
Master Thesis

Semantic Form Editor

Bc. Tomáš Klíma
Supervisor: Mgr. Miroslav Blaško, Ph.D.

January 2021

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

459933Personal ID number:Klíma TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Software EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Semantic form editor

Master’s thesis title in Czech:

Editor sémantických webových formulářů

Guidelines:
SForms is a javascript library for displaying interactive forms in the ReactJS framework. Unlike similar libraries, SForms
is based on Semantic Web technologies, which allows form questions and answers to be mapped to knowledge stored in
ontologies. The aim of this work is to create an SForms form editor that will help the user create forms based on current
best practices and mapping to knowledge stored in ontologies. Associations with ontological knowledge can also be used
to validate created forms.
Instructions:
1) become familiar with Semantic Web technologies for representation (OWL, RDF, JSON-LD) and validation (SHACL)
of knowledge
2) explore existing form creation tools and current best practices for form design
3) analyze the requirements of the editor and SForms extension
4) design and implement a prototype editor, including the necessary extension of SForms
5) test the implemented prototype, including user testing on at least 3 users

Bibliography / sources:
- Wroblewski, Luke. Web form design: filling in the blanks. Rosenfeld Media (2008).
- Wood, David. 'What’s New in RDF 1.1.' W3C Working Group Note (2014).
- Walke, Jordan. 'React-A JavaScript library for building user interfaces.' (2013).
- Ledvinka M., Blaško M., SForms (https://kbss.felk.cvut.cz/web/kbss/s-forms)

Name and workplace of master’s thesis supervisor:

Mgr. Miroslav Blaško, Ph.D., Knowledge-based Software Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 05.01.2021Date of master’s thesis assignment: 07.09.2020

Assignment valid until: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureMgr. Miroslav Blaško, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Abstract

Forms can be an excellent tool for collecting information effectively. However, there is no
straightforward path to creating an ideally designed research instrument, able to gather
data of sufficient quality. Building a form that is understandable for respondents and
efficient at the same time, requires knowing its target audience, as well as following the
form design guidelines. Nevertheless, the quality of data is not the only trait sufficing
for a form to be efficient. Other characteristics of an efficient form can be the reusabil-
ity or the integrability with existing information from different domains. These can be
achieved by using Semantic Web technologies. A form editor is a useful tool that pro-
vides a user interface for creating forms. There are plenty of form editors available, but
minimum of them is capable of operating on forms build upon the Semantic Web. The
main goal of the thesis is to create an editor that allows form designers to build, ad-
just, and validate the Semantic Web based forms that are afterwards visualised with the
SForms JavaScript library. The application is developed in React web framework Next.js
with the use of TypeScript and Material-UI. Created forms are validated to comply with
form best-practice guidelines using the constraint language SHACL. This master thesis
further intends to analyse forms in terms of their digital representation and examine the
best-practises of their design and following visualisation. The work moreover analyses
eight existing solutions of form editors and validates them against the design guidelines.
Taken together, this work aims to examine form design guidelines, analyse technologies
concerning the Semantic Web and finally create a form editor capable of creating forms
based on Semantic Web technologies.

Keywords: Form, Form best-practices, Form Editor, Web Application, JavaScript, React,
Next.js, SForms, JSON-LD, SHACL, Semantic Web, Linked Data

Abstrakt

Formulář představuje důležitý prostředek pro sběr dat. Vytvořit formulář, který je efek-
tivní a zároveň srozumitelný pro jeho respondenty, není jednoduché, jelikož to vyža-
duje znalost cílové skupiny dotazovaných a osvědčených postupů pro návrh formulářů.
Kvalita dat však není jediným znakem formuláře postačujícím pro efektivní sběr dat.
Dalšími charakteristikami efektivních formulářů může být jejich opětovná použitelnost
nebo integrovatelnost s existujícími informacemi pocházejícími z jiných domén. Toho
lze dosáhnout pomocí technologií Sémantického webu. Editor formulářů je užitečný ná-
stroj, který poskytuje uživatelské rozhraní pro vytváření formulářů. Formulářové editory
jsou v současnosti běžně dostupné, ale minimum z nich je schopno pracovat s formuláři
založenými na technologiích Sémantického webu. Hlavním cílem této práce je vytvořit
editor, který umožní návrhářům formulářů vytvářet, upravovat a validovat formuláře za-
ložené na Sémantickém webu, které jsou následně vizualizovány pomocí JavaScriptové
knihovny SForms. Aplikace je vyvinuta za použití webového frameworku Next.js s tech-
nologií TypeScript a knihovnou Material-UI. Vytvořené formuláře jsou ověřovány, aby
byly v souladu s pravidly osvědčených postupů návrhu formulářů pomocí jazyka SHACL.
Tato diplomová práce dále obsahuje analýzu formulářů z hlediska jejich digitální repre-
zentace a zkoumá osvědčené postupy jejich návrhu a následné vizualizace. Práce navíc
analyzuje osm existujících řešení editorů formulářů a validuje je na základě ověřených
postupů návrhu formulářů. Tato práce si v souhrnu klade za cíl prozkoumat osvědčené
postupy pro návrh formulářů, analyzovat technologie týkající se Sémantického webu a
nakonec vytvořit editor formulářů schopný vytvářet formuláře založené na technologiích
Sémantického webu.

Klíčová slova: Formulář, Osvědčené postupy návrhu formulářů, Editor formulářů, Webová
aplikace, JavaScript, React, Next.js, SForms, JSON-LD, SHACL, Sémantický web, Propo-
jená data

Author statement for graduate thesis:

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date

signature

3

Acknowledgements

I would like to thank my supervisor Mgr. Miroslav Blaško, Ph.D. for his guidance and
generous support during my final project and thoroughly testing my application during
the implementation.

5

Contents

Introduction 11

1 Background 13
1.1 Form . 13

1.1.1 Paper Form . 14
1.1.2 Digital Form . 14
1.1.3 Web Form . 15

1.2 Semantic Web . 18
1.2.1 Linked Data . 18
1.2.2 Ontologies . 19
1.2.3 RDF . 19
1.2.4 OWL . 21
1.2.5 SPARQL . 21
1.2.6 JSON-LD . 22
1.2.7 SHACL . 23

2 Form Design Guidelines 25
2.1 Wording . 26

2.1.1 Wording of Questions . 26
2.1.2 Wordings of Other Parts of the Form 27
2.1.3 Required and Optional Fields . 28

2.2 Form Layout . 28
2.2.1 Question Field Types . 28
2.2.2 Alignment . 29
2.2.3 Buttons . 30
2.2.4 Typography . 30
2.2.5 Colours . 31

2.3 Flow of a Form . 31
2.3.1 Question Order . 31
2.3.2 Form Types . 31
2.3.3 Before and After a Form . 32
2.3.4 Validation . 32
2.3.5 Default Answers . 32
2.3.6 Conditional Logic and Branching . 32

3 Existing Solutions 33
3.1 Standalone Form Solutions . 33

3.1.1 SurveyMonkey . 33
3.1.2 JotForm . 35
3.1.3 forms.app . 37
3.1.4 Google Forms . 38

7

CONTENTS

3.2 Form Editors . 39
3.2.1 React Hook Form . 39
3.2.2 Bootsnipp . 40
3.2.3 formBuilder . 41

3.3 Semantic Form Editors . 42
3.3.1 Generating of SHACL and DASH Forms for TopBraid EDG 42

3.4 Summary . 44
3.4.1 Summary of Standalone Form Solutions 45
3.4.2 Summary of (Semantic) Form Editors 46

4 S-Forms 47
4.1 Current State . 47

4.1.1 Technology Stack . 48
4.1.2 Form Controls . 49
4.1.3 Validation . 50

4.2 Ontology-Based Smart Form Representation 50
4.2.1 Properties for Representation of Forms 51
4.2.2 Form Building . 52

5 Application Design 53
5.1 Analysis of the Design of the Semantic Form Editor 53

5.1.1 Software Requirements . 54
5.2 Analysis of Required Modifications of SForms 66

5.2.1 Update of Technology Stack . 67

6 Implementation 69
6.1 The SForms Library . 69

6.1.1 Updating Process of SForms . 69
6.1.2 Example Usage of SForms in Application 70

6.2 The Semantic Form Editor . 71
6.2.1 Technology Stack and Architecture 71
6.2.2 Layout . 72
6.2.3 Structure of Data . 73
6.2.4 Implementation of Functional Requirements 73
6.2.5 Implementation of Non-Functional Requirements 81

7 Testing and Evaluation 83
7.1 Testing . 83

7.1.1 Browser Testing . 83
7.1.2 Unit Tests . 83
7.1.3 End-to-End Testing . 83
7.1.4 User Testing . 84

7.2 Evaluation . 85
7.2.1 Verification of Functioning with Complex Forms 85
7.2.2 Comparison with Existing Solutions 86

Conclusion 87

References 89

A List of Form Best-Practices 99
A.1 Best-Practices Applicable for Validation Using SHACL 99
A.2 Best-Practices Applicable to SForms . 100

8

CONTENTS

B User Testing 101
B.1 Testing Setup . 101

B.1.1 Participant Profiles . 101
B.1.2 Introduction . 101
B.1.3 Scenarios and Tasks . 102
B.1.4 Post-Test Questions . 104

B.2 Post-Test Questions Answers . 104
B.3 Duration of User Testing . 104
B.4 Problems Found . 105

C Installation Manual 111
C.1 Required Software . 111
C.2 Installation . 111

D The Contents of the Enclosed CD 113

9

Introduction

In all kinds of industries and organisations, the documents with predefined blank spaces
serving for filling data are used to capture various pieces of information in a specific
structure. Essentially, it is possible to carry out the process of collecting data in two
ways. Firstly, in the traditional way, through the use of paper forms and secondly, by
using one of the types of digital forms. An example of the most used type of digital
forms is nowadays a web form. It can be found on almost any website, ranging from
social media applications to e-shops to tools for the management of medical reports.
However, most of the forms are missing dynamic features, whether it is due to being a
paper solution or an insufficient adjustment to computer capabilities. Additionally, the
majority of forms, even the digital ones, do not use the Semantic Web technologies which
makes them not readable for machines.

The Semantic Web[6] is a technology that extends the World Wide Web. It provides an
option for publishing information in the format of Linked Data[6]. It also allows easier
integration with existing web sources, such as medical, financial, or statutory vocabular-
ies.

The Semantic Web is not yet widespread, neither are semantic forms, which are forms
built upon principles and technologies of the Semantic Web. One of the possible reasons
that semantic forms are not well-used can be the lack of tools supporting creation of such
forms. Currently, there are multiple existing solutions of editors for building digital
forms interactively, via a user interface. However, semantic forms cannot be created
without significant understanding of the underlying Semantic Web technologies, which
is a knowledge not every form designer has.

The main goal of the thesis is to create a form editor for creation of high-quality
semantic forms, based on SForms. SForms is a library capable of visualising semantic
forms, defined using the Semantic Web standards. The Semantic Form Editor, imple-
mented as a result of this thesis, allows creating, editing, as well as validating of semantic
forms using a user interface. Apart from creating and editing, validating is a key process
when it comes to user experience, as well as the efficiency of data gathering. The Seman-
tic Form Editor validates the created forms against form best-practice guidelines, which
define proper behaviour of forms, in order to collect data of sufficient quality.

To conclude, the Semantic Form Editor should avoid the problems of existing solu-
tions, support the features a form designer can rely on to be able to design forms. Overall,
the final application should be able to allow form designers to build and modify complex
semantic forms according to a form owner’s requirements and validate them from the
perspective of best-practice guidelines.

Chapter 1 of the thesis gives an introduction to the topic the work is based on. It
discusses the problematics of forms and explains the technologies of the Semantic Web.
The following Chapter 2 summarises the best-practice guidelines of how to design web
forms. Chapter 3 presents the analysis of existing solutions used for building digital
forms. Next, Chapter 4 describes the JavaScript SForms library from the perspective of
usage, technology stack, and the semantic form representation. Afterwards, Chapter 5
demonstrates the design process of the form editor, which is realised based on the pre-

11

INTRODUCTION

vious investigation. Moreover, modifications of the SForms library are proposed to be
able to fulfil the requirements of the Semantic Form Editor. Chapter 6 describes the
implementation of designed features in the application as well as in the SForms library.
Furthermore, Chapter 7 discusses the methods of testing, the testing itself, and the eval-
uation of usage of the Semantic Form Editor. Finally, the conclusion summarises the
overall result and the future of the work.

12

Chapter 1

Background

This chapter gives an introduction to the topics, the thesis is based on. The first part
introduces form design topic and establishes related terminology used throughout the
thesis. The second part describes the Semantic Web and the technologies behind it.

1.1 Form

A form is a conversation between two parties, the form owner and the user. It can be
defined as a document with blank spaces serving for insertion of a requested piece of
information.[30]

A form is a well-used technique for collecting data, which have been used, to some
extent, for centuries. Forms are documented to have existed since the 19th century when
preprinted documents were used by lawyers.[14]

Administrative and repetitive processes where information is collected or stored can
become a burden if the information is requested or gathered in an unorganised way.
Using reusable structured documents for requesting specific information instead, is an
effective way to collect information.

Forms have been used in multiple spheres of our daily lives, ranging from office ad-
ministration to medical reports to ordering in an e-shop. Forms can be categorised into
paper and digital. This classification results from technology development, as in the past,
the paper variant had been the only available one. To this day, paper forms are still used
for multiple purposes, for instance, in offices, in schools or for elections. However, as
various domains proceed to digitalisation, paper forms are gradually replaced by digital
forms. For example, electronic medical reports, eCRF, respectively, are being preferred
over paper medical reports.[21]

The data collection via a form is realised by asking questions by the form owner and
stating answers by the respondent.

Questions can be generally classified into three types: open, closed and semi-closed
questions. Closed questions can be answered by a limited range of answer options. For ex-
ample, questions answered with either yes, or no, are considered as closed. Open questions
do not provide any set of answer options from which can be chosen. Instead, respondents
are required to use their own words to describe the answer based on their knowledge and
experience.[37] Semi-closed questions is a combination of open and closed question types.
Respondents can choose out of a set of answer options or provide a custom text answer
in provided text field.[40]

Keeping in mind the difference between question types can play a significant role in
effective collection of data.

13

CHAPTER 1. BACKGROUND

1.1.1 Paper Form

A paper form also referred to as a printed form, is a traditional method for data collec-
tion. It consists of static elements, such as blank fields and context information.

The main benefits of paper forms are listed below:

1. Although many areas are continuously shifting towards digitalisation, not all pro-
cesses support digital forms. Either they are not fully standardised or legalised.
Therefore, a paper form is the only option to use.

2. No computer is needed for filling a paper form, as not all respondents have access
to one.

3. Paper forms are easier to use. Some respondents neither have sufficient technical
knowledge nor the willingness to use something they do not know.[21]

In spite of these benefits, paper forms lack many functionalities that digital forms
have, therefore are generally less effective than digital forms.[41]

1.1.2 Digital Form

There are various instances of digital forms, for example, web forms, or PDF and ZFO1

form formats. A digital form, in essence, simulates the paper form by using the same
form elements. The reason is the ease of use since the paper form design is what users
are used to working with. In addition to traditional form elements used in paper forms,
for example, multiple-choice, single-choice and text fields, a digital form contains a few
elements more, as can be seen in Section 1.1.3.1.[9]

Contrary to paper forms, digital form elements are interactive and has numerous
advantages over its paper variant, for instance:

1. Based on respondent’s previous answers, only relevant questions can be asked. This
is more discussed in Section 1.1.3.2.

2. A digital form can automatically check for errors of omission and commission. A
user might not have filled all the information required, that is the error of omission.
The error of commission, on the other hand, is caused by violating specific field
rules. This process is called validation.[9]

3. The collected data are represented in a digital form, so they can be immediately
sent for analysis or stored in a database.

4. The whole process of a form lifecycle, from a form distribution to data analysis to
data storage can be automated.

5. Some input fields might be pre-populated, for example, some answers serving
solely for identification may be pre-filled, which reduces repetitive information
filling. One example is eCRF, where the digitalisation can help with the automatic
generation of the following fields: a study subject, a study number, a subject de-
scription, and date.[21]

A form lifecycle is a process involving many different parties. For the purpose of this
thesis, I define four involved parties in Table 1.1.

1ZFO is a form file created in 602XML Form Server application. More information available at https:
//filext.com/file-extension/ZFO to 5/11/2020.

14

https://filext.com/file-extension/ZFO
https://filext.com/file-extension/ZFO

CHAPTER 1. BACKGROUND

Table 1.1: Parties involved into forms
Term Definition
Form owner A person or an organisation using a form to collect data.
Form designer A person designing a form.
Respondent A person filling data in a form.
Form builder/editor An application, which helps a form designer create forms using

a user interface.

1.1.3 Web Form

A web form is defined as a form that respondents fill inside a browser.[9] It is typically
built using Hypertext Markup Language (HTML2), Cascading Style Sheets (CSS3) and
optionally JavaScript4. A HTML form consists of special elements called form controls.
The lifecycle of the web form consists of the modification of its form controls and the
following submission to an agent for processing, for example, a web server and a mail
server.[19]

Source code 1.1: Basic example of an HTML form

1 <form action="http://jobs.com/apply-for-a-job" method="post">

2 <label for="name">Name:</label>

3 <input type="text" id="name">

4 <label for="birth">Date of birth:</label>

5 <input type="datetime-local" id="birth">

6 <input type="radio" id="male" name="gender" value="male">

7 <label for="male">Male</label>

8 <input type="radio" id="female" name="gender" value="female">

9 <label for="female">Female</label>

10 <input type="radio" id="other" name="gender" value="other">

11 <label for="other">Other</label>

12 <button type="submit">Apply</button>

13 </form>

Source code 1.1 is an example of an HTML form which consists of a form element
wrapping form controls, namely a text field, a datetime picker, radio buttons and a sub-
mit button. After the user answers all questions from the example form, he clicks on the
submit button and the form is sent to a server for processing.

In a web form, a common question consists of a label, an HTML form element, an
optional question-level help, an optional required/optional indicator and a validation
message in case of error.

The example of a form created using the Bootstrap 4 framework5 with all building
parts of question mentioned in the preceding paragraph can be seen in Figure 1.1.

2More information about HTML available at https://html.spec.whatwg.org/ to 4/11/2020
3More information about CSS available at https://www.w3.org/Style/CSS/ to 4/11/2020
4More information about JavaScript available at https://www.w3.org/standards/webdesign/script to

4/11/2020
5More information about Bootstrap framework is available at https://getbootstrap.com/ to

4/11/2020

15

https://html.spec.whatwg.org/
https://www.w3.org/Style/CSS/
https://www.w3.org/standards/webdesign/script
https://getbootstrap.com/

CHAPTER 1. BACKGROUND

Figure 1.1: A web form created using the Bootstrap 4

1.1.3.1 Form Controls

For the purpose of this thesis, forms controls are divided into three categories: basic,
custom and other.

The basic form element is a form control for collecting data which is built-in HTML5
standard6. The overview of the most used basic form elements, with the naming, corre-
sponding HTML5 element and brief description, can be seen in Table 1.2.

Table 1.2: Basic form controls overview
Term HTML5 element Description
Text field Input of type text A single-line text field.
Text area Textarea A multiple-line text field.
Dropdown Select Choose one answer from a tog-

gleable menu of options.
Single-choice Multiple radio buttons Choose only one answer from

list of options.
Multiple-choice Multiple checkboxes Choose multiple answers from

list of options.
Number field Input of type number A field for entering a number.
Email field Input of type email A field for entering an email.
Range Input of type range A slider with a draggable handle.
Datetime, Date, Time,
Week, Month

Input of type datetime-
local, date, time, week,
month

Fields for entering time.

File uploader Input of type file A field for uploading a file.
Color Input of type color A field for choosing a color.
Telephone field Input of type tel A field for entering a phone

number.
Autocomplete field Input with attribute list,

datalist
A dropdown with an option to
type. Based on the typing,
the options are filtered and dis-
played.

6More information about HTML5 standard available at https://www.w3.org/TR/2014/REC-html5-

20141028/ to 4/11/2020

16

https://www.w3.org/TR/2014/REC-html5-20141028/
https://www.w3.org/TR/2014/REC-html5-20141028/

CHAPTER 1. BACKGROUND

The custom form element is a custom form control for collecting data which is not
part of the HTML5 standard. The overview of the most used custom form controls, with
the naming and brief description, can be seen in Table 1.3.

Table 1.3: Custom form controls overview
Term Description
Fill in the blank A text with text fields.
Image choice Choose image from list of images.
Masked text A field ensuring and displaying a predefined format, for

example, DD/MM/YYYY.
Matrix of dropdowns A 2D matrix serving for asking multiple questions in a

compressed space. It contains dropdowns for collecting
answers.

Matrix of single-choice A 2D matrix serving for asking multiple questions in a
compressed space. It contains radio buttons for collecting
answers.

Matrix of multiple-choice A 2D matrix serving for asking multiple questions in a
compressed space. It contains check boxes for collecting
answers.

Scale rating A single-choice question allowing to rank on a scale rep-
resented by numbers.

Star rating A single-choice question allowing to rank on a scale rep-
resented by stars.

Signature Handwrite a signature in a box.
Spinner A number field with plus and minus buttons.
Ranking A ranking of options in the specific order.

The other form control is an element which does not serve for collecting data. The
overview of the most used custom form controls, with the naming, corresponding HTML5
element and a brief description, can be seen in Table 1.4.

Table 1.4: Other form controls overview
Term HTML5 element Description
Button Button A button can serve, e.g. for submitting or

resetting the form.
Heading Heading A title heading.
Paragraph Paragraph A paragraph of text.
Media content Image, video, audio A box with media content.
Section A box for questions with a title.

1.1.3.2 Conditional Logic and Branching

Using the web forms, it is possible to benefit from the option to hide irrelevant questions.
As an example, a respondent in a doctor’s registration form states that he is a male. Thus,
the questions about pregnancy are irrelevant and will not be shown. The pregnancy
questions from this example are called conditional questions, and the gender question is
called the trigger question.[9]

1.1.3.3 Form Types

There are different ways for how to format a form, in different words, how to organise
the questions within the form. The most common are described below:

17

CHAPTER 1. BACKGROUND

• Classic form is a form type, where all questions are displayed on one screen at a
time. The respondent can scroll to navigate between questions.[18]

• Multi-step form, is a form type, where the form is divided into multiple steps
having one step per one screen.[9] A user can use next and previous buttons to
navigate between steps. The current state can be visible in progress bar.

• Wizard form, is similar to multi-step form. However, instead of progress bar, there
is a wizard which allows a user to navigate directly between specific steps without
completing the previous steps.

• Card form represents a form type, where only one question is shown at a time to the
respondent. After the question is finished, the user can move to a next question.[18]

1.1.3.4 Form Editor

A form editor also referred to as a form builder is an application, which helps form
designers build digital forms with minimum or no coding skills.[41] There are many
different form editors available. They are either used as an application for building a
structure of the form which is then integrated into a form owner’s application or can also
work as a powerful standalone application for whole lifecycle of forms. In case of a stan-
dalone application, the application can cover the whole data collection cycle, including
the distribution of the form to respondents and an analysis of obtained answers.

As mentioned before, the form editor offers a solution not requiring any knowledge
in programming. It usually contains an intuitive interface for adding individual form
controls to a workspace to build a form. A Drag and Drop API7 is often used for plac-
ing and moving form controls in a workspace. The added form controls can be further
customised, for example in terms of a label, question-level help or validation rules. The
resulting form can be exported in various formats, or, in case of the mentioned standalone
form editors, hosted and distributed to respondents.

Note that form editors do not usually allow for customisation of how the form or
individual form controls will look like. However, quality form editors often follow UX
design and form best-practices guidelines, so traits, such as usability or accessibility, are
typically kept.

1.2 Semantic Web

The current web is a series of connected documents, which are designed to be under-
standable by humans, but meaningless by computer programs. The Semantic Web is
an extension of the web, which aims to interconnect all the Web information into one
big database of data called Linked Data. In other words, it means to structure the in-
formation in a way to be understood not only for humans but also for computers. The
Semantic Web technologies enable people to create data stores on the Web, write rules for
handling data as well as build ontologies, also called vocabularies.[6, 25] The Semantic
Web technologies, such as RDF, OWL, or SPARQL, will be further described later on in
this chapter.

1.2.1 Linked Data

Linked data is a collection of interconnected data, which are specified in a standard for-
mat, such as RDF. In addition, those data are reachable and manageable by Semantic Web

7Allows to drag HTML element to different place. More information available at: https://developer.
mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API

18

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API

CHAPTER 1. BACKGROUND

tools, e.g. by SPARQL.[6]
Figure 1.2 shows, how the data, information and knowledge were interconnected in

year 2014. Nowdays, the example would be even more complex.

Figure 1.2: Linked Open Data Cloud in 2014

Source: http://lod-cloud.net/versions/2014-08-30/lod-cloud.svg

1.2.2 Ontologies

Ontologies describe the semantics of data in a uniform way which enables communicat-
ing specific domain knowledge between different parties. For example, between people
and between application systems.[42]

The ontology is represented by four main components:[42]

• A concept, also known as class, is an abstract group, a set or a collection of objects,
which share common properties. This component is represented as a hierarchical
graph where a concept can be represented by superclasses and subclasses. For ex-
ample, the work of art can be represented as a superclass with many subclasses,
such as music, a painting, and a sculpture.

• An instance, which defines the specific object of the concept. In case of the concept
painting, it can be the Mona Lisa.

• A relation, which is used to express the relationship between two concepts within
a specific domain. For example, Leonardo Da Vinci has a creator relation with the
Mona Lisa painting.

• An axiom, is used to impose constraints on the values of concepts or instances to
verify the consistency of ontology.

1.2.3 RDF

The Resource Description Framework, abbreviated to RDF, is a language serving for the
representation of information about resources on the web. The resources are represented

19

CHAPTER 1. BACKGROUND

by RDF Triples: Subject-Predicate-Object.[47] For instance, the artists (subject) paints
(predicate) a painting (object). The subject, predicate and object can be identified by
web identifiers called URIs8. In addition, subjects can also be identified by blank nodes
and the objects can be identified by blank nodes as well as literals. Literals are used to
identify values by a lexical representation, for example, numbers and dates, which can
be plain or typed.[3] The blank nodes indicate the existence of a resource without using
it or saying anything about it.[13]

Figure 1.3, represents visualised triples as a connected graph also referred as an RDF
graph where Bob is a person, who is friends with Alice and has birthday on a specific
date identified by a typed literal. He is interested in the painting of Mona Lisa.

Figure 1.3: Example of an RDF graph

Source: https://www.w3.org/TR/rdf11-primer/example-multiple-graphs-iris.jpg

The RDF graph can be serialised into the following formats:[47]

• Turtle family of RDF languages: N-Triples, Turtle, TriG and N-Quads. For exam-
ple, the content of Figure 1.3 is expressed in N-Triples in Source code 1.2.

• JSON-LD, which will be more specified in Section 1.2.6.

• RDFa, which is a format of embedding triples into HTML and XML9.

• RDF/XML, which is a format of RDF graph coded in XML.

8Uniform Resource Identifier. More information available at https://www.w3.org/TR/uri-

clarification/ to 5/11/2020
9Extensible Markup Language. More information available at https://www.w3.org/XML/ to 5/11/2020

20

https://www.w3.org/TR/uri-clarification/
https://www.w3.org/TR/uri-clarification/
https://www.w3.org/XML/

CHAPTER 1. BACKGROUND

Source code 1.2: Representation of Figure 1.3 in N-Triples Turtle format

1 @prefix ex: <http://example.org/> .

2 @prefix wd: <http://www.wikidata.org/entity/> .

3 @prefix sh: <http://schema.org/> .

4 @prefix p: <http://purl.org/dc/terms/> .

5 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

6 @prefix dbpedia: <http://dbpedia.org/resource/> .

7 @prefix xml: <http://www.w3.org/2001/XMLSchema#> .

8 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

9
10 ex:bob#me rdf:type foaf:Person> .

11 ex:bob#me foaf:knows ex:alice#me .

12 ex:bob#me sh:birthDate "1990-07-04"^^xml:date .

13 ex:bob#me foaf:topic_interest wd:Q12418 .

14 wd:Q12418 p:title "Mona Lisa" .

15 wd:Q12418 p:creator dbpedia:Leonardo_da_Vinci .

Source: https://www.w3.org/TR/rdf11-primer/ [Edited]

The RDF and RDFS vocabulary are collections of IRIs10 designed for use in RDF
graphs. They provide constructs to define the semantic characteristics of RDF data.[47]
For example, the information that Bob from Figure 1.3 is a person is defined using the
construct rdf:type from RDF vocabulary.

1.2.4 OWL

The Web Ontology Language, a so called OWL, is a part of the vocabulary family together
with the RDF and RDFS vocabulary. OWL adds another semantics on how to describe
RDF data. It contains some of the RDFS constructs as well as XSD datatypes and a lot
more.[29]

1.2.5 SPARQL

SPARQL is an RDF query language for NoSQL graph databases, also known as RDF
triplestores. SPARQL allows querying RDF data by applying similar constructs as MySQL
does in relational databases.

The query consists of two parts. First, the query clause:[12]

• The SELECT form returns result in a table format.

• The CONSTRUCT form returns a single RDF graph specified by a graph template.

• The ASK form tests if the query pattern has a solution and returns a boolean.

The second part is the WHERE clause, which provides the pattern to match against
the data graph. The example of a SELECT query on a sample data can be seen in Source
code 1.3. The WHERE clause there also contains the FILTER function which restricts
solutions only to those satisfying the expression.[12]

10International Resource Identifier. More information available at: https://www.w3.org/

International/O-URL-and-ident.html to 5/11/2020

21

https://www.w3.org/International/O-URL-and-ident.html
https://www.w3.org/International/O-URL-and-ident.html

CHAPTER 1. BACKGROUND

Source code 1.3: SPARQL query on RDF graph

1 PREFIX ex: <http://example.com/ex/elements/1.0/>

2
3 :book1 ex:title "Vlcice, kapitoly z dejin podkrkonosske obce" .

4 :book1 <http://example.com/ex/elements/year> 2019 .

5 :book2 dc:title "Trutnov, toulky minulosti a soucastnosti" .

6 :book2 <http://example.com/ex/elements/year> 2002 .

7
8
9 SELECT ?title ?year

10 WHERE {

11 ?x ex:title ?title .

12 ?x <http://example.com/ex/elements/year> ?year.

13 FILTER (?year < 2010) .

14 }

1.2.6 JSON-LD

JavaScript Object Notation for Linked Data, abbreviated to JSON-LD, is a serialisation
format for RDF data. JSON-LD is primarily intended to be used in web applications as
the JSON-LD is fully compatible with JSON. In addition, the existing JSON can be easily
interpreted as JSON-LD with minimal changes.[26]

Source code 1.4: Representation of Figure 1.3 in JSON-LD format

1 {

2 "@context":{

3 "foaf":"http://xmlns.com/foaf/0.1/",

4 "interest":{"@id":"foaf:topic_interest", "@type":"@id"},

5 "knows":{"@id":"foaf:knows", "@type":"@id"},

6 "birthdate":{"@id":"http://schema.org/birthDate",

7 "@type":"http://www.w3.org/2001/XMLSchema#date"},

8 "dcterms":"http://purl.org/dc/terms/",

9 "title":"dcterms:title",

10 "creator":{"@id":"dcterms:creator","@type":"@id"},

11 "subject_of":{"@reverse":"dcterms:subject","@type":"@id"}

12 },

13 "@graph":[

14 {

15 "@id":"http://example.org/bob#me",

16 "@type":"foaf:Person",

17 "birthdate":"1990-07-04",

18 "knows":"http://example.org/alice#me",

19 "interest":"http://www.wikidata.org/entity/Q12418"

20 },

21 {

22 "@id":"http://www.wikidata.org/entity/Q12418",

23 "title":"Mona Lisa",

24 "subject_of":"http://data.europeana.eu/item/04802/243FA

25 8618938F4117025F17A8B813C5F9AA4D619",

26 "creator":"http://dbpedia.org/resource/Leonardo_daVinci"

27 }

28]

29 }

Source: https://www.w3.org/TR/rdf11-primer/ [Edited]

Source code 1.4, shows the RDF graph from Figure 1.3 in JSON-LD format. This
example shows a JSON-LD document in a top-level structure. It uses in-line context def-
inition. The @context part describes how the document can be mapped to an RDF graph.

22

CHAPTER 1. BACKGROUND

In the @graph part, each JSON object corresponds to an RDF resource and is described
using the @id keyword. The first RDF resource is described as http://example.org/bob#me.
This resource by construct interest is interested in the second resource, which is the Mona
Lisa painting identified by URI http://www.wikidata.org/entity/Q12418.[47]

1.2.7 SHACL

The Shapes Constraint Language, a so called SHACL, is a language for describing RDF
graphs and validating them against a set of conditions. The conditions can be repre-
sented as shapes and constraints. The constraints can be, for example, for validation of
the pattern, the length, the numeric range or the datatype of graph properties. The con-
straints can be extended using SPARQL queries SELECT and ASK, or by using JavaScript
programming language. Together with the constraints, it is possible to specify the sever-
ity and a message in case of a violation of a rule. Based on the validation process, the
validation report is generated.[24]

The SHACL language can also be extended by Data Shapes Vocabulary (DASH). DASH
is a collection of reusable extensions. It provides new constraints and target types, as
well as components for representing test cases and suggestions for how to fix violated
constraints.[22]

Source code 1.5, shows the shapes graph in Turtle format for validation of an RDF
graph, in this example an ontology-based smart form. A node of type doc:question, either
should not be a form control of type autocomplete or should have at least four answer
options. If the constraint is violated, it is included in a validation report with specified
message.

Source code 1.5: An example of SHACL validation constraint in Turtle format

1 :s09

2 a sh:NodeShape ;

3 sh:property [

4 sh:or (

5 [

6 sh:path form:has-possible-value ;

7 sh:minCount 4 ;

8]

9 [

10 sh:not

11 [

12 sh:path form-lt:has-layout-class ;

13 sh:hasValue "type-ahead" ;

14]

15]

16)

17 sh:message "Autocomplete form control should have at least four answer

options"@en;

18];

19 sh:targetClass doc:question ;

20 .

23

Chapter 2

Form Design Guidelines

This chapter will analyse best-practice guidelines on how to design web forms. There are
four fundamental goals to accomplish in web form design. The first goal is to make forms
as simple as possible to minimise the struggling of responders while filling forms. The
second principle is to illuminate a path to completion. The goal of the form owner is to
get a form filled, so the form should state clearly how it can be filled. The next goal is to
consider the context. There is always a reason why the form exists, and the reason should
be considered. The last but not least is to ensure the consistency in communication. The
form should overall speak to a user with one voice.[48]

When forms are designed poorly, the collected data can be of lower quality. The
reasons are, for example, that a user is burdened with too many unimportant questions
so he might overlook the important ones. Next, a user might misunderstand questions
and therefore enter incorrect answers.

An excellent example of a bad form design with a considerable impact is the pres-
idential elections in Florida in the year 2000. That time, Vice President Al Gore lost
elections in Florida against George W. Bush by a 537-vote margin. Voters who wanted to
vote for Al Gore, accidentally voted for Pat Buchaman.[32] The problem with the form is
captured in Figure 2.1.

Figure 2.1: Butterfly ballot used for elections in Florida in the year 2000.

Source:
https://theguardian.com/us-news/2019/nov/19/bad-ballot-design-2020-democracy-america

Forms satisfying best-practices have a great potential to increase the number of suc-
cessful first-trial submissions. In addition, they minimise the risk of leaving the form as a

25

CHAPTER 2. FORM DESIGN GUIDELINES

consequence of unsuccessful submission. Moreover, completion times of forms following
best-practices are between 18% to 33% faster.[38]

The outline of this chapter is inspired by the structure of the book Designing UX:
Forms by Jessica Enders.[9] Parts marked with a star (*) can be used as best-practices
validation rules in a form editor. Dagger (†) mark represents suggested features of a
form rendering application.

Other information cannot be implemented without artificial intelligence. However,
they should serve a potential form designer to design forms better.

2.1 Wording

Words are one of the foundation stones of the form design. They are used across the
whole form. In questions, more specifically in question labels, answers, and question-
level helps, and moreover, in all different types of headings, buttons and messages.

2.1.1 Wording of Questions

The question has to convey the information to a user accurately to avoid ambiguity, as
well as to achieve sufficient quality of collected data. Without a correctly formulated
question, users may not get the context right and answer incorrectly. Besides, validation
often cannot check for those types of errors, so they should be prevented.

Answering a question is the process of four phases. First of all, respondents have to
interpret the question to understand its meaning. That is called comprehension. The
second phase is retrieval. Respondents need to retrieve specific information from their
memory. In the next stage, respondents use that particular information to render a judge-
ment. The final step, respondents use their decision to provide an answer. They have to
select an answer from a prepared set of options or type it to be consistent with preceding
answers or social desirability.[44]

2.1.1.1 Comprehension

During a question design, it is required to keep in mind that respondents will probably
skim through the question instead of thoroughly reading it. A question label should
contain all information needed by all users. Using question-level help for that purpose
is insufficient. It is recommended to avoid jargon and abbreviation for the formulation.
Only plain language should be used in order to make the question understandable for
the user. To satisfy the language criteria, a form designer should use:[9]

• Short and simple words

• Short and simple sentences which express only one idea

• Active voice

• Words familiar to the group of respondents

Wording should be consistent. Full-sentence questions should not be mixed with
brief prompts if it hinders comprehension*. The same applies for punctuation at the end
of the label. It is possible to use question marks, colons or nothing, but it should be
consistent across the form*.[9]

Personalisation words like My and Your should be avoided because they are redun-
dant and add to the user’s mental overload*. The only exception is when the form refers
to more than two parties.[9]

26

CHAPTER 2. FORM DESIGN GUIDELINES

2.1.1.2 Retrieval

A form should contain only the questions which a user can answer. If a user is unable to
recall an answer from his memory, he should be informed in advance which information
and equipment he needs to be able to respond to all questions in the form.[48]

2.1.1.3 Judgement

The form designer should be aware of what is appropriate to ask and the way it is asked
within a particular context of the form. This can help to avoid getting the user into a
situation where he struggles how and whether to answer. If an unpleasant question has
to be asked, a question help should be added to explain why the information is needed.[9]
If the answer is required in a specific format, then there should be a statement presenting
the rule.[2]

Additionally, answer options should be precise, especially when expressing time frames,
weights, money and other quantities. The reason is that every respondent can under-
stand, for example, rarely as a different time unit.[9]

2.1.1.4 Answer

As already mentioned in Chapter 1, there are three types of questions, open, closed,
and semi-closed. In an open question, the user can type, whatever the validation rules
allow him. If the validation rules are specified, the question-level help should explain
the format of the answer to avoid possible errors. In the closed questions, the user has to
choose one from the predefined answers. A correctly specified closed question helps the
user interpret the question correctly and avoid potential errors.[9]

A form designer should choose closed questions only if the right set of answer options
is known. The answer options should be short, mutually exclusive, self-explanatory and
unbiased. Furthermore, it should be complete, that means there must be an option for
every user. If it is not possible to include all possible answer options, then it is suitable
to use semi-closed question type. That means that one of this type of answer variants
should be provided: Other, Don’t know, Not applicable or a possibility to type individual
answer*.[9] Finally, the answer options should be sorted or grouped in an intuitive way.
If no meaningful order exists, options can be sorted alphabetically.[2]

2.1.2 Wordings of Other Parts of the Form

The wording of questions rules also applies for the following parts of forms, especially
the ones involving language.

2.1.2.1 Headings

Every form should have a title heading*†. It should be brief, unique and descriptive with
a maximum of five words*. In addition, it should avoid articles and redundant words like
form, online, web, and for*. Next type is a section heading†. It is applicable for longer form
and helps a user notice the change of topic. The disadvantage is the prolongation of form.
A good approach is to start without the section heading and add it only if it is beneficial
for the respondent. The last type of heading is a step heading used in multi-step and
wizard forms†. Step headings can be numbered. Nonetheless, it is not recommended for
forms with a high number of steps, because it can call attention to the form length*.[9]

27

CHAPTER 2. FORM DESIGN GUIDELINES

2.1.2.2 Buttons

Same rules as for titles apply for buttons. The button language should be brief, descrip-
tive and prompt to click. It should express what will happen after the user clicks on the
button. Buttons with the text Place order or Sign up are always better than the ones with
plain Submit†.[9]

2.1.2.3 Messages

Messages are used for communication with a respondent. They can indicate status, high-
light important information or prompt the user to act. It is a good habit to convert im-
portant instructions into questions, for example, instead of a note saying Complete this
section only if... use conditional questions.[9]

Error messages should have polite and non-accusatory tone, definitely not blame the
user and be rude. Their purpose is to convey the user where the error occurred and how
to correct it.[9]

2.1.3 Required and Optional Fields

Questions can be required or optional. The required question means that an answer to
this question is necessary to be filled. This type of question is often marked by * or
(required) indicator. On the other hand, optional question can remain unanswered. This
type of question is marked by (optional) indicator. If a form contains all fields of one type,
required or optional, it should not be indicated in any way. In that case, it is unnecessary
information which slows down the form completion process.[48] On the other hand, if
required and optional questions are mixed, only the minority type of questions should
be tagged by an indicator†. If the minority type is required, an instruction saying: All
questions are optional unless marked (required) should be added to the top of the form†.[9]

However, if some questions are optional, a form designer should think about the fact,
that the longer the form is, the lower the completion rate and respondent’s satisfaction
can be.[48]

2.2 Form Layout

Form layout is a graphical placement of form controls together with colours and typog-
raphy.

2.2.1 Question Field Types

Most questions can be designed by one of the three basic form controls, specifically text
fields, single-choice and multiple-choice questions†.[9]

Form designer should use as few form control types as possible to avoid confusion of
the user*.[28] Form controls mentioned above are appropriate because respondents know
them from paper forms. They are accessible and straightforward to develop because the
HTML5 standard natively supports them. Other form controls known from web forms
are only an enhancement of the three specified types. For example: [9]

• A dropdown is a list of radio buttons collapsed into smaller space.

• A time pickers are an alternative to text fields.

• Ranges and star ratings are an alternative to single-choice and text fields.

28

CHAPTER 2. FORM DESIGN GUIDELINES

When these enhanced form controls are used, it is essential to develop them correctly,
in order for them to be accessible, usable on touch devices and more effective compared
to the basic ones. Accessibility includes a rule, that form elements and buttons should
have at least 48 pixels height†[28] and the gap between form elements should be between
50% to 75% of the field height†[48]. In addition, radio buttons and checkboxes should
allow interaction by clicking on their label†.

A form developer should use the HTML input type to benefit from an optimised key-
board on touch devices†. Furthermore, a form developer should specify the input name
to profit from browser auto-fill feature on form fields with a specific name, such as first
name.[43] Answer fields size should match with the expected length of the answers†.[48]

2.2.1.1 Single Checkbox

For questions designed with single checkbox, it is a better idea to use two radio but-
tons to avoid the mental calculation of linking checkbox state with the wording of the
question*.[9]

2.2.1.2 Dropdown

While using a dropdown, a form owner should expect that many respondents do not
know how to navigate through dropdowns with the keyboard. The options are initially
hidden, and often, not all are visible at once. In a long list, it can be hard to find some-
thing. Thus it is a good idea to use autocomplete field instead.[9] On the other hand,
if there are less than four options, the radio buttons are preferred over dropdown or
autocomplete*.[46]

2.2.1.3 Time Pickers

Form elements which are related to time are a part of the HTML5 standard. However,
they are not fully supported in main browsers1.[34] That means that the developer of the
form should use or develop a non-standard solution. Time pickers interface should not
be the only way to input dates. A good alternative is a text field with a question-level
help or a masked text*†.[38]

2.2.1.4 Ranges

Ranges are again part of HTML5 standard, nonetheless unsupported the same way as
time pickers in main browsers.[34] It is a complicated way of providing a single value. It
is better to use a text field or radio buttons for small ranges.[9]

2.2.2 Alignment

Questions should always be presented within the form in a single column.[2] For the
label, there are four options on how to be placed within a field. Firstly above the field
(top-aligned), secondly on the left of the field aligned to the left (left-aligned), next on the
left of the field aligned to the right (right-aligned) and finally inside a field.

The top-aligned form in comparison to the left-aligned form can be filled more effi-
ciently, with 33% time improvement, thanks to fewer fixations and saccades. However,
it has to be taken into account that the time improvement was measured on form not
only with changed alignment of labels, but also with some other changes, such as larger

1Latest version of most popular browsers which includes Chrome, Firefox, Safari, Opera and Edge. Avail-
able at: http://www.w3counter.com/globalstats.php?year=2020&month=9to 20/10/2020

29

http://www.w3counter.com/globalstats.php?year=2020&month=9

CHAPTER 2. FORM DESIGN GUIDELINES

spaces between questions, and transformation of a dropdown with two options to radio
buttons.[38]

2.2.2.1 Top-Aligned Labels

The forms with top-aligned labels have better filling time than the others, because the
respondents have to move only straight down.[38]. On mobile devices, it is the only
way how to place the label. In case of devices with larger screens, top-aligned labels are
especially useful in multilingual forms. Labels can be relatively short in one language,
but in other languages twice as long. This fact can affect the form layout. On the other
hand, this type of alignment takes more vertical space in comparison to the others.[48]

2.2.2.2 Left-Aligned Labels

Left-aligned labels make the reading of questions easy. Respondents can read a label
in the left column and answer in the right column. However, if the labels are long, it
extends the distance between the label and input field, and it takes longer to answer.[48]

2.2.2.3 Right-Aligned Labels

Forms with right-aligned labels can benefit from the fact that labels and fields are close
to each other. However, most cultures read text from left to right, so users eyes prefer a
hard edge along the left side.[48]

2.2.2.4 Labels Inside a Field

Label or question help should never appear within a field as a placeholder text. The only
text there should be the answer. The main reason is that the user can forget the question
or validation rules and is unable to reread it in case he already answered. This coheres
with the fact that the user is unable to revise the form before submitting. Next, he can
think that he already answered and leaves the field blank. Finally, it can be inaccessible,
which depends on the browser used.[9]

2.2.3 Buttons

Buttons should visually express the importance of action. Buttons used for primary ac-
tions should be highlighted the most and left aligned under the last question†. Those
rules apply especially for submitting button. Secondary action buttons should be less
noticeable. Possibilities of how to distinguish buttons are by background colour, size,
font size, font style and boldness.[48]

As for the buttons themselves, the reset or clear button should not be included. How-
ever, if it is required, the undo action should be provided†.[48]

2.2.4 Typography

An ideal typeface for forms is the one which is easy to read at small and larger sizes. Font
style should be regular†. Italics and oblique styles should be avoided†. Bold font should
be used only for titles and emphasis†.[9] The font size should be at least 16 pixels if the
form is designed for touch devices because otherwise on iOS2 devices, the form will be
zoomed on each tapping†.[43]

2iOS - iPhone OS

30

CHAPTER 2. FORM DESIGN GUIDELINES

Text in forms should be written in a sentence case3. Title case4 and uppercase should
be avoided because they are harder to read plus all uppercase is also hard to scan*.[1]

Optimal line length for general reading is between 60 to 75 characters. However, if
the majority of labels in the form is short, the ideal length for a large screen is around 25
to 35 characters.[9]

2.2.5 Colours

Typically the red colour is used for errors, orange for a warning, green for success and
blue for information. In forms, colours should be primarily used for messages and but-
tons. Messages should always be noticeable, and the colour should be in accompany with
an icon and a text to highlight the problem area†.[2] The reason is that about 8% of men
and 0.5% of women in the world suffer from colour blindness.[5]

It is crucial to have sufficient colour contrast. According to WCAG5 2.1, the contrast
of non-text elements, which applies to form elements, should be at least 3:1 in Level
AA6†. The contrast of text elements should be at least 4.5:1 for normal text in Level
AA†.[4]

2.3 Flow of a Form

This section is about how the questions should follow each other, how they should be
organised within a form and how to ensure the quality of data.

2.3.1 Question Order

Questions should be ordered the way things flow in the user’s mind, from simple ques-
tions to the more complex ones. Related questions should be grouped together, and the
same questions and options should be in a consistent order across the form.[9]

Navigating through the form should be able not only by mouse but also by a key-
board†. However, automatically navigating to the next field after completing the previ-
ous one should be avoided. Respondents do not expect it and it can confuse them.[43]

2.3.2 Form Types

To decide which form type is the best, it is useful to find the most used screen size of the
majority of respondents and optimise the form in order to fit that screen size. If the form
size fits less than four screens, the classic form should be used*. Otherwise, multi-step
or wizard form type to have questions broken into multiple screens by natural grouping
should be chosen. However, more than seven screens should be avoided.[9]

In addition, to multi-step form option, it is useful to use a progress indicator to dis-
play the respondent’s progress. The progress indicator should serve to display the total
number of steps and the current position within the form†.[48]

The card form type, is an effective way, how to keep users concentrated, without
causing a distraction by other questions.[9] However, this type of form does not have an
effect on the user’s experience and completion rate, in comparison to an option with all
questions on a single screen.[20]

3Sentence case - Only the first letter within a sentence is capitalised
4Title case - All words within a sentence are capitalised
5WCAG - The Web Content Accessibility Guidelines
6Level AA is a mid-range conformance level of accessibility. Available at: https://www.ucop.

edu/electronic-accessibility/standards-and-best-practices/levels-of-conformance-a-aa-

aaa.html to 20/10/2020

31

https://www.ucop.edu/electronic-accessibility/standards-and-best-practices/levels-of-conformance-a-aa-aaa.html
https://www.ucop.edu/electronic-accessibility/standards-and-best-practices/levels-of-conformance-a-aa-aaa.html
https://www.ucop.edu/electronic-accessibility/standards-and-best-practices/levels-of-conformance-a-aa-aaa.html

CHAPTER 2. FORM DESIGN GUIDELINES

2.3.3 Before and After a Form

Forms, requiring a significant time to complete or knowledge which is unavailable to
the user from his memory, should have a welcome screen†. The content of the welcome
screen should include a brief explanation of the context of the form, external information
needed to fill the form and the estimated time required to finish.[48]

After the user fills and successfully submits the form, a thanks page or a message
should declare it. Depending on the case, the confirmation email can be sent, and infor-
mation about what to do next can be provided†.[2]

If the form data have a significant impact on the user or the form is spread out into
multiple screens, a review screen with all questions and answers provided should be
considered, before submitting†.[9]

2.3.4 Validation

In case the error is caused by an error of omission, the user should be informed to provide
an answer. On the other hand, if the error is caused by an error of commission, the
validation message should convey what and where the error happened, together with
the information on how to correct it. As mention in the layout section, it should be
highlighted not only by colour but also by a symbol or a background colour†.[9]

The error information, how to fix the problematic question, should be in a normal
case situated in close proximity to the problematic question. However, longer forms
should also have a summary of all errors located at the top of the form†.[9]

Answers should be validated before submitting by client-side validation. If client-
side validation evaluates the form errorless, it should always be validated on a server by
server-side validation, prior to saving potentially dangerous data to the database.

Forms can be validated right away with an inline validation when the answer is pro-
vided. Nonetheless, many applications suffer from the problem of evaluating the answer
by inline validation too soon, before the user finishes typing. Inline validation should be
avoided unless the form has a small number of questions, and the majority of validation
rules can be checked on the client-side†.[9]

Disabling primary action buttons is a bad practice because the form can act broken†.
However, if the form is being submitted, the user should not be able to hit the button
twice†. Moreover, if the process is not finished immediately, an information note about
processing should be displayed†.[9]

2.3.5 Default Answers

Default answers are usually a bad idea, unless a form designer has data which shows
with high probability the answers respondents will choose. Besides, if respondents do
not change the default answers, it will have little impact on the quality of data*.[9]

However, a good concept is to use personalised default answers, which means the
form is pre-populated by answers already known about the user by the provider of the
form.[48]

2.3.6 Conditional Logic and Branching

The designer of the form should strive not to cause a dead end, by conditional questions*.
A excellent example of using conditional questions is for screening the users. If the form
is inapplicable for all users, it is recommended to start the form with the screening via
eligibility questions and let respondents continue in filling the form in case they pass.[9]

32

Chapter 3

Existing Solutions

For many years, data were captured using paper forms. Forms were designed, printed
and distributed to complete. Having collected the filled forms, researchers had to process
massive amounts of data to obtain results. This chapter is dedicated to the analysis of the
tools used for building electronic forms used in the digital sphere. The analysis will be
beneficial for the design of the Semantic Form Editor.

For a more in-depth analysis, seven non-semantic web form editors were chosen. Sur-
veyMonkey, JotForm, forms.app and Google Forms represent standalone web applica-
tions for design and management of forms. In addition, three solutions with the purpose
of creating a structure of a form that has to be integrated into the form owner’s appli-
cation were selected. These were namely React Hook Form, Bootsnipp and formBuilder.
As for the editor using the Semantic Web technologies, only one application was found.
It is TopBraid EDG application which allows displaying forms generated from SHACL
and DASH languages.

There are dozens of great form editor options to choose from on the market. Those
seven form editor solutions were selected because they were easily found by Google1 or
Capterra2 , and they differ from each other. They offer a wide range of different features.
The user interfaces are easy to use, and either they are entirely free or offer free trials of
premium features. The TopBraid EDG application was pointed out by my supervisor.

3.1 Standalone Form Solutions

A standalone form solution is a cloud-based software for efficient design and manage-
ment of electronic surveys, polls and questionnaires. Form owners can use them to con-
nect with their target group of respondents and collect relevant data for their businesses,
researches and more. After the form is designed, it is ready to be used. Results can
be analysed at any time during the collection process directly in applications. This ap-
plies for all analysed applications in this section except for the forms.app presented in
Section 3.1.3.

3.1.1 SurveyMonkey

SurveyMonkey3 was founded in 1999. It is an online cloud-based software for surveys,
quizzes, and polls. It is well-known, and on average, 20 million people answer ques-
tions daily using SurveyMonkey.[18] The basic features are provided free of charge with

1Google search engine available at https://google.com/ to 10/6/2020
2Capterra is an application used for finding and comparing of software solutions. Available at https:

//www.capterra.com/survey-software/ to 10/6/2020
3SurveyMonkey available at https://www.surveymonkey.com/ to 24/10/2020

33

https://google.com/
https://www.capterra.com/survey-software/
https://www.capterra.com/survey-software/
https://www.surveymonkey.com/

CHAPTER 3. EXISTING SOLUTIONS

the limitation of 10 questions and 40 views of responses per form. The more advanced
features are included in five different subscription plans.[18]

Form designers can build a form using four different methods. Firstly, by choos-
ing one of the ready-to-use templates from different categories. Secondly, by using pre-
written questions. These questions can be prepared, e.g. in a text-editor and must follow
a syntax that the form-editor uses for such prepared questions inputs. With this feature,
it is possible to add both simple text field questions and multiple-choice questions. The
third option is to use a question bank with more than 2,000 prepared certified questions
along with predefined answer options from different categories. Finally, the form de-
signers can create a form by using Drag and Drop API for questions creation. All these
building options can be combined together.

SurveyMonkey offers basic form controls as well as the custom ones. Some of the
custom ones are image choice, star rating, ranking, matrix of single choice, matrix of
multiple-choice, matrix of dropdowns or A/B testing4 text field. Other form controls
cannot be added to the form by the form designer. The title and subtitle are available
at the top of each step, and the submission or navigation buttons are available at the
bottom.

When the designer specifies the question and similar question is available in the ques-
tion bank, a prompt message proposes to use that question. Furthermore, the proposal
of different option answers is provided during closed questions design. It is also possi-
ble to add an Other answer option, which is described in Section 3.4. The form designer
can configure many different attributes of each question, for example, answer valida-
tions, question fields length, randomisation of options or conditional logic. The labels
are top-aligned.

Figure 3.1: SurveyMonkey in a process of adding multiple-choice question

4A/B testing is a method used for comparing two versions of an application. More information available
at https://www.optimizely.com/optimization-glossary/ab-testing/ to 24/10/2020

34

https://www.optimizely.com/optimization-glossary/ab-testing/

CHAPTER 3. EXISTING SOLUTIONS

Figure 3.1 shows the SurveyMonkey form editor with the process of adding a closed
multiple-choice question. User can choose out of five suggested questions from a ques-
tion bank or add predefined answer options.

There are three types of layouts: card form, classic form and multi-step form are
presented as one type. The last type of layout, shown in Figure 3.2, is a conversation
which is currently in the testing mode. The chatbot asks questions, and the user answers
them.

Figure 3.2: A conversation form type in SurveyMonkey

A form designer can add an introduction and thanks page. In addition, displaying of
required question indicators or randomisation of whole pages can be configured. Created
forms can be multilingual. The graphical design can be customised by predefined themes
and is fully responsive. The created form can be reviewed in the preview section, where
the form designer gets recommendations, how to improve the form.

Team collaboration is provided and lets people on their team view, edit and comment
forms in real-time. Created forms are hosted. Answers can be collected on SurveyMon-
key web, in mobile apps, on researcher web using the embeddable view or printed on
paper. Results can be analysed on the website, in the app or exported in PDF, XLS, CSV
or PPTX formats. SurveyMonkey also provides REST API, which allows to, for example,
create and modify surveys or get respondents’ answers, without using SurveyMonkey
application.

Based on the research, the application is user friendly from my point of view, and the
user interface is intuitive and well-arranged. The form design follows the best practices
from Chapter 2 except for a key one. It is impossible to specify question-level help or
any help at all. Thus the user can unconsciously fill invalid answer and find it out only
after submitting the form because inline validation is neither available. The application
contains many useful features and can be used in a variety of ways.

The application was analysed in October 2020.

3.1.2 JotForm

JotForm5 is an online form editor which allows creating forms and collection of data. It
was founded in 2006 and is trusted by more than eight million users. All features are pro-
vided free of charge with limitations of five forms, 100 monthly submissions and 1,000
monthly form views in a free plan. To increase limits, JotForm offers three subscription
plans.[17]

5JotForm available at https://jotform.com/ to 24/10/2020

35

https://jotform.com/

CHAPTER 3. EXISTING SOLUTIONS

Form designers have four options on how to start building forms. The first option is
to choose from about 5,000 of different prepared form templates. Next options offer to
create a form from scratch or to clone an existing form created using JotForm. Finally,
the last option is to import an existing PDF form which is then converted to an online
form.

There is a vast amount of elements to choose from, that can be added to the form
by dragging. Together with the basic and custom form fields, there are also widgets.
Some of the custom form controls are, for example, scale rating, signature, spinner and
fill in the blank. The designer can also put headings and button for submitting to any
location of the form. Widgets integrate new functionalities to the forms. It is possible to
add, for instance, a bar code scanner, a voice recorder or a code editor. A lot of different
attributes of questions can be configured, such as label alignment, question fields width,
answer validations and conditional logic and branching.

A form designer can create a classic or a multi-step form, which are presented as one
type, as well as a card form. The design of the form is highly customisable. It can be
styled by provided themes, colour schemes or CSS. It is also possible to change the font
to one of the many provided. Created forms are fully responsive.

It is possible to collaborate with the team during the form building process. The
application offers to create not only digital forms but also provides an editor for building
PDF forms ready to be printed. Nevertheless, JotForm is not only a form editor, but
also offers hosting of the forms and the following analysis and visualisation of collected
data. Form owners can collect data for built forms using JotForm web or mobile apps, by
embedding the form to the organisation website or by paper form.

Figure 3.3: Jotform in a process of adding a single-choice question

Moreover, it is possible to integrate over 400 third-party application add-ons. The
examples are payment gateways for selling goods using the forms, Google Sheets to pop-
ulate spreadsheets with the collected data or Google Drive to upload obtained files. Col-
lected data can be exported in PDF, XLS and CSV format or used for creating visual

36

CHAPTER 3. EXISTING SOLUTIONS

reports, which are available to download in PDF format or to be presented online.
Based on the analysis, the application is from my perspective user friendly with in-

tuitive and easy to use user interface. Forms can be created according to best-practices,
except for two problems. The first problem is the missing of a progress bar in multi-step
forms. The second one, JotForm does not guide the user to avoid problems. It is easy
to build malfunctioning forms because the form editor allows for excessive customisa-
tion. For example, it is possible to create forms violating the basic principles as placing
the submit button to any position within the form, without any warning from JotForm.
An example of the form editor and the wrong placed submit button, can be seen in Fig-
ure 3.3. However, for experienced designers, it is a powerful tool which contains many
useful features and can be used in all types of businesses and organisations.

The application was analysed in October 2020.

3.1.3 forms.app

The form editor forms.app6 was founded in 2018. All features are provided in a free
plan, but there is a limitation of 250 form answers and 1,000 form views per month.
Better limits are offered in three paid plans.[10]

The form editor supports only a classic form type and offers 13 templates to start
with. There are 26 form elements to choose from. Together with the basic ones, there are
scale rating, star rating, multiple-choice matrix, image choice, and for selling goods —
a payment widget and a product basket. For each question, the editor allows configur-
ing conditional logic and branching, validation rules, question-level help, and more. In
Figure 3.4, the configuration of a dropdown question is shown.

Figure 3.4: Forms.app form editor in a process of adding a dropdown question

The configuration of the forms contains, for example, displaying of a form title, show-
ing a field order number, a welcome and a thanks page. For design, a few predefined

6forms.app available at https://forms.app/ to 27/10/2020

37

https://forms.app/

CHAPTER 3. EXISTING SOLUTIONS

themes, many different fonts, and custom CSS can be used. Resulting forms have re-
sponsive design.

Collecting answers is possible on the website, in mobile applications or by embedding
the form to the form owner’s website. Answers can be afterwards exported in XLS format.
In addition, it is possible to integrate over 300 third-party add-ons, such as Google Sheets
to save collected data, Google Drive for storing collected files or project management
apps like Asana, Jira, and Redmine.

After further analysis, the application misses many features in comparison to Sur-
veyMonkey and JotForms. For example, it is impossible to create questions in a specific
place. The new question is always added to the end of the form. However, it is possi-
ble to order already existing questions by Drag and Drop API. Having applied the best-
practices from Chapter 2, I found one problem. It is impossible to customise the length
of the field to fit the answer. The interface is, in my opinion, intuitive and user-friendly,
but the colours are too light.

The application was analysed in October 2020.

3.1.4 Google Forms

Google Forms7 started its service in 2008. It is entirely free of charge for personal use.
For business, it is included in Google Workspace8 plans.[16]

If a user does not want to begin with a blank form, there are 18 templates of forms
to start with. The form designer cannot choose the form type in advance, but instead, he
can arrange the questions to comply with the structure of a classic, a multi-step, and a
card form.

There are 13 types of form controls to choose from. Except some of the basic ones,
there are scale rating, single-choice and multiple-choice matrix and the possibility to
add paragraph and media content, such as image and video. It is also possible to add
an Other answer option. Another way to add questions is to import them from other
existing forms. Conditional logic and branching is available only for multiple-choice and
dropdown questions. However, in comparison with precedingly analysed tools, Google
Forms does not allow displaying or hiding specific questions according to an answer.
Instead, it is solved by navigating a respondent to a related form step based on the answer
provided. The order of questions and answer options can be randomised.

The editor supports the collaboration of teams in real-time. Customising of the forms
looks is limited. There are 12 theme colours, four background colours, four types of fonts,
and a header image can be set.

Google Forms are a part of the Google Workspace ecosystem, and the collected data
can be immediately sent to Google Docs and analysed. The form editor can be extended
by third-party add-ons, for example, QR code scanner or Form Values9 add-on, which
adds functionality to import predefined answer options from Google Docs10.

Based on the analysis, Google Forms have a basic feature set and aim for simplicity.
However, for me, the form editor looks complicated and confusing in comparison to the
three preceding tools. Questions can be added by clicking on the add button in a float-
ing bar next to the questions. Afterwards, a new question is added under the currently
selected question. Ordering of questions is possible by Drag and Drop API. The configu-
ration of questions is directly in the question box. For each question type, the placement

7Google Forms available at https://www.google.com/forms/about/ to 27/10/2020
8Google Workspace available at https://workspace.google.com/ to 27/10/2020
9Form Values add-on available at https://gsuite.google.com/marketplace/app/form_values/

675910425109 to 27/10/2020
10Google Docs available at https://docs.google.com/ to 27/10/2020

38

https://www.google.com/forms/about/
https://workspace.google.com/
https://gsuite.google.com/marketplace/app/form_values/675910425109
https://gsuite.google.com/marketplace/app/form_values/675910425109
https://docs.google.com/

CHAPTER 3. EXISTING SOLUTIONS

of customising actions is inconsistent and difficult to navigate. The example of a form ed-
itor in the process of adding a multiple-choice question can be seen in Figure 3.5. When
applying best-practices, it is impossible to set the length of the field according to the
expected answer and display the progress bar in a multi-step form.

The application was analysed in October 2020.

Figure 3.5: Google Forms form editor in a process of adding a multiple-choice question

3.2 Form Editors

In comparison with standalone form solutions described in Section 3.1, the form editors
discussed in this section are only for building forms in JSON, HTML, and React compo-
nent format. The following development of an application for distribution of the form,
collection of data, and analysis, all have to be resolved by form designers on their own.

3.2.1 React Hook Form

React Hook Form11 is a React library which can be added for free to React projects
through the package manager. It has around 480,000 weekly downloads from the npm12,
and new versions are released at least ten times a month. It is a library which allows a
developer to create performant forms with less code.

11React Hook Form available at https://react-hook-form.com/ to 28/10/2020
12Node package manager available at https://www.npmjs.com/package/react-hook-form to

28/10/2020

39

https://react-hook-form.com/
https://www.npmjs.com/package/react-hook-form

CHAPTER 3. EXISTING SOLUTIONS

A developer can use a form editor available on a library website to design simple
forms. The resulted form code can be afterwards copied to the developer’s project. The
developer can build a form out of 16 standard HTML input field types with configurable
validation. It is possible to specify required questions, the maximum length of the input,
regex pattern, minimum and maximum value. Other validation properties have to be
added manually in the code. The Drag and Drop API can be used to organise form con-
trols in the layout. The library is compatible with a large number of other form controls
which can be added to the project with the help of other libraries. However, they are
unavailable in the editor.

Based on the analysis, the form editor is simple and does not offer much functional-
ity. There is only adding, editing, deleting and ordering of questions. However, for an
undemanding user, the editor is sufficient or can be used for creating a skeleton of the
form. The editor is intuitive, easy to use, and the developer can see the resulting code on
the right side of the screen. The example of the form editor with three created questions
can be seen in Figure 3.6. The documentation of the library is extensive and contains
examples, as well as information about how to develop and further improve the forms.
For instance, there is a tutorial, how to implement a wizard form type.

The library was analysed in October 2020 on 6.9.6 version.

Figure 3.6: Example of React Hook Form form editor

3.2.2 Bootsnipp

Bootsnipp13 is a website with a gallery of code snippets and a playground for developers
using Bootstrap. A developer can find here more than 1,000 different ready to use tem-
plates using the Bootstrap and useful tools — for example, page builder, form editor and
button builder.

Using the Bootsnipp form editor, it is possible to build a classic form out of text fields,
text areas, multiple-choice and single-choice questions, dropdowns and a file uploader.

13Bootsnipp available at https://bootnipp.com/ to 28/10/2020

40

https://bootnipp.com/

CHAPTER 3. EXISTING SOLUTIONS

In addition, it is possible to add a single button or a double button, which are, in fact, two
buttons next to each other, serving for two independent actions, such as save and cancel.
On the left side of the screen, a form designer chooses an element with the specific layout
and drags it to the right side of the screen to the required position. The example of a
process of creating form can be seen in Figure 3.7. For an open question, it is possible
to specify a label, placeholder, question-level help, input size and required answer. For
a closed question, the developer can specify a label and answer options. When the form
designer finishes building of the form, he can copy the resulting HTML code of the form
with classes to his own project importing Bootstrap 3.

Figure 3.7: The Bootsnipp form editor example

After further analysis, the form editor is easy to use and does not have many function-
alities. However, if the developer modifies the resulting code, applies some additional
CSS and specifies validation rules, he can build a form which satisfies best-practices. The
problem with the form editor is that it builds the form in Bootstrap 3. However, the cur-
rent major version is Bootstrap 4 which is incompatible with the version the form editor
is currently working with.

The form editor was analysed in October 2020.

3.2.3 formBuilder

The formBuilder14 is a JavaScript library for building and displaying forms. It is an active
project, which has 1,973 stars on GitHub15.

The form designer can, using the formBuilder, create a classic or a wizard form. By
dragging, it is possible to add ten different basic form controls, for example, the auto-
complete question. In addition, it is possible to add headers, paragraphs and buttons.
The number of form elements is increasable by coding.

For each question, it is possible to specify a label, a placeholder, an HTML class for
custom theming, a default value, a required answer and a help. From the validation
point, for the text field, only the maximum length of the answer is configurable. For
number field, it is the minimum and maximum number. The resulting form code is in
JSON format which is then used for rendering of the form. The library is configurable

14formBuilder available at https://formbuilder.online/ to 30/10/2020
15formBuilder on GitHub available at https://github.com/kevinchappell/formBuilder to 30/10/2020

41

https://formbuilder.online/
https://github.com/kevinchappell/formBuilder

CHAPTER 3. EXISTING SOLUTIONS

and has extensive documentation. The formBuilder in a process of adding a text field is
shown in Figure 3.8.

Figure 3.8: The formBuilder form editor in a process of adding a text field

From my point of view, the form editor is well designed and working as expected.
However, I miss the possibility to set more validation rules for questions. When applying
best-practices to created forms, the first problem is the question help. It is hidden under
the question mark, which can unnecessarily slow down the completion of forms. Those
problems can be solved by modifying the code of the library.

The form editor was analysed in October 2020 in version 3.6.1.

3.3 Semantic Form Editors

The semantic form editors are applications for creating forms based on the Semantic Web
technologies.

3.3.1 Generating of SHACL and DASH Forms for TopBraid EDG

TopBraid EDG16 is a web application for creating and managing domain models and on-
tologies in the RDF, RDFS and OWL. Although SHACL and DASH are initially designed
for data validation, it is possible to use them for building forms for TopBraid app.[23]

Generated forms are defined in a shapes graph using the SHACL vocabulary and a
DASH namespace17. The DASH namespace introduces a variety of properties, classes,
and instances useful for building forms and validating form data. One of the properties
useful for generating forms is dash:editor. A form designer can use one out of 14 instances
of dash:editor property. These instances represent form controls for filling the data and
some of the available ones are, for example, an autocomplete, a text area, a datetime, a

16TopBraid EDG available at https://www.topquadrant.com/products/topbraid-edg-gov-packs/
17More information about dash namespace available at http://datashapes.org/dash to 30/10/2020

42

https://www.topquadrant.com/products/topbraid-edg-gov-packs/
http://datashapes.org/dash

CHAPTER 3. EXISTING SOLUTIONS

dropdown, a text field with a language dropdown, a text field for URI, and an HTML text
editor with a language dropdown.[23]

For diplaying of the data, there are form control viewers defined in dash:viewer prop-
erty. Some of them are, for example, a HTML viewer, a viewer of text with language, and
a URI viewer.[23]

The form controls can be either defined by the property dash:editor or alternatively re-
solved by a scoring system. For instance, if property dash:editor is of instance dash:TextAreaEditor,
the text area is used. However, if property dash:editor is unspecified, the corresponding
form control is selected by the scoring system in a following way. If property sh:datatype
is specified as xsd:string, it counts as a score of ten, and if there is no other property
increasing the score, the text field is chosen. However, if there is another property, e.g.
dash:singleLine, defined as false, the text area form control is chosen instead. Some of the
useful SHACL and DASH properties related to forms can be seen in Table 3.1.[23]

Table 3.1: SHACL and DASH form related properties
Property Example values Description
sh:datatype xsd:boolean, xsd:date,

xsd:string, xsd:datetime
One of the factors by which the form
control can be chosen.

sh:order "0"∧∧xsd:decimal An order of form controls within a form.
sh:name The label of form controls.
dash:editor dash:AutoCompleteEditor,

dash:TextAreaEditor
It specifies which form control should
be used for editing of data.

dash:viewer dash:HTMLViewer,
dash:LangStringViewer

It specifies which form control should
be used for viewing of data.

dash:singleLine true, false One of the factor by which the form
control can be chosen.

Figure 3.9: Example of TopBraid EDG with the form generated using SHACL and DASH

Source: http://datashapes.org/forms.html

43

CHAPTER 3. EXISTING SOLUTIONS

The example of TopBraid EDG application with generated form using SHACL and
DASH can be seen in Figure 3.9. The corresponding part of a shapes graph used for
rendering a street address text area form control can be seen in Source code 3.1.

Source code 3.1: Shapes graph rendering a text area form control

1 ex:StreetAddress

2 a sh:PropertyShape ;

3 sh:path ex:address ;

4 sh:datatype xsd:string ;

5 dash:singleLine false ;

6 sh:minCount 1 ;

7 sh:maxCount 1 ;

8 sh:name "street address" ;

The analysis is based on the unofficial draft18 and was performed in November 2020.

3.4 Summary

The research helps to identify important functionalities that a form editor should have
as well as helps avoid mistakes and incorrect solutions during the form editor design.

In Table 3.2 and Table 3.3, there are comparison summaries of all analysed solutions
in this chapter. The overview includes some of the requirements of features of the Se-
mantic Form Editor, which will be discussed in Chapter 5. For better understanding, the
properties are explained below:

• Form types enumerate, which form types from Section 1.1.3.3 are supported by a
specific form editor.

• Reusability of questions specify a possibility to reuse an existing question from
the current form, from a different form or from a predefined list of questions.

• Reusability of answer options discuss the possibility to include already defined
answer options from a different question in the form, from a different form or from
a predefined list of answer options.

• Validation of form design mean that a form editor provides a possibility to validate
a form against errors and best-practices of form design.

• Forms satisfying form design guidelines, mean that a form editor allows to create
forms, which satisfy the form design best-practices from Section A.2.

• Customisable design of questions and answer options means that a form editor
allows setting visual appearance to individual questions and answer options.

• Conditional logic and branching mean that a form editor supports the function-
ality described in Section 1.1.3.2.

• The tree structure of forms mean that a form editor allows the multi-level nesting
of questions. In other words, the section form control is provided and can be used
for nesting of questions.

• Ordered and unordered questions mean that a form editor allows setting fixed
order of specific questions and a random order (defined, e.g. by sorting algorithm)
of the rest.

18Available at http://datashapes.org/forms.html to 3/11/2020

44

http://datashapes.org/forms.html

CHAPTER 3. EXISTING SOLUTIONS

• Ordered and unordered answer options mean that a form editor allows setting
fixed order of specific answer options and a random order (defined, e.g. by sorting
algorithm) of the rest.

• Other answer option means that a form editor supports adding the Other answer
option to closed questions, which transforms the closed question to the semi-closed
one, which allows respondents to type an answer, which is unavailable in the set of
answer options. An example of this answer option can be seen in Figure 3.10.

Figure 3.10: The other answer option

Source: https://www.surveymonkey.com/

• Multilingual forms mean that a form editor supports creating a form in multiple
languages.

• The Semantic Web forms mean that a form is defined by using the Semantic Web
technologies and therefore can profit from Linked Data.

3.4.1 Summary of Standalone Form Solutions

Table 3.2 shows comparison of selected properties of analysed standalone form solutions.

Table 3.2: Comparison of selected properties of standalone form solutions
SurveyMonkey JotForm forms.app Google Forms

Form types Classic; Card;
Multi-step;
Conversation

Classic;
Multi-step;
Card

Classic Classic; Multi-
step

Reusability of questions Question bank;
By duplication

By duplica-
tion

By duplica-
tion

Import from
other form; By
duplication

Reusability of answer op-
tions

Predefined op-
tions

No No By add-on

Validation of form design Yes No No No
Forms satisfying form design
guidelines

No No No No

Customisable design of ques-
tions and answer options

Yes No No No

Other answer option Checkbox with
a text field or
only a text field

Checkbox
with a text
field

Checkbox
with a text
field

Checkbox with
a text field

Conditional logic and
branching

Yes Yes Yes Yes

The tree structure of forms No No No No
Ordered and unordered
questions and answers

No No No No

Ordered and unordered an-
swer options

No No No No

Multilingual forms Yes No No No
The Semantic Web forms No No No No

45

CHAPTER 3. EXISTING SOLUTIONS

3.4.2 Summary of (Semantic) Form Editors

Table 3.3 shows comparison of selected properties of analysed (semantic) form editors.

Table 3.3: Comparison of selected properties of (semantic) form editors
React Hook
Forms

Bootsnipp formBuilder Generating
SHACL and DASH
forms in TopBraid
EDG

Form types * * Classic;
Wizard

Classic

Reusability of questions No No By duplica-
tion

By reusing a code
of shapes graph

Reusability of answer op-
tions

No No No By reusing a code
of shapes graph

Validation of form design No No No By specification in
shapes graph

Forms satisfying form de-
sign guidelines

* * No By specification in
shapes graph

A customisable design of
questions and answer op-
tions

* * Yes ?

Other answer option No No No ?
Conditional logic and
branching

* * No Yes

The tree structure of forms No No No Yes
Ordered and unordered
questions and answers

* * No ?

Ordered and unordered an-
swer options

* * No ?

Multilingual forms No No No Yes
The Semantic Web forms No No No Yes

* - Depends on the implementation of a rendering application.
? - An unknown information.

46

Chapter 4

S-Forms

This chapter analyses the SForms library actively developed by Mgr. Miroslav Blaško
Ph.D. and Ing. Martin Ledvinka at KBSS1 at FEE CTU in Prague. The library is used
for visualisation of ontology-based smart forms defined in JSON-LD format. In this for-
mat, questions, answers, answer options, as well as the behaviour of a form, such as a
conditional logic and branching, are defined as graph nodes.

The analysis of the application in this chapter is carried out in version 0.1.82 of the
SForms library to date 3/4/2020.

4.1 Current State

The SForms is a library, not a standalone application. Therefore it has to be integrated
into an existing application. One of the example usages is Study Manager.[21] The Study
Manager is an eCRF management application used for retrospective clinical trials. It is
based on the Semantic Web technologies. The application consists of a static part which
includes users, institutions and patient records management. The dynamic part uses
the SForms library for rendering externally defined eCRFs which are a part of patient
records. They are fetched using the REST API from backend. The backend obtains the
data from a semantic database called triple-store and uses SPipes3 to assembly the form
into a final shape.

As already mentioned, in order to use the SForms library, it is required to integrate
it into an existing application. The library is stateless, and the data have to be provided
and managed by a container application using the Reflux4 state management library. In
addition, only the classic form type view is available in the library. However, the Study
Manager application provides a wrapper for a wizard form type, which can be used with
the horizontal or vertical orientation of a wizard navigation bar.

Figure 4.1 shows an example of the Study Manager application with the horizontal
wizard form visualised using SForms. Only the section Inclusion criteria with its content
is rendered using the library, everything else, including the buttons, is a part of the Study
Manager application.

1Knowledge-based and Software Systems Group. More information available at https://kbss.felk.
cvut.cz/web/kbss to 15/11/2020

2Source code of the SForms library in version 0.1.8 available at https://github.com/kbss-cvut/s-

forms/tree/40a9bed6dcffd94a637cf277674a386e104d89d3 to 15/11/2020
3SPipes developed by KBSS. More information available at https://kbss.felk.cvut.cz/web/kbss/s-

pipes to 15/11/2020
4More information about Reflux state manager available at https://www.npmjs.com/package/reflux

to 15/11/2020

47

https://kbss.felk.cvut.cz/web/kbss
https://kbss.felk.cvut.cz/web/kbss
https://github.com/kbss-cvut/s-forms/tree/40a9bed6dcffd94a637cf277674a386e104d89d3
https://github.com/kbss-cvut/s-forms/tree/40a9bed6dcffd94a637cf277674a386e104d89d3
https://kbss.felk.cvut.cz/web/kbss/s-pipes
https://kbss.felk.cvut.cz/web/kbss/s-pipes
https://www.npmjs.com/package/reflux

CHAPTER 4. S-FORMS

Figure 4.1: The example of SForms in the Study Manager application.

Applying the best-practices from Chapter 2, the form visualisation has many short-
comings. For example, there is no question-level help, only the help displayed on mouseover.
Next, the form controls and buttons have insufficient height, and the font size is smaller
than 16 pixels.

4.1.1 Technology Stack

The library is developed in JavaScript using frameworks and libraries:

• React 15

• React Bootstrap5 in version 0.30.5 which uses Bootstrap 3

• Babel6 6 used for code compilation

• Browserify7 used for code bundling

• Jasmine8 for testing

In addition, it uses the Semantic Web libraries such as jsonld9 or jsonld-utils10. As
well as, libraries for autocomplete11 and time picker form controls12. The codebase is

5More information about react-bootstrap library available at https://react-bootstrap-v3.netlify.
app/ to 15/11/2020

6More information about Babel available at https://babeljs.io/ to 15/11/2020
7More information about Browserify available at http://browserify.org/ to 15/11/2020
8More information about Jasmine available at https://jasmine.github.io/ to 15/11/2020
9jsonld library available at https://www.npmjs.com/package/jsonld to 15/11/2020

10jsonld-utils library developed by KBSS available for downloading at https://kbss.felk.cvut.cz/

dist/ to 15/11/2020
11react-bootstrap-typeahead library developed by KBSS available for downloading at https://kbss.

felk.cvut.cz/dist/ to 15/11/2020
12react-bootstrap-datetimepicker library developed by KBSS available for downloading at https://kbss.

felk.cvut.cz/dist/ to 15/11/2020

48

https://react-bootstrap-v3.netlify.app/
https://react-bootstrap-v3.netlify.app/
https://babeljs.io/
http://browserify.org/
https://jasmine.github.io/
https://www.npmjs.com/package/jsonld
https://kbss.felk.cvut.cz/dist/
https://kbss.felk.cvut.cz/dist/
https://kbss.felk.cvut.cz/dist/
https://kbss.felk.cvut.cz/dist/
https://kbss.felk.cvut.cz/dist/
https://kbss.felk.cvut.cz/dist/

CHAPTER 4. S-FORMS

written in JavaScript ECMAScript 6 (ES613) standard combined with ECMAScript 5 (ES5)
standard.

4.1.2 Form Controls

The SForms library supports form controls displayed in Table 4.1.

Table 4.1: SForms form controls overview
Form control Note
Text field A text field is converted to a text area if it contains more than 50

characters.
Number field
Text area
Dropdown
Autocomplete An autocomplete field is provided by an external library react-

bootstrap-typeahead.
Masked text A mask is provided by an external library inputmask-core and im-

plemented into a text field.
Single checkbox Usable for multiple-choice in combination with a section.
Time pickers A date, a time and a datetime are available. The form controls are

provided by an external library react-bootstrap-datetimepicker.
SPARQL field A parser for displaying and modifying SPARQL queries provided

by an external library yasgui-yasqe14 and implemented into a text
area.

TURTLE field A parser for displaying and modifying TURTLE semantic format
provided by an external library yasgui-yasqe and implemented into
a text area.

Media content Renders HTML iframe15 with content specified by URL.
Section Can be collapsed or expanded and can contain other form controls

except for a wizard step.
Wizard step A step of a wizard form type.

All form controls (except for media content) can be set hidden or disabled. In addi-
tion, the section can be collapsed or expanded by default.

The form control consists of a top-aligned label, a field and optionally a question help
hidden under a question mark and a unit. All mentioned parts of the form control can be
seen in Figure 4.2. The first question is a masked text with a specified mask and a help
displayed on mouseover. The second question is a text field with a defined unit.

13More information about ECMAScript standards available at https://www.w3schools.com/js/js_

versions.asp to 15/11/2020
14More information about yasgui-yasqe available at https://www.npmjs.com/package/yasgui-yasqe to

15/11/2020
15More information about HTML iframe available at https://www.w3schools.com/html/html_iframe.

asp to 15/11/2020

49

https://www.w3schools.com/js/js_versions.asp
https://www.w3schools.com/js/js_versions.asp
https://www.npmjs.com/package/yasgui-yasqe
https://www.w3schools.com/html/html_iframe.asp
https://www.w3schools.com/html/html_iframe.asp

CHAPTER 4. S-FORMS

Figure 4.2: An example of a masked text with a help and a text field with a defined unit

Screenshot was taken in SForms in version 0.2.1.

Questions can be ordered or unordered, as well as both combined together. The same
applies to wizard steps and answer options of closed questions. All of them can be, as
already said, unordered due to each other, or ordered in a way, that one question (an-
swer option, respectively) can have more than one preceding questions (answer options,
respectively) set. In the library, the unordered ones are alphabetically sorted, and the
ordered ones are organised using tsort16 library. Questions can be displayed or hidden,
based on conditional logic and branching. The labels, answer options, and other proper-
ties containing text can be multilingual.

4.1.3 Validation

The available validation of the form controls is the following:

• All form controls, except for media content, can be required or optional.

• A number field answer can be either validated for greater or equal than, greater
than, less or equal than, less than or specified as a positive, non-positive, negative
and non-negative integer.

4.2 Ontology-Based Smart Form Representation

The SForms library requires the ontology-based smart form represented in JSON-LD for-
mat. After the source code of the form is loaded to the library, the JSON-LD code is
serialised into a flattened structure with missing @context due to mapping of properties
to absolute URIs.

The flattening process transforms a graph into a list of nodes. It collects all properties
of one node in a graph and transforms them into a single JSON-LD object. The same ap-
plies to blank nodes, which are labelled with blank node identifiers. This representation
simplifies the structure for processing JSON-LD documents in applications.[39]

Afterwards, the shape of data is further modified to a tree structure and saved to a
Reflux state manager of an external application.

The simple form consisting of three nodes, represented in JSON-LD format in a flat-
tened structure with absolute URIs and prefixed names, can be seen in Source code 4.1.

16More information about tsort library available at https://www.npmjs.com/package/tsort to
15/11/2020

50

https://www.npmjs.com/package/tsort

CHAPTER 4. S-FORMS

Source code 4.1: Simple ontology-based smart form in a flattened structure

1 {

2 "@graph": [{

3 "@id": "doc:question/form-root",

4 "@type": "doc:question",

5 "doc:has_related_question": {

6 "@id": "doc:question/section -5686"

7 },

8 "form-lt:has-layout-class": "form",

9 "http://www.w3.org/2000/01/rdf-schema#label": "form"

10 }, {

11 "@id": "doc:question/section -5686",

12 "@type": "doc:question",

13 "doc:has_related_question": {

14 "@id": "doc:question/text-2736"

15 },

16 "layout:has-layout-class": "section",

17 "http://www.w3.org/2000/01/rdf-schema#label": "Section"

18 }, {

19 "@id": "doc:question/text-2736",

20 "@type": "doc:question",

21 "layout:has-layout-class": "text",

22 "form:requires-answer": {

23 "@type": "http://www.w3.org/2001/XMLSchema#boolean",

24 "@value": true

25 },

26 "http://www.w3.org/2000/01/rdf-schema#label": "Text"

27 }

28]

29 }

doc - Prefix label of http://onto.fel.cvut.cz/ontologies/documentation/.
form - Prefix label of http://onto.fel.cvut.cz/ontologies/form/.

form-lt - Prefix label of http://onto.fel.cvut.cz/ontologies/form-layout/.

4.2.1 Properties for Representation of Forms

Table 4.2 shows the most important properties of form nodes. A simple form consists
of four types of form nodes: a question, an answer, an answer option, and a condition.
The question type node should have at least four properties defined: @id, @type, label,
and has-layout-class (from now on referred to as layout class). The layout class serves as
the main distinction between form control types. All of the form controls except for a
dropdown and a number field from Table 4.1 are defined using layout class property. The
dropdown is used if layout class is not set to autocomplete form control, but the answer
options are defined using has-possible-value. The number field is used if the layout class
is missing or set to non-existing form control and a has-datatype is set to one of many
variants of a numeric type. Note that, all form controls from Table 4.1 except for media
content are represented as a question node. The media content is a has-media-content
property of question nodes.

A form requires to have a root node of type question with a layout class set to form.
Since the ontology-based smart forms have a tree structure, every question can have mul-
tiple subquestions. This is applicable to sections and wizard steps. However, any ques-
tion can have subquestions which is used especially for conditional logic and branching,
e.g., the subquestions of a single checkbox form control are visible only if the checkbox
is checked. References to subquestion nodes are defined using has_related_question prop-
erty. The wizard-step layout class represents a step of a wizard form and it can be defined
only on nodes directly below a root node. For a classic form, the wizard-step is not used.

The form nodes of type answer are referenced from question nodes using has_answer

51

CHAPTER 4. S-FORMS

property and the condition type nodes are referenced by is-relevant-if property. The
condition node contains at least @id, @type, accepts-answer-value, and has-tested-question
properties. The accepts-answer-value defines the accepted answer as RDF object literal
or RDF resource. The has-tested-question property defines a relation between condi-
tional and trigger questions. The answer node contains at least @id, @type, and one of
has_data_value or has_object_value properties. Both properties serve for the respondent
answer. The has_data_value represents the answer by using RDF literal value and the
has_data_value represents the answer by an RDF resource. The answer option node type
serves for closed questions and consists of at least @id and label properties.

Table 4.2: Selection of SForms properties
Property Description URI
@id Identification of a node.
@type Type of a node.
label Label of a question (an answer, re-

spectively). Can be multilingual.
rdfs:label

comment Comment of a question. Can be
multilingual.

rdfs:comment

has_related_question Subquestions defined as a list of ids
of question nodes.

doc:has_related_question

has_answer Id of an answer node. doc:has_answer
has_data_value Specifies value of answer. doc:has_data_value
has-layout-class A list of form control type and

properties of a question.
form-lt:has-layout-class

has-possible-value Answer options defined as a list of
ids of answer option nodes.

form:has-possible-value

has-preceding-
question

Used for ordering. Preceding ques-
tions defined as a list of ids of ques-
tion nodes.

form:has-preceding-
question

has-question-origin The node identification in Linked
Data.

form:has-question-origin

is-relevant-if List of ids of condition nodes. form:is-relevant-if
has-tested-question Id of validated question by specific

constraint.
form:has-tested-question

accepts-answer-
value

Requires a specific answer to fulfil
a validation condition.

form:accepts-answer-
value

has-datatype Used for setting a type of number. form:has-datatype
description Specifies a question help. Can be

multilingual.
http://purl.org/dc/ele-
ments/1.1/description

doc - Prefix label of http://onto.fel.cvut.cz/ontologies/documentation/
form - Prefix label of http://onto.fel.cvut.cz/ontologies/form/.

form-lt - Prefix label of http://onto.fel.cvut.cz/ontologies/form-layout/.
rdfs - Prefix label of http://www.w3.org/2000/01/rdf-schema#.

4.2.2 Form Building

There is no existing form editor for designing ontology-based smart forms for the SForms
library. The design process currently consists of generating nodes using custom shell
scripts and afterwards editing those in text editors, or in generic RDF editors, such as
TopBraid EDG or Protégé17, and then converting to JSON-LD format.

17More information about Protégé available at https://protege.stanford.edu/ to 15/11/2020

52

https://protege.stanford.edu/

Chapter 5

Application Design

This chapter deals with the design of the Semantic Form Editor application. It discusses
the requirements of the editor, as well as the required modifications of the SForms library
are presented.

5.1 Analysis of the Design of the Semantic Form Editor

The Semantic Form Editor will consist only from a frontend application without a back-
end. The designed application will be used for building ontology-based smart forms,
which can be exported in JSON-LD format. These forms can be afterwards used in appli-
cations for form distribution and data collecting, which use SForms for visualisation of
forms. More information about ontology-based smart forms is available in Section 4.2.

The absence of a backend part of the application was decided, for the reason that it
will be developed as a part of another master thesis. The tool will be built as a stand-
alone web application without the necessity of a server or a database. However, it should
provide a mechanism to be usable with server applications for the management of forms.

For a better understanding of this section prior to deeper analysis, it is required to
state basic information about planned parts of the application and the user roles.

Based on the analysis of form builders in Section 3.2, the lifecycle of the form consists
of five parts, creation of a form, design of a form, preview of a designed form, collecting
data from users and a following analysis of the collected data. Therefore, the Semantic
Form Editor, which serves only for designing forms, which can be afterwards used in
applications for collecting data, will consist of four parts:

1. New / Import mode

2. Edit mode

3. Preview mode

4. Export mode

The system is planned to distinguish two user roles. Their functionalities will be
described later in this chapter. The user roles are defined below:

• Expert is a user who has access to all features of the form editor. Typically, it is
a knowledge engineer that builds forms from existing ontologies. He is aware of
underlying Semantic Web technologies, mainly understanding format JSON-LD.

• Non-expert is a user who has minimal or no knowledge about the underlying Se-
mantic Web technologies. The features containing the JSON-LD code should be
hidden and only basic features should be available.

53

CHAPTER 5. APPLICATION DESIGN

5.1.1 Software Requirements

The software requirements of the Semantic Form Editor are divided into functional and
non-functional ones. For better referencing, every requirement has a unique identifica-
tion number. For better clarity, the functional requirements related to one feature are
grouped together under one greater requirement. In addition, each requirement (except
for the greater ones) have set priority using the MoSCoW method, based on analysis from
previous chapters and the requirements of the supervisor of this work. The requirements
are marked by the first letter of the MoSCoW priority scale, which is described in further
detail below. Next, requirements contain a design proposal or a reason why a specific
requirement will not be analysed or implemented. If none of that is stated, the require-
ment is out of scope for the prototype version of the application. For better clarity, the
requirements which will be fully implemented are marked with a star (*), the partially
implemented ones are marked with a dagger (†).

MoSCoW prioritisation technique divides the requirements into four categories:[31]

• Must Have (M)

– A critical requirement, there is no point in implementing the solution without
this requirement, because the application would not be viable, legal or safe to
use.

• Should Have (S)

– An important requirement, without it, it is possible to use the application with
some eventual workaround.

• Could Have (C)

– A wanted or desirable requirement, it is less important than Should Have and
has less impact on the overall solution. If a problem occurs or a deadline is at
risk, those requirements are the first one to be removed from a plan.

• Won’t Have this time (W)

– For this requirement, it was agreed that it would not be implemented. It is
better to focus on more important requirements in this version.

5.1.1.1 Functional Requirements

For an illustration of the possible usage of the functional requirements during the process
of designing forms, activity and use case diagrams created using UML 2.0 showing the
requirements in different scenarios, are presented in this section.

Moreover, the colours used in diagrams represents if the specific steps in scenarios
will be implemented in the prototype version. The green colour expresses complete im-
plementation, the orange colour partical implementation, and the red colour missing
implementation. In addition, the dark blue colour represents the step is performed out-
side the form editor application. Finally, the light blue colour represents that the step
will not be implemented in the prototype version but can be fulfilled by a workaround.

Design process of a form

FR1: Create a new form / import an existing source code of a form

M FR1.1: System allows the user to start with a new form*

M FR1.2: System allows the user to load an existing form from a file*

54

CHAPTER 5. APPLICATION DESIGN

S FR1.3: System allows the user to load an existing form from an external application*
S FR1.4: System allows the user to load a form by pasting its source code to the editor*
S FR1.5: System displays a source code of a loaded form*

• This requirement is a part of the creational phase in the form lifecycle. Therefore, it
will be implemented in the prototype version.

FR2: Create forms of different form types
M FR2.1: System allows the user to create a classic form*
W FR2.2: System allows the user to create a multi-step form
M FR2.3: System allows the user to create a wizard form*
W FR2.4: System allows the user to create a card form
S FR2.5: System allows the user to change a form type during design of a form*

• The SForms is currently used only with a classic form and a wizard form type. There-
fore, only FR2.1 and FR2.3 together with FR2.5 are usable and will be implemented in
the prototype version. However, to be able to use a classic and a wizard form type easily
in the SForms library, the modifications are required. More information in Section 5.2.

FR3: CRUD of questions in a form
M FR3.1: System allows the user to create a question*
M FR3.2: System allows the user to show question properties*
M FR3.3: System allows the user to update question properties*
M FR3.4: System allows the user to delete a question*
S FR3.5: System allows the user to add multiple questions at once*

• This is another essential requirement, each user has to be able to use to design forms.
FR3.5 allows a user, e.g. to pre-write in advance a form structure in a text editor and
copy-paste it to a form editor, an example scenario using this requirement can be seen
in Figure 5.1

Figure 5.1: Scenario of adding multiple questions to a form at once

55

CHAPTER 5. APPLICATION DESIGN

FR4: Reusability of questions

M FR4.1: System allows the user to duplicate questions with all its properties*

W FR4.2: System allows the user to import existing questions from other forms

W FR4.3: System allows the user to import questions from a question bank

• FR4.1 will be implemented and should allow a user to duplicate all questions with
all its properties and answer options. On the other hand, FR4.2 and FR4.3 are not
planned in the prototype version, due to the absence of a back-end side of the applica-
tion. Together with other functionalities, the activity diagram using FR4.1 and FR4.2
in modification process of a form can be seen in Figure 5.2.

Figure 5.2: Modification process of a form structure in a form editor

FR5: Order of questions

S FR5.1: System allows the user to a create an ordered (unordered, respectively) ques-
tion at a specific place of a form†

S FR5.2: System allows the user to drag a question to a specific place in an order
(unorder, respectively) manner using Drag and Drop API†

C FR5.3: System allows the user to drag multiple questions at once to a specific place
in an order (unorder, respectively) manner using Drag and Drop API

56

CHAPTER 5. APPLICATION DESIGN

S FR5.4: System allows the user to unorder a question with a single click*

• This requirement should use the has-preceding-question property defined in Section 4.2.1
to set the order of questions within a form. FR5.1 and FR5.2 will be implemented
only partially. It is possible to use the has-preceding-question property to define more
than one preceding question per question. However, for the prototype version, only
a variant with one preceding question defined per question will be implemented due
to time constraints. Form designers can use a workaround of FR6. FR5.3 will not be
implemented in the prototype version. On the other hand, FR5.4 will be implemented
completely.

FR6: Edit a source code of a form during a design process

M FR6.1: System allows the user to modify a source code of a form*

W FR6.2: System allows the user to choose a formatting style of a source code of a
form

• FR6.1 allows for editing the properties of a form without having to use the user inter-
face of the editor where some requirements concerning the editing of a form may not
have been implemented. FR6.2 will not be implemented in the prototype version due
to time constraints.

FR7: SForms form controls

M FR7.1: System allows the user to create all types of form controls from SForms†

• SForms form controls can be seen in Table 4.1. All form controls except for dropdown,
number field, SPARQL field and TURTLE field will be supported in the prototype ver-
sion. The reason for not supporting a dropdown and a number field is because those
form controls cannot be set by one layout class property as the other do. More infor-
mation is available in Section 4.2.1. A SPARQL field and a TURTLE field will not be
supported in the prototype version, due to the problems with compatibility of libraries
used. More information can be found in Section 5.2.

FR8: CRUD of answer options of closed questions

M FR8.1: System allows the user to add new answer options to a question*

M FR8.2: System allows the user to remove answer options from a question*

M FR8.3: System allows the user to update answer options of a question*

M FR8.4: System allows the user to show answer options of a question*

C FR8.5: System allows the user to add Other answer option

C FR8.6: System allows the user to transform remote answer options to local ones

C FR8.7: System allows the user to set proxy to resolve URL of remote answer options

• Closed questions and their answer options are an essential part of a form. Therefore,
it is necessary to implement FR8.1 to FR8.4. FR8.5 implementation is dependent on
modifications of the SForms library. For this reason, it will not be implemented in
the prototype version of the editor. FR8.6 and FR8.7 will not be implemented in the
prototype version due to time constraints. However, the activity diagram in Figure 5.3
displays the processes were these two requirements are involved.

57

CHAPTER 5. APPLICATION DESIGN

Figure 5.3: Process of updating a question detail

FR9: Order of answer options of closed questions

C FR9.1: System allows the user to a create an ordered (unordered, respectively) an-
swer option at a specific place

C FR9.2: System allows the user to drag an answer to a specific place in an order
(unorder, respectively) manner using Drag and Drop API

C FR9.3: System allows the user to drag multiple answers at once to a specific place
in an order (unorder, respectively) manner using Drag and Drop API

W FR9.4: System allows the user to unorder answer option with a single click

W FR9.5: System allows the user to display a preceding answer option of a specific
answer option

• Due to time constraints, this requirement will not be implemented in the prototype
version.

FR10: Reusability of answer options

W FR10.1: System allows the user to use answer options from other questions

W FR10.2: System allows the user to import existing answer options from other forms

W FR10.3: System allows the user to choose one of a predefined set of answer options

• Due to time constraints and a lack of a back-end, this requirement will not be imple-
mented in the prototype version.

58

CHAPTER 5. APPLICATION DESIGN

FR11: Multilingual forms

M FR11.1: System allows the user to create a form localised in any number of lan-
guages*

M FR11.2: System allows the user to create non-localised forms*

M FR11.3: System allows the user to add and remove localisation during the process of
building a form*

M FR11.4: System allows to localise all localisable properties into configured languages†

• Since forms can be used by different nations, it should be possible to create forms in
more languages. The SForms library is ready for multilingual forms, and therefore, the
requirement will be implemented. FR11.4 will be implemented for a label, a help and
answer options in the prototype version.

FR12: Preview a form in the SForms library

M FR12.1: System allows the user to preview a modified form*

M FR12.2: System allows the user to navigate to a specific question in preview mode
from edit mode*

M FR12.3: System allows the user to preview a modified form in all configured lan-
guages*

M FR12.4: System allows the user to preview a wizard form in horizontal and vertical
orientation*

M FR12.5: System allows the user to CRUD answers of questions in a form*

C FR12.6: System allows the user to navigate from preview mode of a specific question
to edit mode of the question

• This requirement is a part of the preview phase in the form lifecycle. It is a phase in
which a form designer can review a designed form. To implement this requirement, the
SForms library will be used. However, the modifications of SForms listed in Section 5.2
are required to achieve it. FR12.6 will not be implemented due to other necessary
modifications in SForms and time constraints.

FR13: Distribution of a form

M FR13.1: System allows the user to download a source code of a form*

M FR13.2: System allows the user to copy a source code of a form to a clipboard*

S FR13.3: System allows the user to publish a form to an external application*

S FR13.4: System optionally publishes a form on each change to an external applica-
tion*

• This requirement participates in realising the data collection phase of a form lifecycle
which serves for exporting of a source code of a form. FR13.3 and FR13.4 should be
activated in a form editor together with the FR1.3. If the form is loaded from an exter-
nal application, it should be published back to the same application after the process
of modification of a form ends. The distribution of a form is captured in Figure 5.4.
The possible usage of FR13.3 and FR13.4 is captured in scenario in Figure 5.5.

59

CHAPTER 5. APPLICATION DESIGN

Figure 5.4: Scenario capturing distribution of a form

Figure 5.5: Scenario capturing a form editor with a form loaded from an external source

60

CHAPTER 5. APPLICATION DESIGN

FR14: Conditional logic and branching

C FR14.1: System allows the user to set conditional logic and branching of questions

FR15: Welcome and thanks page

W FR15.1: System allows the user to add and customise the welcome page

W FR15.2: System allows the user to add and customise the thanks page

• This requirement needs specific modifications of the SForms library to be able to have
a page before a form and after a form, as well as a support for at least a heading and
paragraph form controls. The requirement will not be implemented in the prototype
version.

FR16: Randomisation of questions and answer options

W FR16.1: System allows the user to set randomisation of order of questions

W FR16.2: System allows the user to set randomisation of order of answer options

• This requirement needs modifications of the SForms library to be able to configure
randomisation of questions and answer options. Therefore the requirement will not be
implemented in the prototype version.

FR17: Customisation of form design

W FR17.1: System allows the user to customise question design

W FR17.2: System allows the user to customise answer options design

W FR17.3: System allows the user to customise form design

• This requirement needs modifications of the SForms library to be able to display styles
of the form controls, answer options or the form itself. Therefore the requirement will
not be implemented in the prototype version.

FR18: Form according to best-practices

M FR18.1: System allows the user to create a form according to best-practices

• This requirement needs modifications of the SForms library to satisfy the list of the
best-practices of form design from Section A.2. Those changes will not be implemented
in the prototype version.

FR19: Comment on problematic questions

S FR19.1: System allows the user to comment on questions in preview mode

S FR19.2: System indicates the problematic questions*

• FR19.1 requires modifications of the SForms library and will not be implemented. It
will be possible to comment questions in the edit mode using FR3.3. FR19.2 will be
implemented using FR20.6. This requirement can benefit from FR12.5, because some
issues of the form can be hidden until specific answers are provided. An example
scenario applying this requirement can be seen in Figure 5.6.

61

CHAPTER 5. APPLICATION DESIGN

Figure 5.6: Scenario of possible usage of the commenting questions requirement

Properties of a form editor

FR20: Question properties overview without an interaction with a question

S FR20.1: System indicates a form control type of a question*

S FR20.2: System indicates if an answer of a question is required*

S FR20.3: System indicates if a question has a preceding question and shows the pre-
ceding question on demand*

S FR20.4: System indicates if a section form control is by collapsed by default*

S FR20.5: System indicates if a question has a help*

S FR20.6: System indicates if a question has a comment and displays it on demand*

S FR20.7: System indicates if a question is disabled*

S FR20.8: System indicates if a question is hidden*

• This requirement speeds up the process of building a form. Therefore, it will be imple-
mented in the prototype version.

FR21: Search questions

W FR21.1: System allows the user to find a question with a specific label

W FR21.2: System allows the user to filter questions by properties

62

CHAPTER 5. APPLICATION DESIGN

• This requirement is unnecessary in the prototype version. However, as a workaround
of FR21.1, a form designer can use the native find functionality of browsers.

FR22: Collapsible and expandable sections

C FR22.1: System allows the user to collapse or expand section questions*

C FR22.2: System allows the user to collapse or expand all section questions at once*

• This requirement speeds up the process of building forms by increasing clarity in the
form editor. It will be implemented in the prototype version.

FR23: Undo changes

W FR23.1: System allows the user to undo and redo changes made

FR24: Real time collaboration

W FR24.1: System allows users to collaborate on the design of the form

FR25: Visibility of system status

C FR25.1: System informs the user about pending, successful and unsuccessful ac-
tions*

C FR25.2: System highlights questions which are being modified or moved*

• According to ten usability heuristics for user interface design by Jakob Nielsen, appli-
cations should always keep users informed about what is happening.[36] This require-
ment will be taken into account during the implementation of the application.

FR26: Validate a form

C FR26.1: System allows the user to validate a form according to ontology-based rules*

M FR26.2: System allows the user to validate a form according to best-practices*

M FR26.3: System allows the user to preview the validation result*

M FR26.4: System indicates invalid questions*

S FR26.5: System allows the user to CRUD validation constraints within a user inter-
face

C FR26.6: System allows the user to validate a form by a specific validation constraint

C FR26.7: System allows the user to ignore a specific validation constraint for all ques-
tions

C FR26.8: System allows the user to ignore a specific validation constraint for a specific
question

W FR26.9: System provides the user a manual on how to correctly design forms

• This is one of the requirements of this master thesis. FR26.1 and FR26.2 should be
implemented using the SHACL language. The validation constraints planned for a val-
idation of forms according to best-practices can be found in Section A.1. For the reason
that it is a requirement of the master thesis, FR26.1 and FR26.2 will be implemented,
as well as FR26.3 and FR26.4. FR26.5 will not be implemented in the prototype ver-
sion. However, it should be possible to modify validation constraints in a source code
of an application and afterwards deploy a new version of a tool with modified valida-
tion constraints. FR26.6 to FR26.9 will not be implemented in the prototype version.
A possible way of using validation of a form can be seen in Figure 5.7 and Figure 5.8.

63

CHAPTER 5. APPLICATION DESIGN

Figure 5.7: Scenario of possible usage of a form validation feature

Figure 5.8: Process of translating a form into a new language

FR27: User roles

W FR27.1: System allows the user to choose a user role between Expert and Non-expert

• The user roles will not be implemented in the prototype version. However, the planned
functionalities of each user role can be seen in the use case diagram in Figure 5.9.

64

CHAPTER 5. APPLICATION DESIGN

Figure 5.9: Overview of some of the functionalities of users and the system in the editor

Others

FR28: Detect unsupported browser

C FR28.1: System warns the user about a usage of an unsupported browser

FR29: Log application errors

S FR29.1: System logs errors occurred during a process of building a form*

• This functionality will be implemented to help detect potential errors in the applica-
tion.

5.1.1.2 Non-Functional Requirements

All of the non-functional requirements listed in this section will be taken into account
during the implementation and testing of this work.

65

CHAPTER 5. APPLICATION DESIGN

Portability and compatibility

M NFR1: System will be working in the newest versions of browsers*

• The application will be working in the last three versions of Google Chrome, Firefox
and Safari to 22/11/2020.

M NFR2: System will be working on devices with display width >= 1000 pixels*

Localisation

M NFR3: System will be in English*

Accessibility

M NFR4: System allows creating of questions using keyboard*

Maintainability

M NFR5: System will be tested by unit tests*

• At least 75% of form logic functionalities should be covered by unit tests*

M NFR6: System will be tested by end-to-end tests*

• At least 75% of functionalities should be covered by end-to-end tests*

M NFR7: System will be tested by user testing*

• System should be tested on at least 3 users.

M NFR8: System will be created in newest versions of mainstream web technologies*

M NFR9: System will be extensible and maintainable*

5.2 Analysis of Required Modifications of SForms

This section discusses the modifications of the SForms library, which are required to be
done to be able to fulfil the software requirements of the Semantic Form Editor.

In the next lines, the requirements of the Semantic Form Editor dependent on the
modifications of SForms are listed. They are separated into two categories according to
the necessity of implementing for the prototype version of the Semantic Form Editor.

Will be implemented in the prototype version

FR2.1, FR2.3: Require SForms to be able to handle the classic and the wizard form type

• Based on the analysis from Chapter 4, the SForms library supports only the classic
form type, and the wrapper of a wizard form type is implemented in the Study
Manager application. To satisfy FR2.1 and FR2.3, there are two options that can
be made. The first option requires to duplicate the code of the wrapper from the
Study Manager into the Semantic Form Editor. Also, it needs to be duplicated to
every other application which will use the SForms library. The other option is to
move a wizard form type functionality to the SForms library itself. The second
option mentioned was decided to choose.

FR12.1, FR12.2: Require to provide an option to preview the designed form and to al-
low the form designer to navigate from a specific question in edit mode to the specific
question in preview mode

66

CHAPTER 5. APPLICATION DESIGN

• According to FR12, it is required to use the SForms library in the Semantic Form
Editor for previewing the created and modified forms. However, according to
NFR8, the Semantic Form Editor should be developed using the newest versions
of the mainstream web technologies. This leads to a problem because based on the
analysis from Chapter 4, the library is developed in React 15 with React Bootstrap
in version 0.30.5, but the React Bootstrap library in this version is not compatible
with the newest version of React. This incompatibility requires the SForms library
to be updated to work with the newest version of React Bootstrap. The required
modifications are demonstrated in more detail in Section 5.2.1.

Will not be implemented in the prototype version

FR7: Requires to support all SForms form controls
• It is required to support a dropdown and a number field as a part of the layout class

property. In addition, it is required to find a solution for SPARQL and TURTLE
fields, which use library yasgui-yasqe, which is unsupported in new version of React,
as discussed in Section 5.2.1.

FR8.5: Requires Other answer option in semi-closed questions

FR15: Requires to provide a form with welcome and thanks pages

FR16: Requires a randomisation of questions and answer options

FR17: Requires a customisable design of a form and its questions and answer options

FR18: Requires SForms to comply with best-practice guidelines listed in Section A.2

FR19.1: Requires to comment questions in the preview mode using SForms

5.2.1 Update of Technology Stack

To be able to use the SForms library in the Semantic Web Editor, it is required to:

• Update React Bootstrap to a version supporting React 16, which is the version 1.0.0
and newer. React Bootstrap in version 0.30.5 uses Bootstrap 3, but the version
1.0.0 of the React Bootstrap library requires Bootstrap 4. There are many break-
ing changes in Bootstrap 4 which have to be taken into account and changed. In
addition, it was decided to replace the react-boostrap-datetimepicker and the react-
bootstrap-typeahead libraries also dependent on Bootstrap 3 by react-datepicker and
react-select, which support React 16.

• Update React to version 16 or newer. This update requires to rewrite few con-
cepts of the source code to avoid warnings, more concretely componentWillMount
and componentWillReceiveProps. In addition, it is required to update the Babel li-
brary from version 6 to 7 and also update the code bundler Browserify. However,
in the case of Browserify, it was decided to replace it in favour of Webpack code
bundler. Next, it was agreed to replace the Jasmine test runner by Jest1. Both of
the replacements are planned to be made to accomplish better compatibility and
maintainability.

• Migrate the remaining parts of ES5 code to ES6 to achieve easier updating and
navigating in the source code of the library.

• Move the wrapper serving for a wizard form type from the Study Manager to
SForms. This includes moving a state manager to the SForms library and replacing

1More information about Jest test runner library available at https://jestjs.io/ to 20/11/2020

67

https://jestjs.io/

CHAPTER 5. APPLICATION DESIGN

the Reflux state manager by the Context API, which is a build-in state management
system in React since version 16.3.[15]

Those modifications will result in a stand-alone SForms library, able to be imported
to any React project. Developers will be able to start using it by providing a source code
of an ontology-based smart form in JSON-LD format and an optional configuration.

68

Chapter 6

Implementation

This chapter is divided into two parts. The first part describes the modifications made to
the SForms library. The second part discusses the implementation of the Semantic Form
Editor.

6.1 The SForms Library

This section describes the process of how the SForms library was updated, as well as how
SForms can be imported and used in React-based applications. The update of SForms
preceded the implementation of the Semantic Form Editor due to incompatibilities of
versions of used technologies.

6.1.1 Updating Process of SForms

The changes that had to be made to the SForms library were summarized during the
design process of the application in Section 5.2.1. The updating process of SForms was
performed to be able to fulfil FR2.1, FR2.3 and FR12.1 of the Semantic Form Editor.

The process started by refactoring code that was outdated or was not in compliance
with the modern standards such as converting of var declarations of variables to let and
const. The process continued by preparations for updating React to version 16. One of
the necessary steps was adding prop-types1 library to the project, as it is no longer part
of React 16. Another important change, was to transform all outdated React lifecycle
functions componentWillMount and componentWillReceiveProps into componentDidMount
and componentWillUpdate.

After that, React and React Bootstrap was updated to new versions. React was up-
dated to version 16.9.0 and React Bootstrap was updated to 1.0.1. As mentioned earlier
in Section 5.2.1, React Bootstrap 1.0.1 uses Bootstrap 4, but React Bootstrap 0.30.10 uses
Bootstrap 3. These two versions are not fully compatible, and therefore the migration
guides available on React Bootstrap website2 and Bootstrap website3 were followed and
the code appropriately updated.

After updating the React framework and resolving the updating of React Bootstrap,
some other libraries such as Babel were updated. Also, bundling library Browserify was
replaced by Webpack. When Webpack was added to the project, it was configured to run

1More information about prop-types available at https://www.npmjs.com/package/prop-types to
26/11/2020

2Migration guide of React Bootstrap available at https://react-bootstrap.github.io/migrating/ to
26/11/2020

3Migration guide of Bootstrap available at https://getbootstrap.com/docs/4.3/migration/ to
26/11/2020

69

https://www.npmjs.com/package/prop-types
https://react-bootstrap.github.io/migrating/
https://getbootstrap.com/docs/4.3/migration/

CHAPTER 6. IMPLEMENTATION

the SForms library as a stand-alone application in the browser for development purposes.
Next, the Jasmine test runner library was replaced by Jest library and tests were updated
to be able to run using Jest.

As the most advanced step, the wrapper for a wizard form type was moved from the
Study Manager application to SForms due to reasons discussed in Section 5.2. This step
also contained removing Reflux state manager dependency and migrating to the Context
API, the React build-in state manager. A context was created for storing a form structure,
described in Section 4.2, and remote answer options of the autocomplete form control.

However, the process of updating SForms did not end with the last-mentioned step
but instead continued during the implementation of the Semantic Form Editor, when
bugs were encountered, or small modifications were required.

One of the required modifications was to be able to realise FR12.2 which in short
allows a user to select a specific question in edit mode and navigate to it in preview
mode. This adjustment required adding a configuration property serving for informing
the SForms system to start with a question with a specific @id property. If the config-
uration property is provided, SForms finds the question with specific @id in the form
structure and determines the initial wizard step in case of a wizard form type. Then, it
renders a form, finds a question with specific @id in the DOM4 of a page, scrolls to it and
highlights it.

6.1.2 Example Usage of SForms in Application

Shortened example of usage of the SForms library in the Semantic Form Editor can be
seen in Source code 6.1. The SForms component is imported from the library and requires
a source code of a form as a form property, configuration object as an options property and
ref, which allows accessing the getFormQuestionsData function which serve for accessing
of SForms form structure data with filled answers by a user.

Source code 6.1: Shortened example of usage of the SForms library in the Semantic Form Editor

1 import { useRef } from ’react’;

2 import SForms from ’s-forms’;

3 import useExportedForm from ’../hooks/useExportedForm/useExportedForm’;

4
5 const EditorPreview = () => {

6 const sformsContainer= useRef(null);

7 const form = useExportedForm();

8 const options = {

9 modalView: false,

10 horizontalWizardNav: true,

11 wizardStepButtons: false,

12 enableForwardSkip: true

13 };

14 return (

15 <SForms

16 ref={sformsContainer}

17 form={form}

18 options={options}

19 />

20);

21 }

4Document Object Model. More information available at https://www.w3schools.com/whatis/

whatis_htmldom.asp to 26/11/2020

70

https://www.w3schools.com/whatis/whatis_htmldom.asp
https://www.w3schools.com/whatis/whatis_htmldom.asp

CHAPTER 6. IMPLEMENTATION

6.2 The Semantic Form Editor

This section is dedicated to the implementation of the application prototype. Firstly,
the technology stack for the implementation is described. Furthermore, this section dis-
cusses the structure of the application and the method of representation of the data in the
application, as well as how the individual functional and non-functional requirements
have been implemented.

6.2.1 Technology Stack and Architecture

The application is developed in JavaScript. The used application architecture is displayed
in Figure 6.1.

Figure 6.1: The application architecture

The core frameworks and libraries used are:

• React is a component-based JavaScript framework for building user interfaces. Us-
ing React, it is possible to develop a single page frontend application, which allows
changing parts of the website without reloading of the whole page.[15]

• TypeScript is a language which extends JavaScript by adding static typing. Using
TypeScript, the development of the application is faster, thanks to catching the bugs
and errors before the code is compiled.[33]

• Next.js is a frontend framework which makes the development of React applica-
tions easier. The advantage of this framework for this project is the zero-configuration
of compilation and bundling of the code, as well as the out of box support of Type-
Script. Another benefit is the automatic deployment and hosting of the application.[45]
The deployed application will be used for the demonstration of the progress of the
implementation to the supervisor and for user testing.

• Material-UI is a user interface framework providing a large amount of prepared
React components, which can be easily imported into the project and make the
development of an application faster.[27]

• Cypress is a frontend testing tool, which can be used for testing any application
running in a browser. It allows writing end-to-end, integration and unit tests in
JavaScript. The running tests can be seen and in case of error debugged in a browser
or analysed in the Cypress management system which provides results and record-
ings of tests. The service provides free of charge pricing plan, which is sufficient
for this project. [7]

71

CHAPTER 6. IMPLEMENTATION

Another noticeably used library in the Semantic Form Editor is the SForms library.
Some of the other libraries used are, for example, libraries for the validation of forms
using SHACL language. The other libraries chosen are mentioned in Section 6.2.4 about
the implementation of specific requirements.

6.2.2 Layout

As planned in Chapter 5, an application is divided into four modes that represent the
phases in the process of designing a form:

• New / Import mode, where a user can create a new or import an existing form.

• Edit mode, where a user can edit a form in a user interface or in a code editor.

• Preview mode, where a user can preview the form just created or modified.

• Export mode, where a user can export the form just created or modified.

The edit mode in a user interface can be seen in Figure 6.2. There is a navigation bar,
in the top of the application, which displays the four modes and also serves for navigating
between them. A form designer cannot move from New / Import mode to the next mode
without creating or importing a form. In terms of navigating between the other nodes, a
form designer can navigate as soon as at least one question is created.

Figure 6.2: The Semantic Form Editor in edit mode with four questions and the form bar opened

Next, in edit mode, situated on the left side, there are rendered questions of the form
in a tree structure format having the same order as in SForms. Each question consists of
a body and a header with label, indicators, and actions. On the right side, if a question
is chosen or a form designer wants to add a new question, a form bar for filling the

72

CHAPTER 6. IMPLEMENTATION

question properties is shown. It serves for modifications as well as for the displaying of
the question properties. Above the form bar, an action bar is located.

6.2.3 Structure of Data

Right after a form source code is loaded to the application, the source code is transformed
into the same format as in SForms, mentioned in Section 4.2. The form is serialised into
a flattened structure with a mapping of properties using @context to absolute URIs. The
form in flattened structure can be seen in Source code 4.1. Afterwards, the shape of
data is further modified to a tree structure using the expandStructure algorithm from the
SForms library.

The @context part of a form source code is stored for later use, to be able to reverse the
process of flattening, which is required for exporting the form back to the initial format.

The transformed source code of a form is then stored in an object of a FormStructure
type. The FormStructure object has a pointer to a root node object, which consists of
a question of the form layout class, and a map with all nodes identified by an @id of a
question for constant access. Example of the FormStructure class can be seen in Source
code 6.2. The node is of type FormStructureNode, which stores a pointer to its parent
node and a data representing properties of a specific question from a transformed source
code of a form.

Source code 6.2: An example of class representing a form in the Semantic Form Editor

1 class FormStructure {

2 public root: FormStructureNode;

3 public structure: Map<string, FormStructureNode >;

4
5 constructor(root: FormStructureNode) {

6 this.root = root;

7 this.structure = new Map<string, FormStructureNode >();

8 this.structure.set(root.data[’@id’], root);

9 }

10
11 addNode(node: FormStructureNode) {

12 this.structure.set(node.data[’@id’], node);

13 }

14 ...

15 }

The data in the application are stored using React build-in state manager, the Context
API. If the data are updated, the components using the specific context data, are re-
rendered. However, to make it re-render, the updated data has to be an entirely new
object and not the old one with only updated properties. For that, a cloneDeep function,
which recursively clones the object, from lodash5 library is used.

6.2.4 Implementation of Functional Requirements

This section presents which functional requirements were implemented and what means
were used for implementing those requirements. The summary of all functional require-
ments can be found in Section 5.1.1.1.

Each requirement begins with the list of implemented, partially implemented or not
implemented subrequirements of the requirement.

5More information about Lodash available at https://lodash.com/ to 25/11/2020

73

https://lodash.com/

CHAPTER 6. IMPLEMENTATION

FR1: Create a new form / import an existing source code of a form

• Implemented: FR1.1, FR1.2, FR1.3, FR1.4, FR1.5

The first screen of the application, create / import mode consists of buttons and an
editor of a code. If a form designer uses New Form button, the system loads an empty
form template of ontology-based smart form. The source code of the empty form is lo-
cated in the separate file in the Semantic Form Editor project and can be replaced prior to
compilation of the application. The template consists of a @context part which contains
the basic properties and a @graph part with the root form node.

The button Import existing form allows a user to load a JSON-LD file with a source
code of a form from his device. This is implemented using an input form element of type
file with the restriction to allow only application/json and application/ld+json formats.

Another part is an editor of a code in JSON-LD format, which displays the created or
imported form source code. A user can use it for editing the created or imported form, or
he can paste there a source code of a form from the clipboard. The editor is implemented
using jsoneditor6 library, which allows viewing, editing, as well as formatting and vali-
dating the code in JSON (JSON-LD, respectively) format. The last button Save and start
editing navigates the user to edit mode.

The form can also be loaded from an external source. If the pathname of the URL of
the application contains a query parameter formUrl, the application tries to load the form
using the GET HTTP request method7. It is also possible to use it in combination with
WebDAV8 server, which can be used to edit source code of forms directly from the file
system. In addition, there is optional query parameter draftUpdate, which is introduced
in the implementation of FR13. An example pathname with query parameters can be
seen in Source code 6.3.

Source code 6.3: A pathname with query parameters for loading a form from an external source

1 /?formUrl=http://example.com/newForm.json&draftUpdate=true

FR2: Create forms of different form types

• Implemented: FR2.1, FR2.3, FR2.5

• Not implemented: FR2.2, FR2.4

The application supports only classic and wizard form type because other form types
are not supported by the SForms library.

For the classic form type, edit mode allows a user to create any question (except for a
wizard step question) on any tree level of a form. In contrast to the wizard form type, the
user can create only a wizard step type question on the root level and create the others
as their subquestions.

A user can choose the form type having navigated to edit mode with an empty form.
Alternatively the user chooses one during the design process by opening the configura-
tion of the form from the action bar. If the user changes the type of a form during the
design process from the wizard form to the classic form, the wizard steps are changed
to sections. The opposite is from the classic form to the wizard form. This conversion
depends on the layout class of questions at the root level. If questions at the root level

6jsoneditor library available at https://www.npmjs.com/package/jsoneditor to 26/11/2020
7More information about HTTP request methods available at https://developer.mozilla.org/en-US/

docs/Web/HTTP/Methods to 26/11/2020
8More information about WebDAV available at https://www.comparitech.com/net-admin/webdav/ to

26/11/2020

74

https://www.npmjs.com/package/jsoneditor
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.comparitech.com/net-admin/webdav/

CHAPTER 6. IMPLEMENTATION

are all of the type section, then they are all transformed into a wizard step type. If not,
all existing questions become a subquestion of a new wizard step question.

The form type is not stored in the source code of a form but dynamically decided
based on the questions on the root level. If all of the subquestions are wizard steps, then
the form type is a wizard form, if none of them are wizard steps, then the form type is a
classic form. If the question types are mixed, the behaviour is not defined.

FR3: CRUD of questions in a form

• Implemented: FR3.1, FR3.2, FR3.3, FR3.4, FR3.5

A user has three ways of creating a question, firstly by clicking on a plus button in the
action bar, which creates a question on a root level. Next, by clicking on a plus button in
the header of a question, which creates a subquestion of a question. The last option is to
create a question at a specific place, which is introduced in the implementation of FR5.

When it is clicked on an add button or on a question, the form bar is opened. The
first text field of the form bar is for @id of a question. This field cannot be modified. The
@id property is generated from the provided label of a question. The generated @id is in
Kebab case9 with a random four-digit number at the end.

Some of the properties can be specified directly in its corresponding form element,
such as a label, a layout class, a help, or a mask for a masked text form control. Other
properties, which were defined in the @context, can be specified using Add missing prop-
erty button, as it can be seen in Figure 6.3.

When the question is saved, the node is created and added to the map of a FormStruc-
ture object as well as the question is added as a subquestion to its parent question in the
tree structure.

Figure 6.3: Adding of question properties not implemented in the form bar

Questions can be deleted using an action from the question menu, which appears on
click on three dots button in the header of each question. In case of deleting a question

9Kebab case - All words within a sentence are lowercase and connected by a hyphen

75

CHAPTER 6. IMPLEMENTATION

containing subquestions, all of them are deleted. If the deleted question was preceding
question of some other question, it loses the order.

A user can also add more questions at once by switching to the multiple question
mode. A navigation bar between single question and multiple questions mode can be
seen in Figure 6.2 in the top of the form bar. This navigation appears only during the
creation of a new question. A user can type or paste questions into the provided text
area. The format required for creating multiple questions is following. A form designer
provides labels of questions, each on a new line. To create a subquestion of a question
defined in the previous line, an indentation consisting of two spaces have to be added to
the beginning of the label. This applies to any required level of a form. The questions
which were followed by an indented label are created of type section or wizard step in
case of a wizard form. The ones which were not followed by the indented label are of a
type text field.

FR4: Reusability of questions

• Implemented: FR4.1

• Not Implemented: FR4.2, FR4.3

The duplication of a question can be done using an action from the question menu.
The question is duplicated with all its properties. The only missing one is the preceding
question property, which is removed.

FR5: Order of questions

• Implemented: FR5.4

• Partially implemented: FR5.1, FR5.2

• Not Implemented: FR5.3

As already mentioned in the implementation of FR3, the questions can be created
using three methods:

• By the add button in the action bar, which creates an unordered question in the
root level of a form.

• By the add button in the header of a specific question, which creates an unordered
subquestion of that question.

• By adding a question to a specific place, by a blue rectangle, which can be seen
in Figure 6.2 below the Full name question. Those rectangles are displayed on
mouseover below and above each question. The newly added question by a blue
rectangle is ordered and has has-preceding-question property set to a question above
the blue rectangle, and a question below the rectangle has set a preceding question
to the newly added question.

Every question can be moved by its header using Drag and Drop API across a form.
If it is placed to the blue rectangle between questions, it becomes an ordered question, in
the same way as newly added questions are. If it is placed on the section or wizard step
question, it becomes an unordered subquestion. To create an unordered question on a
root level, a drop area during a dragging process appears on the place of the form bar.

As mentioned earlier in the implementation of FR2, in a wizard form type only wizard
step questions can be on a root level. If a section question is moved to a root level, its
layout class is changed to a wizard step and vice versa.

76

CHAPTER 6. IMPLEMENTATION

This feature is implemented only partially in the prototype version. Preceding ques-
tion property can be defined as an array of questions. However, in the current imple-
mentation, a question can have only one preceding question.

A form designer can remove preceding question property from a question using an
option from a question menu of each ordered question.

FR6: Edit a source code of a form during a design process

• Implemented: FR6.1

• Not Implemented: FR6.2

A form designer can switch between edit mode in the user interface and edit mode
of a source code of a form. To navigate to the second type of edit mode, a user can use
a button in the action bar. The application provides a code editor using the jsoneditor
library as in the implementation of FR1. The system transforms a form to the exporting
format, more described in the implementation of FR13, and displays it in the code editor,
where a form designer can modify it.

FR7: SForms form controls

• Partially implemented: FR7.1

All form controls from Table 4.1, except for dropdown, number field, SPARQL field
and TURTLE field were implemented. The reason for not implementing excluded ones,
is discussed in FR7.

A user can specify a form control type by an autocomplete form control labelled Lay-
out class in the form bar. Together with the form control type, a user can select, for
example, if a question is collapsed, hidden, or disabled. For specific form controls, new
fields or buttons for modifying properties are displayed, such as for masked text the in-
put mask field or for autocomplete the adding functionality of answer options is offered.

FR8: CRUD of answer options of closed questions

• Implemented: FR8.1, FR8.2, FR8.3, FR8.4

• Not implemented: FR8.5, FR8.6, FR8.7

The implementation of this requirement consisted of adding a button to the form bar
to allow a user to specify answer options of autocomplete form controls. If a user clicks
on the button, it opens a modal window. This modal window displays answer options of
a question. A user can update them, add new ones or delete them. The answer options
are created unordered. The ordering is not implemented, that means that the SForms
library will sort the answer options according to its implementation. The current imple-
mentation sorts answer options alphabetically.

FR11: Multilingual forms

• Implemented: FR11.1, FR11.2, FR11.3

• Partially implemented: FR11.4

When a new form is created, and a user moves to edit mode, a form configuration
modal window with settings of multilingualism and a form type is opened. Choosing
of languages is implemented using autocomplete form control with an option to add the
required languages. If a form with existing questions is imported, using the algorithm

77

CHAPTER 6. IMPLEMENTATION

of detection of all languages used in the label property is performed to determine which
languages are used within a form and allow to work with them.

Only a label, a help and answer options can be specified in more languages using the
user interface edit mode.

FR12: Preview a form in the SForms library

• Implemented: FR12.1, FR12.2, FR12.3, FR12.4, FR12.5

• Not implemented: FR12.6

Preview mode uses the SForms library to render the form created and modified in
edit mode. To import the SForms library into the application, an update of the SForms
library was required as discussed in Section 6.1.1.

If a form is multilingual, a dropdown with configured languages is provided. Also if
the form is of a wizard form type, a switch between vertical and horizontal orientation
of a wizard navigation bar is displayed to allow a form designer to test the form in all
languages and layout orientations. In addition, it is possible to save answers filled into
the preview of form which can serve as default answers. For adding the answers to the
form structure, the getFormQuestionsData function from SForms is used, as discussed in
Section 6.1.2. The obtained data from SForms are iterated, and found answers are added
to the application form structure object.

FR13: Distribution of a form

• Implemented: FR13.1, FR13.2, FR13.3, FR13.4

Source code 6.4: Algorithm for compression of the form tree structure

1 static compressStructure = (rootNode) => {

2 let object2IdMap = []; // mapping object -> id

3 let idIncluded = new Set();

4 object2IdMap = this._compressGraph(rootNode, object2IdMap, idIncluded);

5 return object2IdMap;

6 };

7 static _compressGraph = (parentNode, object2IdMap, idIncluded) => {

8 if (!idIncluded.has(parentNode[’@id’])) {

9 object2IdMap.push(parentNode);

10 idIncluded.add(parentNode[’@id’]);

11 }

12 formShape.expandProperties.forEach((prop) => {

13 if (parentNode.hasOwnProperty(prop)) {

14 const childArray = parentNode[prop];

15 for (let i = 0; i < childArray.length; i++) {

16 const child = childArray[i];

17 if (child !== undefined) {

18 childArray[i] = child;

19 object2IdMap = this._compressGraph(child, object2IdMap, idIncluded);

20 parentNode[prop][i] = { ’@id’: child[’@id’] };

21 }

22 }

23 }

24 });

25 return object2IdMap;

26 };

When a form designer wants to export a form, the tree structure of a form, which
was created using expandStructure algorithm from the SForms library is reversed. The
tree structure reversion is done using a created algorithm compressStructure, which can

78

CHAPTER 6. IMPLEMENTATION

be seen in Source code 6.4. First of all, the properties, such as has_related_question,
has_answer, has_option, which were expanded before, are now compressed back to the
key-value format, where the value is represented by a list of @ids of compressed nodes.
Afterwards, the structure which can be seen in Source code 4.1, is serialised into a com-
pacted structure using compact algorithm from jsonld library. The parameters of compact
function are set to a result of compressStructure algorithm and @context obtained during
initialisation of a form.

There are three options of how a form designer can save the created or modified
form. The form can be downloaded, copied to the clipboard, or it can be published to
a formUrl specified in the pathname as a query parameter as shown in Source code 6.3.
However, the form can be published using the POST HTTP request method only if it was
previously loaded from an external source using the formUrl query parameter. Moreover,
if the draftUpdate query parameter is set to a boolean value true, the modified source code
of a form is sent to the specified formUrl on each change of a form structure using PUT
HTTP request method.

FR19: Comment on problematic questions

• Implemented: FR19.2

• Not implemented: FR19.1

If a question has a comment property, an indicator of the comment is displayed in the
header of a question. On mouseover, the indicator displays a preview of the content of
the comment property.

FR20: Question properties overview without an interaction with a question

• Implemented: FR20.1, FR20.2, FR20.3, FR20.4, FR20.5, FR20.6, FR20.7, FR20.8

All indicators from FR20 were implemented and can be seen in Figure 6.4. The in-
dicators are coloured circles with icons characterising their purpose. An exception is
the form control type indicator, which is in the body of a question. For example, on
mouseover the indicator of a help having a question mark icon, shows the content of
a help property. On click the preceding question indicator, characterised by an arrow
pointing to the rectangle above, shows the specific preceding question by highlighting.

Figure 6.4: Question properties overview in the header of questions

79

CHAPTER 6. IMPLEMENTATION

FR22: Collapsible and expandable sections

• Implemented: FR22.1, FR22.2

Questions of a type section and wizard step are implemented using the same React
component which makes use of Accordion component from the Material-UI library. A
user can use a chevron in the question header to collapse or expand an individual ques-
tion. To expand or collapse all questions within a form at once, a user can use a button
in the action bar.

FR25: Visibility of system status

• Implemented: FR25.1, FR25.2

This requirement is solved by using the notistack10 library, which provides a snackbar
component, which can be used for showing brief messages. These messages are displayed
only for a few seconds and inform a user about action states. The example of a brief
message using notistack library can be seen in Figure 6.5. The error message is displayed
after validating the form against errors for 5 seconds.

If a question is being updated or was moved, created or updated, the system high-
lights the question with a border

Figure 6.5: Notification about a form validation result

FR26: Validate a form

• Implemented: FR26.1, FR26.2, FR26.3, FR26.4

• Not implemented: FR26.5, FR26.6, FR26.7, FR26.8, FR26.9

A user can validate a form against ontology errors and best-practices by clicking on
a button in the action bar. The form is validated using SHACL constraints specified in
best-practices-rules.shapes.ttl and ontology-rules.shapes.ttl files in the application project.

For a validation, a JavaScript library rdf-validate-shacl11 is used. As mentioned in
Section 1.2.7, the SHACL constraints can be extended using SPARQL and JavaScript lan-
guages. However, the library supports validation only by using SHACL properties. To
validate a form using this library, a validation rules and the form source code have to be
loaded into a Readable object of a stream12 library. Next, the parser imported from the
@rdfjs/parser-n313 library is used for parsing the SHACL constraints and a parser from

10More information about Notistack available at https://www.iamhosseindhv.com/notistack to
25/11/2020

11rdf-validate-shacl library available at https://github.com/zazuko/rdf-validate-shacl to
27/11/2020

12stream library available at https://github.com/juliangruber/stream to 27/11/2020
13@rdfjs/parser-n3 library available at https://github.com/rdfjs-base/parser-n3 to 27/11/2020

80

https://www.iamhosseindhv.com/notistack
https://github.com/zazuko/rdf-validate-shacl
https://github.com/juliangruber/stream
https://github.com/rdfjs-base/parser-n3

CHAPTER 6. IMPLEMENTATION

the @rdfjs/parser-jsonld14 library is used for parsing the form source code. After that,
parsed form source code and validation rules are loaded into a dataset using the rdf-ext15

library. The dataset is a structure which provides functions for operations with the data
loaded in a dataset, such as a function for matching triples or detecting duplicates.[11]
Those datasets can be finally used with the rdf-validate-shacl library which validates the
form source code against the SHACL constraints. When the validation is complete, a
validation report is returned. This report is parsed by the application, and a result is
displayed to a user.

A user is informed by the snackbar about the result. If there are issues in the form,
the result can be opened in a modal window by clicking on a button in the action bar,
as can be seen in Figure 6.5. Moreover, questions violating the validation constraints are
indicated in a similar way as properties in the implementation of FR20.

The implemented best-practices validation constraints can be found in Section A.1.
Only the constraints which can be easily implemented using the SHACL constraints with-
out the use of SPARQL or JavaScript language were implemented. There are seven im-
plemented validation constraints completely and one partially. One of them is illustrated
in Source code 1.5. To demonstrate the ontology-based validation constraints two rules
were specified, specifically the validation of the presence of a label and layout class.

FR29: Log application errors

• Implemented: FR29.1

The errors are logged using trackjs16 library. This library sends JavaScript errors
together with information about a user and activities done within an application to a
TrackJS17 management system, which is free of charge for open-source projects. In the
management system, a developer can display the errors and based on them reproduce
the problems and fix them.

6.2.5 Implementation of Non-Functional Requirements

All non-functional requirements were taken into account during the creation of the ap-
plication. The ones which affected the implementation are described in this section.

NFR1: System will be working in the newest versions of browsers

Supporting of the application in the newest versions of browsers is realised automat-
ically by Next.js framework itself. The application in terms of supported browsers will
be tested in Section 7.1.1.

NFR2: System will be working on devices with display width >= 1000 pixels

This requirement was taken into account during the implementation. However, if the
form designer makes a multilevel form with long labels, he should use a device with a
screen wider than 1000 pixels as the longer labels can break the design.

14@rdfjs/parser-jsonld library available at https://github.com/rdfjs-base/parser-jsonld to
27/11/2020

15rdf-ext library available at https://github.com/rdf-ext/rdf-ext to 27/11/2020
16trackjs library available at https://www.npmjs.com/package/trackjs to 26/11/2020
17More information about TrackJS available at https://trackjs.com/ to 26/11/2020

81

https://github.com/rdfjs-base/parser-jsonld
https://github.com/rdf-ext/rdf-ext
https://www.npmjs.com/package/trackjs
https://trackjs.com/

CHAPTER 6. IMPLEMENTATION

NFR3: System will be in English

All texts in the application are provided in English. Localisation to other languages
was not taken into account during the implementation.

NFR4: System allows creating of questions using keyboard

A form designer can navigate through the application only by a tab key except for
new / import mode and edit mode of the source code of a form. The limitation is due to
a problem with the jsoneditor library, which uses a tab key for indentation.

In addition to the tab key navigation, a modified question in the form bar can be
saved using the Enter key.

NFR8: System will be created in the newest versions of mainstream web technologies

The application was implemented in the newest versions of technologies mentioned
in Section 6.2.1. These technologies, specifically React, Next.js and TypeScript, are trend-
ing in web development for the year 2020.[8]

82

Chapter 7

Testing and Evaluation

This chapter discusses the testing methods used in the prototype. In addition, it evaluates
the Semantic Form Editor from the perspective of provided functionalities, as well as the
usability of the application in real environment on real data.

7.1 Testing

Unit testing, end-to-end testing and user testing were performed on the Semantic Form
Editor. Four users participated in the user testing of the application. Next, the applica-
tion was tested in the newest versions of Google Chrome, Safari and Firefox browsers.

7.1.1 Browser Testing

Due to NFR1, the system should be working in the last three versions of Google Chrome,
Safari and Firefox. Therefore, the application was tested in the last versions of these
browsers, as well as in the older versions of them. Due to NFR2, the width of a browser
during the testing was set to 1000 pixels. For the testing, the scenarios prepared for user
testing from Section B.1.3, were used. The result can be seen in Table 7.1.

Table 7.1: Browser testing

Operating system Browser Supported
macOS 11.0.1 Google Chrome 85.0 Yes
macOS 11.0.1 Google Chrome 87.0 Yes
macOS 10.15.5 Safari 13.0.5 Yes
macOS 11.0.1 Safari 14.0 Yes
macOS 11.0.1 Firefox 81.0.2 Yes
macOS 11.0.1 Firefox 83.0 Yes

7.1.2 Unit Tests

Due to NFR5, the core functionalities, such as building a form structure, moving ques-
tions or exporting a form, were covered by 37 unit tests using Jest testing library. The
coverage of logic functionalities is 81.67%. Other parts of the application are not tested
by unit tests because of the time constraints.

7.1.3 End-to-End Testing

Due to NFR6, the Semantic Form Editor should by tested by end-to-end tests. The ap-
plication as a whole was tested using Cypress testing framework. The majority of im-

83

CHAPTER 7. TESTING AND EVALUATION

plemented requirements, which were able to be tested in a browser, were tested by 42
Cypress tests. The requirements which were not tested are listed below:

• FR13, the distribution of a form was not tested, because of unsuccessful testing of
downloaded files and content of the clipboard.

• FR25, the system status was tested only partially.

• FR29, due to the fact that it is not possible to test the tracking to TrackJS using the
test environment.

All tests were run in Chrome 87.0, Edge 87.0, and Firefox 81.0.2. The code cover-
age reaches values higher than 75% in all four coverage criteria. Those are statements,
branches, functions and lines. Part of the report can be seen in Figure 7.1. The percent-
ages under the title demonstrate the coverage in the specific criteria already mentioned.
The table shows the coverage of individual React components and JavaScript files.

Figure 7.1: The code coverage using end-to-end tests

7.1.4 User Testing

User testing evaluates on a set of users if the design decisions made during the imple-
mentation of the application were correct.[35] The goals were to test if the application is
easy to use and to identify bugs and issues with the application. Due to the fact, that the
user roles from FR27 were not implemented, the target group of participants were users
who have at least basic level of ontology knowledge or coding skill.

The user testing was conducted remotely involving four participants using their com-
puters, video communication software with voice and video enabled and with the feature
of screen sharing. The participants’ profiles containing their education, their level of
coding skill and ontology knowledge, as well as the operating system of their computer,
can be seen in Section B.1.1. Before starting with test scenarios, the participants were
introduced into the problematics of the form editor by an introduction in Section B.1.2.
Eventual questions concerning the introduction were answered. The application was
tested by two prepared scenarios with together 36 tasks, as can be seen in Section B.1.3.
After the testing was performed, the participants were asked a few post-test questions,
shown in Section B.1.4. The duration of testing was measured and took on average nearly
an hour per each participant as can be seen in Section B.3.

84

CHAPTER 7. TESTING AND EVALUATION

In total, 17 issues of different severity were found. The majority of them were only
minor problems with user experience, except for one, which prevented importing a form
source code by pasting it to the editor as required by FR1.4. The findings can be seen in
Section B.4. Some of the findings, which were relevant, including the severe one, were
fixed in the prototype version of the application. The rest of them will be fixed in the next
versions of the form editor. The overall user testing met with success, as the participants
were able to complete the scenarios without the need of interventions from the moderator
and significant struggling during the testing process. The answers of post-test questions
can be seen in Section B.2.

7.2 Evaluation

This section discusses the evaluation of the Semantic Form Editor. It is divided into two
sections. The first one verifies, that the implemented form editor sustains complex data
in terms of forms from real applications. The second one compares the implemented
form editor to other already existing form editor solutions.

7.2.1 Verification of Functioning with Complex Forms

The Semantic Form Editor was tested using three complex forms, which are being used
in three clinical trials, namely in FERTISS, ABRAX, and CITECO clinical trial1. These
clinical trials are used in the StudyManager application.

• FERTISS form consists of 358 questions. The application loads the form without
problems. The loading of the form takes about three seconds. The navigation in
edit mode is smooth and the response times of modifying the form are in the order
of hundreds of milliseconds. Overall the form editor handles the FERTISS form
without problems.

• ABRAX form consists of 537 questions. The application loads the form without
problems. The loading of the form takes about five seconds. The navigation in
edit mode is smooth and the response times of modifying the form are in the order
of hundreds of milliseconds. Overall the form editor handles the ABRAX form
without problems.

• CITECO form consists of 1,546 questions. The application loads the form without
problems. The loading of the form takes about ten seconds. The navigation in edit
mode is not entirely smooth. The response times of modifying the form are also
worse compared to FERTISS and ABRAX forms. It takes about two to three seconds
to update the questions. Overall it is possible to use the form editor for small
changes of the such large form, but making complex changes, such as displacing
the questions, would be strugglesome.

The verification of functionality on complex forms was conducted on the MacBook
Pro (16-inch, 2019) with 2,6 GHz 6-Core Intel Core i7 processor and 16 GB RAM, in
Google Chrome 87 browser.

Based on the testing, the application is able to handle complex forms consisting of
at least 537 questions without problems. However, if the application is used for more
complex form such as the CITECO form, containing 1,546 questions, the application
starts slowing down.

1More information about those clinical trials can be found at https://trial4you.eu/ to 30/11/2020

85

https://trial4you.eu/

CHAPTER 7. TESTING AND EVALUATION

One of the possible solutions for the application slowing down with complex forms,
is integrating one of the libraries react-window2 or react-virtualized3 to the next versions
of the form editor. Those libraries would optimise rendering in a way that only the part
of the form, which is visible on the user’s screen, is rendered. This optimisation would
speed up the process of re-rendering the form on each update. Another possible solution
applicable for complex wizard forms is modifying the user interface, so it always only
renders the questions from one wizard step.

7.2.2 Comparison with Existing Solutions

The selected properties of form editors, described in Section 3.4, are used for the compar-
ison of the prototype version of the Semantic Form Editor with other existing solutions
in Table 7.2. SurveyMonkey, Google Forms and formBuilder from Chapter 3 are chosen
for the comparison. The reason these tools were chosen, is that they are more powerful
compared to other form editors mentioned in that section.

Table 7.2: Comparison of selected properties of the Semantic Form Editor with existing solutions
The Semantic
Form Editor

SurveyMonkey Google Forms formBuilder

Form types Classic; Wiz-
ard

Classic; Card;
Multi-step;
Conversation

Classic; Multi-
step

Classic; Wiz-
ard

Reusability of questions Partially*;
By duplica-
tion

Question bank;
By duplication

Import from
other form; By
duplication

By duplica-
tion

Reusability of answer
options

No* Predefined op-
tions

By add-on No

Validation of form de-
sign

Partially* Yes No No

Forms satisfying form
design guidelines

No# No No No

Customisable design of
questions and answer
options

No* Yes No Yes

Other answer option No* Checkbox with
a text field or
only a text field

Checkbox with
a text field

No

Conditional logic and
branching

No* Yes Yes No

The tree structure of
forms

Yes No No No

Ordered and unordered
questions

Partially No No No

Ordered and unordered
answer options

No* No No No

Multilingual forms Yes Yes No No
The Semantic Web
forms

Yes No No No

* - Designed but not (fully) implemented in the prototype version.
- Requires modifications of the SForms library.

2More information about react-window library available at hhttps://react-window.now.sh/ to
30/11/2020

3More information about react-virtualized library available at https://bvaughn.github.io/react-

virtualized/ to 30/11/2020

86

hhttps://react-window.now.sh/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/

Conclusion

The goal of this master thesis was to design form editor for efficient and high-quality data
collection and implement prototype demonstrating its core features. The Semantic Web
is a perspective technology which, as an extension of the World Wide Web, creates a net-
work of interconnected data. The data is in a format that is readable not only by humans
but also by computers, which allows the computers to access the data more intelligently
and efficiently. However, the Semantic Web is a technology yet to be understood and
taken advantage of. There is a sparse amount of technologies utilising the Semantic Web,
including the one for data collection, a form. SForms is one of few technologies capable
of representing forms in the format of the Semantic Web.

The guidance of the user to create valid forms according to the form design guidelines
represents an important trait of the implemented application. Valid forms are overall
more understandable and less strugglesome for their respondents. In result, these forms
are more efficient and are prone to produce higher-quality data. To fulfil this goal, the
implemented form editor validates the created forms against form best-practices.

The practical part of this thesis is further supported by a theoretical analysis of re-
lated topics. The thesis studies the problematics of the Semantic Web technologies, as
well as outlines current form design guidelines. The implementation phase of the editor
was preceded by a collection of requirements and an analysis of already existing form ed-
itor solutions. In addition, the SForms library was analysed to discover that some parts
of the library had to be modified in order to fulfil all implemented requirements. Also,
the visual representation of SForms forms was found insufficient for the proposed form
designed guidelines.

Testing of the implemented form editor was performed gradually during develop-
ment, and the final version of the form editor prototype was tested with four users. The
user testing altogether met with success, as the participants appreciated the overall ex-
perience with an editor. The user testing discovered a number of shortcomings, but they
generally did not harm the functioning of the prototype. One severe error was found,
and it was fixed along with a few minor ones.

The Semantic Form Editor is now a functioning prototype that can be used by form
designers creating semantic forms. The created forms can be validated against proposed
form design guidelines. However, the validation supports only a part of the applicable
best-practices, as the used library for validation using SHACL lacks the possibility of
extension of SHACL validation constraints by SPARQL and JavaScript. The future work
could solve this problem by using a server for the purpose of validation, as there are
existing solutions that have the functionalities that the frontend validation library lacks.

The other parts of the application still leave plenty of room for improvement. There
are still requirements implemented partially or not at all. For example, the ordering of
answer options or conditional logic and branching are both functionalities that can be
the subject of future work for this form editor. Moreover, the user testing indicated some
minor issues with the user interface. Also, the evaluation pointed at the slowdown of
application with large complex forms. Finally, the SForms library can also be further
extended. Firstly, to support the remaining requirements of the Semantic Form Editor.

87

CONCLUSION

Secondly, SForms needs to be modified to be in compliance with the proposed current
best-practices of form design.

All requirements of the form editor prototype in the scope of this master thesis were
implemented and tested. Therefore, I think the goals set were satisfied. I am glad I could
participate in a project that I could design and implement from scratch, which provided
me with useful experience. On top of that, I was given the opportunity to work with
powerful web technologies, such as JSON-LD, SHACL, Next.js, and Cypress.

88

References

[1] N. Babich. Designing efficient web forms: On structure, inputs, labels and
actions, 2017. URL https://www.smashingmagazine.com/2017/06/designing-

efficient-web-forms/. [Accessed: 28 October 2020].

[2] J. A. Bargas-Avila, O. Brenzikofer, S. Roth, A. Tuch, S. Orsini, and K. Opwis. Simple
but crucial user interfaces in the world wide web: introducing 20 guidelines for
usable web form design, user interfaces. 2010.

[3] J. Carroll and G. Klyne. Resource description framework (RDF): Concepts and ab-
stract syntax. W3C recommendation, W3C, 2004. URL https://www.w3.org/TR/

2004/REC-rdf-concepts-20040210/. [Accessed: 2 November 2020].

[4] Contrast and Color Accessibility. Center for Persons with Disabilities, 2018. URL
https://webaim.org/articles/contrast/#sc146. [Accessed: 28 October 2020].

[5] Colblindor. Colorblind population, 2006. URL https://www.color-blindness.

com/2006/04/28/colorblind-population/. [Accessed: 28 October 2020].

[6] W. W. W. Consortium et al. W3c semantic web. URL https://www.w3.org/

standards/semanticweb/. [Accessed: 7 November 2020].

[7] Cypress.io. Cypress. URL https://www.cypress.io/. [Accessed: 19 November
2020].

[8] B. C. Dylan Schiemann. Javascript and web development infoq trends report 2020,
2020. URL https://www.infoq.com/articles/javascript-web-development-

trends-2020/. [Accessed: 25 November 2020].

[9] J. Enders. Designing UX: Forms: Create Forms That Don’t Drive Your Users Crazy.
SitePoint, 2016. ISBN 9781492017547. URL https://books.google.com/books/

about/Designing_UX.html?id=ISAWnQAACAAJ.

[10] forms.app. forms.app. URL http://forms.app/. [Accessed: 28 October 2020].

[11] R. J. L. C. Group. rdf-ext, 2018. URL https://github.com/rdf-ext. [Accessed: 25
November 2020].

[12] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C recommen-
dation, W3C, 2013. URL https://www.w3.org/TR/2013/REC-sparql11-query-

20130321/. [Accessed: 4 November 2020].

[13] P. Hayes. RDF semantics. W3C recommendation, W3C, 2004. URL https://www.

w3.org/TR/2004/REC-rdf-mt-20040210/. [Accessed: 2 November 2020].

[14] M. H. Hoeflich. Legal forms and the practice of law in nineteenth-century kansas.
U. Kan. L. Rev., 64:1055, 2015.

89

https://www.smashingmagazine.com/2017/06/designing-efficient-web-forms/
https://www.smashingmagazine.com/2017/06/designing-efficient-web-forms/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://webaim.org/articles/contrast/#sc146
https://www.color-blindness.com/2006/04/28/colorblind-population/
https://www.color-blindness.com/2006/04/28/colorblind-population/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.cypress.io/
https://www.infoq.com/articles/javascript-web-development-trends-2020/
https://www.infoq.com/articles/javascript-web-development-trends-2020/
https://books.google.com/books/about/Designing_UX.html?id=ISAWnQAACAAJ
https://books.google.com/books/about/Designing_UX.html?id=ISAWnQAACAAJ
http://forms.app/
https://github.com/rdf-ext
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/
https://www.w3.org/TR/2004/REC-rdf-mt-20040210/

REFERENCES

[15] F. Inc. React, . URL https://reactjs.org/. [Accessed: 19 November 2020].

[16] G. Inc. Google forms, . URL https://docs.google.com/forms/. [Accessed: 28
October 2020].

[17] J. Inc. Jotform, . URL https://www.jotform.com/. [Accessed: 28 October 2020].

[18] S. Inc. Surveymonkey, . URL https://www.surveymonkey.com/. [Accessed: 28
October 2020].

[19] I. Jacobs, D. Raggett, and A. L. Hors. HTML 4.01 specification. WD not longer in de-
velopment, W3C, Mar. 2018. URL https://www.w3.org/TR/2018/SPSD-html401-

20180327/. [Accessed: 1 November 2020].

[20] B. Jue. Survey design tips: Is it better to have one question per page or multiple
questions on a page?, 2019. URL https://www.focusvision.com/blog/survey-

design-tips-is-it-better-to-have-one-question-per-page-or-multiple-

questions-on-a-page/. [Accessed: 28 October 2020].

[21] T. Klíma. Semantic manager for prospective clinical trials. B.S. thesis, CTU in
Prague, 2018. URL http://hdl.handle.net/10467/76531.

[22] H. Knublauch. Dash data shapes vocabulary, 2020. URL http://datashapes.org/

dash. [Accessed: 4 November 2020].

[23] H. Knublauch. Form generation using shacl and dash, 2020. URL http://

datashapes.org/forms.html. [Accessed: 4 November 2020].

[24] H. Knublauch and D. Kontokostas. Shapes constraint language (shacl). W3C
recommendation, W3C, 2017. URL https://www.w3.org/TR/2017/REC-shacl-

20170720/. [Accessed: 4 November 2020].

[25] G. Kuck. Tim berners-lee’s semantic web. SA Journal of Information Management, 6
(1), 2004.

[26] D. Longley, P.-A. Champin, and G. Kellogg. JSON-ld 1.1. W3C recommendation,
W3C, 2020. URL https://www.w3.org/TR/2020/REC-json-ld11-20200716/. [Ac-
cessed: 4 November 2020].

[27] Material-UI. Material-ui. URL https://material-ui.com/. [Accessed: 19 Novem-
ber 2020].

[28] J. Matthews. Should i use a drop-down? four steps for choosing form elements
on the web, 2001. URL https://www.effortmark.co.uk/should-i-use-a-drop-

down/. [Accessed: 28 October 2020].

[29] D. McGuinness and F. van Harmelen. OWL web ontology language overview.
W3C recommendation, W3C, 2004. URL https://www.w3.org/TR/2004/REC-owl-

features-20040210/. [Accessed: 3 November 2020].

[30] I. Merriam-Webster. Merriam-webster online dictionary. URL https://www.

merriam-webster.com/. [Accessed: 28 October 2020].

[31] S. Messenger. Moscow prioritisation, 2014. URL https://www.agilebusiness.

org/page/ProjectFramework_10_MoSCoWPrioritisation. [Accessed: 19 Novem-
ber 2020].

90

https://reactjs.org/
https://docs.google.com/forms/
https://www.jotform.com/
https://www.surveymonkey.com/
https://www.w3.org/TR/2018/SPSD-html401-20180327/
https://www.w3.org/TR/2018/SPSD-html401-20180327/
https://www.focusvision.com/blog/survey-design-tips-is-it-better-to-have-one-question-per-page-or-multiple-questions-on-a-page/
https://www.focusvision.com/blog/survey-design-tips-is-it-better-to-have-one-question-per-page-or-multiple-questions-on-a-page/
https://www.focusvision.com/blog/survey-design-tips-is-it-better-to-have-one-question-per-page-or-multiple-questions-on-a-page/
http://hdl.handle.net/10467/76531
http://datashapes.org/dash
http://datashapes.org/dash
http://datashapes.org/forms.html
http://datashapes.org/forms.html
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://material-ui.com/
https://www.effortmark.co.uk/should-i-use-a-drop-down/
https://www.effortmark.co.uk/should-i-use-a-drop-down/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.merriam-webster.com/
https://www.merriam-webster.com/
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation

REFERENCES

[32] S. Mestel. How bad ballot design can sway the result of an election,
2019. URL https://www.theguardian.com/us-news/2019/nov/19/bad-ballot-

design-2020-democracy-america. [Accessed: 28 October 2020].

[33] Microsoft. Typescript. URL https://www.typescriptlang.org/. [Accessed: 19
November 2020].

[34] The Input (Form Input) element. Mozilla Contributors, 2020. URL https://

developer.mozilla.org/en-US/docs/Web/HTML/Element/input. [Accessed: 28
October 2020].

[35] C. Murphy. A comprehensive guide to user testing, 2018. URL https://www.

smashingmagazine.com/2018/03/guide-user-testing/. [Accessed: 28 October
2020].

[36] J. Nielsen. Ten usability heuristics, 2005. URL http://www.nngroup.com/

articles/ten-usability-heuristics/. [Accessed: 20 November 2020].

[37] O. U. Press. Oxfordreference.com. URL https://www.oxfordreference.com/. [Ac-
cessed: 7 November 2020].

[38] M. Seckler, S. Heinz, J. Bargas-Avila, K. Opwis, and A. Tuch. Designing usable web
forms – empirical evaluation of web form improvement guidelines. Proceedings of
the 2014 annual conference on Human factors in computing systems, pages 1275–1284,
2014.

[39] M. Sporny, D. longley, G. Kellogg, M. Lanthaler, and N. Lindstöm. Json-ld 1.1,
2019. URL https://json-ld.org/spec/latest/json-ld/. [Accessed: 15 Novem-
ber 2020].

[40] S. s.r.o. Question types 4: Semi-closed / semi-open questions, 2020. URL
https://www.survio.com/en/blog/question-types-4-semi-closed-semi-

open-questions/. [Accessed: 6 December 2020].

[41] O. Stoica. What is a form? well, let’s tell you!, 2018. URL https://www.

123formbuilder.com/blog/what-is-a-form/. [Accessed: 7 November 2020].

[42] M. M. Taye. Understanding semantic web and ontologies: Theory and applications.
arXiv preprint arXiv:1006.4567, 2010.

[43] M. Taylor. S58 form design best practices & form ux examples, 2020. URL
https://www.ventureharbour.com/form-design-best-practices/. [Accessed:
28 October 2020].

[44] R. Tourangeau and K. A. Rasinski. Cognitive processes underlying context effects in
attitude measurement. Psychological bulletin, 103(3):299, 1988.

[45] I. Vercel. Next.js by vercel. URL https://nextjs.org/. [Accessed: 19 November
2020].

[46] K. Whitenton. Website forms usability: Top 10 recommendations. Nielsen Norman
Group, 2016. URL https://www.nngroup.com/articles/web-form-design/. [Ac-
cessed: 28 October 2020].

[47] D. Wood, R. Cyganiak, and M. Lanthaler. RDF 1.1 concepts and abstract syntax.
W3C recommendation, W3C, Feb. 2014. URL https://www.w3.org/TR/2014/REC-

rdf11-concepts-20140225/. [Accessed: 1 November 2020].

91

https://www.theguardian.com/us-news/2019/nov/19/bad-ballot-design-2020-democracy-america
https://www.theguardian.com/us-news/2019/nov/19/bad-ballot-design-2020-democracy-america
https://www.typescriptlang.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://www.smashingmagazine.com/2018/03/guide-user-testing/
https://www.smashingmagazine.com/2018/03/guide-user-testing/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
https://www.oxfordreference.com/
https://json-ld.org/spec/latest/json-ld/
https://www.survio.com/en/blog/question-types-4-semi-closed-semi-open-questions/
https://www.survio.com/en/blog/question-types-4-semi-closed-semi-open-questions/
https://www.123formbuilder.com/blog/what-is-a-form/
https://www.123formbuilder.com/blog/what-is-a-form/
https://www.ventureharbour.com/form-design-best-practices/
https://nextjs.org/
https://www.nngroup.com/articles/web-form-design/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

REFERENCES

[48] L. Wroblewski. Web Form Design: Filling in the Blanks. Rosenfeld Media, 2008. ISBN
9781933820248. URL https://books.google.com/books?id=AkBB3XKifiEC.

92

https://books.google.com/books?id=AkBB3XKifiEC

List of Figures

1.1 A web form created using the Bootstrap 4 16
1.2 Linked Open Data Cloud in 2014 . 19
1.3 Example of an RDF graph . 20

2.1 Butterfly ballot used for elections in Florida in the year 2000. 25

3.1 SurveyMonkey in a process of adding multiple-choice question 34
3.2 A conversation form type in SurveyMonkey 35
3.3 Jotform in a process of adding a single-choice question 36
3.4 Forms.app form editor in a process of adding a dropdown question 37
3.5 Google Forms form editor in a process of adding a multiple-choice question 39
3.6 Example of React Hook Form form editor 40
3.7 The Bootsnipp form editor example . 41
3.8 The formBuilder form editor in a process of adding a text field 42
3.9 Example of TopBraid EDG with the form generated using SHACL and DASH 43
3.10 The other answer option . 45

4.1 The example of SForms in the Study Manager application. 48
4.2 An example of a masked text with a help and a text field with a defined unit 50

5.1 Scenario of adding multiple questions to a form at once 55
5.2 Modification process of a form structure in a form editor 56
5.3 Process of updating a question detail . 58
5.4 Scenario capturing distribution of a form . 60
5.5 Scenario capturing a form editor with a form loaded from an external source 60
5.6 Scenario of possible usage of the commenting questions requirement 62
5.7 Scenario of possible usage of a form validation feature 64
5.8 Process of translating a form into a new language 64
5.9 Overview of some of the functionalities of users and the system in the editor 65

6.1 The application architecture . 71
6.2 The Semantic Form Editor in edit mode with four questions and the form

bar opened . 72
6.3 Adding of question properties not implemented in the form bar 75
6.4 Question properties overview in the header of questions 79
6.5 Notification about a form validation result 80

7.1 The code coverage using end-to-end tests . 84

93

List of Tables

1.1 Parties involved into forms . 15
1.2 Basic form controls overview . 16
1.3 Custom form controls overview . 17
1.4 Other form controls overview . 17

3.1 SHACL and DASH form related properties 43
3.2 Comparison of selected properties of standalone form solutions 45
3.3 Comparison of selected properties of (semantic) form editors 46

4.1 SForms form controls overview . 49
4.2 Selection of SForms properties . 52

7.1 Browser testing . 83
7.2 Comparison of selected properties of the Semantic Form Editor with exist-

ing solutions . 86

A.1 Overview of best-practices applicable for validation using SHACL 99
A.2 Overview of best-practices applicable to SForms 100

B.1 Participant profiles . 101
B.2 Duration of user testing per participant . 105

95

List of Source Codes

1.1 Basic example of an HTML form . 15
1.2 Representation of Figure 1.3 in N-Triples Turtle format 21
1.3 SPARQL query on RDF graph . 22
1.4 Representation of Figure 1.3 in JSON-LD format 22
1.5 An example of SHACL validation constraint in Turtle format 23
3.1 Shapes graph rendering a text area form control 44
4.1 Simple ontology-based smart form in a flattened structure 51
6.1 Shortened example of usage of the SForms library in the Semantic Form

Editor . 70
6.2 An example of class representing a form in the Semantic Form Editor . . . 73
6.3 A pathname with query parameters for loading a form from an external

source . 74
6.4 Algorithm for compression of the form tree structure 78

97

Appendix A

List of Form Best-Practices

This appendix summaries best-practices from Chapter 2, which are marked by either * or
†. Section A.1 is a summary of best-practices, which can be used for validation of a form
structure using SHACL language. Section A.2 represents the summary of best-practices
which are applicable to a form rendering application, concretely the SForms library.

A.1 Best-Practices Applicable for Validation Using SHACL

The left column in Table A.1 shows a best-practice constraint, and the right column indi-
cates if the specific constraint is implemented in the prototype version of the application.

Table A.1: Overview of best-practices applicable for validation using SHACL
Best-practice constraint Implemented
Full-sentence labels should not be mixed with brief prompts labels,
unless the situation requires it.

No*

Punctuation at the end of labels should be consistent. No*
Personalised wording like My or Your should be avoided in labels, un-
less the situation requires it.

Yes

Form title should be present. Yes
Form title should not be longer than five words. Yes
Words like form, online, web, for and articles a, an, the should be omitted
in a form title.

Yes

In terms of a multi-step or a wizard form type, numbered steps should
be avoided, when there is a large number of steps.

No*

As few form control types as possible should be used to avoid confusion
of a user.

No*

Questions with one checkbox can be designed using two radio buttons. #
Autocomplete and dropdown form controls should have at least four
answer options.

Yes

Time pickers should be omitted, masked text or text field with
question-level help should be used instead.

Yes

Labels should be written in sentence case. Partially
A multi-step and a wizard form type should have less than eight steps. No*
Default answers should be avoided, unless statistics show that an an-
swer has a high probability to be chosen by a user.

Yes

Conditional logic and branching should not cause dead end. No*
* - Can be implemented using SPARQL or JavaScript in SHACL. However, this functionality is not
supported by rdf-validate-shacl library, and therefore, not implemented in the prototype version.

- Cannot be applied for the current version of the SForms.

99

APPENDIX A. LIST OF FORM BEST-PRACTICES

A.2 Best-Practices Applicable to SForms

The left column in Table A.2 shows a best-practice constraint, and the right column in-
dicates if the constraint is already satisfied in the SForms library.

Table A.2: Overview of best-practices applicable to SForms
Best-practice rule Available
Every form should have a title. No
Every section should have a title. Yes
Every step should have a title. Yes
The minority of either required or optional questions should be marked
with an indicator.

No

If there is less required questions than optional ones, then it should be
stated in the top of the form by All questions are optional unless marked
(required).

No

Designing a form by using text fields, single-choice and multiple-choice
form control types should be possible.

No

Form elements and buttons should have at least 48 pixels height. No
The gap between form controls should be between 50% to 75%. Yes
Radio buttons and checkboxes should allow interaction by clicking on
their label.

Yes

Input form element should have a type corresponding to the expected
answer.

Yes

Answer field size should correspond to the expected length of an answer. Yes
Question help should be visible without an interaction. No
Reset and clear buttons should be avoided. If it is required, the undo
action should be provided.

*

Regular font typeface should be used, italics and oblique typefaces
should be avoided.

Yes

Bold font typeface should be used only for titles and emphasis. No
Font size used in form controls should be of size at least 16 pixels. Yes
Errors should be provided both with an icon and a message. No
Non-text elements should have at least 3:1 contrast. Yes
Text elements should have at least 4.5:1 contrast. Yes
Navigation should be possible using keyboard. Yes
There should be an option to provide a welcome page. No
There should be an option to provide a thanks page. No
Review page of answers should be provided in case of a long form. No
Question-level error messages should be visually attached to the error
causing question.

Yes

Longer forms should have errors summary in the top of the form. No
User should be unable to hit the submit button twice. *
Longer processes such as submitting of a form should be indicated. *
Name of a button should accurately indicate the purpose of the button. *

* - Functionality is out of scope SForms.

100

Appendix B

User Testing

B.1 Testing Setup

This section represents the materials the participants obtained during the user testing.

B.1.1 Participant Profiles

Basic information about the participants of the user testing can be seen in Table B.1.

• The basic level of coding or ontology-based knowledge represents that a participant
understands the concept of the domain, but has slight or no experience.

• The intermediate level of coding or ontology-based knowledge represents that a
participant understands the concept and has junior experience in the domain.

• The advanced level of coding or ontology-based knowledge represents that a par-
ticipant has rich experience in the domain.

Table B.1: Participant profiles

Education Coding skill Ontology
knowledge

Operating
system

Participant 1 High school Intermediate None MacOS 10.15
Participant 2 Higher Basic None Windows 10
Participant 3 Higher Advanced None Ubuntu 20.04
Participant 4 Higher Advanced Intermediate Windows 10

B.1.2 Introduction

The application is a form editor which allows a user to create smart ontology-based
forms. The form created is represented in JSON-LD format, which is afterwards used
in different applications for visualisation of the form. The form has a tree structure, that
means that there are questions which can contain subquestions. The editor allows a user
to create two types of forms: the classic form, where all questions are displayed on one
screen and the wizard form, where questions are divided into more pages (wizard steps).
Some of the basic types of questions are, for example, text fields and text areas. The form
structure also contains sections and wizard steps, which are represented as questions in
the form editor. Both can contain subquestions, as they are used for grouping of ques-
tions. The questions can be ordered or unordered within the form. That means that if
the question is ordered, it has set the preceding question, if it is unordered it is, in this

101

APPENDIX B. USER TESTING

case, sorted alphabetically. The application allows creating a new form or importing an
existing one, editing a form in a user interface or in a code. In addition a user can preview
the created form and export it.

B.1.3 Scenarios and Tasks

B.1.3.1 Scenario 1

1. Open https://semantic-form-editor.now.sh/ in your browser.

2. Start creating a new form.

3. Save the created form, set this form to be of a classic form type and make it multi-
lingual by allowing support for English and Czech language (in this order).

4. Create a question of type Section with English label Person and Czech label Osoba,
do not specify any additional properties.

5. Add a question of type Text field to the Person section with English label Full name
and Czech label Celé jméno. Make the answer of this question required.

6. Add a question of type Autocomplete question to the Person section with English
label Title and Czech label Titul. Add three answer options, in English: Mr., Mrs.
and Ms., and in Czech: Pan, Paní and Slečna.

7. Move the question with label Title before the question with label Full name.

8. Create a question of type Section that is placed after the created Person section. The
section should be on the same level as the Person section. You should not use the
Drag and Drop to place the question. The section should have English label Job and
Czech label Práce.

9. Add a Single checkbox question to the Job section with English label Are you em-
ployed? and Czech label Jste zaměstnaný?.

10. Navigate to preview mode.

11. Check the form in the Czech language.

12. Navigate back to edit mode and make the Job section to be collapsed.

13. Preview the form again.

14. Export the form by downloading.

15. Start the process of form editing again.

16. Import the downloaded form and preview the form again.

102

https://semantic-form-editor.now.sh/

APPENDIX B. USER TESTING

B.1.3.2 Scenario 2

1. Open https://semantic-form-editor.now.sh/ in your browser.

2. Start creating a new form.

3. Save this created form and set this form to be of a wizard form type.

4. Create a question of a wizard step type with label MUSIC.

5. Add a text area question to MUSIC section with label What do you think about this
song?.

6. Navigate to edit mode of a source code of a form.

7. Add a property code below to the @context part of the source code of a form.

1 "has-media-content": {

2 "@id":"http://onto.fel.cvut.cz/ontologies/form/has-media-content"

3 }

8. Find a question with label What do you think about this song? and delete its has-
layout-class property.

9. Save changes and get back to the user interface edit mode.

10. Hit validate a form.

11. Find questions with issues and fix them.

12. Add has-media-content property to the Music question with URL to your favourite
song on YouTube1 (The URL has to be in the embed format. The embed format can
be found by clicking on the share button under the YouTube video. Choose Embed
and copy the URL next to the src property).

13. Duplicate the Music section.

14. Delete the What do you think about this song? question in the duplicated section.

15. Rename the duplicated Music section to Empty tab and remove its has-media-content
property.

16. Preview the form.

17. Answer the question What do you think about this song? and save the answer to the
form.

18. Get back to edit mode and change the form type to the classic form type.

19. Preview the form again.

20. Export the form by copying the source code of the form to the clipboard.

1Online video sharing platform available at https://www.youtube.com/ to 23/11/2020

103

https://semantic-form-editor.now.sh/
https://www.youtube.com/

APPENDIX B. USER TESTING

B.1.4 Post-Test Questions

• What was your favourite part of the application?

• What was the most confusing part of the application?

• How is your overall experience with this application?

B.2 Post-Test Questions Answers

In this section, questions from Section B.1.4 are answered by the participants.

• What was your favourite part of the application?

1. The participant admired the styling of the application. The application did
what was expected and the processes were understandable.

2. The participant liked the possibility to download a source code of a form and
its content.

3. The participant liked that he can add properties to the @context part of the
form source code and use it in the form editor.

4. The participant liked that he can edit the form either using the user interface
or the editor of the source code of a form.

• What was the most confusing part of the application?

1. Configuration of question type using form control with label Layout class.

2. Configuration of question type using form control with label Layout class. (The
same as with participant 1)

3. Questions are sorted alphabetically by default.

4. The presence of multiple add question buttons with different purposes. The
naming of form controls, such as Layout class.

• How is your overall experience with this application?

1. The editor always did what the participant expected, so it seemed intuitive.

2. The participant rated the experience with the editor by 8 points out of 10.

3. From a technical perspective, the participant experienced only one bug, which
happened after loading a previously saved form. Overall, he would say that
the application is in a great shape (short response times etc.).

4. The participant rated the experience with the editor by 7.2 points out of 10.

B.3 Duration of User Testing

The duration of user testing was measured starting with introduction and ending with
answering of the post-test questions. The average duration of one user testing session
was almost 58 minutes. The final duration per participant can be seen in Table B.2.

104

APPENDIX B. USER TESTING

Table B.2: Duration of user testing per participant

Participant Duration
Participant 1 46 minutes
Participant 2 53 minutes
Participant 3 58 minutes
Participant 4 74 minutes

B.4 Problems Found

The findings are divided into three categories according to its severity. Together with the
severity, every finding contains a participant, a scenario and a task, where it was found,
as well as a description of the issue. Some of the findings also contain a reason why the
specific severity was chosen and a piece of information whether the problem was fixed
in the prototype version. The categories are listed below:

• High severity

– A finding that prevents using the application or has a big impact on the usage
of the application. It should be fixed immediately.

• Medium severity

– A finding that has only a little impact on the usage of the application, but it
should be fixed as soon as possible.

• Low severity

– A finding that has only a little impact on the usage of the application. It can
be fixed later.

Finding 1: Form element for selecting form controls labeled by Layout class

• Severity: Medium

• Found by participants: 1, 2, 3, 4

• Found in scenario: 1

• Found in task: 4

• Description: The participants could not find how to set a question type, because
the form control for setting the question type was named unaccordingly.

• Reason of severity: The Layout class form control should be renamed, because
without knowing a structure of a form source code, a form designer cannot know,
that the Layout class form element serves for choosing form control type.

• Fixed: The wording of the label was changed to Question type and properties.

Finding 2: The form bar closes on click outside

• Severity: Medium

105

APPENDIX B. USER TESTING

• Found by participants: 3, 4

• Found in scenario: 1

• Found in task: 4

• Description: The participants clicked outside of the form bar component during
the configuring process of a question, and the form bar closed. They did not expect
the closing to happen. Also, they expected that the configuration data of a question
would save automatically.

• Reason of severity: Participants did not expect that they would lose the filled data
when clicking outside the form bar component.

Finding 3: Order of answer options in Layout class form control

• Severity: Low

• Found by participants: 4

• Found in scenario: 1

• Found in task: 4

• Description: The participant expected the answer options of the Layout class form
control to be sorted alphabetically when there is no natural ordering of the answer
options.

• Reason of severity: It does not have a big impact on the usage of the application.

• Fixed: The Layout class form control answer options are now sorted alphabetically.

Finding 4: Id of a question

• Severity: Low

• Found by participants: 1, 4

• Found in scenario: 1

• Found in task: 4

• Description: The participants were confused by the fact that the @id form control
is displayed in the top of the form bar, but it cannot be modified. The participants
suggested hiding the @id form control and displaying it only when a user desires.

• Reason of severity: This finding does not have a big impact on the usage of the
application.

Finding 5: Adding a question to a section question

• Severity: Low

• Found by participants: 2, 4

• Found in scenario: 1

106

APPENDIX B. USER TESTING

• Found in task: 5

• Description: The participants looked for an option to add a subquestion of a sec-
tion in its menu and form bar, but it was not present there.

• Reason of severity: The subquestion to a question can be added by a plus button
on the left of the question menu.

• Fixed: The option to add a subquestion was also added to the question menu.

Finding 6: Adding answer options

• Severity: Low

• Found by participants: 3

• Found in scenario: 1

• Found in task: 6

• Description: The participant overlooked the Add answer options in the form bar. He
suggested making the button larger. Moreover, he was not sure if he added answer
options correctly. Therefore he suggested indicating it more clearly.

• Reason of severity: The add button is located under in the form bar under Remote
answer options URL and displays how many answer options there are.

Finding 7: Adding a question to a specific place

• Severity: Low

• Found by participants: 2, 3

• Found in scenario: 1

• Found in task: 8

• Description: The participants struggled with finding how to add a question di-
rectly to a specific place. They overlooked areas indicating the possibility to add a
question to that area, which are only visible on mouseover. They suggested show-
ing those areas always, without any need of an interaction and highlighting those
furthermore on mouseover.

• Reason of severity: When a user knows about the behaviour of this functionality,
he is not likely to get confused.

Finding 8: Navigating between modes

• Severity: Medium

• Found by participants: 3, 4

• Found in scenario: 1

• Found in task: 10

107

APPENDIX B. USER TESTING

• Description: The participants expected to use a button to navigate between edit
mode and preview mode instead of using the navigation bar.

• Reason of severity: Not knowing how to navigate in an application can slow down
a user’s workflow. On the other hand, when a user knows about the behaviour of
this functionality, he is not likely to get confused.

Finding 9: The invisible font in a language dropdown in preview mode

• Severity: Medium

• Found by participants: 2, 3

• Found in scenario: 1

• Found in task: 11

• Description: In preview mode, the participants’ browser displayed a language
dropdown with a white font in front of a white background.

• Reason of severity: A user saw an empty dropdown. It is caused by dark mode
enabled in the system.

• Fixed: The error was fixed, and the font is visible in the dark mode as well as in
normal mode.

Finding 10: Collapsing a section

• Severity: Medium

• Found by participants: 1, 2, 3, 4

• Found in scenario: 1

• Found in task: 12

• Description: The participants were unsure of how to set a question to be collapsed
because there is no form control corresponding to it. The confusion was due to the
collapsed property being set in the Layout class form control.

• Reason of severity: This problem relates to the Finding 1. The Layout class form
control should be separated into form controls, in order to have form control types
and its properties separated and named correctly.

• Fixed: The wording of the label was changed to Question type and properties as a
quick workaround.

Finding 11: Exported form source code is not formatted

• Severity: Low

• Found by participants: 1

• Found in scenario: 1

• Found in task: 16

108

APPENDIX B. USER TESTING

• Description: After exporting a form, the participant found the downloaded form
in JSON-LD format confusing, as the form source code was not formatted.

• Reason of severity: This finding does not influence the functioning of the applica-
tion.

• Fixed: This shortcoming was fixed, and the exported form source code is now for-
matted.

Finding 12: File was exported without a file extension

• Severity: Medium

• Found by participants: 3

• Found in scenario: 1

• Found in task: 16

• Description: When a participant exported a form by downloading, it did not con-
tain a file extension, and therefore he was not able to import it to the form editor
again unless he renamed the file in the system to have a .json extension.

• Reason of severity: A user was unable to continue without a modification of the
downloaded file in the system.

• Fixed: An exported file now has a .json extension explicitly coded in the source
code of the editor.

Finding 13: Change a form type

• Severity: Medium

• Found by participants: 1, 4

• Found in scenario: 2

• Found in task: 3

• Description: The participants were confused about the fact that a switch form
control is used for changing a form type. Moreover, it is not clearly visible, which
form type is being chosen. Instead, the participants suggested using a single-choice
question or an image choice question for the purpose of choosing a form type. The
fact that the form configuration modal closes right after the form type is changed
also caused participants confusion.

• Reason of severity: The switch form control is not suitable for this type of action.
Also, since the editor will be further extended by the possibility to create forms of
more different types, the switch form control should be changed to another one.

Finding 14: Navigation between edit mode in user interface and edit mode in source
code

• Severity: Low

• Found by participants: 4

109

APPENDIX B. USER TESTING

• Found in scenario: 2

• Found in task: 6

• Description: The participant expected that he can switch between edit mode in
source code and edit mode in the user interface by clicking one button.

Finding 15: Indication of different edit mode types in the navigation bar

• Severity: Low

• Found by participants: 4

• Found in scenario: 2

• Found in task: 6

• Description: The participant expected to see an indication of whether he is navi-
gated in source code edit mode or user interface edit mode in the navigation bar.
He would appreciate a possibility to navigate between those two edit mode types
using the navigation bar.

Finding 16: Text field visualisation with no layout class set

• Severity: Low

• Found by participants: 4

• Found in scenario: 2

• Found in task: 10

• Description: The participant was confused about the fact that the form editor pre-
views a question with no layout class set as a text field.

• Reason of severity: This issue is caused by the fact that if no layout class is set,
then the question is treated as a text field in SForms.

Finding 17: Load a form from clipboard

• Severity: Severe

• Found by participants: 4

• Found in scenario: 2

• Found in task: Out of scope of the scenario after task 20

• Description: The participant tried to load a newly created form by pasting the form
source code from a clipboard to the JSON editor, and the application got stuck.
After reloading, the application started working.

• Reason of severity: This bug causes impossibility of using the application.

• Fixed: Loading of a form using the JSON editor error was fixed.

110

Appendix C

Installation Manual

C.1 Required Software

• Semantic Form Editor - see the enclosed CD

• Node.js version 14 - available for download at https://nodejs.org/dist/

C.2 Installation

1. Download and install Node.js

2. Copy the semantic_form_editor.zip file from the enclosed CD to your computer

3. Unzip the semantic_form_editor.zip file

4. Open the command line and navigate to semantic_form_editor folder

5. Type command npm install and wait until the process finishes

6. Type command npm run build and wait until the process finishes

7. Type command npm run start

8. Open the browser at http://localhost:3000/

9. Now you can create a new form or import an existing one

111

https://nodejs.org/dist/
http://localhost:3000/

Appendix D

The Contents of the Enclosed CD

• semantic_form_editor.zip - source code of the application

• klimato2_2021_mt.pdf - master thesis report

• master_thesis_source.zip - source code of the master thesis report

• README.txt - installation manual

113

	Introduction
	Background
	Form
	Paper Form
	Digital Form
	Web Form

	Semantic Web
	Linked Data
	Ontologies
	RDF
	OWL
	SPARQL
	JSON-LD
	SHACL

	Form Design Guidelines
	Wording
	Wording of Questions
	Wordings of Other Parts of the Form
	Required and Optional Fields

	Form Layout
	Question Field Types
	Alignment
	Buttons
	Typography
	Colours

	Flow of a Form
	Question Order
	Form Types
	Before and After a Form
	Validation
	Default Answers
	Conditional Logic and Branching

	Existing Solutions
	Standalone Form Solutions
	SurveyMonkey
	JotForm
	forms.app
	Google Forms

	Form Editors
	React Hook Form
	Bootsnipp
	formBuilder

	Semantic Form Editors
	Generating of SHACL and DASH Forms for TopBraid EDG

	Summary
	Summary of Standalone Form Solutions
	Summary of (Semantic) Form Editors

	S-Forms
	Current State
	Technology Stack
	Form Controls
	Validation

	Ontology-Based Smart Form Representation
	Properties for Representation of Forms
	Form Building

	Application Design
	Analysis of the Design of the Semantic Form Editor
	Software Requirements

	Analysis of Required Modifications of SForms
	Update of Technology Stack

	Implementation
	The SForms Library
	Updating Process of SForms
	Example Usage of SForms in Application

	The Semantic Form Editor
	Technology Stack and Architecture
	Layout
	Structure of Data
	Implementation of Functional Requirements
	Implementation of Non-Functional Requirements

	Testing and Evaluation
	Testing
	Browser Testing
	Unit Tests
	End-to-End Testing
	User Testing

	Evaluation
	Verification of Functioning with Complex Forms
	Comparison with Existing Solutions

	Conclusion
	References
	List of Figures
	List of Tables
	List of Form Best-Practices
	Best-Practices Applicable for Validation Using SHACL
	Best-Practices Applicable to SForms

	User Testing
	Testing Setup
	Participant Profiles
	Introduction
	Scenarios and Tasks
	Post-Test Questions

	Post-Test Questions Answers
	Duration of User Testing
	Problems Found

	Installation Manual
	Required Software
	Installation

	The Contents of the Enclosed CD

