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Abstract

The topic of transferring an artistic style from a given example to another image has
been very popular among the researchers over the last two decades. Although certain
progress has been made, and computer-generated stylized images are becoming almost
indistinguishable from real artworks, there are still fundamental challenges that need to
be solved. In this dissertation, we focus on the task of Example-based Style Transfer
and related methods, we discuss its applications and their state-of-the-art algorithmic
solutions, and we follow by our own contribution into this field. In particular, our re-
search contributes to the following areas: (1) example-based stylization methods allow-
ing for a fast non-photorealistic rendering focusing on efficiency and high-quality results;
(2) transferring an artistic style from an image to a video sequence where a semantically
meaningful transfer is expected; (3) combination of patch-based and neural methods
to allow for fully automatic style transfer while maintaining high-quality of the results.
(4) research of learning based methods that allow high-quality semantically meaningful
stylization of videos at interactive rates. Finally, we acquaint the reader with our vision
of future work.

This thesis is presented as a collection of five research papers that were published in
renowned impacted journals.
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Ing. Ondřej Texler

texleond@fel.cvut.cz
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Abstrakt

Po v́ıce než dvacet let se výzkumńıci zabývaj́ı problematikou přenosu výtvarného stylu
z dané předlohy na jiný obrázek. Ačkoli v této oblasti došlo k výraznému pokroku a
obrazy generované poč́ıtačem vypadj́ı téměř jako reálná d́ıla, stále jsou zde fundamentálńı
překážky, které je třeba vyřešit. Tato disertačńı práce se zabývá přenosem výtvarného
stylu na základě předlohy a daľśımi metodami, které s t́ımto tématem úzce souviśı. Práce
pojednává o aplikovatelnosti, state-of-the-art algoritmických řešeńıch a zahrnuje naši
vlastńı kontribuci do problematiky přenosu výtvarného stylu.

Náš výzkum přisṕıvá zejména do následuj́ıćıch oblast́ı: (1) metody přenosu výtvarného
stylu na základě předlohy umožňuj́ıćı nefotorealistické vykreslováńı s d̊urazem na výpočetńı
efektivnost a výsledky ve vysoké kvalitě. (2) přenos výtvarného stylu z obrázku na video-
sekvenci, kde je očekáváno zachováńı sémantiky. (3) kombinace patch-based a neurálńıch
metod umožňuj́ıćıch přenos výtvarného stylu ve vysoké kvalitě a bez nutnosti interakce
uživatele. (4) výzkum metod založených na hlubokých neuronových śıt́ı s d̊urazem na
efektivńı trénink a generováńı výsledk̊u v reálném čase a to při zachováńı vysoké kvality.
Nakonec čtenáře seznámı́me s naš́ı viźı pro budoućı výzkum.

Tato práce je prezentována jako soubor pěti výzkumných článk̊u, které byly publi-
kovány v renomovaných impaktovaných časopisech.

Kĺıčová slova

Poč́ıtačová grafika, přenos výtvarného stylu, na základě předlohy, ručně kreslený, syntéza
textury, stylizace, neuronové śıtě, nefotorealistické vykreslováńı, animace, digitálńı uměńı
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Chapter 1

Introduction

1.1 Motivation

Over the last three decades, creating of digital imagery has undergone tremendous de-
velopment. Computational power as well as amount of available digital data increased
exponentially; moreover, development of new algorithms and success of neural networks
pushed the creating of digital art to the level unseen before. All these new digital paint-
ing tools and algorithms that become available allowed artists to be more efficient and
productive. However, this rapid development brought new requirements on fidelity and
quality of the digital imagery. Nowadays, FullHD or even 4K resolution images are con-
sidered standard, and producing and editing of such large images is more difficult for
artists, and demands for new algorithms. Thanks to all these advances, the digital art
has become very popular, and many artists and studios are trying to produce new art-
works that were not possible before or were exceeding the available budget, e.g., fully
hand-drawn ninety minutes movie or fully stylized computer game. This increased de-
mand brings even more requirements and motivates the further research. The algorithms
are expected to be faster, to work on arbitrary resolution, and to work as autonomously
and intelligently as possible. Motivated by aforementioned facts, this thesis focus on
important and thriving part in creating of digital art, non-photorealistic rendering and
style transfer.

In the field of computer graphics, non-photorealistic rendering is a well established area
of research. Opposed to photorealistic rendering where the goal is to create realistically
looking images respecting propagation of light in the scene, the goal of non-photorealistic
rendering is to create stylized imagery, e.g., hand-drawn paintings, cartoons, or sketches.
In our work, we focus mainly on a special subtask of non-photorealistic rendering—style
transfer; the task where an artistic style is transferred from an exemplar image to another
image or video.

In this chapter, we first briefly introduce a style transfer, its early as well as more
advanced applications, and we mention algorithms and techniques to solve this task.
Lastly, we mention the structure of this thesis.
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(a) (b)

(c) (d) (e)

(f) (g)

(h)

(i) (j)

Figure 1.1: Example of recently published fully stylized movies. Hand-painted movie Loving
Vincent (a-b), where original live captured footage is shown together with its painted variant.
Animated movie Undone (c-e) by Amazon, painterly short film Annie (f-g) by Riot Games, and
short animated movies Just a Thought (h) & Jing Hua (i-j) by Disney. (All images come from
respective movie trailers or behind-the-scenes documentaries.)
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1.2 Brief Introduction into the Style Transfer

Broadly speaking, the goal of style transfer is to create images resembling real artworks;
usually, transfer an artistic style from a painting to an image depicting a different content.
Style transfer methods can be used in various areas, for example in movie production
(e.g., The Little Mermaid–1989 or the original Beauty and the Beast–1991 by Disney)
where creating of traditional hand-drawn animations is usually extremely labor intensive
as every frame has to be painted or modified individually by an artist. The technique
commonly used in animation is called rotoscoping; a live-action scene is shoot, and
an artist then paints over every frame which creates the final hand-drawn animation.
Since this is truly tedious, work there are not many full-length movies created using this
technique. Although recently, this technique was used to create two long movies, Loving
Vincent1, where every frame was painted by hand and it took a large team six years
to finish the movie; and Undone2 which took an enormous human effort as well. And
having a style transfer technique that does not require effortful user interaction and is
capable of producing high visual quality results could make the process of creating these
movies tremendously easier. In the Fig. 1.1, see the images from the mentioned movies
together with recently presented painterly short film Annie3 created by Riot Games, and
stylized short movies Just a Thought4 & Jing Hua5 by Disney.

Over the last two decades, development of new algorithmic solutions, new hardware
capabilities, and advances made in neural networks allowed the field of style transfer
to progress; from early concepts [Her+01], over tools appreciated by artistic commu-
nity [GEB16]6 or [JAFF16]7, to applications in AR [Mag+15]. The mentioned progress
is briefly described in the following paragraphs and then more thoroughly in the related
work chapter.

Predecessors of style transfer were based on domain-specific algorithmic solutions.
They used a physical simulation to reproduce the behavior of a given artistic medium,
e.g., simulation of watercolor and the optical effect of the superimposed glazes [Cur+97].
Procedural solution to hallucinate a particular artistic style [Bou+06; Bou+07]. Or
they composed the desired content from a set of predefined elements, e.g., brush-
strokes [Her98]; more advanced approach in the similar spirit RealBrush [Lu+13], was
later developed; in this case example strokes are given and the algorithm uses them to
prepare the final result.

The important milestone opening an era of example-based style transfer has been
reached by introducing Image Analogies [Her+01]; an approach where no domain is
assumed and the only input to the method is an example of stylization – original image
and its stylized version. The framework is than able to stylize other images in the same
way as the exemplar stylization was performed.

A novel approach to the style transfer was proposed by [GEB16]; they used convo-
lutional neural networks to perform a style transfer. The result images are created by

1Loving Vincent: http://lovingvincent.com (Accessed October 11, 2020)
2Undone: https://www.imdb.com/title/tt8101850/ (Accessed October 11, 2020)
3Annie: https://www.youtube.com/watch?v=aUTU-GnxVuM (Accessed October 11, 2020)
4Just a Thought: https://www.imdb.com/title/tt10229080/ (Accessed October 11, 2020)
5Jing Hua: https://www.imdb.com/title/tt10229066/ (Accessed October 11, 2020)
6DeepArt: https://deepart.io (Accessed October 11, 2020)
7Prisma: https://prisma-ai.com (Accessed October 11, 2020)

http://lovingvincent.com
https://www.imdb.com/title/tt8101850/
https://www.youtube.com/watch?v=aUTU-GnxVuM
https://www.imdb.com/title/tt10229080/
https://www.imdb.com/title/tt10229066/
https://deepart.io
https://prisma-ai.com
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finding an image that simultaneously matches the content representation of the photo-
graph and the style representation of the artwork in the domain of VGG [SZ14]. Due
to its optimization nature, their approach is slow and hardware demanding; and due to
the fact the style image is in the process represented by set of statistics, the results are
usually blurry lacking fine artistic details). However, they opened a completely new path
in the field of style transfer and inspired many other researchers.

The natural extension of transferring style from one image to another image is to
transfer artistic style to entire video sequences. The problem there is time coherency.
When style transfer is performed using previous methods individually frame-by-frame,
the resulting video will most likely heavily flicker. This issue has been addressed by many
researchers, for example [Che+17].

1.3 Structure of the Thesis

In this chapter we motivated our research, and briefly presented the task of style transfer.
In Chapter 2 we discuss related work, and in Chapter 3 we briefly overview contributions
of this dissertation. Following, in Chapters 4, 5, 6, 7, and 8 we describe our individual
contributions in more depth. Each mentioned chapter corresponds to a publication that
was published in a journal with impact factor. In Chapter 9 we summarize contribution
of our work, briefly mention concurrent work, and conclude the thesis with our vision for
future work.

Appendix A lists author’s publications together with a list of their citations to date in
other publications. Appendix B specifies author’s contribution to the individual papers
presented in this thesis.

Finally, Appendix C contains supplementary material for our work [Jam+19], Ap-
pendix D contains supplementary material for [Tex+20b], and Appendix E contains
additional material for StyleBlit [Hau+20].
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Chapter 2

Related Work

In this chapter we describe different research paths and recent work in the field of style
transfer. We begin with early methods that perform image stylization by making a
composition of predefined elements (typically brush strokes). We continue with more
general example-based methods, where an entire painting is given as an example. Finally,
we introduce recent methods based on neural networks and their combinations with
algorithmic approaches. We also briefly discuss state-of-the-art in video stylization that
consider temporal coherence.

(a) (b)

Figure 2.1: Early method to the painterly rendering [Her98]. A source image (a) depicts the
content to be painted. Image (b) is the result obtained by applying small radius brushes over
the source image (a). They apply brushes in multiple layers; large brushes are applied first,
medium and small brushes follow.

(c)(b) (d)(a)

Figure 2.2: RealBrush [Lu+13]. Brush stroke exemplars (a) are used to synthesize the paint-
ing (b). The foreground flower strokes, see close-up (c), come from oil exemplars(a–left), while
the background strokes, see close-up (d), are composed using plasticine exemplars (a–right).
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Algorithmic and Stroke-based

One of the first methods that enabled generation of stylized imagery or videos were proce-
dural techniques that rely on hand-crafted algorithmic solutions to reproduce a particular
artistic style. Some of them, in order to mimic behavior of the given artistic medium,
utilize physical simulation [Cur+97; Hae+07; LXJ12] or a procedural solution [Bou+06;
Bou+07; Bén+10; Mon+18]. Other, so called stroke-based approaches use a library of
predefined strokes that are rotated and translated according to some guidance informa-
tion (e.g., segmentation or direction of image gradients). This approach has been applied
both in 2D [Her98] as well as in 3D [Sch+11]; and in various artistic styles such as pen and
ink illustration [Sal+97; Pra+01; Sna+06], hatching [Bre+07], or brush strokes [Lit97;
HE04; Sch+11; ZZ11]. See one example in Fig. 2.1, where a photograph is composed
from different brush strokes. The main drawback of this line of work is the fixed sets
of strokes, textures, or patterns that are not allowing for a greater output variety. This
limitation is partly overcome by introducing example brushes [Lu+13], see an overview
in Fig. 2.2, and later in [Zhe+17].

A BA’ B’

Figure 2.3: Image Analogies [Her+01]. An unfiltered image A together with its filtered–stylized
version A′ define the transformation. The goal is to perform the same transformation on an
unfiltered image B to obtain its filtered version B′. Besides A, A′, and B, there is no other
input to the framework.

(a) (b)

(c)

Figure 2.4: An example of a novel neural network based approach to the style trans-
fer [GEB16]. Result image (b) depicts the same content as source photograph (a) and bears
artistic attributes of style exemplar (c).
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Example-based

To address limitations of approaches that are based on an algorithmic solution or on a
set of predefined brushstrokes or textures, more general example-based approaches were
developed; in these methods the style is given by an exemplar image.

(1) Image Analogies framework introduced by Hertzmann et al. [Her+01] allows arbi-
trary style transfer from a source exemplar to a target image using guided patch-based
synthesis. See the method overview in Fig. 2.3. Image A is the original exemplar and
image A′ is its stylized counterpart, and these two images define the transformation. The
task is then to apply this transformation to another image B in order to get image B′

stylized in the same way the image A′ was stylized. (2) The Lit Sphere approach by
Sloan et al. [Slo+01] that uses texture mapping to generate stylized shading. (3) Neural
approaches that use deep convolutional networks to perform style transfer, see example
in Fig. 2.4. And lastly (4), we mention hybrid approaches where patch-based synthesis
methods are combined with neural ones.

Patch-based Approaches

In Image Analogies [Her+01] guided patch-based synthesis was used to perform style
transfer. The underlying patch-based machinery was further improved in other pub-
lications [WSI07; Kas+15; Fi16; BKR17]. Others adopted this framework to various
stylization scenarios such as fluid animation [Jam+15], 3D renders [Fi16], facial anima-
tions [Fi17], or videos [Fi14; Dvo+18] where temporal coherence was formulated as an
additional guidance channel for patch-based synthesis. Mentioned methods share one
critical drawback, and it is preparation of custom-tailored guiding channels which are
necessary to deliver compelling stylization quality. Another possible drawback is that
applying patch-based synthesis at a higher resolution requires significantly more compu-
tational power thus makes mentioned methods hardly accessible in interactive scenarios.
These two issues prevent artists from using style transfer efficiently in practice.

(a) (b) (c)

Figure 2.5: An example of The Lit Sphere [Slo+01]. The goal here is to transfer a shading
study from a simple sphere to a complex 3D model. (a) shading is transferred to a head model.
(b-c) a sphere serves as a shading reference to render the body model.
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MatCap

Sloan et al. [Slo+01] introduced technique called The Lit Sphere, see the example
in Fig. 2.5 – today, this concept is in 3D artist community known as MatCap (which
stands for material capture). The Lit Sphere was later extended by others [BTM06;
TAY13]. The main idea here is to uses a one-to-one correspondence between normal
values to transfer style from a hand-drawn exemplar of a simple object (a sphere) to a
more complex 3D model. This can be also solved using environment mapping [BN76].
Although the mentioned approaches can perform style transfer in real-time, they work
well only when the style exemplar does not contain distinct high-frequency details –
these details would be affected by geometric distortions caused by texture-mapping algo-
rithm and thus compromise fidelity of results. MatCap is used in most of the 3D artistic
software nowadays, and the mentioned limitation significantly reduces the number of us-
able materials, thus leaves artists with no other option than using simple, low-frequency,
textures.

Neural-based

Recently, Gatys et al. [GEB16] pioneered the use of neural networks to solve the task
of style transfer. They employ pre-trained convolutional neural network VGG [SZ14],
which is trained for image classification, to match the statistics of both the style and
content images to create result having desired content as well as stylized look; this
approach bears resemblance to parametric texture synthesis [PS00]. The same authors
further extended their idea to allow control over spatial location, color information, and
scale of features [Gat+17]; and others [SID17] extended this technique as well. Major
drawback common to mentioned neural techniques is that they are usually unable to
preserve high-frequency details of the style exemplar; it is caused by their statistics-
based nature. Moreover, since they use back-propagation mechanism to refine the final
result in multiple iterations, they are computationally demanding, and do not allow
interactive response even if run on GPU. To address the performance issue pre-trained
feed-forward networks [JAFF16; Uly+16a; DSK16; Che+17] were utilized to speed up
the stylization process significantly.

A modern take to generate images or videos is to employ generative adversarial net-
works [Goo+14]. By utilizing this concept, many so-called image-to-image [Iso+17;
Zhu+17a; Zhu+17b; Tul+18; Wan+18b] and video-to-video appearance translation net-
works [Wan+18a; Cha+19] were developed, and can be applied to the style transfer task.
However, crucial drawback here is that a huge training dataset is required, and every new
style requires additional, usually costly, training. To overcome necessity for additional
training, encoder–decoder scheme was proposed [Li+17; HB17; Lu+17]. Encoder, usu-
ally convolutionals layers of VGG [SZ14], is used to represent both the style and content
image as a set of feature channels. These features are then combined and pre-trained
decoder turns mentioned features back into the image. However, the problem of lacking
high-frequency details remains in this case as well. Recently, a complex encoder–decoder
system that can reproduce the details well was proposed by Kotovenko et al. [Kot+19b;
Kot+19a]. However, this approach is still not able to deliver semantically meaningful
results.
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To bypass the need for large dataset of a specific style, few-shot learning meth-
ods [Wan+19a; Wan+19b] that can perform appearance translation were recently pre-
sented. However, these methods has to be pre-trained on a large dataset of domain-
specific training data (e.g., human bodies in motion or facial videos). Thus, these tech-
niques cannot be used if the target domain is not known beforehand.

Figure 2.6: Hybrid approach Deep Image Analogy [Lia+17]. Here, guidance channels that are
used in the original Image Analogies [Her+01] are replaced by responses from the VGG [SZ14]
image recognition network. This leads to convincing results (images A’ and B), however, the
input images (A and B’) has to depict the same content, e.g., face.

Hybrid: Patch-based Combined with Neural-based

Recent research showed, that promising direction is to combine neural networks with
patch-based synthesis methods. First, Li et al. [LW16a] searches local neural patches
from style image concerning the structure of a content image, and is able to achieve
better reproduction of local textures. Next, neural version of Image Analogies [Her+01]
called Deep Image Analogy [Lia+17] is introduced, see Fig. 2.6. Recently, reshuffle in
the spirit of [Kas+15] is proposed to overcome a problem of extensive use of particular
features [Gu+18]. Lastly, Futschik et al. [Fut+19] proposes patch-based method [Fi17] to
generate training dataset of stylized portraits and then train adversarial neural network
to perform style transfer.

Temporal Consistency

Temporal consistency, i.e., flickering between individual video frames, is an important
aspect that needs to be taken into account when performing style transfer to animation
or video. When every frame is stylized individually, once played as an animation, there
is likely to be an intense temporal noise, see Fig. 2.7. In some cases, the flickering is
desired effect [Fi14] as it is natural for traditional hand-colored animations. However, in
certain scenarios it is compulsory to control or entirely suppress any flickering. One way
to enforce the temporal consistency is to consider previous frame when the new frame
is stylized; this was done in the patch-based [Bén+13; Fi17; Dvo+18; Jam+19; Fri+19]
as well as in neural-based domain [Che+17; Gup+17; San+18; RDB18]. Another way is
to use blind temporal coherency approach [Lai+18] in the post-processing step; it takes
per-frame stylized video as input and outputs a temporally consistent video.



10 CHAPTER 2. RELATED WORK

(a) (b) (d) (e)(c) (f)

Figure 2.7: Overview of temporal consistency. Images (a-b) are two consecutive frames that
were stylized independently, (c) is their pixelwise difference considering motion compensation,
black areas depicts zero difference. Images (d-e) are two consecutive frames stylized with tempo-
ral coherency, (f) is their pixelwise difference considering motion compensation. Although both
sequences (a-b) and (d-e) look identical, their respective differences are different. (c) contains
large non-zero areas inside the body, that means that if you play the sequence as an animation,
significant flickering will occur at these locations. The image (f) is mostly black (i.e., zero
difference), the animation will not flicker.

Summary

Publications mentioned in this chapter serve as an overview of research in the field of style
transfer and related disciplines; it clearly shows the direction in which the related research
is going, and it gives us a motivation and hints on which topics to focus. Next in this
thesis, we present five publications that are closely related or extend the aforementioned
approaches.
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Chapter 3

Our Contribution

The main goal of our research is to develop new algorithms and methods that help artists
as well as casual users to create painted content, experiment more efficiently, and save
time by automating repetitive work; and enable visually rich hand-drawn experience
in applications where it was not previously possible. We want to explore and develop
new optimization methods that can be used to solve highly intuitive tasks, e.g., paint
an image indistinguishable from the one painted by a human. We focus mainly on
example-based style transfer, the task where an example of the artistic style is given in
the form of a painting. The goal is then to create images with different content while
maintaining the artistic look of the given example. Although it is highly subjective to tell
which attributes of artwork are part of the style and which are part of the content; as a
style, we usually consider properties of brush strokes (e.g., rotation or size), used artistic
medium (e.g., watercolor, acrylic paint, pastels, etc.), and attributes of canvas structure.
In the following paragraphs we briefly overview contributions of this dissertation. More
in-depth discussion can be found in the main part of this thesis.

3.1 Neurally-Guided Patch-Based Synthesis

An ultimate goal of style transfer research is to solve a problem of general style transfer—
a case where no domain is assumed, i.e., both a style exemplar and a target image are
2D images depicting arbitrary content. See Fig. 3.1, where a style from the painting
of a landscape is transferred to the photograph of a horse. In this general case, it is
usually hard to establish meaningful correspondences between the style exemplar and
target content; thus it is hard to guide style transfer method to produce results inline
with the artist’s intention.

In Chapter 4 we introduce our solution for this problem. We present a new approach
to example-based style transfer combining neural methods with patch-based synthesis
to achieve compelling stylization quality even for high-resolution imagery. We take ad-
vantage of neural techniques to provide adequate stylization at the global level and use
their output as a prior for subsequent patch-based synthesis at the detail level. Thanks
to this combination, our method keeps the high frequencies of the original artistic media
better, thereby dramatically increases the fidelity of the resulting stylized imagery. We
show how to stylize extremely large images (e.g., 340 Mpix) without the need to run the
synthesis at the pixel level, yet retaining the original high-frequency details. We demon-
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(a) Style Exemplar (b) Target (c) Result

Figure 3.1: Our approach [Tex+20a] used to solve the task of generic example-based style
transfer. The goal here is to transfer artistic style from the given style exemplar (a) to the
given target (b) while preserving the appearance of (a) and the content of (b); result of our
method is (c). Painting (a) courtesy of ©Aja Kusick.

strate the power and generality of this approach on a novel stylization algorithm that
delivers comparable visual quality to state-of-art neural style transfer while completely
eschewing any purpose-trained stylization blocks and only using the response of a feature
extractor as guidance for patch-based synthesis.

3.2 Stylizing Video by Example

Another task of example-based style transfer we focus on in our research is a stylization
of videos. To precisely follow an artist’s intention, the task is solved within the domain
of a single video sequence where meaningful correspondences can be established. See the
overview of single-video sequence stylization in Fig. 3.2. Input is a video sequence and
one keyframe – by artist pained frame from the original sequence. The task is then to
propagate an artistic style from keyframes to the rest of the sequence while preserving
visual quality and fine artistic details such as brush strokes or used artistic medium (e.g.,
watercolor, acrylic paint, etc.).

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 3.2: Our method [Jam+19] used to stylize a video sequence. Assume (b, d, f, g) is
the video sequence to be stylized. Artist takes one frame from this sequence (b) and provides
its stylized version (a). The goal is then to propagate the artistic style from (a) to the rest of
the sequence (c, e, g). Result of our method is (c, e, g). Painting (a) courtesy of ©Alice X.
Zhang. The underlying footage is taken from the Inglourious Basterds movie.
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In Chapter 5, we introduce a new example-based approach to video stylization, with a
focus on preserving the visual quality of the style, user controllability and applicability to
arbitrary video. Our method gets as input one or more keyframes that the artist chooses
to stylize with standard painting tools. It then automatically propagates the stylization
to the rest of the sequence. To facilitate this while preserving visual quality, we developed
a new type of guidance for state-of-art patch-based synthesis, that can be applied to
any type of video content and does not require any additional information besides the
video itself and a user-specified mask of the region to be stylized. We further show
a temporal blending approach for interpolating style between keyframes that preserves
texture coherence, contrast and high frequency details. We evaluate our method on
various scenes from real production setting and provide a thorough comparison with
prior art.

3.3 Stylization Using Few-Shot Patch-Based

Training

Solutions based on deep neural networks bring significant advantage over the traditional
optimization methods in many aspects. Thanks to heavy research and wide availability
of highly optimized deep learning frameworks (e.g., PyTorch or TensorFlow), and op-
timized GPU architectures (e.g., NVIDIA’s tensor core or Google’s Tensor Processing
Unit), the neural networks are practical and accessible to studios as well as individual
artists. With this in mind, we extended the usecase presented in our previously discussed
contribution [Jam+19], and developed a neural network based video stylizing tool that is
able to perform the style transfer in real-time, and allows for an interactive scenario that
was not possible before, see Fig. 3.3. Moreover, it overcomes other crucial drawbacks of
concurrent neural based methods, e.g., training speed, required amount of training data,
and it delivers results that are semantically meaningful.

(a) (b) (c)

Figure 3.3: Our method [Tex+20b] is used in the following scenario. The artist (a) paints
over the image printed on a prepared stencil. While she is painting, the camera captures her
work (b), the image-to-image translation network is learned to reproduce the artwork on the fly,
and the video sequence (c) is stylized in real-time. Painting (b) courtesy of ©Zuzana Studená.

In Chapter 6, we present a learning-based method to the keyframe-based video styl-
ization that allows an artist to propagate the style from a few selected keyframes to the
rest of the sequence. Its key advantage is that the resulting stylization is semantically
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meaningful, i.e., specific parts of moving objects are stylized according to the artist’s in-
tention. In contrast to previous style transfer techniques, this approach does not require
any lengthy pre-training process nor a large training dataset. We demonstrate how to
train an appearance translation network from scratch using only a few stylized exemplars
while preserving temporal consistency without the need to stylize previous frames. This
leads to a video stylization framework that supports real-time inference, parallel pro-
cessing, and random access to an arbitrary output frame. It can also merge the content
from multiple keyframes without the need to perform an explicit blending operation. We
demonstrate its practical utility in various interactive scenarios, where the user paints
over a selected keyframe and sees her style transferred to an existing recorded sequence
or a live video stream.

3.4 StyleBlit: Stylization with Local Guidance

Our research also contributes to the field of non-photorealistic 3D rendering. The goal,
in this case, is to artistically paint a 3D object to hallucinate a hand-drawn look; and
the requirement is for it to run in real-time. Our setting is shown in Fig. 3.4; the task is
to transfer a style from a simple 3D object to a more complex 3D object. Our method
brings significant quality improvements over the concurrent techniques while maintaining
high performance.

(a)

(b)

(c) (d) (e)

Figure 3.4: Example of our method StyleBlit [Sýk+19]. The goal here is to transfer the style
from a simple 3D objects–spheres to a more complex 3D object–knight, and the whole process is
required to run in real-time in a shader. In this case, style from the sphere (a) is transferred to
knight’s armor and style from the sphere (b) is transferred to knight’s accessories. Paintings (a,
b) courtesy of ©Pavla Sýkorová.

In Chapter 7, we present our contribution into this field, StyleBlit—an efficient
example-based style transfer algorithm that can deliver high-quality stylized renderings
in real-time on a single-core CPU. Our technique is especially suitable for style transfer
applications that use local guidance - descriptive guiding channels containing large spa-
tial variations. Local guidance encourages transfer of content from the source exemplar
to the target image in a semantically meaningful way. Typical local guidance includes,
e.g., normal values, texture coordinates or a displacement field. Contrary to previous
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style transfer techniques, our approach does not involve any computationally expensive
optimization. We demonstrate that when local guidance is used, optimization-based
techniques converge to solutions that can be well approximated by simple pixel-level op-
erations. Inspired by this observation, we designed an algorithm that produces results
visually similar to, if not better than, the state-of-the-art, and is several orders of magni-
tude faster. Our approach is suitable for scenarios with low computational budget such
as games and mobile applications.

3.5 StyleProp: Stylization of 3D Models

Crucial requirement of real-time non-photorealistic rendering of 3D methods (e.g., our
previous contribution StyleBlit [Sýk+19] is their speed. To satisfy this requirement, cer-
tain trade-offs in quality are usually made. StyleBlit is fast, but it requires local guidance
and it is prone to certain artifacts (see the Limitation section in Chapter 7). To allow full
stylization experience that can be delivered by computationally expensive optimization
based methods, we propose a framework that seamlessly interpolates between the pre-
computed stylized results, thus maintaining low requirement for computational budget,
see Fig. 3.5.

(a) (b) (c) (d) (e) (f) (g)

(h)

Figure 3.5: Given a single hand-painted example (a, c, e, g), our method StyleProp [Hau+20]
is able to faithfully stylize the same 3D model in different viewpoints (b, d, f, h). And thanks
to the pre-compute step the stylizations are delivered in high-quality in real-time. Paintings (a,
c, e) courtesy of ©Štěpánka Sýkorová, painting (g) courtesy of ©Barbora Kociánová.

In Chapter 8, we present a novel approach to the real-time non-photorealistic render-
ing of 3D models in which a single hand-drawn exemplar specifies its appearance. We
employ guided patch-based synthesis to achieve high visual quality as well as temporal
coherence. However, unlike previous techniques that maintain consistency in one dimen-
sion (temporal domain), in our approach, multiple dimensions are taken into account to
cover all degrees of freedom given by the available space of interactions (e.g., camera ro-
tations). To enable interactive experience, we precalculate a sparse latent representation
of the entire interaction space, which allows rendering of a stylized image in real-time,
even on a mobile device. To the best of our knowledge, the proposed system is the
first that enables interactive example-based stylization of 3D models with full temporal
coherence in predefined interaction space.
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Chapter 4

Neurally-Guided Patch-Based
Synthesis

4.1 Introduction

In recent years, advances in neural style transfer and guided patch-based synthesis made
the field of computer-assisted stylization very popular. Various publicly available software
solutions (see, e.g., Prisma [JAFF16], DeepArt [GEB16], StyLit [Fi16], FaceStyle [Fi17])
successfully brought the style transfer concepts to consumers. These applications enjoy
popularity among casual users due to their novelty factors. However, they are not ad-
dressing the needs of professional users who demand high-resolution, high-quality output
accurately preserving the textural details of the original artistic exemplar.

Though guided patch-based synthesis approaches [Fi16; Fi17] can meticulously pre-
serve fine-grained details, they require preparation of guidance channels. These guidance
channels are important for establishing meaningful correspondences between the target
image and the source style exemplar. Previous work designed guidance channels for spe-
cific use cases such as faces [Fi17], but designing meaningful guidance automatically in
general case remains a difficult problem. On the other hand, neural-based style trans-
fer [GEB16; Gu+18] does not require explicit guidance to produce good stylization effects
at a global level. Nevertheless, due to its convolutional nature, it usually fails to preserve
low-level details such as brush strokes or canvas structure that are important to retain
the fidelity of the underlying artistic media.

Neural techniques are also limited to work at lower resolutions (typically below 1K),
which does not suit the need for FullHD, 4K or higher resolution used in real production
settings. A similar limitation also holds for guided patch-based synthesis where the pro-
cessing time grows significantly with increasing output resolution. Neural style transfer
algorithms also have the problem of exhausting GPU memories where going beyond 4K
resolution becomes impossible under current hardware constraints.

In this paper, we propose a straightforward approach which overcomes the aforemen-
tioned limitations by combining neural style transfer, patch-based synthesis, and dense
correspondence field upscale. We first apply neural style transfer to obtain semantically
meaningful stylization at a global level without the need of user intervention, and then
use patch-based synthesis to remove low-level artifacts and restore the color and fine
details to retain the fidelity of the original style, see Fig. 4.2. To significantly reduce
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(a)

(b)

(c) 32x zoom

32x zoom 64x zoom

64x zoom

128x zoom

128x zoom

16x zoom16x zoom

Figure 4.1: An example of stylizing an extremely high-resolution image using our proposed
method: (a) style exemplar of 26400 × 13100 px, (b) content image of the same resolution,
(c) low resolution result of [GEB16] enhanced and enlarged by our method to the mentioned
resolution. To the right, zoom-in patches of different parts of (c) up to zoom of 128× are shown;
see all the individual brush strokes and its sharp boundaries. Also, notice how the structure of
the original canvas and little cracks of the painting are preserved.

(b)

(a)

(e)(c) (d)

Figure 4.2: An example of enhancing the result of neural-based approach using our method:
(a) target photograph, (b) style exemplar of the same size, (c) 6× zoom-in to the style exem-
plar, (d) the output of neural-based method DeepArt [GEB16] is capable to perform convincing
stylization; nevertheless, the image contains artifacts caused by the parametric nature of the
used neural network. High-frequency details like the structure of strokes and canvas are largely
lost, sacrificing the visual quality of the original artistic medium. In contrast, our method (e)
brings significant quality improvement, it restores the individual brush strokes and boundaries
between them faithfully, the result better reproduces the used artistic medium as well as canvas’
structure. Note how the cracks of the original artwork are preserved; although zoom-in patches
are shown, we encourage the reader to zoom-in even further.
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Patch-Based Neural-Based Ours

Patch-Based Patch-Based

Neural-Based

Content Style StyleContent

Target Target SourceSource

Style

Figure 4.3: Simplified scheme of a patch-based, neural-based, and our hybrid style transfer
method: The left column shows a patch-based approach [Fi16] with guidance based on blurred
grayscale images as proposed in the original Image Analogies method [Her+01]. The resulting
image has high texture quality and preserves artistic attributes and canvas structure well; how-
ever, the result does not properly respect the content semantics, causing water to become brown.
The middle column shows a neural-based approach [GEB16], no guidance channels are needed
and global style properties and image semantic are preserved well. However, the resulting image
lacks high-frequency details of the original style exemplar, contains artifacts, and colors that are
not present in the original style. The right column represents our method where low-resolution
neural transfer result is used as a guidance channel for patch-based style transfer. Our result
attenuates the neural artifacts and restores the original color and texture of the style exemplar.

computational overhead instead of running patch-based synthesis on the full resolution,
we only upscale the dense correspondence field computed at a lower resolution level.
We demonstrate that such a simple upscaling step can be performed quickly while still
providing comparable visual quality as the full-fledged synthesis. This enables us to
achieve high-quality stylization of extremely large images (see Fig. 4.1 where an image
of 346Mpix is stylized). Our approach is generalized and can utilize any existing neural
stylization method. We demonstrate this generality on a variant of our style transfer
algorithm that directly uses the response of a neural network as a guide for patch-based
synthesis. We developed a prototype of our method in the form of a Photoshop plug-in
and put it into the hands of professional artists.

4.2 Related Work

One of the key tasks of non-photorealistic rendering [Kyp+13] is to deliver stylized de-
pictions of photos or synthetic scenes which preserve high-level information captured in
the scene while on a detail level the resulting image resembles the artistic look.
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Figure 4.4: Proposed pipeline: (a) style exemplar and (b) content image are both subsampled
α–times and processed by a neural-based style transfer method (Sec. 4.3.1) which results in
low resolution image (c) where fine details are missing and artifacts are apparent (see green
and purple checkerboard artifacts). Next, low resolution result (c) from the previous step, style
image (a) in the same resolution as (c), and β–times subsampled style image (a) are used as an
input to a patch-based synthesis algorithm (Sec. 4.3.2) which outputs dense nearest neighbor field
(NNF) (f) from which the corresponding image (d) can be produced using voting step [WSI07].
Finally, in NNF upscaling step (Sec. 4.3.3) the low-resolution NNF (f) is upscaled β–times
to the original resolution (g). Patch coordinates in NNF (f) and (g) are encoded as red and
green color levels. Note subtle color gradients in (f), which indicate the presence of fine patch
coordinates in upscaled NNF that points to the patches in the original high-resolution style
exemplar (a). Given the upscaled NNF (g) and the style exemplar in its original resolution (a),
high-resolution, and a perfectly sharp final result is created using voting step (e).

Figure 4.5: An overview of our VGG-guided style transfer pipeline: we start with a target
image and a style exemplar, extract their VGG-19 features, normalize them, reduce their di-
mensionality using PCA, and use these as guidance for subsequent patch-based synthesis. Even
though the proposed pipeline is straightforward, it yields convincing output.

Stroke-based approaches were one of the first techniques that enabled generation of
stylized imagery. Rotated and translated brush strokes from a predefined set are placed
according to some guiding information (e.g., the direction of image gradients). This
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technique is applicable both in 2D [Her98] and 3D [Sch+11] environment producing
quite compelling results. Nevertheless, the main drawback here is the restriction to a
predefined set of strokes, which limit the variety and fidelity of the stylized output. Such
a limitation can partly be alleviated by introducing example-based brushes [Lu+13;
Zhe+17]; nevertheless, the final look is still limited to a subset of styles that can be
simulated by a composition of brush strokes.

To address this issue a more robust and general example-based approach called Image
Analogies was pioneered by Hertzmann et al. [Her+01]. Given an arbitrary style exemplar
and a set of guidance channels, the stylized image can be produced using guided patch-
based synthesis [WSI07; Kas+15; Fi16]. This approach has been successfully applied
to various stylization scenarios including fluid animations [Jam+15], 3D renders [Fi16;
Sýk+19], facial animations [Fi17] or video clips [Jam+19]. Nevertheless, a common
drawback of this method is that it requires the preparation of custom-tailored guidance to
deliver compelling stylization quality. Furthermore, an extensive computational overhead
at higher resolutions makes those techniques difficult to use in production.

Neural-based style transfer approaches recently became popular due to advances made
by Gatys et al. [GEB16], they successfully applied the pre-trained convolutional neural
network VGG [SZ14] to the problem of style transfer. The core idea of their method
is to match statistics in the domain of VGG [SZ14] features of both the content and
style images. They further extended this idea in [Gat+17] to introduce control over spa-
tial location, color information, and scale of features. While these techniques produce
impressive results for some particular style exemplars, they usually suffer from loss of
high-frequency details of the style exemplar which is inevitably caused by the convolu-
tional nature of the underlying neural network. Moreover, mentioned neural techniques
usually have considerable computational overhead and memory footprint.

Although a feed-forward network can be pre-trained to speed up the stylization [JAFF16;
Uly+16a; DSK16; Che+17], every new style requires additional costly training. Recently,
adoption of encoder–decoder scheme was proposed [Li+17; HB17; Lu+17] to enable ar-
bitrary style transfer in a feed-forward fashion. Here the encoder, usually convolution
layers of the VGG, is used to get the feature representations (statistics) of the content
and style, which are then combined, and a pre-trained decoder is used to turn the la-
tent features back into the image. Nevertheless, all these techniques still suffer from
convolutional artifacts leading to a lower quality of the synthesized imagery at a pixel
level.

Recently, attempts to combine patch-based and neural-based techniques were pro-
posed. Li et al. [LW16a] search local neural patches from the style image concerning the
structure of a content image, which leads to better reproduction of local textures. Liao
et al. [Lia+17] later extended this idea in their Deep Image Analogy framework which
adapts the concept of Image Analogies [Her+01] in the domain of VGG features. Gu et
al. [Gu+18] recently proposed to perform reshuffle in spirit of [Kas+15] to reduce the
overuse of particular features. Futschik et al. [Fut+19] use patch-based method [Fi17] to
generate a larger dataset of stylized portraits which is then used to train a generative ad-
versarial network capable of reproducing similar quality results as those in the underlying
dataset. Although these techniques can notably improve the stylization quality and bet-
ter preserve high-frequency details, they still heavily rely on the space of VGG features
and do not explicitly enforce textural coherence on a pixel level in color domain [WSI07]
which is essential to retain the fidelity of the original style exemplar.
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4.3 Our Approach

We propose an approach to combine patch-based synthesis with neural style transfer
methods. The proposed pipeline overcomes three crucial obstacles which prevent ex-
isting stylization approaches from being used in real production: first, lower texture
quality of neural-based techniques; second, the necessity of specific guidance for patch-
based methods; and third, the resolution limitation which affects the usability of both
approaches. Our framework allows easy switching to the newest future inventions in
either neural-based or patch-based techniques.

As our first step, given the exemplar Style and the target image Content, we use an
arbitrary neural-based style transfer method to synthesize an initial result (see Fig. 4.3
middle column). The resulting image on its own lacks high-frequency details of the style
exemplar, and contains artifacts such as geometric distortions and colors that are not
present in the original style. Also, the original contrast is usually artificially exaggerated,
and edges are not sharp. However, on the other hand, it nicely preserves global style
properties such as color distribution and respects the image semantics in general.

Our key idea is to use the low-resolution neural style transfer result as a guiding channel
for patch-based synthesis. This enables us to combine the advantages of both techniques
and to address the aforementioned limitations (see Fig. 4.3 right column). In particular, a
pair of guidance channels Source and Target is needed for guided patch-based synthesis.
We use blurred style exemplar as the Source guide and the low-resolution neural style
transfer result as the Target guide. After running the guided patch-based synthesis,
our result (Fig. 4.3 right column, bottom) effectively attenuates the neural artifacts and
restores the color and texture of the original style exemplar.

Fig. 4.4 illustrates our entire pipeline which consists of three main parts: neural-based
style transfer method, guided patch-based synthesis, and nearest neighbor field (NNF)
upscaling method. Those individual steps are described in more detail in the following
sections.

4.3.1 Neural-Based Style Transfer

Both Style (Fig. 4.4a) and Content (Fig. 4.4b) images are first subsampled by a coef-
ficient α. This step is necessary not only to overcome the resolution restrictions but,
more importantly, to suppress various high-frequency artifacts caused by neural-based
techniques (α essentially defines the working resolution of a neural-based method). The
α–times subsampled neural-based result (Fig. 4.4c) is then used as a guide for the patch-
based synthesis method. Its resolution will be improved later in our pipeline.

4.3.2 Guided Patch-Based Synthesis

The output from the neural method (Fig. 4.4c) is used as a Target guide image in the
patch-based method. Our pipeline does not assume any particular patch-based method;
we used StyLit [Fi16] algorithm for synthesis, however, we adapt its original error metric
for measuring patch similarity to our needs. Let S be a style exemplar, O an output
image, and GS and GT source and target guides, for matching two patches p ∈ GS and
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q ∈ GT ; we use the following error metric:

E(S,O, GS , GT , p, q) =

||S(p)−O(q)||2 + λg||GS(p)−GT (q)||2 (4.1)

where λg is a weighting factor for guiding channel and the first term helps to preserve
texture coherence by directly matching colors in patches of Style to those in the output
image O. Of all the images, only O is iteratively updated during the optimization process
described in StyLit [Fi16].

To obtain Source guide image, we use the already subsampled style image used in the
previous step (Sec. 4.3.1), and upsample it back to its original resolution. To encourage
the patch-based synthesis to find good correspondences for the style transfer, equivalent
subsampling followed by upsampling needs to be done for both the Source and Target
images. In spirit of Color Me Noisy [Fi14], an additional low-pass filter can be applied on
the Source image to let the synthesis algorithm deviate more from the initial solution,
thus making the final result more abstract.

In Fig. 4.4d the result of patch-based synthesis is depicted in color for clarity, neverthe-
less, internally in our processing pipeline we use only the resulting nearest neighbor field
(Fig. 4.4f) which is subsequently upsampled (Fig. 4.4g) and turned into a high-resolution
image in the next step.

4.3.3 NNF Upscaling

Given the computed NNF–nearest neighbor field (Fig. 4.4f) and the style exemplar in its
original resolution (Fig. 4.4a), a voting step (c.f. [WSI07]) needs to be performed in order
to reconstruct the final image. To reduce the computational overhead, we perform the
patch-based synthesis (Sec. 4.3.2) at β–times lower resolution than the original target
resolution (thus β essentially defines the working resolution of a patch-based method).
Next, the resulting nnf (Fig. 4.4f) is upscaled by a factor of β to obtain the NNF
(Fig. 4.4g) of the same resolution as the target image as follows:

NNF(x, y) = nnf(x/β, y/β) · β + (x mod β, y mod β) (4.2)

Finally, we perform a voting step using NNF to produce the final high-resolution result
precisely preserving the characteristics of the canvas and the original artistic medium
(Fig. 4.4e).

4.4 VGG-Based Guidance

One of the limitations of the proposed base algorithm introduced in the previous section
is that it relies on color information to establish correspondences between style exemplar
and the target image. This drawback could lead to an ambiguity that may introduce
visible stylization artifacts (see Fig. 4.6).

In this section, we introduce a variant of our style transfer pipeline that uses features
extracted by the convolutional layers of a classification network for guidance directly
rather than relying on a neural style transfer algorithm to produce initial color domain
stylization. The aforementioned neural responses provide more discriminative guidance
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(a) (c) (e)

(b) (d) (g)(f)

Figure 4.6: Demonstration of the problem when patch-based synthesis has to rely on ambiguous
color guidance: (a) style exemplar, (b) target image, (c) output of Gu et al. [Gu+18], (d) output
of our basic algorithm with color-based guidance, (e) output of our style transfer algorithm with
neural guidance. Note how our VGG-guided algorithm better preserves the semantics of the
target photo, cf. details in (f) and (g).

than colors and thus can preserve global semantics of the target while still keeping the
benefits of patch-based optimization.

Our approach is inspired by modern optimization-based neural style transfer tech-
niques of Liao et al. [Lia+17] and Gu et al. [Gu+18] that rely on computationally de-
manding global descent through a complicated loss function using an optimizer like L-
BFGS. Although this approach is conceptually similar to the patch-based optimization
framework, in our case expensive global descent is approximated by a highly efficient
approximate nearest-neighbor matching.

The algorithm first extracts neural features for both the source and target image in
multiple scales (see Fig. 4.5). Specifically, we run the input images through the neural
network on four resolutions: 1344× 1344, 896× 896, 448× 448 and 224× 224. This set
was chosen to capture a broader range of neural features.

For this purpose, we use VGG-19 network architecture trained on the ImageNet
dataset [SZ14]. After running a feed-forward pass on the input image, features are
extracted from 6 different layers of the network. The layers used are conv2 2, conv3 1,
conv3 4, conv4 1, conv4 4, and conv5 1. Features are extracted after applying the ReLU
activation.

These neural features capture localized semantic similarities found in both images and
can be used to guide the patch-based synthesis. However, the high dimensionality of
these per-pixel features might significantly compromise both the performance and the
quality of the patch-matching step. To avoid this, we reduce the feature dimension
using PCA [TP91]. In particular, we treat each feature vector as an independent point
and process feature maps in groups of the same resolution. The number of principal
components we extract varies by feature map resolution. We use top 3 components at
1344 × 1344, top 6 components at 896 × 896, and finally top 12 components for the
two remaining resolutions. We normalize the resulting values to [0, 255] interval and
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(a) (c) (e) (g) (i)

(b) (d) (f) (h) (j)

Figure 4.7: An example result from our VGG-guided style transfer algorithm: (a) target
image, (b) style exemplar, corresponding compressed VGG-responses of low- (c, d) and high-
level (e, f) features used as a guide for patch-based synthesis, (g) output of Liao et al. [Lia+17],
(h) output of our style transfer framework with neural guidance, note how our method can deliver
comparable visual quality, cf. details in (i) and (j).

resample them to the required resolution using bicubic upsampling. This can either be
lower resolution, typically used in neural techniques, or full resolution of the target image.
Lastly, we run the patch-based synthesis algorithm of Fǐser et al. [Fi16] to produce the
final stylized image. The output is visually comparable to the state-of-the-art [Lia+17;
Gu+18] (see Fig. 4.7).

4.5 Results

We implemented our method both for CPU and GPU, using C++ and CUDA, respec-
tively.

The parameter α is set to make the input images to the neural-based method ap-
proximately 400–500 pixels wide. In the case when the input images are already of
low-resolution, we set α to be at least 2—to ensure the patch-based synthesis will have
enough freedom to fix some of the artifacts caused by the neural-based approach. The
α—sub-sampling allows us to get the result from a neural-based approach much faster
or use a method that does not support high-resolution input. Moreover, it allows us
to significantly suppress some of the artifacts of neural approaches. The parameter β
allows us to stylize images of size 346Mpix or even larger, and to get the final result much
faster (see an extreme-resolution result in Fig. 4.1 and our supplementary material). We
observed that if the parameter β is in range 1–4, the perceived loss in the quality is
almost negligible. If the parameter β is in range 6–10, when zooming closely, one can
observe some repetition artifacts, however, the image is sharp and the overall quality is
still satisfactory.

We measured run-time and memory performance. For detailed run-time measurement
on mid-range laptop see graph in Fig. 4.8. On a desktop PC, the computational overhead
is even lower, e.g., on NVIDIA Quadro M2000, stylizing the image of size 160Mpix takes
between 3–30 seconds depending on the selection of the parameter β. Increasing the
parameter β causes a linear increase in the computational time, while the number of
pixels grows exponentially. Our method requires a few hundred MBs of RAM/GPU
memory. The exact amount depends on the resolution of the input images and the value
of the parameter β.
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The performance of the neural-based step depends on a particular method. However,
because the input is of very low resolution, 400–500 px wide, the run-time typically
ranges between hundreds of milliseconds and several seconds. Most neural-based ap-
proaches cannot stylize images larger than 4K-by-4K due to GPU memory constraints.
Although there is a possibility to decompose the synthesis into a set of tiles that are
processed separately and stitched together, the resulting image would still suffer from
the convolutional nature of used neural network introducing disturbing high-frequency
artifacts and colors not present in the original style exemplar.

We plugged several different state-of-the-art neural-based style transfer techniques into
our framework (see Fig. 4.9 and 4.10). In all cases, applying patch-based synthesis with
neural transfer output as guidance produces better results than using the neural-based
approach alone. The most noticeable differences are visible in (1) the original colors (e.g.,
saturated pixels that do not appear in the original style exemplar are removed), (2) sup-
pression of checkerboard artifacts caused by deconvolution [ODO16], and (3) results are
sharper containing important high-frequency details of the original brush strokes and un-
derlying canvas structure. Fig. 4.1 demonstrates stylization of a 346Mpix image. Despite
the huge resolution, the result is still perfectly sharp and preserves well characteristics
of the original artistic media.

To demonstrate the benefit of using the output of the neural approach to guide the
patch-based synthesis, we compared our method to the guidance based only on blurred
grayscale images (Fig. 4.3 left column) as proposed in the original Image Analogies
method [Her+01], the result does not properly respect the content semantics, causing
trees to become pink.

In Fig. 4.11 and 4.12, we present additional results of our VGG-guided style transfer
algorithm. These demonstrate the proposed method can produce convincing stylization
without the need to use existing neural techniques as a preprocess.

Finally, in Fig. 4.13, we demonstrate a UI prototype of our method running in Photo-
shop.

4.6 Limitations and Future Work

Although in most cases, our approach is capable of delivering significantly better and
visually more pleasing results than the underlying neural technique itself, it still relies
on the neural result as the initial solution. Due to this reason, we cannot fix large-scale
artifacts produced by the neural-based method (see Fig. 4.14). In the current pipeline,
only high-frequency artifacts can be suppressed. When zooming in, the improvement in
the texture quality is immediately visible, nevertheless, looking from a distance, high-
resolution image obtained by our method may appear almost identical as the result of
the underlying neural approach.

As future work, we would like to tackle the issue commonly seen in neural techniques,
i.e., many different colors are mixed together within a single coherent region or when the
same mixture of colors is used to stylize semantically different regions (see an example
in Fig. 4.15). To address this problem, we see two promising solutions. First, extending
our pipeline in a way that patch-based synthesis is guided by a neural network trained
for segmentation on both natural and artistic images to encourage more semantically
correct matching of patches. Second, incorporate mask-based loss function as described
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Figure 4.8: Performance of our method (full pipeline–Fig. 4.4, excluding the neural part) on
images ranging from resolution of 1Mpx, (i.e. 1000 × 1000 px) to extremely large resolution
of 256Mpix (i.e., 16000 × 16000 px). Orange, yellow, and green lines show a case where the
parameter β was set such that the patch-based method was run on a resolution of 1Mpix, 4Mpix,
and 8Mpix respectively. The measurement was done on a mid-range laptop with NVIDIA GTX
1050 graphics card.

in [Rei+19]. Although, this might not be feasible for all neural-network approaches we
use or in a case when it is desired to treat an underlying neural-network as a black box.

Our technique helps to restore high-frequency details and essential attributes of used
artistic media; however, in some cases, this process might destroy some of the important
content details. We see a promising solution in the work of Calvo [Cal+19], where they
introduce a technique to intensify or reduce the stylization strength locally.

Another interesting follow-up of our work could be an extension to videos. This might
seems straightforward, but even if the video delivered by the underlying neural-based
style transfer method is stable in time, randomness in the patch-based step of our pipeline
will most likely introduce disturbing temporal inconsistency. To solve this, one could use
techniques described in [Jam+19] or [Fi17].

Another area for future work worth exploring would be adding interactions to control
the result. Also, some of the neural-based approaches support multiple style exemplars;
we suggest to explore possibilities of using multiple styles in our enhancing scenario.

4.7 Conclusion

We have presented a new approach that combines neural and patch-based style transfer
techniques, and proposed a way to utilize the generality of the former, while achieving the
texture quality of the latter. We introduced a computationally inexpensive algorithm for
upscaling the synthesis output to obtain its high-resolution version and a new approach to
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Gatys et al. DeepDream Gu et al. Liao et al. Li et al.Input

Figure 4.9: Our method enhancing the results of five different neural-based approaches: The
leftmost column–content images and style exemplars (with zoomed patches). Next, left-to-right,
are the result of DeepArt [GEB16], DeepDream, Gu et al. [Gu+18], Liao et al. [Lia+17], and
Li et al. [Li+17]. The top-left triangle shows the result of the underlying neural-based approach
(bicubically up-sampled from a typical size of 600 × 400 px to the target resolution), while the
bottom-right shows result enhanced by our method (top row–entire stylized images, bottom row–
zoom-in). Our results not only have significantly higher resolution but also better preserve the
original colors and canvas structure as well as brush strokes visible in the exemplar painting.
Various artifacts caused by the neural approach are significantly suppressed. All images shown
in this figure are of resolution ranging from 4000× 2200 to 6000× 4000 px.
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Gatys et al. DeepDreamInput

(b)

(c)

(a)

Figure 4.10: Portrait on a wall: (a) target content of resolution 4000 × 3000 px, (b) style
exemplar of a painting on a wall having the same resolution, (c) 10x zoom-in to the (b) to
show fine artistic attributes and structure of the canvas–wall/plaster. Our method is entirely
independent of the used artistic medium as well of a canvas the style exemplar is presented on.
The results are presented in the same fashion as in Fig. 4.9.

neural-based style transfer that can use responses of the neural network directly as a guide
for patch-based synthesis. Thanks to those advances, we can produce style transfer results
with notably larger resolutions than previous neural-based techniques and significantly
reduce the computational overhead while retaining comparable visual quality. We believe
our method could enable broader applicability of style transfer methods in commercial
practice. To that end, we integrated our approach into Adobe Photoshop in the form of
a plug-in.
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Figure 4.11: Results produced by our VGG-guided style transfer algorithm (from left to right):
style exemplar, target image, and our result. Our method works well namely in cases when style
and target images depict similar content, i.e., when they have compatible VGG activations.
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Figure 4.12: Additional results produced by our VGG-guided style transfer algorithm (from
left to right): style exemplar, target image, and our result.
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(a)

(b)

Figure 4.13: A screenshot of our method running in Adobe Photoshop: (a) zoom of a target
layer, (b) zoom of a style layer; the visible layer is the result of DeepDream enhanced by our
method.

(a)

(b) (c) (d)

Figure 4.14: Large-scale artifact limitation: (a) content image, (b) style exemplar, (c) result
of Gatys et al., distortions in eye region are visible, (d) ours, colors and high-frequency de-
tails are reproduced well; however, in our current pipeline, large-scale artifacts produced by the
underlying neural approach are not fixed. Thus distortion in the eye region is still apparent.
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(a) (e)

(c)

(d)

(b) (f)

Figure 4.15: A limitation common to neural-based approaches: (a-b) content image, (c-d) style
exemplar, (e-f) result of [Li+17] enhanced by our method. The content of the original image
is not preserved well. In the first case, the similar mixture of colors is used to paint bushes,
house, and also the sky. In the second case, all colors appearing in the style exemplar are used
to stylize the target regardless of its content. However, high-frequency content is reproduced
well. To address this limitation, we propose to incorporate a neural network trained for image
segmentation into our pipeline.
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Chapter 5

Stylizing Video by Example

5.1 Introduction

In the past decades, advances in computer graphics led to a revolution in the art of ani-
mation, giving birth to an entirely new branch of animation which is three-dimensional,
and includes photorealistic lighting effects and physically accurate simulation. Together
with lighting, material, and performance capture, the production pipelines of animated
video now resemble live-action production more closely than traditional animation. An
unfortunate side effect of this is that, due to production and technical considerations,
there is a “style gap” between traditional and 3D animation, where the latter has its
own distinct look, and it has so far been impossible to convincingly reproduce the look
of the former using the aforementioned production pipelines. Currently, there are no
automated methods that could use live-action performance capture to produce the look
of traditional animation. Although artists have attempted to bridge this gap for, e.g.,
abstract stylization (A Scanner Darkly1) or painterly look (Loving Vincent2), these were
monumentally laborious efforts that had to be created manually frame-by-frame.

One possible way to overcome this could be to employ example-based style transfer
techniques to transfer artistic style from a traditionally created style exemplar to a syn-
thetic or live action target. This approach recently became popular thanks to advances
in neural [GEB16; RDB18] and patch-based transfer [Fri+16; Fri+19] techniques. These
approaches can alter the global appearance of the target to roughly resemble the given
visual style, but the effectiveness of stylization relies solely on the internal representation
of style and content of the respective algorithm. They do not offer users any explicit
controls and cannot fulfill the need of artists to precisely express their artistic intent.

In an effort to provide this sort of control over style transfer, Hertzmann at el. [Her+01]
pioneered an Image Analogies framework where the style exemplar, as well as the target,
are extended with additional guiding channels which provide spatial control of how the
style is transferred. This ensures that particular features of the style exemplar will
appear at desired locations in the target. It was shown recently [Bén+13; Fi16] that
this additional control allows for a more semantically meaningful transfer and results in
higher visual quality than the generic methods [GEB16; Fri+19].

1https://en.wikipedia.org/wiki/A Scanner Darkly (film)
2http://lovingvincent.com

https://en.wikipedia.org/wiki/A_Scanner_Darkly_(film)
http://lovingvincent.com
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Figure 5.1: An example of a stylized sequence produced by our approach. One frame from
the sequence is selected as a keyframe (a) and a corresponding style exemplar is painted using
watercolor (b). Then, for the rest of the sequence (c, e, g) our technique produces stylized
output (d, f, h) which preserves the artistic attributes of the specified style exemplar, reflects
structural changes in the target video, and maintains temporal coherence. Video frames (a, c,
e, g) courtesy of © MAUR film, style exemplar (b) courtesy of © Pavla Sýkorová, used with
permission.

The main drawback of this approach is that the guidance channels need to be gen-
erated first. Much research was done into algorithmic solutions for specific scenarios
(e.g., rendering attributes from known geometry [Bén+13; Fi16] or using landmark de-
tectors and face segmentation [Fi17]), but guidance generation for the general case of
arbitrary images remains an open problem. Efforts into neural-based guidance by Liao
et al. [Lia+17] and later Gu et al. [Gu+18] demonstrated that the response of VGG net
– a deep neural network trained for object classification [SZ14] – can be used as a guide
to automatically control the transfer in certain cases. Unfortunately, this approach is
able to reliably discriminate features only on the type of images VGG was trained on
(faces, animals, objects, etc.). In a more general scenario, the accuracy is insufficient
and may lead to obvious inconsistencies (see, e.g., transfer of facial patterns to the legs
of the target subject in Fig. 7.7). Moreover, those techniques do not address temporal
coherence which is crucial for video synthesis.

In this paper, we formulate an alternative analogy-based approach for the artistically
controlled stylization of video, which (a) addresses the style gap by facilitating free-form
artistic stylization of synthetic or live-action video sequences, (b) gives artists control by
allowing them to explicitly specify local styles using traditional painting techniques that
are familiar to them, and (c) does not require “insider knowledge” of the target content,
such as segmentation, landmarks, 3D or rendering information.

We build on the keyframe stylization paradigm proposed by Benard et al. [Bén+13],
where the artist paints one or more keyframes in a preferred style, and the algorithm
then propagates the specified style to the rest of the sequence. Our key difference from
the aforementioned approach is that we do not require any knowledge of the underlying
3D structure of the target scene. Instead, we obtain semantically meaningful transfer by
using the original color information from the input video together with approximate po-
sitional and temporal guidance generated using optical flow estimation. We further show
that when used in conjunction with a state-of-art patch-based synthesis algorithm [Fi16],
this guidance results in superior visual quality while preserving the artistic intent. Fi-
nally, we demonstrate the practical utility of the proposed approach on examples from
real production settings.
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(a) (b) (c)

Figure 5.2: Common neural stylization artifacts. Style transfer guided by the response of
VGG network might transfer the facial pattern onto the leg region. (a) target frame, (b) result
of Gu et al. [Gu+18], (c) our approach. Video frame (a) courtesy of © MAUR film, used with
permission.

5.2 Related Work

Traditional image and video stylization methods employ algorithmic filters hand-crafted
to transform an input image or video to a particular style. These can be based on a phys-
ical simulation of a given artistic medium [Cur+97; Hae+07; LXJ12], procedural tech-
niques [Bou+06; Bou+07; Bén+10; Mon+18], or compositing predefined pen [Sal+97;
Pra+01; Sna+06] or brush strokes [Lit97; HE04; Sch+11; ZZ11]. While these approaches
give impressive results on the respective domains that they are designed for, they are
invariably limited to a single style or a small set of styles, and suffer from unintuitive
controls that make it difficult to express artistic intent.

A more modern take on this problem are methods based on generative adversarial
networks [Goo+14], which can be trained to perform image-to-image [Iso+17; Zhu+17a;
Zhu+17b] as well as video-to-video [Tul+18; Wan+18b] translation, including stylization.
Researchers have also introduced neural network based approaches that target artistic
stylization specifically [JAFF16; UVL16; Uly+16b; Wan+17; UVL17; WRB17], training
one network per style. These methods cannot reproduce styles that they are not trained
on, and for the styles they support, the results typically do not accurately reproduce fine
textural details. Sanakoyeu et al. [San+18] attempted to improve the stylization quality
by introducing a style-aware content loss, but the results still have some semantic in-
consistencies (see supplementary material). Researchers have also introduced stylization
techniques that transfer arbitrary visual styles to content images using a single network
at the expense of limited faithfulness to the target styles [HB17; Li+17]. In general,
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neural approaches require time-consuming and arcane training process and offer limited
user control [Gat+17].

Example-based approaches naturally support stylization using arbitrary style imagery,
and no training is needed. The most widespread approach formulated the concept of Im-
age Analogies [Her+01], where guidance channels are added to both the style exemplar
and the target photo to guide a patch-based synthesis algorithm [WSI07; Kas+15; Fi16]
which decides how different features of the style should be transferred to various regions
of the target. The remaining problem is finding appropriate guidance channels, which
can be generated algorithmically in certain cases [Bén+13; Jam+15; Fi16] or for partic-
ular content (e.g., faces [Fi17]). Creating the guiding channels manually is possible but
unintuitive and highly laborious in the case of video.

To circumvent this problem, generic approaches which do not require specific guid-
ance [GEB16; Fri+16] were formulated. More recent neural-based techniques [LW16c;
Lia+17; Gu+18] achieve this by using responses of the VGG network trained on object
classification [SZ14] to guide the synthesis. These latter approaches produce impressive
results when used on images structurally similar to those in ImageNet – natural pho-
tographs with a single identifiable foreground object or scene – but are difficult to control
and behave unpredictably when generalizing to different types of images such as complex
natural scenes or paintings of abstract styles.

Stylization of video offers the additional challenge of handling temporal coherence.
This was itself a topic of previous research, where coherence was formulated as an ad-
ditional constraint for patch-based synthesis together with the control over the amount
of visible temporal flickering [Fi14; Fi17; Dvo+18]. Similarly, for generic style transfer
not requiring specific types of guidance, explicit temporal coherence was incorporated
into neural-based [Che+17; Gup+17; San+18; RDB18] as well as patch-based [Fri+19]
techniques. Lai et al. [Lai+18] introduced a blind temporal coherency approach that
takes per-frame stylized video as input and outputs a temporally consistent video as
post-processing.

We based our approach on the image analogies framework that offers both precise
control as well as the ability to handle arbitrary style. We combine keyframe-based user
control as in the method of Bénard et al. [Bén+13] with a synthesis process similar to
that used in the approach of Fǐser et al. [Fi17]. A key added value of our solution is
that we overcome two significant drawbacks of these previous methods: (1) dependence
on a specific target domain (3D computer-generated animation and facial video) and
(2) inability to handle challenging scenario when multiple inconsistent keyframes are used
to stylize the target sequence. To do that we design a new set of domain-independent
guidance channels and formulate a corresponding error metric for the subsequent patch-
based synthesis. To combine content from multiple keyframes, we propose a solution that
prefers high-frequency details according to their relevance and avoids loss of contrast.

5.3 Our Approach

The input to our method is a target video sequence T and one or more stylized keyframes
or style exemplars, S. To create keyframes, artists can paint digitally or physically using
their preferred artistic media over arbitrarily-selected frames of a video. Similar to the
physical painting process used in StyLit [Fi16], we print a low-contrast version of the
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Figure 5.3: The set of guidance channels used by our method. Gcol is essential to preserve
the target appearance, Gmask helps to preserve sharp object boundaries, Gpos is important to
maintain overall structure, Gedge makes synthesis more robust to illumination changes and
improves positioning of stylized features, Gtemp is essential for temporal coherence. For further
details, please refer to the text. Video frames (Tk and Ti) courtesy of © MAUR film, style
exemplar (S) courtesy of © Pavla Sýkorová, used with permission.

frame with registration marks, which allows accurate re-digitization and registration of
stylized artwork. The output of our method is a temporally coherent video sequence
O, in which every frame is stylized analogically to the style exemplar S, i.e., various
semantic parts of the input sequence are stylized the same way as in the example frame.

One possible approach to example-based video stylization is to estimate dense corre-
spondences between the target keyframe Ti and all other frames in the sequence [HaC+11;
Yüc+12], and then use the resulting deformation field to warp the style exemplar. How-
ever, this naive approach would introduce undesirable texture distortion to the example
style and generate artifacts in situations like disocclusions or lighting changes in the
target sequence. To address this fundamental drawback we formulate our problem as a
guided patch-based synthesis similarly to [Bén+13; Fi17]. However, since in our scenario
we do not have any prior knowledge of the underlying scene we need to design a new set
of guiding channels that can be computed solely based on the input video.

For clarity, we first explain the stylization process with just one keyframe and then
show how it extends to multiple keyframes.

5.3.1 Guidance for a single keyframe

Our new set of guiding channels consists of the original video frames Gcol, mask Gmask,
positional Gpos, edge Gedge, and temporal Gtemp guides (see Fig. 5.3). These will be
explained next.
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Color guide Gcol corresponds to the original color frames of the target sequence T
(see Fig. 5.3a). It captures appearance changes, e.g., facial gestures, subtle cloth defor-
mations, varying illumination, etc.

Mask guide Gmask highlights the objects of interest. It helps the algorithm distinguish
object boundaries to handle occlusion and also allow for layered stylization if preferred
by artists. When there is no strong occlusion in T or no need to accurately delineate
object boundaries, addition of the mask guide is optional otherwise Gmask can be obtained
using, e.g., green screen matting (see Fig. 5.3b), color separation or other semi-automatic
segmentation method [LW16b].

Positional guide Gpos helps the algorithm maintain the overall structure of the styl-
ized keyframe for meaningful transfer (see Fig. 5.3c). It serves to resolve ambiguity
between distinct features which have similar appearance, but need to be stylized differ-
ently as artist desired. In Fig. 5.5a,b the result of synthesis without using Gpos is visible.
Note, how the light brown wood texture from behind the subject shows up on the leather
bag. We define Gpos as a dense correspondence map between the current frame Ti and
the keyframe Tk. We compute this map by first estimating optical flow between consecu-
tive frames of T using SIFT Flow [LYT11]. This yields a sequence of inter-frame motion
fields Di, which we use to incrementally propagate the original pixel coordinates encoded
in a coordinate map Pk (see Fig. 5.4a). We only perform this advection on the pixels
inside the object mask Mk (Fig. 5.4b), and use diffusion [Orz+08] to smoothly fill in the
remaining values (Fig. 5.4c,d). The resulting map could introduce considerable texture
distortion if used directly to warp stylized keyframes (see supplementary material). How-
ever, when used as a guide for patch-based synthesis, it encourages transfer of correct
style features to the intended locations. Singularities and distortions that would result
from direct advection are prevented by the other guiding terms, c.f., error metric (5.1).

Edge guide Gedge highlights the object edges and salient features in the target sequence
(see Fig. 5.3d), making the result less volatile with respect to color variation inGcol caused
especially by changes in illumination. Because many artistic styles emphasize edges, this
term has the additional benefit of “anchoring” appropriate style features (see Fig. 5.5c,d).
We define Gedge(Ti) = Ti−Nσ ◦Ti, where Nσ is a Gaussian filter with standard deviation
σ.

Temporal guide Gtemp is designed to encourage temporal coherence by penalizing the
synthesis from diverging too much from a previously synthesized frame [Jam+15; Fi17]
(see Fig. 5.3e). We compute Gtemp by advecting the stylization result of the previous
frame Oi−1 using the motion field Di computed previously for Gpos. The advection

produces a stylization prediction Ôi which is not a satisfactory result on its own due to
texture distortion, but as a guide, encourages temporally coherent stylization.

Error metric The set of guiding channels we discussed thus far G = {col,mask,
pos, edge, temp}, defines a patch error measure that is plugged into the original StyLit
algorithm [Fi16]. We use superscript S to denote the source part and T the target part
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(a) (b) (c) (d)

Figure 5.4: Generating the Gpos guiding channel. Red and green color channels denote x and
y coordinates. Gpos corresponding to the keyframe is constructed as a linear gradient in x - red,
and y - green (a). Mask Gmask is then applied to the Gpos of the keyframe (b). Masked values
are then propagated through the sequence according to the motion field D (c). Values outside
of the mask are filled using diffusion [Orz+08] (d).

(a) (b) (c) (d)

Figure 5.5: Importance of the Gpos and the Gedge guidance channels. (a) without the Gpos,
some features with similar appearance cannot be fully distinguished. Note that the light brown
wood texture from box on the subject’s back appears on the leather bag at the bottom left corner.
The Gpos term in (b) helps preserve the overall structure of the different features well. The
Gedge (c-without, d-with) makes the synthesis less sensitive to illumination changes (see differ-
ences in stylization on top of the box) and helps preserving boundaries between the individual
style features, thus making the result sharper.

of each guiding channel. The error metric for matching two patches p ∈ S and q ∈ T is
then computed as follows:

E(S,Oi, G
S , GT , p, q) = ||S(p)−Oi(q)||2 +

∑
g∈G

λg||GSg (p)−GTg (q)||2 (5.1)

where λg is a weighting factor for each individual guiding channel and the first term helps
to preserve texture coherence by directly matching colors in patches of stylized keyframe
S to those in the output frame Oi (see Fig. 5.3f). The style S and all guiding channels
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remain unchanged during the synthesis. Only Oi is iteratively updated. See [Fi16] for
more details about the optimization.

5.3.2 Handling multiple keyframes

In many cases, it is sufficient to have only one keyframe. If, however, a sequence has
new content appearing which did not exist in the keyframe and was not stylized, the
artist may choose to specify a new keyframe to precisely control the stylization of the
new content. The use of multiple keyframes introduces difficulty to the algorithm, since
manually created keyframes will inevitably have subtle inconsistency in structure and
colors. Previous approaches [She+10; Dar+12; Bro+14] either suffer from detail clutter
or produce temporal artifacts such as unnatural “boiling” or “pumping”.

(a) (b) (c) (d) (e)

Figure 5.6: Gradient domain mixing. Two stylized images Oai (a) and Obi (b) are synthesized
at frame i using two different keyframes Sk and Sl. We compute a pixel selection mask Zi (c)
where black pixels indicate the locations where synthesis error Eai is lower than Ebi and white
pixels vice versa (gray indicates background). We then pick gradients according to Zi (∇Oai
for the black pixels and ∇Obi for the white ones) and run a screened Poisson solver on the
contrast-preserving blend Oabi of Oai and Obi (d). Note that the resulting image Oi (e) contains
high-frequency details according to Zi.

(a) (b) (c) (d)

Figure 5.7: Comparison of different blending methods. (a) Regenerative Morphing [She+10]
exhibits some detail clutter and loss of detail. (b) Linear blend leads to contrast loss and ghosting
is visible. (c) The contrast-preserving linear blend [HN18] has higher contrast, but the ghosting
is still apparent. (d) Our approach has high contrast and ghosting is significantly suppressed.

We propose a different solution which keeps the keyframe stylization unchanged while
producing smooth and seamless transitions between keyframes. We first stylize the se-
quence using keyframes at the beginning (Sak) and at the end (Sbl ) to produce two sepa-
rately stylized sequences Oa and Ob. To produce the final frame of index i, we blend the
corresponding frames Oa

i and Ob
i . Now the question becomes what blending technique

should we use.



5.3. OUR APPROACH 43

A trivial approach would be to perform a linear blend: Oi = (1− α)Oa
k + αOb

l , where
α = (i−k)/(l−k). Such a solution flattens the original contrast and introduces ghosting
artifacts (see Fig. 5.7b). In addition, linear blending implicitly assumes that the content
of the frame changes smoothly in time; such an assumption is violated when there is
disocclusion in the sequence, which suddenly introduces new local content that exists
in keyframe Sbl but not in Sak . In this case, we should stylize the new content using Sbl
exclusively, without blending in any features from Sak . To achieve this, we take advantage
of the fact that our algorithm gives a patch matching error (5.1) for each pixel p in every
frame for both Oa and Ob. Our intuition is that between two patches from Oa and Ob

located at pixel p, the one with lower matching error will lead to “better” result and
thus should be locally preferred.

Error-based gradient domain fusion In order to merge the best content from the
two stylized sequences, we use gradient domain fusion similar to that used in Image
Melding [Dar+12] (see Fig. 5.6), where a screened Poisson equation [Bha+08] is applied
to perform this task. Our solution, differs in how we select the gradient and how the
screening value for reconstruction is computed. For the gradient, we select ∇Oa

i (p) or
∇Ob

i (p) according to a pixel selection mask Zi (see Fig. 5.6) where white pixels indicate
the state where the synthesis error Ea

i (p) is lower than Eb
i (p) and thus∇Oa

i (p) is selected,
while the opposite holds for black pixels. This ensures the blending result borrows the
structure and high-frequency content from the synthesis result that most closely matches
its respective keyframe.

Preserving color histogram To ensure the global color histogram varies smoothly
over time, we use a blended sequence Oab for screening. Instead of linear blending, we use
contrast-preserving blending from Heitz and Neyret [HN18], which blends two images Oa

i

and Ob
i and produces an image Oab

i with a prescribed histogram H which is constructed
by tabulating the colors of pixels according to pixel selection mask Zi, i.e., we count the
colors from pixels which have lower synthesis error. Though in Oab

i ghosting artifacts still
exist (see Fig. 5.7c), they are suppressed by the screened Poisson reconstruction in the
resulting frame Oi. The screening value Oab

i only serves to regularize the color histogram
of the result.

Temporal coherence of pixel selection mask Although the synthesis error usually
increases as the target frame gets further away from the keyframe, the increase in error
might not be monotonous in some local regions. This behavior may introduce visible
flickering since the matching error constraint may cause the algorithm to frequently
alternate between choosing contents stylized from different keyframes Sa and Sb. To avoid
such temporal instability, we explicitly enforce temporal coherence of the pixel selection
mask Z (see our supplementary material for illustrative figure). We store pixel selection
mask Zi−1 from the previous frame and use estimated inter-frame motion field Di to
produce an initial Ẑi which indicates existing pixel selection advected from the previous
frame. We then update Ẑi using the lower error constraint as described previously.
However, we prevent the situation where a pixel that has already been assigned to take
color and gradient information from an image stylized using the later keyframe Sb from
switching back to the earlier keyframe Sa.
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After applying this refinement, the resulting fused image has better contrast and less
ghosting artifacts (Fig. 5.7d).

5.4 Results

(a) (b) (c) (d) (e) (f)

Figure 5.8: Eskimo sequence: digitally painted keyframe (a) was used to stylize the 148 frames
long sequence (b, d, f), stylized frames (c) and (e). Video frames (b, d, f) courtesy of© MAUR
film, stylized keyframe (a) courtesy of © Jakub Javora, used with permission.

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 5.9: Lynx sequence: digitally painted keyframes (a) and (g) were used to stylize the
100 frames long sequence (b, d, f, h). Keyframe (a) was painted entirely while in keyframe (d)
only few strokes were added on top of the synthesis result, stylized frames (c) and (e). Video
frames (b, d, f, h) courtesy of © kjekol / Adobe Stock, stylized keyframes (a, g) courtesy of
© Jakub Javora, used with permission.

We pre-process guiding channels off-line on the CPU. This includes green screen mat-
ting, optical flow estimation, advection of content from the previous frame, and hi-pass
filtering of the target video frame (using σ = 6). For a one-megapixel frame this process
takes less than 20 seconds with the most time-consuming part being the computation
of optical flow using SIFT flow method [LYT11]. We use the following default setting
of weights for individual guiding channels: λcol = 6, λpos = 2, λedge = 0.5, λmask = 1,
λtemp = 0.5.

The actual synthesis then runs on the GPU (with CUDA) using the StyLit algo-
rithm [Fi16] with the following settings: 5× 5 patches, 6 pyramid levels, 12 search-vote
iterations, and 6 PatchMatch sweeps [Bar+09]. We also use the optimization described
in [Fi17], i.e., the nearest neighbor field propagation is executed only on patches that
lower the matching error in previous search step. With this fine-tuning, we can synthesize
one-megapixel frame in 9 seconds using GeForce GTX 1070.
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For the fusion of sequences stylized from different keyframes we implemented the
method of Heitz and Neyret [HN18] as well as screened Poisson solver [Bha+08] where
we set the screening parameter λd = 0.1. The computation runs on the CPU and time
for merging two one-megapixel frames is on average 10 seconds.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: Swan sequence: five digitally painted keyframes out of which three are shown
in this figure (a, b, c) were used to stylize the 437 frames long sequence (d, e, f, j, k, l).
Keyframe (a) was painted entirely while in keyframes (b) and (c) only few strokes were added
on top of the synthesis result, stylized frames (g, h, i). Video frames (d, e, f, j, k, l) courtesy
of © Primus1 / Adobe Stock, used with permission.

(a) (b) (c) (d) (e)

Figure 5.11: Snowstorm composition: only one keyframe (b) was used to stylize video sequence
with 521 frames including frames (a, c, d). The final composition (e). Stylized keyframe (b)
and the final composition (e) courtesy of © Jakub Javora, used with permission.

We validate our approach on multiple sequences from real production (please refer to
our supplementary video) with varying complexity using different styles including phys-
ical, artistic media such as oil paint, watercolor, pencil drawing, and digital paint. The
number of keyframes used for synthesis depends on the shot complexity. One keyframe
is typically sufficient for shots where objects move mostly in the camera plane without
occlusion or significant changes in illumination (see Figures 5.1, 5.8, 5.11, and 5.12). For
more complex shots with out-of-plane rotation and illumination changes, two (Figures 5.9
and 5.14) or more keyframes (Figures 5.10 and 5.13) are necessary. The keyframes
painted by an artist are highlighted with red rectangles in the figures. In a fully digital
pipeline, not all keyframes need to be prepared from scratch. Instead, one can stylize
the entire shot using one painted keyframe, and then manually fix deteriorated regions
when needed. Frames with corrections become new keyframes (see Figures 5.9 and 5.10).
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For shots with frequent occlusions, we separate each frame into multiple layers for best
synthesis quality and lowest number of keyframes (see our supplementary material).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.12: Two different style exemplars—oil paint (a) and pencil drawing (e) were used to
stylize the same set of target video frames as in Fig. 5.1. Style exemplars courtesy of© MAUR
film, Václav Švankmajer (a), © Pavla Sýkorová (e), used with permission.

(c) (d) (g)(f)(e)(a) (b)

(j) (k) (n)(m)(l)(h) (i)

Figure 5.13: Long video sequence with multiple keyframes: (a–g) are the target frames, (i,
j, l, m) are resulting synthesized frames using two respective nearest keyframes (h, k, n). In
total, the sequence contains 889 frames and 8 keyframes. Video frames (a–g) and stylized
keyframes (h, k, n) courtesy of © MAUR film, Václav Švankmajer, used with permission.

(a) (c) (e) (g)(b) (d) (f) (h)

Figure 5.14: Stylization between two keyframes: target video sequence (b, d, f, h) is first
stylized using keyframe (a), then the same sequence is stylized using keyframe (g), and finally,
the two resulting stylized sequences are then fused together (c, e). To stylize 1545 frames, only
two keyframes were used. Video frames (b, d, f, h) and stylized keyframes (a, g) courtesy of
© MAUR film, Václav Švankmajer, used with permission.

We compared our approach with the stylization framework proposed by Bénard et
al. [Bén+13] (see Fig. 5.15b). Although the original method does not support generic
video stylization, we prepared the necessary guiding channels using our technique and
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(b) (c)(a)

Figure 5.15: Comparison with patch-based techniques: (a) Frigo et al. [Fri+19], (b) Benard
et al. [Bén+13], (c) our approach.

provide them as an input to their algorithm. We also compared with another patch-
based technique that supports temporal coherence [Fri+19] (see Fig. 5.15a). See our
supplementary video for comparison on the entire sequence. We were interested in how
well each algorithm preserves the quality of the original style exemplar and handles
temporal coherence. From the results, Bénard et al.’s method has difficulty in preserving
high-frequency details of the original style exemplar and tends to produce visible drifting
chunks resulting in more temporal noise. Frigo et al.’s method also fails to preserve sharp
details and cannot reproduce the colors in the style exemplar.

We also performed a comparison with state-of-the-art neural-based approaches (see
Fig. 5.16 and our supplementary video). The method of Ruder et al. [RDB18] preserves
temporal coherence, but does not fully transfer the details of the style exemplar. The
method of Li et al. [Li+17] has similar appearance problems, and does not support
temporal coherence. The approach of Liao et al. [Lia+17] better reproduces the style, but
introduces visible misalignment of salient features and again, does not preserve temporal
coherence. The approach of Gu et al. [Gu+18] can avoid the misalignment at the cost
of smoothing out important high-frequency details of the original style exemplar. In
addition, the last three methods suffer from severe temporal flickering when applied on
video. We tried to post-process all three with the blind temporal consistency method of
Lai et al. [Lai+18]. Although the results were a bit temporally smoother, they exhibited
additional loss of contrast and detail. See supplementary video.

5.5 Limitations and Future Work

Although our new technique improves visual quality over the state-of-the-art and enables
considerable reduction of manual labor in the creation of stylized videos, there are still
some limitations that can motivate further research.

One of the key drawbacks of our approach is sensitivity to more substantial illumination
changes in the target video. This may happen, e.g., when a part of the stylized object
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(a) (c) (d) (e)(b)

Figure 5.16: Comparison with recent neural-based methods: (a) Ruder et al. [RDB18], (b) Li
et al. [Li+17], (c) Liao et al. [Lia+17], (d) Gu et al. [Gu+18], (e) ours. Fig. 5.13k was used
as the style exemplar for all methods.

is originally in light, and then it enters a shadow. In this case, the inconsistent colors
of Gcol can be misleading. Although the use of Gedge and the diffuse studio lighting
may suppress this behavior (see Fig. 5.5c,d and our supplementary material), a more
advanced appearance matching technique would be helpful. Fǐser et al. [Fi17] used the
method of [Shi+14] that is, however, tailored to facial images. A more generic approach
is needed in our scenario.

As a related problem, structural changes between nearby keyframes harm the synthesis
quality. In some cases, separation into layers may help to reduce clutter and preserve
content coherence. However, the appearance of target objects may change considerably
if they contain dynamic high-frequency structures (e.g., distinct texture or wrinkles on
clothing, see our supplementary material). This change will lead to inconsistencies in
Gcol. In these scenarios, more appropriate clothing or an additional detail-removing
filtering [Xu+11; BHY15] may help improve the synthesis quality.

Although our technique for mixing two stylized sequences does well in preserving con-
trast and suppressing ghosting, excessively large structural changes may still lead to
subtle ghosting effect due to usage of blended screening target (see Fig. 5.7c, eyebrow
in Fig. 5.14, and our supplementary material). Though solutions exist that can deform
local features for better structural matching [RSK10; Lia+14], we cannot apply them
since we need to avoid free-form deformations that may destroy the structure of the orig-
inal paint texture. A better warping scheme that preserves local high-frequency structure
could potentially improve our method’s tolerance to these large structural changes.

5.6 Conclusion

We presented a new approach to temporally coherent artistic stylization of video. Our
two primary design considerations were (1) to allow direct and free-form artistic control
in the form of keyframes painted in any desired traditional medium and (2) to support
stylization of arbitrary input videos. Our approach enables a practical pipeline in real
production shots for creating traditional-style animation from live-action performance
capture. It further provides an easier artistic video creation workflow eliminating the
need for a tedious frame-by-frame painting process while preserving the unique and rich
visual qualities of traditional artistic media. We hope this will help bridge the gap
between live action, 3D animation, and traditional hand-painted animation.
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Chapter 6

Stylization Using Few-Shot
Patch-Based Training

6.1 Introduction

Example-based stylization of videos became recently popular thanks to significant ad-
vances made in neural techniques [RDB18; San+18; Kot+19a]. Those extend the sem-
inal approach of Gatys et al. [GEB16] into the video domain and improve the quality
by adding specific style-aware content losses. Although these techniques can deliver im-
pressive stylization results on various exemplars, they still suffer from the key limitation
of being difficult to control. This is due to the fact that they only measure statistical
correlations and thus do not guarantee that specific parts of the video will be stylized
according to the artist’s intention, which is an essential requirement for use in a real
production pipeline.

This important aspect is addressed by a concurrent approach—the keyframe-based
video stylization [Bén+13; Jam+19]. Those techniques employ guided patch-based syn-
thesis [Her+01; Fi16] to perform a semantically meaningful transfer from a set of stylized
keyframes to the rest of the target video sequence. The great advantage of a guided sce-
nario is that the user has a full control over the final appearance, as she can always refine
the result by providing additional keyframes. Despite the clear benefits of this approach,
there are still some challenges that need to be resolved to make the method suitable for
a production environment.

One of the key limitations of keyframe-based stylization techniques is that they operate
in a sequential fashion, i.e., their outputs are not seekable. When the user seeks to any
given frame, all the preceding frames have to be processed first, before the desired result
can be displayed. This sequential processing does not fit the mechanism of how frames
are handled in professional video production tools, where random access and parallel
processing are inevitable.

Another important aspect that needs to be addressed is merging, or blending, the
stylized content from two or more (possibly inconsistent) keyframes to form the final
sequence. Although various solutions exist to this problem (e.g., [She+10; Jam+19]), the
resulting sequences usually suffer from visible clutter or ghosting artifacts. To prevent
the issues with merging, the user has to resort to a tedious incremental workflow, where
she starts by processing the whole sequence using only a single keyframe first. Next,
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keyframe style other frame after 16s after 16s after 8s after 2s

(a) (b) (c) (d) (e) (f) (g)

Figure 6.1: An example of a sequence stylized using our approach. One frame from the
original sequence is selected as a keyframe (a) and an artist stylizes it with acrylic paint (b).
We use this single style exemplar as the only data to train a network. After 16 seconds of
training, the network can stylize the entire sequence in real-time (c-d) while maintaining the
state-of-the-art visual quality and temporal coherence. See the zoom-in views (e-g); even after
2 seconds of training, important structures already start to show up. Video frames (a, c) and
style exemplar (b) courtesy of © Zuzana Studená.

she prepares a corrective keyframe by painting over the result of the previous synthesis
run. This requires re-running the synthesis after each new correction, which leads to
additional computational load and slows the overall process down.

To summarize, it would be highly beneficial to develop a guided style transfer algo-
rithm that would act as a fast image filter. Such a filter would perform a semantically
meaningful transfer on individual frames without the need to access past results, while
still maintaining temporal coherence. In addition, it should also react adaptively to in-
coming user edits and seamlessly integrate them on the fly without having to perform
an explicit merging.

Such a setting resembles the functionality of appearance translation networks [Iso+17;
Wan+18a], which can give the desired look to a variety of images and videos. In these
approaches, generalization is achieved by a large training dataset of aligned appearance
exemplars. In our scenario, however, we only have one or a few stylized examples aligned
with the input video frames, and we propagate the style to other frames with similar
content. Although this may seem like a simpler task, we demonstrate that when existing
appearance translation frameworks are applied to it naively, they lead to disturbing visual
artifacts. Those are caused by their tendency to overfit the model when only a small set
of appearance exemplars is available.

Our scenario is also similar to few-shot learning techniques [Liu+19; Wan+19b] where
an initial model is trained first on a large generic dataset, and then in the inference
time, additional appearance exemplars are provided to modify the target look. Although
those methods deliver convincing results for a great variety of styles, they are limited only
to specific target domains for which large generic training datasets exist (e.g., human
bodies, faces, or street-view videos). Few-shot appearance translation to generic videos
remains an open problem.

In this paper, we present a new appearance translation framework for arbitrary video
sequences that can deliver semantically meaningful style transfer with temporal coherence
without the need to perform any lengthy domain-specific pre-training. We introduce a
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patch-based training mechanism that significantly improves the ability of the image-to-
image translation network to generalize in a setting where larger dataset of exemplars is
not available. Using our approach, even after a couple of seconds of training, the network
can stylize the entire sequence in parallel or a live video stream in real-time.

Our method unlocks a productive workflow, where the artist provides a stylized
keyframe, and after a couple of seconds of training, she can watch the entire video
stylized. Such rapid feedback allows the user to quickly provide localized changes and
instantly see the impact on the stylized video. The artist can even participate in an
interactive session and watch how the progress of her painting affects the target video in
real-time. By replacing the target video with a live camera feed, our method enables an
unprecedented scenario where the artist can stylize an actual live scene. When we point
the camera at the artist’s face, for instance, she can simultaneously paint the keyframe
and watch a stylized video-portrait of herself. Those scenarios would be impossible to
achieve with previous keyframe-based video stylization methods, and our framework thus
opens the potential for new unconventional applications.

6.2 Related Work

A straightforward approach to propagate the stylized content from a painted keyframe
to the rest of the sequence could be to estimate dense correspondences between the
painted keyframe and all other video frames [WJE19; Li+19] or compute an optical
flow [Che+13] between consecutive frames, and use it to propagate the stylized content
from the keyframe. However, as shown in Jamrǐska et al. [Jam+19] this simple approach
may lead to noticeable distortion artifacts as the textural coherence is not maintained.
Moreover, even when the distortion is small the texture advection effect leads to an
unwanted perception that the stylized content is painted on the surface.

A more sophisticated approach to keyframe-based video stylization was pioneered by
Bénard et al. [Bén+13] who use guided patch-based synthesis [Her+01] to maintain tex-
tural coherence. In their approach a 3D renderer is used to produce a set of auxiliary
channels, which guides the synthesis. This approach was recently extended to arbitrary
videos by Jamrǐska et al. [Jam+19]. In their framework, guiding channels are recon-
structed automatically from the input video. Jamrǐska et al. also offer a post-processing
step that merges the content stylized from multiple possibly inconsistent keyframes. Al-
though patch-based techniques prove to deliver convincing results, their crucial drawback
is that they can stylize the video only sequentially and require an explicit merging step to
be performed when multiple keyframes are provided. Those limitations hinder random
access, parallel processing, or real-time response, which we would like to preserve in our
video stylization framework.

When considering fast video stylization, appearance translation networks [Iso+17]
could provide a more appropriate solution. Once trained, they can perform semanti-
cally meaningful appearance transfer in real-time as recently demonstrated on human
portraits [Fut+19]. Nevertheless, a critical drawback here is that to learn such a trans-
lation network a large training dataset is required. That can be hardly accessible in a
generic video stylization scenario, where only a few hand-drawn exemplars exist, let alone
in the context of video-to-video translation [Wan+18a; Cha+19] which is completely in-
tractable.
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Recently, few-shot learning techniques were introduced [Wan+19a; Wan+19b] to per-
form appearance translation without the need to have a large dataset of specific style
translation pairs. However, to do that a domain-specific dataset is required (e.g., facial
videos, human bodies in motion, etc.) to pre-train the network. Such a requirement
impedes the usage of previous few-shot methods in a general context where the target
domain is not known beforehand.

In our method, we relax the requirement of domain-specific pre-training and show how
to train the appearance translation network solely on exemplars provided by the user.
Our approach bears resemblance to previous neural texture synthesis techniques [LW16c;
Uly+16a], which train a network with limited receptive field on a single exemplar image
and then use it to infer larger textures that retain essential low-level characteristics of
the exemplary image. A key idea here is to leverage the fully convolutional nature of
the neural net. Even if the network is trained on a smaller patches it can be used to
synthesize larger images.

Recently, the idea of patch-based training was further explored to accelerate train-
ing [SCI18] or to maintain high-level context [Zho+18; Sho+19; SDM19]; however, all
those techniques deal only with a singe image scenario and are not directly applicable
in our context. Also, they do not use a deliberately smaller batch of randomly cropped
patches as a means of overfitting avoidance which is one of our key contributions.

Handling temporal consistency is a central task of video stylization methods. When
individual frames are stylized independently, the resulting stylized animation usually
contains intense temporal flickering. Although this effect is natural for traditional hand-
colored animations [Fi14] it may become uncomfortable for the observer when watched
for a longer period of time. Due to this reason, previous video stylization methods,
either patch-based [Bén+13; Fi17; Jam+19; Fri+19] or neural-based [Che+17; San+18;
RDB18], try to ensure temporal stability explicitly, e.g., by measuring the consistency
between previous and a newly generated video frame. Alternatively, blind temporal
coherency [Lai+18] could be used in the post-processing step. Yet, these approaches
introduce data-dependency to the processing pipeline, which we would like to avoid to
enable random access and parallel processing.

Our approach bears also a resemblance to a just-in-time training recently proposed
by Mullapudi et al. [Mul+19]. In their approach, labelling is provided for a subset of
frames by a more accurate predictor and then propagated the the rest of the sequence
using a quickly trained lightweight network. To deliver sufficient quality, a relatively
large number of keyframes is necessary. Also, full-frame training is employed which we
demonstrate could suffer from strong overfitting artifacts and thus is not applicable in
our scenario where a detailed texture needs to be propagated.

6.3 Our Approach

The input to our method is a video sequence I, which consists of N frames. Optionally,
every frame Ii can be accompanied by a mask Mi to delineate the region of interest;
otherwise, the entire video frame is stylized. Additionally, the user also specifies a set
of keyframes Ik ⊂ I, and for each of them, the user provides stylized keyframes Sk, in
which the original video content is stylized. The user can stylize the entire keyframe or
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only a selected subset of pixels. In the latter case, additional keyframe masks Mk are
provided to determine the location of stylized regions (see Fig. 6.2 for details).

Ik1 Ik70I25 I51

Mk
70Mk

1

O1 O70O25 O51

Sk1 Sk70

Figure 6.2: The setting of video stylization with keyframes. The first row shows an input video
sequence I. There are two keyframes painted by the user, one keyframe is painted fully (Sk1 )
and the other is painted only partially (Sk70). Mask Mk

1 denotes that the entire keyframe is used;
mask Mk

70 specifies only the head region. Our task is to stylize all frames of the input sequence
I while preserving the artistic style of the keyframes. The sequence O in the bottom row shows
the result of our method. Video frames (I) and style exemplars (S) courtesy of © Zuzana
Studená.

Our task is to stylize I in a way that the style from Sk is transferred to the whole of
I in a semantically meaningful way, i.e., the stylization of particular objects in the scene
remains consistent. We denote the output sequence by O. The aim is to achieve visual
quality and temporal consistency comparable to the state-of-the-art in the keyframe-
based video stylization [Jam+19]. However, in contrast to this previous work, we would
like to stylize the video frames in random order, possibly in-parallel, or on-demand in
real-time, without the need to wait for previous frames to be stylized or to perform
explicit merging of stylized content from different keyframes. In other words, we aim to
design a translation filter that can quickly learn the style from a few heterogeneously
hand-drawn exemplars Sk and then stylize the entire sequence I in parallel, or any
single frame on demand. It would also be beneficial if the learning phase was fast and
incremental so that the stylization of individual video frames could start immediately,
and the stylization quality would progressively improve over time.
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(b) patch-based, Ik1 (d) patch-based, I5(c) full-frame, I5

Ik1 I5Ik1 I5

(a) full-frame, Ik1

O5O1 O5O1

Figure 6.3: Comparison of full-frame training vs. our patch-based approach: the original
frames from the input sequence I are marked in blue and details of their stylized counterparts
O are marked in red. The full-frame training scheme of Futschik et al. [Fut+19] (a) as well as
our patch-based approach (b) closely reproduce the frame on which the training was performed
(see the frame Sk1 in Fig. 6.6). Both stylized frames (a, b) look nearly identical, although the
training loss is lower for the full-frame scheme. Nevertheless, the situation changes dramatically
when the two networks are used to stylize another frame from the same sequence (here frame
I5). The network which was trained using the full-frame scheme produces images that are very
noisy and have fuzzy structure (c). This is due to the fact that the full-frame training causes the
network to overfit the keyframe. The network is then unable to generalize to other frames in the
sequence even though they structurally resemble the original keyframe. The network which was
trained using our patch-based scheme retains the fidelity and preserves the important artistic
details of the original style exemplar (d). This is thanks to the fact that our patch-based scheme
better encourages the network to generalize to unseen video frames. Video frames (I) courtesy
of © Zuzana Studená.

To design such a filter, we adopt the U-net-based image-to-image translation frame-
work of Futschik et al. [Fut+19], which was originally designed for the stylization of
faces. It uses a custom network architecture that can retain important high-frequency
details of the original style exemplar. Although their network can be applied in our
scenario directly, the quality of results it produces is notably inferior as compared to
current state-of-the-art (see Fig. 6.3c and our supplementary video at 2:20). One of the
reasons why this happens is that the original Futschik et al.’s network is trained on a
large dataset of style exemplars produced by FaceStyle algorithm [Fi17]. Such many
exemplars are not available in our scenario, and thus the network suffers from strong
overfitting. Due to this reason, keyframes can be perfectly reconstructed; however, the
rest of the frames are stylized poorly, even after applying well-known data augmentation
methods. See the detailed comparison in Figures 6.3 and 6.9. Furthermore, the resulting
sequence also contains a disturbing amount of temporal flickering because the original
method does not take into account temporal coherence explicitly.

To address the drawbacks mentioned above, we alter how the network is trained and
formulate an optimization problem that allows fine-tuning the network’s architecture and
its hyper-parameters to get the stylization quality comparable to the current state-of-
the-art, even with only a few training exemplars available and within short training time.
Also, we propose a solution to suppress temporal flicker without the need to measure
consistency between individual video frames explicitly. In the following sections, those
improvements are discussed in further detail.
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original keyframe

ENCODER DECODER

stylized keyframeLOSS

(a) (b) (c)

Figure 6.4: Training strategy: we randomly sample a set of small patches from the masked
area of the original keyframe (a). These patches are then propagated through the network in a
single batch to produce their stylized counterparts (b). We then compute the loss of these stylized
counterparts (b) with respect to the co-located patches sampled from the stylized keyframe (c)
and back-propagate the error. Such a training scheme is not limited to any particular loss
function; in this paper, we use a combination of L1 loss, adversarial loss, and VGG loss as
described in [Fut+19]. Video frame (left) and style exemplar (right) courtesy of © Zuzana
Studená.

6.3.1 Patch-Based Training Strategy

To avoid network overfitting to the few available keyframes, we adopt a patch-based train-
ing strategy. Instead of feeding the entire exemplar to the network as done in [Fut+19], we
randomly sample smaller rectangular patches from all stylized keyframes Sk (see Fig. 6.4)
and train the network to predict a stylized rectangluar area of same size as input. The
sampling is performed only within the area of masked pixels Mk. Note that thanks to
the fully convolutional nature of the network, once trained, it can be directly used to
stylize the entire video frame even though the training was performed on smaller patches
(see Fig. 6.5). The key benefit of this explicit cropping and randomization step is that it
simulates the scenario when a large and diverse dataset is used for training. It prevents
the network from overfitting and generalizes to stylize the other video frames better.
This training strategy is similar to one previously used for texture synthesis [Zho+18].

Although the reconstruction loss measured on keyframes Sk is higher when compared
to full-frame training after comparable amount of time, on the remaining frames of I the
reconstruction loss is considerably lower when comparing to the frames stylized using
state-of-the-art keyframe-based video stylization method of Jamrǐska et al. which we
purposefully consider as a ground truth (cf. supplementary video at 0:08 and 1:08). This
lower loss w.r.t. Jamrǐska et al. translates to much better visual quality.

6.3.2 Hyper-parameter Optimization

Although the patch-based training strategy considerably helps to resolve the overfitting
problem, we find that it is still essential to have a proper setting of critical network hyper-
parameters, as their naive values could lead to poor inference quality, especially when the
training performance is of great importance in our applications (see Fig. 6.8). Besides
that, we also need to balance the model size to capture the essential characteristics of
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Parallel
Inference

(a) Input Batch (b) Output Batch

Figure 6.5: Inference: thanks to the fully convolutional nature of the network, we can perform
the inference on entire video frames, even though the training is done on small patches only.
Since the inference does not depend on other stylized frames, all video frames can be stylized in
parallel or in random order. This allows us to pass many or even all of the input frames (a)
through the network in a single batch and get all output frames (b) at once. Video frames (left)
courtesy of © Zuzana Studená.

the style yet being able to perform the inference in real-time using off-the-shelf graphics
card.

We formulate an optimization problem in which we search for an optimal setting of
the following hyper-parameters: Wp—size of a training patch, Nb—number of patches
used in one training batch, α—learning rate, and Nr—number of ResNet blocks used in
our network architecture. The aim is to minimize the loss function used in Futschik et
al. [Fut+19] computed over the frames inferred by our network and their counterparts
stylized using the method of Jamrǐska et al. [Jam+19]. The minimization is performed
subject to the following hard constraints: Tt—the time for which we allow the network
to be trained for and Ti—the inference time for a single video frame. Since Tt as well as
Ti are relatively short (in our setting Tt = 30 and Ti = 0.06 seconds) full optimization of
hyper-parameters becomes tractable. We used the grid search method on a GPU cluster,
to find the optimal values (see detailed scheme Fig. 6.6). In-depth elaboration can be
found in Section 8.4.

In our experiments, we found that hyper-parameter optimization is relatively consis-
tent when different validation sequences are used. We thus believe the setting we found is
useful for a greater variety of styles and sequences. Note also that the result of Jamrǐska
et al. is used only for fine-tuning of hyper-parameters. Once this step is finished, our
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framework does not require any guided patch-based synthesis algorithm and can act fully
independently.

Sk1

Nb

Wp

Nr

LOSS

αI1

LOSS

arg min

(1)

(2) (3)

I4 O4 GT4

Figure 6.6: To fine-tune critical hyper-parameters of our network, we propose the following
optimization scheme. We tune batch size Nb, patch size Wp, number of ResNet blocks Nr, and
learning rate α. Using the grid search method we sample 4-dimensional space given by these
hyper-parameters and for every hyper-parameter setting we (1) perform a training for a given
amount of time, (2) do inference on unseen frames, and (3) compute the loss between inferred
frames (O4) and result of [Jam+19] (GT4) - which we consider to be ground truth. The objective
is to minimize this loss. Note that the loss in step (1) and the loss in step (3) are both the
same. Video frames (I) and style exemplar (S) courtesy of © Zuzana Studená.

6.3.3 Temporal Coherency

Once the translation network with optimized hyper-parameters is trained using the pro-
posed patch-based scheme, style transfer to I can be performed in real-time or in parallel
on the off-the-shelf graphics card. Even though such a frame-independent process yields
relatively good temporal coherence on its own (as noted by Futschik et al.), in many
cases, temporal flicker is still apparent. We aim to suppress it while keeping the ability
of the network to perform frame-independent inference. We analyzed the source of the
temporal instability and found two main reasons: (1) temporal noise in the original video
and (2) visual ambiguity of the stylized content. We discuss our solution to those issues
in the following paragraphs.

We observed that the appearance translation network tends to amplify temporal
noise in the input video, i.e., even a small amount of temporal instability in the input
video causes visible flicker in the output sequence. To suppress it, we use the motion-
compensated variant of bilateral filter operating in the temporal domain [BM05]. See
our supplementary video (at 2:40) for the flicker reduction that can be achieved using
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this pre-filtering. Although bilateral filter requires nearby frames to be fetched into the
memory, it does not violate our requirement for frame-independent processing.

Another observation we made is that filtering the input video reduces temporal flicker
only on objects that have distinct and variable texture. Those that lack sufficient discrim-
inatory information (e.g., homogeneous regions) flicker due to the fact that the visual
ambiguity correlates with the network’s ability to recall the desired appearance. To
suppress this phenomenon, one possibility is to prepare the scene to contain only well
distinctive regions. However, such an adjustment may not always be feasible in practice.

Instead, we provide an additional input layer to the network that will improve its
discriminative power explicitly. This layer consists of a sparse set of randomly distributed
2D Gaussians, each of which has a distinct randomly generated color. Their mixture
represents a unique color variation that helps the network to identify local context and
suppress the ambiguity (see Fig. 6.7). To compensate for the motion in the input video,
Gaussians are treated as points attached to a grid, which is deformed using as-rigid-
as-possible (ARAP) image registration technique [SDC09]. In this approach, two steps
are iterated: (1) block-matching estimates optimal translation of each point on the grid,
and (2) rigidity is locally enforced using the ARAP deformation model to regularize the
grid structure. As this registration scheme can be applied independently for each video
frame, the condition on frame independence is still satisfied.

: :: :

(a) (b) (c) (d) (e) (f)

Figure 6.7: To suppress visual ambiguity of the dark mostly homogeneous T-shirt in (a) an
auxiliary input layer is provided that contains a mixture of randomly distributed and colored
Gaussians (b). The translation network is trained on patches of which input pixels contain
those additional color components. The aim is to reproduce the stylized counterpart (c). Once
the network is trained a different frame from the sequence can be stylized (d) using adopted
version of the auxiliary input layer (e). The resulting sequence of stylized frames (f) has notably
better temporal stability (cf. our supplementary video at 2:40). Video frames (a, d) courtesy of
© Zuzana Studená and style exemplar (b) courtesy of © Pavla Sýkorová.

The reason why the mixture of Gaussians is used instead of directly encoding pixel
coordinates as done, e.g., in [Liu+18; Jam+19] is the fact that random colorization
provides better localization and their sparsity, together with rotational symmetry, reduces
the effect of local distortion, which may confuse the network. In our supplementary video
(at 3:20) we, demonstrate the benefit of using the mixture of Gaussians over the layer
with color-coded pixel coordinates. In case of extreme non-planar deformation (e.g.,
head rotation) or strong occlusion (multiple scene planes), additional keyframes need
to be provided or the scene separated into multiple layers. Each keyframe or a scene
layer has then its own dedicated deformation grid. We demonstrate this scenario in our
supplementary video (at 2:56).
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6.4 Results

We implemented our approach in C++ and Python with PyTorch, adopting the struc-
ture of the appearance translation network of Futschik et al. [Fut+19] and used their
recommended settings including training loss. Ground truth stylized sequences for hyper-
parameter tuning and comparison were produced using the video stylization method of
Jamrǐska et al. [Jam+19].

40 500 1000 16 36 100

(a) Batch Size (b) Patch Size (c) ResNet Blocks

1 7 14

Figure 6.8: Influence of important hyper-parameters on visual quality of results. The loss,
y-axes, is computed w.r.t. the output of Jamrǐska et al. [Jam+19]. The best setting for each
hyper-parameter is highlighted in red: (a) The loss curve for the batch size Nb—the number of
patches in one training batch (other hyper-parameters are fixed). As can be seen, increasing Nb

deteriorates visual quality significantly; it indicates that there exists an ideal amount of data
to pass through the network during the back-propagation step. (b) The loss curve for the patch
size Wp. The optimal size of a patch is around 36x36 pixels. This fact indicates that smaller
patches may not provide sufficient context while larger ones could make the network less robust
to deformation changes. (c) The loss curve for the number of ResNet blocks Nr that corresponds
to the capacity of the network. As can be seen, settings with 7 ResNet blocks is slightly better
than other results; however, this hyper-parameter does have major impact on the quality of
results. For additional experiments with hyper-parameter setting, refer to our supplementary
text.

We performed fine-tuning of hyper-parameters on a selection of frames from our
evaluation sequences. We computed their stylized counterparts using the method of
Jamrǐska et al. [Jam+19] and performed optimization using grid search on a cluster
with 48 Nvidia Tesla V100 GPUs in 3 days. We searched over the following intervals:
Wp ∈ (12, 188), Nb ∈ (5, 1000), Nr ∈ (1, 40), α ∈ (0.0002, 0.0032). In total we sam-
pled around 200,000 different settings of those hyper-parameters. We found the optimal
patch size to be Wp = 36 pixels, the number of patches in one batch Nb = 40, learning
rate α = 0.0004, and the number of ResNet blocks Nr = 7.

See Fig. 6.8 to compare visual quality for different hyper-parameter settings. Note
the substantial improvement in visual quality over different settings, which confirms the
necessity of this optimization. An interesting outcome of the proposed hyper-parameter
optimization is a relatively small number of patches in one batch Nb = 40 (Fig. 6.8a).
This value interplays with our choice of patch-based training scheme. Although a com-
mon strategy would be to enlarge Nb as much as possible to utilize GPU capability, in
our case, increasing Nb is actually counterproductive as it turns training scheme into a
full-frame scenario that tends to overfit the network on the keyframe and produce poor
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results on unseen video frames. A smaller number of randomly selected patches in ev-
ery batch increases the variety of back-propagation gradients and thus encourages the
network to generalize better. From the optimal patch size Wp = 36 (Fig. 6.8b) it is
apparent that smaller patches may not provide sufficient context, while larger patches
may make the network less resistant to appearance changes caused by deformation of the
target object and less sensitive to details. Surprisingly, the number of ResNet blocks Nr

(see Fig. 6.8c) does not have a significant impact on the quality, although there is a subtle
saddle point visible. Similar behavior also holds true for the learning rate parameter α.
In addition, we also examined the influence of the number of network filters on the final
visual quality (see our supplementary material). The measurements confirmed that the
number of filters needs to be balanced as well to capture the stylized content while still
avoid overfitting.

With all optimized hyper-parameters, a video sequence of resolution 640 × 640 with
10% of active pixels (inside the mask Mk) can be stylized in good quality at 17 frames
per second after 16 seconds of training (see Fig. 6.1).

We evaluated our approach on a set of video sequences with different resolutions rang-
ing from 350×350 to 960×540, containing different visual content (faces, human bodies,
animals), and various artistic styles (oil paint, acrylic paint, chalk, color pencil, markers,
and digital image). Simpler sequences were stylized using only one keyframe (see Fig-
ures 6.1, 6.3, 6.7, 6.11, and 6.12) while the more complex ones have multiple (ranging
from two to seven, see Figures 6.14, 6.13, 6.15, and 6.16). Before training, the target
sequence was pre-filtered using the bilateral temporal filter. In case that the sequence
contains regions having ambiguous appearances, we compute an auxiliary input layer
with the mixture of randomly colored Gaussians that follows the motion in the target
sequence. During the training phase, we randomly sample patches inside the mask Mk

from all keyframes k and feed them in batches to the network to compute the loss and
backpropagate the error. Training, as well as inference, were performed on Nvidia RTX
2080 GPU. The training time was set to be proportional to the number of input patches
(number of pixels inside the mask Mk), e.g., 5 minutes for a 512× 512 keyframe with all
pixels inside the mask. After training, the entire sequence can be stylized at the speed
of roughly 17 frames per second. See our supplementary video (at 0:08 and 1:08) for the
resulting stylized sequences.

6.4.1 Comparison

To confirm the importance of our patch-based training strategy, we conducted compar-
isons with other commonly used methods for data-augmentation that can help avoiding
overfitting such as adding Gaussian noise to the input, randomly erasing selected pixels,
occluding larger parts of the input image, or performing dropout before each convolution
layer. We found that none of these techniques can achieve comparable visual quality to
our patch-based training strategy (see Fig. 6.9).

We compared our approach with the current state-of-the-art in keyframe-based video
stylization [Jam+19]. For the results see Figures 6.10, 6.12, 6.14, 6.15, and our supple-
mentary video (at 0:08 and 1:08). Note how the overall visual quality, as well as the
temporal coherence, is comparable. In most cases, our approach is better at preserv-
ing important structural details in the target video, whereas the method of Jamrǐska
et al. often more faithfully preserves the texture of the original style exemplar. This is
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caused by the fact that the method of Jamrǐska et al. is non-parametric, i.e., it can copy
larger chunks of the style bitmap to the target frame. Our method is parametric, and
thus it can adapt to fine structural details in the target frame, which would otherwise
be difficult to reproduce using bitmap chunks from the original style exemplar.

Regarding the temporal consistency, when our full-fledged flicker compensation based
on the mixture of Gaussians is used our approach achieves comparable coherency in time
to the method of Jamrǐska et al. It is also apparent that when multiple keyframes are
used for stylization, ghosting artifacts mostly vanish in our method, unlike in Jamrǐska
et al. When the original noisy sequence is used, or only the bilateral filtering is ap-
plied, the resulting sequence may flicker a little more when compared to the output of
Jamrǐska et al. However, we argue that the benefits gained from random access and
parallel processing greatly outweigh the slight increase of temporal flicker. Moreover, the
order-independent processing brings also a qualitative improvement over the method of
Jamrǐska et al. that tends to accumulate small errors during the course of the sequence,
and visibly deteriorates after a certain number of frames.

Performance-wise a key benefit of our approach is that once the network is trained,
one can perform stylization of a live video stream in real-time. Even in the offline
setting, when the training phase is taken into account, the overall end-to-end computation
overhead is still competitive. On a 3 GHz quad-core CPU with Nvidia RTX 2080 GPU,
a 512× 512 sequence with 100 frames takes around 5 minutes to train until convergence
and stylize using our approach, whereas the method of Jamrǐska et al. requires around
15 minutes.

6.4.2 Interactive applications

To evaluate the ideas we presented in practice, we invited artists to work with our
framework. We implement and experiment with three different setups in which the
artists created physical as well as digital drawings. The goal of these sessions was to
stylize one or more video keyframes artistically. Using a workstation PC, we provided the
artists with a version of our framework that implements real-time interactive stylization
of pre-prepared video sequences and stylization of live camera feeds.

These applications, all of which rely on and strongly benefit from the near real-time
nature of patch-based training as well as the real-time performance of full-frame inference,
naturally lend themselves to fast iteration. The artist is provided with real-time feedback
that approximates what the final result of video stylization might look like, thus reducing
the possibility of running into issues with artifacts that would be difficult to alleviate
later on.

During the sessions, artists especially appreciated seeing video results very quickly, as
it helps steer creative flow and offers the possibility of perceiving the effect of individual
changes in the style exemplar at a glance. The overall experience was described as
incredibly fun and paradigm-changing, with little to no negative feedback. Using this
system is intuitive and even suitable for children. These different scenarios are described
in detail in the supplementary material.
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6.5 Limitations and Future Work

Although our framework brings substantial improvements over the state-of-the-art and
makes keyframe video stylization more flexible and interactive, there are still some limi-
tations that could represent a potential for further research.

Despite the fact our technique uses different computational machinery than current
state-of-the-art [Jam+19] (deep convolutional network vs. guided patch-based synthesis),
both approaches share similar difficulties when stylized objects change their appearance
substantially over time, e.g., when the object rotates and thus reveals some unseen
content. Although our approach often resists slightly longer than patch-based synthesis
due to the ability to generalize better, it usually cannot invent consistent stylization for
new features that were not stylized in the original keyframe, see Fig. 6.10. In this case,
the user needs to provide additional keyframes to make the stylization consistent.

As compared to the method of Jamrǐska et al. our approach may encounter difficul-
ties when processing keyframes at a higher resolution (e.g., 4K) to stylize high-definition
videos. Although the size of patches, as well as the network capacity, can be increased
accordingly, the training may take notably longer time, as a different multi-scale ap-
proach [Wan+18b] could be necessary. However, the problem of training of larger models
is an active research topic in machine learning, so we believe that soon, more efficient
methods will be developed so that our technique would be applicable also at higher
resolutions.

Although our approach does not require the presence of previous stylized frames to
preserve temporal coherency, the motion-compensated bilateral filter, as well as the cre-
ation of layer with a random mixture of colored Gaussians, requires fetching multiple
video frames. Even though those auxiliary calculations can still be performed in par-
allel, they need additional computation resources. Those may cause difficulties when
considering real-time inference from live video streams. In our prototype, during the
live capture sessions, treatment for improving temporal coherence was not taken into
account. A fruitful avenue for future work would be to implement real-time variants of
the motion-compensated bilateral filter as well as a mixture of colored Gaussians. Also,
different methods could be developed that would enable the network to keep stylized
video temporally coherent without the need to look into other video frames.

6.6 Conclusion

We presented a neural approach to keyframe-based stylization of arbitrary videos. With
our technique, one can stylize the target sequence using only one or a few hand-drawn
keyframes. In contrast to previous neural-based methods, our method does not require
large domain-specific datasets nor lengthy pre-training. Thanks to our patch-based train-
ing scheme, optimized hyper-parameters, and handling of temporal coherence, a standard
appearance translation network can be trained on a small set of exemplars. Once trained,
it can quickly deliver temporally coherent stylized videos with a visual quality compara-
ble to the current state-of-the-art in keyframe-based video stylization, which uses guided
patch-based synthesis. A key benefit of our technique is that it can work in a frame-
independent mode, which is highly beneficial for current professional video editing tools



6.6. CONCLUSION 63

that rely heavily on random access and parallel processing. It also does not require the
explicit merging of stylized content when slightly inconsistent keyframes are used.

Moreover, since the network in our framework can be trained progressively, and the
inference runs in real-time on off-the-shelf GPUs, we can propose several new video
editing scenarios that were previously difficult to achieve. Those include stylization of
a live video stream using a physical hand-drawn exemplar being created and captured
simultaneously by another video camera. We believe interactive scenarios such as this
will empower the creative potential of artists and inspire them with new creative ideas.
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Figure 6.9: To deal with the overfitting caused by a minimal amount of training data, we tried
several commonly used techniques to enforce regularization. In all cases shown in this figure,
we trained the network on the first frame; the shown results are zoomed details of the fifth
frame. (a) is a result of the original full-frame training. (b-h) are results of full-frame training
with some data augmentation. (i) is a result of our patch-based training strategy—see how our
technique can deliver much sharper and significantly better visual quality results, please, zoom
into the figure to better appreciate the difference. In case of (b-c), Gaussian noise was used to
augment the data; (d) some pixels were randomly set to black; (e-f) some parts of the image
were occluded; (g) dropout of entire 2D feature maps; (h) dropout of individual pixels before
each convolution layer.
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(a) (b) (c)

Figure 6.10: When the target subject undergoes a substantial appearance change, the results
of both Jamrǐska et al. [Jam+19] (b) and our method (c) exhibit noticeable artifacts. The parts
that were not present in the keyframe are reconstructed poorly—see the face and hair regions
where [Jam+19] produces large flat areas, while our approach does not reproduce the color of the
face well. Video frames (insets of a–c) and style exemplars (a) courtesy of © Zuzana Studená.

(a) (b)

Figure 6.11: Given one keyframe (a) and a video sequence (in blue), our method produces
the stylized result (b). Video frames (insets of a, b) courtesy of © Adam Finkelstein and style
exemplars (a) courtesy of © Pavla Sýkorová.
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(a) (b) (c)

Figure 6.12: For the state-of-the-art algorithm of [Jam+19], contour based styles (a) present
a particular challenge (b). Using our approach (c), the contours are transferred with finer detail
and remain sharp even as the sequence undergoes transformations. Video frames (insets of a–c)
and style exemplar (a) courtesy of © Štěpánka Sýkorová.

(a) (b) (c) (d)

Figure 6.13: The Lynx sequence stylized using two keyframes (a, d). Notice how our method
produces seamless transition between the keyframes while preserving fine texture of the style (b,
c). Watch our supplementary video (at 1:22) to see the sequence in motion. Style exemplars (a,
d) courtesy of © Jakub Javora.

(a) (b) (e)(c) (d) (f)

Figure 6.14: Keyframes (a, f) were used to stylize the sequence of 154 frames. See the quali-
tative difference between Jamrǐska et al. [Jam+19] (b) and our result (c). Focusing mainly on
zoom-in views, our approach better preserves contour lines around the nose and chin; moreover,
the method of Jamrǐska et al. suffers from blending artifacts—the face is blended into the hair
region. On the other hand, comparison on a different frame from the same sequence shows
that the result of Jamrǐska et al. (d) is qualitatively superior to our result (e) on this particular
frame. See the corresponding zoom-in views where the approach of Jamrǐska et al. produces
cleaner results. Video frames (insets of a–f) and style exemplars (a, f) courtesy of © Muchal-
ogy.
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(a) (b) (c) (e) (f)

(b’) (h’) (h) (i) (j) (k)(e’)

(j’)

(f’)(k’)

(i’)

(c’)

(d) (g)

Figure 6.15: A complex input sequence (the first row) with seven keyframes, three of them are
shown in (a, d, g). Here we compare our approach to the approach of Jamrǐska et al. [Jam+19].
See our result (b) and theirs (h) along with the close-ups (b’, h’); due to their explicit handling
of temporal coherence, the texture of the fur leaks into the box (h’). Next, compare our result (c)
to theirs (i); our approach better reconstructs the bag (c’, i’). Their issue with texture leakage
manifests itself again on the shoulder in (j, j’), notice how our approach (e, e’) produces a clean
result. Lastly, see how our result (f, f ’) is sharper and the face is better pronounced compared
to the result of Jamrǐska et al. [Jam+19] (k, k’), which suffers from artifacts caused by their
explicit merging of keyframes. Video frames (top row) and style exemplars (a, d, g) courtesy
of © MAUR film.

(a) (b) (c) (d)

Figure 6.16: An example sequence of 228 video frames (in blue) as stylized from two
keyframes (a, d). Results of our method (b, c) stay true to style exemplars over the course
of the sequence. Video frames (insets of a–d) and style exemplars (a, d) courtesy of© Muchal-
ogy.



68 CHAPTER 6. STYLIZATION USING FEW-SHOT PATCH-BASED TRAINING



69

Chapter 7

StyleBlit: Stylization with Local
Guidance

7.1 Introduction

Example-based artistic style transfer recently became popular thanks to advances made
by neural-based approaches [GEB16; SED16], patch-based texture synthesis techniques
[Fi16; Fi17] and their combinations [LW16c; Lia+17]. These methods can produce im-
pressive style transfer results with a common limitation of high computational over-
head. Although interactive frame-rate can be achieved when compromising visual qual-
ity [JAFF16] or utilizing the GPU [Fi16], high-quality style transfer remains out of reach
for scenarios such as interactive games or mobile applications where the available com-
putational budget is low.

A key concept that distinguishes style transfer from regular texture synthesis [EL99]
is the use of guiding channels [Her+01]. Those encourage the transfer of a specific area
in the source exemplar to a corresponding area in the target image. The design of
guiding channels is extremely important for achieving semantically meaningful transfer.
The guidance can be relatively fuzzy with respect to a certain spatial location (e.g.,
segmentation or blurred gray-scale gradients used by Hertzmann et al.) or well-localized
and descriptive (e.g., a displacement field [SED16; Fi17], texture coordinates [Rem+14;
Mag+15] or normal values [Slo+01; Dia+15]). We call the latter local guidance.

The goal of current state-of-the-art patch-based style-transfer techniques [Fi16; Zho+17]
is to optimize for a solution that satisfies the prescribed guidance and consists of large
coherent chunks of the style exemplar in semantically meaningful regions. This solution
represents the most visually-pleasing configuration that maximizes sharpness and fidelity
of the synthesized texture since large areas of the exemplar are copied as is (see Fig. 7.2).
To achieve this, however, textural coherence [Kwa+05; WSI07] needs to be taken into
account which results in a computationally demanding energy minimization problem.

In this paper, we demonstrate that when guidance provide good localization and when
style exemplar contains stochastic texture, textural coherence becomes less important
as the local characteristics of the guide implicitly encourage coherent solutions and the
stochastic nature enables visual masking that suppresses visible seams. In this setting,
we demonstrate that expensive optimization can be replaced by a set of simple and
fast pixel-level operations that gain significant performance speed-up. On a single core
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a) StyLit
[56 secs]

b) our approach
[0.05 sec]

f) our approach
[0.1 sec]

e) FaceStyle
[83 secs]

d) our
approach

c) texture
mapping

Figure 7.1: StyleBlit in applications: (a) style transfer from an exemplar in Fig. 7.6 to a 3D
model using StyLit [Fi16]; (b) our approach delivers similar visual quality but is several orders
of magnitude faster; (c) regular texture mapping using texture presented in Fig. E.8 vs. (d) our
approach that better preserves visual characteristics of the used artistic media; (e) style transfer
to a portrait image using FaceStyle [Fi17] with an exemplar in their supplementary material;
(f) our approach produces similar visual quality and is notably faster.

(a)

(b)

(c) (d) (e) (f)

3rd it. 32nd it.

Figure 7.2: The motivation for our approach: state-of-the-art guided patch-based synthe-
sis [Fi16] is used to transfer artistic style from a hand-drawn sphere (b) onto a more complex
3D object (c). Normal maps are used as guidance (a, c). The result (d) preserves well the
textural coherence of the original artistic style exemplar since the optimization-based approach
converges to a state where large coherent chunks of the source texture (colored white) are copied
into the target image forming a mosaic (e). As the optimization progresses, the size of coherent
regions increases (f). Style exemplar: © Pavla Sýkorová

modern CPU we can stylize a one-megapixel image at 10 frames per second while on a
common GPU we can achieve more than 100 frames per second at a 4K UHD resolution.
Despite its simplicity, our new method produces high-quality transfer results for a wide
range of styles. Applications include stylization of 3D renderings [Fi16] (see Fig. 7.1,
left), image-based texture mapping that better preserves the characteristics of natural
artistic media [Mag+15] (Fig. 7.1, middle), or fast style transfer to faces with comparable
results to the method of Fǐser et al. [Fi17] (Fig. 7.1, right). Our technique can also
be used in a more generic MatCap scenario [Slo+01] where instead of using explicit
shading models a hand-drawn, captured or synthetically prepared photorealistic material
is transferred to a more complex 3D object using normal-based guidance (see Fig. 7.9).
A key advantage of our approach is that compared to the original solution based on
environment mapping [Slo+01] our method transfers larger chunks of the source image,
which preserves high-frequency features of the texture.
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7.2 Related Work

(a)

(b)

(c)

(d)

(e)

Figure 7.3: The core idea behind our method: for each randomly selected seed in the target
image (b), we perform a table lookup using its guidance value (in this case a normal) to retrieve
the corresponding location in the source exemplar (a). Then we compare the guidance values of
source and target pixels in spatially-aligned regions around the seed. Pixels with a guidance value
difference below a user-defined threshold belong to the same chunk (c). Finally, we transfer the
chunk of example pixels to the target (d). We can produce the final mosaic by repeating this
process (e). Style exemplar: © Pavla Sýkorová

Over the last two decades, non-photorealistic rendering [Kyp+13] evolved consider-
ably. The state-of-the-art techniques can synthesize images resembling real artwork. A
popular branch of techniques achieves this goal by mixing a set of predefined strokes or
patterns that are selected and positioned according to guiding information provided in
2D [Her98] or 3D [Sch+11] environments. In addition to painterly styles, this line of ap-
proaches can also simulate other artistic styles such as pen-and-ink illustration [Sal+97]
or hatching [Bre+07]. Nevertheless, these approaches are confined by the limited expres-
sive power of these predefined sets of strokes or patterns.

To alleviate this drawback, an example-based approach called Image Analogies was
introduced by Hertzmann et al. [Her+01]. This method allows an artist to prepare
an arbitrary stylized version of a target image given an input style example. A one-
to-one mapping between the input image and its stylized version is used to guide the
transfer by establishing correspondences between the source and target (based, e.g., on
color correspondence). The target image can then be stylized according to this anal-
ogy. This seminal concept was later extended to animations [Bén+13] and improved
by others [BZ17] using better synthesis algorithms [Kas+15; Fi16] as well as different
types of guidance [Zho+17; Fi17]. In parallel, an approach similar to Image Analogies
was introduced by Sloan et al. [Slo+01] and later extended by others [BTM06; TAY13].
Their technique called The Lit Sphere (a.k.a. MatCap) uses a one-to-one correspondence
between normal values to transfer style from a hand-drawn exemplar of a simple object
(a sphere) to a more complex 3D model. In this scenario, a simple environment mapping
can be used [BN76] to perform the transfer. Recently, Magnenat et al. [Mag+15] pro-
posed a similar technique where instead of normals, UV coordinates are used as guidance
so that the artist can draw a stylized version on a 2D projection of a 3D model and then
the style is transferred using texture mapping. This approach is similar to image-based
texture mapping used in 3D reconstruction [DTM96]. Style transfer can be performed in
real-time thanks to its simplicity, but it only works well when the style does not contain
distinct high-frequency details. Texture mapping often distorts high-frequency details
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failing to retain the fidelity of the used artistic medium. Later patch-based synthesis
methods [Fi16; BKR17] have obtained much higher quality results by taking into account
not only local guidance but also textural coherence. These improvements, however, came
at the cost of notably higher computational overhead.

Recently, Gatys et al. [GEB16] introduced an alternative approach to style transfer
based on parametric texture synthesis [PS00] where instead of a steerable pyramid, an
alternative parametric representation is used based on a deep neural network trained
for object recognition [SZ14]. Their technique inspired a lot of follow-up work [SID17]
and became very popular thanks to numerous publicly available implementations. Al-
though it produces impressive results for some style exemplars, it was shown to suffer
from certain high-frequency artifacts caused by the parametric nature of the synthesis
algorithm [Fi16; Fi17]. To prevent texture distortion, researchers have proposed tech-
niques to combine the advantages of patch-based synthesis and the deep features learned
by neural network [LW16c; Lia+17]. These approaches, however, have significant com-
putational overhead and are not suitable for real-time applications.

Our approach to style transfer bears resemblance to early texture synthesis ap-
proaches [PFH00; Lia+01; EF01; Kwa+03] that can achieve results similar to patch-
based synthesis [Kwa+05; WSI07] by transferring larger irregularly-shaped chunks of
the source exemplar and composing them seamlessly in the target image. In particular
Lapped Textures [PFH00] can tile the target surface with a set of source patches, however,
there is no specific guidance for the patch placement, the patches need to be prepared
in advance to have minimal features on boundaries (to avoid seams), and the approach
requires an additional growing operation to fill in gaps. In appearance-space texture
synthesis [LH06], small appearance vectors are used instead of color patches to com-
press neighborhood information, but an iterative optimization [LH05] is still necessary
to obtain the final result.

In another related work [PKVP09], a graph labeling problem is solved to find the
optimal shift of every pixel in the output image from its source in an input image.
Nevertheless, additional smoothness term is needed to avoid discontinuities, and so com-
putationally demanding optimization is required.

In this paper, we demonstrate that for style exemplars which contain mostly stochastic
textures the interplay between local guidance and textural masking effect described by
Ashikhmin [Ash01] makes seams between the individual chunks barely visible and thus
simple blending operation can be used to suppress them without the need to take into
account texture coherence explicitly.

7.3 Our Approach

In this section, we describe the core idea behind our approach and discuss implementation
details. As a motivation, we first describe a simple experiment that inspired us to develop
our method.

To understand the properties of optimization-based approaches, we applied the StyLit
algorithm [Fi16] to transfer the style from a hand-drawn image of a sphere to a more
complex 3D model using normals as guidance (see Fig. 7.2). The texture coherence term
in the original energy formulation, and the mechanism for preventing excessive utilization
of source patches, help the optimization converge to a state where large chunks of the
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original source texture (Fig. 7.2b) are copied to the target image resulting in a high-
fidelity transfer (Fig. 7.2d).

Inside each coherent chunks, the errors of texture coherence term are equal to zero.
Errors of the guidance term can be bounded by a small upper bound, i.e., we can find
a chunk of the normal field on the exemplar sphere to roughly approximate the corre-
sponding chunk of normals on the target 3D model within a certain error threshold. The
black lines in Fig. 7.2e, f show the boundaries between chunks within which all pixels
have guidance errors below some predefined error bound. The lines get sparser and the
regions grow larger as the bound increases.

This fact inspired us to seek large coherent chunks of style regions directly using simple
pixel-level operations foregoing expensive patch-based optimization.

7.3.1 Basic Algorithm

To build such a mosaic of coherent chunks, we need to estimate the shape and spatial
location of each individual chunk. This is done by going in the scan-line order or by
picking a random pixel (seed) in the target image and finding its corresponding location
in the source exemplar (see Fig. 7.3a, b). Usually, the local guidance at each target
pixel consists of two values that indirectly specify the corresponding pixel coordinates in
the source exemplar. This fact enables us to use a simple look-up table to retrieve, for
each target pixel, the corresponding location in the source exemplar. In a more complex
scenario where additional guiding channels are used, we can accelerate the retrieval using
search trees [Ary+98]. Once we know the corresponding source pixel, we calculate the
difference between the guidance values in local spatially-aligned regions. The target
pixels having guidance difference smaller than a user-defined threshold belong to the
current chunk (Fig. 7.3c). We copy those corresponding pixels and paste them in the
target image (Fig. 7.3d). By repeating the searching and copying steps, we eventually
cover all pixels in the target image (Fig. 7.3e and Fig. 7.7, left).

Our approach does not explicitly enforce textural coherence. One might expect that
seams between individual chunks will be visible. Surprisingly, for a relatively large variety
of exemplars, seams are either not apparent or can be effectively suppressed using linear
blending applied around the boundaries of individual chunks. The reasons are twofold:
(1) local guidance is often smooth and continuous and thus two neighboring chunks
are usually roughly aligned; (2) hand-drawn exemplars are typically highly stochastic
which intrigues the human visual system and makes the structural inconsistencies less
noticeable [Ash01].

7.3.2 Implementation Details

The basic algorithm can be implemented in a brute-force manner (see supplementary
material for pseudocode). Though simple, it is highly inefficient due to the redundant
visiting of target pixels and the inherent sequential nature that prohibits parallel imple-
mentation.

To overcome the mentioned drawbacks, we use a more efficient approach that is fully
parallel and guarantees that every target pixel will be visited only once (see Algorithm 1).
The key idea here is to define an implicit hierarchy of target seeds q (see Fig. 7.4) with
different granularity. On the top level, seeds are distributed randomly far apart. On
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Algorithm 1: ParallelStyleBlit

Inputs : target pixel p, target guides GT , source guides GS, source style exemplar
CS, threshold t, number of levels L.

Output: stylized target pixel color CT [p].

SeedPoint(pixel p, seed spacing h):
b = bp/hc; j = RandomJitterTable[b]
return bh · (b + j)c

NearestSeed(pixel p, seed spacing h):
d? = ∞
for x ∈ {−1, 0,+1} do
for y ∈ {−1, 0,+1} do

s = SeedPoint(p + h · (x, y), h)
d = ||s− p||
if d < d? then

s? = s; d? = d

return s?

ParallelStyleBlit(pixel p):
for each level l ∈ (L, . . . , 1) do

ql = NearestSeed(p, 2l)
u? = argminu ||GT [ql]−GS[u]|| ← found via lookup,

e = ||GT [p]−GS[u? + (p− ql)]|| or a tree search.

if e < t then
CT [p] = CS[u? + (p− ql)]
break
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p

q3

q2

q1

Figure 7.4: An example hierarchy of spatially distributed seeds ql (black and blue dots). The
hierarchy level l corresponds to the size of the dots: the dots in the top level are the largest.
For every target pixel p (red dot), we proceed from the top level to the bottom l = {3, 2, 1}. At
the top level, we retrieve the spatially nearest seed q3, and check whether the guidance value
between p and q3 falls below a specified threshold. If not, we proceed to the nearest seed in the
next lower level q2 and then q1.

the lower levels, the distance between them is gradually decreased by a factor of 2.
Algorithmically we build this hierarchy by placing dots at regular grid points whose
positions are randomly perturbed. Then for every target pixel p, we start at the top
level of our seed hierarchy and find the spatially nearest target seed ql within the same
level l.

If the nearest seed yields guidance error below a specific threshold, we transfer the
corresponding style color to the target pixel and stop the traversal, otherwise we enter
the next lower level of the hierarchy and continue until we reach the bottom level.

When seams become apparent, we can optionally perform blending on the boundaries
of individual chunks. This can be simply implemented by replacing the transfer of pixel
colors with the transfer of pixel coordinates, i.e., every target pixel will be assigned
its corresponding source pixel coordinates. This structure is equivalent to the nearest
neighbor field used in patch-based synthesis. Then, the final colors are obtained using a
voting step [Kwa+05; WSI07] where the color of every target pixel is computed as the
average color of co-located pixels from a set of source patches that intersect the currently
processed target pixel. This operation is simple to implement and is, in fact, equivalent
to performing blending only at chunk boundaries.

7.3.3 Extensions

Our method is suitable both for hand-drawn style exemplars as well as realistic materials
that have stochastic nature. Those, however, may contain smooth gradients together
with high-frequency features (see Fig. 7.5a). In this case, finding a threshold that would
preserve both smoothness and high-frequency details could be difficult (Fig. 7.5b). We
resolve this problem by employing a multi-layer approach [BA83; Han+08; Gui+17]. We
first separate the input style exemplar into a smooth base layer (Fig. 7.5c) and a high-
frequency detail layer (Fig. 7.5d). To obtain the base layer, we first filter the original style
image with Gaussian filter and then we subtract the filtered image from the original to
get the detail layer. Style transfer is then performed in each layer separately. In the base
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Figure 7.5: Multi-layer approach: style exemplar with smooth gradients and high-frequency
details (a) may introduce visible seams (b). By decomposing the exemplar into base (c) and de-
tail (d) layer one can employ The Lit Sphere algorithm [Slo+01] for the base (e), then apply our
algorithm on the detail (f), and finally, make the composition which preserves both smoothness
as well as high-frequency details (g). Style exemplar: © Free PBR

layer, we employ The Lit Sphere algorithm [Slo+01] which works well for low-frequency
content (Fig. 7.5e). For the detail layer, we apply our algorithm which preserves high-
frequency content (Fig. 7.5f) and finally, we make the seamless composition by summing
synthesized base and detail layers (Fig. 7.5g).

Our approach can also be extended to animations. The local guidance implicitly
encourages temporal coherence in the synthesized content while the randomization of
seed points slightly perturbs the structure of the resulting mosaic. This creates a slight
temporal flickering effect which gives the observer an illusion of a hand-colored animation
where every frame is drawn independently by hand [Fi14]. Moreover, the amount of
flickering can be controlled by changing the guidance threshold. Higher threshold gives
rise to larger chunks and more visible visual changes between consecutive frames, and
thus the amount of flickering is increased.

7.4 Results

We implemented our approach on the CPU using C++ and on the GPU using OpenGL
with GLSL (for desktop) as well as WebGL (for mobile devices). As a default thresh-
old value, we use t = 24 and the number of seed levels is set to L = 7. Table
RandomJitterTable contains random values between (0, 1). On a single core CPU (Core
i7, 2.8 GHz), we stylize a one-megapixel image at 10 frames per second while on the GPU
(GeForce GTX 970) we can achieve more than 100 frames per second at 4K resolution.
This represents three orders of magnitude speedup as compared to the original StyLit
algorithm [Fi16] which requires computationally demanding iterative optimization. Such
improvement enables us to perform real-time style transfer even on devices with a lower
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Figure 7.6: Comparison with StyLit [Fi16]: original style exemplar (a), the result of our
approach (b), and the result of StyLit (c). Style exemplars: © Pavla Sýkorová and Daichi Ito∗

computational budget including mid-range mobile phones (using WebGL 1.0 we can
achieve, e.g., 15 frames per second full screen on the Samsung Galaxy A3).

We tested our approach in three different style-transfer scenarios where local guidance
is used: normals (see Fig. 7.6 and 7.9), texture coordinates (Fig. 7.7 and E.8), and a dis-
placement field (Fig. E.9). For additional results see also Fig. 7.1 and the supplementary
material.

For normal-based guidance, we compared our approach with the StyLit algorithm [Fi16]
to confirm that we produce comparable results that preserve visually important char-
acteristics of artistic media (see Fig. 7.1, 7.7, 7.6, and the supplementary material that
includes results of a perceptual study). In addition, our approach also better preserves
geometric details (cf., e.g., head result in Fig. 7.6) since it compares guidance channels
per pixel and does not involve any patch-based averaging used in the StyLit algorithm.
Such averaging acts as a low-pass filter applied on the guidance channel. In the sup-
plementary video, we present a recording of an interactive session (on the GPU as well
as on a smartphone) where the user manipulates and animates a 3D model on which
a selected artistic style is transferred in real-time. We also demonstrate controllable
temporal flickering effect following the concept of Fǐser et al. [Fi14]. Our approach is
suitable also for transferring delicate pixel art styles where even small blurring artifacts
may become apparent (see Fig. 7.8).

We also compare our technique with The Lit Sphere algorithm [Slo+01], i.e., Mat-
Cap scenario which is based on environment mapping. It directly maps colors between
corresponding pixels according to a one-to-one mapping specified by the normal val-
ues. Due to pixel-level processing, high-level structures visible in the style exemplar
become distorted, and thus only low-frequency exemplars can be used. In contrast, our
approach copies larger chunks and thus better preserves high-level structures which are
important to retain fidelity of the original style exemplar (see Fig. 7.7, Fig. 7.9 and the
supplementary material). This improvement is visible also in the case where texture co-
ordinates are derived directly from a planar parametrization (unwrap) of the target 3D
mesh (see Fig. 7.1, E.8, and the supplementary material). Here the style exemplar can
be painted on a specific 2D projection of the 3D mesh [Mag+15] or directly on the pla-
nar unwrap. In both cases, our approach transfers larger chunks of the original texture
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our approach StyLit The Lit Sphere

Figure 7.7: Stylized results produced by our method (left), StyLit [Fi16] (middle) and The Lit
Sphere [Slo+01] (right). Compared to StyLit, our approach is orders of magnitude faster and
produces similar result quality without explicitly enforcing textural coherence. Compared to The
Lit Sphere, our algorithm is equally fast, but retains the high-level structure of the used artistic
media; i.e., large directional brush strokes are better preserved.

which effectively removes artifacts caused by texture mapping and better preserves the
fidelity of the style exemplar. To do that, however, a larger threshold is required which
can break the structure of high-level geometric features. To avoid this artifact, we use
additional segmentation guide which prevents chunks from crossing boundaries of seman-
tically important regions (see supplementary material for examples of these additional
guiding channels).

Finally, we tested our approach in a scenario where a dense displacement field is used
as a local guide. An example of such setting is artistic style transfer to human por-
traits [Fi17]. Here the displacement field is defined by a set of corresponding facial
landmarks detected in the source exemplar and in the target subject. Moving least
squares deformation [SMW06] is used to compute dense correspondences, i.e., the result-
ing displacement field. Besides the local guide, two additional guidance channels are used
for patch-based synthesis: a segmentation map containing semantically important facial
parts (head, hair, eyes, eyebrows, nose, and mouth) and an appearance guide that helps
to preserve subject’s identity (see the supplementary material for examples of all guiding
channels). The resulting visual quality is comparable or a bit inferior to the previous
work, but sufficient for applications with limited computational resources (see Fig. 7.1,
E.9, and the supplementary material). To demonstrate such an application a recording
of a live session with real-time facial style transfer to a video stream is presented in
the supplementary material. To highlight the benefit of our method, the result of our
algorithm is compared side-by-side with a simple texture mapping scheme. Note how
our approach better preserves the fidelity of the original artistic media.
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Figure 7.8: Examples of stylization where normal-based guidance is used to transfer delicate
pixel art styles. In this scenario, copy-and-paste nature of our approach is crucial as it allows to
retain essential details on the pixel level which are important to preserve the fidelity of images
that has been created manually pixel by pixel. Style exemplars: © Lachlan Cartland

7.5 Limitations and Future Work

Although our method produces visually pleasing results for a variety of different style
exemplars and different types of guidance, there are some limitations that need to be
taken into account.

For non-stochastic (semi-)regular textures like a brick wall, our approach may intro-
duce visible misalignment of regular structures (see Fig. 7.12a). To suppress this artifact
one may employ post-transfer alignment of individual chunks using the method of Lucas
and Kanade [LK81]. This operation can be performed relatively quickly as it requires only
inexpensive accumulation of image gradients and pixel differences over chunk boundaries
and since the misalignment is usually small, only a few iterations are necessary to get a
better alignment (see Fig. 7.12b). Nevertheless, the quality is still inferior as compared
to full-fledged synthesis (see Fig. 7.12c).

Visible misalignment of individual chunks can also be apparent in cases when a set
of guidance channels used for the style transfer does not contain local guide or when
the influence of local guide is low as compared to other channels. Example of such
scenario can be the usage of light path expressions in [Fi16] (see Fig. 7.13a). In this case,
we envision a more sophisticated post-transfer alignment mechanism would also handle
larger discrepancies.

Our approach shares limitations with techniques that use guided patch-based synthesis
[Kas+15; Fi16]. They may produce excessive repetition in cases when the scale of the
target object is fairly different as compared to the object in the style exemplar, e.g.,
during zoom-in operations or when there is not enough variability in the guidance, e.g.,
when stylizing flat surface using spherical exemplar (see Fig. 7.13b). This drawback can
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be alleviated by adjusting the global scale or by preparing a different style exemplar that
contains similar structures as the target objects.

Another limitation is related to the rotation in the image plane when texture co-
ordinates or displacement field are used for guidance. In this situation corresponding
counterparts of target seeds can be found easily, however, as their neighborhoods have
notably different content caused by rotation, the error threshold limits the size of the
target chunks, and the method will introduce blur into the result (see Fig. 7.13c). To
alleviate this issue, one can pre-rotate the source guidance to match with the dominant
orientation in the target channel as in [Fi17].

7.6 Conclusion

We have presented a new approach for example-based style transfer suitable for appli-
cations where strong local guidance is used. We demonstrated that in this scenario
computationally demanding patch-based synthesis converges to a solution that can be
easily mimicked using a relatively simple algorithm with notably lower computational
overhead. We also showed that considering textural coherence is not crucial for suc-
cessful style transfer as local guidance in conjunction with the visual masking effectively
suppresses visible seams for a variety of hand-drawn as well as photorealistic style exem-
plars. Since our method is several orders of magnitude faster as compared to the current
state-of-the-art, it enables real-time style transfer even in applications with limited com-
putational resources available.
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(a)

(a)

(a)

Figure 7.9: Comparison with The Lit Sphere [Slo+01]: style exemplar (a), our approach
(normal-based guidance) (b), and The Lit Sphere result (c). Note how our approach enables
MatCap scenario also for materials that contain distinct high-level features while the computa-
tional overhead is still comparable to the original Lit Sphere method which is not applicable in
this context. Style exemplars: © Free PBR
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(a) (b) (c) (d) (e) (f)

Figure 7.10: Comparison with texture mapping: original artwork (a, d), new viewpoint gen-
erated using our approach (b, e) and using texture mapping (c, f). Style exemplars: © Pavla
Sýkorová

(a) (b) (c) (d)

Figure 7.11: Comparison with FaceStyle [Fi17]: original style exemplar (a), the result of our
method using strong (b) and weak (c) appearance guide, and the result of FaceStyle (d).
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(a) (*) (b) (c)

Figure 7.12: Limitation: when a (semi-)regular texture (*) is used as a style exemplar, our
method may introduce visible misalignment of regular features (a). To suppress this artifact,
post-transfer alignment of individual chunks can be performed (b) to get a result which is closer
to the output of StyLit algorithm [Fi16] (c). Style exemplar: © Free PBR

(b)(a) (c)

Figure 7.13: Limitations: when a set of guiding channels does not contain local guide, for in-
stance when light path expressions are used [Fi16], our approach may introduce visible seams (a);
when the target contains large areas of pixels having constant guidance values, our method pro-
duces a visible texture repetition (b); when the orientation of local guide changes considerably
(vertically flipped), translation cannot accommodate this change, and our technique starts to
produce smaller chunks (c). Style exemplars: © Pavla Sýkorová
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Chapter 8

StyleProp: Stylization of 3D Models

8.1 Introduction

With the rapid evolution of physically-based rendering and the ability to reproduce nat-
ural materials’ appearance, artists nowadays produce breathtaking animated movies and
video games that are quickly reaching a state of absolute visual perfection. Although the
audience highly appreciates this convergence, artists start to feel that with the prevalence
of realism, the visuals they continue producing become less and less unique. It is usually
challenging for an uninformed observer to recognize an animated movie’s authorship or
a video game by its visuals. Due to this reason, artists start to seek techniques that can
automatize repetitive tasks while still being able to retain their unique style. The ability
to draw by hand either physically or digitally and reproduce the look of traditional artis-
tic media has recently become increasingly attractive (see, e.g., games such as Cuphead,
Memories Retold, Dreams, Machinarium, or Dordogne and recently released animated
features Spider-Man: Into the Spider-Verse and Loving Vincent, Disney shorts Just A
Thought and Jing Hua or Riot Games’ Annie).

Besides the production of animated movies and video games, a similar trend also
emerges in other fields where visual uniqueness plays an important role. For instance, in
the architecture design, when a studio participates in a competition to realize a devel-

a) b) c) d) e) f) g) h) i) j)

Figure 8.1: StyleProp in action: a hand-drawn style is transferred to a given 3D model (a)
from a single exemplar created using color pencils (b). A novel variant of guided patch-based
synthesis is used to pre-calculate a sparse set of samples (d, f, h) from which the model can be
rendered in real-time at arbitrary location within available interaction space (c, e, g) even on a
mobile phone (i, j) while maintaining consistency when the viewing direction is changed. Style
exemplar (b) courtesy of © Štěpánka Sýkorová.
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oper project, photo-realistic visualizations are usually considered a disadvantage. They
prevent the committee from recognizing the unique style of a particular studio, which
indirectly serves as a quality certificate. Nevertheless, creating such a distinctive presen-
tation is a tedious task; thus, there is a high demand for tools that could help automatize
the creative process while still retaining the original aesthetic quality.

An ideal tool that would help artists to simplify the creative process in the sense
mentioned above would take a stylized example (e.g., an initial view on a 3D model),
distill its distinct visual properties, and transfer them on the target content (e.g., the
same model in different viewpoint or pose) so that the resulting stylized counterpart
reproduces the look and the feel of the original artwork.

Such a setting is in line with the current research efforts on automatic style transfer
that became popular thanks to significant advances made by neural techniques [GEB16;
KSS19; Kot+19a]. Despite the impressive results those approaches can produce, their
fundamental limitation is that they are trying to reproduce only the given artistic style’s
statistical properties. There is no guarantee that a specific local stylization choice made
by an artist (e.g., a carefully crafted stroke depicting an eye region) will retain in the
stylized counterpart.

A concurrent approach to neural style transfer uses guided patch-based synthe-
sis [Her+01; Bén+13; Fi16; Fi17; Jam+19], which focuses more on local textural details
and semantic meaningfulness of the transferred style instead of global statistics. By tak-
ing into account those essential properties, the results produced by those techniques are
sometimes difficult to distinguish from the original artwork. However, their drawback is
a significant computational overhead that hinders their applicability in interactive ap-
plications. Although real-time approximative solutions exist [Fut+19; Sýk+19], those
impose various restrictions on the content being stylized (e.g., faces only) and the type
of guidance that can be used (e.g., sufficient spatial variation).

In this paper, we introduce a novel solution to guided patch-based synthesis that
enables real-time response with temporal coherence while being agnostic to the stylized
content and guidance. We sparsely sample the space of possible interaction states (e.g.,
camera rotations) and compute each state’s stylization coherently with nearby samples.
Then for each stylized state, we store only its latent representation (the nearest-neighbor
field) from which we can quickly reconstruct the intermediate states and render the final
stylized image. Moreover, since the sampled set is relatively compact, we can transfer it
swiftly via the network and deliver a smooth interactive 3D viewing experience even on
a mobile device.

8.2 Related Work

Early approaches to non-photorealistic rendering [Kyp+13] use hand-crafted algorithmic
solutions to paint an input image or video in a particular style. Some employ physical sim-
ulation [Cur+97; Hae+07; LXJ12] or a hand-crafted shader [Bou+06; Bou+07; Bén+10;
Mon+18] to mimic given artistic medium; others compose the result from a library of pre-
defined pen [Sal+97; Pra+01; Sna+06], hatch [Bre+07], or brush strokes [Lit97; HE04;
Sch+11; ZZ11]. Although these techniques can deliver convincing results, they work only
on their respective domain; they are limited to a single style or a certain artistic tool.
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Sloan et al. [Slo+01] tried to address this lack of control over the appearance in their
technique called The Lit Sphere (a.k.a. MatCap). They allow the user to prepare a
hand-drawn exemplar that depicts a stylized counterpart of an illuminated sphere and
use it to stylize the illumination of an arbitrary target 3D model. To do that, they
employ environment mapping [BN76]—a particular variant of texture mapping where
vertex normals are used for texture lookup instead of UV coordinates. Nevertheless,
MatCap cannot be directly applied in our scenario since it assumes the stylization of
illumination. Debevec et al. [DTM96] proposed a similar technique that can re-project
photographs on 3D models. Although their method is directly applicable in our scenario,
it cannot handle more extensive viewpoint changes and it distorts the planar structures
in the original style exemplar due to texture re-projection (c.f. Fig. 8.2).

a) b) c)

Figure 8.2: A simple approach to our problem would be to employ the technique of Debevec
et al. [DTM96], i.e., to use the original style exemplar (a) as a texture and re-project it on the
new pose (b). While this method enables real-time rendering and can provide sufficiently good
results when the camera position does not change considerably, it is prone to disturbing artifacts
in our scenario. A key issue here is that texture mapping does not preserve the original style
exemplar’s planarity, i.e., it deforms strokes to respect the shape of the underlying geometry
and thus makes the visual system believe the painting was created on the surface and not in
the image plane. It is also apparent that the re-projection cannot correctly handle model parts
with a normal almost parallel to the original image plane. Since the re-projection is limited
to individual triangles, the resulting image may suffer from a misalignment of sharp geometric
details with fluffy structures painted in the original style exemplar. Our approach alleviates all
mentioned issues (c). Style exemplar (a) courtesy of © Štěpánka Sýkorová.

Hertzmann et al. [Her+01] proposed an image analogies framework to alleviate the
mentioned drawbacks. In their technique, they employ patch-based synthesis [WSI07;
Kas+15; Fi16] to preserve the planarity of structures in the original style exemplar while
still maintaining meaningful style transfer using additional guiding channels. Others
extended this concept to handle style transfer to fluid animations [Jam+15], 3D ren-
ders [Fi16], or facial animations [Fi17]. However, obtaining high-resolution stylized im-
ages using patch-based synthesis is a computationally expensive task even on the GPU;
thus, these methods are hardly accessible when a low computational budget is available,
e.g., on a mobile device. Recently, Sýkora et al. [Sýk+19] introduced a real-time variant of
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guided patch-based synthesis that is, however, limited only to a specific type of guidance
containing sufficient spatial variation such as surface normal or texture coordinates.

Our setting bears a resemblance to a stylization scenario where the aim is to propagate
the appearance of a single stylized keyframe to the remaining animation frames or a video
sequence. This approach was pioneered by Bénard et al. [Bén+13], who extended the
patch-based method of Hertzmann et al. [Her+01] by a set of auxiliary guiding channels
provided by a 3D renderer and by a new optimization scheme that enables the generation
of temporally coherent sequences. Recently, Jamrǐska et al. [Jam+19] proposed a video
stylization framework where necessary guiding channels are extracted automatically from
the video. Moreover, Jamrǐska et al. offer a post-processing step to merge content stylized
from different keyframes. However, a fundamental limitation of these techniques is that
they are not interactive and can preserve coherency only in one dimension—in time.

A popular example-based approach to style transfer pioneered by Gatys et al. [GEB16]
uses the response of the VGG-19 network [SZ14] to measure the similarity of the styl-
ized image and the target content. Based on this measurement, they refine the output
stylized image using back-propagation. This approach, however, requires costly optimiza-
tion. Others used this technique to generate a larger dataset and train a feed-forward
network that can reproduce a particular artistic style notably faster [JAFF16; UVL16;
Uly+16b; Wan+17; UVL17; WRB17]. However, those approaches suffer from two signif-
icant drawbacks: (1) they often fail in reproducing fine textural details presented in the
original style exemplar, and (2) they do not guarantee that the transfer is semantically
meaningful, e.g., that the strokes used to stylize an eye in the original style exemplar are
used to stylize an eye region in the target image.

One can solve the problem of appearance transfer by employing generative adversarial
networks [Goo+14]. Those can be trained to perform so-called image-to-image [Iso+17;
Zhu+17a; Zhu+17b] as well as video-to-video [Tul+18; Wan+18b] translation. However,
this approach relies on a huge dataset of translation pairs, which is not available in our
scenario. Some techniques utilize an encoder-decoder scheme to enable the transfer of
an arbitrary style to a content image using a single network trained on unpaired exem-
plars [HB17; Li+17; Lu+17]. The encoder, usually a set of convolutional layers of the
VGG-19, extracts feature representation from both style and content image. The features
are then combined, and a pre-trained decoder turns them back into the image space. Re-
cently, Kotovenko et al. [Kot+19b; Kot+19a] proposed complex encoder-decoder systems
that can deliver impressive results nicely reproducing even lower-level details. Neverthe-
less, their transfer is still not semantically meaningful as they measure only statistical
correlations between the stylized image and the original style exemplar.

Various methods combine aspects of patch-based synthesis and neural-style transfer to
achieve semantically meaningful transfer while maintaining neural networks’ ability to
generalize. To better reproduce local features, Li et al. [LW16b] search for neural patches
in a style image while following the structure of a content image. Liao et al. [Lia+17]
extended this idea into a deep image analogy framework. Instead of image patches, they
compute dense correspondences in the feature space of responses given by the VGG-
19 network. Although this technique delivers impressive results, it is computationally
expensive and does not support coherence when considering animation. Futschik et
al. [Fut+19] approximate the patch-based method of Fǐser et al. [Fi17] by training a
feed-forward network on a large dataset produced by the mentioned method. Recently,
Texler et al. [Tex+20a] combined neural style transfer with patch-based synthesis to
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enable the generation of high-resolution stylized imagery. Although their approach can
deliver notably better stylization quality, it still relies on the network’s capability to
provide meaningful results respecting scene semantics.

When performing style transfer to animation or video, the temporal consistency has
to be taken into account. Although a certain amount of temporal flicker is natural
for traditional hand-colored animations [Fi14], it can be visually demanding when the
resulting sequence is observed for a longer period and can cause dizziness we would
like to avoid. Various methods, both patch-based [Bén+13; Fi17; Dvo+18; Jam+19;
Fri+19] and neural-based [Che+17; Gup+17; San+18; RDB18], allow for enforcing tem-
poral consistency explicitly by considering relations between individual animation/video
frames. Alternatively, one can employ a blind temporal coherency [Lai+18] to stabi-
lize the arbitrary input video sequence. Although all mentioned methods can help to
suppress or entirely remove temporal flicker, they consider temporal coherency only in
one dimension—in time. In our scenario, we need to solve the problem of temporal
consistency in two or more dimensions.
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Figure 8.3: An overview of our method: First, a model M is rendered in preselected inter-
action state i to produce a stencil Ri over which an artist paints the style exemplar Si. Also,
a set of source guiding channels GS is rendered at the state i. Then in the pre-processing
phase, available interaction space I is sampled to a set of states X = {x1, . . . , xN} ⊂ I and
for each such state, the full render, as well as other guiding channels in GT , are computed.
Those serve as an input to our patch-based synthesis algorithm that maintains coherence in
multiple dimensions, i.e.; it takes into account consistency between nearby interaction states
in X. This algorithm’s output is a set of nearest neighbor fields (NNF ) at each interaction
state x. Those provide a latent representation from which the corresponding stylized image T
can be reconstructed (not shown in this figure). Finally, in the real-time rendering phase, the
user browses to an arbitrary interaction state j ∈ I, and at that location, pre-computed NNF s
of nearby states xa, . . . , xd are combined to produce NNFj from which the final target image Tj
is reconstructed using voting operation. Alternatively, the NNF upsampling technique of Texler
et al. [Tex+20a] can be used to increase the resolution of the output image. See the text for
further details. Style exemplar Si courtesy of © Jan Pokorný.



90 CHAPTER 8. STYLEPROP: STYLIZATION OF 3D MODELS

Our approach also resembles image-based rendering that can produce impressive novel
views from a sparse set of input photographs [Sri+19; Mil+19]. A key difference in
our scenario is that we have only a single input image and we aim to preserve planar
structures of the original style exemplar, i.e., to retain scale and orientation of individual
brush strokes and specific canvas patterns or paper grain. Those features are usually
distorted by out-of-plane deformations, which are desirable when generating novel views
under perspective projection. These deformations are, however, unwanted in our style
transfer scenario.

8.3 Our Approach

a) b) c)

d) e) f) g) h)

Figure 8.4: For buildings we used the following set of guiding channels: full global illumina-
tion (a), direct (b), indirect (c), specular (d) components, shadow guide (e), and edge guide (f).
For characters, to distinguish between different body parts, we used material ID (h) together
with full global illumination (g).

Our method’s input is a 3D model M with a texture T that highlights semantically
essential details. To prepare a style exemplar, we first produce a render of M : Ri

(see Fig. 8.3) at a specific location i ∈ I, where I is an interaction space through
which the user can explore the model M (e.g., a set of all possible camera rotations or
zooming in/out). We assume Ri contains all important structures that would appear
when exploring I. In our current implementation i is chosen manually by the user.
However, we envision an automatic estimation of the optimal location as future work.
Finally, we print Ri on a paper and provide it to the artist as a stencil to prepare a
stylized hand-drawn exemplar Si (also denoted as S). Optionally, the artist can paint
over the stencil digitally using a tablet.

The task for our method is to render Tj (see Fig. 8.3)—a stylized counterpart of the
target model M seen from a different location j ∈ I. We would like Tj to be still
perceived as a painting/drawing on a canvas/paper comparable to Si, i.e., we need to
preserve planar structures typical for the used artistic media such as brush strokes or
canvas pattern. In addition, we would like to retain the artist’s intention, i.e., stylize a
particular feature in Tj in a similar way as it was stylized in the original style exemplar Si.
Finally, our aim is to render Tj in real-time on a mobile device while maintaining temporal
consistency during the interactions in the available interaction space I.

We approach this task in two steps. First, we generate N samples of the interaction
space I, i.e., X = {x1, . . . , xN} ⊂ I. Then for each sample x ∈ X , we synthesize Tx
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using a patch-based synthesis algorithm that respects planar structures of the original
style exemplar Si. Moreover, we also ensure that when a user moves from a sample xk
to a nearby sample xl, the transition will be visually consistent. Finally, we store a
latent representation of Tx denoted as NNFx, and during the interactive exploration
when the user browses through I into a location j, we retrieve NNF s of all nearby
samples around j: Nj ⊂ X and use them to quickly reconstruct the stylized image Tj. A
key advantage of combining latent representations instead of blending images is that the
final stylized image will look comparable to the original patch-based synthesis algorithm’s
output.

The task described above has a substantial difference compared to previous patch-
based synthesis techniques [Bén+13; Fi17; Jam+19] where the coherence is maintained
only in one dimension—in time. In our scenario, we need to achieve consistency in all
possible dimensions of I. To do that, we extend the patch-based synthesis algorithm of
Fǐser et al. [Fi16] (StyLit) to support multidimensional coherence. We provide a brief
overview of the original StyLit algorithm, and then we propose its extension.

8.3.1 StyLit algorithm overview

In its original form, StyLit algorithm aims to minimize the following error over all patches
in the target synthesized image T :

E(S, T,GS, GT ) =
∑
q∈QT

min
p∈QS

(Et(S, T, p, q) + Eg(GS, GT , p, q)) . (8.1)

Here QS & QT are sets of patches in the source style exemplar S and the target synthe-
sized image T , Et is the texture coherence error:

Et(S, T, p, q) = ‖S(p)− T (q)‖2 (8.2)

and Eg is the guidance error:

Eg(GS, GT , p, q) = ‖GS(p)−GT (q)‖2 (8.3)

where GS & GT are source and target multichannel guides, which are computed using
a 3D renderer. Besides a full global illumination channel, its direct/indirect/specular
components, and shadow channel (used in the original StyLit algorithm), we added an
edge channel (c.f. Fig. 8.4a–f):

G{S,T} = {full, direct, indirect, specular, shadow, edge}. (8.4)

For 3D characters we use the full global illumination channel and the material ID channel
(c.f. Fig. 8.4g–h):

G′{S,T} = {full, id}. (8.5)

To compute E , the nearest neighbor field (NNF ) is constructed between the sets of
source and target patches QS & QT . NNF is a look-up table in which each target
patch q ∈ QT has stored coordinates of its corresponding source patch p ∈ QS. The p
corresponds to q if it has the lowest sum of style and guide errors Et & Eg among all
patches in QS. Also, during the retrieval of p, an allowable error budget is taken into
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account to prevent some source patches from being assigned too often as the closest ones
(please refer to Fǐser et al. [Fi16] for detailed description).

To obtain the final stylized image T , the StyLit algorithm uses an iterative EM-like
algorithm initially proposed by Wexler et al. [WSI07]. It alternates two steps: First,
in search step,NNF is constructed between the source patchesQS and target patchesQT .
Then in voting step, an updated version of T is reconstructed using NNF by computing
a weighted average of all co-located pixels from corresponding source patches.

To maintain temporal coherence in Fǐser et al. [Fi17] and later in Jamrǐska et
al. [Jam+19], the error (8.1) was extended by an additional temporal coherence term:

Ec(S, T
′, p, q) = ‖S(p)− T ′(q)‖2 (8.6)

where T ′ is a previously synthesized frame that was shifted to match with the position
of the current frame T . Therefore, the extended error E which is minimized looks as
follows:

E(S, T, T ′, GS, GT ) =∑
q∈QT

min
p∈QS

(
Et(S, T,p, q) + Eg(GS, GT , p, q) + Ec(S, T

′, p, q)
)
. (8.7)
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Figure 8.5: An illustration of a discrete subset X of an interaction space I where the pre-
calculation of stylized images Tx of the target model M is performed (a). In order to reconstruct
a target image Tj in arbitrary location j within the interaction space I, a latent representa-
tion NNFx of nearby images Tx at locations {xa, . . . , xd} are shifted towards j using motion
vectors {Vj,xa , . . . , Vj,xd} and combined to produce NNFj from which the target image Tj is
subsequently reconstructed (b). See the text for detailed description.

8.3.2 Multidimensional coherence

The error E requires the motion-compensated version of the previous frame T ′ to perform
the evaluation. However, in our scenario, we do not have a sequence of frames, but a
multidimensional space of all possible interaction states I (see Fig. 8.5a). To address
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a) b) e)d)

a’) b’) c’) d’) e’)f’)

Figure 8.6: Demonstration of coherence enforcement: (a, b) two consecutive states stylized
without handling the coherence, (d, e) the same states with coherence enforced. The area in a
red rectangle is enlarged below; notice the difference in (a’, b’), while (d’, e’) appear identical;
(c’, f) visualize an inverted subtraction of (a’) from (b’) and (d’) from (e’), respectively. Note
that (f ’) is almost white (almost zero difference). Although these differences might not seem
prominent on still images, they can be distracting in motion (c.f. our supplementary video).

such a multidimensional coherence problem, we sample I to X = {x1, . . . , xN} ⊂ I and
start the computation of all Tx in parallel. During each search-vote iteration, we get an
intermediate stylized result of Tx and warp it to all neighboring interaction states Nx ⊂
X . To do that, we leverage the existence of the underlying 3D model to generate accurate
motion fields Vx,n that capture movement of individual pixels between nearby interaction
states. Such a shifted result T ′n is then used as a new coherence guide, i.e., our goal is to
minimize a joint error computed over all sampled interaction states X :∑

x∈X

∑
n∈Nx

E(S, Tx, T
′
n, GS, GT ). (8.8)

The importance of this coherence enforcement is demonstrated in Fig. 8.6a–b where
two consecutive stylized frames are synthesized without coherence enforcement while
in Fig. 8.6d–e coherence is enforced. In the zoom-in patches, significant changes be-
tween Fig. 8.6a’ and Fig. 8.6b’ are visible, but Fig. 8.6d’ and Fig. 8.6e’ appear almost
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a) b)

Figure 8.7: Improving spatial coherency of a combined NNF ∗j : (a) an image T ∗ produced
from NNF ∗j that was combined from nearby pre-computed states of interaction space N ∗j , note
blurriness caused by spatial incoherency of NNF ∗j , (b) a sharper image T produced from a
refined NNFj that has better spatial coherency (see the text for a detailed description).

identical. Even though the changes might not seem very prominent on still images, they
could be distracting while in movement (c.f. our supplementary video).

8.3.3 Real-time rendering

The algorithm described in the previous section outputs a coherently stylized model for
each sample x of sparsely sampled interaction space X . However, for our target interac-
tive application we need to reconstruct a stylized image Tj at an arbitrary location j ∈ I.
Moreover, we need to retain the visual quality of the original synthesis algorithm, i.e., Tj
needs to be a mosaic of larger bitmap chunks taken from the original style exemplar Si.
Therefore, instead of doing some kind of blending operation on the stylized images Tx,
we leverage the existence of NNFx that were used to generate Tx.

We again use the underlying 3D geometry to generate motion vectors Vj,x that
we use to shift nearby pre-computed NNFx to a position of the current interaction
state j ∈ I (see Fig. 8.5b). To generate the combined NNF ∗j at every target pixel t,
we set NNF ∗j (t) = NNFx̂(t− Vj,k(t)) where x̂ is the most suitable sample from the set
of nearby states Nj. To select x̂, we first exclude states that have different object IDs,
i.e., that lie outside the object located at the pixel t. Those will form a set of feasible
samples N ∗j . Then we generate a small random displacement vector r that is unique for
each target pixel t and does not change during the interaction. Finally, we pick x̂ such
that:

x̂ = arg min
x∈N ∗

j

‖x− j + r‖ (8.9)

Such a perturbated closest sample selection does not introduce additional flicker and
helps to avoid larger abrupt swaps when the sample x changes.

Since the combined NNF ∗j mixes pixel coordinates from different NNF s of nearby
interaction samples it may suffer from lower spatial coherency, i.e., contain smaller co-
herent chunks when compared to the original NNF s. This may lead to blurring artifacts
when NNF ∗j is applied directly in the subsequent voting step (see Fig. 8.7). To improve
spatial coherency of the resulting NNFj, we first apply voting step to obtain an inter-
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mediate blurred version of Tj denoted as T ∗j . Then for each patch q ∈ QT ∗ at a pixel t
we compute the error Ec(S, T

∗, p, q) for every p ∈ QS of with coordinates given by the
shifted NNFx(t − Vj,x(t)). The coordinates of a patch p with the lowest error Ec are
then stored to the refined NNFj that is used for final voting step to produce Tj. The
improvement caused by this refinement can be seen in Fig. 8.7.

8.4 Results

a)

b)

c)

d)

Figure 8.8: A complex architectonic model of a chapel stylized using markers (a, c) and
watercolor (b, d) style exemplars (left) from various viewpoints using our method. The camera is
rotating and zooming in/out (right). Note how important planar structures (such as individual
pen/brush strokes or a paper grain) typical for the corresponding artistic media are preserved
in each result. For the stylization in motion, please, refer to our supplementary video. Style
exemplar (a, c) courtesy of © Jan Pokorný and (b, d) © Štěpánka Sýkorová.

We implemented our patch-based synthesis algorithm in C++ and CUDA. To generate
guiding channels, we use GPU implementation of [Kaj86]. The overall computation
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a) b) c)

Figure 8.9: A model of family house painted using color pencils (a). Results of our method (b,
c) faithfully represent the original style exemplar and respect the content of an underlying 3D
model. The stylized model can be viewed on computer or mobile phone in real-time (see our
supplementary video). Style exemplars (a) courtesy of © Barbora Kociánová.

a) b) c) d) e) f) g) h) i) j)

Figure 8.10: A model of a girl stylized using two different watercolor styles (a, j). The results
(b–e) were produced using style (a) and results (f–i) using style (j). Even in extreme poses,
stylized images (b) and (i) retain the content of an underlying 3D model well. The stylized
model can be viewed on desktop computer as well as on a mobile phone in real-time, see our
supplementary video. Style exemplars (a, j) courtesy of © Štěpánka Sýkorová.
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(guiding channels and synthesis) takes around 10 seconds for one interaction sample
with resolution of 1280x720 on Nvidia RTX 2080 GPU. For I where camera is rotating
around the model (see Fig. 8.5) in a range of 180 degrees for horizontal direction and
50 degrees for vertical direction with sampling rate 10 degrees we get 90 samples of X
that can be generated in less than 15 minutes. The second part of our approach—NNF
merging and rendering is implemented in Unity framework using HLSL shaders that can
fully utilize GPU. Thanks to this integration, the renderer can easily be deployed on
desktop machines as well as on a wide range of mobile devices (c.f. Fig. 8.1i–j).

Resulting NNF s are stored as 2D arrays where each entry contains two coordinates
(short integers). After the LZMA compression (in Unity), such a lossless latent represen-
tation is smaller than the final stylized image stored in PNG format or roughly the same
size as a medium–high quality JPEG image of the same resolution. The compressed
bundle of 90 samples takes around 19MB of space.

Both the computation time for guiding channels and patch-based synthesis and the
memory footprint can further be reduced by using NNF upscaling method of Texler et
al. [Tex+20a]. When NNF is upscaled two times, the resulting quality is still acceptable
while the computational overhead is reduced to roughly 4 minutes and the size of 90NNF
samples is only 5MB. Thus, the entire interaction space for a new style exemplar can be
sampled, stylized, transferred, and viewed on a mobile device relatively quickly.

To evaluate our method, we choose two characters and two architectonic models for
which we let artists to prepare different style exemplars using watercolor, markers, color
pencils, and chalk. We sampled two different interaction spaces: (1) camera moving
around the object and (2) camera moving in a horizontal direction and zooming in/out.
In Fig. 8.8 we show results on a architectonic model of chapel stylized in four different
artistic styles. Another architectonic model is shown in Fig. 8.9. In Figures 8.1, 8.10,
and 8.11 we present results on two different character models. To demonstrate the
potential of our approach to be executed in real-time on a mobile device, in Fig. 8.1i–j
we show our method running on Samsung Galaxy Note 8 at 20 frames per second. For
full recordings of real-time interaction sessions please refer to our supplementary video.

An important parameter of our method is the sampling rate of the available interac-
tion space (e.g., angular difference between nearby camera viewpoints). In Fig. 8.12 we
compare results created using four different sampling rates, their memory requirements,
and the time of pre-calculation. The visual quality difference between the sampling rate
of 2 and 5 degrees is almost negligible. For sampling rate of 10 degrees some blurring
artifacts start to show up, however, those are not visible on small screens, e.g., mobile
phones, and thus 10 degrees can serve as a good compromise between visual quality,
storage space and computational overhead. The results with sampling rate of 20 degrees
and more already show considerable artifacts.

In Fig. 8.13 and in our supplementary video we compared our approach with the
current state-of-the-art in patch-based synthesis as well as with some neural-based tech-
niques.

The seminal example-based method of Bénard et al. [Bén+13] (Fig. 8.13b) as well as
the current improvement of Jamrǐska et al. [Jam+19] (Fig. 8.13c) were designed for image
sequences, therefore, they suffer from discontinuities when browsing in multidimensional
interaction space. We used those previous techniques to illustrate this limitation and
precalculate a few linear trajectories over the entire interaction space. During the viewing
session, we then let the user navigate freely in the interaction space, pick the closest pre-
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a) b) c) f)d) e)

Figure 8.11: A model of a boy stylized using watercolor (left) and chalk (right). Our re-
sults (b–e) faithfully mimic the original style exemplars (a, f), preserving the notion of a
painting/drawing created by hand on the paper (c.f. our supplementary video for the model
in motion). Style exemplars (a, f) courtesy of © Štěpánka Sýkorová.

computed path, and replay its frames as long as its direction remains similar to the
user’s intent. In the case when the user starts navigate differently, we pick another
trajectory that is closer to a new path. Due to the one-dimensional coherence, such a
hard jump leads to abrupt changes in the appearance, as is visible in our supplementary
video. Performance-wise the method of Bénard et al. took several minutes per frame to
compute and thus is not applicable in our interactive scenario. The method of Jamrǐska
et al. [Jam+19] running on the GPU is notably faster (few seconds per frame), however,
still not fast enough for interactive use.

The method of Debevec et al. [DTM96] (Fig. 8.13e) and recent approach of Sýkora et
al. [Sýk+19] (Fig. 8.13d) can run at interactive rates, however, since they use texture
mapping coordinates to perform the re-projection / style transfer, they fail to handle
parts of the model which are not properly stylized in the original exemplar Si. Although
the StyleBlit algorithm can use additional guides (such as object IDs) that are less
restrictive and allow for better generalization, one local guide still needs to remain in the
set of guiding channels to satisfy the StyleBlit requirements. To perform a meaningful
comparison using our guiding channels (Fig. 8.4g–h), which are not local, we had to add
a local guide, i.e., texture mapping coordinates. Due to this reason, the results shown
in Fig. 8.13d suffer from similar artifacts as the method of Debevec et al. [DTM96]. An
essential advantage of our approach is that it could potentially work with any guiding
channels as the original StyLit algorithm [Fi16].

Neural-based techniques are slow to compute (tens of seconds per frame) and in
general have difficulties to preserve important high-frequency details of the original
artistic media as is visible in the output of Li et al. [Li+17] (Fig. 8.13f) and Gu et
al. [Gu+18] (Fig. 8.13h). While deep image analogies [Lia+17] (Fig. 8.13g) performs
better with respect to high-frequency details, they cannot properly handle temporal co-
herence.
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8.5 Limitations and Future Work

Although our approach enables interactive exploration of a stylized 3D model on a mobile
device while faithfully reproducing unique visual characteristics of the used artistic media
and preserving temporal coherency, there are still some limitations that could motivate
future work.

As our technique uses guided patch-based synthesis [Fi16] it also shares its draw-
backs. The style exemplar needs to be aligned relatively well with the original render,
i.e., notable discrepancies (e.g., shape caricature) may lead to a structural mismatch.
Tiny details such as nostrils may occasionally disappear due to relatively small spatial
support. For those parts, adding a specific guide would be beneficial. Although the
original algorithm [Fi16] handles brush strokes crossing the object boundaries, in our
real-time NNF combination phase, the object ID masking mechanism may lead to vis-
ible discontinuities. Special handling would be necessary to preserve the appearance of
structured boundaries.

Despite the fact that our approach explicitly handles multidimensional coherence, it
may not always achieve fully coherent results. Since the result of patch-based synthesis
is a seamless mosaic of small, translated chunks of the original style exemplar, occasional
popping is inevitable. This effect was also apparent in previous patch-based methods
(see, e.g., [Jam+19]) where it can bring the notion of hand-colored sequence [Fi14] but
it may also introduce unwanted distraction. In future work, we plan to control it by
combining patch-based and neural techniques.

Our method can suffer from significant artifacts when executed on a larger interaction
space where, e.g., the camera viewpoint differs significantly from the one used for creation
of style exemplar S. The synthesis then fails to find appropriate exemplar patches for the
unseen content and it starts to use patches from inappropriate areas. Since the coherence
is enforced in all dimensions, the synthesis may propagate those errors across the entire
interaction space. Due to this reason artifacts from distant interaction states (w.r.t. S)
diffuse to nearby states which would otherwise be stylized properly if a smaller interaction
space is used. This limitation is illustrated in Fig. 8.14 (and in our supplementary video)
where two samples from the same viewpoint are displayed side-by-side: one is generated
from a larger interaction space that goes beyond the limits of our method and the other
uses a smaller space.

8.6 Conclusion

We introduced an interactive approach to the stylization of 3D models that faithfully re-
produces a given hand-drawn exemplar while preserving coherence during its exploration.
To allow this, (1) we designed a novel variant of a patch-based synthesis algorithm that
can produce a sparse set of samples from the available interaction space. Those are pro-
duced in a way that all nearby states are stylized coherently. Then, during the real-time
rendering phase (2), we demonstrate how to swiftly combine those pre-calculated samples
to produce the final stylized image at an arbitrary location. Thanks to this two-stage
approach, a real-time 3D model exploration is feasible even on a mobile device. We
verified our method on various 3D models and hand-drawn styles and compared them
with the current state-of-the-art.
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2 degrees

341 samples

65.04 MB

3491 sec

5 degrees

65 samples

13.85 MB

682 sec

10 degrees

21 samples

5.85 MB

226 sec

20 degrees

8 samples

3.46 MB

88 sec

a) b) c) d)

Figure 8.12: Comparison of four different sampling rates. From left to right, dense sampling
to sparse sampling; (a) sampled every 2 angular degrees, (b) 5 degrees, (c) 10 degrees, and
(d) 20 degrees. Sampling rate defines trade-off between quality and performance, i.e., with
dense sampling the quality is high, however, time required to run the patch-based synthesis and
size of the package might be intractable. Compare the visual quality of (a) and (d) and their
respective memory and computational time requirements. We found that sampling rate of 5 or
10 degrees is a good compromise.
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a) b) c) d) e) f) g) h)

Figure 8.13: Comparison of our approach (a) with other example-based stylization methods.
Method of Bénard et al. [Bén+13] (b) and Jamrǐska et al. [Jam+19] (c) show artifacts due to
their inability to maintain temporal coherence in multiple dimensions; Sýkora et al. [Sýk+19] (d)
and Debevec et al. [DTM96] (e) fail to stylize parts of the model which are not well covered by
texture in the original style exemplar; Li et al. [Li+17] (f) fail to reproduce appearance of the
style exemplar; Liao et al. [Lia+17] (g) preserve texture properties faithfully, however, do not
maintain global consistency; Gu et al. [Gu+18] (h) yield poor texture as well as content quality.
Please, refer to our supplementary video to see this comparison in motion.

a) b) c) d)

Figure 8.14: Comparing results computed using large and smaller interaction space: (a) result
generated from a small interaction space where all samples are stylized without visible artifacts,
(b) result of the same viewpoint as (a), but taken from a synthesis running on a larger inter-
action space. Note the artifacts on the hair region propagated from samples far from the style
exemplar (c, d) that are not stylized correctly due to significant content difference.
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Chapter 9

Conclusion and Future Work

This thesis has presented five novel methods contributing to the example-based style
transfer and advancing the current state-of-the-art. Presented techniques allow for sce-
narios that were hardly possible before, e.g., semantically meaningful style transfer to
videos when interactive response is demanded, or learning an image-to-image translation
network on the fly to stylize live video stream. Following in this chapter is a summary
of the contribution and novelties of our work. Lastly, we mention the concurrent devel-
opment, and propose topics for future investigation.

9.1 Summary

In Chapter 4 we presented our contribution into the problem of general style trans-
fer [Tex+20a] published in Computers & Graphics journal (previous version published as
a conference paper [Tex+19] at Expressive 2019). We combined neural and patch-based
style transfer methods. Neural techniques provide us adequate stylization at the global
level, and we use their output as a prior for subsequent patch-based synthesis. Thanks
to this combination, we were able to keep the high frequencies of the original artistic
media better, thereby dramatically increase the fidelity of the resulting stylized imagery.
Moreover, we introduced a way to stylize extremely large images, e.g., 340 Mpix, while
maintaining high visual quality. Furthermore, we presented a novel stylization algorithm
where we directly use responses of object recognition neural network to guide the patch-
based synthesis. We showed that this approach is capable of delivering comparable visual
quality to state-of-the-art neural style transfer.

In Chapter 5, we introduced our work [Jam+19], that was presented at SIGGRAPH
2019 conference and published in ACM Transactions on Graphics journal. In this work we
introduced a new example-based approach to video stylization, with a focus on preserving
the visual quality of the style, user controllability and applicability to arbitrary video. To
achieve this, we developed a new type of guidance for state-of-art patch-based synthesis,
that can be applied to any type of video content and does not require any additional
information besides the video itself and a user-specified mask of the region to be stylized.
Moreover, in the case multiple stylized keyframes are required, we presented a blending
technique to seamlessly transition between them while preserving texture coherence,
contrast, and high frequency details.
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In Chapter 6, we introduced our publication Interactive Video Stylization Using Few-
Shot Patch-Based Training [Tex+20b] presented in SIGGRAPH 2020 conference and
published in ACM Transactions on Graphics journal. In this publication, we introduced a
new training strategy for image-to-image translation networks, and we successfully used it
to the problem of keyframe-based video stylization. We were able to develop a framework
that requires only a single training image, the model is trained from scratch in the order
of minutes on a consumer-grade GPUs, and inference runs in real-time. Our framework
preserves temporal coherency without the need to process previous frames thus allows
for random access or parallel processing. Moreover, it also implicitly handles multiple
keyframes and it produces consistent results without any explicit blending operation.
This allowed us to come up with various interactive scenarios that were not possible
before, e.g., a real-time style transfer to a live video stream that uses a captured exemplar
painted simultaneously on the canvas.

In Chapter 7, we presented our contribution to stylize 3D renders, StyleBlit: Fast
Example-Based Stylization with Local Guidance [Sýk+19], which was presented at Eu-
rographics 2019 conference and published in Computer Graphics Forum journal. We
developed an example-based style transfer algorithm capable of delivering high-quality
stylization in real-time while demanding minimal hardware requirements. In StyleBlit,
we presented a way to bypass expensive optimization steps that are normally required to
achieve high-quality style transfer. To achieve this, we employed so-called local guidance
that encourages style transfer to be semantically meaningful. This allows us to deploy
our approach in scenarios where a low computational budget is available, e.g., mobile
phone or games.

In Chapter 8, we presented our latest work, StyleProp: Real-time Example-based Styl-
ization of 3D Models [Hau+20] that was accepted to Pacific Graphics 2020 conference
and published in Computer Graphics Forum journal. We introduced a novel approach to
the real-time non-photorealistic rendering of 3D models where the appearance is given by
a single hand-drawn exemplar. We utilized guided patch-based synthesis to secure high
visual quality, and we presented how to maintain temporal consistency in multiple dimen-
sions. We enable interactive experience by precalculating a sparse latent representation
of the entire interaction space that is then merged in real-time to create continuous move-
ment. This lightweight approach is capable of running on mobile devices while delivering
full stylization experience.

9.2 Concurrent and Future Work

As example based style transfer is popular topic among researchers, many new techniques
have been developed along with our research.

Kotovenko et al. [Kot+19a] addressed an important problem in style transfer. Artists
usually change their style throughout their career, meaning, some paintings of an artist
can be dramatically different from his or her other paintings. Thus it is not practical to
train the neural network using a large corpus composed of all artist’s paintings. With
this in mind, in our research [Jam+19; Tex+20b] we focused on using just one particular
painting to perform the style transfer, Kotovenko et al. [Kot+19a] on the other hand,
presented a way to capture particularities of style and variations within multiple paintings
of the same artist. The same authors contributed to the style transfer also by introducing
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content transformation module [Kot+19b], that is located between encoder and decoder.
The aim is to perform style transfer that reflects not only color or texture, but also
deformation or geometrical changes that are part of the style, e.g., some content is
added or removed as the style is intentionally omitting or amplifying certain content.
Both mentioned methods yield impressive computer-generated artworks, however, the
semantically meaningful results are not guaranteed.

Similarly to our efforts to combine traditional computer graphics techniques with
neural-based ones [Tex+20a], a method that uses graph cut in a neural-based frame-
work was presented [Zha+19]. They explicitly match the semantic patterns in content
and style images. They clustered the style image features into sub-style components,
which are then matched with local content features under a graph cut formulation. To
render the final result, a reconstruction network is trained to transfer each sub-style to
a stylized image. This method works on large variety of styles and is producing state-of-
the-art results.

Concurrently with our paper [Tex+20b], a learning based method to transfer the ap-
pearance of exemplar SVBRDF to a target image representing similar material was pre-
sented [DDB20]. Similarly to our approach, they use a small exemplar-specific dataset
to train the network, however, they do not train it from scratch, they start with model
pre-trained on generic training set.

Concurrently with our paper [Sýk+19], Friedrich et al. [FM19] used neural style trans-
fer on 3D voxel primitives. Based on the 2D pixel and 3D voxel analogy, they successfully
applied style transfer, that is designed to work on 2D RGB images, to voxels—data lack-
ing color, texture, and smooth gradients.

As future work, we envision immense potential in mixing computer vision based style
transfer techniques with traditional texture synthesis methods. For instance, bringing
other computer vision applications (e.g., segmentation or classification) into the style
transfer; this could help to remove necessity of user interaction during the stylization
process as well as allow for broader variety of applications. Furthermore, since some
style transfer methods are already capable of running at interactive framerate, we con-
sider promising to focus on efficiency, and bring style transfer techniques into the game
industry.

In conclusion, style transfer has gotten increased attention in last few years among
independent artists as well as animation studios. The methods we presented in this
thesis help artists to be more efficient, creative, and enjoy the full potential of modern
technologies. The research of advanced algorithms and new hardware paces tremendously
fast nowadays; and we believe that style transfer algorithms will soon become an essential
part of a toolset that artists and animators use every day.
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and D. Sýkora. “Example-Based Synthesis of Stylized Facial Animations”.
In: ACM Transactions on Graphics 36.4 (2017), p. 155.

[FM19] T. Friedrich and S. Menzel. “Standardization of Gram Matrix for Improved
3D Neural Style Transfer”. In: 2019 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). 2019, pp. 1375–1382.

[Fri+16] O. Frigo, N. Sabater, J. Delon, and P. Hellier. “Split and Match: Example-
Based Adaptive Patch Sampling for Unsupervised Style Transfer”. In: Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 553–561.

[Fri+19] O. Frigo, N. Sabater, J. Delon, and P. Hellier. “Video Style Transfer by Con-
sistent Adaptive Patch Sampling”. In: The Visual Computer 35.3 (2019),
pp. 429–443.

[Fut+19] D. Futschik, M. Chai, C. Cao, C. Ma, A. Stoliar, S. Korolev, S. Tulyakov,
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“StyleBlit: Fast Example-Based Stylization with Local Guidance”. In: Computer Graph-
ics Forum 38.2 (2019), pp. 83–91 (IF = 2.116)

Cited in:

T. Friedrich and S. Menzel. “Standardization of Gram Matrix for Im-
proved 3D Neural Style Transfer”. In: 2019 IEEE Symposium Series on
Computational Intelligence (SSCI). 2019, pp. 1375–1382

F. Hauptfleisch, O. Texler, A. Texler, J. Křivánek, and D. Sýkora. “StyleProp: Real-
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124 APPENDIX B. AUTHORSHIP CONTRIBUTION STATEMENT

chunks in order to align them, thus remove seams. Finally, I presented this paper at the
Eurographics 2019 conference.

StyleProp: Real-time Example-based Stylization of 3D Models (20%)

In StyleProp, I was co-advising throughout the entire research process, I helped to for-
mulate the problem and propose its solution. I was actively participating on writing of
the manuscript, creating comparison with related work, and preparing the results.
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Appendix C

Stylizing Video by Example
Supplementary Material

In this supplementary material section we first present an example of a more complex
composition stylized using multiple layers (see Fig. C.1). We compare our technique with
the recent neural-based style transfer approach of Sanakoyeu et al. [San+18] (Fig. C.2)
and demonstrate artifacts that would appear when the stylized keyframe is only advected
using optical flow (Fig. C.4). We also present an example of advecting pixel selection
mask (Fig. C.3) and a detailed view on three different challenging scenarios that cause
difficulties to our method (Figures C.5, C.6, and C.7). Finally, we demonstrate a sequence
stylized using our method with three different artistic styles (Fig. C.8).
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(e) (g) (i)(c) leg segment

(a) head segment

(b) hand segment

(d) (f) (h)

Figure C.1: Complex composition: the style exemplar is segmented into individual compo-
nents, (a) head segment, (b) hand segment and (c) leg segment. The same segmentation is
performed on the target sequence (d), (f), and (h). The stylized components are composed to-
gether with the background (e), (g), and (i). Target video frames (d, f, h), style exemplars (a, b,
c), and the final composition (e, g, i) courtesy of © Markéta Kolářová, used with permission.

(a) (b) (c) (d) (e)

Figure C.2: Comparison with the recent neural-based method Sanakoyeu et al. [San+18] pre-
trained on various styles: (a) Picasso, (b) Van-Gogh, (c) Monet, and (d) Kandinsky. Although
this method can reproduce local characteristics of the trained paintings it is unable to preserve
stylization in a semantically meaningful way, i.e., stylize differently the face region and the
coat, the way a real painter would. In contrast our approach (e) preserves better the style
characteristics and its semantic context.
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(a) (b) (c) (d) (e)

Figure C.3: A pixel selection mask Zi−1 (a) is advected using inter-frame optical flow Di to
produce Ẑi (b). Then a lower synthesis error constraint is applied, such that pixels that were
already assigned to retrieve content from keyframe Sb (in white) remain unchanged and only
pixels assigned to keyframe Sa (in black) are updated (in gray) (c) to obtain the final pixel mask
Zi (d). Zi is then used to produce the fused frame Oi (e).

(a) (b) (c)

Figure C.4: Flow advection: (a) style exemplar, (b) advection of the style exemplar using
optical flow directly introduces significant deformations and distortions, (c) our result - we use
advection to generate the Gpos, which is then used only to guide the synthesis together with the
other guidance channels. Style exemplar (a) courtesy of © MAUR film, Václav Švankmajer,
used with permission.



128APPENDIX C. STYLIZING VIDEO BY EXAMPLE SUPPLEMENTARYMATERIAL

(a) (b) (c) (d)

Figure C.5: Challenge I - illumination variation: appearance variations in the target video
sequence (a, b) might introduce large error in Gcol. This in fact may result in copying style
texture from the wrong places in the exemplar (c) onto the new frame (d). Note the upper part
of the wooden box on subject’s back, where fur texture is copied onto the wrong place. To certain
extent, this problem can be suppressed using additional guiding channel, Gedge. In this figure
Gedge was disabled for illustration purposes. Target video frames (a, b) and style exemplar (c)
courtesy of © MAUR film, Václav Švankmajer, used with permission.

(a) (b)

(c) (d) (e) (f)

Figure C.6: Challenge II - complex texture: when the stylized object has salient patterns or
texture (a) even small change in orientation (b) might introduce very high error in Gcol due to
matching of patches with highly inconsistent content. This may result in suboptimal synthesis
results such as the apparent blurring artifacts, compare (c) and (d). Target video frames (a, b)
and style exemplar (c) courtesy of © Markéta Kolářová, used with permission.
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(a) (b) (c)

(d) (e) (f)

Figure C.7: Challenge III - structural changes: frames (a) and (c) were stylized using different
keyframes (d) and (f), due to this reason their features are not aligned perfectly (see eyebrows)
and they also have slightly different color distribution. When linear blending is used (b) the
resulting fused image suffer from apparent ghosting and contrast loss. When our gradient do-
main fusion with contrast-preserving blend is applied (e), the contrast is similar to the original
keyframes and the ghosting on eyebrows is less apparent, however, still a bit visible. Style
exemplars (d, f) courtesy of © MAUR film, Václav Švankmajer, used with permission.
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: :: :: :

: :: :: :

: :: :: :

keyframe style ex. frame 271 frame 404frame 355result result result

(a)

(b)

(c)

Figure C.8: A target sequence stylized using three different styles. Target video frames and
style exemplar (a) courtesy of © MAUR film, Václav Švankmajer, style exemplar (b) courtesy
of © Pavla Sýkorová, style exemplar (c) courtesy of © Jakub Javora, used with permission.
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Appendix D

Patch-Based Training
Supplementary Material

In this supplementary material section we describe the interactive applications of our
framework in more detail, presenting the overall architecture of the solution as well as
mentioning the specific hardware we used. Furthermore, we show example photos of
our framework during real-time stylization sessions with artists (see our supplementary
video for live recordings from those sessions) and discuss feedback we received during
our informal user study. Lastly, we show additional results produced by our framework,
and additional experiments with hyper-parameter setting.

D.1 Interactive applications

To demonstrate interactive applications, we provide artists with a setup of our framework
in a few variations. Each scenario involves working with a workstation PC, equipped with
a consumer-grade GPU (we use Nvidia RTX 2080), on which the artists perform a task.
This machine runs our framework executable, which displays visual feedback for the
artist. Training of the model is done off-site on a server with an Nvidia Tesla V100
GPU. The client machine sends necessary training data to this server and the training
server in turn periodically sends back models trained with the new data. The training

Drawing
of the style

PC

Client

HDD

Video sequence

Stylized

Input style
ServerTraining

data

Models
Inference Training

video sequence

Figure D.1: Scenario No. 1: an artist is drawing over a stencil of a keyframe using traditional
media. The stencil contains markers that allow us to perfectly align the frames to prevent shift
in images.
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Figure D.2: Scenario No. 2: an artist is stylizing an object as seen by the camera in real-time
using image editing software.
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Figure D.3: Scenario No. 3: an artist is stylizing an object as seen by the camera in real-time
using a physical stencil.

data is replaced every time the server receives a new version of a frame. Our training
process quickly adapts the model to the new data.

Trained models are used on the artist’s PC to generate stylized video frames. Our
approach allows us to display an acceptable result in as little as 5 seconds, which improves
with time as better models arrive. In practice, the potentially lengthy process of art
creation amortizes training time, largely masking the downside of this delay.

Note that inference could also be performed on the server but we do it locally to reduce
delay during live-feed stylization.

We devise the following real-time style transfer tasks:

Pre-recorded video + live style capture (traditional)

The artist is provided with (or creates) a pre-recorded video sequence and selects one or
more keyframes which they will paint over. These keyframes are printed in low contrast
on a stencil with markers. These markers allow us to perfectly match and align the
contents of the stencil with the input sequence frames, so as to avoid misalignment
of the training data and achieve the best performance possible. In case of multiple
keyframes, we differentiate stencils using additional markers so that the artist is free to
swap between them during the session.

As the artist starts painting the first keyframe, the server recognizes which keyframes
are ready and only uses previously seen keyframes to train on. Unfinished or unseen
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parts will likely produce poor visual results which will indicate spots which need to be
fixed in current or other keyframes. The artist may also wish to create masks for each
keyframe, to prevent introducing ambiguity of different appearances for identical content
or to save repetitive work, especially if the keyframes are relatively similar. Diagram for
this setup and an example photograph are shown in Fig. D.1.

Live video capture + live style capture (digital)

This scheme is different from the previous in that there is no pre-recorded video sequence,
instead, we arrange a camera, capturing a scene in real-time. Our framework allows the
artist to export a still image of the scene into image editing software of their choice. This
image can then be edited or painted over to achieve an artistic look. Its modified version
is periodically sent to the training server, where it serves as the current style exemplar
used for training.

During the session, the artist is free to change the scene, while observing the stylization
in real-time. If the scene contains some object, a common modification of the scene would
be rotating or moving the object. Once the artist is satisfied with the result, they can
export additional still images to fix any issues in the scene. This could be, for example,
one image for the front of an object and another image for the back of the object.
Diagram for this scenario and an example photograph of a session are shown in Fig. D.2.

Live video capture + live style capture (traditional)

We design our framework to also let us combine the two previous scenarios. When a still
image of a live scene is exported, it can be printed on a stencil. Artist draws on that
stencil and we set up a second camera to capture it. The framework automatically aligns
it to the still image and sends it to the training server again. Defining multiple keyframes
is then as simple as printing multiple different stencils with identifying markers.

Although working with a digital image is often faster, this setup is useful due to the
preference of some artists to work with traditional artistic media. Our framework is
well suited for capturing real strokes and stylizing the video frames in a way similar to
traditional animation. This scenario is visually explained in Fig. D.3.

(a) (b) (c) (d)

(e)

Figure D.4: The keyframe (a) was used to produce the sequence of 148 frames. While the body
part is faithfully represented in both [Jam+19] (b) and ours (c), our approach better preserves
the facial region; see the zoom-in views [Jam+19] (d) and ours (e). Video frames (insets of
a–c) courtesy of © MAUR film and style exemplar (a) courtesy of © Jakub Javora.
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D.2 User study

We asked the artists for their comments on using our framework. Although our user
study was informal, we believe it still presents an interesting insight into the contibution
of this work.

One of the very first impressions was the moment of surprise and awe whenever a new
model arrived on the client machine and a better stylization started appearing on the
screen. Thanks to this effect, the artists felt engaged throughout the whole session, some
even asked us for further sessions so they could explore the implications of our framework
more.

Generally, artists tended to describe the proposed system as a completely new tool
to approaching artistic animation, thanks to the real-time feedback and continuous im-
provement. The other aspect that makes using our framework easy and entertaining,
according to the comments, is using the photo stencils, as painting over a photograph
using brushes is much easier than creating art from scratch. This also makes it suitable
for children, who are largerly familiar with using stencils from coloring books.

Lastly, artists appreciated the fact that no explicit masking needs to be done during
the creation process (e.g., background masking). The model we use seems good at
representing identity transformation, thus leaving parts of the image unstylized means
that the original background just propagates to the output.

While the overwhelming majority of the comments we received were positive, the one
negative remark was that the result image quality is somewhat lower than well-optimized
sequence created by Jamrǐska et al. [Jam+19]. However, compared to the inability of
their method to deliver such a real-time experience, we feel our framework makes for a
reasonable trade-off.

D.3 Additional Results and Experiments

In this section, we first present an additional result of our approach compared to the
result of Jamrǐska et al. [Jam+19], see Fig. D.4.

Network Size0.5 1 3

Figure D.5: Impact of network size on the visual quality of results. The loss, y-axes, is
computed w.r.t. the output of Jamrǐska et al. [Jam+19]. The x-axes shows the network size
(i.e., number of filters) relative to the best setting we found via hyper-parameter search. Other
hyper-parameters are fixed. The middle image (1) depicts the best setting, the left image (0.5)
represents setting with half number of filters, and the right image (3) represents setting with
three times more filters compared to the middle image. The difference in the visual quality of
images, as well as the loss curve, clearly show that there exists a saddle point.
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Second, as already primarily covered in the main text, we discuss hyper-parameter
optimization on one more example. As it is a common practice to reduce the network
size to prevent overfitting, in Fig. D.5, we demonstrate that in the task of style transfer,
certain network capacity is necessary to achieve high-quality results.
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StyleBlit Supplementary Material

In this supplementary material section we present pseudocode of the brute-force Style-
Blit algorithm (Algorithm 2), additional results of our method, and a description of
perceptual study we conducted in order to evaluate visual quality of our results (see
Section E.1).

In Fig. 7.6 we copmare our approach with StyLit [Fi16] and The Lit Sphere [Slo+01]
in the scenario where normals are used for guidance. Additional results comparing our
approach with StyLit are presented also in Figures E.1, E.2, E.3, and E.4. More results
for normal-based guidance are presented in Figures E.5, E.6, and E.7 where our approach
has been applied to CAD model. Fig. E.8 further compares our method with texture
mapping for both scenarios presented in the main paper, i.e., when the style exemplar
is drawn on a 2D projection of a 3D model and on a planar unwrap of this model.
For this scenario an example of guiding channels is presented in Fig. E.10. Finally, a
reference result of neural-based style transfer is demonstrated in Fig. E.12 and in Fig. E.9
additional comparison with FaceStyle [Fi17] is presented together with an example of
corresponding guiding channels in Fig. E.11.

E.1 Perceptual Study

To verify the fact that our method produces results comparable to the output of StyLit
algorithm [Fi16] we conducted a perceptual study where we asked 13 participants 6 men

Figure E.1: Comparison with StyLit [Fi16] (normal-based guidance): our approach (first row),
StyLit (second row).
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Figure E.2: Comparison with StyLit [Fi16] (normal-based guidance): our approach (first row),
StyLit (second row).

Figure E.3: Comparison with StyLit [Fi16] (normal-based guidance): our approach (first row),
StyLit (second row).

Figure E.4: Comparison with StyLit [Fi16] (normal-based guidance): our approach (first row),
StyLit (second row).
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* **

Figure E.5: Additional results with normal-based guidance demonstrating diversity of style ex-
emplars that can be used in our method: style exemplars (top row), result of our method (bottom
row). Style exemplars: © Pavla Sýkorová, Daichi Ito∗, and Zuzana Studená∗∗

* **

Figure E.6: Additional results for an application where normal values are used as a local
guide: source style exemplars (spheres), stylized targets (golems). Style exemplars: © Karel
Seidl, Daichi Ito∗, and Pavla Sýkorová∗∗
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*

** **

Figure E.7: Our approach applied on a CAD model (normal-based guidance): source style
exemplars (spheres), stylized targets (trains). Style exemplars: © Pavla Sýkorová, Zuzana
Studená∗, and Free PBR∗∗

(a) (b) (c) (d) (e) (f)

Figure E.8: Comparison with texture mapping: style exemplar drawn on a 2D projection of
a 3D model (a) and on a planar unwrap of this model (d), new viewpoint generated using our
approach (b, e) and using texture mapping (c, f). Style exemplars: © Pavla Sýkorová
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(a) (b) (c) (d)

Figure E.9: Comparison with FaceStyle [Fi17]: style exemplar (a), result of our method
with strong (b) and weak (c) apperance guide, result of FaceStyle (d). Style exemplars (top to
bottom): © Léonard Simard, Adrian Morgan, and Thomas Shahan

(a) (b) (c) (d) (e) (f) (g) (h)

Figure E.10: Examples of guiding channels for an application where texture coordinates are
used as a local guide. Scenario where a 2D projection of a 3D model is used as an exemplar:
texture coordiantes guide for source (a) and target (c), segmentation guide for source (b) and
target (d). Scenario where a planar unwrap of a 3D model is used as an exemplar: texture
coordiantes guide for source (e) and target (g), segmentation guide for source (f) and target (h).
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(a) (b) (c) (d) (e) (f)

Figure E.11: Example of guiding channels for an application where displacement field is
used as a local guide (FaceStyle [Fi17]): displacement field guide for source (a) and target (d),
segmentation guide for source (b) and target (e), apperance guide for source (c) and target (f).

Algorithm 2: StyleBlit

Inputs : source style exemplar CS, source guides GS, target guides GT , threshold t.
Output: target stylized image CT .

StyleBlit():
for each pixel p ∈ CT do

if CT [p] is empty then

u? = argminu ||GT [p]−GS[u]||
for each pixel q ∈ CS do

if CT [p + (q − u?)] is empty then

e = ||GT [p + (q − u?)]−GS[q]||
if e < t then

CT [p + (q − u?)] = CS[q]

*

Figure E.12: Reference result of neural-based style transfer [Li+17]: source style exem-
plars (spheres), stylized targets (golems). Style exemplars: © Free PBR and Pavla Sýkorová∗
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and 7 women between in ages between 21 and 47. From this group 6 people had previous
hands-on experience with art and computer graphics while the other 7 were uninformed
observers. We showed the participants result produced by our approach side-by-side
with the result of StyLit algorithm for different style exemplars presented in Fig. 7.6 and
asked them which of the two presented renders better reproduces the original artistic
style. During the experiment participants were asked to consider only the quality of
artistic style, preservation of geometric details were stated as unimportant. The null
hypothesis was that ”there is no significant statistical difference between our approach
and StyLit with respect to perceived style transfer quality”. The value of χ2-test was
equal to 0.694 which clearly confirmed this null hypothesis.
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