
Master Thesis

Using Certificate Transparency to detect malware in
network telemetry

Bc. Jan Karsch
Supervisor: Ing. Jan Brabec

January 2021

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

438028Personal ID number:Karsch JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Cyber SecuritySpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Using Certificate Transparency to detect malware in network telemetry

Master’s thesis title in Czech:

Použití Certificate Transparency pro detekci malwaru ze síťového provozu

Guidelines:
This thesis is concerned with the use of Certificate Transparency (CT) service
to detect communication related to malware in enriched Netflow telemetry.
The concrete goals are:
1. Study the CT service and the details of X.509 certificates. Review relevant
literature concerning the use of Certificate Transparency and other TLS-
related information in malware detection.
2. Design features that can be extracted from data in CT and add automated
pipeline for enriching of Netflow data with these features to existing security
product backend.
3. Use the features in addition to other contextual Netflow data to classify
network telemetry for malware. The choice of classifier should be sound
from the perspectives of related art and various engineering tradeoffs that
will be described in the thesis.
4. Experimentally evaluate the created classification pipeline.
a. Describe and use suitable evaluation scheme for this task.
b. If suitable, evaluate different classifier alternatives.
c. Using suitable methods evaluate the utility of individual features and
perform ablation study to determine the added value of CT-based
features.

Bibliography / sources:
[1] Laurie, Ben. Certificate transparency. Communications of the ACM, 2014, 57.10:
40-46.
[2] Fasllija, Edona, Hasan Ferit Enişer, and Bernd Prünster. "Phish-Hook: Detecting
Phishing Certificates Using Certificate Transparency Logs." International Conference
on Security and Privacy in Communication Systems. Springer, Cham, 2019.
[3] Criminisi, Antonio, Jamie Shotton, and Ender Konukoglu. "Decision forests for
classification, regression, density estimation, manifold learning and semi-supervised
learning." Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114 5.6 (2011):
12.
[4] Gustafsson, Josef, et al. "A first look at the CT landscape: Certificate transparency
logs in practice." International Conference on Passive and Active Network
Measurement. Springer, Cham, 2017.
[5] Anderson, Blake, and David McGrew. "Identifying encrypted malware traffic with
contextual flow data." Proceedings of the 2016 ACM workshop on artificial intelligence
and security. 2016.

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Jan Brabec, Department of Computer Science, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 29.07.2020

Assignment valid until: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Jan Brabec

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Abstract

The goal of this thesis is to explore Certificate Transparency service and determine whether

it can be used as a valuable data source in the field of malware detection. Certificate

Transparency serves as an additional layer for source integrity verification in Public Key

Infrastructure. The service stores certificates into public logs, publishes an interface for

certificate manipulation, and thus can be used as a data source. Append-only nature

of logs creates a certificate database which can be subsequently processed and used for

extraction of historical data as well as for enhancing existing database of features used

for malware detection. Within the scope of this thesis is implemented an algorithm for

processing the history of certificates for different hostnames and the extraction of newly

designed features which are then analyzed. The final part of this thesis involves a multi-

nomial malware classification with use of a random forest classifier and different sets of

features for comparison. Evaluation of the model with new features resulted in improved

malware classification and therefore the history of certificates has shown to be a valuable

data source.

Keywords: tls protocol, certificate history, certificate transparency, malware, detec-

tion, machine learning, random forest

Abstrakt

Cílem této práce je prozkoumat službu Certificate Transparency a zjistit, zda by mohla

být použita jako užitečný zdroj dat pro detekci malwaru. Certificate Transparency slouží

jako dodatečná vrstva pro ověření integrity zdroje v rámci Public Key Infrastructure.

Ukládá certifikáty do veřejných logů, poskytuje rozhraní pro manipulaci a lze ji tedy

použít jako zdroj dat. Tím, že do logů lze certifikáty pouze přidávat, vzniká historické

uložiště certifikátů, které mohou být následně zpracovány a použity pro extrakci histo-

rických dat a obohacení existující databáze příznaků pro detekci malware. Součástí této

práce byla implementace algoritmu pro zpracování historie certifikátů pro odlišné host-

namy a extrakce nově navržených příznaků, které byly následně analyzovány. Na závěr

je provedena multinomiální klasifikace malwaru s použitím modelu náhodného lesa a

různých množin příznaků pro porovnaní. Model obohacený o nově navržené příznaky

vykázal zlepšení v klasifikaci malwaru, a ukazuje se tedy, že historie certifikátů je uži-

tečný zdroj dat.

Klíčová slova: tls protokol, historie certifikátů, certificate transparency, malware, de-

tekce, strojové učení, náhodný les

Author statement for graduate thesis:

I declare that the presented work was developed independently and that I have listed all

sources of information used within it in accordance with the methodical instructions for

observing the ethical principles in the preparation of university theses.

Prague, date

signature

3

Acknowledgements

First of all, I want to thank my supervisor Ing. Jan Brabec for his patience, guidance,

overall support, and in general for giving me such a great opportunity to work on an

interesting topic as well as be a part of his team.

Also, I would like to thank my dearest friends Jakub, Tomas, and Tomas for always

trying to keep me sane, giving me great programming-related advice and general support

throughout the studies.

5

Contents

1 Introduction 9

2 TLS protocol 11

2.1 TLS Handshake and Record protocol . 12

2.1.1 Asymmetric encryption . 12

2.1.2 Symmetric encryption . 13

2.1.3 TLS Handshake . 15

2.2 Public Key Infrastructure . 18

2.2.1 X.509 certificate . 19

2.2.2 Certificate Authority . 19

2.3 HTTPS and Internet Browsers . 21

3 Certificate Transparency 23

3.1 Purpose of Certificate Transparency . 24

3.2 Infrastructure . 25

3.2.1 Logs . 25

3.2.2 Monitors . 27

3.2.3 Auditors . 28

3.3 Proofs . 29

3.3.1 Merkle Trees . 29

3.3.2 Log Proofs . 30

3.3.3 Consistency Proofs . 31

3.3.4 Audit Proofs . 32

3.4 Usage in HTTPS and Browsers . 33

3.4.1 Third-party services . 35

4 Task definition 37

4.1 Classification . 37

4.2 Model evaluation . 38

4.2.1 Confusion Matrix . 39

4.2.2 Precision . 40

4.2.3 Recall . 40

4.3 Features . 40

7

CONTENTS

4.3.1 Current Approach . 41

4.3.2 Designed Features . 41

5 Pipeline 43

5.1 Collecting certificates . 43

5.2 Extraction pipeline . 44

5.2.1 Spark fundamentals . 44

5.2.2 Data Load - Phase 1 . 45

5.2.3 HostName Mapping - Phase 2 . 46

5.2.4 Feature extraction - Phase 3 . 46

5.2.5 Optimization Obstacles . 47

5.3 Proof of Concept approach . 47

5.4 Extracted features . 48

6 Analysis 51

6.1 August 2020 . 51

6.1.1 Global Statistics . 51

6.2 Feature analysis . 52

7 Detection 59

7.1 Random Decision Forest . 59

7.1.1 Decision Trees . 60

7.1.2 (Hyper)parameters . 61

7.2 Experiments . 61

7.3 August 2020 . 62

7.3.1 Baseline . 62

7.3.2 CT indicator . 63

7.3.3 CT Features . 64

7.4 October 2020 . 65

7.4.1 Baseline . 65

7.4.2 CT Features . 66

8 Conclusion 69

Bibliography 71

A October 2020 analysis 77

A.1 Global Statistics . 77

A.2 Feature analysis . 78

B Attached files 83

8

Chapter 1

Introduction

Securing the Internet is indeed a challenging task and especially when it experiences

enormous growth as in the past two decades. Critical internet mechanisms and protocols

are regularly updated and evolving over time however by the same token also evolve

internet threats which are more and more sophisticated and harder to detect. One of the

solutions is the employment of Machine Learning for network log monitoring and threat

detection in action.

Nevertheless, with evolving security mechanisms, general requirements of endpoint

users have also developed, and thus it became almost a standard to apply encryption to

ensure users’ privacy whenever it is possible [1]. We are here referring primarily to HTTP

protocol responsible for the majority of the Internet network traffic with SSL/TLS pro-

tocol as its main security enhancement ensuring confidentiality and integrity in terms of

cybersecurity goals. With that in mind, all malevolent internet activities are way harder

to detect as it is not possible to work with the message content itself and therefore ad-

versaries also benefit from encrypted traffic because their actions can remain unseen. It

is then appropriate to adopt and utilize different useful (meta)data sources such as TLS

certificates.

An essential part of the TLS protocol is the so-called Public Key Infrastructure which

brings a concept of trust and methods for authenticity verification of communicating

sides to the whole system by implementing TLS certificates. Hand in hand with certifi-

cates also come so-called certificate-based threats like certificate misuse or compromised

authorities. This system is built on the basis of general trust in third parties and when-

ever such a trusted party is compromised, the whole system is compromised as well.

Exactly as have happened in 2011 when one of the trusted parties has been compro-

mised and fraudulently issued a certificate for Google hostnames. As a result, Google

has decided [2] to implement Certificate Transparency serving as an enhancement and

additional verification layer for existing Public Key Infrastructure which deals with and

mitigates previously mentioned certificate-based threats. Certificate Transparency is the

main focus of this thesis primarily from the perspective of data source out of which might

possibly be extracted various useful information for malware detection on the top of al-

ready existing ones. Therefore, the goal of this thesis is to enhance existing data that are

9

CHAPTER 1. INTRODUCTION

already used for malware detection.

This thesis is structured into several chapters. In the very first Chapter 2 we will dive

into TLS protocol with a description of its main used mechanisms starting with encryp-

tion, followed by so-called TLS handshake and description of Public Key Infrastructure.

Chapter 3 thoroughly elaborates Certificate Transparency service with all used mech-

anisms, infrastructural components (certificate log, monitor, auditor) and internal pro-

cesses.

Chapter 4 defines our general task from the perspective of machine learning and

malware detection. This chapter outlines the problem of classification and model com-

plexity with different evaluation metrics. As our goal is to extract new information useful

for detection, it contains a description of the current state and covers the very first draft

of designed features that could be extracted from Certificate Transparency.

In Chapter 5 we will go through an extraction pipeline that has been implemented

for Spark distributed environment suited for handling of big-data. Part of this chapter

is a description of encountered obstacles and the final list of extracted features from

Certificate Transparency.

Analysis of extracted data is part of Chapter 6. Besides global statistics, this chapter

depicts a difference between malware and non-malware network data from the perspec-

tive of extracted information by comparing their data distributions plots.

The very last Chapter 7 contains a description of the selected machine learning clas-

sification model as well as a final analysis of performed malware detection experiments

with corresponding results.

10

Chapter 2

TLS protocol

More and more content is being served in encrypted form and special mechanisms have

to be present to ensure that communication between parties is secured. In terms of cy-

bersecurity, we aim to satisfy three main goals known under shortcut CIA which stands

for Confidentiality, Integrity and Availability.

Confidentiality is a state when information is being available only to those subjects it

was intended to be. Therefore, it represents privacy. Integrity represents a state when the

transmitted information must be resistant to any unwanted modification or at least inter-

ested parties must know about such tampering actions and from a practical perspective,

there has to be some detection mechanism. When going a bit deeper, and especially in the

case of TLS protocol, we have to distinguish between data integrity and source integrity.

Data integrity covers the state of transmitted data however source integrity ensures that

in our system has not happened any modification of origin subject, therefore we always

want to know who is the communicating party on the other side and also that this party

is the one we want to actually exchange information with. Availability represents the

state when the information which authorized subjects want to access, is available when

needed [3].

Out of the three described general cybersecurity goals, even though availability is an

important criterion, the main interests of this thesis are confidentiality and integrity, be-

cause that is essentially what TLS protocol aims for. Confidentiality, secrecy, and privacy

are practically ensured by data encryption. Source integrity is ensured by certificates

and Public Key Infrastructure (PKI), data integrity by hashing in general and with so-

called message authentication mechanisms.

Transport Layer Security (TLS), it is also often referred to as Secure Socket Layer (SSL),

which is its predeceasing version, is a widely used protocol providing privacy and data

security in internet communication. TLS is currently in version TLSv1.3 published in

2018, the first SSL version was defined back in 1999. From a networking perspective,

there is well-known OSI reference model which defines distinguish layers and hierarchy

between different protocols [4]. This text will not go deeper, however, practical and

key thing to note is that TLS sits on top of the Transporation layer (TCP[5] and UDP[6]

protocols) and encapsulates incoming traffic from the above Application layer. Therefore

11

CHAPTER 2. TLS PROTOCOL

TLS is bound to Application layer protocols such as HTTP, IMAP, and many others.

For purpose of this thesis, the primary focus is put on HTTP, a very common and

well-known Application layer protocol running over TCP, in combination with TLS it is

called HTTPS, more in Section 2.3 .

This thesis builds primarily on the Certificate Transparency chapter (Chapter 3), nev-

ertheless, it was critical to understand inner TLS concepts to fulfill the objectives of this

thesis. That means, the scope of this chapter essentially covers practical aspects of TLS

and implemented mechanisms in such a way, so we have no problem with understand-

ing the following chapters. TLS communication has two main components: handshake

protocol and record protocol. TLS works with modern and complex cryptographic mecha-

nisms to ensure confidentiality, thus both symmetric and asymmetric cryptosystems are

used and as was previously mentioned, hashing functions with message authentication

mechanisms are also included to ensure data integrity.

2.1 TLS Handshake and Record protocol

Critical part of the TLS protocol is authentication of both communicating sides. Private

and secure communication is provided by encryption, however, the question is: How

two parties, unknown to each other, can start encrypting traffic and exchange any kind

of information in a secure way? The usually known model is that ciphers take some secret

key as an input, which is known to both parties. But in this situation, an encryption key

in unencrypted (plain) form cannot be exchanged as it could be sniffed1 by an adversary.

That would be the case of so-called symmetric encryption which uses only one key for

encryption as well as for decryption of the data. The solution for this is to use asymmetric

encryption, which uses different keys for encryption and decryption.

2.1.1 Asymmetric encryption

Asymmetric ciphers allow us to use two different keys, public pe and private pd for en-

cryption and decryption. If we define enc and dec as operations for encryption and de-

cryption in asymmetric cipher with input data a and previous keys pe and pd , the follow-

ing can be written

dec(pd , enc(pe, a)) = dec(pe, (enc(pd , a)) = a

thus, both keys in the same operation behave as inverse functions to each other. Take

into account that this is extremely simplified and this thesis will not go into a more

detailed explanation as there are also various different asymmetric ciphers, each based

on a different mathematical principle.

Anyway, a requirement for such cipher is to have two different paired keys, public

and private, whilst the public one is visible to anyone but the private key is always kept

as a secret. Hence, it became a standard to use mathematical methods based on so-called

1In network security, sniffing stands capturing network traffic

12

CHAPTER 2. TLS PROTOCOL

hard problems which ensure that with knowledge of only a public key, it would cost an

extensive amount of computational power to actually find matching private key with

brute-force2 or guessing methods. Among such hard problems belong Integer factorization

used in RSA cryptosystem [7], Discrete logarithm in cyclic groups used in Diffie-Hellman key

exchange [8] and last but not least, cryptography build on Elliptic curves [9].

The downside of asymmetric encryption is that it consumes and requires a lot of

computational power because hard problems usually require longer keys to be “hard

enough”. For instance, RSA uses a key of length 2048 bits but AES3 works with a key

length of 128 bits. Therefore, TLS protocol uses in handshake asymmetric encryption

only to negotiate and exchange initial information and then continues with a symmetric

bulk cipher, we omit here asymmetric encryption used in certificates.

2.1.2 Symmetric encryption

Symmetric ciphers use the same key for data encryption and decryption and from the

top level, two major categories are recognized: Block ciphers and Stream ciphers [10].

Block ciphers

Block ciphers take the input plaintext data and convert it into ciphertext by taking and

encrypting text blocks of a specified length. There are several modes of operation, also

known as chaining modes, which define and affect how are block fragments chained

during encryption. The most trivial one is Electronic Code Book (ECB) mode that takes

one block after another and encrypts it independently on others. The simplicity of this

mode creates a potential attack vector as each data block is independent of others. That

also means blocks of the same exact values will be encrypted into the same exact blocks

of ciphertext and therefore leave some information about the plaintext. This specific

mode is mentioned primarily for its simplicity and to point out how critical parameter it

actually is.

Figure 2.1: Encryption with Electronic Code Book (ECB) chaining mode, P1-Px

represent blocks of plaintext and C1-Cx corresponding cipher text blocks

TLS v1.2 [11] used Cipher Block Chaining (CBC) mode, TLS v1.3 [4] however dropped

its support, due to vulnerabilities coming from padding oracle attacks [12], and prefers so-

2Brute-force methods generate and try every single possible key from a keyspace.
3Advanced Encryption Standard (AES)

13

CHAPTER 2. TLS PROTOCOL

called Galois/Counter (GCM) mode. The advantage of GCM mode is that it also already

provides data integrity verification. In the case of CBC chaining, it would be necessary to

use additional Message Authentication Code (MAC) such as CBC-MAC or HMAC. Essen-

tially, this method creates another block fragment for message verification and combines

it with the ciphertext or the plaintext (based on the selected type) which serves as a data

integrity proof of the whole transmitted data message [13].

Figure 2.2: Encryption with Cipher Block Chaining (CBC) chaining mode, P1-Px

represent blocks of plaintext and C1-Cx corresponding cipher text blocks

Throughout the years, as encryption standards and requirements developed, recom-

mended encryption algorithms have also changed. For block ciphers, it was Data Encryp-

tion Standard (DES) cipher, developed in the 1970s with a key length of 56 bits, which is

for modern computational standards too short and could be easily brute-forced (Space

of 256 possible keys). Based on that, in the 1990s Triple DES (3DES) was introduced

and then broken with Meet-in-the-middle attack. NIST4 has subsequently announced a

competition in 1997 for a new encryption standard that should substitute DES for its

brute-force vulnerabilities. The winning cipher was Rjindael and it became a new Ad-

vanced encryption standard (AES) until now [14, 15]. The size of the AES encryption key

is 128, 192, or 256 bits with a block size of 128 bits.

Stream ciphers

One-time pad is considered to be a perfect cipher, it applies a completely random key,

with the same length as a plain text, that can not be used more than once. To create

a ciphertext, the One-time pad performs XOR operation with the key against the plain

text.

Stream ciphers convert plain text into cipher text bit by bit. However, from nowadays’

perspective, it is not possible to have a key with a length of the plain text, change it for

every single transmitted message and use another communication channel to transmit

the encryption key itself.

4National Institute of Standards and Technology of United States

14

CHAPTER 2. TLS PROTOCOL

Stream ciphers use a key of the fixed length and implement pseudorandom generators

that generate so-called key stream with the same length as the input plain text, commu-

nicating parties then have to synchronize those generators, and based on that, there is no

need to communicate generated keys. Conversion to ciphertext is exact same as in the

case of One-time pad, XOR operation is performed between the generated keystream and

plain text [10].

2.1.3 TLS Handshake

In the following text, we aim to cover both of the two main initial TLS parts: handshake

and record protocol and describe, in a practical manner, every performed step. The most

recent version of TLS is v1.3, older version v1.2 is still supported by TLS clients (Internet

browsers in our case), versions v1.0 and v1.1 are both however deprecated and should

not be used anymore. TLS handshake, among other things, differs across versions and

the following text will outline only the most recent version v1.3 which became a new

standard in 2018, and proposes a general improvement in performance and security in

comparison with the previous version v1.2 [13, 16].

Handshake protocol

Handshake protocol serves as a mechanism for authentication of both communicating

parties. It is responsible for negotiating necessary cryptographic parameters such as

modes, keys, and authentication of both parties. [4]

The text further continues with a description of handshake v1.3 steps (TCP handshake

(SYN, SYN-ACK, ACK) is omitted).

1. ClientHello

The client creates a request and initiates the connection, further provides the following

information fields.

• Supported versions of TLS

• Client random data

• Supported Cipher Suites both for authentication and for key exchange

• Key Share is a list of public keys the client assumes the server will support. It allows

all exchanged messages after ServerHello to be encrypted. This is actually one of

the optimizations that took place in v1.3 because the server can start encrypting

1-RT5 earlier.

• Server Name Identification (SNI) is the name of the destination server In a situation

when a server hosts multiple virtual servers on a single IP address, without this

information, it would not be able to tell which one to contact.

• Extensions
5One Round Trip - the amount of time between sending the data and getting an acknowledgment signal

that it was received.

15

CHAPTER 2. TLS PROTOCOL

2. ServerHello

Response to the hello message from the client. The message consists of the following

fields.

• Server Random Data

• Protocol version negotiated

• Selected cipher suite - Ciphers which will be used for symmetric encryption and

hashing function for message authentication in Record Protocol

• Key Share - Public key sent by the server. The client can start encrypting after

receiving this information. This is the security improvement in v1.3 over earlier

TLS versions, where the whole handshake was exchanged in plaintext.

• Extensions

From now and on, communication is encrypted using the symmetric bulk cipher and

MAC.

3. Encrypted extensions sent by server

Additional TLS extensions sent by the server that are not related to parameter negotia-

tion.

4. X.509 Certificates for server authentication

X.509 digital certificate sent by the server for authentication and proving source integrity,

more in Subsection 2.2.1.

5. Certificate Verify

The server must prove that it owns the sent certificate from the previous step and has

a matching private key to the public one included in X.509 certificate. The server will

sign (encrypt) hash of handshake messages, the client can then verify (decrypt) this using

server’s public key from the certificate.

6. Server Handshake Finished

Verification of the whole handshake from the server-side. It uses a hash function on all

handshake messages and verifies that there hasn’t happened any tampering. Take into

account that both sides sent Random Data in client and server hello. That is a critical

component of initial unencrypted communication because it prevents possible replay

attacks as those generated random data are unique to this session and keys.

7. Client Handshake Finished

Same as above, this is the verification that the TLS handshake was successful. The client

calculates the hash of all transmitted handshake messages.

16

CHAPTER 2. TLS PROTOCOL

Handshake finished, both parties have authenticated each other and encrypted data

exchange can begin in Record protocol

Figure 2.3: TLS handshake diagram

Record protocol

Record protocol is initiated right after the handshake protocol when parties have ex-

changed every necessary information. This protocol uses negotiated parameters and se-

cures transmitted network traffic with a symmetric cipher. Record protocol also manages

all messages that are about to be transmitted and divides them into blocks [4]. In the pre-

vious text, we have already mentioned that during transmission, data integrity has to be

assured with Message Authentication Code (MAC) mechanisms such as Hash-based message

authentication code (HMAC) or specific chaining mode such as GCM with Galois Message

Authentication Code (GMAC) that already provides integrity check.

Figure 2.4: Negotiated cipher suite in Firefox internet browser on visiting google.com

On Figure 2.4 we can see negotiated cipher suite on visiting google.com hostname

17

CHAPTER 2. TLS PROTOCOL

with the internet browser. Browsers bring many useful information regarding to general

internet security and the negotiated suite is read as follows.

TLS - Protocol used

AES_128_GCM - Advanced Encryption Standard used for symmetric encryption with

block size and key length of 128 bits in Galois/Counter mode.

SHA256 - Hashing function used during the handshake

TLS 1.3 - Version of TLS used

2.2 Public Key Infrastructure

So far, prime focus has been put on confidentiality (encryption) and data integrity (mes-

sage authentication) of TLS protocol. In the very beginning of this section, there has

however been defined also a need for source integrity, in TLS implemented by so-called

certificates that are exchanged as a part of the previously described handshake.

One party needs proof that it is actually communicating with the party it wants and

that is the purpose of Public Key Infrastructure (PKI) and TLS/SSL certificates, also referred

to as X.509 certificates [17]. And yet again, asymmetric cryptography is a solution to this

problem. When using asymmetric cryptosystems for encryption, the public key of the

receiving party is used for message encryption, thus the sending party known only the

receiving party can decrypt the message with its private key (the private key is kept as a

secret).

What would however happen if both keys are switched with each other if the private

key is used for “encryption” of the data? Confidentiality is immediately broken because

public key is not kept as a secret, therefore anyone can decrypt the message. Never-

theless, as was described, one party needs proof that incoming data are from the right

source, and encrypting messages with this party’s private key is exactly what serves this

purpose. The receiving party can then use the public key of the sending party, decrypt

the data and by doing so, also verify that the sending party is the right one, because only

the sending party has a matching private key, and thus, source integrity is also ensured.

In TLS handshake, this functionality takes place in Certificate Verify step (Section 2.1.3).

Practically speaking, to be actually able to use asymmetric cryptography for source

integrity verification, communicating parties need to store and in general, be able to

obtain public keys of other parties. TLS clients apparently cannot handle all existing

public keys and so was built a technology called Public Key Infrastructure (PKI). This

complex system comprises numerous policies, rules, and infrastructural components for

management of certificates and cryptography based on public keys. For the purpose

above, when clients need to have general access to public keys, a major requirement is

transparency and general trust in this third-party system [17]. The following text of this

section outlines the major processes and components on which PKI is built.

18

CHAPTER 2. TLS PROTOCOL

2.2.1 X.509 certificate

X.509 certificate is a digital document and a set of information that serves as an iden-

tification of a given subject during the authentication. It is created by a trusted party,

a critical component in PKI called Issuer or Certificate Authority (CA) (Subsection 2.2.2)

after Certificate Signing Request (Section 2.2.2). The certificate consists of the fields below

[18].

Version - Certificate version (3 - X.509v3)

Serial Number - Unique identifier of certificate by an issuer

Issuer - Subject who created and manages certificate (Certificate Authority)

Public Key - Key for asymmetric encryption with corresponding information about used

algorithm and key length.

Signature - Signature of the certificate with corresponding information about the used

algorithm.

Not Before - Date of issuance

Not After - Date of expiration

Subject - Various information fields about subject who requested certificate.

Extensions - Optional and additional data

During the TLS Handshake protocol, there is a phase, where both sides exchange

certificates to authenticate each other. In most of the cases, only the client-side does so

(Section 2.1.3), there is however a possibility to extend the handshake with Client certifi-

cate request and subsequently, in response with Client Certificate, that is also known as

Two-Way TLS [19].

As in the case of the negotiated cipher suite, internet browsers allow us to take a

look into the downloaded certificate on a visited hostname. On the Figure 2.5 we can

see part of the certificate for google.com hostname (As of December 2020). Except for the

information fields that are described above, on the very top of the figure, we can see 3

different tabs, each for a different certificate regarding to Chain of Trust.

www.google.com - End certificate for a given hostname

GTS CA 1O1 - Intermediate authority that issued the end certificate for the hostname

GlobalSign - Root Certificate authority which certifies the intermediate one.

2.2.2 Certificate Authority

Certificate verification process needs a trusted parties that store, issue and manage cer-

tificates in general. These trusted parties are in PKI called Issuers or Certificate Authorities

(CA). Also, there exist so-called Root Certificate Authorities, Intermediate Authorities and

Subordinate Authorities, together they create a Chain of trust where one authority is cer-

tified by another (Subordinate/Intermediate/Root). On top of this hierarchy are Root

authorities which are trusted by clients, in the case of internet browsers usually after

satisfying defined standards and requirements.

19

CHAPTER 2. TLS PROTOCOL

Figure 2.5: Certificate view in Firefox internet browser on visiting google.com

During the TLS handshake (Figure 2.3), after receiving Certificate and Certificate

verify messages, the TLS client (internet browser) does a sequence of operations to per-

form a source verification check (More in following Section 2.3). Part of this verification

process is also Certificate Authority check from a received certificate. Each certificate

is accompanied by information about the issuer, also with a digital signature created by

this issuer. The client builds certification path consisting of the root authority certificate,

certificates from all intermediate authorities and the downmost certificate of the server

in the chain [20].

Certificate Signing Request

For successful registration of a public key, the subject has to create Certificate Signing

Request (CSR) [21]. Matching public and private key pair has to be generated, then the

subject can proceed and create the CSR. It has to attach the following fields to the request.

• Public Key

• Common Name

• Organization Name

• Organization Unit

• City

• State

20

CHAPTER 2. TLS PROTOCOL

• Country

• Email address

However, not all the fields above are mandatory as it varies from issuer to issuer.

Certificate revocation

Whenever a certificate has been compromised before the expiration, it should be revoked

and put on a so-called Certificate Revocation List (CRL) which is held by the Certificate

Authority. This is a list of certificates that should not be used anymore [17].

2.3 HTTPS and Internet Browsers

Hypertext Transfer Protocol (HTTP) [22] is an Application layer protocol responsible for

common internet communication and serving of hypertext data. HTTP runs on the top

of TCP protocol and with an extension of TLS, it becomes HTTPS [23], whilst browsers

are HTTPS clients that request and fetch resources from servers. In the plain HTTP

protocol, every transmitted data packet is readable, thus confidentiality and integrity are

not ensured at all. As an extensive amount of internet content is being served, TLS-like

protocol enhancement is necessary.

In our case, Internet browsers serve as TLS clients. They keep a list of trusted Root

Certificate Authorities and during the TLS handshake perform multiple server authen-

tication steps described in the text below. Also note, as TLS certificates are built on the

Chain of Trust model, TLS clients have to build a verification path including certificates

of each authority, starting with the root CA to the downmost leaf one [20].

Integrity - Verification of the Certificate Signature. Each certificate contains a signature

from the issuer and root authorities use so-called self-signed certificates because

they are globally trusted and issue certificates for themselves.

Validity - Current timestamp has to be between Not Before and Not After fields

Revocation Status - Certificate cannot appear on the Certificate Revocation List

Issuer - In the verification path, each certificate has an issuer field, which has to be the

same as the subject field in the upper certificate. This check includes verification

of public keys as the signature on a certificate is created by its issuer.

Other policies and constraints (Path length, Purpose of used keys, etc.)

21

Chapter 3

Certificate Transparency

Throughout the years, in TLS protocol have been exposed various vulnerabilities in ci-

pher chaining modes but also in the whole TLS infrastructure on which are built certificate-

based threats like certificate misuse or forged certificates. Designing a perfectly safe and

secure protocol is indeed a challenging task. In particular, common protocols like TLS

have high-security demands and therefore it is difficult to implement new functionali-

ties and enhance existing architecture with additional components. This may however

result in a situation when third parties join the game and start developing this new and

additional component by themselves and also enforce it on all involved subjects.

In 2013, Google has decided to fix the TLS protocol and its infrastructural flaws by

implementing so-called Certificate Transparency (CT) service [24, 25]. As a very well

known and respected entity in the communication field, also with their own and widespread

internet browser Chrome (with more than 60% users [26]), Google has enough resources

for enforcing new networking rules and policies.

Certificate Transparency focuses on fixing flaws in the TLS certificate system and in

HTTPS protocol where TLS takes place as a main underlying cryptography component.

Just as TLS certificates and Public Key Infrastructure in general, CT aims to be transpar-

ent and open system for auditing and logging of certificates in almost real-time. It helps

to identify certificates that have been issued by mistake or for example, it detects issuers

that could have been compromised or gone rogue.

To detect forged SSL certificates, internet browsers already have implemented mech-

anisms that ask the origin server for its X.509 certificate and then verifying multiple

certificate fields, as was described in Section 2.3. Nevertheless, this system still stands

or falls on a single point of failure, which is trust in Certificate Authority, who we can

think of as a maintainer (and also issuer) of a given certificate. When such authority is

compromised, as has happened for example in the case of DigiNotar [27] back in 2011,

it is impossible to take immediate security precautions and measures. Adversaries then

have enough time to start issuing fraudulent certificates without anyone knowing that

it is actually happening, including domain owners. The issuer, as a trusted party, then

can forge completely new certificate for literally any domain. In DigiNotar case, it was a

23

CHAPTER 3. CERTIFICATE TRANSPARENCY

wildcard certificate for *.google.com. The certificate was used to perform MITM1 attack

against Google and it took more than a month until there were detected first certificate

problems. Thus, Certificate Transparency aims for nearly real-time monitoring so the

detection of malevolent behavior doesn’t take numerous weeks but at max a few days

[28].

3.1 Purpose of Certificate Transparency

The general purpose of Certificate Transparency is to fix TLS protocol flaws that could

possibly jeopardize any of the involved parties. The first party that can come into mind

are endpoint users, who access and consume content by using internet browsers and are

utterly dependant on the whole designed system. Therefore, core functionality and sup-

port for Certificate Transparency has to be implemented in internet browsers by default.

In terms of asymmetric cryptography in practice, the user’s main requirement is to have

a secure and fully working source integrity verification and encrypted communication.

Given user thus always knows who is he communicating with and is assured that there

is no possible way any unwanted party could read ongoing communication.

The second engaging party in the whole certificate verification process are origin

servers (domain owners) that serve internet content to endpoint users and are also re-

quested to send X.509 certificate to them so there can be secured communication between

both.

Last but not least, we have certificate authorities, creators, and issuers of certificates,

who should remain the most trusted party in the TLS system as they are prompted by

browsers for verification of certificates which they originally issued. Even though end-

point users and domain owners are indeed relevant parties, Certificate Transparency ser-

vice puts most of the focus on certificate-based threats coming primarily from crooked

certificate authorities.

We have three major participating parties in our system. Attacks such as imperson-

ation or man in the middle are undoubtedly real danger for Internet users. It also needs

to be said however, certificate based-threats both defame and financially damage domain

owners as well as certificate authorities.

Certificate Transparency service has three main goals regarding each engaging party

[28].

• Certificate Authority can not issue a TLS certificate without the certificate being

visible and transparent to the given domain owner.
• Provide thoroughly transparent and open auditing, monitoring system so anyone

can check whether given certificate could have been compromised and issued.
• Curtail number of possible certificate-based threats that could harm endpoint users.

Based on that, Certificate Transparency aspire to create a transparent system and

database of certificates that can be understood as another layer of necessary verification
1Man-in-the-middle attack

24

CHAPTER 3. CERTIFICATE TRANSPARENCY

which is put aside of existing TLS procedures. Any involved party is able to publicly

monitor and audit the TLS certificate system and hence the Certificate Transparency ser-

vice remains tenable and further also verified.

Better overview and control over certificates provided by CT is followed by earlier

detection of misused or maliciously acquired certificates and also by faster mitigation.

3.2 Infrastructure

Certificate Transparency does not intend to completely change or replace already exist-

ing protocols and applied procedures. In fact, and as was already written in the section

above, CT should be understood as another additional verification layer that only en-

hances existing certificate verification procedures.

Following that, CT introduces three main infrastructural components certificate logs,

auditor, and monitors, with each having a different function and responsibility [28, 25].

Figure 3.1: Certificate Transparency components

The diagram above shows that there is communication between each pair. Every

operation visualized by arrows is performed asynchronously and periodically. Consis-

tency proofs and Audit proofs are described in the following Subsection 3.3.3 and Sub-

section 3.3.4.

3.2.1 Logs

The most critical components of the CT system are certificate logs which operate as stor-

age for TLS certificates. Storing certificates is not the only function they perform and to

fulfill goals of Certificate Transparency service, logs also need to guarantee the following

qualities [28].

• Logs are append-only and fully resistant to any tampering, remove attempts or any

other behavior that could retroactively manipulate existing data.

25

CHAPTER 3. CERTIFICATE TRANSPARENCY

• Logs are cryptographically assured. Merkle Tree Hash mechanisms ensure that

logs are cryptographically secure and forbid any kind of possible corruption, re-

moval, or tampering actions.

• Logs are publicly auditable. Anyone can check its consistency and behavior.

Logs are not limited in number and are also entirely independent of others. That im-

plies, there is no communication between them, and one specific certificate can appear

in multiple logs. Even though there can be numerous certificate logs, modern internet

browsers keep a list of logs which given browser supports. Usually, support of given cer-

tificate log is conditioned by various acceptance criteria [29]. Also, Google Chrome re-

quires all certificates to be CT-qualified which means that a specific certificate is logged in

multiple logs and not in the single one [30]. Usually, it is the certificate authority and do-

main owner who submit TLS certificates into logs. By submitting a valid certificate into

a log, it immediately responds with a so-called Signed Certificate Timestamp (SCT).

SCT is log’s promise that given certificate will be inserted into a Merkle Tree (Subsec-

tion 3.3.1) within a time window known as Maximum Merge Delay (MMD). SCT is then

bound to the inserted certificate and will always be a part of the server’s response when a

client initiates TLS connection. Therefore, the client can subsequently use obtained SCT

to verify the certificate the TLS server responded with. There are three available meth-

ods (X.509 extension, TLS extension and OCSP stapling) for delivering SCT bound to the

certificate. Each incorporated SCT consists of the following fields [31, 25].

• Log ID - Identifier of a certificate log that includes given certificate

• Timestamp

• Ct Extensions - Extensions will be part of Certificate Transparency in future ver-

sions.

• Signature - Hash of certificate and other fields combined

Concept of CT might bring to mind Blockchain Technology[32] as there are certain

similarities in used mechanisms such as Merkle trees (Subsection 3.3.1) which are used in

Blockchain to calculate the hash of one single transaction block. Though, in the current

CT version, there are no other Blockchain concepts (mining) used in Certificate Trans-

parency. However, there are articles for Certificate Transparency using Blockchain (CTB)

[33] proposing a new system that adds a new verification layer that makes it impossible

for a certificate authority to issue a certificate without obtaining approval from a domain

owner.

X.509v3 extension

SCT is delivered as a part of the X.509 certificate. In this method, CA is the submitter of

certificate into the log and then, single performed exchange operation between log, CA,

and TLS server carry out that all of them have the certificate with SCT. Followingly, the

TLS server will use this enhanced certificate as a response to the client’s request [31].

26

CHAPTER 3. CERTIFICATE TRANSPARENCY

TLS extension

During this method, the TLS server obtains a certificate from CA and is also the one who

is responsible for submitting the certificate into the Certificate Transparency log. Log

then responds with SCT which TLS server further use in TLS handshake as an extension

as soon as a client initiates TLS connection [31].

OCSP stapling

Online Certificate Status Protocol (OCSP) is a protocol for verifying the revocation sta-

tus of X.509 certificate. It was developed as a better solution over Certificate Revocation

List (CRL) and it allows the client to contact certificate authority directly to check the

revocation status of a given certificate. OCSP stapling goes a bit further and shifts the

responsibility of this process to TLS server which is required to be additionally config-

ured for supporting this method. The server can then send revocation information to the

client as a part of the TLS handshake [31].

1. CA Submits certificate into a log and immediately obtains the SCT

2. TLS server receives this exact certificate from certificate authority

3. TLS server executes OCSP query for CA and receive OCSP response with SCT at-

tached to it.

4. Client initiates connection and server will use SCT as a part of TLS OCSP extension

during the handshake.

Google, with their Chrome browser, currently supports 12 different log operators

whilst each is maintaining multiple regular logs [34]. Each log is then represented by

public API so anyone can request via HTTPS GET and POST methods [25]. One of CT’s

main goals is to have minimal impact on existing TLS infrastructure, certificate logs are

standalone independent units and thus can’t be provided by any of the already existing

stakeholders in existing infrastructure.

In 2016 [35, 34] however, Google has introduced a different type of log called Special

Purpose Log. Logs with names Daedalus and Submariner are both dedicated to certifi-

cates that or not trustworthy in general. Specifically, Daedalus log is intended to be a

storage for certificates that have already expired i.e. will not accept certificates with fu-

ture notAfter field. Submariner log is dedicated to certificates coming from untrusted

CAs. Those, that were trusted previously in the past or those that are not yet trusted but

are new and to be included into Chrome CA trusted base.

3.2.2 Monitors

Although logs are cryptographically assured, CT still needs another system component

that will watch for certificates in general. For instance, whenever there is a new logged

certificate, the monitor will check that such certificate is actually visible in certificate

log. Monitors can also watch for specific certificates, whether they behave correctly or

27

CHAPTER 3. CERTIFICATE TRANSPARENCY

don’t have unwanted permissions. Monitors can also serve as data backups when logs go

offline because they can keep whole copies of logs [28].

Practically speaking, that leads us to the question: Who might be the ideal candi-

date to take responsibility for the objective of certificate monitor? The answer is certifi-

cate authority. In the DigiNotar case, compromised authority issued a TLS certificate for

*.google.com hostname, and because Google is also the main issuer of certificates for this

hostname, it was also in Google’s best interest to find that someone is trying to compro-

mise services they provide. This case is a bit specific since Google is the original issuer

and also the domain owner. Nevertheless, in digital certificates system, certificate au-

thority is the actual owner of the issued certificate and therefore should be concerned

about protecting their provided services. In fact, it is not a rule that CA will take respon-

sibility for certificate monitor purposes, however, it is a typical configuration of the CT

system [28].

Figure 3.2: Typical Certificate Transparency infrastructure configuration

3.2.3 Auditors

As monitors focus more on integrity verification of submitted certificates, certificate au-

ditors however verify overall integrity and standing of logs. Log’s role is to also provide

so-called log proofs and auditors aim to check whether these log proofs behave correctly.

Essentially, log proof is a cryptographic hash that represents current state of the log and

it is a literal proof that given log has not been corrupted in any way (more in the following

Section 3.3).

28

CHAPTER 3. CERTIFICATE TRANSPARENCY

3.3 Proofs

So far, only certificate logs have been introduced with their architectural and functional

conception. This section however describes how log proofs and Merkle tree data struc-

ture work in practice so it is, in particular, an expansion to Subsection 3.2.1.

We will also put everything together and describe how two remaining CT compo-

nents (Auditors and Monitors) practically interact with certificate log proofs and logs in

general.

3.3.1 Merkle Trees

Requirements for certificate logs have already been defined in previous sections. Regard-

ing to that, logs have to be append-only and cryptographically secured, that is in CT

service implemented by so-called Merkle tree, also known as a Hash tree.

Merkle tree data structure is a binary tree where each leaf is enhanced with a crypto-

graphic hash of a given leaf. Every non-leaf node is enhanced with cryptographic hash

computed out of its children’s node hashes which have been concatenated. This chain-

mechanism results in one single cryptographic hash appended to the root of given Merkle

tree, which is called Merkle Tree Hash (MTH). Cryptographic hash function such as

SHA-256 is used for the hashing.

Figure 3.3: Merkle Tree example

The Merkle Tree Hash for nodes is then defined recursively as

MTHnode = SHA256(MTH(LCHILD) +MTH(RCHILD))

The calculation differs for nodes and leaves. For leaves, it is defined as

MTHleaf = SHA256(leaf)

Let’s continue with a more practical perspective about Merkle tree data structure and

describe how are new data elements inserted.

29

CHAPTER 3. CERTIFICATE TRANSPARENCY

Inserting (Appending) into a Merkle tree

Merkle tree is a simple binary tree with no requirement for any balance quality, how-

ever, inserting data into a Merkle tree differs a bit. Element insertion is explained in the

following diagram figures.

Let’s assume the same Merkle tree as depicted on Figure 3.3 and insert another sample

element Data E.

Figure 3.4: Insert operation of Data E

Merkle tree property is that each subtree hash is computed out of two elements (chil-

dren). While inserting a new element into a tree, this element needs to "find" an already

existing element to "pair with" and to compute a new hash which always also results in

an absolutely new Merkle Tree Hash as depicted on Figure 3.4 [36].

Inserting another sample element Data F pairs with the only possible element, in this

case, Hash E and creates a new subtree with Hash EF as a subroot and yet again inserting

new element results into a new Merkle Tree Hash which is now computed out of Hash

ABCD and Hash EF children. Important consequence of this insertion method is that

each inserted data element will always remain a leaf of a given Merkle Tree and non-leaf

(internal) nodes will always only represent calculated hashes.

3.3.2 Log Proofs

Relevant question to ask is what is the general advantage of Merkle trees regarding Cer-

tificate Transparency service. Accordingly, this section follows with a more practical

point of view, answers the questions above, and describes how auditors and monitors

interact with certificate logs.

We already know that the Merkle tree mechanism results in one single hash called

Merkle Tree Hash representing the whole tree state. Accordingly, CT further proposes

30

CHAPTER 3. CERTIFICATE TRANSPARENCY

Figure 3.5: Insert operation of Data F

tree representation called Signed Tree Head (STH) which consists of the following fields

[36, 25].

• Version - version of the protocol

• Signature type - Tree hash

• Timestamp

• Tree size - Number of entries/leaves in the Merkle tree (Not the number of nodes)

• Merkle Tree Hash

3.3.3 Consistency Proofs

Consistency is a general quality requirement for certificate logs. For this reason, inter-

ested parties in CT service need to be able to perform consistency checks and verify that

any log hasn’t been malformed or tampered in any way. The fact, that Certificate log is

in consistent shape means, that there hasn’t happened any kind of retroactive certificate

modification or certificate removal [36, 25].

Regarding to insert operation in Merkle Trees, with every newly inserted data ele-

ment, a new Merkle Tree Hash is computed and with new version of the tree, an earlier

version of this tree has to be part of the new one (see Figure 3.5). Thus, consistency

proofs are performed essentially whenever data insertion occurs and the new version of

the log is published. Both monitors and auditors perform this kind of proof however

monitors keep all log data and are able to calculate MTH by themselves and check STH

using Certificate Transparency API.

We assume Merkle tree from Figure 3.4 where we have just inserted new element

Data F and ended up with the tree on Figure 3.5. To prove that the earlier version of the

tree is part of the new one, Hash ABCD, Hash E can be both taken and old MTH can

be computed. To perform a consistency check, it is required to compute all intermediate

31

CHAPTER 3. CERTIFICATE TRANSPARENCY

nodes on the path to the root from our appended leaf. Hash EF is calculated out of Hash

E, Hash F. Finally, new Merkle Tree Hash is calculated out of Hash ABCD and Hash EF

3.3.4 Audit Proofs

Auditor component, mainly represented by TLS clients, receives TLS certificate with

Signed Certificate Timestamp and wants to verify whether given certificate is present

in CT log and Audit proofs let TLS clients verify this presence [36].

Let’s assume Merkle Tree depicted on Figure 3.6.

Figure 3.6: Audit Proof of Data C element

Audit proof for Data C element consists of hashes Hash D, Hash AB, Hash EFGH

and computation of all intermediate hashes from Data C to the root.

• Hash C + Hash D result into Hash CD

• Hash AB + Hash CD result into Hash ABCD

• Hash ABCD + Hash EFGH result into MTH

By requesting an audit proof from the log, auditor receives and a list of nodes rep-

resenting the audit path out of which it can compute Merkle Tree Hash and then verify

it against the log itself. If the auditor computes MTH that does not match the MTH

published by the log, that means, the certificate is not present in given certificate log.

By the end of this section, it is on point to tell the actual advantage of Merkle trees

and the reason why Google has decided to implement this data structure. Yet again we

are going to mention that CT has to be cryptographically secure and tamper-resistant as

two general non-functional requirements. Hash functions are, apart from other proper-

ties, designed to be irreversible and therefore are a traditional mechanism in computer

science how to create an integrity proof of some piece of data. Instead of Merkle trees

however, the Hash chain, as more simple mechanism, could serve as well and satisfy

32

CHAPTER 3. CERTIFICATE TRANSPARENCY

previously defined requirements. Hash chain is a linear consecutive structure that re-

peatedly applies desired Hash function on an ordered list of inserted elements. Let’s

assume hash chain built out of element list [A, B, C, D, E]. Head of this hash chain is

then computed as

head = hash(hash(E) + hash(hash(D) + hash(hash(C) + hash(hash(B) + hash(A)))))

by using a hash function strong enough like SHA-256, this mechanism definitely satisfies

integrity goals. Consistency proof can still be performed as the older version presence

in the hash chain can be verified after adding new elements. The main problem of hash

chains arises when we try to perform audit proof and verify the presence of a single

element in this linear structure. Assume we would like to find out whether element

B is in the hash chain. Obviously, a hash computed out of preceding elements can be

taken, which is, in this case, hash(A), but to perform entire audit proof, it is required to

recompute all successive hash values. Thus, the average complexity of this operation is

n/2, where n represents the number of inserted elements.

That is the reason why it is on point to use Merkle trees, because tree data structure

has a complexity of insert operation equal to a logarithm. Merkle trees are implemented

by binary tree, in this case it is logarithm with the base of 2 and thus, binary tree with

depth d, in level k, where 0 <= k <= d, has 2k elements and therefore it has 2d leafs.

Assume n representing a number of elements (in our case also a number of leaves), depth

of a tree equals to log2n. And finally, the average complexity of proving the presence of

some element in the Merkle tree is also logarithmic and not linear as it is in the case of a

hash chain.

On Figure 3.6, we have 8 inserted elements (8 leaves) with depth 4 (level index 3) and

thus it requires to compute log28+1 hashes to get Merkle Tree Hash [25]. Because Merkle

tree is not always full, the general formula for number of hashes then equals to

ceil(log2n) + 1

To give even more clear evidence that Merkle trees are ideal for our purpose, assume a log

with 10 million certificates, a number of required hashes to compute then equals 24 and

for certificate log with 100 million certificates, it is 27. As of November 2020, Google’s

log named Argon had a tree size of 9606587132 certificates and hence the number of

hashes required to verify a presence of an element equals 30 [25].

3.4 Usage in HTTPS and Browsers

Following text aims to describe inner certificate verification procedure in Auditor and

thus in TLS clients which are in our case internet browsers. Nowadays, modern internet

browsers support certificate transparency service by default and since 2018, Google re-

quires in their Chrome browser all TLS certificates to be logged [37]. Regarding to that,

2Obtained via API request on Argon log, see Section 3.4 for API description.

33

CHAPTER 3. CERTIFICATE TRANSPARENCY

except the normal certificate verification process, browsers are required to validate the

SCT and thus, browsers are also required to implement three mechanisms from Subsec-

tion 3.2.1 for the SCT delivery. Certificate verification process then has the following

order of performed operations [38].

Figure 3.7: Certificate Transparency SCT delivery process to the browser using X.509

extension.

1. Domain owner creates Certificate Signing Request

2. CA creates a precertificate3 and submission into a log. Certificate log responds with

the SCT of the submitted precertificate.

3. Certificate Authority creates a certificate with obtained SCT.

4. Certificate Authority submits a final certificate to Certificate Log.

5. Certificate Authority issues created certificate with SCT to the domain owner

6. Browser initiates TLS handshake

7. Browser obtains the certificate with SCT. Verifies the certificate (Section 2.1.3) and

then the inclusion of the certificate in a certificate log.

(a) Check if Log ID is in the browser’s allowed list of logs

(b) Check whether SCT is not in the future

(c) Audit proof - Ask CT log for audit path and inclusion of given certificate

3Precertificate is a special and invalid certificate only for the purpose of obtaining the SCT from CT log

so the CA can subsequently create the final certificate with the correct signature. Thus, precertificates are

used only when the SCT is exchanged as X.509 extension.

34

CHAPTER 3. CERTIFICATE TRANSPARENCY

Figure 3.8: SCTs embedded in certificate on visiting google.com

Log’s public API

Certificate log is the only CT component that should be publicly available and also should

provide some information. All requests are performed via GET or POST HTTPS requests

on https://<log server>/ct/v1/<function>. The following list of functions describes the

public API of any certificate log regarding to all previously described Certificate Trans-

parency mechanisms [25].

• get-sth - Get the most recent Signed Tree Hash

• get-entries - Get entries from the log

• get-sth-consistency - Perform Merkle Consistency Proof

• get-proof-by-hash - Perform Merkle Audit proof

3.4.1 Third-party services

There are various third-party services that provide any kind of useful information about

Certificate Transparency.

• BadSSL4 - Service providing multiple ways how to test internet browsers for TLS

certificate based errors including no-sct website which does not respond with TLS

certificate enhanced with the SCT.

• Merkle Town5 - Public website with statistical information about Certificate Logs.

• crt.sh6 - Web interface for Certificate Transparency logs.

• Google Transparency Report7 - Google’s turn on search service and web interface

for Certificate Transparency logs.

4https://badssl.com/
5https://ct.cloudflare.com/
6https://crt.sh/
7https://transparencyreport.google.com/https/certificates

35

Chapter 4

Task definition

Previous chapters dealt with two essential theoretical parts of this thesis: TLS proto-

col and Certificate Transparency. This chapter is however a starting point for practical

aspects and goals this thesis wants to accomplish. There are few last topics, that are nec-

essary to understand and need to be theoretically outlined: Machine learning and Pattern

recognition, classification and detection based on input data called features. This chapter

describes previously mentioned topics and serves as a definition of the solved problem.

Our general goal is to explore a new data source and experiment whether it could

be actually useful for malware1 recognition and classification. It usually refers to threats

such as viruses, worms, ransomware, and many others. This type of harmful software

is often spread across the internet network and therefore we are looking for ways how

to detect such behavior by capturing network traffic and extracting useful information.

For detection purposes are used various algorithms (models) that belong to the machine

learning study field, which became extremely popular in the last decade.

4.1 Classification

From the top level of machine learning models, there are two main categories: supervised

and unsupervised learning. Supervised learning is a family of algorithms that aims to cre-

ate a mapping between input data x and output Y 2. The goal is to create and approximate

a model so that it is able to make accurate predictions for a new input data x′ without

knowing its Y ′. Unsupervised learning, on the other hand, doesn’t have available output

Y for the model creation, thus the goal of these algorithms is understanding inner rela-

tions of the input x and looking for general behavior and patterns. Among unsupervised

learning tasks belongs for example clustering, that aims to find whether the input data

create more or less separated clusters and could be possibly categorized in any way [39].

In this chapter’s introduction, we outlined the major goal of this thesis: detection

of malware. We are working with already labeled network data logs, that are marked

as positive (malware is present) or negative/unlabeled (presence is unknown), whilst the

1Shortened form of malicious software
2Y is the “teacher” or the “supervisor”, hence “supervised” learning

37

CHAPTER 4. TASK DEFINITION

positive class is further separated into specific malware types. The problem belongs to

the family of supervised learning algorithms, our task is specifically called multiclass

or multinomial classification. Classification is understood as a process of categorization

based on input data, assigned category is often called class or label. Example of such

classification task is recognition of handwritten digits by a computer and labeling with

one of 10 corresponding categories (0-9 digits). Different simplified tasks could be the

recognition of fruit based on input data such as height, width, weight, or color. Data used

as an input to the classifier are called features. Besides classification, within supervised

learning models, we also have so-called regression methods [39]. Regression models do

not assign a label to the input data but try to predict a real number. Example of such

problem could be a prediction of temperature based on other weather conditions. Being

able to create useful model that is very flexible and universal in use, we train model

with our training data sample and then perform evaluation and model testing with test

data sample. An assumption is made that each object from the dataset is independent of

others, even though that might not actually be true in practice [39].

We have a set of input labeled data (x1, y1), (x2, y2), (xn, yn), where xi are feature vectors

and yi are corresponding labels3. Classifier training is often based on so-called objective

function, training phase then aims to optimize classifier in such way that the objective

function is minimal or maximal (it depends on trained model). Already trained classifier

is then a mapping function f : X→ Y , which for a new input x predicts class ŷ [39, 40].

4.2 Model evaluation

Splitting our input dataset into two distinct parts (training and testing data) is primarily

for the purpose of model evaluation. Essentially, it is not good practice to evaluate our

model on training data (even though it might also be used as a relevant metric in some

cases), because we automatically expect that our trained model will have a better perfor-

mance on the data this model was trained with. Therefore, it is on point to simulate a

case when the trained classifier takes completely new input data that it has never seen

before and measure how such experiment performs.

Evaluation also deals with model complexity, regarding to that, we have to cover

overfitting, underfitting terms and bias-variance tradeoff. Overfitting situation occurs when

a model tries to learn every small data noise and thus the model’s complexity grows.

Underfitting, on the other hand, occurs when our model wasn’t able to learn underlying

patterns and its complexity is too low. These two contradicting reasons can cause high

model error, this behavior is called bias-variance tradeoff. Model with high variance does

not generalize and is too complex, thus overfits. Model with high bias does not benefit

from training data as it possibly could, thus underfits [39].

3In case of previous fruit recognition, vector xi with dimension 4 would consists of height, width, weight,

color category and corresponding labels yi could be for instance apple, orange, banana, pear

38

CHAPTER 4. TASK DEFINITION

Figure 4.1: Overfitted, underfitted and optimal model example

The following text will cover specific model evaluation metrics. First measure that

comes mind is model error or complementary model accuracy. Error is calculated as a

fraction of number of samples that were incorrectly classified to all samples. Accuracy

then as a fraction of number of correctly classified samples to all samples [39, 41].

Error =
Number of wrong predictions

Number of all predictions

Accuracy =
Number of correct predictions

Number of all predictions
= 1−Error

Both error and accuracy however suffer from class imbalance. Let’s assume a case with

100 testing samples out of which 90 are negative and 10 are positive. If the classifier

trains itself in a way that it classifies everything as a negative, 10% error rate and 90%

accuracy would be present, which might imply, that our model is performing quite well

in fact it learned literally nothing from our data [41]. It is necessary to adopt more

robust evaluation metric, section below aims to describe so-called confusion matrix and

subsequent measures as a better option to error and accuracy.

4.2.1 Confusion Matrix

In binary classification with 2 distinct classes between which classifier decides, confusion

matrix can be created consisting of the following categories [39, 42].

True Positive (TP): Samples classified as positive that are actually positive - correct

classification.

False Positive (FP): Samples classified as positive that are actually negative - “false

alarm” and also known as a Type I error.

True Negative (TN): Samples classified as negative that are actually negative - correct

classification.

False Negative (FN): Samples classified as negative that are actually positive - Type II

error

39

CHAPTER 4. TASK DEFINITION

These categories are the building blocks of more interesting and relevant model eval-

uation measures covered in following Subsection 4.2.2 and Subsection 4.2.3. For purpose

of this thesis and multinomial classification, confusion matrix becomes more compli-

cated. In our case, one-vs-all confusion matrix, which assumes one class at a time, is

used.

Actual class

Malware Not Malware

Predicted

class

Malware 20 5

Not Malware 3 12

Table 4.1: Confusion matrix example: 20 TPs, 12 TNs, 5 FPs, 3 FNs.

4.2.2 Precision

Precision, also known as a positive predictive value, is a measure of how big proportion of

truly positive predictions are actually positive. In other words, it is a probability that

positively labeled samples are truly positive [43].

P recission =
T P

T P +FP

4.2.3 Recall

Recall, also known as a sensitivity, is a measure of how big proportion of all positive

samples was labeled correctly [43].

Recall =
T P

T P +FN

4.3 Features

Theoretical aspects of machine learning, classification, and model evaluation have been

covered. The last remaining topic to touch is a description of specific classifier we have

chosen for detection experiments, that will be however a part of Chapter 7. Classifier

training requires input data called features. In the following text, we will touch our

problem from the perspective of input data and most importantly from the perspective

of Certificate Transparency as our data source for feature extraction. Our goal is to use

TLS certificates as a data source for feature extraction and possibly also for malware

detection on top of currently existing ones.

Certificate Transparency aims to be as transparent as possible and essentially thanks

to that the whole system can work from a practical perspective. Certificate monitor com-

ponent downloads whole certificate log and then perform monitoring over downloaded

data, performs consistency proofs, and monitors whether it contains all logged certifi-

40

CHAPTER 4. TASK DEFINITION

cates. For a purpose such as this one, certificate log implements an API4 that allows

anyone to interact with it. Append-only trait of a certificate log ensures that the whole

log behaves like an enormous historical storage out of which literally anyone can down-

load submitted TLS certificates with use of published API.

4.3.1 Current Approach

Traffic encryption indeed offers another level of privacy for common network users. On

the other hand, it also gives another level of freedom to threat actors as their behavior

can remain undetected. NetFlow protocol [44, 45] is a commonly used technology offering

high-level network logs. Current features are based on the data extracted from the Net-

Flow protocol as well as on additional Encrypted Traffic Analytics (ETA) [46]. Each feature

vector is identified by a subject that is called hostname, which may be in a form of an IP

address (e.g. 8.8.8.8) or a Domain name (e.g. www.google.com). Hostname is extracted

out of an initial packet from client hello message in TLS handshake (Subsection 2.1.3),

where Server Name Identification (SNI) is sent.

As our starting point, there are already existing features extracted from TLS certifi-

cates, but note that these features are based on information from one single certificate

for each corresponding hostname.

Chain Length: Integer - Chain of Trust length

Chain Validation Code: Enum - Validation code during chain of trust verification

Hostname Matches Certificate: Boolean - Requested hostname is (not) covered by

the downloaded certificate

Not Before: Boolean - Certificate (in)valid

Not After: Boolean - Certificate (in)valid

Issuer Popularity: Integer - Statistics built on issuers from downloaded certificates

4.3.2 Designed Features

Creating features from one single certificate for each hostname is indeed a reasonable

approach. The main motivation and questions for this thesis are: What if we would have

available a full history of certificates for each hostname? Would such approach give us more

relevant information and would it be helpful regarding to malware detection?. In the follow-

ing sections and chapters, we will finally describe steps taken to answer the questions

above.

Our initial hypothesis is that such data are helpful, offer a lot more contextual infor-

mation in general, and extraction possibilities for each hostname than one single certifi-

cate approach. Further, then it has be to experimentally verified whether this hypothesis

is correct or not. One of the first steps was the creation of a list of feature ideas that could

be extracted out of the list of certificates. We therefore assume, this historical informa-

tion for each hostname is available.
4Application Programming Interface

41

CHAPTER 4. TASK DEFINITION

The general feature designing approach could be defined as: “We want to come up

with multiple information that represents how strong is given hostname regarding to certifi-

cates.”. By strength is meant for example its current validity or how many certificates are

present for each hostname historically. For a better explanation, let’s assume a case with

two hostnames, first one with 10 total certificates historically, the second hostname with

only 1 certificate, our approach then assumes, the first hostname is “stronger” regarding

to certificates and more trustworthy because the underlying intuition assumes there is

a lower chance such hostname would be a source of malware. This was our top-level

underlying idea and our very first feature draft included the following.

Number of hostnames: Numerical - Each certificate is valid for a set of hostnames.

This number represents sum of all set sizes across whole certificate history for given

hostname.

Number of certificates: Numerical - Total number of certificates historically.

Hostname coverage by Wildcard certificate: Boolean/Numerical - Hostname is

(not) covered by Wildcard certificate.

Certificate Authority code: Categorical - Categorical variable identifying Certifi-

cate Authority.

Issuer Suspicious: Boolean - Indicator whether certificate issuer is on the list of

so-called suspicious issuers. By suspicious are meant issuers that are more likely

to issue a certificate for any certificate-based threats. For example, Let’s Encrypt CA

issues certificates for free and in past years became favored over other authorities.

Certificate Authority popularity: Numerical - Number representing global statis-

tics among Issuers and their popularity. For example a global count of certificates

for each issuer.

Validity: Boolean - Information whether there is at least one valid certificate that

covers given hostname.

Period of Issuance: Numerical - How often is given hostname certified.

Change of Certificate Authority: Numerical - How many authorities have issued a

certificate for this hostname. Number of overlapping different authorities.

After this feature proposal, we continued with the implementation of extraction pipeline.

The list of features above did not really consider any aspects regarding to implementa-

tion. During the implementation phase, numerous problems have been encountered that

are discussed later in Chapter 5 and based on that, the final list of extracted features dif-

fers and its description is also part of the next chapter.

42

Chapter 5

Pipeline

For processing data from certificate transparency, it was necessary to implement an ex-

traction pipeline in a distributed environment to handle a large amount of data (billions

of certificates - 11TB) and this chapter primarily covers steps taken during this imple-

mentation phase. The following text starts with a description of our data source and

proceeds with the pipeline itself.

For practical reasons, we wanted to process all available certificates that are stored in

Certificate Transparency service and extract designed features for each hostname. This

approach had to be however changed due to encountered problems and it was necessary

to continue with more of a “proof of concept” approach. This decision with its conse-

quences is described later as a part of this chapter.

5.1 Collecting certificates

Certificate Logs publish their API (Section 3.4) so other interested parties and compo-

nents of the whole process can work properly. As was already described in Section 4.3,

one of the available log’s functions is get-entries which allows anyone to download certifi-

cates from a given log (primarily for purpose of Certificate Monitor). As the API and the

whole service aim to be transparent and public, with the use of any of modern program-

ming languages that already have available libraries for HTTPS requests, implementing

such data collection algorithm is not a problem today.

For purpose of this thesis, already existing and fully working implementation has

been used, which has also already been deployed in a production environment. As of

December 2020, the algorithm collects certificates from 45 public Certificate Logs that

are compliant with Chrome’s Browser CT policy [34, 47]. It also incorporates third party

solution for processing and handling of X.509 certificates named ZCertificate [48, 49]

which defines the resulting schema of the output data [50].

Get-entries function’s input is starting and ending index of the log’s entry, based on

that, our collection algorithm is executed daily and requests only such certificates that

have been included to the Certificate Log since the previous day. Collected certificates

are then stored and organized into distinct directories day by day into multiple Apache

43

CHAPTER 5. PIPELINE

Parquet [51] data format files (ct/date=2020-12-14/...parquet). Also note, that one par-

quet file contains more certificates (It varies a lot, from thousands to millions) and not

a single one. Already collected and daily updated certificates were the starting point

for implementation of the extraction pipeline. By February 2020, there were available

approximately 11 Terabytes of collected certificates.

5.2 Extraction pipeline

Our deployment environment consists of Scala language and Apache Spark distributed

ecosystems capable of processing large volume data on multiple instances and thus in a

parallel manner. Apache Parquet format is this ecosystem’s native data format and Spark

framework offers various built-in functions for general data manipulation. The following

text starts with an explanation of basic Spark operations and continues with a description

of the implemented extraction pipeline separated into multiple subsequent parts.

5.2.1 Spark fundamentals

Spark framework essentially provides abstraction on loaded data with so-called DataFrame

and Resilient Distributed Dataset (RDD) collections. As a distributed environment, Spark

creates partitions of data and spreads them across nodes in a way so all performed op-

erations can be executed as much as possible in parallel on different instances. Both

DataFrames and RDDs offer an API with basic data manipulation operations and essen-

tially we distinguish two types covered in the following text [52].

Transformation

Transformation operation fundamentally only converts the data from one form to another,

but only between Spark collections. Thus, a transformation performed on RDD will

always result in new, yet different, RDD. Also, note that transformations are not executed

instantly, Spark framework builds so-called Directed Acyclic Graph (DAG) with operation

references, and all performed transformation won’t be executed until there is any action

operation [52].

Map - Each RDD row of data type A is transformed into a single row of data type

B.

FlatMap - Each RDD of data type A is transformed to a zero or multiple rows of

data type B.

Filter - Keep only such rows that meet defined condition.

ReduceByKey - Reduce operation performed on elements with the same key. The

transformation from data type A to data type A.

44

CHAPTER 5. PIPELINE

Action

Action operation executes created DAG with all performed transformations. Practically

speaking, it converts the data from Spark framework collections to language-specific data

type (e.g. from RDD[Int] to Array[Int]) [52].

Reduce - Aggregation of RDD rows with predefined function.

GroupBy - Aggregate RDD rows with the same key to iterable collection.

Count - Count number of rows.

Collect - Convert whole RDD into an array.

5.2.2 Data Load - Phase 1

In this phase, all collected certificates are loaded. Then each certificate is represented as

an object for which had to be defined separate schema. It is not possible to infer schema

from each row because it differs due to different X.509 extensions. Nevertheless, that

wasn’t an issue because we are interested only in a limited number of certificate fields,

and for optimization purposes, it is always a better practice to work with as little data as

possible. Based on that, the corresponding Scala class with the following fields has been

defined.

Hostnames - Set of hostnames for which given certificate is valid. This information

is extracted from names, commonNames and dnsNames certificate fields.

Issuer - Parsed information about the Issuer (Certificate Authority) that issued given

certificate. Due to inconsistencies and issuer generalization, the implemented algorithm

parses this information and identify issuers only by Organization (O=) field.

Time Information - Numerous certificate fields regarding to validity: notBefore, no-

tAfter, length. Out of these fields, algorithm extracts whether given certificate is currently

valid and epoch time representation of notBefore and notAfter timestamps.

Organization - Subject that created Certificate Signing Request.

Precertificate - Boolean indicator whether given certificate is a precertificate.

Serial Number - Unique identifier of a Certificate

Right after the certificate field filter, two major filter operations are performed. First

filter for all precertificates, because it is relevant to work only with certificates dedicated

for source verification (Precertificates contain poison in X.509 extension which invali-

dates them). Second filter for all redundant certificates. From our perspective, even

though it is a whole CT’s feature, having one certificate logged in multiple Certificate

Logs causes a lot of data redundancy and it is on point to get rid of it as it would neg-

atively influence computed features. For that purpose, distinct filter operation has been

implemented to keep only one copy of each certificate.

45

CHAPTER 5. PIPELINE

Figure 5.1: Filter and Distinct operations on loaded certificates

5.2.3 HostName Mapping - Phase 2

At this point, we have all relevant certificates, with no precertificates and redundant

data. To make each hostname mapped on its certificate, the algorithm unwraps all its

hostnames with flatMap operation and maps them to the original certificate, thus the

result of this phase is a tuple (hostname, certificate).

c e r t i f i c a t e s . flatMap (c e r t i f i c a t e => {

c e r t i f i c a t e . hostnames .map(hostName => {

(hostName , c e r t i f i c a t e)

})

})

Figure 5.2: Mapping operation on one single certificate

5.2.4 Feature extraction - Phase 3

Mapping created in the previous phase is everything necessary for actual feature extrac-

tion performed on each hostname. There is a reduceByKey operation executed on the

previous tuple, where the key here is the hostname. This operation aggregates all tuples

with the same key and executes predefined functions. For calculation of a total number

of certificates for every single present hostname, implementation would have the follow-

ing form.

46

CHAPTER 5. PIPELINE

mappedData . map(mapping => {

val hostName = mapping . _1

(hostName , 1)

}) . reduceByKey ((tota lCertsX , t o t a l C e r t s Y) => {

to ta lCer t sX + t o t a l C e r t s Y

})

Figure 5.3: Feature extraction on history of certificates

With this approach various feature functions have been defined, an in-depth descrip-

tion of each is in the following Section 5.4.

5.2.5 Optimization Obstacles

The implemented pipeline has been tested with more than 60 unit tests and integration

tests (verification of deployment environment). Initial thesis’ goal to process whole Cer-

tificate Transparency and calculating features for each hostname showed out not to be

that trivial. During the deployment were encountered obstacles regarding to amount of

the data that could be processed at once with the designed pipeline.

Numerous experiments have been performed, with different time periods and dif-

ferent subsets of feature functions. Even though the possible amount of data to pro-

cess enlarged with smaller feature subsets, processing of the whole collected Certificate

Transparency wasn’t successful. To fulfill the goal of this thesis, a general approach for

the computation of features has changed, more in Section 5.3.

5.3 Proof of Concept approach

Proof of concept approach aims to reduce the amount of processed data at once and

still successfully explore collected certificates with extracted features on the relevant

size of the data sample. In the current feature cache, for each day are available different

hostnames with corresponding calculated features which will be subsequently enhanced

with new ones from certificates.

47

CHAPTER 5. PIPELINE

In this approach, specific time interval of one month is selected (August 2020, Oc-

tober 2020) and feature extraction is performed only on hostnames that appeared dur-

ing this period. Implemented extraction pipeline uses a set of these hostnames to filter

and keep only those certificates where given hostnames appears and after that, we pro-

cess their whole certificate history. Based on that, the first initial step of the extraction

pipeline had to be extended for another filter operation. The exported telemetry set was

additionally enhanced for all wildcard hostnames. For example for sub.domain.hostname.com

separate algorithm created 2 additional possible hostnames: *.domain.hostname.com, *.host-

name.com.

Figure 5.4: HostName filter on loaded certificates with hostname set extracted from the

telemetry

This approach is fully working and allows to extract all necessary information to

fulfill goals of this thesis. However, the downside is that it only allows to detect malware

for hostnames that appeared in the past and from production perspective, to perform

real time malware detection on new observed hostnames in telemetry, it would require

to change the approach and re-implement the extraction algorithm. Results of this thesis

will decide whether to invest additional resources and enhance the pipeline which would

then be able to run in production environment and extract the features automatically.

One of the viable approaches would be to scale the input certificates and compute them

in batch-like manner. Anyway, this also depends on other factors that would be necessary

to decide, such us how often would this pipeline be executed and whether to recompute

the whole Certificate Transparency on every execution or just update already computed

features. Updating approach can however affect final feature set because then it would

not be possible to extract totalUnique features in general.

5.4 Extracted features

This chapter contains description of the final list of designed and extracted features from

the Certificate Transparency logs.

48

CHAPTER 5. PIPELINE

Total HostNames: Int

Each certificate contains a list of hostnames for which it is valid. This feature is a sum

of all these list lengths across history of certificates for one hostname. Take into account

that the resulting number contains redundant hostname.

Total Unique HostNames: Int

Total size of HostName set consisting of all hostnames that appeared in the history of

certificates. Resulting number contains only unique hostname.

Total Unique Wildcard HostNames: Int

Total size of HostName set consisting of all wildcard hostnames that appeared in history

of certificates. Resulting number contains only unique wildcard hostnames.

Total Certificates: Int

Number of all unique certificates that appeared in history for given hostname.

Total Valid Certificates: Int

Number of all unique certificates that appeared in history for given hostname and are

currently valid.

Total Issuers: Int

Number of all unique Issuers that appeared in history for given hostname.

First Certificate Date: Long

Timestamp (in epoch time) of the first certificate that appeared in history for given host-

name.

Total Suspicious Valid Issuers: Int

Number of all currently valid issuers that have been marked as suspicious which refers

to authorities that issue certificates for free (For example Let’s Encrypt).

Total Suspicious Certificates: Int

Number of all certificates that have been issued by a suspicious issuer in the history of

certificates for given hostname.

Maximum Overlapping Issuers: Int

Maximum number of overlapping issuers (multiple various issuers with a valid certificate

at the same time) in history of certificates for given hostname.

49

CHAPTER 5. PIPELINE

Wildcard Coverage Count: Int

Number of all wildCard hostnames that cover given hostname in the history of certifi-

cates.

Absolute Coverage Count: Int

Number of all certificates in which appear given absolute hostname. By absolute is meant

the exact same hostname for which is computed the feature vector.

Is Wildcard Root: Boolean

Indicator whether given hostname is also often used as a wildCard root. Assume wild-

Card hostname *.hostname.com, hostname.com is then considered as a wildCard root.

Total Unique Organizations: Int

Total number of unique organizations that appeared in the history of certificates for given

hostname.

50

Chapter 6

Analysis

At this point, features have been successfully extracted from Certificate Transparency for

desired hostnames. It is however on point to verify and evaluate how designed features

perform with data mining experiments. In this chapter, we will take a closer look at each

feature, propose numerous plots and compare their distributions.

Features have been calculated for two distinct time periods, August 2020 and October

2020, verification experiments have been then performed on both. Results for August

are covered in this chapter but October resulting plots can be found in Appendix A. For

statistics that appear in this section and in the following Chapter 7, take into account that

in this section we only assume unique hostnames that appeared in network traffic, thus

the numbers of positive samples differ. Besides that, the entire following classification is

multiclass, however in this section, we only assume two classes: positive and negative.

6.1 August 2020

This section covers feature analysis performed on features extracted from all unique host-

names that appeared during the August 2020 time period.

6.1.1 Global Statistics

Table 6.1 shows a total number of hostnames extracted from telemetry for a total of 1

135 766 have been successfully found and matched some certificate. A total of 189 556

have remained unmatched, thus no certificate has been found for them.

Exported Matched Unmatched Positive Negative

1325322 1135766 189556 2130 1132041

Table 6.1: Total hostnames count for October 2020

Table 6.2 shows top 10 issuers with the most of the certificate and top 10 subject or-

ganizations that created certificate signing request. First of all, Let’s Encrypt [53] as well

as Comodo [54] certificate authorities in the lead of issuer statistics are not surprising.

51

CHAPTER 6. ANALYSIS

Both authorities are one of those we mark as suspicious as they both issue certificates for

free. On the right side, in organization statistics, we can see that majority of certificates

have this field blank (empty). In certificate signing request, the organization field is not

mandatory thus it can remain unfilled and this was also expected observation.

Top 10 Issuers Top 10 Organizations

Issuer Certs % Organization Certs %

let’s encrypt 5289134 39.7 blank 11495272 86.3

comodo ca limited 4538413 34.1 cloudflare 320903 2.4

cpanel, inc. 851812 6.4 netflix, inc. 294591 2.2

digicert inc 737914 5.5 incapsula inc 99714 0.7

globalsign nv-sa 396351 2.9 google inc 66704 0.5

godaddy.com, inc. 248519 1.9 google llc 35230 0.3

cloudflare 184085 1.4 firebase, inc. 23626 0.2

sectigo limited 162237 1.2 fastly, inc. 19889 0.1

amazon 143394 1.1 facebook, inc. 18289 0.1

geotrust inc. 109704 0.8 microsoft 17820 0.1

Total 594 13314036 100 162799 13314036 100

Table 6.2: Global issuer and organization statistics for August 2020

6.2 Feature analysis

Each feature is in this section analyzed by plotting the distribution (histogram) of each

class (positive and negative) and then visually comparing observed patterns between

classes. As we are performing only visual comparison and the evaluated dataset is highly

imbalanced, the vertical axis is not useful, and therefore it was hidden on all following

plots. Also, take into account that this whole analysis step is performed to understand

the data and possibly observe completely new patterns. Although there are also cases

where distributions of both classes don’t show any significant difference. That does not

however automatically mean given feature is useless and should not be used as there

might be for example some unobserved correlation behavior with other features. Based

on that, for detection experiments described in Chapter 7 haven’t been excluded any

designed features.

52

CHAPTER 6. ANALYSIS

Figure 6.1: Total HostNames feature distributions

For this one and following plots, we have to take into account the class imbalance.

Therefore, we are looking for significant patterns. In the case of total hostnames feature

as depicted on Figure 6.1, we have histogram distributions with a bin size of 2 and posi-

tive samples seem to generally have historically fewer hostnames (with redundant ones).

Nevertheless, that could be caused by different patterns, for instance by total number of

certificates or by general hostname age.

Figure 6.2: Total Unique HostNames feature distributions

In the case of total unique hostnames (Figure 6.2), distributions are with a bin size of

1 and do not show anything particularly interesting. The majority of hostnames are in

the same bin with 2 unique hostnames on both sides.

Figure 6.3: Total average HostNames per certificate distributions

Figure 6.3 shows an average number of hostnames in one certificate. Distributions

are similar and we can see that the average certificate has 2-3 hostnames.

53

CHAPTER 6. ANALYSIS

Figure 6.4: Total Unique WildCard HostNames distributions

Figure 6.4 shows that positive samples tend to have less number of unique wildcard

hostnames than negative ones.

Figure 6.5: Total certificates distributions

Total certificates distribution plots, depicted on Figure 6.5, show that positive host-

names might generally have fewer certificates and also possibly be younger than negative

ones.

Figure 6.6: Total valid certificates distributions

Number of valid certificates (Figure 6.6) does not seem to be affected by class that

much.

54

CHAPTER 6. ANALYSIS

Figure 6.7: Total issuers distributions

As every certificate has an issuer, histogram (Figure 6.7) starts from 1 on the horizon-

tal axis. And yet again, a number of issuers might be influenced by hostname age and

thus might be assumed that positive samples generally have fewer issuers historically.

Figure 6.8: First certificate date in years

For better visualization, we have extracted only year information from the first cer-

tificate date feature and calculated the number of years to the current one (2020). As

depicted on Figure 6.8, general behavior seems to be that positive hostnames are younger

than negative ones, which probably has an influence on previously mentioned features

like total hostnames.

Figure 6.9: Total suspicious valid issuers distributions

No difference in distributions of total suspicious valid issuers on Figure 6.9.

55

CHAPTER 6. ANALYSIS

Figure 6.10: Total suspicious certificates distributions

As in the case of total certificates, positive hostnames, as depicted on Figure 6.10,

have less suspicious certificates historically.

Figure 6.11: Maximum overlapping issuers distributions

Because positive hostnames have fewer issuers and thus also less overlapping issuers

(Figure 6.11).

Figure 6.12: Time period without certificate feature distributions

Both distributions show that feature representing time period without a certificate

(Figure 6.12) has literally no effect and we can think of removing it from extracted fea-

tures.

56

CHAPTER 6. ANALYSIS

Figure 6.13: Total Unique Organizations distributions

Positive samples tend to have less unique organizations (Figure 6.13). However,

global statistics at the beginning of this section showed that the majority of certificates

has organization field unfilled.

Validity Is WildCard Root

Positive Negative Positive Negative

1435 695 949035 183006 0 2130 4 1132037

67 % 33 % 84 % 16 % 0 % 100 % 0 % 100 %

Valid Nonvalid Valid Nonvalid True False True False

Table 6.3: Validity of HostName and Is WildCard Root

The left side of Table 6.3 shows the number of valid certificates between both classes.

67 % of positive hostnames and 84 % of negative hostnames have a valid certificate. On

the right side is a statistic for is wildcard root feature showing that this feature is almost

useless as it was true only for 4 samples out of both classes and we can think about

removing it.

Absolute/WildCard/Mixed Coverage

Positive Negative

927 1116 87 492778 456396 182867

44 % 52 % 4 % 44 % 40 % 16 %

Absolute WildCard Mixed Absolute WildCard Mixed

Table 6.4: Only Absolute/WildCard/Mixed coverage statistics

Statistics in Table 6.4 show hostname coverage only and only by absolute or wildcard

certificates and also a number of hostnames that are covered by both. For the positive

sample, there are fewer absolute certificates than wildcards and as was expected, number

of hostnames with mixed coverage is very small. On the other hand, in the negative

sample, there are more hostnames with absolute coverage. The observer difference is

however not significant.

To conclude this chapter, we have observed all extracted features with distribution

comparison. There are some patterns for total-based features that differ between pos-

57

CHAPTER 6. ANALYSIS

itive and negative samples, however, this behavior might be caused by the general age

(Figure 6.8) of positive respectively negative hostnames. Is wildcard root and period

without certificate features might be excluded from the feature list as both shows liter-

ally no patterns.

58

Chapter 7

Detection

This chapter covers detection experiments with a suitable selected classifier model. We

describe Random decision forest that has shown to be very efficient in a field of general

recognition and thus has been chosen as the main and only experimental model. Note

that, this thesis does not aim to find the most suitable malware recognition model with

the use of certificate-based features. Rather than that has been chosen a classification

model that has previously shown to be an effective option in a field of malware detec-

tion with the use of highly class imbalanced data, where observing true positives is like

looking for a needle in a haystack. Random Forest is also a type of non-parametric model

which does not assume any shape that the learned mapping function should have (para-

metric models), instead, it tries to estimate a mapping that gets as close as possible to

training points [39].

7.1 Random Decision Forest

Random decision forest, as a general name of this model, can be used for various prob-

lems starting with classification, regression, and other recognition tasks such as manifold

learning [40]. Our task is malware recognition and multiclass classification therefore all

detection experiments are performed with Random Forest Classifier model. By Random

Forest, we are here referring to the most common and used implementation, the Breiman

forest [55] which uses CART algorithm [56] for the model’s training phase.

Decision Forests are one of so-called ensemble methods which train multiple models of

input data and then aggregate their classification results. In the case of Random Forests,

multiple Decision Tree models are trained on random input feature subsets with the use

of bagging method, therefore it is crucial to describe underlying concepts of the Decision

Tree model to understand how this ensemble method works in general. In performed

experiments, trained Random Forest models aggregate results from Decision Trees by

so-called majority vote method, which takes results from all trained trees and resolute

classification decision is made by the most occurring class [39].

59

CHAPTER 7. DETECTION

7.1.1 Decision Trees

Decision tree model resembles a mathematical tree model known from graph theory

and the CART algorithm specifically implements a binary tree. Tree consists of inter-

nal nodes, edges, and root node whilst each internal node is used as an arbitrate decision

point that splits input data (based on defined test function) into distinct parts starting

with the tree root. Input data are recursively propagated through the trained tree until

one of the leaf nodes occurs which is accompanied by the final classification result.

As was stated in the text above, in all non-leaf nodes happens data split with defined

test function. This is the most important part of the tree-building algorithm as it directly

influences final classification results. The splitting function decides what would be the

best split regarding to data purity measure and when the split at each node is as pure as

possible, the more confident we are in resolute classification. As a purity measure, we use

so-called information gain (IG) as an objective function which is defined as an expected

reduction of entropy (H) when the split is created. Information gain in one internal node

S is defined as follows [39, 40].

IG(S) = H(S)− |Sl | ·H(Sl) + |Sr | ·H(Sr)
|S |

H(X) = −
∑
c∈Y

p(c) logp(c)

p(c) is a frequency of class c in split X

For better understanding, when split X contains elements of only a single class, p(c)

equals 1, thus logp(c) equals zero and whole entropy of split X equals 0. On the other

hand, when each class has the same frequency and therefore all classes are equally dis-

tributed, calculated entropy is maximal and the split is “impure”. During the training

phase, tree is recursively built by maximization of information gain measure at each

node. During the testing phase, the decision tree recursively applies all previously de-

fined (learned) tests on unseen data points until it reaches a leaf node where the resolute

classification decision is made, either by most occurring class in the split or by class dis-

tribution.

Generally speaking, the decision tree is a model that is easy to interpret and explain

with an ability to handle categorical data (no need for one-hot encoding). On the other

hand, the trained model can result in high variance (overfitting). Last but not least,

trees are very sensitive to data changes, thus even small changes can have a big impact

on trained model. The strength of the Random Forest model comes from the bagging

procedure which tends to minimize the previously mentioned high variance of the tree

model and extensively improve its performance [39].

All performed experiments have been done using Spark library for machine learning

called MLlib [57]. However, this library has shown to be ineffective [58] and specifically

60

CHAPTER 7. DETECTION

for Random Forest classifier, we use improved Optimized Random Forest on Apache Spark

(ORaF) implementation [59].

7.1.2 (Hyper)parameters

Parameters of the model are variables which given algorithm learns during the training

phase, such as individual nodes and splits in decision tree model or weights in neural

networks.

Hyperparameters are used as an additional training algorithm’s input that influences

final model behavior. It varies from a given method but usually has to do with underlying

concepts of selected model. In the case of Random Forest model, most of the hyperpa-

rameters are derived from the Decision Tree model [40].

Number of estimators specifies an actual number of trained Decision Trees in Random

Forest Model.

Purity measure decides how will be the data splits in trees created. Besides Information

Gain, another commonly used measure is Gini Impurity.

Maximum depth of each tree.

Minimum Information Gain for a split to be considered at a tree node.

7.2 Experiments

The final section of this thesis summarizes all performed detection experiments and by

the same token as in analysis Chapter 6, detection experiments have been performed on

the same two distinct time periods: August 2020 and October 2020. First three weeks of

each time interval have been used as a training sample and the remaining month interval

as a testing sample.

For comparison of our enhanced model, we had to first define so-called baseline model

consisting of 342 already existing features, which belongs to categories below.

Anomaly detectors - Detectors built on HTTP access logs telemetry data [60].

Global information - Popularity features from various sources such as Alexa [61].

TLS Handshake features - For instance, features based on used TLS cipher suites.

Baseline model is therefore our starting point for model comparison experiments.

Other following experiments incorporate all features in baseline models as well as fea-

tures that have been extracted from Certificate Transparency. Each model has been

trained with the following hyperparameters.

61

CHAPTER 7. DETECTION

Hyperparameters

Number of estimators (trees) 70

Purity measure Information Gain (Entropy)

Maxium depth 50

Minimum Information Gain 0

Table 7.1: Hyperparameters used for Random Forest classifier training

Experiment evaluation contains a binary confusion matrix included primarily for

orientation between positives and negatives. Substantial included measure is observed

number of classes which given model classified as positive with precision over 0.9. Last

but not least, to see how specific features roughly perform, all models enhanced with

new features have a feature importance table attached. This table contains each new fea-

ture with its position among other features the model was trained with and also count

measure. Count represents how many times has given feature appeared as a decision in

a tree node in all model’s trees divided by total number of trees, thus it represents an

average measure for one tree.

7.3 August 2020

This section contains 3 trained models: baseline, model with only a boolean CT indicator,

and model with all extracted features.

7.3.1 Baseline

Actual

Positive Negative

Prediction
Positive 9839 22784

Negative 25513 -

Table 7.2: Confusion Matrix for August 2020 baseline model

Table 7.2 describes the confusion matrix of the baseline model with 9839 correctly classi-

fied positive samples. Because of the large amount of true negatives, to speedup compu-

tation, they are filtered out in the evaluation pipeline and we do not have them available.

TNs are also not necessary for calculation of precision and recall metrics.

Precision >= Total classes TPs FPs Average Recall

1 13 1205 0 0.40

0.95 15 4854 178 0.47

0.9 17 4926 184 0.50

Table 7.3: Total TP classes with precision over 0.9

62

CHAPTER 7. DETECTION

Total of 17 different malware classes have been classified with precision over 0.9. 15

of them with precision over 0.95 and 13 with precision equals to 1. That means, when

trained model classified one of those 13 classes, it was correct in 100 % of cases. The

average recall of those 13 classes was 0.4 and thus we can say 40 % of positive samples

from 13 different classes have been correctly classified on average.

7.3.2 CT indicator

This model was a baseline model enhanced only of a boolean indicator whether we have

or do not have extracted features from Certificate Transparency for given hostname. This

experiment is performed primarily to identify how strong signal this indicator is.

Actual

Positive Negative

Prediction
Positive 9013 22925

Negative 26339 -

Table 7.4: Confusion Matrix for August 2020 CT indicator model

Precision >= Total classes TPs FPs Average Recall

1 14 340 0 0.46

0.95 16 3969 163 0.52

0.9 17 3986 164 0.50

Table 7.5: Total TP classes with precision over 0.9 of CT indicator model

Table 7.4 and Table 7.5 above state that indicator feature did not significantly im-

prove the baseline model as the total classes with precision equal 1 increased only by 1,

with average recall 0.46. On the other hand, note that a total number of true positives

decreased and we can assume that this indicator feature is not very useful.

Feature Importance

Position Feature Count

47 ctIndicator 34.83

Table 7.6: Feature importance statistics for CT indicator model

In this case, we also have available feature importance measure, that has been de-

scribed above. In this case, the indicator feature has placed on the 47th position out of

343 features the model was trained with and in average, it was used almost 35 times in

each decision tree model.

63

CHAPTER 7. DETECTION

7.3.3 CT Features

Finally, this section contains results for a model trained with extracted features from

August 2020.

Actual

Positive Negative

Prediction
Positive 10086 22451

Negative 25266 -

Table 7.7: Confusion Matrix for August 2020 CT features model

Precision >= Total classes TPs FPs Average Recall

1 20 2032 0 0.68

0.95 22 6320 58 0.71

0.9 26 9856 276 0.72

Table 7.8: Total TP classes with precision over 0.9 of CT features model

On Table 7.7 confusion matrix we can see the number of true positives has slightly

increased over the August 2020 baseline model. Nevertheless, the major classification

improvement of this enhanced model can be seen on Table 7.8. Total of 26 classes has

been correctly classified with precision over 0.9, 22 classes with precision over 0.95, and

20 classes with precision equal to 1. The average recall for those 20 classes is 0.68 thus

we have correctly classified 68 % of positive samples out of them on average.

And last but not least in the Table 7.9 we can see all features extracted from Cer-

tificate Transparency sorted in descending order by the right-most column representing

the average feature count in one tree. Out of 357 used features, we can see that 7 of

them are in the top 20 starting with totalHostNames feature. On the other hand, and

as was expected, the least used designed features are timePeriodWithoutCertificate and

isWildCardRoot which already showed to be ineffective in Chapter 6.

64

CHAPTER 7. DETECTION

Feature Importance

Position Feature Count

13 totalHostNames 73.03

14 totalSusCertificates 71.29

15 totalCerts 69.94

16 totalUniqueHostNames 68.71

17 wildCardCoverageCount 67.39

18 absoluteCoverage 64.71

20 firstCertDate 63.74

23 totalUniqueWildCardHostNames 61.80

24 totalValid 60.84

39 totalIssuers 45.10

43 totalSusValidIssuers 41.13

45 totalUniqueOrganizations 39.71

47 maxOverlappingIssuers 38.44

87 timePeriodWithoutCertificate 10.56

130 isWildCardRoot 5.57

Table 7.9: Feature importance statistics for CT features model

7.4 October 2020

The same detection experiment as in the case of August 2020 (except the CT indicator

one) has been performed in October 2020 time period.

7.4.1 Baseline

Actual

Positive Negative

Prediction
Positive 3058 201

Negative 5071 -

Table 7.10: Confusion Matrix for October 2020 baseline model

Baseline model has correctly classified 3058 positive samples on October 2020 time pe-

riod out of which were classified 7 total malware classes with precision equals to 1 and

an average recall of 0.48.

65

CHAPTER 7. DETECTION

Precision >= Total classes TPs FPs Average Recall

1 7 310 0 0.48

0.95 9 916 8 0.58

0.9 11 3005 185 0.59

Table 7.11: Total TP classes with precision over 0.9 of baseline model

7.4.2 CT Features

Actual

Positive Negative

Prediction
Positive 4281 32

Negative 3848 -

Table 7.12: Confusion Matrix for October 2020 CT features model

Precision >= Total classes TPs FPs Average Recall

1 16 1479 0 0.67

0.95 20 4274 28 0.69

0.9 20 4274 28 0.69

Table 7.13: Total TP classes with precision over 0.9 of CT features model

Table 7.12 and Table 7.13 contains results of the October 2020 model enhanced with

CT features. In comparison with previous baseline model and by the same token as in

August 2020 models, we can see significant classification improvement. Total number of

true positives has increased by more than a thousand but most importantly this model

was able to classify 20 classes with precision over 0.95. 16 classes then with precision

equal to 1 and average recall of 0.67.

Table 7.14 covers feature importance for October 2020 model. Resulting table shows

that new features are still in the lead out of all 357 total used features starting with

totalSusCertificates feature from the very first list position which was present almost

103 times in each trained Decision Tree. This quite resembles Table 7.9 from August as

the importance and order have not changed that much as well as the last two features in

the list.

66

CHAPTER 7. DETECTION

Feature Importance

Position Feature Count

1 totalSusCertificates 102.89

3 firstCertDate 99.69

5 totalHostNames 95.36

6 totalUniqueHostNames 94.43

7 wildCardCoverageCount 91.89

9 totalCerts 90.13

10 totalUniqueWildCardHostNames 87.17

12 absoluteCoverage 83.54

14 totalValid 81.31

28 totalIssuers 64.63

34 totalUniqueOrganizations 61.49

41 totalSusValidIssuers 55.91

44 maxOverlappingIssuers 53.11

91 timePeriodWithoutCertificate 10.21

181 isWildCardRoot 2.81

Table 7.14: Feature importance statistics for CT features model

67

Chapter 8

Conclusion

In this thesis, we focused on exploring Certificate Transparency as a possible data source

for extraction of features and their application in the field of malware detection. It was

necessary to study TLS protocol and especially focus on Public Key Infrastructure which

uses the concept of certificates to provide source integrity verification. Essential part

of this thesis is the Certificate Transparency service which fixes infrastructural flaws in

TLS protocol and generally mitigates certificate-based threats. Except that, its public and

transparent nature allow us to use it as a historical data source of TLS certificates for an

enormous number of hostnames.

As a very first practical step was created draft of features that could be extracted

out of certificate history, then we continued with implementation of extraction pipeline

in Spark environment. Several optimization obstacles have been encountered during

this implementation phase which resulted in a change of the approach to decrease the

amount of processed data at once. Input hostnames were limited to those that appeared

in telemetry during August 2020 respectively October 2020 time period.

Extracted features have been analyzed by plotting distributions between positive and

negative malware class and visually comparing observed patterns. Given the analysis,

the strongest observed signal was firstCertificateDate feature which has shown us that

positive hostnames are generally younger than negative ones. Based on that, we might as-

sume that other designed features (such as totalHostnames) are affected by this behavior

and it is appropriate to perform additional analysis. Nevertheless, based on plotted data

distributions, two features have proven to be completely useless, specifically isWildcard-

Root and timePeriodWithoutCertificate.

Final malware detection experiments have been performed with Random Forest clas-

sifier, current state-of-the-art solution for structured data, that has shown to be effective

in the field of malware multinomial classification. For both time periods have been de-

fined so-called baseline models consisting of already existing features which we then

used for comparison with models enhanced with newly designed ones.

For August 2020 time period, the baseline model was able to correctly classify 17

different malware classes with precision over 90 %, however the model with CT features

was able to correctly classify 26 classes with a precision of over 90 %.

69

CHAPTER 8. CONCLUSION

For October 2020 time period, the baseline model was able to correctly classify 11

different malware classes with precision over 90 %, however the model with CT features

was able to correctly classify 20 classes with a precision of over 90 %.

The models’ performances have significantly improved in both cases and thus we

can assume that the history of certificates is indeed a useful data source. For both time

periods, we have also got so-called feature importance statistics that tell us how many

times is given feature used as an arbitrate decision point in the Decision Tree model. In

both cases, around 50 % of new features were in the top 20 out of 357 total features.

Designed features have shown to be useful as they improved classification with ran-

dom forest model. However, and as was stated before, it is appropriate to perform ad-

ditional feature analysis to see whether the firstCertificateDate signal is the strongest

among others, and by the same token, there are isWildCardRoot and timePeriodWith-

outCertificate ineffective features that could be removed in next experiments.

Speaking of future work, current pipeline implementation consists of filter opera-

tions that reduce the amount of data processed at once. However, it is impractical to

use additional hostname filter data that are used as an input to the job execution. To

automate the whole computation pipeline, implementation would need some batch-like

approach which would reduce the amount of data as well.

70

Bibliography

[1] Google. HTTPS encryption on the web, . URL https://transparencyreport.

google.com/https/overview?hl=en. Accessed on 2020/12/18.

[2] Google. Community : Certificate Transparency, . URL https://certificate.

transparency.dev/community/. Accessed on 2020/12/18.

[3] F5. What is the CIA Triad?, 2019. URL https://www.f5.com/labs/articles/

education/what-is-the-cia-triad. Accessed on 2020/12/07.

[4] E. Rescorla. The transport layer security (tls) protocol version 1.3. RFC 8446, RFC

Editor, August 2018. URL https://www.rfc-editor.org/rfc/rfc8446.txt. Ac-

cessed on 2020/12/18.

[5] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September 1981. URL

http://www.rfc-editor.org/rfc/rfc793.txt. Accessed on 2020/12/18.

[6] J. Postel. User datagram protocol. STD 6, RFC Editor, August 1980. URL http:

//www.rfc-editor.org/rfc/rfc768.txt. Accessed on 2020/12/18.

[7] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, February

1978. ISSN 0001-0782. doi: 10.1145/359340.359342. URL https://doi.org/10.

1145/359340.359342.

[8] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, 1976. doi: 10.1109/TIT.1976.1055638.

[9] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):

203–209, January 1987. ISSN 0025-5718.

[10] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 2001. ISBN 0-8493-8523-7. URL http://www.cacr.

math.uwaterloo.ca/hac/. Accessed on 2020/12/07.

[11] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2. RFC

5246, RFC Editor, August 2008. URL http://www.rfc-editor.org/rfc/rfc5246.

txt. Accessed on 2020/12/18.

71

https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://certificate.transparency.dev/community/
https://certificate.transparency.dev/community/
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt

BIBLIOGRAPHY

[12] Nick Sullivan. Cloudflare: Padding oracles and the decline of CBC-mode cipher

suites, 2016. URL https://blog.cloudflare.com/padding-oracles-and-the-

decline-of-cbc-mode-ciphersuites/. Accessed on 2020/12/18.

[13] Nick Sullivan. Cloudflare: A Detailed Look at RFC 8446 (a.k.a. TLS 1.3),

2018. URL https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/. Accessed

on 2020/07/12.

[14] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2.

[15] Specification for the advanced encryption standard (aes). Federal Informa-

tion Processing Standards Publication 197, 2001. URL http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[16] Cloudflare. What is a TLS handshake?, . URL https://www.cloudflare.com/

learning/ssl/what-happens-in-a-tls-handshake/. Accessed on 2020/07/12.

[17] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet x.509

public key infrastructure certificate and certificate revocation list (crl) profile. RFC

5280, RFC Editor, May 2008. URL http://www.rfc-editor.org/rfc/rfc5280.

txt. Accessed on 2020/12/18.

[18] Cloudflare. What is an SSL certificate?, . URL https://www.cloudflare.com/

learning/ssl/what-is-an-ssl-certificate/. Accessed on 2020/07/12.

[19] Dani Grant. CLoudflare: Introducing TLS with Client Authentication, 2017.

URL https://blog.cloudflare.com/introducing-tls-client-auth. Accessed

on 2020/07/12.

[20] ssl.com. Browsers and Certificate Validation, 2018. URL https://www.ssl.com/

article/browsers-and-certificate-validation/#certification-paths-

and-path-processing. Accessed on 2020/12/18.

[21] M. Nystrom and B. Kaliski. Pkcs #10: Certification request syntax specification

version 1.7. RFC 2986, RFC Editor, November 2000. URL https://www.rfc-

editor.org/rfc/rfc2986.txt. Accessed on 2020/12/18.

[22] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry

Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol –

http/1.1. RFC 2616, RFC Editor, June 1999. URL http://www.rfc-editor.org/

rfc/rfc2616.txt. Accessed on 2020/12/18.

[23] E. Rescorla. Http over tls. RFC 2818, RFC Editor, May 2000. URL http://www.rfc-

editor.org/rfc/rfc2818.txt. Accessed on 2020/12/18.

[24] Google. Certificate Transparency, 2013. URL https://www.certificate-

transparency.org. Accessed on 2020/11/23.

72

https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://blog.cloudflare.com/introducing-tls-client-auth
https://www.ssl.com/article/browsers-and-certificate-validation/#certification-paths-and-path-processing
https://www.ssl.com/article/browsers-and-certificate-validation/#certification-paths-and-path-processing
https://www.ssl.com/article/browsers-and-certificate-validation/#certification-paths-and-path-processing
https://www.rfc-editor.org/rfc/rfc2986.txt
https://www.rfc-editor.org/rfc/rfc2986.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
https://www.certificate-transparency.org
https://www.certificate-transparency.org

BIBLIOGRAPHY

[25] B. Laurie, A. Langley, and E. Kasper. Certificate transparency. RFC 6962, RFC Ed-

itor, June 2013. URL https://www.rfc-editor.org/rfc/rfc6962.txt. Accessed

on 2020/12/18.

[26] StatCounter Global Stats, 2020. URL https://gs.statcounter.com/. Accessed on

2020/11/23.

[27] Threatpost. Final Report on DigiNotar Hack Shows Total Compromise of CA

Servers, 2012. URL https://threatpost.com/final-report-diginotar-hack-

shows-total-compromise-ca-servers-103112/77170/. Accessed on 2020/11/23.

[28] Google. What is Certificate Transparency?, 2013. URL https://www.certificate-

transparency.org/what-is-ct. Accessed on 2020/11/23.

[29] Certificate transparency log policy, 2017. URL https://github.com/chromium/

ct-policy/blob/master/log_policy.md. Accessed on 2020/11/23.

[30] Google. Certificate Transparency for Site Operators, 2013. URL https://

chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-

transparency.md#basic. Accessed on 2020/11/23.

[31] Google. How Certificate Transparency Works, 2013. URL https://www.

certificate-transparency.org/how-ct-works. Accessed on 2020/12/13.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. URL http:

//www.bitcoin.org/bitcoin.pdf. Accessed on 2020/07/12.

[33] D. S. V. Madala, M. P. Jhanwar, and A. Chattopadhyay. Certificate Transparency

Using Blockchain. In 2018 IEEE International Conference on Data Mining Workshops

(ICDMW), pages 71–80, 2018. doi: 10.1109/ICDMW.2018.00018.

[34] Google. Certificate Transparency - Known Logs, 2013. URL https://www.

certificate-transparency.org/known-logs. Accessed on 2020/11/23.

[35] Certificate Transparency for Untrusted CAs, 2016. URL https://security.

googleblog.com/2016/03/certificate-transparency-for-untrusted.html.

Accessed on 2020/11/23.

[36] How Log Proofs Work, 2013. URL https://www.certificate-transparency.org/

log-proofs-work. Accessed on 2020/12/13.

[37] Sectigo. What Google Chrome’s New Certificate Transparency Requirement Means

to Your Organization, 2018. URL https://sectigo.com/resource-library/

what-google-chromes-new-certificate-transparency-requirement-means-

to-your-organization. Accessed on 2020/11/23.

73

https://www.rfc-editor.org/rfc/rfc6962.txt
https://gs.statcounter.com/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://www.certificate-transparency.org/what-is-ct
https://www.certificate-transparency.org/what-is-ct
https://github.com/chromium/ct-policy/blob/master/log_policy.md
https://github.com/chromium/ct-policy/blob/master/log_policy.md
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md#basic
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md#basic
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md#basic
https://www.certificate-transparency.org/how-ct-works
https://www.certificate-transparency.org/how-ct-works
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://www.certificate-transparency.org/known-logs
https://www.certificate-transparency.org/known-logs
https://security.googleblog.com/2016/03/certificate-transparency-for-untrusted.html
https://security.googleblog.com/2016/03/certificate-transparency-for-untrusted.html
https://www.certificate-transparency.org/log-proofs-work
https://www.certificate-transparency.org/log-proofs-work
https://sectigo.com/resource-library/what-google-chromes-new-certificate-transparency-requirement-means-to-your-organization
https://sectigo.com/resource-library/what-google-chromes-new-certificate-transparency-requirement-means-to-your-organization
https://sectigo.com/resource-library/what-google-chromes-new-certificate-transparency-requirement-means-to-your-organization

BIBLIOGRAPHY

[38] Bingyu Li, Fengjun Li, Ziqiang Ma, and Qianhong Wu. Exploring the security of

certificate transparency in the wild. In Jianying Zhou, Mauro Conti, Chuadhry Mu-

jeeb Ahmed, Man Ho Au, Lejla Batina, Zhou Li, Jingqiang Lin, Eleonora Losiouk,

Bo Luo, Suryadipta Majumdar, Weizhi Meng, Martín Ochoa, Stjepan Picek, Geor-

gios Portokalidis, Cong Wang, and Kehuan Zhang, editors, Applied Cryptography

and Network Security Workshops, pages 453–470, Cham, 2020. Springer International

Publishing. ISBN 978-3-030-61638-0.

[39] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduc-

tion to Statistical Learning: With Applications in R. Springer Publishing Company,

Incorporated, 7 edition, 2014. ISBN 978-1-4614-7137-0. URL http://faculty.

marshall.usc.edu/gareth-james/ISL/. Accessed on 2020/12/13.

[40] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision Forests: A Unified

Framework for Classification, Regression, Density Estimation, Manifold Learning and

Semi-Supervised Learning, volume 7. NOW Publishers, foundations and trends®

in computer graphics and vision: vol. 7: no 2-3, pp 81-227 edition, January 2012.

URL https://www.microsoft.com/en-us/research/publication/decision-

forests-a-unified-framework-for-classification-regression-density-

estimation-manifold-learning-and-semi-supervised-learning/.

[41] Google. Classification: Accuracy, . URL https://developers.google.

com/machine-learning/crash-course/classification/accuracy. Accessed on

2020/12/13.

[42] Google. Classification: True vs. False and Positive vs. Negative, . URL

https://developers.google.com/machine-learning/crash-course/

classification/true-false-positive-negative. Accessed on 2020/12/13.

[43] Google. Classification: Precision and Recall, . URL https://developers.

google.com/machine-learning/crash-course/classification/precision-

and-recall. Accessed on 2020/12/13.

[44] B. Claise. Cisco systems netflow services export version 9. RFC 3954, RFC Editor,

October 2004. URL http://www.rfc-editor.org/rfc/rfc3954.txt. Accessed on

2020/12/18.

[45] Cisco. Introduction to Cisco IOS NetFlow - A Technical Overview, 2012.

URL https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-

software/ios-netflow/prod_white_paper0900aecd80406232.html. Accessed on

2020/12/18.

[46] D. McGrew and B. Anderson. Enhanced telemetry for encrypted threat analytics.

In 2016 IEEE 24th International Conference on Network Protocols (ICNP), pages 1–6,

2016. doi: 10.1109/ICNP.2016.7785325.

74

http://faculty.marshall.usc.edu/gareth-james/ISL/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
https://www.microsoft.com/en-us/research/publication/decision-forests-a-unified-framework-for-classification-regression-density-estimation-manifold-learning-and-semi-supervised-learning/
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
http://www.rfc-editor.org/rfc/rfc3954.txt
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html

BIBLIOGRAPHY

[47] Google. The List of Chrome CT logs, . URL https://www.gstatic.com/ct/log_

list/log_list.json. Accessed on 2020/12/13.

[48] ZMap. Zcertificate - github. URL https://github.com/zmap/zcertificate. Ac-

cessed on 2020/12/13.

[49] ZMap. The ZMap Project, . URL https://zmap.io/. Accessed on 2020/12/13.

[50] ZMap. ZCrypto - Schemas, . URL https://github.com/zmap/zcrypto/blob/

d3043756f9f43af2ff0ecd05ff83e3e2abc26437/zcrypto_schemas/zcrypto.py#

L308. Accessed on 2020/12/13.

[51] Apache Software Foundation. Apache Parquet, 2018. URL https://parquet.

apache.org/. Accessed on 2020/12/13.

[52] Apache Software Foundation. RDD Programming Guide. URL https://

spark.apache.org/docs/latest/rdd-programming-guide.html. Accessed on

2020/12/13.

[53] Internet Security Research Group (ISRG). Let’s Encrypt - Free SSL/TLS Certificates.

URL https://letsencrypt.org/. Accessed on 2020/12/18.

[54] Sectigo Limited. ComodoCA Official Site | Comodo SSL Certificates Official Site.

URL https://ssl.comodo.com/. Accessed on 2020/12/18.

[55] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN

0885-6125. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:

1010933404324.

[56] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifica-

tion and regression trees. CRC press, 1984.

[57] Apache Software Foundation. MLlib - Apache Spark’s scalable machine learning

library, 2018. URL https://spark.apache.org/mllib/. Accessed on 2020/12/16.

[58] Starosta Radek. Distributed algorithms for decision forest training in the network

traffic classification task. Bachelor’s thesis, Czech Technical University in Prague,

Faculty of Electrical Engineering, 2018.

[59] Cisco. ORaF (Optimized Random Forest on Apache Spark), 2018. URL https:

//github.com/cisco/oraf. Accessed on 2020/12/16.

[60] Martin Grill. Combining network anomaly detectors. PhD thesis, Czech Technical

University in Prague, Faculty of Electrical Engineering, 2016.

[61] Alexa Internet. Keyword Research, Competitive Analysis, & Website Ranking |

Alexa. URL https://www.alexa.com/. Accessed on 2020/12/18.

75

https://www.gstatic.com/ct/log_list/log_list.json
https://www.gstatic.com/ct/log_list/log_list.json
https://github.com/zmap/zcertificate
https://zmap.io/
https://github.com/zmap/zcrypto/blob/d3043756f9f43af2ff0ecd05ff83e3e2abc26437/zcrypto_schemas/zcrypto.py#L308
https://github.com/zmap/zcrypto/blob/d3043756f9f43af2ff0ecd05ff83e3e2abc26437/zcrypto_schemas/zcrypto.py#L308
https://github.com/zmap/zcrypto/blob/d3043756f9f43af2ff0ecd05ff83e3e2abc26437/zcrypto_schemas/zcrypto.py#L308
https://parquet.apache.org/
https://parquet.apache.org/
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://letsencrypt.org/
https://ssl.comodo.com/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://spark.apache.org/mllib/
https://github.com/cisco/oraf
https://github.com/cisco/oraf
https://www.alexa.com/

Appendix A

October 2020 analysis

This additional section covers feature analysis on October 2020 time period in the same

way as was performed in Chapter 6 on August 2020.

A.1 Global Statistics

Exported Matched Unmatched Positive Negative

3985523 3428876 556647 3235 3424005

Top 10 Issuers Top 10 Organizations

Issuer Certs % Organization Certs %

cloudflare 38485425 55.9 cloudflare 38659133 56.2

let’s encrypt 14492728 21.1 blank 27945685 40.6

comodo ca 9269812 13.5 netflix, inc. 294629 0.4

cpanel, inc. 2311821 3.4 incapsula inc 110820 0.2

digicert inc 1055602 1.5 google inc 85474 0.1

globalsign nv-sa 585554 0.9 google llc 45362 0.1

godaddy.com, inc. 558339 0.8 facebook, inc. 30517 0.1

sectigo limited 415604 0.6 firebase, inc. 23944 0.1

amazon 241196 0.4 fastly, inc. 22225 0.1

geotrust inc. 229828 0.3 microsoft 19078 0.1

Total 693 68833323 100 314090 68833323 100

77

APPENDIX A. OCTOBER 2020 ANALYSIS

A.2 Feature analysis

Figure A.1: Total HostNames feature distributions

Figure A.2: Total Unique HostNames feature distributions

Figure A.3: Total average HostNames per certificate distributions

Figure A.4: Total Unique WildCard HostNames distributions

78

APPENDIX A. OCTOBER 2020 ANALYSIS

Figure A.5: Total certificates distributions

Figure A.6: Total valid certificates distributions

Figure A.7: Total issuers distributions

Figure A.8: First certificate date in years

79

APPENDIX A. OCTOBER 2020 ANALYSIS

Figure A.9: Total suspicious valid issuers distributions

Figure A.10: Total suspicious certificates distributions

Figure A.11: Maximum overlapping issuers distributions

Figure A.12: Time period without certificate feature distributions

80

APPENDIX A. OCTOBER 2020 ANALYSIS

Figure A.13: Total Unique Organizations distributions

Validity Is WildCard Root

Positive Negative Positive Negative

2291 944 2953415 470590 0 3235 9 3423996

70.8 % 29.2 % 86.3 % 13.7 % 0 % 100 % <0.1% 99.9%

Valid Nonvalid Valid Nonvalid True False True False

Table A.1: Validity of HostName and Is WildCard Root

Absolute/WildCard/Mixed Coverage

Positive Negative

1561 1552 122 1356222 1652245 415538

48.3 % 47.9 % 3.8 % 39.6 % 48.3 % 12.1 %

Absolute WildCard Mixed Absolute WildCard Mixed

Table A.2: Only Absolute/WildCard/Mixed coverage statistics

81

Appendix B

Attached files

The attached files contain source code for data mining as well as code for hostname pars-

ing, expanding and manipulation.

File Description

ctMining.ipynb Data mining experiments in Jupyter notebook

data.csv Data sample for mining experiments

dataLoad.py Data loading scripts for mining experiments

hostparser.py Implemented scripts for hostname processing

Table B.1: List of attached files.

83

	Introduction
	TLS protocol
	TLS Handshake and Record protocol
	Asymmetric encryption
	Symmetric encryption
	TLS Handshake

	Public Key Infrastructure
	X.509 certificate
	Certificate Authority

	HTTPS and Internet Browsers

	Certificate Transparency
	Purpose of Certificate Transparency
	Infrastructure
	Logs
	Monitors
	Auditors

	Proofs
	Merkle Trees
	Log Proofs
	Consistency Proofs
	Audit Proofs

	Usage in HTTPS and Browsers
	Third-party services

	Task definition
	Classification
	Model evaluation
	Confusion Matrix
	Precision
	Recall

	Features
	Current Approach
	Designed Features

	Pipeline
	Collecting certificates
	Extraction pipeline
	Spark fundamentals
	Data Load - Phase 1
	HostName Mapping - Phase 2
	Feature extraction - Phase 3
	Optimization Obstacles

	Proof of Concept approach
	Extracted features

	Analysis
	August 2020
	Global Statistics

	Feature analysis

	Detection
	Random Decision Forest
	Decision Trees
	(Hyper)parameters

	Experiments
	August 2020
	Baseline
	CT indicator
	CT Features

	October 2020
	Baseline
	CT Features

	Conclusion
	Bibliography
	October 2020 analysis
	Global Statistics
	Feature analysis

	Attached files

