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Model Fitting Using RANSAC for Surgical Tool
Localization in 3-D Ultrasound Images

Marián Uherčı́k∗, Jan Kybic, Senior Member, IEEE, Hervé Liebgott, and Christian Cachard

Abstract—Ultrasound guidance is used for many surgical in-
terventions such as biopsy and electrode insertion. We present a
method to localize a thin surgical tool such as a biopsy needle or a
microelectrode in a 3-D ultrasound image. The proposed method
starts with thresholding and model fitting using random sample
consensus for robust localization of the axis. Subsequent local
optimization refines its position. Two different tool image models
are presented: one is simple and fast and the second uses learned
a priori information about the tool’s voxel intensities and the back-
ground. Finally, the tip of the tool is localized by finding an in-
tensity drop along the axis. The simulation study shows that our
algorithm can localize the tool at nearly real-time speed, even using
a MATLAB implementation, with accuracy better than 1 mm. In
an experimental comparison with several alternative localization
methods, our method appears to be the fastest and the most robust
one. We also show the results on real 3-D ultrasound data from a
PVA cryogel phantom, turkey breast, and breast biopsy.

Index Terms—Electrode, localization, needle, 3-D ultrasound,
randomized algorithm, random sample consensus (RANSAC),
ultrasound guidance.

I. INTRODUCTION

IN SURGICAL practice, small instruments such as nee-
dles and electrodes are inserted into biological tissue. For

example, in biopsy, tissue samples are taken from a particular
region by means of a thin needle [1]. In prostate brachyther-
apy, small radioactive rods are inserted inside the tissue via a
hollow shaft [2]. In breast cancer therapy, radioactive substance
is injected near the tumor [3]. For neurological research, the
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Recherche Scientifique (CNRS) Unité Mixte de Recherche 5220, Institut Na-
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Lyon, Institut National des Sciences Appliquées (INSA)-Lyon, Université Lyon
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electrical activity of a specific group of neurons is recorded
by a thin electrode [4]. In all these examples, it is important
to localize the instruments for the determination of their pre-
cise position. The desired accuracy depends on the application:
for needle biopsy, it is of the order of millimeters [5], and for
electrode insertion, it is a submillimeter accuracy.

A stereotactic frame for instrument guidance was introduced
in 1908 [6]. Medical imaging techniques (e.g., magnetic reso-
nance imaging (MRI), computed tomography (CT), and ultra-
sound imaging) are now also used for guidance [7] in clinical
practice; localization is mostly done visually by a human expert.
We focus herein on ultrasound imaging, which is a widely avail-
able standard technique with real-time acquisition speed [8].
There are no known adverse health effects and the cost is rela-
tively modest.

The task addressed in this study is to automatically determine
a 3-D position of an elongated tool (needle or electrode) in
biological tissue in an ultrasound image using a fast and robust
algorithm. One application is to show or emphasize the 3-D
location of a tool within ultrasound images and to automatically
choose the most appropriate viewpoint or the imaging plane for
2-D visualization so that the clinician can check the location of
the tool in the tissue. The localization information could also be
used as initialization in an automatic guidance system during a
surgical intervention.

Most tool localization methods in 3-D are based on
parallel projections. A method of Ding et al. [9] detects the
needle in 2-D parallel projection (for a given direction) using
a volume rendering technique. A similar method of Aboofazeli
et al. [10] can also detect curved needles. Both the methods find
the 3-D location of the needle by projecting the needle back to
the 3-D volume. Many approaches based on the Hough trans-
form (HT) have been proposed for straight line detection. Zhou
et al. used a randomized HT (RHT) [11] for straight-needle
segmentation in thresholded 3-D ultrasound images. The RHT
discretizes the parameter space and randomly samples pairs of
3-D voxels after thresholding, incrementing the appropriate ac-
cumulator bin. This is unlike the standard HT, which samples
one point per iteration, incrementing a number of accumulator
bins. Quick RHT (QRHT) [12] reduces the computational ef-
fort by doing the RHT only on coarse resolution volumes and
subsequently refining the solution in the proximity. Okazawa
et al. [13] generalized the HT for detection of curved nee-
dles in 2-D ultrasound images. Another method based on the
generalized HT represents the tool as a Bézier curve [14], allow-
ing the curved shape to be modeled. On a graphical processing
unit (GPU), a real-time speed can be achieved. The idea of mod-
eling the tool using Bézier curves can be also applied to a RHT.
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Fig. 1. Example of a 3-D ultrasound image of a PVA cryogel phantom in
water. Inside the phantom there is a tungsten electrode. Two planar sections
(one of them passing through the electrode axis) are shown in grayscale. The
diagonal dashed line is the localization result. A thin wireframe shows the
scanned volume boundaries.

Barva et al. [15] proposed to use the parallel integral projec-
tion (PIP) to localize straight cylindrical objects in 3-D images.
This approach is based on the observation that a projection of
a tool is minimized when the projection is performed along
the tool’s axis. The PIP is related to a generalized 3-D Radon
transform (RT) [16]. It decomposes the search into a mesh-grid
search over the two rotation angles and an exhaustive search in
the projection plane. Additional PIP speedup can be achieved
through a multiresolution approach and an early stopping [17].
Novotny et al. [18] proposed a method similar to the PIP derived
from the generalized RT, achieving real-time speed by dividing
the 3-D volume into smaller spherical regions and using a fast
parallel implementation on a GPU. The general disadvantage
of projection-based methods is their computational complexity
and the lack of robustness when applied to the localization of
very thin objects (1 mm or less in diameter) in a highly clut-
tered background (see experimental comparison in Section III).
Hence, there is a need to find a new, more robust, and computa-
tionally efficient approach.

II. METHOD

The study presented herein is based on a model-fitting ap-
proach described by Barva [19]. Given a 3-D ultrasound image
(see Fig. 1), our method is able to find the position and orien-
tation of thin elongated objects such as electrodes or needles.
With respect to the aforementioned projection-based methods
(HT, RHT, or PIP), the presented method is designed to be faster,
more robust to the presence of other high-intensity structures,
and to allow more generally shaped models.

The algorithm is based on the following two assumptions.
1) Assumption 1: The intensity of the tool’s voxels is higher

than the surrounding tissue.
2) Assumption 2: The shape of the tool is a thin, long, and

possibly curved cylinder.
The tool might be deformed during insertion and steering

due to lateral forces [20]. Bending is typical for thin electrodes

Fig. 2. 3-D ultrasound image from Fig. 1 after thresholding. Intensity values
shown are normalized by the means of all voxels. A blue wireframe shows the
volume boundaries.

(diameter around 0.3 mm). Biopsy needles are thicker (diameter
around 1 mm), and therefore, remain straight.

Our goal is to localize the axis and the tip of the tool with
submillimeter accuracy, which is sufficient for all intended
applications. The task is challenging for several reasons: the
diameter of the tool can be as small as the physical resolution of
the ultrasound. The images contain a large amount of speckle
noise, and some parts of the tissue can have a level of intensity
similar to the tool. The proposed algorithm consists of four steps

1) Thresholding—the set of voxels to consider is reduced by
thresholding using Assumption 1 (see Section II-A).

2) Axis localization—an approximate position of the tool’s
axis is estimated by a robust randomized search procedure
random sample consensus (RANSAC) (see Section II-D).

3) Local optimization—a more accurate solution is found
using local optimization (see Section II-E).

4) Tip localization—the endpoint of the tool is identified
along the tool’s axis (see Section II-F).

Steps 2 and 3 are based on a model describing the tool’s
shape and intensity in the image (see Section II-B and II-C).

A. Thresholding

A set of voxels with coordinates X ⊆ R
3 and intensities

I(X ) ⊆ R is split by thresholding into two disjoint sets: Xt

(tool’s voxels) and Xb (background voxels)

Xt = {x ∈ X : I(x) ≥ TI }
Xb = X \Xt . (1)

As an example, a thresholded 3-D imageXt from Fig. 1 is shown
in Fig. 2. All subsequent processing uses only the subset Xt in
order to reduce the processing time.

The threshold TI can be found by minimizing voxel
classification error, assuming that labeled training data are
available. Otherwise, the threshold is chosen empirically. Barva
estimates the threshold as the 95% quantile of the input data
by fitting a Gamma distribution [19], which seems to work in
practice. This is based on the expectation that the proportion
of voxels belonging to the tool is less than 5%. Note that the
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resulting Xt also contains some non-tool voxels (outliers),
which will have to be filtered out later (see Section II-D).

B. Axis Model

The tool’s axis is represented by a spatial parametric polyno-
mial curve a(t;H) : R → R

3 of order n − 1

a(t;H) =


 h11 , . . . , h1n

h21 , . . . , h2n

h31 , . . . , h3n




︸ ︷︷ ︸
H




1
t
...

tn−1


 , t ∈ R. (2)

We use n = 2 to model straight tools; polynomial curves of
low order n = 3 can model bent tools (C-like shapes) and
occasionally higher values of n might be also useful (S-like
shapes for n = 4). The curve is determined by n control points
pi ∈ R

3 , i = 1, . . . , n through which it is required to pass. A
principal direction k0 is determined by fitting a straight line
to points pi . We then choose the parameters ti according to a
projection onto this line

ti =
(pi − p1)k0

‖k0‖
. (3)

Finally, the matrix H is found by solving the following system
of 3n linear equations

a(ti ,H) = pi , ∀i : 1 ≤ i ≤ n (4)

after substituting a(ti ,H) from (2).

C. Tool’s Models

Two models (AxShp, IntDstr) are proposed for the tool’s
shape and intensity in 3-D ultrasound images to be used in steps
2 and 3 of the algorithm (see Section II). Each model consists
of a function q(x;H) ∈ {1, 0} classifying each voxel x with
intensity I(x) as either a tool (q = 1), or a background (q = 0);
and a cost function C(Xinl ;H) quantifying how well the model
parameters H fit a set of voxel observations Xinl consistent with
the model (inliers).

The tool’s shape, i.e., curve parameters H, are first estimated
roughly by maximizing the number of tool’s voxels (inliers
Xinl) as determined using the function q(x;H) by RANSAC
(see Section II-D). Afterwards, the solution is refined by local
optimization of the cost function C(X̂inl ;H) on the best set of
estimated inliers X̂inl (see Section II-E).

1) Axshp Model: This simple model evaluates only the dis-
tances of the points x ∈ Xt to the curve a (t;H). It does not use
any a priori information on the intensity values and no train-
ing is needed. The classification function q(x) uses a distance
d(x;H) of the point x to the curve a(t,H)

qAxShp(x; H) =
{

1, if d(x;H) ≤ τ

0, otherwise.
(5)

The threshold τ is set as the expected radius of the tool in
the image. The model’s cost C(H) is the sum of the squared

Fig. 3. Examples of empirically learned distributions p(i|d, tl), p(d|tl) and
p(i|bg) used in the IntDstr model. The distributions were estimated from a
training set of nine images of an electrode in a PVA cryogel phantom.

distances to the axis

CAxShp(Xinl ; H) =
∑

x∈Xin l

d(x;H)2 . (6)

The cost function is smooth (unlike
∑

qAxShp(x;H), used in
[19]), which is important for the local optimization later.

As the true point-to-curve distance would be prohibitively
expensive to calculate, the following approximation is used:

d(x;H) = ‖x − a(t;H)‖

with t =
(x − p1)k0

‖k0‖
(7)

which is good as long as the curvature of a(t;H) is small.
2) IntDstr Model: This model is based on an estimated

likelihood p(d, i|c) of observing a voxel x with an intensity
i = I(x) at distance d (7) from the axis, given its class c (tool
“tl” or background “bg”). The classification function q is chosen
as a likelihood comparison test

qIntDstr(x; H) =
{

1, if p(d, i |tl) ≥ p(d, i|bg)

0, otherwise.
(8)

The model’s cost function C(H) is a log-likelihood of observing
the set of inliers Xinl, given a tool position and assuming that
voxel observations are independent

CIntDstr(Xinl ;H) =
∑

x∈Xin l

− log p(d, i |tl). (9)

The dependence of p(d, i|c) on H is implicit through d (7).
The likelihood p(d, i|tl) for tool’s voxels is decomposed as

follows:

p(d, i | tl) = p(i | d, tl) p(d | tl)
with p(d | tl) = N+

0,σ (d) (10)
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Algorithm 1: RANSAC procedure to robustly estimate parameters of the
tool’s axis from the thresholded points Xt .

where N+
0,σ (d) is the positive part of a normal distribution with

zero mean and variance σ (for simplicity) corresponding to
the expected radius of the tool in the image. The background
intensity p(d, i|bg) is assumed to be spatially independent, i.e.,

p(d, i|bg) = p(i|bg). (11)

Both p(i | d, tl) and p(i |bg) are estimated from a training set
of images with a known ground truth. The tool’s voxels are first
collected into m uniformly sized bins bj = [j∆d; (j + 1)∆d]
according to a distance d from the tool. The distributions of voxel
intensities p(i |bg) and p(i | d ∈ bj , tl) for j = 0, . . . , m − 1
are modeled as Gamma distributions Γkb g ,θb g and Γkj

, θj ,
respectively. The Gamma distribution is sufficiently general to
approximate the real distribution well, and it was successfully
used for ultrasound images in [19] and [21]. The parameters
σ, kbg , θbg , kj , and θj are determined as maximum likelihood
estimates [22]. Examples of learned distributions are shown in
Fig. 3.

D. RANSAC Procedure

The RANSAC procedure was introduced by Fischler and
Bolles [23] to solve the problem of robust estimation of model
parameters, given a set of input samples with a large number
of outliers. In our case, the input of the RANSAC procedure
is a set of thresholded voxels Xt and a classification function
qAxShp or qIntDstr . The RANSAC outputs are the identified
curve parameters Ĥ and a corresponding set of points X̂inl
consistent with this model.

In each RANSAC iteration (see Algorithm 1), first a sample
consisting of a set P = {pi , i = 1, . . . , n} of n distinct points
pi is randomly selected from Xt (see step 1 of Algorithm 1).
To quickly filter out sets leading to excessively curved axes
(which would not lead to good solutions anyway), samples with

κ(P) > κmax are rejected, where the pseudo-curvature κ(P)
is defined as the maximum orthogonal distance between one
of the control points pi and a straight line l(P) fitted to all n
points P , and κmax is set to maximum expected deformation.
The coefficient matrix H is calculated from P as described in
Section II-B (see step 2) and a set of inliers is estimated (see
step 3)

Xinl(H) = {x ∈ Xt | q(x; H) = 1} . (12)

The best curve parameters Ĥ found so far, based on the number
of estimated inliers |Xinl| (see step 5), are stored together with
the corresponding control points P̂ and a set of consistent points
X̂inl .

The number of iterations J to perform is initially set to Jmax
(typically a few hundred) and it is then adaptively updated [see
step 4(b)] whenever a better model is found [23], [24]

J =
ln(1 − η)
ln(1 − ζn )

, with ζ =
|Xinl|
|Xt |

(13)

where ζ estimates the inlier ratio and η is a user-defined param-
eter; a desired probability that n inliers are selected at least once
during J iterations, i.e., that RANSAC succeeds.

E. Local Optimization

The RANSAC procedure gives a robust approximation of
the axis position. However, its accuracy is limited, since the
model parameters Ĥ are computed only from n control points.
Therefore, a more accurate solution H∗ is found based on the
complete estimated set of inliers X̂inl by minimizing the cost
function C(X̂inl ;H) (see Section II-C).

Instead of optimizing the coefficients H directly, we optimize
the position of the control points P because it is numerically
more stable. Moreover, it is enough to vary the point positions
in a direction perpendicular to the axis.

First, the local coordinate system K is calculated from the
set X̂inl by principal component analysis, where K consists
of principal directions k0 , k1 , k2 , in the decreasing order of
corresponding eigenvalue magnitudes (|λ0 | ≥ |λ1 | ≥ |λ2 |).1
The position of the control points along the k0 are not im-
portant for the shape of the curve. To reduce the redundancy of
the parameterization, the control points P̂ are reparameterized
using a matrix E with dimensions 2 × n

[p1 , . . . , pn ]︸ ︷︷ ︸
P(E)

= [p̂1 , . . . , p̂n︸ ︷︷ ︸
P̂

] + [k1 k2 ] E. (14)

The curve parameters H(E) are calculated from control points
P(E) by solving the linear system (4), as described in Section II-
B. The cost function C from Section II-C is optimized with
respect to variable E

H∗ = arg min
E

C(X̂inl ; H(E)). (15)

1In Section II-B, a principal direction k0 is also calculated but only from the
n control points.
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Fig. 4. Axis tip localization example. Typical voxel intensity along the tool’s
axis. A threshold is determined based on training data, and short segments are
removed. A large intensity variation is observed in the tool area.

The optimization is done using a derivative-free Nelder–Mead
downhill simplex method [25] with an initial estimate E = 0.

F. Tip Localization

Once the axis location has been found, the values of all voxels
along the axis are considered and the tip of the tool is identi-
fied as a significant drop by the method of Barva et al. [15]
(see Fig. 4), consisting of thresholding with a priori determined
value T and mathematical morphology operations to skip small
breaks caused by speckle noise in the ultrasound image. The tool
is usually inserted from outside so that only one tip is present in
the image. The threshold T is calculated from two a priori es-
timated distributions: probability of the tool voxel P (tl | I) and
the background voxel P (bg | I), respectively, given the voxel
intensity I . The threshold T is set such that P (tl |T ) =
P (bg |T ). Then probability distributions are estimated on
training data with known location of the tool.

G. Implementation Details

We use a straight line [n = 2 in (2)] or a quadratic curve
[n = 3 in (2)] for cases, where tool is expected to be bent (see
Section III-A2 and III-B2). The desired probability for success-
ful RANSAC termination was set to η = 0.99. Increasing η,
further improves the accuracy by 5%–15% at the expense of
an increased number of iterations. Local optimization usually
terminates in not more than 40 steps, taking about 26% of the
total time. The majority of the memory was used for storing the
3-D volume (90 MB for 3-D data of size 53× 71× 3100 vox-
els). The RANSAC localization algorithm takes the thresholded
points as input, which is only a small fraction of the full set of
points; therefore, the additional memory requirements for the
RANSAC are negligible.

All algorithms were implemented in MATLAB2 on a standard
PC with Intel Core 2 processor at 1.83 GHz. Further speedup
should be possible by rewriting them in a compiled language
such as C++. Our preliminary experiments with implementa-
tion of the RANSAC method in C++ show that the speed-up is
at least by a factor of three.

2The MathWorks, Natick, MA.

Fig. 5. Illustration of the axis and endpoint accuracy evaluation. The ground-
truth tool’s position is determined by an intercept point E and a tool’s tip T . It
is compared with an axis a(t) and a tip T̂ estimated by the proposed method.

Fig. 6. Example of histograms of axis accuracies measured for AxShp model
fitting on PVA cryogel phantom. (a) For successful runs (εaxis < 3 mm) with a
fitted normal distribution shown as red line. (b) For failures (εaxis ≥ 3 mm).

H. Accuracy Assessment

Two measures are used to quantify the accuracy of the pro-
posed method [19]. Tip localization accuracy is

εtip = ‖T − T̂‖ (16)

where T is the true tool’s tip and T̂ is an estimated tip. Axis
localization accuracy εaxis is given by

εaxis = max {‖E − Q1‖, ‖T − Q2‖} (17)

where E is the true intercept point, and Q1 and Q2 are the
orthogonal projections of E and T on a(t) with respect to the
true axis (see Fig. 5). Angular error, which is also sometimes
used to measure localization accuracy, is related to εaxis and the
tool’s length.

The result is considered a failure when εaxis ≥ 3mm or
εtip ≥ 3mm. The number of failures is reported separately and
accuracy is evaluated only on successful runs. Example of sam-
ple histograms for accuracy εaxis in Fig. 6(a) for successful runs
shows that accuracies approximately follow a normal distribu-
tion, while for failures [see Fig. 6(b)], the errors are signifi-
cantly higher. We have performed statistical significance tests
for comparison of the proposed method to the other methods.
Specifically, we do a t-test [26] with a significance level of
5% (p = 0.05) for accuracy εaxis and also for the number of
failures. The experiments are repeated many times (with
different random seeds) so that enough measurements are
accumulated for the distribution of the number of failures to
be approximately normal and the t-test to be applicable.
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TABLE I
OVERVIEW OF DATASETS USED FOR EXPERIMENTS

III. RESULTS

The results of the localization algorithm are presented on
simulated data, on real ultrasound data of a phantom with an
inserted tool, and on real data from a breast biopsy. The true
tool’s position in simulated data is known; for real ultrasound
data, it was found as a mean of the estimates of ten human
observers. The mean variability for human observers was less
than 0.4 mm. All 3-D visualizations shown in this section were
made in Paraview [27].

The proposed method is compared to other projection-based
localization methods (see also Section I) such as the RHT [11],
the QRHT [12], the PIP method [15], the multiresolution PIP
(MR-PIP) method [17], and the fast MR-PIP (Fast MR-PIP)
method [17]. The number of bins for the RHT and the QRHT is
set to 36 and 16, respectively, for each of four dimensions. In the
PIP method, an angular resolution of 1◦ and spatial resolution of
0.2 mm is used; its multiresolution version [17], (MR-PIP) uses
three resolution levels, and its fast variant (Fast MR-PIP) stops
the optimization at the second resolution level. All algorithms
use the same method for tip localization (see Section II-F).

In the experiments described in the following, the random-
ized algorithms were repeated 30 times (on each test data set)
with different random seeds. We report the mean time for
each method. For the RANSAC method, we also report the
mean number of iterations because the time complexity of the
RANSAC depends directly on it. We give an overview of all data
sets in Table I. The first three data sets were computed as the en-
velope of the acquired RF signals with high axial resolution. To
study the effect of axial resolution on the localization accuracy,
we have performed the localization with the envelope volumes
downsampled 10× (in the axial direction); the axis localization
accuracy was not significantly affected. The last three datasets
were acquired using a different 3-D scanner as standard B-mode
images.

A. Simulation Study

A data set mimicking breast tissue was created using the
software package Field II [28]. The simulator parameters were
set to imitate an ultrasound scanner Voluson 530D3 operating
at a central frequency of 7.5 MHz. Background scatterers were
distributed according to a smoothed real 3-D ultrasound image
of a breast in order to obtain a realistic inhomogeneous back-
ground. A signal corresponding to a 0.6-mm-diameter tool
(radius 0.3 mm) with metal-like acoustic parameters was

3GE Healthcare, U.K.

Fig. 7. Simulated ultrasound data using Field II with a tool and inhomogeneous
background. A 2-D slice of a 3-D volume with the tool is selected. The estimated
tool (marked by a dashed line) is oriented diagonally entering the volume from
the left side.

TABLE II
AXIS ACCURACY, TIP ACCURACY, PERCENTAGE OF FAILURES, AND ELAPSED

TIME FOR SIMULATED DATA WITH VARYING TOOL POSITIONS FOR DIFFERENT

LOCALIZATION ALGORITHMS FOR THE SYNTHETIC INHOMOGENEOUS

BACKGROUND CASE

created by using highly reflecting scatterers. The background
field and the tool field were summed in the RF signal domain,
and a 3-D envelope image was calculated. This is equivalent to
adding the tool as scatterers, but is faster when many datasets
are created with the same background. An example volume of
53× 71× 3100 voxels is shown in Fig. 7.

Parameter learning was performed on a training set of sim-
ulated data sets with varying tool locations, distinct from the
testing set. The threshold TI was set to maximize the inlier ratio
(see Section II-A) to approximately 11 times the mean inten-
sity. The threshold τ was set to 0.6 mm, which was the tool’s
observed radius.

1) Tool Location: Nine training and 19 testing datasets were
prepared with varying depths and orientations of the straight tool
with respect to the probe. The mean inlier ratio in the testing
data was 30% and the mean number of RANSAC iterations was
60. The results (see Table II) show that the proposed methods
(RANSAC with local optimization) are among the fastest and
have the best repeatability (smallest standard deviation). The
number of failures is nearly zero for the RANSAC, RHT, and
PIP methods. However, the PIP method is very slow. It can
be accelerated (MR-PIP methods), but the robustness is then
reduced. There is a statistically significant difference (t-test,
p = 0.05) between RANSAC and RHT axis accuracy, but not
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Fig. 8. Axis accuracy εaxis for varying tool offsets (bending) in simulated
data. Failures were not discarded.

between the AxShp and IntDstr results. The RANSAC with the
simple AxShp model is the fastest and should be chosen for this
type of data.

2) Tool Deformation: The robustness of the tested meth-
ods with respect to tool deformation was evaluated on 21
test datasets. We used parameters learned in the previous
experiment. The tool’s axis was modeled by a quadratic (n = 3)
polynomial curve, and the shape was controlled by bending
the tool’s tip. The tip bending offset varied between 0 (straight
axis) and 4.0 mm for the total length of 20 mm. The results
in Fig. 8 demonstrate that the axis localization error εaxis (we
are not discarding failures in this case) for the RHT and the
QRHT increases when applied to the data with a deformed tool.
The performance of the proposed method does not deteriorate,
because it represents the tool’s axis as a polynomial curve.

3) Signal-to-Noise Ratio: The robustness of the tested meth-
ods with respect to noise was evaluated for data with varying
tool’s intensities with respect to the background. The SNR was
defined as

SNR =
mean[I(xel)]
mean[I(xbg)]

(18)

where xel are voxels whose distance from the true axis is less
than a tool’s radius; the remaining voxels are considered as
background xbg . The percentage of failures is reported in Fig. 9
for SNR between 1.0 and 2.0—for higher SNR, all methods
localized the tool perfectly, and for lower SNR, none of the
methods found it. A group of nine training and 19 testing data
sets were used for each SNR level. Note that the fastest method,
RANSAC + AxShp, has about the same number of failures as
the RHT. The RANSAC + IntDstr model is the most robust
method.

B. Experiments on Real Data

1) Polyvinyl Alcohol (PVA) Cryogel Phantom: To mimic a
biological tissue with a highly reflecting inclusion, a PVA cryo-
gel phantom [29] with size 50 mm× 50 mm× 50 mm was
created. Inside the phantom, there was a thin straight tungsten
electrode 150 µm in diameter and 20 mm long. The phantom
was scanned eight times from different directions by Voluson

Fig. 9. Failure rate for varying SNR (tool contrast) on simulated data.

TABLE III
AXIS ACCURACY, TIP ACCURACY, THE PERCENTAGE OF FAILURES, AND

ELAPSED TIME FOR EXPERIMENTS ON PVA CRYOGEL PHANTOM

DATA FOR THE SMALL ROI

TABLE IV
AXIS ACCURACY, TIP ACCURACY, THE PERCENTAGE OF FAILURES, AND

ELAPSED TIME FOR EXPERIMENTS ON PVA CRYOGEL PHANTOM

DATA FOR THE FULL VOLUME

530D ultrasound scanner with a 3-D probe operating at a central
frequency of 7.5 MHz. The axial resolution was approximately
0.4 mm and the lateral resolution was 1 mm. The size of acquired
volumes was 53× 71× 3100 voxels.

All localization algorithms were tested in two variants: 1) we
selected a small region of interest (ROI) with the electrode
and 2) on full volume, which also contains the high-intensity
phantom boundary. The results of the first experiment are shown
in Table III. There is no statistically significant difference (t-test,
p = 0.05) in the number of failures between the RANSAC and
RHT methods. The mean inlier ratio was 20% and the number
of RANSAC iterations was between 100 and 200. However,
for the second experiment on the full volume in Table IV, the
percentage of failures is statistically significantly smaller for
the RANSAC than for the RHT and QRHT methods. The mean
inlier ratio was only 5% and the number of RANSAC iterations
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Fig. 10. Slice of a 3-D data of turkey breast with a needle. A 2-D slice of a
3-D volume with the needle is selected. The estimated tool (marked by a dashed
line) is oriented diagonally entering the volume from the top-right side.

TABLE V
AXIS ACCURACY, TIP ACCURACY, PERCENTAGE OF FAILURES, AND ELAPSED

TIME FOR ULTRASOUND DATA SHOWING A NEEDLE IN A TURKEY BREAST

increased to 1000–2000. Therefore, the total time for RANSAC
also increased.

The proposed RANSAC-based methods are very robust, es-
pecially using the IntDstr model, unlike the RHT, QRHT, and
PIP methods, which are fooled by the presence of the phan-
tom boundary in the 3-D volume. The PIP is the most accurate
method, followed by RANSAC. An example of a localization
result can be seen in Fig. 1. The AxShp model fitting is the
fastest method, but using the model IntDstr is more robust to
the presence of outliers.

2) Experiments on Turkey Breast: We acquired three
datasets of turkey breasts with a 27-gauge needle (0.41 mm)
inserted. The 3-D ultrasound images are 273× 376× 196
voxels. The central frequency of the 3-D probe RSP6-16 RS
varied between 10 and 18 MHz; so, the needle’s appearance was
different in each data set. Therefore, we had to train on each
dataset separately. To make training and testing data distinct,
we trained on different parts of the image than the part tested.
The needle in the breast tissue was deformed in various ways;
the maximal bending offset of the tool varied between 0.6 and
1.8 mm. The tool’s length in the ROI was between 8 and 14 mm.

We selected a ROI containing the needle as well as some
high-intensity structures (see Fig. 10). The results are shown in
Table V. The mean inlier ratio was 16% and the number of
RANSAC iterations was between 700 and 1000. There is a sta-
tistically significant difference (t-test, p = 0.05) between the
number of failures for the RANSAC methods and RHT. The
RANSAC has the lowest number of failures but longer process-

Fig. 11. 3-D view of data from breast biopsy. The boundary geometry of 3-D
data is marked as a wireframe. There is one planar section of the data with a
needle in the upper part and seven perpendicular planar sections. The dashed
line shows the estimated needle direction.

TABLE VI
AXIS ACCURACY, TIP ACCURACY, PERCENTAGE OF FAILURES, AND ELAPSED

TIME FOR BIOPSY ULTRASOUND DATA WITH A 19-GAUGE NEEDLE

ing time compared to other methods. We can observe here that
RHT often fails on this data, probably because of bent needles,
while the proposed methods are successful. The PIP methods
all fail on this data.

3) Experiments on a Breast Biopsy: The usability of the pro-
posed method on clinical data is demonstrated on real ultrasound
datasets from a breast biopsy acquired by a 3-D U.S. scanner GE
Voluson E8 with a 12-MHz probe (see Fig. 11). We acquired the
three data sets with a mostly straight 19-gauge needle (1.092-
mm outer diameter) and one data set with a 26-gauge needle.
The 3-D ultrasound images are 273× 383× 208 voxels.

The ROI was determined containing the needle as well as
some various reflecting artifacts. The tip of the needle was
located outside of the scanned volume area for three of the
datasets; therefore, the tip localization measure was not applica-
ble here. The axis accuracy and the time elapsed for the different
methods are shown in Table VI. The last data set contains a thin
needle that has a different appearance from the earlier group.
We trained and tested on distinct parts of the volume. The results
are reported in Table VII. In this case, tip localization accuracy
was also evaluated because the electrode tip is visible.

The data used in this experiment are very challenging; there-
fore, all methods have a relatively high failure rate. Nevertheless,
the RANSAC-based methods are the fastest, most robust, and
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TABLE VII
AXIS ACCURACY, TIP ACCURACY, PERCENTAGE OF FAILURES, AND ELAPSED

TIME FOR BIOPSY ULTRASOUND DATA WITH A 27-GAUGE NEEDLE

most accurate. The PIP is also accurate but less robust and two
orders of magnitude slower. RHT is as robust as RANSAC with
speed similar to the IntDstr model but with worse accuracy.

IV. CONCLUSION

We proposed a method for fast and robust tool localization
from 3-D ultrasound images based on the RANSAC, local op-
timization, and model fitting using one simple and one more
complicated model. The simpler AxShp model is very fast and
easy to implement and works well in most cases. The more
complex IntDstr model can take advantage of the learned shape
and intensity of the tool and the background, and works better
in difficult low-SNR situations, but is several times slower.

The proposed RANSAC + AxShp method needs less than 1 s
in MATLAB, which is approximately the time needed for an
acquisition of one 3-D volume. A real-time implementation in a
compiled language seems to be perfectly possible; we estimate
a throughput of 3–5 fps on a single processor system. Earlier
studies [14], [18] showed the feasibility of projection-based
methods implemented on a GPU. RANSAC is also suitable for
a parallel implementation. The accuracy is better than 1 mm,
which is enough for all potential applications—visualization,
localization, and guidance. The proposed method could be used
for initialization of the tracking of the tool in a sequence of 3-D
ultrasound volumes.

Our experimental results show that the methods proposed
here are superior to all other methods tested. They are mostly as
robust and fast as the RHT method while being more accurate,
and as accurate as the PIP method while being about two orders
of magnitude faster. The proposed methods are also more robust
to low tool contrast and tool bending. We have shown that the
methods can be successfully applied to real ultrasound data.

Further extensions include using additional features to distin-
guish the tool from the background, using a priori information
about tool location, and parallelizing the algorithm for increased
speed.
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