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Abstrakt

V této diplomové praci predstavujeme architekturu systému pro detekci cilenych
phishingovych utokd. Nejprve prozkoumame soucasné trendy v oblasti phishingu,
a identifikujeme techniky a vzorce chovani, které se v téchto skodlivych zpravach
vyskytuji. Navrhneme detektor pro call-to-action, neboli potencialné nebezpeéné
zadosti, které jsou jednim ze signald pro identifikaci phishingovych e-maili. Na
tomto detektoru ukazeme vyvoj v oblasti zpracovani pfirozeného jazyka. Na této
uloze nasledné evaluujeme nékolik klasifika¢nich algoritmu, od klasickych metod
strojového uceni po nejnovéjsi modely zaloZené na neuronovych sitich s architek-
turou Transformer. Dale v programovacim jazyce Python implementujeme obecny,
rozsifitelny systém pro klasifikaci e-mailovych zprav, zpfistupnime jeho funkcional-
itu pomoci aplika¢niho rozhrani s architekturou REST, a navrhneme s$kalovatel-
nou infrastrukturu pro jeho nasazeni v cloudové platformé Microsoft Azure. V
neposledni fadé optimalizujeme vypocetni vykonnost detektort zaloZenych na ar-
chitektufe Transformer. Oddélime detektor potencialné skodlivych zadosti do sa-
mostatné komponenty, ve které zrychlime inferenci modelu vybranim vhodné in-
frastruktury a architektury, a optimalizaci vypocetniho grafu pomoci akceleratoru
ONNX Runtime. Uéinek navrzenych vylepseni ovéiime na vefejném e-mailovém
datasetu Enron, na kterém pozorujeme aZz pétinasobné zrychleni.

Klicova slova phishing, zpracovani pfirozeného jazyka, klasifikace, neuronové
sité, nasazeni modeld strojového uceni
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Abstract

In this thesis, we propose an architecture for an ensemble-based detection engine
for targeted phishing attacks. We review the current phishing landscape and iden-
tify common phishing techniques and behaviors. Next, we develop a detector for
call-to-action, a common phishing signal, and use it to showcase the impact of re-
cent advances in natural language processing. We evaluate multiple classification
algorithms, ranging from classic machine learning algorithms to state-of-the-art
neural network Transformer models for language modeling, on the task of call-to-
action detection. We implement an extensible e-mail classification pipeline using
the Python programming language, expose its functionality through a REST API
service, and design a scalable infrastructure setup for deploying this service in Mi-
crosoft Azure. Finally, we focus on optimizing the computational performance of
Transformer-based detectors. We extract the call-to-action detector into a sepa-
rate service, boost its performance by selecting suitable infrastructure and model
architecture, and optimizing the computation graph with the ONNX Runtime ac-
celerator. We validate the speedup from the proposed optimizations on the Enron
e-mail dataset, where we observe a 5 increase in service throughput.

Keywords phishing, natural language processing, classification, neural networks,
deploying machine learning models
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CHAPTER 1

Introduction

With the migration of critical infrastructure into the internet, the need for effec-
tive systems to counter cyberattacks is larger than ever. E-mail is commonly used
to deliver malicious payloads, and according to IBM X-Force Threat Intelligence
Index 2020, phishing is currently the most frequent initial attack vector [9]. How-
ever, many successful attacks do not require compromising the security of company
infrastructure; a large portion of cybercrime cases consist of surprisingly simple
frauds based on social engineering. Phishing poses risks for ordinary users, but
also to government agencies and businesses, where these attacks are prevalent in
the form of “business e-mail compromise” and were responsible for over $1.7 billion
in losses reported in 2019 [10].

In this thesis, we present a system for detecting e-mail phishing attacks, with
an emphasis on identifying sophisticated targeted phishing using natural language
processing techniques.

The thesis is structured as follows. In Chapter ], we describe the concept of
phishing, categorize phishing attacks, and showcase common phishing techniques.
We give a high-level introduction of a system for phishing detection and enumerate
its system requirements.

In Chapter B, we present an overview of relevant natural language processing
techniques and their relation to the proposed ensemble-based phishing classifica-
tion engine. We enumerate several classification and language modeling meth-
ods, emphasizing state-of-the-art neural network models, and describe multiple ap-
proaches to representing text for machine learning algorithms. Then, we introduce a
call-to-action detector based on natural language processing, show its development
progress, and demonstrate the impact of the selected classifiers and text represen-
tations on its predictive performance.

In Chapter §, we give a detailed description of the classification engine workflow
and show the pipeline for e-mail preprocessing, detection, and detection aggrega-
tion.

In Chapter B, we show how we expose the phishing detection engine through a
REST API service and highlight important implementation details.
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In Chapter [, we overview the cloud infrastructure used to deploy the API ser-
vice and describe tools used to automate the deployment process.

In Chapter 1, we focus on optimizing the inference of neural network models.
We demonstrate how inference time can be reduced significantly using a combi-
nation of suitable infrastructure, alternative model architectures, and model graph
optimizations. Finally, we benchmark the impact of the proposed optimizations on
the call-to-action detector service using a public e-mail dataset.

We conclude the thesis in Chapter § and present ideas for future work.



CHAPTER 2

Phishing

Phishing is a technique for acquiring sensitive data, such as bank account numbers,
through a fraudulent solicitation in email or on a web site, in which the perpetrator
masquerades as a legitimate business or reputable person [11]. Merriam-Webster
give a broader definition of phishing as a fraudulent operation by which an e-mail
user is duped into revealing personal or confidential information which can be used
for illicit purposes [[12].

Phishing attacks are popular because they are easy and cheap - sending e-mails
is free and lists of e-mail adresses can be bought or collected from scraping the web.
They also do not require direct contact with the victims and can be thoroughly
premeditated.

2.1 Categorization

In practice, we identify two main categories of phishing e-mails - large-scale cam-
paigns which target massive amounts of users with generic e-mails, and spearphish-
ing attacks which are aimed at a specific person or company. The boundary between
these two categories is fuzzy, and in general, there is a tradeoff between the required
effort, quantity of contacted victims, and the effectivity of the attack.

2.1.1 Large-scale Phishing Campaigns

Unlike the common spam e-mails which contain unwanted advertisements or spread
false information, large-scale phishing campaigns aim at actively compromising
user accounts or stealing sensitive data such as credit card details. In the phish-
ing e-mails, the attacker is posing as a trustworthy authority and tries to trick the
users with a fraudulent message. According to Cofense 2019 Annual Phishing Re-
port, 74% of phishing e-mail target credentials [[13].

They often target online banking accounts and similar services (e.g., Paypal)
which provide direct access to money once compromised. Phishing e-mails also
tend to create a sense of urgency, e.g., threatening to terminate the users account if
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he does not act quickly. The attackers will often use machine translation to reach
a broader audience of potential victims, therefore grammatical errors and overall
poor use of the language can be a giveaway of such e-mails. An example of a typical
phishing e-mail aimed at bank customers can be seen in Figure P.1.

Dear member,

we detected unusual activity on your Bank of America debit card

on 09/22/2014. For your protection, please verify this activity so
you can continue making debit card transactions without interrup-
tion.

Please sigh in to your account at https://www.bankofamerica.com

to review and verify your account activity, After verifying your
debit card transactions we will take the necessary steps to protect
your account from fraud. If you do not contact us, cretain limita-
tions may be placed on your debit card.

© 2014 Bank of America Corporation. All rights reserved.

Figure 2.1: Example of a large-scale phishing campaign aimed at Bank of America
customers. Note the unnatural emphasis and the presence of slight grammatical
errors. Link is masqueraded and leads to a malicious destination (Section P.2.3.1)).

While these types of e-mails were very prevalent in the past, we now encounter
fewer of them, as they become less effective with modern e-mail providers improv-
ing their phishing detection and filtering, and the users becoming more cautious
and educated about phishing. The general bar of the security of computer systems
nowadays is also higher, and with the presence of safeguards such as two factor au-
thorization, it can be difficult to compromise the account even with the knowledge
of user credentials.

2.1.2 Spearphishing

In recent years, we can see a shift towards more sophisticated techniques, as e-mail
providers improve the detection of general phishing e-mail. Personalized, targeted
phishing scams known as “spearphishing” are particularly dangerous. Kaspersky
define spearphishing as an email or electronic communications scam targeted to-
wards a specific individual, organization or business [[14].

In spearphising attempts, the attacker possesses some knowledge about his vic-
tim, and he abuses it to trick him or her into doing some harmful action, such as
opening a malicious attachment, authorizing a payment, or leaking internal data.
Such attacks are difficult to detect automatically, as they don’t repeatedly appear in
the network data, and also extremely effective, because they target a single person
with specific information.
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For instance, if an employee receives an offer from a Nigerian prince offering to
transfer his entire net worth to a chosen bank account, it will probably get ignored
or filtered by the e-mail provider. However, if the same employee receives an e-mail
from someone posing as his co-worker, containing an Excel file with data he needs
to finish his overdue assignment, it is quite likely he will open it without a thorough
examination.

2.1.3 Business E-mail Compromise

The spearphishing attacks are extremely dangerous in the environment of corpo-
rate networks. A significant portion of communication inside a typical company
still happens over e-mail, and in huge companies with multiple subsidiaries, it can
sometimes be the only option to communicate. If the attackers have knowledge
of the company’ organizational structure, they can easily come up with a scenario
to compromise its security (i.e., by posing as a co-worker, an executive, or a busi-
ness partner). This is called a “Business E-mail Compromise” (BEC), and according
to Cofense 2019 Annual Phishing Report, over 8% of all observed phishing e-mails
were BEC scam attempts [13]. Example of a BEC attempt can be seen in Figure P.3.

Hi Joe,

Are you in the office? I need you to setup a $8,988.0 payment for
the new contractor.

Sort code: 30-61-22
Acc. number: 10436773
Beneficiary: Heidi Roberts

I will send the documents as soon as I’ll sort out my stuff.

Regards
John Patterson
Sent from my iPhone.

Figure 2.2: Example of a business e-mail compromise attempt to force an employee
to perform a money transfer. Adapted from [[1]].

BEC attempts become especially difficult to counter when a real business e-mail
account is compromised. In this case, the defense depends on the employees ability
to recognize the malicious intentions, which can be nearly impossible if the request
is within the scope of his standard responsibilities. Attackers will often pose as
executives who the employees are also less likely to oppose or question.

A successful BEC can result in significant damages to the company, e.g, through
forcing a fraudulent money transfer, exfiltrating sensitive data out of the company,
or executing a more sophisticated attack after gaining access to the company in-
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frastructure. According to FBI 2019 Internet Crime Report, over 23 thousand cases
of successful BEC attacks have been reported, with total losses of over $1.7 billion
(10].

2.2 Phishing Techniques

To detect phishing e-mails, we first need to examine the techniques commonly used
to disguise the malicious intentions of such e-mails. In this section, we explore
some of the more common signals we encounter today, and also discuss possible
future trends utilizing artifical intelligence. Note that while most of the behaviors
we enumerate are not conclusive evidence on their own, their presence is highly
suspicious, and detecting a combination of them can suffice to produce a final verdict
with reasonable confidence.

2.2.1 Social Engineering

In this section, we analyze the textual content of phishing e-mails and show com-
mon persuasion techniques employed by attackers. One common factor of phish-
ing e-mails is the use of social engineering. To gain something from the attack,
the attacker first has to make his victim believe that the e-mail is coming from a
trusted party. This impersionation alone is difficult to detect automatically — there
are no written rules for what is considered suspicious in an e-mail conversation, and
judging the situations correctly depends on the context. For broad bulk phishing
campaigns, we could often notice poor use of the language stemming from the lack
of proper language skill and the use of machine translation, but encountering such
telling signs is rare in the more elaborate spearphishing attacks.

2.2.1.1 Call-to-Action

A successful impersonation is not in itself dangerous until the attacker succeeds in
making the victim perform a malicious action. Therefore the e-mails we are most
interested in detecting and stopping are the ones that are directly requiring the user
to do something — i.e., provide his credentials, click a link, or open an attached file
(Figure .3). We will be naming this “call to action,” and a call to action detector will
be one of the main components of our proposed phishing classifier.

2.2.1.2 Urgency

Phishing e-mails often evoke a sense of urgency to make the victim act quickly and
without caution. Threats of impending account cancellation, missed due dates, or
limited time offers are all a common occurrence. Urgency is also present in the
example e-mail in Figure P.3, where the CEO impersonator demands a response “as
soon as possible”.
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Hello David,

hope you had a great weekend. I’m still missing the financial
report, please send it to me ASAP.

Mr. CEO

Figure 2.3: Example of a call-to-action in the broader context of a sample e-mail.
Our detector should place this sample in the “data input” category.

2.2.1.3 Confuseable Unicode Characters

With increasingly sophisticated phishing and spam detectors employing e-mail con-
tent analysis, attackers have come up with a technique to evade detection from these
automated systems through the use of confuseable unicode characters. The mes-
sage containing these characters will be fully understood by the victim reading the
e-mail in the context of the surrounding words and characters, but the inclusion of
mangled words can potentially disrupt the automated analysis of the message.

Examples of confuseable unicode characters can be seen in [[15], other common
cases of visual spoofing are enumerated in [[1€].

2.2.2 Sender Impersonation

The e-mail sender is possibly the most imporant indicator of e-mail legitimacy.
Therefore, it is important for phishing e-mails to make users believe they are coming
from a familiar source even if they do not have control over such e-mail account. In
this section, we cover how this can be achieved using e-mail addresses resembling
familiar senders or by spoofing the e-mails.

2.2.2.1 Using Misleading E-mail Addresses

A simple and common approach to sender impersonation is to register a free public
domain e-mail account resembling the credentials of the impersonated company or
person, hoping that the targeted user does not notice the use of an unofficial e-mail
address. In the case of spearphishing, attackers will often claim the use of a private
e-mail account of a coworker or business associate, and when paired with a be-
lievable and convincing message, this often suffices to fool an unsuspecting victim.
Clever use of a suitable free e-mail host can increase the e-mails’ credibility, such as
in the case of a recent phishing scam impersonating the Czech postal service, where
the e-mail came from an address registered with the @oost . cz domain (Figure P.4).
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From: Czech Post <intro-tracking-post@post.cz>
Subject: Confirm your parcel payment

Figure 2.4: Example of a phishing e-mail using a misleading e-mail address inspired
by a real recent attack [2].

2.2.2.2 Header Spoofing

Users are now often knowledgeable enough to check the origin of suspicious e-
mails, so the e-mail sender must appear to be legitimate. Directly spoofing the
sender address in the e-mail header is possible because of the lack of authentication
in the core e-mail protocol. Therefore, anyone is capable of constructing and send-
ing an e-mail similar to the example in Figure R.5. Such e-mails are nowadays usu-
ally detected using a combination of DMARC, DKIM and SPF protocols [17, 18, 19]
and filtered or displayed with a warning by most e-mail providers. However, sophis-
ticated attacks can circumvent these authentication protocols, as shown by Chen et.
al [20].

From: doc. RNDr. Vojtéch Petracek, CSc. <Vojtech.Petracek@cvut.cz>
To: prof. Mgr. Petr Pata, Ph.D. <dean@fel.cvut.cz>
Subject: Scholarship Recommendation for Radek Starosta

Figure 2.5: Example of a spoofed e-mail header

2.2.3 URL Manipulation

Phishing e-mails are used to establish contact with the victim, but the critical part
of the attack often happens on a malicious website to which the attackers try to
lure the users using external URL links in the e-mail message. These sites can then
contain forms to steal confidential data or credentials. In other cases, they will host
malicious executables to avoid automatic scanning of e-mail attachments. In this
section, we walk through several techniques used to hide true destination of these
malicious links.

2.2.3.1 Link Masquerade

Link masquerade is a technique applicable to HTML e-mails, which abuses the dis-
play text of an <a> anchor tag. Anchor tags allow setting a custom display text for
the link, and the attacker can set the display text to appear as an URL leading to
a legitimate hostname, but the href attribute will instead lead the user to his mali-
cious site. To defend against this attack, the targeted user would have to check the
final destination in the web browser, which many will not do if the web page or the
e-mail looks convincing.
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<a href="http://attacker.com”>http://google.com</a>

Figure 2.6: Example of a link masquerade — uses google.com as display name, but
points to attacker.com

2.2.3.2 Open Redirect

Open redirects can be utilized similarly to link masquerade and again attempt to
disguise suspicious-looking URLSs from the user [21]. In this case, with the help of a
redirection from a well-known service — the link will appear to lead to a trusted host
(i.e., Google), but the real destination is passed in the request parameters. When the
user visits the link which appears to point to a familiar website, he gets redirected
to a different, malicious site by the legitimate web service. Using an open redirect
can also help avoid automatic detections that would typically block links to such
malicious servers.

https://google.com/url?sa=t&url=http://attacker.com/&usg=A0vV..

Figure 2.7: Example of open redirect on Google.com [3].

2.2.3.3 Typosquatting

Typosquatting is the use of a registered domain name which very closely resembles
the domain of the impersonated brand. While the previously described techniques
rely on the user failing to notice a malicious link destination or redirect in the e-mail,
typosquatting makes this harder to detect even when checking the final domain, as
they will be visually similar.

Different variants of this method can be seen in the wild — some use confusable
characters or minor spelling differences (i.e., bankofamereca. com, goggle.com),
in other cases the sites can only use a different top-level domain. Other comple-
mentary techniques like “combosquatting” [22] and “dash-phishing” make use of
second-level domains and extra periods or hyphens (Figure P.8).

https://google-com.attacker.com/

Figure 2.8: Example of dash-phishing on Google.com

Szurdi et al. [23] summarize typosquatting techniques and their monetization
strategies, and develop a framework for typosquatting categorization based on clus-
tering data collected from publicly available domain records and web crawlers.
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2.2.4 Utilizing Artifical Intelligence

In the recent years, we have seen a major advancement in the field of natural lan-
guage processing, and artificial intelligence in general. Although we have mainly
seen the positive effect on these advancements in areas such as machine transla-
tion, they can also be utilized by malicious actors and have significant security
consequences. For instance, a successful, fully-automated spear phishing system
utilizing Al has been demonstrated by Seymour et al. [24].

With the availability of powerful neural network models like GPT-2 [25], and
recently its successor GPT-3 [26], the potential for malicious use has only increased.
These models are capable of producing generated text that is often indistinguishable
from human-generated data, and even the authors of GPT models warn about the
possibilities of malicous use for generating fake news, spam, but also e-mail phish-
ing [27].

Giaretta et al. [28] describe “community targetted phishing”, a possible future
trend in phishing. This approach can be thought of as a middle-ground between
large, untargetted campaigns and closely targetted spearphishing e-mails, and aims
at creating phishing e-mails for a broader audience which remaining specific enough
to stand out from basic phishing attempts. Authors first describe a template-driven
approach, and show how it can be evolved using natural language generation tech-
niques — both with relatively little effort compared to spearphishing. An example
of a community targetted phishing e-mail which can target scholars and be easily
adapted using publicly available data (i.e., from Google Scholar) is shown in Figure

Dear [Target Namel],

I am Prof. [Reputable Name] from [Reputable Universityl, we are
currently expanding our lab and we are evaluating some possible
candidates. I have personally checked your Google Scholar account
and noticed that you h-index is high with respect of the average
in your field, and considerably grew over the last 5-years span.
Therefore, we would like to propose you a position. You can enrol
at the following link: [Phishing Link]

Figure 2.9: Example of a community targetted phishing e-mail template.

2.3 Project Introduction

In this thesis, we cover the development of a phishing classification engine which
has been the main focus of our team for the past year. The engine we are developing
is meant to integrate with and complement other products which already provide
a layer of security against generic phishing. Therefore, our main goal is to detect

10
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more sophisticated attacks such as spearphishing and BEC attempts using advanced
machine learning techniques applied on e-mail content.

2.3.1 System Requirements

Azure ecosystem Our engine is provides an additional layer of security to Office
365 [29] mailboxes. This ties us to the Microsoft ecosystem and requires us to
deploy the engine inside of Microsoft Azure [30].

Scalability There is an emphasis on scalability in our design process. As the num-
ber of managed mailboxes increases, we need to be able to scale our infras-
tructure appropriately and design the system in a way where we do not create
processing bottlenecks.

Efficacy Our system has to provide solid and useful verdicts about previously un-
detected e-mails, and minimize the amount of false positives, as blocking le-
gitimate e-mails is unacceptable in corporate communication.

Cost of Operation Finally, we need to take into account the cost of operation of
our engine, and design an efficient system with reasonable costs. This requires
selecting suitable Azure instances and utilizing them effectively.

11






CHAPTER 3

Phishing Detection Using
Natural Language Processing

In this chapter, we introduce natural language processing and show how it relates to
our task of phishing detection. We describe our idea of the phishing detection sys-
tem based on ensembling and introduce a detector for call-to-action, on which we
demonstrate multiple techniques for text classification. Starting from fundamental
NLP approaches, we incrementally show our detector’s evolution while introduc-
ing newer techniques and advancements in the field. Finally, we demonstrate their
impact by comparing the predictive performance of the detector iterations.

3.1 Natural Language Processing

Natural Language Processing (NLP) is the automatic manipulation of natural lan-
guage, such as speech, or in our case, written e-mail communication. Voice and text
are our primary means of communication, and as such, it is crucial to understand
and analyze this data. Understanding natural language is challenging, as languages
can be difficult to bind by rules and often have nuances that even native speakers
can misinterpret or fail to understand. It can be tackled from several angles, i.e.,
using the linguistic approach of analyzing and describing the syntax and semantics,
but in this thesis, we will focus on statistical methods for NLP, more specifically on
the task of classifying text data.

3.2 Phishing Detection

The goal of our project is to be able to identify potentially dangerous phishing e-
mails. In its simplest form, this is a binary text classification task where we try to
distinguish between phishing and benign e-mails.

We can observe a large number of diverse phishing techniques, and therefore
independent signals of suspicious behavior in e-mail data. Thus, the approach we

13
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have chosen to tackle the problem of detecting phishing e-mails is to construct an
ensemble system with multiple, specialized detectors and then aggregating these
signals to produce a final verdict. These individual detectors can be simple or com-
plex and have different weights, but eventually, the combination of their detections
will give us the binary classification result.

Although multiple types of signals can help us flag suspicious e-mail (i.e., by us-
ing information from e-mail headers), one of the more exciting research problems
we attempt to solve is to discover the malicious intent in the body of the e-mail,
which contains natural language. This chapter will focus on a detector for the be-
havior we have named a “call-to-action” and showcase multiple NLP techniques
used to bring it to life.

3.3 Classification Algorithms

This section gives an overview of machine learning algorithms used to build learned
detectors of our phishing classification engine. We briefly introduce naive Bayes
and logistic regression classifiers as the representatives of classic machine learn-
ing algorithms and then cover neural network-based approaches, which currently
dominate the field of machine learning, in greater detail.

3.3.1 Classification

Classification is the task of assigning one or more categories, or classes, to data
based on a set of input variables.

We formalize classification in the context of supervised learning, where a train-
ing set of labeled data is available. Classifier is a function fy learned from a set of
training samples {(X1,1), - - -, (Xn,yn)} C R x Y, where x; = (1, .., 74) are
numeric feature vectors and y; are classification labels from a discrete set of classes
Y = {ci,...,cr}. The classifier function then maps a given input vector x to the
prediction result § = fp(x) using the learned parameters 6.

Multi-label classification is a generalization of classification, where any number
of classes can be assigned to the same instance.

In this thesis, we focus on classifying text extracted from e-mail messages. This
requires us to perform feature extraction and transform the input data into a nu-
meric feature vector representation, which we cover in Section B.7.

3.3.2 Naive Bayes Classification

Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem appli-
cation, which naively assumes conditional independence between input features
given a class label. It is extremely fast compared to more sophisticated classifiers,
essentially requiring only a single pass through the training data to estimate its pa-
rameters, making it a very cheap starting model. Despite its simplicity, it has been

14
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shown to work well in practice in the area of text classification, even with relatively
small amounts of training data [31].

It can be formulated using the Equation B.1, where P(y) is the probability of
class y estimated from its frequency in the training set, and P(x;|y) is the probabil-
ity of feature x; appearing in a sample belonging to class y.

n
@Za@HMX<P@)IfP@ﬂw> (3.1)
Y i=1
There exist multiple variants of this algorithm, such as Gaussian or multinomial
naive Bayes, which differ by the assumptions they make regarding the distribution
of P(x;|y).

3.3.3 Logistic Regression

Logistic regression is a linear classification model that assumes a linear relationship
between the predicted class and input features but adds a non-linear transform on
the output using a logistic function. This logistic function (Equation B.3) can squeeze
any real-valued input into a value between 0 and 1. We can then obtain the binary
classification by setting a decision boundary threshold (Equation B.3).

1
f(z) = e (3:2)
. )1 iff(x)>0.5
y‘{o if f(z) < 0.5 (3:3)

3.4 Neural Networks

The recent rapid progress in neural network research has been driving most of mod-
ern Al successes. Neural network models have broad applications in computer vi-
sion, speech and pattern recognition, language modeling, and related tasks such as
machine translation, fact-checking, or text classification. For most, if not for all
of these tasks, they can outperform conventional machine learning algorithms and
achieve state-of-the-art results. For instance, a summary of language modeling task
results for recently published models is available at [32].

Artificial neural networks are inspired by real neural networks found in the
human brain. They are composed of many connected units called neurons, which
receive and transmit signals in a large network structure. In an artificial neural
network, this signal is a real number. The neuron’s output is computed by applying
an activation function on a weighted sum of its inputs.

The original idea of neural networks is very old, with original papers exploring
systems resembling neural networks dating back to the 1940s. However, the wide
adoption of this approach to statistical modeling came only in recent decades, and it
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Figure 3.1: Demonstration of an artificial neuron in the perceptron classifier [4].

was largely driven by improvements in distributed and GPU computing, which pro-
vided enough computing power to support the training of large models with a deep,
layered structure. This concept has been named “deep learning,” and a thorough
summary of its applications can be found in the Deep Learning book by Goodfel-
low et al. [33]. One of the main reasons behind the success of these models is their
ability to scale and learn from huge datasets that have become available in recent
years.

3.4.1 Perceptron

As we briefly discussed in the previous section, the building blocks of neural net-
works are artificial neurons (Figure B.1). These neurons are connected, and each
neuron has one or many input and output connections. The neuron has internal,
learned weights, which it uses to compute a weighted sum from its input signals.
Finally, to obtain the neuron’s output signal, we use an activation function to trans-
form this sum, which introduces non-linearity into these systems and makes them
able to model highly complex relationships in the data accurately.

Before we dive into more complex architectures, we will first introduce the sim-
plest neural network classifier — the perceptron. Perceptron is a binary classifier
with a single artificial neuron that combines the feature vector with learned weights.
It then applies the Heaviside step function (returns 0 for negative and 1 for posi-
tive arguments) as its activation function, which directly decides the output class

(Equation B.4).

(3.4)

. )1 ifw-x+b>0
Y710 ifw-x+b0<0

3.4.2 Multi-layer Perceptron

The real power of neural networks comes with the combination of many neurons
in large, connected structures. A multi-layer perceptron model, or a feed-forward
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Figure 3.2: An example of a simple feed-forward neural network [5].

neural network, combines multiple perceptrons organized into a hierarchical, multi-
layer structure.

Multi-layer perceptrons have an input layer (sized to accept signal from all input
features), an output layer (sized according to the expected output, i.e., probabilities
for individual classes in classification tasks). In between, there are one or many
arbitrarily sized hidden layers. In the basic MLP neural network, layers are fully
connected, which means that each neuron sends its output to all neurons in the
next layer.

In Figure B.7, we can see a simple multi-layer perceptron with three layers. We
will encounter huge neural networks in practice, often with hundreds of layers and
hundreds of millions of parameters. Because learning a deep network with a fully
connected architecture is computationally expensive, and such networks are more
prone to overfitting, the deeper and more complex models use different types of
layers, which help reduce the number of model parameters. Examples of these are
convolutional and pooling layers or techniques like dropout [34], which omits some
randomly selected neurons during each training epoch.

3.4.3 Training Neural Network Models

Neural network models are trained using algorithms based on stochastic gradient
descent (SGD). In this iterative process, the training data is passed through the net-
work, the result of this computation is compared to the expected output, and an
error is calculated using a selected loss function. We then use a “backpropagation”
[B5] technique to update the neural network weights — the error is propagated back
through the network, gradually computing the gradient of the loss function used to
update the weights according to how they contributed to the computed error.

17
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Figure 3.3: An example of a recurrent neural network architecture.

Because the datasets used for large-scale neural network models are often mas-
sive, it is not feasible to compute the gradient from all available data together. On
the other hand, updating the network-based on only a single data point in every
step or epoch, while much faster, leads to chaotic and unpredictable changes in
the network. Therefore batch learning, essentially a middle ground between these
two methods, is the standard approach — small, randomly selected batches are used
to compute the gradient, bringing more stability to the learning while still being
reasonably fast.

In practice, different variants of this algorithm are used to make the learning ef-
ficient, one notable example being the ADAM optimizer [36]. The training process
can also be further adjusted using hyperparameters, such as learning rate, momen-
tum, or decay.

3.5 Recurrent Neural Networks

Neural networks provide excellent performance in a huge number of diverse ma-
chine learning tasks, including language modeling and text classification, which will
be our main area of focus in this chapter. Standard feed-forward neural networks
are not suited for processing sequential data such as written text — they receive a
set of inputs and analyze them together, but a proper understanding of a piece of
text requires knowing the context of previous words or sentences. Their fixed-sized
inputs are also limiting as written text, and sequences in general, are by nature of
variable size. Unlike, i.e., images, they cannot be easily cropped or resized. Re-
current neural networks (RNNs) solve this problem by allowing input sequences of
variable length and reusing the output or hidden state from one or many previous
steps to compute the prediction for the current step. An example of inference in
such a network can be seen in Figure B.3d— processing an input sequence X using
the state vectors S yields the output sequence h.

The network parameters are learned using an algorithm called “Back propaga-
tion through time” [37], which is similar to standard backpropagation but gradually
computes the error for each time step in the sequence. The errors are then accu-
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Figure 3.4: Overview of an LSTM cell [g].

mulated and used to update network weights. This process can be computationally
expensive for longer sequences with many time steps.

RNN architecture can be naturally applied to language modeling, which is es-
sentially the task of predicting the probability of words occurring in a sentence,
given a previous piece of text. RNNs, with the addition of gating mechanisms like
long short-term memory or gated recurrent units, have been essential for the rapid
progress in the field of language modeling and other closely related tasks, such as
machine translation or text synthesis. However, we have recently seen a significant
shift towards transformer-based models built on the ideas presented in this section,
but no longer directly utilize recurrence.

RNNSs have also been shown to perform well even on data that is not sequential
— Ba et al. [38] successfully use an RNN to classify image data using sequences of
pixels.

3.5.1 Long short-term memory

Although the information about all previous input can theoretically be encoded
in the state vectors of basic RNNs, in practice, they struggle with capturing long-
term dependencies. Long short-term memory (LSTM) [39] is an architecture, which
significantly increases the ability of RNNs to retain information in longer input
sequences.

LSTMs use three gates to control the state vectors passed through the cells,
which have the ability to both add and remove information (Figure B.4). The input
gate controls the significance of the new input value that flows into the cell and
whether it should be retained in the state. The forget gate determines which old
information should be discarded. Finally, the output gate selects the relevant parts
of the state for the output of the current cell.

3.6 Transformers

The Transformer is a neural network architecture first proposed in the “Attention
is all you need” article published in 2017 [[7]]. The original paper focuses on its
application for machine translation, but the Transformer model has been highly
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influential in the entire field of NLP, as it was the first successful model to stray away
from sequence-based RNNs and convolutions, instead of relying on a mechanism
called “attention” Attention, used in the form of scaled dot-product self-attention
in the proposing paper, allows the model to utilize information from other words
in the processed sequence when encoding the current word. In the sentence “The
student did not work on his thesis today because he was too tired” the word “he”
refers to the student — the attention mechanism can help the model focus on these
relationships required to fully comprehend the sentence.

Transformer is based on the Encoder-Decoder architecture successfully used
for machine translation with both RNNs [40] and LSTMs [41]. As proposed in these
papers, the encoder part of the model reads the sequence, one timestep at a time,
and encodes it into a fixed-sized context vector. The decoder then gradually extracts
the output sequence from this context vector. However, the compression of the
necessary information into a fixed-sized vector can be problematic for longer input
sequences because the model eventually “forgets” the information from the early
sequence parts.

The attention mechanism introduced in [42] helps to memorize information
from these longer sequences by developing a context vector filtered specifically for
each output time step. The Transformer model takes this approach even further, as
the entire model is based on attention without using the recurrent architecture (Fig-
ure B.9). It views the encoded representation of the input as a set of key-value pairs
(K,V), obtained from the encoder’s hidden states. In the decoder, the previous
output is compressed into a query (), and the next output is produced by mapping
this query and the set of keys and values.

These vectors are packed into matrices and combined using a scaled dot-product
self-attention mechanism (Equation B.5), where dj, denotes the dimension of the key
vectors.

Vi

Abandoning the standard sequential approach of processing text left-to-right
has been the most significant contribution of this model. Learning models with
Transformer architecture are easier to parallelize. It, therefore, allows utilizing the
computation power of current GPUs fully. Since the publishing of this article, a vast
amount of models belonging to the Transformer family have been developed [43],
and Transformers have become the go-to models for more complex NLP tasks.

A thorough visual demonstration of the Transformer architecture and the self-
attention mechanism is available at [44]. For an overview of other attention models,
see [45]. Recent progress on enhanced Transformer models is summarized at [46].

Attention (@, K, V) = softmax <QKT) 1% (3.5)

3.6.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language rep-
resentation model developed by Google researchers in 2018 [47].
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Figure 3.5: The Transformer architecture [[7].

BERT directly applies the Transformer architecture to language modeling, and
to do so, it utilizes two training strategies. Masked LM replaces some words in each
sentence with a [MASK] token, and the model then tries to predict the masked words
based on the other, non-masked words in the sentence. Next Sentence Prediction
works with pairs of sentences for which the model attempts to predict whether they
appear as two subsequent sentences in the text. Sentences are paired so that 50% of
the input pairs are initially subsequent sentences, and the other 50% are randomly
selected from the training corpus.

Both masked LM and next sequence prediction are used together during train-
ing, in which the optimizer minimizes the combined loss function of both strategies.
Because neither strategy requires labeled data, the model can be trained in an un-
supervised fashion on large corpora.

BERT has been a hugely successful language model, and many machine learning
researchers have followed-up with related models, either focusing on further scal-
ing the architecture and improving its performance (RoBERTa [48], XLNET [49]),
or replicating its results using less expensive model architectures (ALBERT [50],

DistilBERT [51]).

3.7 Text Representations

To make use of general machine learning algorithms introduced in Section B.3, we
need to represent our data using numerical feature vectors. In this section, we enu-
merate multiple options for building numerical representations from text data.
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a bag of words has inside it other

1 1 2 2 1 1 1 0

Table 3.1: Example of a bag-of-words representation

3.7.1 Bag-of-Words Representation

One of the common approaches is representing text using a bag-of-words model,
where the vector represents word counts in a predefined dictionary. In this sim-
plistic model, we completely ignore the words’ positions and relationships and only
work with an unordered set of words present in the sentence or text document.

An example representation of the sentence “A bag of words has words inside of
it” is displayed in Table B.1.

3.7.2 TF-IDF

Basic bag-of-words representations are not very efficient or robust. They do not
consider the size of the document and carry a lot of unnecessary information about
stop words — the most common words used in the language. These issues can be
partially solved by scaling and filtering stop words, but a more advanced statistic
called TF-IDF (term frequency-inverse document frequency) is often used instead.

TF-IDF captures the information about the importance of a word in a docu-
ment. The value increases as the word appears more frequently in the document
but is scaled down when the word is prevalent in many other observed documents.
Therefore, the impact of stop words and common parts of speech that appear in all
documents is reduced, and we can instead focus attention on the more defining set
of words that carry the meaning of the specific document.

3.7.2.1 Term Frequency

Term frequency (Equation B.6) captures the number of times a term occurs in a spe-
cific document. In its basic form, it equates to the unscaled bag of words approach
mentioned previously.

tf(t,d) = raw count of term ¢ in document d (3.6)

3.7.2.2 Inverse Document Frequency

Inverse document frequency measures how rarely the word appears across all doc-
uments. It is defined as an inverse fraction of the documents containing the term,
which is scaled logarithmically.

Dl

idf (t, D) =1
idf(t, D) 0g1+|{deD:ted}\

(3.7)
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Figure 3.6: Similarity substructures in word2vec word embedding [8].

Equation B.7 shows the formal definition where D is the set of documents (also
called corpus) and |{d € D : t € d}| is the number of documents where the term ¢
appears. We adjust the denominator to avoid division by zero.

This value is small when the term t often appears across the whole set of docu-
ments D, and large when this term is only present in a small number of documents.

Finally, we obtain the TF-IDF statistic as a product of term frequency and inverse
document frequency (Equation j.§).

tfidf(t,d, D) = tf(t,d) - idf (t, D) (3.8)

3.7.3 Word Embeddings

Word embeddings are learned numeric representations of text. Unlike simple bag-
of-words models, they also aim to capture the meaning and the similarity of the
words. Every word is mapped to a single fixed-sized real-valued vector with a di-
mensionality generally in the order of hundreds — depending on the size of the
document, the resulting number of features can be much lower compared to bag-
of-words models with large dictionary sizes.

Word embeddings are learned using neural network architectures, with the val-
ues in the resulting vectors obtained from the network’s hidden layers.

The goal of the word embedding algorithms is to capture the similarity between
words — similar words should have similar vector representations. Other interest-
ing properties, such as noun genders, verb tenses, or information about capital cities,
can also be captured by considering the context around the words, as demonstrated
in Figure @

The first real breakthrough of this representation learning technique came with
the publishing of the word2vec [52, 53] algorithm. The area of word embeddings
is still an active research field and other notable algorithms such as GloVe [54] and
ELMo [55] have been published since.

Overall, using word embeddings will give us richer feature vectors encapsulat-
ing additional information to improve the predictions of our call to action detector.
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3.7.3.1 Word2vec

Word2vec [52, 53] is an algorithm developed by Mikolov et al. at Google, which is the
de facto standard in the world of word embeddings. This algorithm’s variants differ
in the used learning model— continuous bag-of-words (CBOW) and skip-gram. In
CBOW, the model learns the embedding by predicting the current word based on
the words around it. The skip-gram model uses the opposite approach and learns
by predicting the surrounding words given a current word.

Both have their advantages; the CBOW model is faster to train, but the skip-
gram model tends to work better for infrequent words.

Additional tricks like hierarchical softmax or negative sampling can be used to
make the algorithm more computationally efficient [56].

3.7.3.2 GloVe

Global Vectors (GloVe) is a word embedding algorithm developed at Stanford by
Pennington et al. [54]. It aims the combine the context-based learning used in
word2vec with the usage of global statistics found in classical representations by
training on a word-word co-occurrence matrix computed across the whole training
corpus.

It demonstrates the same desirable properties found in word2vec and outper-
forms it on word analogy, word similarity, and named entity recognition tasks in
the evaluation of the proposing article.

3.7.4 Sentence Embeddings from Transformers

Because of the way a BERT neural network model (Section B.6.1)) is trained, quality
sentence embeddings can be obtained from its hidden states, and the bi-directional
nature of Transformer models can finally bring the desired positional and contextual
properties into the vector representation.

A popular implementation of this approach is bert-as-service [57], which is
available as a full-fledged client-server application. It obtains the embedding from
the second-to-last hidden layer of BERT, which should avoid the embedding being
too specific to the Masked LM and Next Sentence Prediction tasks that the model is
trained on while still maximizing the amount of information about sentence mean-
ing.

Sentence-BERT [58] is a modification of BERT specifically tailored for obtaining
sentence embeddings, which is able to directly output a fixed-sized vector for the
input sentence by adding a pooling layer. Authors are able to significantly speed up
inference using smart batching while still maintaining the accuracy of BERT — it
shows superior performance to both GloVe and bert-as-service embeddings in the
SentEval benchmark [59] which evaluates the quality of sentence representations
using a large set of NLP tasks [60]. The authors provide a Python library and pre-
trained models [61], making it very easy to experiment with.
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3.8 Call-to-Action Detector

While our goal is to classify the received e-mail into phishing and not phishing
categories, this problem is difficult for a single, end-to-end classifier, and we also
lack labeled data for this approach. Instead, we decided to classify the e-mails using
an ensemble of smaller, focused detectors. Call-to-action detector, which aims to
detect requests to perform potentially dangerous actions, is one of the components
in our ensemble.

3.8.1 Call-to-Action Categories

Our call-to-action detector is essentially a text classifier working on the level of
sentences in the e-mail message. We have defined a set of sentence categories that
we want to identify, such as requests to open e-mail attachments or visit links, and
a not a request category for regular sentences and edge cases that do not contain
any behavior that we want to detect. A full list of categories paired with example
sentences seen in the Enron [62] e-mail dataset can be viewed in Table .2,

Call-to-action category ‘ Example sentence

contact request For any inquiries, contact customer service.

data input request Please fill in your card information now to avoid extra
upgrade fees being withdrawn from your account later
on.

link visit request Please follow the link below and renew your account
information.

open attachment request | You can find more information in the attached docu-
ment.

other suspicious request | To restore your account access, please take the follow-
ing steps to ensure that your account has not been com-
promised.

not a request Make sure you never provide your password to fraud-
ulent persons.

Table 3.2: Examples of labeled sentences for the call-to-action detector

For some of these sentences, we also add additional tags when encountering
interesting parts of speech. These can be either conditional sentences that generally
make the request a bit weaker, or urgency, forcing rash decisions by putting time
pressure on the users. Secondary sentence tags are listed in Table B.3.

One interesting observation about our data is that multiple of these categories
and tags can appear in the same sentence. This fact brings some additional complex-
ity to labeling, data handling, and the machine learning classifier’s implementation,
which should ideally produce a classification verdict with multiple categories in-
stead of merely selecting the most probable one.
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Call-to-action tag ‘ Example sentence

contact request For any inquiries, contact customer service.
data input request | Please fill in your card information now to avoid extra up-
grade fees being withdrawn from your account later on.

Table 3.3: Examples of secondary sentence tags

3.8.1.1 Labeling Data

Because the task of detecting call-to-action in written communication is very spe-
cific, no labeled datasets are available. Therefore, we needed to label the data our-
selves. Input sentences were taken from two public datasets — Enron [62] (fairly
standard company e-mails) and Nazario [63] (dataset of spam and phishing e-mails).
For this tedious process, we an open-source annotation tool called Doccano[64],
which we packaged using Docker [65] and deployed on our private Kubernetes clus-
ter.

3.8.2 Naive Bayes Classification on TF-IDF

In the first development stage of the call-to-action detector, we wanted to start with
a simple classifier to set a baseline for the classification results. For our initial detec-
tor, we decided to use a naive Bayes classifier (Section with a TF-IDF feature
representation (Section B.7.9).

Our codebase is in Python, so for implementations of classic machine learning
algorithms, we use the widely adopted scikit-learn library. Despite its simplic-
ity, this original implementation showed decent results during evaluation and gave
us confidence that we would be able to identify call-to-action sentences with rea-
sonable accuracy. However, as we show in the final comparison in Section B.9.4, it
cannot compete with the more sophisticated classifiers which we describe next.

3.8.3 Using Word Embeddings in Call-to-Action Detector

In the next iteration of the call-to-action detector, we decided to use the GloVe word
embedding to construct the feature vectors. Although the training process of GloVe
is complex, in practice, it is rarely necessary to perform this step because pre-trained
word vectors computed on huge and diverse datasets are publicly available to down-
load. We use a set of vectors trained on the Common Crawl corpus of text data
collected from crawling the web, with a vocabulary size of about 1.1 million.

3.8.3.1 Aggregating Word Vectors

We face a new problem with the introduction of word embeddings into our detec-
tor is the aggregation of word vectors. GloVe embeddings are fixed 300-dimensional
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vectors, but the sentences have a variable length. Therefore, it is necessary to com-
bine these vectors to produce a final uniform-sized embedding for the whole sen-
tence.

Although many sophisticated methods for creating sentence embeddings out
of word vectors exist, simple aggregation schemes such as averaging the vectors
produce decent results on real-world data [66, 67].

We can imagine the average of the word vectors as finding the center of mass
— if many words from the sentence are projected to a similar area of the vector
space, they probably give a good representation of the information in this sentence.
Another similar technique is to take the maximum value for every dimension of the
vectors.

It is important to note that although using word embeddings gives our feature
vectors new information about the meaning of present words, we still ignore the
context and word ordering in the sentence by condensing them into a single vector
using averaging.

3.8.3.2 Finding Suitable Classifiers

In the early stages of development, we wanted to start with simple, readily available
classifiers. Our codebase is in Python, so for implementations of classic machine
learning algorithms, we use the widely adopted scikit-learn library.

scikit-learn contains implementations of many types of ML classifiers, such
as logistic regression, SVMs, or random forests, and these algorithms often allow
tuning through additional hyperparameters. Finding the best classifier by hand-
tuning would be a long and tedious task, so we experimented with the auto-sklearn
toolkit [68] to automatically find a suitable classifier and hyperparameter configu-
ration on our labeled dataset.

After weighing the properties of tested methods and our experiments’ evalua-
tion results, we decided to stick with logistic regression as our baseline classification
model.

Logistic regression is fundamentally a binary classifier, which was not a prob-
lem during the early experimentation. Our labeled data was still in the format of
binary labels — request and not a request sentences. Later with the introduc-
tion of more specific categories shown in Section B.§, we were required to switch
to multi-class classification. We eventually solved this using a one-vs-rest strat-
egy that transforms the problem into multiple tasks of predicting whether the data
belongs to a selected class or one of the other remaining ones.

3.8.4 Using Sentence Embeddings in Call-to-Action Detector

In the next evolution of our call-to-action detector, we decided to use Sentence-
BERT embeddings (Section B.7.4) to improve our baseline logistic regression classi-
fier’s accuracy.
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With this iteration, we also performed a relabeling of our data and moved from a
binary request / not a request classification to the multi-class categories shown
in Section B.§, and started to evaluate the performance for the individual classes
as well. This required using the classifier in a one-vs-rest fashion, as described in
Section B.8.3.9.

Note that while training of the simple classifier remains trivial, with only the
feature vectors’ size increasing slightly, this approach is much more expensive than
the previous GloVe averaging. To obtain the feature vectors from training data, we
have to run the full model inference on the input sentence instead of simply looking
up pre-trained word vectors in a dictionary. However, we have seen a noticeable
improvement in prediction performance, which led us to believe a neural network-
based classifier is necessary to bring the call-to-action detector to a production-
ready state.

3.8.5 Call-To-Action BERT Classifier

After experimenting with BERT sentence embeddings, we wanted to see how a full-
fledged end-to-end classifier would perform on the task of call-to-action detection.
For neural network models in the scale of BERT, it is very expensive to perform the
whole training process, as these model architectures require learning a huge amount
of parameters on massive datasets, often with billions of data points. Instead, a
technique called transfer learning is often employed — we start from a base pre-
trained model and adapt it to our specific task. BERT is a general language model
that we want to use to solve a classification problem. Therefore, we need to modify
its structure to suit our specific task of classifying call-to-action sentences.

To achieve this, we add a fully connected layer after the last hidden layer of
BERT, sized to have one node for each call-to-action category. To shape the values
into probabilities, we require an activation function. In standard multi-class clas-
sification, a softmax function is typically used in this final layer — all outputs will
sum to 1, and each node then represents the probability of that class. However, we
require our model to perform multi-label classification, which means that all output
values need to be independent probabilities between 0 and 1, and multiple of these
can be high or close to 1. For instance, it is quite common for the call-to-action sen-
tences we encountered to also contain urgency — these types of sentences should
have high probability values for both of these labels. For this reason, we use a sig-
moid function, which we have already seen in logistic regression, as the activation
function in the output layer.

To implement this custom neural network classifier, we used a BERT implemen-
tation from the transformers library [69]. transformers add a layer of abstraction
on top of the popular Pytorch framework [70], providing efficient implementations
of popular Transformer architectures and training loops, as well as fast tokenizers
written in Rust. Additional classification layers were added directly with the use of
the Pytorch library.
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Figure 3.7: Overview of Call-to-Action BERT classifier. Credits go to my colleague
Marc Dupont.

For learning the model, we transform the labels in our training data into one-hot
encoded vectors — each dimension represents one category, we insert 1 for every
tagged label; the rest are filled with zeros. This is the desired result of our output
layer — for the sentence displayed in Figure @ this vector would be [1,0,1,0,0,1,0].

Because the model has been thoroughly trained on a large English language
dataset, we retain the general understanding of the language in the representation
from BERT layers and then fine-tune our additional classification layers to solve
the task of call-to-action detection. This requires far less computation work than
a situation where we would start training the model from the ground up instead
of reusing the pre-trained weights, and decent results can be obtained after only a
couple of training epochs.

With this technique, even though our dataset size was only in the order of tens
of thousands data points, which is fairly small for a neural network classifier of this
scale, we were still able to improve the performance significantly, as we show in

Section B.9.9.

3.8.6 Summary of Call-to-Action Detector Evolution

In this section, we summarize the evolution of our call-to-action detector. Initially,
we started with a baseline naive Bayes classifier using a simplistic TF-IDF represen-
tation. To inject word meaning into our representation, we switched to a represen-
tation using the GloVe word embedding and trained a logistic regression classifier
on sentence vectors obtained through averaging. To further enrich the representa-
tion with information about sentence context, we used a sentence embedding from
the Sentence-BERT Transformer model. Finally, we upgraded our detector to uti-
lize the full power of neural networks, and developed an end-to-end multi-label
classifier using a fine-tuned BERT model.
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3.9 Evaluation

Finally, we define a suitable set of evaluation metrics and show the evaluation results
of the call-to-action detector, which demonstrate the differences in the prediction
power of the described classifiers.

3.9.1 Evaluation Metrics

Firstly, let us focus on evaluating the performance for a binary classification task,
where we define one class which we aim to detect as positive, and the other as
negative. In our phishing detection task, the positive class would denote phishing
e-mails and the negative class benign e-mails.

Given a labeled set of data, we can divide the predictions from our classifier into
four categories:

True positive (TP) A positive sample correctly identified as positive.
False positive (FP) A negative sample incorrectly identified as negative.
True negative (IN) A negative sample correctly identified as negative.

False negative (FN) A positive sample incorrectly identified as negative.

Using these values, which form a confusion matrix, we can compute several
evaluation metrics. For evaluating the multi-class output of the call-to-action de-
tector, we can use a similar approach to measure performance separately for each
class.

Accuracy (the ratio of correctly identified samples) and precision (the ratio of
positive predictions that were truly positive) are widely used for evaluating statisti-
cal models. However, when used alone, they are unsuitable for evaluation on highly
imbalanced data such as e-mails where the benign class has a strong majority com-
pared to the phishing e-mails. Imagine that out of 1000 received e-mails, one is a
phishing e-mail. Suppose we construct a trivial classifier, which flags every e-mail
as benign. In that case, we will achieve a seemingly satisfying accuracy of 99.9%,
even though our classifier fails to detect any phishing e-mails. Similarly, a classi-
fier can achieve high precision by flagging only obvious phishing cases, but such a
model will produce a large number of false negatives.

The shortcomings of these traditionally used metrics for evaluation on imbal-
anced data are thoroughly described in [[71], and the authors present more resilient
approaches in [[72].

3.9.1.1 True Positive Rate

True positive rate (TPR), also called recall or sensitivity, tells us the proportion of
positive samples that were correctly identified as positive (Equation B.9). Note that
a classifier can trivially achieve 100% recall by predicting the positive class for every
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sample. Therefore, it is often paired with precision to provide a better overview of
predictive performance.

TP
TPR= —— 3.9
R TP+ FN (39

3.9.1.2 False Positive Rate

False positive rate (FPR) tells us the proportion of negative samples that were in-
correctly identified as positive (Equation B.10).

rp

FPR= —
= Tp N

(3.10)

3.9.1.3 ROC Curve

Given that our underlying classification model provides the probability of the output
class, we can use thresholding to plot TPR and FPR in various settings. The resulting
plot is called a receiver operating characteristic (ROC) curve and helps us visualize
the tradeoff between the number of correct positive predictions and the number of
false positives.

Area under the curve (AUC) can be used to provide a single value characteristic
of the model, which is unaffected by class imbalance. However, we often want to
restrict the area to a smaller region, as classifiers with high FPR are often useless in
practice.

3.9.2 Evaluation of Call-to-Action Detector

For evaluation of the call-to-action detector, we select several operating points on
the ROC curve, which displays the relation between true and false positive rates.
We calculate the area under the ROC curve for a region between 0 and 10% FPR
and also compute the exact TPR values at 10%, 1%, and 0.1%. For simplicity, our
main evaluation metric to show the results of the described classification methods
will be the AUC of the ROC curve truncated at 10% FPR and scaled to provide a
characteristic value between 0 and 1.

We measure the model efficacy on a dataset of hand-labeled sentences extracted
from Enron and Nazario datasets (Section B.8.1.1)). For a more robust evaluation, we
use 10-fold cross-validation with stratified splits and average the AUC metric overall
cross-validation runs.

In Table B.4, we show the performance of linear classifiers with multiple feature
representations introduced in this chapter. This evaluation is performed for the
binary call-to-action classification task, where all of the call-to-action categories
(Table B.9) are collapsed into a single call-to-action positive class. With increasingly
complex sentence representations, we can see a significant efficacy boost, and the
final classifier learned on BERT sentence embeddings provides the best predictive
performance in this benchmark.
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Model ROC AUC (truncated at 10% FPR)
TF-IDF Naive Bayes 0.615
GloVe Linear Regression 0.650
Sentence-BERT Linear Regression 0.776

Table 3.4: Comparison of classic machine learning classifiers on the call-to-action
detection task using multiple sentence representations. ROC AUC measured on a
labeled subset of sentences from Enron and Nazario datasets and averaged over 10
cross-validation folds split as 90% train and 10% test sets.

Call-to-action class ‘ Sentence-BERT LR BERT NN
Open attachment 0.778 0.936
Link visit 0.788 0.881
Data input 0.574 0.716
Contact 0.826 0.850
Other suspicious request 0.494 0.572

Table 3.5: Comparison of a linear regression classifier on Sentence-BERT sentence
embeddings (Sentence-BERT LR) and BERT neural network classifier (BERT NN)
performance on the call-to-action detection task. The compared metric is the ROC
AUC trucated at 10% FPR measured on a labeled subset of sentences from Enron
and Nazario datasets and averaged over 10 cross-validation folds split as 90% train
and 10% test sets.

In Table B.9, we compare the efficacy of the best performing linear classifier
to a fine-tuned neural network classifier on the task of multi-class call-to-action
detection where we aim to identify the specific request category. For the linear
regression classifier, we use a one-vs-rest approach, whereas the output of the BERT
neural network is inherently multi-class. We can observe that the neural network
classifier dominates the linear regression classifier on every class, even when this
model works with sentence embeddings from a similar BERT language model.
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CHAPTER 4

Classification Workflow

In this chapter, we introduce the workflow of our classification engine. First, we
give a brief overview of the entire processing pipeline. Then, we describe its stages
in more detail and discuss related challenges and our proposed solutions.

4.1 Overview

Our classification engine analyzes e-mail files using a set of detectors and aggregates
the detections into a classification verdict (Figure [t.1). First, we need to preprocess
the e-mail into a suitable data structure — we parse and properly decode the e-mail,
extract the relevant text content, and tokenize it into words and sentences. Then,
we analyze this tokenized document using multiple detectors and collect the detec-
tions, with an option to preemptively stop the pipeline based on certain properties
of the input data. Finally, we aggregate the collected detections using a scoring
mechanism and produce a verdict.

4.2 Preprocessing

In the preprocessing stage, we transform the input e-mail file into a tokenized doc-
ument structure, which abstracts the access to sentences and word tokens.

Detector Detection ]

i Detection
Tokenized Detector - Verdict
Document

Detector ]—)[ Detection ]

Figure 4.1: Diagram of the phishing classification workflow.

preprocessing aggregation
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4.2.1 E-malil file format

Although multiple e-mail formats exist, we focus on describing the standard EML
file format defined in RFC-822 [[73] and later enhanced in RFC-2822 [[74], as this is
the format we expect as the input to our classification engine.

EML files contain two sections — headers and message body. Headers contain
the e-mail metadata in the form of a list of key-value pairs. They carry information
about the e-mail sender and recipients, the e-mail subject, message timestamp, and
potentially other custom data.

The message body contains the primary information of the e-mail. It consists
of payloads described by their Content-Type — these can contain different types of
data such as text, HTML content, or file attachments. Multi-part e-mails contain
multiple payloads that are nested in a tree structure. An example of a multi-part
e-mail is available at [[75].

4.2.2 Parsing

The first preprocessing step is to parse the input e-mail file into a Python data struc-
ture. For this, we use the standard Python parsing library [76].

The main complexity of e-mail parsing comes from content decoding. Payloads
can be encoded using two types of encoding — content transfer encoding (i.e., using
base64 or quoted-printable), and character encoding (i.e., ASCII or UTF-8). To
process the payload, we first check for the content transfer encoding header and
decode the payload if necessary. Using the specified character encoding (charset),
we then transcode the message to the standard Unicode UTF-8 encoding, which
is the default for Python strings. Given a correctly annotated e-mail payload, this
gives us uniform, decoded text content.

After decoding the payloads, we save them into our custom e-mail structure to-
gether with a selected set of parsed headers. For our phishing classifier, we separate
the payloads into plain text payloads, HTML payloads, and other non-text payloads
that we currently do not analyze.

4.2.3 Text Extraction

Once the e-mail is parsed, we need to extract input data for our content-based detec-
tors. Our engine does not analyze e-mail attachments, and we classify only text data.
Therefore we extract content from the plain text and HTML payloads described in
Section jt.2.9.

For plain text payloads, the bulk of the work is already in the parsing stage,
which gives us a decoded Unicode string representation. HTML payloads require
additional care, as we do not want to pollute our data with HTML artifacts such as
tags, scripts, or stylesheets. To clean up the payload, we remove all <script> and
<style> elements, and then concatenate the text content extracted from all other
elements. For parsing the HTML, we originally used the BeautifulSoup [77] library,
but we recently switched to directly calling the 1xml [[78] parser due to performance
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reasons. With this faster parser, we were able to speed up this process about five
times compared to its original performance.

Complications arise from wrongly annotated content types of payloads, i.e., an
HTML body annotated as plain text. These issues can be partially solved using
heuristics to predict the actual content type or by always attempting to parse the
payload as HTML, as the 1xml parser is robust and will not mangle non-HTML data.
This solution can, however, slow down the extraction process.

Extracted content can still contain a lot of unnecessary information and arti-
facts. Because the inference of some of our models is expensive, we want to limit
the amount of processed text to keep our response time and costs down. To further
process the content, we use the Talon library [79], which extracts e-mail reply and
signatures using a method inspired by Carvalho et al. [80]. This allows us to iso-
late the latest reply, which contains the vital message of the e-mail, and ignore, i.e.,
old quotations in a long conversation thread that had already been examined in the
past. We do not currently use e-mail signature extraction, but we consider it for a
future, signature-based detector.

4.2.4 Tokenization

Our detectors rarely analyze the entire message at once — some detectors, such as
the call-to-action detector (Section B.§), expect individual sentences as the input;
other detectors perform matching for individual word tokens, as is the case in our
cryptocurrency address detector. Therefore, after extracting the text content from
the payloads, we want to split the message into sentences and words and store
this representation in a way that allows access from multiple detectors and avoids
repeating unnecessary work. In our engine, we implemented the tokenization using
a lazy approach, where the representation is computed the first time a detector
requests it and subsequently cached for later use.

For both tokenization and sentence segmentation, we use the SpaCy [81] Python
library, which includes a fast tokenizer, multiple implementations of sentence seg-
mentation and allows for easy customization of the processing pipeline. Word to-
kenization is fast and straightforward; we use whitespace characters to split the
string and check for a predefined set of special cases — details about SpaCy tok-
enization are available at [82]. An essential property of the SpaCy Tokenizer is that
it allows reconstructing the original text from the tokenized representation — this
allows us to save memory by saving only the tokens.

Sentence segmentation is a more complex problem. By default, SpaCy solves it
using a pre-trained neural network-based dependency parsing model. Details about
the model architecture are available from [83]. E-mail tokenization currently takes
up a significant portion of the total processing time, and most of this time is spent
dependency parsing required for separating the sentences. Therefore, we compared
multiple sentence segmentation approaches available in SpaCy or easily integrated
libraries see the potential speedup (Table [.1)).
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Algorithm ‘ Average processing time [ms] Speedup over parser

Dependency parser 2438
Sentencizer 51 4.86x
PySBD 189 1.31x

Table 4.1: Performance comparison of SpaCy sentence segmentation algorithms.
We measured the average processing time per e-mail on a internal e-mail corpus of
50 thousand suspicious e-mails from customers and honeypots.

Dependency Parser This is the default setting for SpaCy, which uses a statistical,
neural network-based model to predict the sentence boundaries. It provides
accurate detection, but its speed can be limiting for large workloads.

Sentencizer An alternative, rule-based sentence segmenter implemented in SpaCy.
It checks for common end-of-sentence tokens, which makes it much faster
compared to the default parser. However, it sometimes fails to split sentences
correctly and leaves them unnecessarily long, especially in HTML e-mails
where sentences and paragraphs can be separated visually using HTML ele-
ments.

PySBD A recent library for sentence boundary disambiguation which integrates
with the SpaCy pipeline. Authors claim a significant improvement in both
the quality of sentence segmentation and speed [84].

For now, we decided to continue using the default dependency parser imple-
mentation, as this was the solution we used while preparing training data for our
statistical models. After examining the differences in tokenization, we cannot be
convinced that the faster Sentencizer approach would give us comparable sentences.
We are also considering other options, such as implementing a fast tokenizer in Rust
and connecting it to our engine through Python bindings if tokenization becomes
a significant bottleneck as we continue to improve and optimize the system.

4.3 Detectors

After the e-mail is preprocessed, it enters our classification pipeline. During this
process, the e-mail is sequentially analyzed using a set of detectors, and detections
are collected for the subsequent aggregation (Section [4.4).

A detector analyzes a preprocessed e-mail file and produces a list of detections.
Individual detectors can detect a broader set of behaviors; for instance, the call-to-
action detector recognizes different categories of requests as well as urgency (Tables
B.d and B.3).

The pipeline is designed to handle an arbitrary number of detectors. It can be
easily modified and allows us to update it with new detectors or disable the under-
performing ones. At the time of writing this thesis, a full run of our classification
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pipeline passes the e-mail to fifteen detectors. Many of these are simple, targetted
classifiers for standard phishing techniques described in Chapter .7, some of the
more intricate detectors are enumerated in the following list.

Call-to-Action Detector Detects requests for potentially dangerous actions in the
e-mail message using a BERT model fine-tuned on a large set of annotated
sentences from e-mail corpora. A more detailed description can be found in

Section B.4.

Credential Phishing Detector Detects attempts to persuade the user into giv-
ing up his credentials. This detector was originally using simple keyword
matching against a predefined set of credential related terms. However, this
approach led to many false positives on legitimate e-mails, such as e-mails
for resetting forgotten passwords. This classifier is now based on zero-shot
learning [85], where we provide sets of phishing and legitimate sample sen-
tences related to credentials and measure similarity to both categories using
a sentence embedding from a pre-trained RoOBERTa model.

Identity and Relationship Detectors We are currently developing a set of detec-
tors that utilize a relationship graph of past communications between users.
With these models, we will gain access to important signals, such as whether
the analyzed e-mail is the first communication between the two accounts. We
expect to identify a large number of benign e-mails using these fast detectors
based on e-mail headers, which will then allow us to analyze the remaining
suspicious e-mails using more demanding NLP models.

Checkers are a special case of detectors that give a binary true/false result for
the e-mail and allow us to stop the pipeline preemptively. For instance, we have a
language checker that examines whether the e-mail content appears to be English.
If it is not, we skip running our expensive NLP models that are trained on English
sentences.

Detections are represented using list of data classes with the following fields.

Detection code Identifies the triggered detector and type of detection (e.g., CTA_LNK
identifies a link visit request from the call-to-action detector).

Score A value between 0 and 1 reflecting the confidence of the detector or severity
of the specific detection type.

Metadata Contains additional information about the detection; inner fields vary
between detectors. For instance, the link masquerade detector (Section P.2.3.1)
stores the display text and real destination URL.
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Figure 4.2: Example of the detection aggregation process assuming a phishing
threshold of 1.0. Three detections are grouped into a single phishing verdict.

4.4 Aggregating Detections

After we obtain the detections from all detectors in the pipeline, we need to aggre-
gate them into a final verdict. While, i.e., detections from the call-to-action detector
should contribute to the verdict only in combination with other phishing signals,
detections of blatant link manipulation (Section .2.3) or repeated use of confus-
able characters (Section P.2.1.3) are more suspicious. This is reflected in both the
detection score and the final aggregation weight of the detector.

Our current detection aggregation process uses a linear combination of the de-
tection scores. To avoid triggering a phishing verdict based on a large number of
low severity detections, we first group detections of the same type and keep only
the one with the highest score. Then, we compute a weighted sum of these detec-
tions and check whether the total score passed a selected threshold, in which case
we flag the e-mail as phishing (Figure §.2).

The weights for individual detector types were initially selected based on intu-
ition and our perception of their severity and later manually fine-tuned by checking
the classification performance on an annotated subset of our internal suspicious e-
mail corpus. We experimented with ensembling based on rules obtained from rule-
mining using classification trees and clustering as an alternative to the weighted
approach. However, we are not currently using this solution in production.
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CHAPTER 5

Phishing Detection Engine API

In Chapter i, we demonstrated the isolated detection workflow of our classifica-
tion engine. In reality, our classification engine is a standalone component that
communicates with other connected services through an application programming
interface (API). This chapter introduces the selected frameworks and technologies
for our API, gives a brief description of our server application, and shows tech-
niques we used to make the solution efficient with the limitations brought by using
the Python programming language.

5.1 Server Requirements

Our application is a simple server that uses the standard REST architecture with the
HTTP protocol. It parses the input e-mail received though a POST request, feeds it
through our classification pipeline (as described in the previous chapter), and sends
a response with JSON-encoded detections.

Because our core pipeline is written in Python, we also want to use it to im-
plement the server for ease of integration. Our proposed solution comprises a
server application written in Flask, the Nginx web server, which handles incom-
ing requests, and the Gunicorn application server, which connects the server to the
Python application (Figure p.1). We use Datadog for collecting application logs and
monitoring, and we package all of the components using Docker to create a portable
image that is easy to deploy.

5.2 Flask Application

Flask [86] is a web framework for Python that is commonly used for basic web
applications because of its minimal interface. As such, it is a good fit for our classi-
fication API. This application is a simple wrapper around the classification pipeline
described in Chapter | and exposes the engine through the following endpoints.
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Figure 5.1: Overview of the API server components.

POST /scan The main endpoint for e-mail analysis. Parses the e-mail file from the
request body, processes it with the classification pipeline, and sends back a
JSON-encoded response with the discovered detections, aggregated verdict,
and additional metadata such as the message ID or response time.

GET /stats We also provide an endpoint which shows statistics about the pro-
cessed e-mails, such as the number of processed e-mails or the number of
positive verdicts. Additional details about the detections are saved in appli-
cation logs, which we capture through Datadog (Section b.5).

5.3 Gunicorn Application Server

Gunicorn [87] is a Python Web Server Gateway Interface (WSGI) server which we
use to host our Flask server application. WSGI is a standardized interface for com-
munication between Python applications and web servers, as described in PEP-3333
[88]. Gunicorn manages multiple worker processes running the Flask application,
monitors and restarts them as needed. It also distributes the incoming requests
across these workers and sends the responses to the webserver.

While Python language is a solid choice for machine learning and data science
operations, the language has its limitations, which require special care when using
it to write performant server code. In addition to the overall performance loss com-
pared to languages like C++, Rust, or Java, we cannot efficiently use a threading
model that is generally used with these languages to build fast servers. Because of
the global interpreter lock (GIL) [89] present in the Python interpreter, one Python
process can only utilize a single CPU core, even when running multiple threads.
Therefore, to fully utilize multicore processors, we need to parallelize on the level
of processes. Gunicorn allows us to perform parallelization through its worker pro-
cess architecture, which will adequately utilize the CPU, given that we continuously
receive multiple requests at the same time.
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Because some of our models are large, we also want to avoid loading them in
every worker process, as these objects are read-only and do not change throughout
the process lifetime. Gunicorn uses a preforking model to create its worker pro-
cesses — we can use the copy-on-write property of fork to our advantage [90]. We
first preload the application and all of our models into memory, then let Gunicorn
perform the forking. Since the API application is stateless and does not modify the
loaded objects, the memory can be shared between the workers without copying it.

5.4 Nginx Web Server

Nginx [91] is a high-performance open-source web server that we use as a proxy
server for Gunicorn. It allows for greater control over the server configuration,
and we use Nginx mainly for rate-limiting the requests. If we encounter a spike
where we receive a number of e-mails that we cannot process using the current
infrastructure, we reject some of these requests instead of attempting to process
all of them, which would clog and slow down the service. The accepted requests
are passed to the Gunicorn application server and then processed with the Flask
application.

5.5 Datadog Agent

Datadog [92] is a cloud monitoring platform that we use to monitor and profile our
engine. We use Datadog to collect application logs, collect metrics from Gunicorn
and Nginx servers, track and time the runs of critical code sections, and finally, to
perform general profiling of our Python application code.

Datadog has been essential in helping us find demanding areas of code and iden-
tifying performance bottlenecks, and most optimizations of our system were per-
formed based on feedback from this platform. It also allows us to monitor the status
of the underlying infrastructure, send notifications about application errors, and to
get a high-level overview of the detections and verdicts produced by our engine
through a comprehensive dashboard.

Initially, we considered using the ELK Stack [93], which allows for a similar
monitoring functionality. ELK Stack uses a combination of Elasicsearch, Logstash
and Kibana, which are free, open-source technologies. However, we decided that
the ease of use and added functionality in Datadog were worth the additional costs
of this managed solution.

To utilize Datadog, we need to install a Datadog Agent daemon process into our
environment. Datadog Agent runs in the background, collects the application logs
and metrics and periodically sends them to the Datadog servers.
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5.6 Docker Container

Docker [67] is a system for packaging and running applications in isolated envi-
ronments called “containers” using virtualization. We use Docker to package all
of our published components, as it allows us to standardize the environment and
ship a production-ready version of our engine with all necessary dependencies and
pre-trained models.

We start the Docker build from a base OS image, in our case Ubuntu 18.04 LTS.
First, we install all required system dependencies, upgrade the default Python ver-
sion, and install Python dependencies through system package managers. Then,
we download public models and our custom pre-trained models from cloud storage.
Finally, we copy our application code into the container.

We create separate Docker images for all described services and orchestrate
their startup and interactions using Docker Compose [94], a tool for managing
multi-container applications. This approach is very flexible and allows us to eas-
ily extend the system with additional components as we improve the engine. The
resulting images encapsulate all required dependencies and can be deployed on a
cloud instance in Azure in a matter of seconds.
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CHAPTER 6

Deployment

In this chapter, we describe the process of hosting our classification engine API in
a cloud environment and introduce the tooling used to automatize this process.

6.1 Tooling

In this section, we give a brief introduction to the Microsoft Azure cloud platform
used to host our engine, Packer and Terraform tools that help us provision, version,
and manage the infrastructure, and finally, the Datadog platform used for monitor-
ing.

6.1.1 Microsoft Azure

Microsoft Azure [30] is a cloud computing platform that we use to deploy our en-
gine. Like its main competitors, Amazon Web Services and Google Cloud Platform,
it offers a broad spectrum of computing, infrastructure, and data storage services.
Hosting our infrastructure in Azure is a strict requirement for us because our en-
gine analyzes data from the related Microsoft 365 service, and the analyzed customer
data cannot leave the Azure cloud. For our engine, we use a combination of virtual
machines, load balancers, and key-value storage, intercommunicating inside of a
virtual network.

6.1.2 Packer

Packer [97] is a tool for automation of virtual machine provisioning. As shown in
Section .6, our system components are packaged as Docker images. Azure sup-
ports running these components directly through its Container Instance service,
but this approach lacks customizability of underlying infrastructure and network-
ing. Instead, we want to leverage the wide array of available virtual machine in-
stance types, select the most suitable type for every component, choose how the
components are grouped, and explicitly configure their communication.
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To achieve this, we use a two-layer approach where we manually orchestrate
Docker containers inside of custom virtual machines managed by Packer. This way,
we retain the flexibility of using specific instance types, but we can still develop and
publish fully packaged images through Docker. The Packer images are built inside of
Azure by provisioning a virtual machine according to a supplied build script which
installs the necessary system packages and prepares the system environment. Then,
the virtual machine is powered off, and its state is captured into a reuseable image
saved in the Azure Image repository.

Using this technique, we are able to ship updated production images without
any significant changes to the virtual machine environment by merely including a
newer version of Docker images.

6.1.3 Terraform

Terraform [96] is a tool for managing cloud infrastructure as code. After manu-
ally testing the infrastructure deployed through Azure Web Console and settling
on a suitable setting, we use Terraform to define this setup with Terraform scripts,
which gives us a persistent, reusable representation of the infrastructure. With
Terraform, we can perform consistent deployments, reuse predefined modules, and
easily upgrade our instances with newer images. Managing infrastructure as code
also enables versioning, improves the reviewing process, and simplifies potential
migration to a different infrastructure provider.

6.2 Infrastructure

In this section, we describe the set of Azure resources used to host our engine. We
deploy our prebuilt Packer images using a virtual machine scale set and use a load
balancer to provide uniform access to the scale set. Our resources are grouped inside
a virtual network, and to maximize the efficiency of communication between our
services, we utilize proximity placement groups.

6.2.1 Virtual Network

All of our resources share a single virtual network. This allows tight control over
the security configuration and enables the services to communicate without being
exposed through a public IP address.

6.2.2 Virtual Machine Scale Set

Because our engine needs to scale to handle data from millions of mailboxes, run-
ning it on a single virtual machine is insufficient. Instead, we use virtual machine
scale sets to start multiple instances with our Packer image, unify their configura-
tion, and scale the number of instances as needed.
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Figure 6.1: Overview of the Azure deployment infrastructure.

The scale set also allows dynamic scaling based on the current server load. Al-
though we do not utilize this feature at the current stage, it can help handle traffic
spikes, as we will process the majority of e-mail messages during US working hours.

Running multiple instances inside a scale set gives us the ability to perform
seamless image upgrades. We can take down several instances and restart them with
the updated image while other instances remain active, as they are either running
the previous version or are already upgraded - this way, we can perform the upgrade
without any service downtime.

6.2.3 Load Balancer

To evenly distribute traffic across the instances, we use a load balancer. This al-
lows us to access the virtual machine scale set in a uniform fashion using a single
endpoint in the virtual network.

Application Gateway is an advanced load balancer alternative available in Azure,
enabling TLS termination at the load balancing level, making it significantly easier
to maintain. We are currently using the basic load balancer, but the application
gateway gives us the option to secure the communication even between the ser-
vices inside the isolated virtual network.

6.2.4 Proximity Placement Group

Proximity placement groups [97] allow placement of selected Azure resources phys-
ically close together to minimize the latency of communication between them. We
utilize these groups to enable blazing-fast communication between the virtual ma-
chines hosting our engine and other specialized services, such as the optimized call-
to-action service, which we will introduce in Chapter [, or the planned identity and
relationship service.
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CHAPTER 7

Optimizing Neural Network
Inference

In this chapter, we propose an overhaul of the call-to-action detector described in
Section B.8.3, which significantly reduces its processing time. We extract the de-
tector into a separate service, which gives us the flexibility to select optimal infras-
tructure for it. Next, we explore the possibilities for speeding up the model infer-
ence through alternative model architectures and model optimizations. Finally, we
show two approaches for connecting the service to the engine core and discuss their
strengths and weaknesses.

7.1 Call-to-Action Detector Service

State-of-the-art performance of Transformer models comes at a cost, as these large
neural network models can be very resource-demanding. After the initial deploy-
ment of our engine, it became clear from our Datadog profiling data that these more
complex models, most notably the BERT model used by the call-to-action detector,
were taking up a majority of the processing time and that it was not sustainable to
scale them to handle larger amounts of data. For lengthy e-mails, we would regu-
larly observe response times in the order of seconds, and these requests would slow
down our whole system under a higher load.

The small, general-purpose Azure instances we used for hosting the application
were not suited for processing-heavy tasks such as neural network inference, espe-
cially in scenarios with larger amounts of worker processes. As described in Section
b.3, our application runs multiple worker processes to handle incoming requests
and process them in parallel. When the call-to-action detector ran simultaneously
in multiple workers, the BERT model would attempt to utilize all CPU cores, which
resulted in large latency and inefficacies from frequent context switching.

To mitigate these issues, we decided to extract the call-to-action detector into a
separate service, in which we could select more suitable instances and have better
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control over the running processes. In this isolated service, we could also easily
experiment with different model architectures and libraries.

7.2 Selecting Suitable Infrastructure

Selecting suitable instance types for the call-to-action detector service was the nat-
ural first step. The cost-optimal type could be decided based on general neural net-
work inference performance and should remain unaffected by the future optimiza-
tions and changes to the model architecture. If the instance provided fast inference
on the benchmarked model, it would likely transfer to other models.

Because the call-to-action service does not have significant memory require-
ments, the decision comes down to comparing the performance and costs of compute-
optimized CPU instances (F series [98]) and GPU compute instances (NC series [99])
on Azure.

The parallel architecture of GPUs is well adapted for vector and matrix opera-
tions, and powerful GPU clusters are generally used to train large neural network
models — this process can be very demanding and take days without a proper setup
[100]. However, we have observed that for model inference, the performance gap
between GPUs and CPUs is not extremely large when using modern processors
with strong vectorization support, such as the Intel Xeon Scalable processors [[101]
available in Azure. We also found CPU instances easier to scale and work with, as
we do not need to install specialized drivers or implement GPU-specific codes.

In the benchmark, we compare the average latency and throughput (in sequence
queries per second) of the base BERT model (bert-base-uncased [102]), which we
later fine-tune to classify call-to-action sentences, on the following CPU and GPU
instances.

F16s v2 CPU compute-optimized instance with 16 Intel Xeon Platinum 8272CL
processor cores. This generation of processors includes Deep Learning Boost
instructions [[103] specifically designed to speed up machine learning pro-
cessing. Costs $0.776 per hour in the West Europe region.

NC6 v3 GPU compute instance with a single NVIDIA Tesla V100 GPU and 6 CPU
cores. Costs $3.823 per hour in the West Europe region.

For consistency, the benchmark is run using the ONNX Runtime accelerator for
model inference and includes graph optimizations, which will be thoroughly cov-
ered in the next section. We run inference of the model on sequences of 32 random
words using multiple batch sizes. We repeat the inference on 100 samples and av-
erage the latency and throughput over ten independent runs. To compute the cost
per e-mail, we assume that one e-mail has on average ten sentences (represented by
our random sequences) and that the service is running in the West Europe region.
Benchmark results are presented in Table [.1.
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‘ Average Latency [ms] Throughput [QPS] Cost per 1k e-mails [US$]

Batch Size
‘ CPU GPU CPU GPU CPU GPU
1 9.35 1.64 106.86 608.88 0.0201 0.0174
45.95 4.90 174.11 1633.96 0.0124 0.0065
16 88.08 8.69 181.66 1841.48 0.0118 0.0058
32 174.61 16.11 183.27 1985.99 0.0118 0.0053
64 351.99 30.65 181.82 2088.40 0.0119 0.0051
128 724.13 59.66 176.76 2145.43 0.0122 0.0049
256 1472.65 114.72 173.84 2231.59 0.0124 0.0048
512 3076.57 231.13 166.42 2215.15 0.0130 0.0048

Table 7.1: Comparing bert-base-uncased processing throughput and cost on CPU
(F16s v2) and GPU (NC6 v3) instances in Azure.

GPU processing efficiency is most noticeable when processing larger batches of
sequences together, whereas increasing the batch size tends to have a slightly neg-
ative effect on CPUs. As currently designed, our call-to-action service is processing
single e-mails and immediately returns the response — this means that the batch
sizes are in our use case equal to the number of sentences in the e-mails, expected
to be around 10 to 20 on average. There are possibilities for further optimization
here, but accumulating e-mails to process them in batches might have a negative
effect on the service response times with the current volume of analyzed e-mails
and would significantly increase the complexity of the service.

Although GPU instances offer a significantly better cost per e-mail, they are not
available in Azure for some of our production regions. Therefore, we are currently
using compute-optimized CPU instances for services running neural network infer-
ence — specifically, the F16s v2 instances from the benchmark, which we will be
using to measure the impact of other optimizations presented in this chapter.

7.3 Optimizing Model Inference

In this section, we focus on speeding up the model inference in our call-to-action
detector service. We can select a different language model architecture with fewer
layers, parameters, or more efficient operations to achieve this. To achieve an even
greater speedup, this model can be further optimized, i.e., by quantizing the model
weights or transforming the neural network’s computation graph.

7.3.1 Alternative Model Architectures

A large number of new models building on BERT have been published since its
release, either attempting to improve its predictive performance or to reduce its
computation cost while achieving similar accuracy. The models using the latter
approach are good candidates to speed up our call-to-action detector service fur-
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‘ Average Latency [ms]

Sequence Length .
| BERT DistilBERT = SqueezeBERT

4 16.43 10.00 20.06
8 19.88 12.68 20.73
16 56.77 30.63 52.99
32 51.06 29.94 30.05
64 65.43 35.21 31.01
128 81.45 48.38 46.38
256 140.39 85.91 111.30

Table 7.2: Comparing inference time for BERT (bert-base-uncased), DistilBERT
(distilbert-base-uncased) and SqueezeBERT (squeezebert-uncased) PyTorch
models using random inpits and different sequence lengths on F16s v2 instances.
Latency is averaged over 100 samples.

ther. In this section, we describe and benchmark two BERT alternatives to show
the potential speedup from using a different model architecture.

7.3.1.1 DistilBERT

DistilBERT [51] is a faster language model based on BERT, obtained by distilling
a large, pre-trained BERT model. As generalized by Hinton et al. [104], knowl-
edge distillation, or student-teacher learning, is a compression technique in which
a small model is trained to reproduce the behavior of a larger model. The smaller
DistilBERT model reduces the number of layers and parameters by a factor of two
while retaining 97% of BERT’s performance in the presented evaluation.

7.3.1.2 SqueezeBERT

SqueezeBERT [[105] is a smaller variant of the BERT model which aims to speed up
its inference, specifically to enable using them on mobile devices. The model archi-
tecture is similar to BERT, but the authors propose replacing the pointwise fully-
connected layers with grouped convolutions, which have been successfully used
in neural networks designed for computer vision tasks to boost performance. On
mobile devices, the benchmarks show a 4.3 x speedup over the base BERT model.

7.3.1.3 Comparing Inference Time

In Table [7.4, we show the results of a benchmark comparing the two alternative
model architectures to the base BERT model. We ran the experiment using the
pure PyTorch implementations from huggingface Transformers library on F16s v2
Azure instances and averaged the inference latency for different sequence lengths.
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DistilBERT shows a steady performance gain over the base BERT model on all
evaluated sequence sizes, which is expected given that the model architecture re-
mains the same, with only the number of layers and parameters cut in half.

On the other hand, the SqueezeBERT model gave us less consistent performance
improvements. We could see a performance boost on longer sequences, but in cases
with smaller sequences, which are more critical for our use in classifying individual
sentences, it sometimes performed even worse than the original BERT model.

In subsequent experiments, we will be using the base BERT model, which is still
the default choice for our call-to-action detector service. However, the infrastruc-
ture we have built in the call-to-action detection service allows us to easily swap
the model if even faster inference time becomes a requirement in the future, and
we verify that the smaller model offers sufficient accuracy on our specific classi-
fication task. DistilBERT would be the obvious choice for a less expensive model
architecture from the performed benchmark results, and we benchmark both model
architectures in the final comparison in Section [£.4.3.

7.3.2 ONNX Runtime

For our NLP models, we primarily use huggingface Transformer implementations
through the PyTorch library, which uses a custom format for exporting and loading
the models. These libraries are currently a popular choice for implementing state-
of-the-art NLP models, but this might change in the upcoming years with newer,
more advanced libraries or machine learning paradigms.

Open Neural Network Exchange (ONNX) [106] is an open-source format for Al
models which is supported by most popular neural network libraries. Using ONNX,
we can create a unified, portable representation of our models and optimize their
inference through accelerators such as ONNX Runtime [[107].

ONNX Runtime is a machine learning accelerator developed by Microsoft for
efficient model inference in their Azure Machine Learning service. It has helped
us significantly speed up the call-to-action service through its graph optimizations
and quantization features.

7.3.2.1 Graph Optimizations

ONNX Runtime performs two types of graph optimizations, which are covered in
greater detail in the documentation [[108].

Basic Graph Optimizations Graph transformations which only remove redun-
dant nodes or layers, but do not change the semantics of the computations.

Extended Graph Optimizations Additional transformations which perform more
drastic changes to the graph structure, mostly through a complex fusion of its
nodes or layers. These changes generally result in approximations of the orig-
inal computations, which might lead to slight variations in the output layers’
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‘ Average Latency [ms] Throughput [QPS]
Length
& ‘ Default Optimized Quantized Default Optimized Quantized
8 6.67 6.23 2.81 150.00 160.59 355.56
32 10.09 9.08 7.13 99.08 110.07 140.29
64 15.67 14.20 12.40 63.81 70.42 80.64

Table 7.3: Comparing inference time of the bert-base-uncased model converted
to the ONNX format and run through the ONNX Runtime accelerator with different
optimization settings on a F16s v2 Azure instance. Latency is averaged over 100
samples.

values. However, these transformations have been shown to have a negli-
gible effect on the resulting models’ accuracy and can provide a significant
performance boost.

Layout Optimizations Optimizations which change the data layout to achieve
higher computation performance.

The authors have also included additional, BERT specific graph optimizations
[109], in the ONNX Runtime Tools library, which we use to convert our PyTorch
model into an ONNX representation.

7.3.2.2 Quantization

Model weights of PyTorch models are by default represented using the single-precision
floating-point format (float32), and this precise representation is important for
model training. However, after the training is finished, we can convert the model
to use a more compact integer (int8) representation without a noticeable impact
on the model performance. This process is called quantization, and it significantly
reduces the size of the model and massively improves the inference time on CPUs.
This topic is covered in greater detail in the PyTorch documentation [110, 111].

7.3.2.3 Benchmarking ONNX Runtime Optimizations

Next, we perform benchmarks to show the impact of the described ONNX Runtime
optimizations. In Table [7.3, we compare the inference latency and throughput of
the base BERT model, which we convert to the ONNX format (Default column),
optimize its compute graph (Optimized column) and finally quantize the optimized
model (Quantized column). We perform the model inference through ONNX Run-
time on F16s v2 Azure instances, using random sequence inputs of various sizes.

While the graph optimizations show a steady performance boost of around 10%
for all sequence sizes, the largest speedup comes from quantization, especially on
shorter sequences where we see a 2.3 increase in throughput over the base BERT
ONNX model.
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‘ Average Latency [ms]

Length
"8 | PyTorch BERT ONNXBERT ~ONNX DistilBERT
8 19.88 2.81 1.49
32 51.06 7.13 436
64 65.44 12.40 7.95
‘ Throughput [QPS]
Length
M8 | pyTorch BERT ONNXBERT ONNX DistilBERT
8 5030 355.56 671.01
32 19.58 140.29 229.23
64 15.28 80.64 12573

Table 7.4: Final comparison between the original Transformers BERT PyTorch im-
plementation (bert-base-uncased) and our optimized and quantized BERT (bert-
base-uncased) and DistilBERT (distilbert-base-uncased) models using ONNX
Runtime on F16s v2 Azure instances. Latency is averaged over 100 samples.

7.3.3 Model Benchmark

Finally, we compare the optimized ONNX Runtime models with the original Py-
Torch implementations. From the results in Table [.4, we can see that the combi-
nation of the presented optimization techniques yields a massive speedup over the
original implementations, with the optimized DistilBERT model being over 10x
faster for shorter sequences (sizes 8 and 32), which should be similar to sentences
found in the written e-mail communication.

7.4 Service Communication

In the previous sections, we have demonstrated how model inference of our call-to-
action detector can be significantly optimized by choosing suitable instance types,
model architectures, and runtime accelerator optimizations. However, separating
the detector into an isolated service with its separate infrastructure requires com-
munication between the service and the detector engine core, which adds addi-
tional overhead. In this section, we present two approaches for connecting the call-
to-action detector service with the engine, discuss their advantages, and compare
benchmark their performance in combination with the proposed service optimiza-
tions.

7.4.1 REST API Service

Our first choice was to expose the service through a REST API, as this was the
approach used to connect to our engine API (Chapter B), and we already had expe-
rience with this setup. REST APIs are flexible and easy to consume, regardless of the
used programming language. However, this is not a strong advantage because the
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service is a component in a larger system exposed through a REST endpoint and will
not be used outside of this engine soon. Communication over the HTTP protocol
does not provide us with any fault tolerance and requires additional conversions of
our internal data classes into the JSON format. The engine will communicate with
this service through synchronous web requests, and without adding workarounds
to enable asynchronous waiting, the worker process of the engine core will have to
idle and wait for the response. Despite these drawbacks, it was a simple starting
point for our service, which would allow us to benchmark the performance in a
more realistic scenario with real data.

Instead of using Flask, we decided to experiment with the FastAPI [112] Python
web framework, which embraces asynchronous processing, and which, according
to TechEmpower Web Framework Benchmarks, is currently one of the fastest web
frameworks for Python [113]. Otherwise, the infrastructure and deployment pro-
cess is identical to the classification engine API, with a dockerized container en-
capsulating the code and models running inside of a Packer virtual machine image
(Figure [7.1). The service accepts a list of sentences obtained from running sentence
segmentation on text extracted from the e-mail body (Section .9), runs our opti-
mized and quantized call-to-action model through ONNX Runtime (Section [1.3.9),
and returns a JSON encoded list of detections consumed by the engine core. To
reduce the latency of the web requests between the services, we start both services
inside of a proximity placement group (Section .2.4). The service can be scaled fur-
ther by adding more instances with a unified access endpoint supplied through a
load balancer.

While the implemented REST service does not directly utilize the asynchronous
capabilities of FastAPI, we have already experimented with adding concurrency to
our processing pipeline through asyncio [[114] libraries, and the development of
this service helped us get familiar with the approach. Although we have a working
proof-of-concept of a fully asynchronous classification pipeline which would help
us avoid the synchronous web request blocking, it requires fundamental changes
to the system architecture and careful tuning in the context of the multi-process
worker setup. Therefore, we have not yet decided on this transition and instead
developed a solution using a message queue, which adds resilience and provides
partial asynchronicity.

7.4.2 Celery Task Queue

Celery [[115] is a distributed task queue system that we used to develop a different
communication scheme that addresses several shortcomings of the REST API ap-
proach mentioned in the previous section. The task queue uses the concept of iso-
lated tasks, which are asynchronously processed using a pool of worker processes
that can be independently run on multiple computer instances. When the tasks are
created, they are sent to the message broker and stored together with their input
data. Then, a worker process independently pulls a task from the queue, processes
it, and stores the result into a result backend where it can be later retrieved.
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Figure 7.1: Overview of the REST API communication schema.

To adapt this processing model to our call-to-action service, we implement a
single task that processes a list of segmented sentences, encodes and tokenizes them
for the BERT model, and runs model inference through ONNX Runtime. The call-to-
action worker processes connect to the shared message broker, listen for the tasks
created by the engine core when it analyzes an e-mail, and compute and store the
detections into the result backend. We use the Redis key-value store [[116] as both
the message broker and result backend (Figure [7.9).

The main advantage of this approach is that after storing the task in the queue,
we can save a Future object, which represents the result of an asynchronous compu-
tation, and continue with other processing steps until we need to use the result. In
our case, we require the detection results at the very end of our processing pipeline
to aggregate the detection into a phishing verdict — this means that we can run the
call-to-action detector and store the Future object, then process the e-mail using all
other synchronous detectors, and finally retrieve the call-to-action results from the
queue. At this point, the asynchronous service is likely done processing that e-mail.

The task queue also brings resilience and fault tolerance - in case our worker
processes crash unexpectedly, the engine core can still process e-mails and store the
tasks in the message queue, as they will be automatically processed later when the
service is again fully available.

However, compared to the REST API approach, it adds communication steps be-
tween worker instances and the message broker, as the engine core does not directly
query the call-to-action service — the worker processes pull the task from the queue,
process it, and store the detections in the result backend from which the engine re-
trieves it. This can result in slower response times for very small e-mails where the
model inference time is negligible and most time is spent on communication.

While running benchmarks of the completed call-to-action service on our En-
ron evaluation subset, we noticed several outliers taking up a large portion of the
total processing time. While we could remove these large e-mail files from the eval-
uation set, we will not have this option in production on real data where we could
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Virtual Machine Scale Set

APl Worker ~ — é —> Call-to-Action | > é
Worker

T Task Queue ' i Result Backend

Figure 7.2: Overview of the Celery task queue communication schema.

encounter e-mails with similar properties, and we wanted our service to skip pro-
cessing these e-mails if inference was taking too long to avoid flooding our system.
We found an elegant solution to this problem through setting a time limit for the
Celery tasks — when the task processing was taking too long and surpassed a set
threshold, Celery would stop the worker process and return a timeout error. This
way, we would potentially lose some detections from the call-to-action detector,
but our service would return verdicts at a more predictable rate without its mes-
sage queue becoming clogged and slowing down the entire engine.

7.4.3 Service Benchmark

Finally, we benchmark the performance of our completed call-to-action detector
service using ONNX Runtime optimizations, and the two presented approaches for
service communication. For this evaluation, we use a subset of the public Enron
e-mail dataset with 1000 randomly selected e-mails.

To isolate the performance of the call-to-action service, we run the benchmark
on preprocessed e-mails. Therefore, the measured metrics will not be influenced by
e-mail parsing or tokenization and should capture mainly the model inference and
service communication costs.

We measure the performance of three solutions:

Local The call-to-action detector runs inside the main classification pipeline in the
engine core. This is the original solution with no added communication, but
running the default PyTorch model implementations without the added op-
timizations. Unlike in our production setup, we run the engine on the same
compute instances used for the separated services to give a fair performance
comparison.

FastAPI The call-to-action service connected through the REST endpoint (Section

P43).

Celery The call-to-action service connected through the Celery task queue (Section
F.4.3). We present two scenarios with and without a task time limit, which
we set to 1 second.
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| Local FastAPIBERT FastAPI DistilBERT

Total time [s] 302.62 110.69 72.28
Average latency [s] | 0.303 0.111 0.072
Max latency [s] 12.70 4.075 2.19

Table 7.5: Comparison of Local and FastAPI call-to-action detectors on a 1000 e-mail
subset of the Enron dataset on F16s v2 Azure instances.

Celery BERT Celery DistilBERT
Local T T
‘ default time limit =1 default time limit =1
Total time [s] 302.62 91.44 82.51 57.21 56.79
Average latency [s] | 0.303  0.091 0.083 0.057 0.057
Max latency [s] 12.70 1.72 1.01 2.90 1.00

Table 7.6: Comparison of Local and Celery call-to-action detectors on a 1000 e-mail
subset of the Enron dataset on F16s v2 Azure instances.

For our optimized services, we show results with both the original BERT model
and the faster but potentially less accurate DistilBERT model. The benchmark was
performed using the F16s v2 CPU compute instances, both for the engine core and
the call-to-action services. For the task queue service, we use a Basic C0 managed
Redis instance provisioned through Azure Cache for Redis as the message broker
and result backend.

Results of the FastAPI call-to-action service are presented in Table .d. When
using the optimized runtime and model, we see a significant increase in service
throughput for both BERT (2.7x speedup) and DistilBERT (4.2 x speedup) models
compared to the original local detector.

In Table [, we can see the benchmark results of the Celery task queue service.
Compared to the FastAPI service, we see an additional increase in throughput from
using the task queue as a means of communication, resulting in a 3.3 x speedup
with the BERT model and 5.3 x speedup with the DistilBERT model.

We can see that while setting the time limit to 1 second reduced the total infer-
ence time by another 10% with the BERT model (where 13 out of 1000 e-mails were
skipped), we did not see a significant improvement with the DistilBERT model. This
is because when we cancel long tasks (9 out of 1000 e-mails for DistilBERT), we get
an additional overhead from managing the worker processes. When the worker
process gets killed, we need to start a new worker process and load the model - this
takes additional time, and in our DistilBERT benchmark, it resulted in an almost
equivalent total processing time. However, setting the time limit is still a reason-
able default setting that helps us avoid spending too much processing time on a
single e-mail until we add a more sophisticated filtering mechanism.

57



7. OPTIMIZING NEURAL NETWORK INFERENCE

Overall, the Celery task queue service is our preferred solution, as it offers the
best throughput and robustness. In production, we will also be running the full
detection pipeline, where the asynchronous processing enabled by the task queue
will make an even bigger impact by effectively running the service in parallel with
other detectors.
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CHAPTER 8

Conclusion

8.1 Summary

In this thesis, we first explored the phishing landscape, investigated the common
signals and evasion techniques of sophisticated phishing attacks, and introduced a
system for automatic detection of phishing e-mails.

As a crucial component of this system, we introduced a detector for call-to-
action based on natural language processing. We summarized the recent advance-
ments in this field and showed incremental improvements to the detector by uti-
lizing more advanced classifiers and feature representations and benchmarked the
predictive performance of these solutions.

We presented an architecture for a phishing classification pipeline using an ex-
tensible ensemble of detectors. We showed the individual stages of the classification
process, from e-mail preprocessing and text extraction to detection aggregation, and
implemented this pipeline using the Python programming language.

Next, we showed how this system could be efficiently exposed through a REST
API using Python libraries and packaged into a deployable service. Then, we de-
signed a scalable infrastructure setup for deploying the classification engine in Mi-
crosoft Azure.

Finally, we focused on optimizing the final iteration of the call-to-action de-
tector using state-of-the-art Transformer models. We showed how selecting suit-
able hardware infrastructure, utilization of less expensive model architectures, and
model optimization and quantization provided by the ONNX Runtime accelerator
could significantly speed up inference of this demanding model on consumer CPU
instances. We benchmarked the final call-to-action service using two service com-
munication solutions and demonstrated how the proposed optimizations yield a
massive 5x throughput increase compared to the original approach.
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8.2 Future Improvements

The development of our engine is an ongoing project, and we will continue opti-
mizing and extending it with additional detectors, such as the planned identity and
relationship models mentioned in Section [.3. At the time of writing the thesis, the
system was not yet fully running in production. Therefore, it was not possible to
evaluate the efficacy of the complete phishing system. With the availability of real
customer data, this will be a crucial next step.

As the analyzed e-mail volume increases, we expect to eventually shift to GPU
processing for the neural network model services, especially with the planned ad-
dition of the affordable Tesla T4 GPUs [[117] to Azure. This should be a trivial task
because of the flexible architecture we have developed for the call-to-action detector
service.

With a larger data volume and GPU processing, we could further optimize the
call-to-action service by implementing logic for efficient batching of data from mul-
tiple requests. This could be implemented in a non-blocking fashion using our pro-
posed message queue communication solution.

We have also experimented with using Rust [118] to speed up other perfor-
mance bottlenecks of our engine. This would rid us of the performance limitations
of Python in the critical areas of the engine while still being able to connect the
code through Python bindings elegantly.

Finally, an exciting research idea is to bring multi-language support to our language-
specific detectors, either through adapting multi-language models or using increas-
ingly available machine translation models (i.e., recently published MLM-100 model
by Facebook [119]).
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