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Abstract

Since the beginning, algorithms that could
competitively play against people’s popu-
lar games have been on the research’s fo-
cus in the artificial intelligence field. Two-
player poker is one of them as a representa-
tive of imperfect-information games. The
research on algorithms solving two-player
imperfect-information games had given
birth to a group of algorithms based on
counterfactual regret minimization (CFR).
Their authors had been proving the im-
portance of their CFR variant mainly
by empirical speed of convergence exper-
iments to approximate Nash equilibria.
The games, which they use for experi-
ments, were variants of poker. This the-
sis is examining if the results of previous
uphold to diverse domains. We imple-
mented the most popular published CFR
variants Vanilla CFR, CFR+, LCFR, and
DCFR. We measured their convergence
speed on the different parametrization of
Goofspiel, Liar’s Dice, Oshi-Zumo, and
Darkchess. We found out that the au-
thors of these CFR variants did not skew
their results using mostly poker domains.
However, some of their statements were
too optimistic. We showed older CFR+
with a different weighting of average strat-
egy can better results than newer DCFR.
DCFR(1.5, 0.5, 2.0) is not universally the
best CFR variant.

Keywords: game theory, regret
minimalization

Supervisor: Mgr. Viliam Lisý, MSc.,
Ph.D.

Abstrakt

Algoritmy, které jsou kompetitivně
schopné hrát proti lidem populární hry,
byly v pozornosti výzkumu v oboru umělé
inteligence od počátku. Jako reprezentant
her s neúplnou informací byl i dvouhrá-
čový poker. Výzkum algoritmů řešící
hry s neúplnou informací dal vzniknout
skupině algoritmů minimalizující fiktivní
lítost (CFR). V posledních letech vznikla
řada CFR variant. Jejich autoři dokazují
důležitost jejich varianty převážně na
empirických experimentech rychlosti
konvergence k aproximovanému Nashovu
equilibriu. Hra, na které porovnávali
svoje algoritmy, byl převážně právě poker.
Tato práce se zjišťuje, zda svoje výsledky
obhájí na více hrách. Implementujeme nej-
populárnější publikované CFR varianty
CFR, CFR+, LCFR a DCFR. Měříme
jejich rychlost konvergence na různých
parametrech her Goofspiel, Liar’s Dice,
Oshi-Zumo a Darkchess. Zjistili jsme, že
autoři původně provedených experimentů
pouze na pokeru příliš nezkreslili svoje
závěry, nicméně některé tvrzení byli
příliš optimistické. Ukazujeme, starší
CFR+ má v některých hrách rychlejší
konvergenci než novější DCFR, nebo že
DCFR(1.5, 0.5, 0) není vždy nejlepší
varianta, jak tvrdí autor.

Klíčová slova: teorie her, minimalizace
lítosti

Překlad názvu: Efektivita variant
algoritmu minimalizace fiktivní lítosti v
různých doménách
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Chapter 1

Introduction

Games and competitions are essential parts of human lives and serve various
purposes. The most obvious one that everyone is associating with them is
entertainment. The other is extending and expanding mental and physical
capabilities, pushing one’s limits to be better than the day before. A natural
consequence is comparing each other within a friendly match or on a world
championship level. We can view games and competitions as an optimiza-
tion method, selecting the most competitive individuals or groups, forming
hierarchies in society. Besides the obvious, we can see games and business
companies competitions, social interactions, or even warfare.

The mathematical formalism for games and strategic interaction of decision-
makers is game theory. Game theory has found use in various scientific fields,
including computer science and artificial intelligence. Games are interest-
ing for artificial intelligence because they serve as a testbed for progress
in algorithms. The latest successes of computer programs playing games
are AlphaZero ([17]) playing chess, shogi, or Go better than any human,
DeepStack ([12]) and Libratus ([3]) that can play poker also on superhuman
level, Five ([14]) with Dota 2, or AlphaStar ([21]) that is playing StarCraft 2.
These algorithms’ common theme is a connection between the core algorithm
and neural networks as function approximators. This thesis’s subject is one of
these core algorithms, Counterfactual Regret Minimization (CFR), developed
upon poker games.

The research of CFR and its variants has been strongly influenced by apply-

1



1. Introduction .....................................
ing these algorithms to more and more realistic poker instances. Researchers
have been comparing these variants by the ability to prove lower worst-case
bounds, or quicker speed of convergence to the optimal strategyt mostly on
poker games variations. It is not clear how these CFR based algorithms are
going to perform on a more diverse set of games.

1.1 Thesis Goal

The thesis aims to provide a more comprehensive empirical study of CFR
based algorithms on a diverse set of games. Concretely:

.A Survey the existing variants of tabular CFR..B Choose at least three and implement them in the existing software
framework..C Rigorously choose at least three diverse domains for evaluation..D Empirically compare the speed of convergence of CFR variants on
selected domains.

1.2 Thesis Outline

Chapter 2 introduces the fundamental game-theoretic concepts we use through-
out the thesis. Chapter 3 extends these concepts and connects them with
online learning. Chapter 4 describes the Counterfactual Regret Minimization
algorithm and its most important variations. Chapter 5 presents games and
experiments performed on them. Chapter 6 concludes the thesis.

2



Chapter 2

Game Theory Fundamentals

Game theory is mathematically modeling strategic interaction between decision-
makers we call players. We restrict ourselves to the non-cooperative game
theory, where each player is self-interested, independent, and rational, that
is, maximizing his expected utility. The following restriction is the set of
games. We will deal with games for two players and other properties described
in section 2.1 Modeling Games. Section 2.2 Computing Strategies explains
what we mean by strategy, optimal strategy, and how we can compute or
approximate optimal strategy. In the last section, we discuss how to evaluate
strategy and estimate how far is computed strategy from the optimal.

2.1 Modeling Games

Games model simplified life situations[Edit: in every scientific field, models
siplifies real world situations]. Every game has a set of decision points, which
belong to one of the players. Players have defined actions on these decision
points, and they are choosing their actions according to their strategy. Players’
interaction and their utility functions form a strategy. The result of their
interaction is an outcome at the end of the game. Two standard formalisms
for modeling games in game theory are normal-form games (NFGs) and
extensive-form games (EFGs).

3



2. Game Theory Fundamentals ..............................
Normal-Form Games

A normal-form game1 is the most basic model, where every player performs
one action simultaneously with other players. Each player has his own utility
function, which assigns him a payoff based on all players’ chosen actions.
Definition 2.1. (Normal Form Game) A finite, n-person normal-form
game is a tuple (N,A, u), where:

.N is a finite set of n players indexed by i,. A = A1 × ...×An where Ai is a finite set of actions available to player i,. u = (u1, ..., un) where ui : A 7→ R is a real-valued utility (payoff) function
for player i.

1
2 Rock Paper Scissors

Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

Table 2.1: Rock-Paper-Scissors modeled as a two-player zero-sum normal-form
game. Rows of the matrix represents actions of player 1, columns represents
actions of player 2.

1
2 Rock Paper Scissors

σ 0 1 0
Rock 1 (0, 0) (−1, 1) (1,−1)
Paper 0 (1,−1) (0, 0) (−1, 1)

Scissors 0 (−1, 1) (1,−1) (0, 0)

Table 2.2: RPS with a pure strategy.

Extensive-Form Games

An extensive-form game is a model or formalism by which we describe se-
quential (dynamical) games. Every game usually contains multiple states,

1Normal-form games are synonymous with strategic games, one-shot games, or matrix
games.
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................................... 2.1. Modeling Games

and players make more than one decision during the play. Imagine you are
starting a Chess game as a white player. The first state (decision point) of
the game is your and opponent figures in starting positions. You need to
decide on a move. Every legal move leads to a new board placement (a new
state) where your opponent is acting. The game in EFG formalism forms a
tree called a game tree. Every internal node is a decision point of one of the
players, and leaf nodes, also called terminal nodes, assign every player utility,
then the game ends.

Chess is an example of a perfect-information game, where the opponent
has the same amount of information about the game’s current state. You see
all of the opponent’s pieces. The opponent sees all your pieces.
Definition 2.2. (Perfect-information EFG) A finite perfect-information
game in extensive form is a tuple G = (N,A,H,Z, χ, ρ, σ, u), where:

.N is a finite set of n ∈ N+
0 players,. A is a finite set of actions,.H is a set of nonterminal decision nodes (history),. χ : H 7→ 2A is the action function, which assigns to each choice node a

set of possible actions,. ρ : H 7→ N is the player function, which assigns to each nonterminal
node a player i ∈ N who chooses an action at that node,. σ : H ×A 7→ H ∪ Z is the successor function, which maps a choice node
and an action to a new choice node or terminal node,. u = (u1, ..., un), where ui : Z 7→ R is a real-valued utility function for
player i on the terminal nodes Z.

In imperfect-information EFG, at least one player can have some infor-
mation about the current game state hidden. In the Chess variant called
Kriegspiel, players do not see the opponent’s pieces, to continue with the
Chess analogy. Players have to reason about all the possible opponent’s
figures configurations on the board. It is going to be usually more than one
state as it is in a perfect-information variant. We factorize the game states for
every player into information sets. An information set contains every state of
the game a player cannot distinguish based on his current history.
Definition 2.3. (Imperfect-information EFG) An imperfect-information
game in extensive form is a tuple (N,A,H,Z, χ, ρ, σ, u, I), where:

5



2. Game Theory Fundamentals ..............................
. (N,A,H,Z, χ, ρ, σ, u) is a perfect-information extensive form game,. I = (I1, ..., Im), where Ii = (Ii,1, ..., Ii,ki) is an equivalence relation on
{h ∈ H : ρ(h) = i} with the property that χ(h) = χ(h′) and ρ(h) = ρ(h′)
whenever there exists a j for which h ∈ Ii,j and h′ ∈ Ii,j .

Computationally Convenient Properties

Algorihms have been mainly developed for perfect-information, zero-sum
games.
Definition 2.4. (Perfect recall [18]) Player i has perfect recall in an
imperfect-information game G if for any two nodes h, h′ that are in the
same information set for player i, for any path h0, a0, h1, a1, h2, ..., hm, am, h
from the root of the game to h (where the hj are decision nodes and the aj
are actions) and for any path h0, a

′
0, h
′
1, a
′
1, h
′
2, ..., h

′
m′
, a′
m′
, h′ from the root

to h′ it must be the case that:

.m = m′,. for all 0 ≤ j ≤ m, if ρ(hj) = i, then hj and h′j are in the same equivalence
class for i,. for all 0 ≤ j ≤ m, if ρ(hj) = i, then aj and a′j .

G is a game of perfect recall if every player has perfect recall in it.

2.2 Computing Strategies

In the previous section, we learned that a game G consists of histories HG

representing the game’s states, and information sets IG = I1∪ I2∪ Ic factorize
histories based on the players private information. In every history h ∈ HG,
one of the players i ∈ N is acting with one of his actions a ∈ Ah determined
by the game’s rules. Because an information set I ∈ Ii contains multiple
histories that the player i cannot distinguish, the player i acts the same
within all information set histories. Therefore we can talk about the player’s
i actions AI over the information set I.

6



................................. 2.2. Computing Strategies

A player i ∈ N having a strategy σi intuitively means the player knows how
to act in every information set I ∈ Ii. He has a description of what action
a ∈ AI to play when reaching the information set for every I ∈ Ii. Formally,
a mapping σi : I 7→ AI is called a pure (deterministic) strategy2 of player i.
The strategy profile σ = (σ1, σ2, σc) is an N -tuple of players’ strategies. By
σ−i, we mean a strategy profile of all players’ strategies except player’s i.

Pure strategies aren’t describing the whole strategy space. It is often
convenient for a player to choose his action in a randomized way. For
example, player 1 could choose the action Rock with 0.4, Paper with 0.5, and
Scissors with 0.1 probability in the Rock-Paper-Scissors game. In other words,
this randomized strategy is assigning 40% for a pure strategy playing Paper,
50% for playing Scissors, and 10% for playing Scissors. A mixed strategy σi is
a probability distribution over all player’s i pure strategies. People naturally
don’t reason in terms of mixed strategies, meaning randomizing their pure
strategies for the whole game. The usual approach is to randomize over
actions in the current situation (information set). Player’s i behavior strategy,
σi : Ii 7→ ∆(AIi), maps from the information set I ∈ Ii to a probability
simplex ∆(AI) over actions AI (also denoted βi(I)). Theorem 2.5 states that
mixed and behavior are strategies equivalent for perfect-recall games.
Theorem 2.5. (Equivalence of mixed and behavior strategy [18]) In
a game of perfect recall, any mixed strategy of a given agent can be replaced
by an equivalent behavioral strategy, and any behavioral strategy can be
replaced by an equivalent mixed strategy. Here two strategies are equivalent
in the sense that they induce the same probabilities on outcomes, for any
fixed strategy profile (mixed or behavioral) of the remaining agents.

1
2 Rock Paper Scissors

σ 0 1 0
Rock x1 (0, 0) (−1, 1) (1,−1)
Paper x2 (1,−1) (0, 0) (−1, 1)

Scissors x3 (−1, 1) (1,−1) (0, 0)

Table 2.3: The table shows the Rock-Paper-Scissor game in normal form, where
player 2 has a fixed beviour strategy σ2 = (0, 1, 0), and player 1 has an unknown
behavior strategy σ1 = (x1, x2, x3). Player 1 wants to get as much utility as
possible, so his best response to player 2 is, σ∗

1 = BR1(σ2) = (0, 0, 1), to player
Scissors. The strategy profile (σ∗

1 , σ2) has the outcome 1 for the player 1 and −1
for the player 2.

2Strategy is similar to policy (control) in the reinforcement learning (control theory)
literature.
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2. Game Theory Fundamentals ..............................
Imagine, see table 2.3, we play Rock-Paper-Scissors as player 1 against

player 2. We know or more realistically anticipate that player 2 will play
Paper, that is behavior strategy σ2 = (0, 1, 0), and we have to develop a
counterstrategy σ1 = (x1, x2, x3) as a response to our opponent’s strategy
σ2. The best counterstrategy of player i, more commonly best response, is
a strategy σ∗i = BRi(σ−i) that is maximizing expected utility against fixed
opponents’ strategies.
Definition 2.6. (Best response [18]) Player i’s best response to the strategy
profile s−i is a mixed strategy s∗ ∈ Si such that ui(s∗, s−i) ≥ ui(si, s−i) for
all strategies si ∈ Si.

Solution concepts are principles, which describe an interesting subset of
outcomes induced by strategy profiles described by these principles [18]. Nash
equilibrium (NE) [13] is one of the most famous and used solution concepts.
Strategy profile σ∗ is a Nash equilibrium if each player’s strategy is the best
response, σ∗ = (σ∗1, σ∗2) = (BR1(σ−1), BR2(σ−2)), to his opponents.
Definition 2.7. (Nash equilibrium) A strategy profile s = (s1, ..., sn) is a
Nash equilibrium (NE) if si is a best response to s−i for every player i.

NE’s strategy profile is a stable (fixed) point in the strategy space. Once
players reach NE, they are not going to leave it. Definition 2.8 tells us if a
strategy profile σ is a NE or not, theorem 2.8 tells us at least one NE exists
for our games, but it does not tell us how to compute it.
Theorem 2.8. (Existence of Nash equilibrium) Every game with a finite
number of players and actions has at least one Nash equilibrium.

1
2 Rock Paper Scissors

σ∗ 1
3

1
3

1
3

Rock 1
3 (0, 0) (−1, 1) (1,−1)

Paper 1
3 (1,−1) (0, 0) (−1, 1)

Scissors 1
3 (−1, 1) (1,−1) (0, 0)

Table 2.4: The table shows Rock-Paper-Scissors with a strategy profile σ∗ =
(σ∗

1 , σ
∗
2) = (( 1

3 ,
1
3 ,

1
3 ), ( 1

3 ,
1
3 ,

1
3 )). The strategy profile σ∗ is a Nash equilibrium of

the game. The outcome of the game is for both players 0.

In a two-player game G, every player wants to develop a strategy that
maximizes his expected utility in the other player’s presence. Because G
is always zero-sum, player’s 1 utility is u1(σ1, σ2) and player’s 2 utility is
u2(σ1, σ2) = −u1(σ1, σ2). Then player 1 is maximizing his utility, and player
two minimizes (minimizing −u1(σ1, σ2), leads to maximizing u2(σ1, σ2)) his

8



................................. 2.2. Computing Strategies

maxs,U U (2.1)

s.t.
∑
a1∈A1

s(a1)u1(a1, a2) ≥ U ∀a2 ∈ A2 (2.2)

∑
a1∈A1

s(a1) = 1 (2.3)

s(a1) ≥ 0 ∀a1 ∈ A1 (2.4)

Figure 2.1: The figure shows the linear program for computing a possibly mixed
Nash equilibrium strategy s for player 1. U is the Value of the game (player 1
expected utility in NE).

utility in every information set. This way, we can compute a Maxmin strategy
(value), definition 2.9, in terms of the player’s i utility and Minmax strategy
(value), definition 2.10, in terms of −i utility. The Maxmin value of player
1 has the name Value of the game. The Minimax (Maximin) algorithm
computes these (pure) strategies, and figure 2.1 shows a linear program for
computation of behavior (mixed) strategy for perfect-information games.
Definition 2.9. (Maxmin strategy and value [18]) The maxmin strategy
for player i ∈ N is argmaxsimins−iui(si, s−i) and the maxmin value for
player i is maxsimins−iui(si, s−i).
Definition 2.10. (Minmax strategy and value [18]) In a two-player game,
the minmax strategy for player i ∈ N is argminsimaxs−iu−i(si, s−i) and the
minmax value for player −i is minsimaxs−iu−i(si, s−i).

The Minimax theorem, theorem 2.11, connects Nash equilibrium and
Maxmin (Minmax) strategies for finite, two-player, zero-sum games.
Theorem 2.11. (Minimax theorem [18]) In any finite, two-player, zero-
sum game, in any Nash equilibrium each player receives a payoff that is equal
to both his maxmin and his minmax value.

We can conclude from theorem 2.8 and 2.11 that there exists a Nash
equilibrium strategy profile for any finite, two-player, zero-sum game. This
strategy profile is equal to Maxmin and Minmax strategy profiles. Maxmin
(minmax) values are equal to the Value of the game for every Nash equilibrium.

Another useful solution concept in this thesis is ε-Nash equilibrium. ε-Nash
equilibrium is an approximation of Nash equilibrium, i.e., for ε = 0.
Definition 2.12. (ε-Nash equilibrium) Fix ε > 0. A strategy profile s =
(s1, ..., sn) is a ε-Nash equilibrium if, for all agents i and for all strategies

9



2. Game Theory Fundamentals ..............................
s′i 6= si, ui(si, s−i) ≥ ui(s′i, s−i)− ε.

2.3 Evaluating Strategies

Strategy profile distance from Nash eq. is measured by exploitability.
Definition 2.13. (Exploitability [1])

e(σi) = ui(σ∗i , BR(σ∗i ))− ui(σi, BR(σi))
Definition 2.14. (Average Exploitability [1][8])

e(σ) = 1
|N |

∑
i∈N e(σi)

10



Chapter 3

Computing Strategies via Online Learning

This chapter describes online learning in games. First, we describe online
learning proglem in general, then we focus on computing strategies for NFG
and EFG. This chapter is based on [16], [5], [11] [7].

3.1 Online Learning and Prediction

Prediction (forecast) is a process of estimating some phenomena’ future
value based on a model built from past observations (experience), or more
profound knowledge about the modeling system, and current observation
(information we can extract in the present moment). Sooner or later, we
can verify our predictions and measure how good or bad predictions we are
making as a predictor (forecaster). Different fields frame this problem from
their angle of viewpoint and setting. For example, in reinforcement learning
based on psychology, the predictor is called an agent, who builds a model
from rewards he gets from an interaction with the environment to maximize
his expected reward. In control theory, the predictor is called a controller,
usually controlling some physical process. The controller wants to minimize
the cost because of suboptimal control that could lead to bad outcomes like
a loss of spacecraft. In machine learning, there are approaches like Probably
Approximately Correct (PAC) framework or online learning. PAC framework
learning (like supervised learning) assumes data (observations) are indepen-
dent and identically distributed from a fixed probability distribution. The
model is trained from the training data set in a batched fashion to generalize
to the actual underlying probability distribution. The generalization measures
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3. Computing Strategies via Online Learning ........................
empirical risk minimization. On the other hand, online learning does not have
any assumption about the source of data. Online in this context means the
predictor can make predictions right away after the first observation received
and does not have to be trained by any data set beforehand. The workflow
of online learning is as follows, during T iterations of the online predictor
operations, the predictor’s model mt receives at iteration t an observation
xt ∈ X and makes a prediction ŷt = mt.predict(xt) ∈ Y , then the predictor
receives the true value yt ∈ Y which incurs loss l(yt, ŷt). The predictor uses
the loss to update the model mt+1 = mt.update(l(yt, ŷt)). Suppose the model
contains a countable set of hypotheses that contains the true hypothesis. In
that case, we use the loss notion of mistakes, and we bound the predictor
by the number of mistakes the predictor will make until he finds the right
(mistake-free) hypothesis. Otherwise, we use the concept of regret and will
use it from now on.

Definition 3.1. (External regret [15]) Fix reward vector r1, r2, ..., rT . The
external regret of the action sequence a1, ..., aT is

RT = maxa∈A

T∑
t=1

rt(a)−
T∑
t=1

rt(at)

3.2 Computing Strategies for NFG

Regret Matching (RM)[7] is an iterative, no-regret, anytime algorithm for
approximately solving, computing ε-Nash equilibrium, normal-form games
using self-play. Using a self-play means that both players are using an instance
of the same algorithm. Imagine player 1 and player 2 are playing the same
NFG G repeatedly for T iterations against each other.

Player i has to choose a strategy σti at iterations t, probabilities over his
actions, ideally in a way that guarantees his strategy is improving. If player
i playes according to RM, he maintains cumulative regret Ri ∈ R|Ai| and
average strategy σi ∈ R|Ai|. He initializes them with the zero vector before
the first iteration. Player’s i current strategy σti is proportinal to the positive
cumulative regret at iteration t:

12
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σti(a) =

Rti(a)+/
∑
b∈Ai R

t
i(b)+ if

∑
b∈Ai R

t
i(b)+ > 0

1
|Ai| otherwise

(3.1)

for each action a ∈ Ai, where x+ = max(x, 0) for any x ∈ R. After the
current strategy is computed, it is added to the averagy strategy:

σti = 1
t

t∑
j=1

σji = t− 1
t

σt−1
i + 1

t
σti (3.2)

The instantaneous regret ∆Ri(a) ∈ R for not playing a ∈ Ai:

∆Ri(a) = σti(a)σt−iui(a)−
∑
b∈A

σt(b)ut(b) (3.3)

The instantaneous regret ∆Ri(a) added to the cumulative regret used for
the current strategy computation in the next iteration t+ 1.

Rt+1
i (a) = Rti(a) + ∆Ri(a) (3.4)

RM produces σ1
i , ..., σ

T
i strategies. The average strategy of player i is

σTi = 1
T

∑T
t=1 σ

t
i .

Theorem 4 forms an important connection between average cumulated
regrets, average strategies, and ε-Nash equilibrium that is central to all
algorithms in this thesis.
Theorem 3.2. ([1]) Let G be a two-player, zero-sum game. If the average
regrets after T iterations are RTi

T ≤ εi, εi > 0, for each player i ∈ N , then the
strategy profile σT , made from average strategies, is a ε1+ε2

2 -Nash equilibrium
in G.
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3. Computing Strategies via Online Learning ........................
3.3 Computing Strategies for EFG

A finite, two-player, perfect-recall game in normal-form has a strategically
equivalent game in extensive form, where each player has one information set.
RM keeps two vectors, cumulative regrets Ri and average strategy σi, per
player i, which corresponds to keeping them for one information set in the
EFG. Therefore, RTi is the overall regret for the entire strategy incurred after
T iterations. CFR is extending this approach for any EFG, which usually has
more than one information set per player. Zinkevich et al. at [23] showed that
minimizing cumulative regrets Ri(I) of each information set I ∈ Ii minimizes
the overall external regret Ri of the player’s i strategy.

CFR also operates iteratively and maintains a cumulative regret vector
and average strategy for each information set. It is using RM to update
an information set’s current strategy by the cumulative regret. The current
strategy of an information set refers to a strategy at iteration t. After CFR
computes the current strategy by RM, it adds the current strategy to the
average strategy. The critical difference is how CFR computes regrets at
each iteration. CFR computes regrets by a type of expected utility for imper-
fect information EFG called counterfactual (utility) value. Counterfactual
values are computed by considering the current strategies of both players
and terminal utilities. Then, the immediate counterfactual regret vector
is computed by counterfactual values induced by current strategies. The
immediate counterfactual regret is added to the cumulative regret, also called
cumulative counterfactual regret, and closes the cycle.
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Chapter 4

Survey of Tabular CFR Variants

CFR [23], also called Vanilla CFR, is an iterative, anytime algorithm guaran-
teed to converge to ε-Nash equilibrium using self-play in two-players, zero-
sum, perfect-recall, imperfect-information games. The algorithm became very
popular amongst researchers and scientists in the game solving community,
especially those trying to solve poker. Vanilla CFR gained popularity because
of better computer memory requirements than previously used linear program-
ming techniques, better empirical performance than its asymptotic worst-case
bounds, easy modification, and the absence of hyperparameters. The research
in the following tabular CFR variants built upon Vanilla CFR advanced
towards decreasing convergence computation time, memory requirements,
and tightening the asymptotic worst-case bounds.

We present survey of tabular CFR variants which are using regret matching
types of strategy updates in chronological order. First, we describe Vanilla
CFR, then empirically better performing CFR+[20][19]. Zhou et al. intro-
duced Lazy CFR [22] in 2018. Brown and Sandholm introduced Linear CFR
and Discounted CFR in 2019 [2]. The second variant in 2019 was Instant
CFR [9]. During the writing of the thesis, Farina and Sandhold presented
a new state of the art variant called Predictive CFR [6]. A similar survey
of CFR variants exists [10], but the survey is not up to date and contains
critical errors at least in the definition of counterfactual regret.
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4. Survey of Tabular CFR Variants.............................
4.1 CFR (Vanilla CFR)

Vanilla CFR, an alternative name for the original CFR algorithm [23] de-
scribed in chapter 3.3, consists of 4 conceptual steps. The following description
is based on [4].

For iteration t from 1, 2, ..., T :..1. Compute current strategy from cumulative counterfactual regrets. For
each information set I, each action a ∈ A(I), player i = p(I):

σti(I, a) =

Rt(I, a)+/
∑
b∈A(I)R

t(I, b)+ if
∑
b∈A(I)R

t(I, b)+ > 0
1

|A(I)| otherwise..2. Update the average strategy to include the new current strategy. For
each information set I, each action a ∈ A(I), player i = p(I):

σti(I, a) = 1
t

t∑
t′=1

πσ
t

i (t′)σti(I, a) = t− 1
t

σt−1
i + 1

t
σti..3. Compute counterfactual values. For each information set I, each action

a ∈ A(I), player i = p(I):

vσ
t

i (I, a) =
∑
h∈I·a

vσ
t

i (h) =
∑
h∈I·a

∑
z∈Z,h@z

πσ
t

−i(h)πσt(z|h)ui(z)..4. Update cumulative counterfactual regret with immediate counterfactual
regret, that is computed from counterfactual values and current strategy.
For each information set I, each action a ∈ A(I), player i = p(I):

Rt+1(I, a) = Rt(I, a) + vσ
t

i (I, a)−
∑

b∈A(I)
σt(I, b)vσti (I, b)

where initial values of cumulative counterfactual regrets are, R1(I, a) = 0,
zero.
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....................................... 4.2. CFR+

4.2 CFR+

CFR+ [20] is an algorithm introduced by Oskar Tammelin in 2014. CFR+
is based on Vanilla CFR. CFR+ use three tricks that did not prove the
algorithm is superior to Vanilla CFR, but they made the algorithm perform
empirically better on poker than Vanilla CFR:..1. using Regret Matching+..2. alternating updates between players..3. linearly weighting the average strategy

The following paper [19] grounded CFR+ theoretically and proved the
same convergence guarantees compared to Vanilla CFR. The following three
subsections describe these three tricks in CFR+.

4.2.1 Regret Matching+

Regret Matching+ (RM+) uses the observation that Regret Matching never
evaluates negative values of cumulative regrets. Equation 3.1 in RM computes
the current strategy σti at iteration t from cumulative regrets with negative
values clipped to 0. Therefore, RM+ is working exactly the same as RM with
the folowing update of the current strategy instead of the equation 3.1:

σti(a) =

Rti(a)/
∑
b∈Ai R

t
i(b) if

∑
b∈Ai R

t
i(b) > 0

1
|Ai| otherwise

(4.1)

and the folowing update of cumulative regrets, the equation 4.2, that do
not store negative values instead of the equation 3.4.

Rt+1
i (a) = (Rti(a) + ∆Ri(a))+ = max(Rti(a) + ∆Ri(a), 0) (4.2)
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4.2.2 Alternating Updates

At iteration t, Vanilla CFR updates current strategies for all players, all
information sets I, then Vanilla CFR is using these strategies, σt1 and σt2, to
compute counterfactual values and regrets.

However, CFR+ at iteration t first updates counterfactual regrets and the
current strategy for player 1, then updates counterfactual regrets for player 2
using player’s 1 new current strategy and player’s 2 counterfactual regrets
from previous iteration. Then it updates also player’s 2 current strategy. It
alternates updates between players within an iteration.

4.2.3 Weighting the Average Strategy

Vanilla CFR and RM compute the average strategy as a uniform mean over
T iterations. CFR+ weights current strategies linearly. The average strategy
σti is weighted by t at iteration t out of T .

σti(I, a) = 2
t(t+ 1)

t∑
k=1

kπσ
k

i (I)σki (I, a) (4.3)

4.3 Linear CFR

Linear CFR [2] was introduced by Noam Brown and Tuomas Sandholm in 2019.
They introduced Linear CFR (LCFR) and Linear CFR+ (LCFR+). Both of
these variants are using alternating updates and linear averaging of current
strategies from CFR+. LCFR is using RM, and LCFR+ is using RM+ to
compute the current strategy. The difference between CFR(+) and LCFR(+)
is that LCFR(+) is also linearly averaging cumulative counterfactual regrets.
The authors state that LCFR+ is performing worse than LCFR, so next we
will consider just LCFR.
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4.3.1 Weighting the Averave Strategy

Contribution to the average strategy is weighted by t at iteration t,

σti(I, a) = 2
t(t+ 1)

t∑
k=1

kπσ
k

i (I)σki (I, a) (4.4)

alternatively, the authors propose to multiply the accumulated strategy by
t
t+1 at iteration t.

4.3.2 Weighting the Cumulative Couterfactual Regret

LCFR is linearly weighting the contribution to cumulative counterfactual
regret:

Rti(a) = Rt−1
i (a) + t∆Ri(a) (4.5)

also here, at iteration t, the authors propose instead to multiply accumulated
cumulative counterfactual regret by t

t+1 .

4.4 Discounted CFR

Discounted CFR (DCFR) [2][1] also introduced Noam Brown and Tuomas
Sandholm in 2019. DCFR generalizes the LCFR’s idea of linearly weighting
average strategies and cumulative counterfactual regrets to a parametrized
polynom.

DCFR is using three hyperparameters α, β and γ, stylized as DCFR(α, β,
γ). Positive accumulated cumulative counterfactual regret is multiplied by
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tα

tα+1 , negative is multipled by tβ

tβ+1 and average strategy1 by tγ

tγ+1 at iteration
t. DCFR(α = 1, β = 1, γ = 1) is equal to LCFR. DCFR(α = 1, β = 1, γ = 1)
is equal to LCFR. The authors recommend DCFR(α = 3

2 , β = 0, γ = 2),
because they claim this parametrization of DCFR performs better than CFR+.
Therefore, DCFR was considered state-of-the-art algorithm after CFR+.

1Although the authors state that one should multiply the average strategy by ( t
t+1 )γ ,

then empirical comparison with LCFR and CFR+ does not yield correct results.
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Chapter 5

Experiments

This chapter presents experiments and results of these experiments performed
on investigated CFR variants. Section 5.1 describes imperfect-information
games, on which we perform two empirical experiments. The first experi-
ment, section 5.2, confirms the correctness of implemented Linear CFR and
Discounted CFR. The second experiment, section 5.3, measures speed of
convergence to the ε-Nash equilibrium on introduced games.

5.1 Games

5.1.1 Goofspiel

Goofspiel is a card game using classical French playing cards. At the begin-
ning of the game, every player receives a different suit of cards A (with the
value 1), 2, 3, ..., N , where N is a variable usually up to 13 (which is equal to
the K, king, card). We put another suit of cards, so-called prize cards, with
the same range between the players with the top card visible for both players.
Every round of the game, players observe the top prize card, simultaneously
choose one card from their remaining cards. The player with a greater value
of the selected card wins the round and receives the prize card’s points. The
prize card and each player’s played card are removed, the new round starts
until they have cards left. The winner of the game is the player with the
highest accumulated points.
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We talk about complete-information Goofspiel when players find out which
card every player selected each round. Incomplete-information when they
hand them to an umpire who announces only the winner and players don’t
know what card their opponent used. The prize cards are in ascending, de-
scending, or random order before the first round begins. With binary utilities,
the winner gets utility 1, and the loser receives utility −1. Draw happens
when both players accumulate the same amount of points, and both get 0
utility. With scalar utilities, the winner gets the positive difference between
points both won, and the loser gets negative.

5.1.2 Liar’s Dice

Liar’s Dice is an old dice game with various other names like Dudo or Bluff.
Player one has available D1 dices, and player two has D2 dices, with faces 1,
2, ..., K. Each round, players toss their dices in a way no other player can
see their outcomes. Then iterations of betting follow. One player estimates
the outcome of all thrown dices in the game as a minimal number of dices
with a particular face. The face K works as a wild card and matches any
other. The opponent can either raise the face’s value with the same minimal
number of dices, increase the minimal number of dices, or call the previous
player a liar. When a player calls his opponent a liar, players reveal their dices.

The winner gets utility of 1 and the loser −1. In the original game, the
loser would lose one die, and the game would proceed into another round
until there is just one player with some remaining number of dices. We will
consider only a single round of Liar’s Dice.

5.1.3 Oshi-Zumo

Oshi-Zumo is a simultaneous game with a playing field of 2K + 1 consecutive
squares and a stone at K-th position. At the beginning of the game, each
player has N coins for making a bet every round. Players choose bets with
a minimal amount of coins M . The winner of the round is the player who
bets more coins the opponent, the stone moves closer to the opponent, and
players cannot put their betted coins back. If both players’ bets are equal,

22



............................ 5.2. Correctness of LCFR and DCFR

the stone doesn’t move. The game ends if one player pushes the stone out of
the opponent’s side or if some player gets out of coins. Draw happens when
the stone ends up at the K-th position at the end of the game. Both players
get 0 utility during the draw. The winner is a player who pushes the stone to
the opponent’s half of the playing field, gets utility 1, and the loser utility
−1.

5.1.4 Darkchess

Darkchess is imperfect-information chess, where a player can see only the
opponent’s pieces that can capture the by one move.

5.2 Correctness of LCFR and DCFR

The original article [2] introducing Linear CFR and Discounted CFR doesn’t
contain source code nor pseudo-code for implementing these variants, only
includes changes to the standard CFR and CFR+ implementation. This
experiment replicates a result from the article and verify the approximative
correctness of our implementation intended by authors.

The experiment description Measure average exploitability of aver-
age strategy after 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 iterations
of CFR, CFR+ with quadratic averaging (Brown), LCFR, DCFR(1.5, 0,
2), DCFR(1.5, 0.5, 2), and DCFR(1.5, −∞, 2) on the perfect-information
Goofspiel with 5 cards with scalar utilities and ascending prize cards A, 2, 3,
4, 5.

Figure 5.2 shows our results of this experiment. See Figure 5 in [2] for a
comparison with the original article.
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Figure 5.1: Empirical speed of convergence by Noam Brown.

Figure 5.2: Empirical speed of convergence on perfect-information Goofspiel
with 5 cards with scalar utilities and ascending prize cards A, 2, 3, 4, 5.

5.3 Empirical Speed of Convergence

Experiment 2 is measuring the empirical speed of convergence to ε-Nash
equilibrium on introduced games.
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5.3.1 Experiment Setup

The empirical speed of convergence experiment compares how many iterations
are necessary to approximate Nash equilibria, computing epsilon-Nash equi-
libria, by CFR based algorithms on imperfect-information or simultaneous
games. The average exploitability measures the approximation for the aver-
age strategy profile after iteration T. Previous research had considered that
1000 iterations are enough precise approximation. We will measure and plot
average exploitability after 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192
iterations to observe long-term progress. For comparison, we will use CFR,
CFR+ (with linear and quadratic averaging of average strategy), LCFR, and
DCFR with used parameters, which are DCFR(1.5, 0, 2), DCFR(1.5, 0.5, 2),
and DCFR(1.5, −∞, 2). All algorithms will use standardly used alternating
updates. Because all algorithms are deterministic, every convergence curve
will correspond to one run of the algorithm.

5.3.2 Empirical Speed of Convergence on Goofspiel

Goofspiel is originally a simultaneous game, so even perfect-information
Goofspiel has information sets with a size bigger than one. We compare
perfect-information and imperfect-information Goofspiel with 3, 4, and 5 cards.
Besides the number of cards, we also combine variants with binary and scalar
utilities. Finally, we add combinations with a fixed Chance and randomized
Chance. The fixed Chance is the same as in the previous experiment. The next
three subsections are describing empirical results according to the number of
cards.

Goofspiel 3

Goofspiel with three cards (Goofspiel 3) is a relatively small game with less
than 1000 information sets and EFG nodes. See Table 5.2 and 5.1, Goofspiel
3 with the randomized Chance player is around six times bigger game in
terms of information sets and the number of EFG nodes. The maximal depth
of the game tree is 7 (5) for the game with the randomized (fixed) Chance.
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Fixed Chance Depth No. IS No. nodes No. actions

True 5 92 103 138
False 7 546 606 792

Table 5.1: Basic game statistics of perfect-information Goofspiel with 3 cards.
The Depth column corresponds to the maximal depth of EFG game tree, No. IS
to the number of information sets, No. nodes to the number of EFG nodes, and
No. actions to the number of actions.

Fixed Chance Depth No. IS No. nodes No. actions
True 5 72 103 138
False 7 426 606 792

Table 5.2: Basic game statistics of imperfect-information Goofspiel with 3 cards.
The Depth column corresponds to the maximal depth of EFG game tree, No. IS
to the number of information sets, No. nodes to the number of EFG nodes, and
No. actions to the number of actions.

Imperfect-information Goofspiel 3 has slightly fewer information sets than
perfect-information Goofspiel 3. The imperfect-information variant has infor-
mation sets more spread across the game tree’s width, and their information
sets contain more EFG nodes than the perfect-information variant. This show
heatmaps in Table 5.3 and 5.4. Almost all information sets in the perfect-
information game have size one. On the other hand, the imperfect-information
variant has the upper part of the game tree covered with information sets of
size more than one.

(a): (b):

Table 5.3: The table shows heatmaps for perfect-information Goofspiel 3 with
randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is the EFG
depth of the game tree and the y-axis number of EFG nodes in the information
sets.
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(a): (b):

Table 5.4: The table shows heatmaps for imperfect-information Goofspiel 3 with
randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is the EFG
depth of the game tree and the y-axis number of EFG nodes in the information
sets.

Empirical speed of convergence for perfect-information Goofspiel 3 displays
graphs in table 5.5. We can observe that the average exploitability for all
tested CFR variants is steadily exponentially declining to zero. All CFR
variants tend to cluster into three convergence speeds with about two orders
of magnitude distance between each other. The slowest group has only CFR.
Then the second group is CFR+ and LCFR. The quickest is a group with
all parametrized DCFR and CFR+ with quadratic averaging. If you stop
any variant in any iteration, for perfect-information Goofspiel 3, you have a
certainty of the order of convergence speed to Nash equilibria.
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(a): (b):

(c): (d):

Table 5.5: Speed of convergence on perfect-information Goofspiel 3. The first
row contains the game’s variant with binary utilities. Figure (a) has a randomized
Chance. Figure (b) has a fixed Chance. Similarly, the second row contains the
game’s variant with scalar utilities. Figure (c) has randomized Chance, and
figure (d) fixed Chance. An x-axis shows the number of iteration. A y-axis is
logarithmic and shows average exploitability.

In table 5.5, the first row are figures (a) and (b) where the variants run
on perfect-information Goofspiel 3 with binary utilites. Figure (a) has a ran-
domized Chance. Figure (b) has a fixed Chance. CFR+ and LCFR converge
identical. Also, DCFR(1.5, 0.0, 2.0), DCFR(1.5, 1.5, 2.0) and CFR+ with
quad. averaging converge very closely. DCFR(1.5, -Inf, 2.0) is sligtly behind
the three. On figure (b), all variants converge about one order magnitude
slower than on (a). Also, there is a slightly bigger distance between DCFR(1.5,
-Inf, 2.0) and other DCFRs and CFR+ with quadratic averaging.

Figures (c) and (d) shows convergence graphs for perfect-information Goof-
spiel 3 with scalar utilites. Similarly, the figure (c) has a randomized Chance,
and the figure (d) has a fixed Chance. We can see that CFR+ with quadratic
averaging is slightly ahead of DCFR variants. In the second group, CFR+ is
slightly ahead of LCFR. Fixed Chance increasing they lead.
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The table 5.6 shows graphs with empirical speed of convergence for imperfect-
information Goofspiel 3. All graphs show the same progress as for perfect-
information variant.

(a) : Figure A (b) : Figure B

Table 5.6: Speed of convergence on imperfect-information Goofspiel 3. The
first row contains the game’s variant with binary utilities. Figure (a) has a
randomized Chance. Figure (b) has a fixed Chance. Similarly, the second row
contains the game’s variant with scalar utilities. Figure (c) has randomized
Chance, and figure (d) fixed Chance. An x-axis shows the number of iteration.
A y-axis is logarithmic and shows average exploitability.

(a) : Figure C (b) : Figure D

Table 5.7: Speed of convergence on imperfect-information Goofspiel 3. The
first row contains the game’s variant with binary utilities. Figure (a) has a
randomized Chance. Figure (b) has a fixed Chance. Similarly, the second row
contains the game’s variant with scalar utilities. Figure (c) has randomized
Chance, and figure (d) fixed Chance. An x-axis shows the number of iteration.
A y-axis is logarithmic and shows average exploitability.

The following tables show statistics of pure and mixed strategies for the
slowest and quickest variant in the convergence. For imperfect-information
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Goofspiel 3 with scalar utilities and fixed Chance are statistics in the table
5.8 and 5.9. For imperfect-information Goofspiel 3 with scalar utilities and
randomized Chance are statistics in the table 5.10 and 5.11. All of them have
pure strategy except in depth 4 and 5. In both case, the slower convergence
has CFR in tables 5.8 and 5.10. Tables 5.11 and 5.9 are from CFR+ with
quadratic avereging. The ration of pure strategies in depth 4 is increased and
in depth 5 increased.

Depth 0 1 2 3 4 5
Pure 1 1 2 2 28 28

Mixed 0 0 5 5 0 0
Mixed/All 0.0 0.0 0.71 0.71 0.0 0.0

Table 5.8: The strategy statistics after running CFR for 8192 iterations on
imperfect-information Goofspiel 3 with binary utilities and fixed Chance. Depth
means EFG depth of the game tree. The row Pure shows number of information
sets with a pure strategy based of the EFG depth. The row Mixed shows the
same for a mixed strategy. The last row show a ratio between mixed strategies
compared to all strategies in that depth.

Depth 0 1 2 3 4 5
Pure 1 1 4 1 28 28

Mixed 0 0 3 6 0 0
Mixed/All 0.0 0.0 0.43 0.86 0.0 0.0

Table 5.9: The strategy statistics after running CFR+ with quadratic averaging
for 8192 iterations on imperfect-information Goofspiel 3 with binary utilities and
fixed Chance.

Depth 0 1 2 3 4 5 6 7
Pure 0 3 3 0 12 12 168 168

Mixed 0 0 0 0 30 30 0 0
Mixed/All 0.0 0.0 0.0 0.0 0.71 0.71 0.0 0.0

Table 5.10: The strategy statistics after running CFR for 8192 iterations on
imperfect-information Goofspiel 3 with binary utilities and randomized Chance.

Depth 0 1 2 3 4 5 6 7
Pure 0 3 3 0 16 10 168 168

Mixed 0 0 0 0 26 32 0 0
Mixed/All 0.0 0.0 0.0 0.0 0.62 0.76 0.0 0.0

Table 5.11: The strategy statistics after running CFR+ with quadratic averaging
for 8192 iterations on imperfect-information Goofspiel 3 with binary utilities and
randomized Chance.
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Goofspiel 4

Goofspiel with 4 cards (Goofspiel 4) has a naturally similar structure of in-
formation sets depending on if we are dealing with the perfect or imperfect-
information variant. Table 5.12 and 5.13 show that games with the fixed
Chance have lower thousands of information sets and EFG nodes. In games
with randomized Chance, these values increase to tens of thousands. Goofspiel
4 has more information sets from 11 to 40 times while having 16 times more
EFG nodes with the fixed Chance and 40 times more EFG nodes with the
randomized Chance.

Fixed Chance Depth No. IS No. nodes No. actions
True 7 1474 1653 2228
False 10 34952 38804 50768

Table 5.12: Basic game statistics of perfect-information Goofspiel with 4 cards.
The Depth column corresponds to the maximal depth of the EFG game tree, No.
IS to the number of information sets, No. nodes to the number of EFG nodes,
and No. actions to the number of actions.

Fixed Chance Depth No. IS No. nodes No. actions
True 7 738 1653 2228
False 10 17432 38804 50768

Table 5.13: Basic game statistics of imperfect-information Goofspiel with 4
cards. The Depth column corresponds to the maximal depth of the EFG game
tree, No. IS to the number of information sets, No. nodes to the number of EFG
nodes, and No. actions to the number of actions.

The size of information sets for the perfect-information game, Table 5.14,
is usually 2-3 EFG nodes in the upper half of the game tree, rarely more. The
bottom part dominates information sets with one node. For the imperfect-
information game, in Table 5.15, the size of information sets varies more.
There are more information sets with 4-7 EFG nodes and a few with 8-15
nodes. Although randomized Chance causes an increase in the depth of a
game tree, the number of information sets and EFG nodes, and volumes of
information sets. The distribution of information sizes is the same across the
depth of a game tree.

If you recall from Goofspiel 3, CFR variants tended to cluster into three
groups of convergence speed. Also, every convergence curve was nicely
exponentially declining. The same phenomenon is apparent only for Goofspiel
4 with binary utilities and fixed Chance. See Table 5.16, Figure (b). The three
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groups are CFR and LCFR, being the slowest group, about two orders of
magnitude quicker is CFR+. Finally, the fastest convergence group is DCFR
variants and CFR+ with quadratic averaging. The order of convergence curves
in the fastest group is similar to Goofspiel 3 but not the same. DCFR(1.5,
0.0, 2.0), DCFR(1.5, -Inf, 2.0), and CFR+ with quad. ave. have tight curves,
so that the CFR+’s curve is not visible. Unlike in Goofspiel 3, this group’s
slowest variant with substantial distance DCFR(1.5, 0.5, 2.0).

(a): (b):

Table 5.14: The table shows heatmaps for perfect-information Goofspiel 4 with
randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is the EFG
depth of the game tree and the y-axis number of EFG nodes in the information
sets.

(a): (b):

Table 5.15: The table shows heatmaps for imperfect-information Goofspiel 4
with randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is
the EFG depth of the game tree and the y-axis number of EFG nodes in the
information sets.

The clustering into three convergence groups dissipates into two groups
for other parametrization of the perfect-information game. See Table 5.16,
Figure (a) with binary utilities, and Table 5.17, Figure(a) with scalar utilities.
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They are perfect-information Goofspiel 4 with the randomized Chance.

Figure (a) in Table 5.16 displays that CFR is converging slower but stably
than the rest of the CFR variants. The rest of the CFR variants converge
at different rates depending on the number of iteration. Previous research
usually considered around 1000 iterations as a sufficient number of iterations.
For 1024 iterations, DCFR(1.5, -Inf, 2.0) has the fastest convergence. From
1024 to 4096 iterations, DCFR(1.5, -Inf, 2.0) is faster than DCFR(1.5, -Inf,
2.0). LCFR converges the slowest between CFR+ and DCFR variants.

(a): (b):

Table 5.16: Speed of convergence on perfect-information Goofspiel 4 with binary
utilites. Figure (a) shows convergence of CFR variants on the game with the
randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average exploitability in a
logarithmic scale.

Interesting results have CFR variants on perfect-information Goofspiel 4
with scalar utilities and fixed Chance (Figure (b) in Table 5.17). Between
iterations 32 and 512, we can observe the mentioned distinction of converging
curves into two groups. The slower group contains LCFR and CFR, where
LCFR is converging slightly slower than CFR. DCFR(1.5, -Inf, 2.0) converges
the fastest for the first 512 iterations very closely to CFR in the quicker group.
However, CFR+ takes the lead from 512 iterations onwards. DCFR(1.5,
0.0, 2.0) and DCFR(1.5, 0.5, 2.0) convergence slow down between CFR and
CFR+.
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(a): (b):

Table 5.17: Speed of convergence on perfect-information Goofspiel 4 with scalar
utilites. Figure (a) shows convergence of CFR variants on the game with the
randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average exploitability in a
logarithmic scale.

Table 5.18 shows the speed of convergence for imperfect-information Goof-
spiel 4 with binary utilities. Table 5.19 shows the same for the games with
scalar utilities. For all parametrization of imperfect-information Goofspiel
4, we can also observe two distinctive groups of convergence curves. The
slower group with CFR and LCFR. The quicker group with DCFR and
CFR+ variants. In Figure (b), Table 5.18, all convergence curves stable
exponentially decline except LCFR. All other game parametrizations have
more oscillating convergence curves. In games with binary utilities (Table
5.18), DCFR(1.5, -Inf, 2.0) dominates all other variants. In games with scalar
utilities (Table 5.19), DCFR(1.5, -Inf, 2.0) dominates the first 1024 iterations,
then convergence speed slows down, and CFR+ with quadratic averaging and
DCFR(1.5, 0, 2.0) have lower exploitability.
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(a): (b):

Table 5.18: Speed of convergence on imperfect-information Goofspiel 4 with
binary utilites. Figure (a) shows convergence of CFR variants on the game with
the randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average exploitability in a
logarithmic scale.

(a): (b):

Table 5.19: Speed of convergence on imperfect-information Goofspiel 4 with
scalar utilites. Figure (a) shows convergence of CFR variants on the game with
the randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average exploitability in a
logarithmic scale.

Goofspiel 5

This subsection describes experiments on Goofspiel with five cards. Table
5.20 contains basic statistics about perfect-information Goofspiel 5. The
game with fixed Chance has about 40 thousand information sets (about 25
times more than GS 4). The parametrization with randomized Chance has
almost 4.5 million information sets, about 125 times more than Goofspiel
4. Imperfect-information Goofspiel 5 (Table 5.21) with fixed Chance has
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about 10 thousand information sets (13 times more than the same GS 4).
Imperfect-information Goofspiel 5 with randomized Chance has 1.2 million
information sets (67 times bigger than the same game with four cards).

Fixed Chance Depth No. IS No. nodes No. actions
True 9 36852 41331 55730
False 13 4369010 4850530 6346150

Table 5.20: Basic game statistics of perfect-information Goofspiel with 5 cards.
The Depth column corresponds to the maximal depth of the EFG game tree, No.
IS to the number of information sets, No. nodes to the number of EFG nodes,
and No. actions to the number of actions.

Fixed Chance Depth No. IS No. nodes No. actions
True 9 9948 41331 55730
False 13 1175330 4850530 6346150

Table 5.21: Basic game statistics of imperfect-information Goofspiel with 5
cards. The Depth column corresponds to the maximal depth of the EFG game
tree, No. IS to the number of information sets, No. nodes to the number of EFG
nodes, and No. actions to the number of actions.

Distributions of information sets sizes are similar as we have seen in smaller
games but with more density. Information sets with the biggest sizes and
density resides in the top half of the game tree. The sizes and number of
information sets in the bottom part of the tree drastically decrease. Imperfect-
information (perfection-information) Goofspiel 5, see Table 5.22 (Table 5.23),
has information sets with up to 32-64 (4-7) EFG nodes.

(a): (b):

Table 5.22: The table shows heatmaps for perfect-information Goofspiel 5 with
randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is the EFG
depth of the game tree and the y-axis number of EFG nodes in the information
sets.
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(a): (b):

Table 5.23: The table shows heatmaps for imperfect-information Goofspiel 5
with randomized Chance (a) and fixed Chance (b). The heatmap’s x-axis is
the EFG depth of the game tree and the y-axis number of EFG nodes in the
information sets.

Empirical speed of convergence of perfect-information (Table 5.24 and
Table 5.25) Goofspiel 5 and imperfect-information (Table 5.26 and Table 5.27)
have clear two clusters of curves. The slowest belong to CFR and LCFR. The
quickest group contains both CFR+ variants and DCFR variants. DCFR(1.5,
-Inf, 2.0) the most rapid convergence with closely with CFR+. The most
slowest convergence with this group has DCFR(1.5, 0.5, 0.0).

(a): (b):

Table 5.24: Speed of convergence on perfect-information Goofspiel 4 with bi-
nary utilites. Figure (a) shows convergence of CFR variants on the game with
the randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average exploitability in a
logarithmic scale.
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(a): (b):

Table 5.25: Speed of convergence on perfect-information Goofspiel 5 with scalar
utilites. Figure (a) shows convergence of CFR variants on the game with the
randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average ex- ploitability in a
logarithmic scale.

Empirical speed of convergence of perfect-information (Table 5.24 and
Table 5.25) Goofspiel 5 and imperfect-information (Table 5.26 and Table 5.27)
have clear two clusters of curves. The slowest belong to CFR and LCFR. The
quickest group contains both CFR+ variants and DCFR variants. DCFR(1.5,
-Inf, 2.0) the most rapid convergence with closely with CFR+. The most
slowest convergence with this group has DCFR(1.5, 0.5, 0.0).

(a): (b):

Table 5.26: Speed of convergence on imperfect-information Goofspiel 5 with
binary utilites. Figure (a) shows convergence of CFR variants on the game with
the randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average ex- ploitability in a
logarithmic scale.
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(a): (b):

Table 5.27: Speed of convergence on imperfect-information Goofspiel 5 with
scalar utilites. Figure (a) shows convergence of CFR variants on the game with
the randomized Chance. Figure (b) shows the game with the fixed Chance. An
x-axis is the number of iteration. A y-axis shows average ex- ploitability in a
logarithmic scale.

Table 5.29 (5.28) shows statistics for the strategy of LCFR (DCFR(1.5,
0.5, 2.0)), which converges the slowest (quickest) in imperfect-information
Goofspiel 5 with fixed Chance and scalar utilities. DCFR(1.5, 0.5, 2.0) has
less information sets with mixed strategies at depth 4 and 6, but it has more
mixed strategies at depth 5.

Depth 0 1 2 3 4 5 6 7 8 9
Pure 0 0 1 0 13 13 257 168 3912 3912

Mixed 1 1 12 13 117 117 661 750 0 0
Mixed/All 1.0 1.0 0.92 1.0 0.9 0.9 0.72 0.82 0.0 0.0

Table 5.28: The strategy statistics after running LCFR with quadratic averaging
for 8192 iterations on imperfect-information Goofspiel 5 with binary utilities and
fixed Chance.

Depth 0 1 2 3 4 5 6 7 8 9
Pure 0 0 1 0 16 8 270 176 3912 3912

Mixed 1 1 12 13 114 122 648 742 0 0
Mixed/All 1.0 1.0 0.92 1.0 0.88 0.94 0.71 0.81 0.0 0.0

Table 5.29: The strategy statistics after running DCFR(1.5, 0.5, 2) for 8192 iter-
ations on imperfect-information Goofspiel 5 with binary utilities and randomized
Chance.
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5.3.3 Empirical Speed of Convergence on Liar’s Dice

Cards Depth No. IS No. nodes No. actions
2 5 32 64 120
3 7 192 576 1134
4 9 1024 4096 8160
5 11 5120 25600 51150
6 13 24576 147456 294840

Table 5.30: Basic game statistics of Liar’s Dice with 1 dice per player and
various number of faces. The Depth column corresponds to the maximal depth
of the EFG game tree, No. IS to the number of information sets, No. nodes to
the number of EFG nodes, and No. actions to the number of actions.

Cards Depth No. IS No. nodes No. actions
2 9 1024 4096 8160
3 13 36864 331776 663390
4 17 1048576 16777216 33553920

Table 5.31: Basic game statistics of Liar’s Dice with 2 dice per player and
various number of faces. The Depth column corresponds to the maximal depth
of the EFG game tree, No. IS to the number of information sets, No. nodes to
the number of EFG nodes, and No. actions to the number of actions.

(a): (b):

Table 5.32: Figure (b) shows the speed of convergence on Liar’s Dice with one
dice per player and two faces on each die. DCFR variants and CFR+ with
quadratic averaging have similar convergence curves. Figure (a) shows the size
of the information set in dependence of EFG depth.
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(a): (b):

Table 5.33: Figure (b) shows the speed of convergence on Liar’s Dice with one
dice per player and three faces on each die. LCFR and CFR+ have identical
convergence curves. Also, DCFR variants and CFR+ with quadratic averaging
have similar convergence curves. Figure (a) shows the size of the information set
in dependence of EFG depth.

(a): (b):

Table 5.34: Figure (b) shows the speed of convergence on Liar’s Dice with one
dice per player and four faces on each die. Figure (a) shows the size of the
information set in dependence of EFG depth.

41



5. Experiments .....................................

(a): (b):

Table 5.35: Figure (b) shows the speed of convergence on Liar’s Dice with
one dice per player and five faces on each die. Figure (a) shows the size of the
information set in dependence of EFG depth.

(a): (b):

Table 5.36: Figure (b) shows the speed of convergence on Liar’s Dice with
one dice per player and six faces on each die. Figure (a) shows the size of the
information set in dependence of EFG depth.
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(a): (b):

Table 5.37: Figure (b) shows the speed of convergence on Liar’s Dice with two
dices per player and two faces on each die. LCFR and CFR+ have identical
convergence curves under the red curve. Also, DCFR variants and CFR+ with
quadratic averaging have similar convergence curves under the purple curve.
Figure (a) shows the size of the information set in dependence of EFG depth.

(a): (b):

Table 5.38: Figure (b) shows the speed of convergence on Liar’s Dice with one
dice per player and three faces on each die. Figure (a) shows the size of the
information set in dependence of EFG depth.
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(a): (b):

Table 5.39: Figure (b) shows the speed of convergence on Liar’s Dice with two
dices per player and four faces on each die. Figure (a) shows the size of the
information set in dependence of EFG depth.
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5.3.4 Empirical Speed of Convergence on Oshi-zumo

(a) : Figure A

(b) : Figure B

Table 5.40: Speed of convergence on Oshi-Zumo. 5 starting point, 10 coins, 1
min. bid
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5.3.5 Empirical Speed of Convergence on Darkchess

(a) : Figure A

(b) : Figure B

Table 5.41: Speed of convergence on the Darkchess’s minimal 4x3 board. Figure
A shows the convergence graph for 2 moves per player. Figure B shows the
convergence graph for 3 moves per player.
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(a) : Figure A

Table 5.42: Speed of convergence on the Darkchess’s minimal 4x3 board. Figure
A shows the convergence graph for 4 moves per player. Figure B shows the
convergence graph for 5 moves per player.

5.4 Discussion

In games with less mixed information sets’ strategies, all variants have a clear
exponential decline in exploitability. Variants clusters into three groups: 1.
the slowest Vanilla CFR, 2. CFR+ and LCFR, 3. DCFR. For games with
more mixed information sets’ strategies, differences tend to diminish between
groups 2 and 3, also 1 and 2. For groups 2 and 3, CFR+ usually catches
up DCFR. Some variants of DCFR are sometimes worse than CFR+. The
recommended variant by Noam Brown is not always the best, depends on
the domain. Finally, CFR and LCFR tend to have similar results in bigger
games. LCFR particularly seems to be unstable after thousands of iterations.
Although DCFR performs on average better, the difference between DCFR
and CFR+ is either small or none for big domains. For a bad choice of
hyperparameters, DCFR could be worse than CFR+. Also, notice with more
than the linear average, after some number of iterations, the convergence
curves are unstable.
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Chapter 6

Conclusion

Section 1 introduced the fundamentals of game theory. Then Section 2 in-
troduced online learning and connection to game theory. Section 3 surveyed
CFR, CFR+, LCFR, and DCFR. Section 4 carries the empirical convergence
speed on Goofspiel, Liar’s Dice, Oshi-Zumo, and Darkchess. Section 4 is also
discussing results.

Future work could include testing the new state of the art CFR variant,
PCFR, between all other variants. Also, future work could consist of an
empirical speed of convergence with PCFR and DCFR weighing.
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