced. When the difference
is computed, the Mshortest’s schedule length and the length of Tbalanced are consid-
ered, but not the setup lengths. This is because we do not know after which task
on Mlongest will Tbalanced be placed; hence, we do not know the preceding’s setup
length. The goal of this swap is to balance machines’ schedule lengths and also
introduce variability into the cycle:

TCP
balanced,Mshortest

= TWS
longest,Mlongest

, (9)

TCP
longest,Mlongest

= TWS
balanced,Mshortest

. (10)

(c) Swap task with the longest preceding setup time on Mlongest with the task on
Mshortest with shortest average setup time to tasks on Mlongest. The task selected
on Mlongest is denoted by Tincompatible while the selected task on Mshortest is denoted
by Tcompatible. The goal of this swap is to reduce unnecessary setup times onMlongest

by exchanging the task with a long preceding setup for a task with more compatible
setups to the tasks on Mlongest:

TCP
compatible,Mshortest

= TWS
incompatible,Mlongest

, (11)

TCP
incompatible,Mlongest

= TWS
compatible,Mshortest

. (12)

8. Execute the CP solver and update the solution. We repeat the steps 6 to 8 in a loop
while updating the current solution as we did in the first phase between steps 2 and 5.
Note that this updated solution becomes a starting point for the next step in the cycle.
Machines not involved in swapping have fixed orders. If we cycled through all swapping
criteria, and in the whole cycle, we did not improve the solution, we escape the cycle
and save the best solution so far. We also break from the cycle if the time for finding
the solution ran out.

9. If the time limit was still not reached, we take the best-obtained solution so far and set
it as a warm start for the exact CPFlexible model so it can be further optimized before
the time runs out.

Example 3: Let us demonstrate the execution of SMETI on an example. To keep the example
succinct, we consider that the re-optimizations affect only the currently selected machine or
machines in each step. In actual execution, other machines can be affected as well because
machine setters availability changes, thus the start of setups on non-selected machines can
change. The machine’s schedule length will be denoted Lk in the following text.
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Consider three machines with their schedule lengths in the starting solution to be L1 =
500, L2 = 540 and L3 = 530. In the first phase of the algorithm, we execute the loop between
steps 2 and 5. In step 2, M2 is picked as our Mlongest and after re-optimization its schedule
length decreases to L2 = 510. In a real-world scenario, this could happen by removing long
suboptimal setup at the end of the schedule caused by the greediness of warm start approach.
Now M3 has the longest schedule so it becomes Mlongest. After re-optimization its schedule
length decreases to L3 = 520. Because M3 remained the Mlongest, we continue to step 6
since no possible improvement is achievable by repeating cycle between steps 2 and 5. After
first part of the SMETI algorithm our machine schedule lengths are L1 = 500, L2 = 510 and
L3 = 520.

Now we execute the loop between steps 6 and 8. Mlongest is still M3 and the Mshortest

is M1. By swapping the longest task from Mlongest for the shortest task from Mshortest as
described in 7a, the schedule length of L3 = 515 has slightly improved, and the schedule
length of L1 = 508 slightly deteriorated. In this case, the swapping also increased the overall
sum of all setup times as the deterioration was larger than the improvement. However, this is
still okay because the makespan of the whole solution was lowered. Now we would reapply the
7a step even though the Mshortest and Mlongest stayed the same because we only swapped one
pair of tasks. We skip this for the sake of simplicity and move to the next swapping method
7b.

The selected task from Mlongest is still the longest one, but the task from Mshortest is
selected as follows. We denote the subtraction of the schedule length of Mshortest from the
schedule length of Mlongest as r1. We denote the subtraction of the selected task length from
Mshortest from the selected task length from Mlongest as r2. We are looking for such a task from
Mshortest, which minimizes the difference between r1 and r2, so hopefully, after the swap, both
machines’ schedule lengths are as close as possible. However, this is not entirely guaranteed
because setup times before and after the swapped tasks on their new respective machines
can play a part. Since they are not known before the CP solver execution, we cannot take
them into account. After re-optimization of our example the schedule lengths are L1 = 511,
L3 = 513 and L2 = 510. As before, we would reapply this step, but for simplicity, we move
directly to 7c.

The Mshortest is now M2, the Mlongest is still M3. Now we want to select the ”best compat-
ible” task for Mlongest from Mshortest. This is achieved by checking all of the tasks on Mshortest

and finding the one which has the shortest average setup between tasks from Mlongest and
itself. From Mlongest, we select the task with the longest setup preceding it for swapping.
After the swap we get solution L1 = 511, L2 = 512 and L3 = 507. Again, we would repeat
this step, but we skip it for the sake of simplicity.

After finishing the cycle, we would now repeat it whole from 7a to 7c again. We would
keep repeating it as long as in any step of each cycle there was some improvement found.
For now, we assume that no further improvements were found, thus L1 = 511, L2 = 512 and
L3 = 507 is our final solution. It is important to note that we always remember the best
solution found so far, so if the solution somehow deteriorated over the course of execution, we
would use the best solution as a result or as a warm start for the CPFlexible if the time limit
was not exhausted.
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7.2 Experimental Results

The difference between LOSOS and ROSOL was described in Subsection 4.3, so in the follow-
ing comparisons, we will refer to them generally as constructive heuristics. The conclusion
drawn from the Table 6 is that SMETI noticeably improves the starting solution provided by
constructive heuristics. Also, unlike constructive heuristics, if enough time is given, SMETI is
guaranteed to achieve the optimal solution using CPFlexible. Even though the improvements
are usually only a few percent, they have a great impact because the starting solution is
usually close to the optimum. In real-world scenarios, the last percents are generally the most
important ones, especially if looking for an optimization of the existing schedule.

In the following comparison, the time limit was set to 60 seconds to limit or completely
eliminate the last step of SMETI, which is CPFlexible, to isolate only the improvements acquired
through the heuristic subproblem modeling of SMETI. It shows that in a scenario where the
CP model alone cannot be utilized because it is not time efficient or the model is too complex
to be built in the given time, SMETI can provide an improved solution over the constructive
heuristics. In total, 60 tests were run; 20 of them are shown in the table.

Table 6: Comparison of heuristic algorithms.

parameters objective value [-]
# m n w SMETI min(LOSOS, ROSOL)

1 10 100 4 272 295
2 13 195 4 417 447
3 16 320 4 555 572
4 19 475 4 734 734
5 10 300 4 808 823
6 13 130 4 291 302
7 16 240 4 435 438
8 19 380 4 537 553
9 10 250 4 677 697
10 13 390 4 804 810
11 16 160 4 294 326
12 19 285 4 426 440
13 10 200 4 577 582
14 13 325 4 722 722
15 16 480 4 847 856
16 19 190 4 277 307
17 10 150 4 460 460
18 13 260 4 572 577
19 16 400 4 692 692
20 19 570 4 900 900

Every row represents instance of m machines, n tasks, and w machine setters with the ob-
jective value of SMETI and the result of a better performing heuristic. The detailed information
about the implementation and hardware used for testing can be found in Section 8.
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In 14 of all 60 tested instances, the better of the constructive heuristics was able to achieve
the same result as SMETI. The complete sums of objective values from the testing are:

1. LOSOS: 36338 (+4.4 % compared to SMETI on average case),

2. ROSOL: 36184 (+4 % compared to SMETI on average case),

3. SMETI: 35128.

The most notable differences between results of constructive heuristics compared to SMETI
were seen on instances with a small number of machine setters available, where the efficiency
of constructive heuristic approaches is lessened, and the use of CP subproblem modeling steps
negate that. With the increasing size of the instance, the differences between approaches were
smaller and smaller as the time limit was often insufficient to execute all heuristic steps of
SMETI. To obtain more favorable results for SMETI, we would have to scale time with the
instance’s size. On the other hand, the point of this comparison is to show all advantages and
shortcomings and the near-real-time (in the context of planning) solution search. According
to the 60 tests conducted, instances with a small amount of machine setters computed by con-
structive heuristics provide 5-15 % worse results than SMETI. When more machine setters are
available, using SMETI changes the value usually only in terms of single percents. A correlation
between the minimum and maximum setup time and result difference between constructive
heuristic algorithms and SMETI was also observed. When the gap between minimal and max-
imal setup length was increased, the improvement provided by SMETI also increased by an
additional 2% on average.
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8 Experimental Evaluation

All experimental results in sections 3 to 7 were obtained on a single core of Intel i7-6700
processor running at 3.4GHz with the maximum allowed RAM usage of 12GB. However,
the usual RAM usage of the CP solver was under 2GB. Only the largest problem instances
surpassed this threshold. Usage of RAM for heuristic approaches was insignificant. The tasks’
and setups’ processing times for experimental testing in previous chapters were drawn from
uniform distributions of (1 to 50) or (25 to 50) time units per task or setup.

Comparisons to the other existing solutions in this section were executed on a single core
of Intel Xeon 4110 processor running at 2.1GHz. Regarding the fairness of comparison, if the
paper describing the other existing solution used a CPU with a lower clock rate to measure
the results and their computed values and bounds were used for the comparisons, we read-
justed the time limits accordingly. A graphical card was not used in any of the calculations.
Algorithms were implemented using C++. For CP, ILOG CP Optimizer 12.09 [11] was used.
For ILP, Gurobi 9.0 [9] was used.

8.1 Comparison of CP Models and Heuristic Approaches

The comparison between exact CP models and heuristic algorithms is virtually impossible
because the suitable problem instances to be solved by each approach differ fundamentally.
Even for the instances where the CP models barely provide any solution in an hour of execu-
tion, heuristic algorithms would usually provide a solution in under a second, also of better
quality than the CP solution obtained. Beyond these instances, the model is too complex
even to be built in a reasonable time, which shows the importance of subproblem modeling
in SMETI. On the other hand, given small enough instances, the heuristic algorithm cannot
leverage the time limit given to optimize the solution beyond the proposed improvements in
Section 6. Meanwhile, CP models use this time to get to the optimal solution. This conclusion
underlines the importance of combining various approaches in the hybrid algorithm SMETI to
obtain the best approach for any situation.

8.2 Comparison of Heuristic Approaches to the Optimum

As it was discussed in previous sections, the machine setters count has pronounced influence
on the relative quality of constructive heuristics solutions to the optimum. When using SMETI,
this negative effect is partially mitigated by CP subproblem modeling and, if enough time
is provided, completely eliminated by CPFlexible. However, when using only a constructive
heuristic algorithm, the partial mitigation achieved by using the improvements in Section 6 is
not as effective as in SMETI. While an instance of 15 machines, 150 tasks, and 1 machine setter
solved by constructive heuristics would generally have a very suboptimal solution, consider
Figure 6 of LOSOS algorithm solving instance with 150 machines, 15000 tasks, and 10 machine
setters. The ratio of tasks being executed to the number of machine setters is the same in
both examples, but the uneven nature of setup lengths with the probability multiple tasks end
simultaneously is smoothed over. In the latter example, we obtain a result with the objective
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Figure 6: Instance of 150 machines, 15000 tasks and 10 machine setters.
Execution took 35 s, producing solution with makespan 2686.

value of 2686 in 35-second runtime, which, considering the instance’s size, is very fast. Also, if
we look at the graph, the makespan is very efficiently packed without any noticeable waiting
times.

Furthermore, we can show that the result is very likely to be very close to the optimum.
In this specific example, tasks and setups are between 1 and 50 time units long, which yields
an average of 25.5 per task/setup. If only tasks were considered, they would create a schedule
of roughly 2550 units long on every machine. The same would apply for setups, but we can
choose setups optimally to achieve much better results. If we would consider a hypothetical
scenario where it would be possible to pick the minimal length setup every single time for
all scheduled pairs of tasks, we would add an extra 99 time units to the schedule’s length of
every machine. This would result in the makespan of 2649 time units. We would also have
to have zero overlap of machine setters. The difference between this calculated lower bound
of 2649 and the actual result of 2686 is only 1.3%. Now, if we consider the size of the SMETI
improvements over the results of LOSOS and ROSOL in Section 7, it makes them even more
significant as the results of LOSOS and ROSOL and already very close to the optimum.
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8.3 Comparison to Existing Solutions

To evaluate whether approaches proposed in this thesis are of state-of-the-art quality, we took
existing approaches to similar problems and compared them to ours. We chose 3 papers, each
solving a subset of problem that our approaches can solve. The chosen papers are:

1. Parallel dedicated machine scheduling problem with sequence-dependent se-
tups and a single server [24] (abbreviated further by the authors’ names as HCZ)

• Tasks are dedicated to machines.

• Only 1 machine setter is available.

• We encoded the described MIP model using Gurobi 9.0. We generated the instances
according to the paper’s distributions and ran both MIP and CP models. For the
CP models, we had to convert the instances so that they would have the same
optimal solution as if the tasks were dedicated to machines. That was achieved
by setting infinite length setup times between tasks that are not supposed to be
on the same machine. In CP models, the infinite setup time was represented by
IloIntervalMax value. This way, if the CP solver would schedule two tasks, which
were dedicated to two different machines on the same machine, the resulting sched-
ule would be infinitely long, thus infeasible.

• Paper proposes a way to calculate lower bound (LB) to which their Genetic Algo-
rithm (GA) approach effectivity is compared. Since we could not obtain the testing
data from the authors of the paper, we calculated LB on our own instances accord-
ing to the method described. We compared the percentage difference between LB
and our SMETI to their percentage difference between LB and GA, obtaining a fair
comparison. Execution times for the instances were used according to the paper.

2. MIP models and hybrid algorithm for minimizing the makespan of parallel
machines scheduling problem with a single server [4] (abbreviated further by the
authors’ names and the version of the proposed compared MIP model as KL2.)

• Setups are sequence-independent, and the setup must be executed before any task
regardless of what task, if any, were executed beforehand.

• Only 1 machine setter is available.

• Sequence independence and the necessity of a setup preceding even the first task
on every machine was simulated by changes to the setup matrix, forcing CP solver
to search for feasible solutions in the domain of the original problem. MIP model
was encoded using Gurobi 9.0, and the results were compared to the results from
CP solver on the same generated instances.

• Paper compares their GA solution to the solutions acquired from MIP executed for
3600 seconds. We obtained those results when comparing their MIP model to our
CP model, so we used these results to compare GA against SMETI by comparing
the results of SMETI to the MIP results.
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3. Modeling and solving static m identical parallel machines scheduling problem
with a common server and sequence-dependent setup times [18] (abbreviated
further by the authors’ names as HY)

• Only 1 machine setter is available.

• MIP model was encoded using Gurobi 9.0 and compared to CP solver on the same
generated instances.

• Paper compares their GA solution mostly to other techniques with unknown testing
sets. Unlike the two previous papers, we were not able to find a fair comparison
method. We attempted to implement GA according to the paper’s description.
On average, there is a noticeable difference between results obtained by our and
their original implementation regarding makespan values of instances drawn from
the same distributions. SMETI was executed on the same instances as their GA
re-implementation.

Abbreviations shared across all comparison tables are m for machine count, n/m for task
count per one machine, and n for the number of tasks in the whole problem summed over
all machines. ∞ in the table means that there was no feasible solution was found for the
selected approach. It is worth noting that for the first two compared approaches, even though
the instances are adjusted, so the results are the same, our approaches still have to search
in bigger solution space. The adjusted instances have the same complexity as if they were
instances of our considered problem.

8.3.1 HCZ

There were no results provided for the MIP model in the paper, only a statement that it
performs poorly. We encoded the model and tested it against CPFlexible without the warm
start, so only the model’s performance is measured. The results show that CPFlexible performed
much better even though it was handicapped by solving more general problem. CPFlexible was
also able to solve instances that the MIP model was not able to. To get a better picture of
the difference, results for all tested instances are provided in Table 7. The models were given
a 3600-second time limit.

45/60



8 EXPERIMENTAL EVALUATION

Table 7: HCZ MIP model results compared to CPFlexible results.

parameters objective value [-] CPU time [s]
# m n/m mip[24] CPFlexible mip[24] CPFlexible

1 2 4 329 329 0.194 0.006
2 2 4 351 351 0.132 0.004
3 2 4 394 394 0.152 0.004
4 2 6 403 403 2.847 0.009
5 2 6 423 423 4.31 0.013
6 2 6 508 508 5.818 0.016
7 2 8 469 469 3600.0 0.01
8 2 8 489 489 1094.538 0.022
9 2 8 628 627 3600.0 9.465
10 3 6 419 419 13.242 0.011
11 3 6 432 432 112.127 0.019
12 3 6 540 539 3600.0 11.143
13 3 9 686 673 3600.0 0.061
14 3 9 724 693 3600.0 0.033
15 3 9 929 837 3600.0 21.53
16 3 12 ∞ 743 3600.0 143.366
17 3 12 ∞ 767 3600.0 150.809
18 3 12 1477 1053 3600.0 3600.0
19 4 8 701 552 3600.0 5.443
20 4 8 ∞ 582 3600.0 9.873
21 4 8 1162 831 3600.0 3600.0
22 4 12 ∞ 768 3600.0 123.216
23 4 12 ∞ 813 3600.0 294.951
24 4 12 ∞ 1277 3600.0 3600.0
25 4 16 ∞ 1078 3600.0 0.635
26 4 16 ∞ 1097 3600.0 1137.193
27 4 16 ∞ 1687 3600.0 3600.0

For the heuristic approaches comparison, we calculated LB described in the paper on in-
stances generated according to the paper provided parameters. Then we executed CPFlexiblews
on these instances and compared the results with the paper results. The reason why we used
CPFlexible instead of SMETI in this comparison is that SMETI heuristic steps utilize heavily the
swapping of tasks between machines, which is prohibited in this scenario. We also had to limit
the functionality of LOSOS warm start, which made it less effective. The objective values of
LB and CPFlexible, as well as the gaps between LB and respective approaches, can be seen in
the Table 8.
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Table 8: HCZ GA effectivity compared to CPFlexiblews effectivity.

parameters objective value [-] LB2 gap [-]
# m n/m Setup LB Setup UB LB2 CPFlexiblews GA[24] CPFlexiblews

1 2 5 5 25 380 380 0.00 0.0
2 2 5 5 50 390 390 0.47 0.0
3 2 5 25 50 463 463 0.43 0.0
4 2 10 5 25 671 671 0.46 0.0
5 2 10 5 50 691 691 1.10 0.0
6 2 10 25 50 855 855 1.08 0.0
7 3 5 5 25 380 380 0.04 0.0
8 3 5 5 50 390 390 0.42 0.0
9 3 5 25 50 463 463 1.56 0.0
10 3 10 5 25 689 689 0.57 0.0
11 3 10 5 50 717 717 1.51 0.0
12 3 10 25 50 874 925 1.82 5.84
13 5 5 5 25 380 380 0.09 0.0
14 5 5 5 50 390 390 1.94 0.0
15 5 5 25 50 552 599 2.03 8.51
16 5 10 5 25 689 689 0.69 0.0
17 5 10 5 50 717 736 2.14 2.65
18 5 10 25 50 1225 1323 5.48 8.0
19 7 5 5 25 380 380 0.48 0.0
20 7 5 5 50 390 399 4.38 2.31
21 7 5 25 50 769 837 1.89 8.84
22 7 10 5 25 689 702 1.18 1.89
23 7 10 5 50 717 858 6.37 19.67
24 7 10 25 50 1683 1837 5.94 9.15
25 10 5 5 25 402 410 2.36 1.99
26 10 5 5 50 418 591 6.99 41.39
27 10 5 25 50 1112 1195 2.31 7.46
28 10 10 5 25 689 815 3.81 18.29
29 10 10 5 50 717 1102 22.98 53.7
30 10 10 25 50 2391 2628 6.87 9.91

In the same time limit, out of 30 cases, CPFlexiblews provided a better solution than the
GA in 16 and worse in 13 of them. CPFlexiblews excelled at solving smaller instances, but
solutions of bigger instances were worse. This is because we could not utilize SMETI and the
CPFlexiblews model solves more general problem than the GA. In bigger instances, it took a
long time to build the model and narrow it down, even with the warm start. Also, the altered
warm start provided was not as good. The very short time limit is also inconvenient for CP
models. The biggest tested instance had only a 30-second time limit. When we use a 50-second
time limit instead, we obtain results on par or better than the GA’s. This is also an important
upside of using the CPFlexiblews. If more time is given, we get steadily better results, which
is not guaranteed by the GA. In conclusion, the comparison shows that even when tackling a
quite different problem with a less suitable proposed approach, it still produces good results.
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8.3.2 KL2

The results table of the MIP model was provided in the paper; however, it was not very use-
ful for further comparison as it gave little to no detail about single executions and objective
values. Also, as in the previous paper comparison, we did not have access to the original in-
stances used. Therefore we implemented the MIP model using Gurobi. We generated instances
according to the methodology described in the paper and executed both the MIP model and
CPFlexible on those instances. The Table 9 shows the comparison for three types of instances,
instances of 6 machines with either 20, 30, or 40 tasks, with two additional settings, α and
p. α represents the amount of variance in task and setup times, 0.1 meaning a maximum of
10% deviation from average on either side. p describes a multiplier of the setup length; the
bigger it is, the longer the setups can be. The table’s style is adapted from the original paper
because of its compactness for this type of testing data. The mip-2 in the table stands for the
original paper’s best performing MIP model. The results show that CPFlexible always returned
the same or better solution than the MIP model, essentially superseding it. The models were
given a 3600-second time limit.

Table 9: KL2 MIP-2 model results compared to CPFlexible results.

parameters (20, 6) (30, 6) (40, 6)
α p mip-2[4] CPFlexible mip-2[4] CPFlexible mip-2[4] CPFlexible

0.1 0.5 205 205 283 279 392 370
0.1 0.7 210 210 291 288 392 380
0.1 1.0 225 225 322 318 428 412
0.3 0.5 188 185 284 274 390 366
0.3 0.7 195 192 289 282 396 375
0.3 1.0 212 212 320 307 418 402
0.5 0.5 190 186 288 279 394 373
0.5 0.7 193 189 293 282 394 377
0.5 1.0 214 212 322 311 434 407

To evaluate the efficiency of their GA, the authors compared the GA results to the results
of their MIP models running for 3600 seconds. We obtained these results when comparing the
mip-2 to the CPFlexible, so we used them again to compare them to the SMETI results. If there
is any difference between computational power of their and our hardware used, it is irrelevant
because the mip-2 results and the SMETI results were obtained on the same hardware. Thus
if our machine would be faster, the obtained mip-2 results to which we compare our SMETI
results would also profit from the same increase in computational power. The results are
shown in Table 10.
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Table 10: KL2 GA effectivity compared to SMETI effectivity.

parameters objective value [-] difference [%]
# m n p α mip-2[4] SMETI GA[4]/mip-2[4] SMETI/mip-2[4]

1 6 20 0.5 0.1 205 205 1.87 0.0
2 6 20 0.7 0.1 210 210 2.34 0.0
3 6 20 1.0 0.1 225 225 2.72 0.0
4 6 20 0.5 0.3 188 186 1.06 -1.06
5 6 20 0.7 0.3 195 194 2.15 -0.51
6 6 20 1.0 0.3 212 216 2.72 1.89
7 6 20 0.5 0.5 190 188 3.15 -1.05
8 6 20 0.7 0.5 193 192 2.02 -0.52
9 6 20 1.0 0.5 214 219 4.03 2.34
10 6 30 0.5 0.1 283 281 1.24 -0.71
11 6 30 0.7 0.1 291 291 2.21 0.0
12 6 30 1.0 0.1 322 320 1.74 -0.62
13 6 30 0.5 0.3 284 275 1.29 -3.17
14 6 30 0.7 0.3 289 283 2.65 -2.08
15 6 30 1.0 0.3 320 310 2.42 -3.12
16 6 30 0.5 0.5 288 280 2.68 -2.78
17 6 30 0.7 0.5 293 286 2.9 -2.39
18 6 30 1.0 0.5 322 315 2.7 -2.17
19 6 40 0.5 0.1 392 373 2.22 -4.85
20 6 40 0.7 0.1 392 383 3.55 -2.3
21 6 40 1.0 0.1 428 414 2.05 -3.27
22 6 40 0.5 0.3 390 368 1.4 -5.64
23 6 40 0.7 0.3 396 377 2.7 -4.8
24 6 40 1.0 0.3 418 409 4.66 -2.15
25 6 40 0.5 0.5 394 376 0.91 -4.57
26 6 40 0.7 0.5 394 380 2.36 -3.55
27 6 40 1.0 0.5 434 416 3.86 -4.15

In 25 out of 30 instances, SMETI with a time limit of 60 seconds provided a better solution
than the MIP model with a time limit of 3600 seconds. Only in 1 case, the solution was
worse. SMETI also provided a better solution than the GA in the same time limit in every
single instance. SMETI can also continue and find the optimal solution if enough time is given.
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8.3.3 HY

We had no access to the original instances, so we generated our own according to the paper’s
description. We changed the original time limit from 18000 seconds to 3600 seconds to obtain
results in a more reasonable time. This is applied for the MIP model as well as for our
CPFlexible. It can be clearly seen from the Table 11 that CPFlexible was always on par or better
than the MIP model. In fact, in cases where results were the same, we know that CPFlexible

reached the optimal solution; hence the results could not be different. CPFlexible was also able
to prove optimality in some instances where the MIP model did not even reach the optimal
solution, let alone proved its optimality.

Table 11: HY MIP model results compared to CPFlexible results.

parameters objective value [-] CPU time [s]
# m n mip[18] CPFlexible mip[18] CPFlexible

1 2 6 200 200 1.6 0.1
2 2 8 237 237 161.5 0.4
3 2 10 337 334 3600.0 1.1
4 2 14 459 415 3600.0 3600.0
5 2 20 ∞ 615 3600.0 3600.0
6 3 9 188 188 291.5 0.7
7 3 12 265 253 3600.0 8.9
8 3 15 394 346 3600.0 3600.0
9 3 21 469 373 3600.0 3600.0
10 3 30 ∞ 670 3600.0 3600.0
11 4 12 199 196 3600.0 15.3
12 4 16 259 199 3600.0 3600.0
13 4 20 ∞ 309 3600.0 3600.0
14 4 28 ∞ 446 3600.0 3600.0
15 4 40 ∞ 653 3600.0 3600.0
16 5 15 250 209 3600.0 3600.0
17 5 20 428 247 3600.0 3600.0
18 5 25 ∞ 301 3600.0 3600.0
19 5 35 ∞ 457 3600.0 3600.0
20 5 50 ∞ 670 3600.0 3600.0
21 7 21 ∞ 165 3600.0 3600.0
22 7 28 ∞ 262 3600.0 3600.0
23 7 35 ∞ 334 3600.0 3600.0
24 7 49 ∞ 430 3600.0 3600.0
25 7 70 ∞ 650 3600.0 3600.0
26 10 30 ∞ 211 3600.0 3600.0
27 10 40 ∞ 290 3600.0 3600.0
28 10 50 ∞ 349 3600.0 3600.0
29 10 70 ∞ 465 3600.0 3600.0
30 10 100 ∞ 672 3600.0 3600.0
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The authors evaluated the GA effectivity by comparing it to other proposed approaches.
However, most of the instances had no results for the MIP model, so we had no way of mea-
suring the GA performance without re-implementing it too. We did our best, but there were
ambiguous places in the description where we were not ultimately sure. We were unsuccessful
in reaching the authors for further clarification. While MIP models are unambiguous, the
results of this comparison might be skewed thanks to a possible misunderstanding of the
description. Every machine-task combination was run 20 times to even out the GA’s random
nature to obtain a fairer comparison. The results in Table 12 show SMETI outperforming GA
in every case except one. The last column shows the ratio between SMETI and GA objective
value. It is noticeable that with the growing instance’s size, the difference gets bigger. This
is probably the result of GA’s inability to find improvements in such a huge solution space
effectively.

Table 12: HY GA results compared to SMETI results.

parameters objective value [-] ratio [-]
# m n SMETI GA reimpl[18] SMETI/GA reimpl[18]

1 2 6 201 203 0.99
2 2 8 255 260 0.98
3 2 10 332 340 0.98
4 2 14 440 440 1.00
5 2 20 641 643 1.00
6 3 9 198 210 0.94
7 3 12 262 284 0.92
8 3 15 325 342 0.95
9 3 21 443 478 0.93
10 3 30 628 681 0.92
11 4 12 198 225 0.88
12 4 16 245 278 0.88
13 4 20 325 364 0.89
14 4 28 447 509 0.88
15 4 40 637 728 0.88
16 5 15 198 226 0.88
17 5 20 264 309 0.85
18 5 25 322 384 0.84
19 5 35 437 519 0.84
20 5 50 652 782 0.83
21 7 21 199 230 0.87
22 7 28 267 319 0.84
23 7 35 322 388 0.83
24 7 49 446 549 0.81
25 7 70 639 770 0.83
26 10 30 207 278 0.74
27 10 40 280 345 0.81
28 10 50 353 443 0.80
29 10 70 501 581 0.86
30 10 100 691 824 0.84
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9 Conclusion and Future Work

This thesis addresses non-overlapping scheduling of tasks to non-dedicated machines with
sequence-dependent setups executed by a given number of machine setters. This means we
have a given number of tasks and machines, and any task can be scheduled for any machine.
Before every task except the first one on every machine, machine setter has to execute a setup
operation whose length depends on both the task before the setup and the task following it.
There is no limitation on the quantity of machine setters in the problem.

Initially, Constraint Programming (CP) models were proposed to formalize and optimally
solve the problem. However, these are generally suitable to solve only small instances. To
extend the usefulness of CP models, we proposed warm start techniques that greatly increased
CP models’ ability to solve larger instances. With a warm start, CPFlexible can successfully
solve instances of tens of machines and hundreds of tasks. However, this still might not be
enough to accommodate any real-world scenario of the considered problem. For even larger
instances, heuristic approaches are proposed. These provide a very fast way to obtain the
solution to instances of hundreds of machines and tens of thousands of tasks, effectively solving
any conceivable real-world scenario in under a minute. We also proposed improvements to
these methods, enhancing the solution’s quality in a trade-off with time.

To achieve the best possible result for a larger specter of problem instances, we proposed
a multi-step hybrid algorithm called SMETI, which combines heuristic approaches, CP sub-
problem modeling, and the CP exact model CPFlexible. SMETI provides a way of solving both
smaller instances in an optimal way and huge instances very well, thus accommodating any
real-world scenario of the considered problem.

All proposed approaches and their respective parts were measured for efficiency against
each other and against the existing state-of-the-art approaches. Since, to the best of our
knowledge, there is no paper tackling exactly the same problem, we had to compare our so-
lutions to other less general ones. We achieved this by instance transformations to obtain the
problem with the same optimal solution as the original one but solvable by our approaches.
However, this means that our algorithms still had to search in larger solution spaces because
the transformed instance is of the same size as would be an instance of the same input param-
eters for our more general problem. Despite this slightly favored the other existing approaches
in the comparison, our CP models proved to be better than existing MIP models and our
SMETI algorithm to prevail over other heuristic approaches. SMETI also has one additional
advantage over the heuristic approaches in other papers because it can solve instances of any
size up to the optimum if enough time is given.

In conclusion, we proved that our approaches are effective, relevant, and can be used for
more specific problems with better efficiency than other existing approaches. We consider
this and the fact that we bring a solution to a completely new, more general problem the key
contributions of this thesis and see a great potential of using provided algorithms in real-world
production scenarios. Also, extensions and further optimizations were considered and will be
looked into and further expanded in the future.
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APPENDIX A LIST OF ABBREVIATIONS

Appendix A List of Abbreviations

In Table 13 are listed abbreviations used in this thesis.

Abbreviation Meaning

CP Constraint Programming
DP Dynamic Programming
GA Genetic Algorithm
ILP Integer Linear Programming
LB lower bound
LOSOS Locally Optimal Selection of Setups
MIP Mixed Integer Programming
ROSOL Resolution of Setup Overlaps Lazily
SMETI Subproblem Modeling Evolving Through Iteration
VRP Vehicle Routing Problem

Table 13: List of abbreviations
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Appendix B CD Contents

In Table 14 are listed names of all directories on CD.

Directory name Description

thesis Master’s thesis in pdf format.
thesis sources Latex Overleaf project sources.
project sources Root of the project structure.
project sources\Smeti C++ project containing code of the solution.
project sources\Scripts Folder containing python scripts generating figures.

Table 14: CD Contents
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Appendix C Project Organization

The project is written in C++ and for successful execution it requires ILOG CP optimizer
(tested with version 12.09) for CP models’ execution, Gurobi (tested with version 9.0) for ILP
models’ execution, and Google OR-Tools (tested with version 7.3) for VRP warm starting.
Since VRP warm start was rendered obsolete, the code using it might be commented out.
The ILP models in the project are only used for comparison with other papers so that they
might be commented out as well. The only requirement to run approaches proposed in this
thesis is ILOG CP Optimizer. The project is ready to be run in Microsoft Visual Studio, but
depending on the environment, reconfiguration of dependencies might be required.

The project is organized into the following Microsoft Visual Studio filters:

1. CP models: Contains classes representing CP models. CP3 represents model CPPairwise

and CP4 represents model CPFlexible.

2. Heuristic algos: Contains everything related to LOSOS, ROSOL, and SMETI. It also
contains reimplemented GA described in Kim et al. [18]. In code, the old naming scheme
of algorithms is still present. LOSOS is named SHS, ROSOL is named WCEA and SMETI
is named CPHeuristic.

3. ILP models: Contains ILP models described in papers which were used in the com-
parison in Subsection 8.3.

4. Machine history: Contains classes for building the solution into objects. It also con-
tains optimization methods and methods for testing and validation.

5. Main classes: Contains main class Program.cpp which handles the selection and calling
of methods and other helper classes used over the whole project like RunConfig or
Instance.

6. Warmstarts: Contains classes representing only warm start approaches. Legacy TSP
warm start is also present.

There is also a helper folder containing Python scripts that build various graphical repre-
sentations and figures from the solutions.

1. exact comp tables.py: Provides script which generates LaTeX or PNG tables com-
paring ILP models with CP models.

2. graph comp.py: Provides script generating graphs comparing our proposed approaches.

3. graphical sol.py: Provides script generating a graphical representation of a single
solution obtained by any proposed method.

4. heuristic comp tables.py: Provides script which generates LaTeX or PNG tables
comparing heuristic approaches from other papers to our SMETI.
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Appendix D Testing and Output

As solutions are impossible to validate or draw by hand; there are methods provided to do
that automatically. Function validateSolution() takes the solution and verifies if it correctly
adheres to all constraints. Function saveOutput() generates text file representation of single
instance solution. The batch text files containing results for multiple instances are generated
by their respective functions in Program.cpp. The generated result text files can then be used
to generate images, tables, and graphs using the provided Python scripts.

D.1 Running the Project

As mentioned, Program.cpp is the main project file. To run the project, the main() function
in Program.cpp must be called and configuration of execution must be set. This can be done
by passing arguments to the Program.cpp when executing it. The first argument is a boolean
switch, which represents if we run on Linux, true, or Windows, false. The second argument
is an integer variable representing one of the possible run modes. Run modes can represent
single, batch, or comparison executions of various approaches and can be found described in
Program.cpp. The third argument is a boolean switch between non-heuristic, true, or heuristic,
false executions for the comparison run modes. The alternative way to set these parameters
is to set them directly in the configuration header file Program.h. Output files are generated
into the folder results which is in the same folder as the Program.cpp.
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