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Generalized Sampling:
A Variational Approach.

Part II: Applications
Jan Kybic†, Thierry Blu§, and Michael Unser§

Abstract— The variational reconstruction theory from a com-
panion paper [1] finds a solution consistent with some linear
constraints and minimizing a quadratic plausibility criterion.
It is suitable for treating vector and multidimensional signals.
Here we apply the theory to a generalized sampling system
consisting of a multichannel filterbank followed by a non-uniform
sampling. We provide ready-made formulas, which should permit
the reader to apply the technique directly to problems at hand.

We comment on the practical aspects of the method, such
as numerical stability and speed. We show the reconstruction
formula and apply it to several practical examples, including
new variational formulation of derivative sampling, landmark
warping, and tomographic reconstruction.

Index Terms— sampling, reconstruction, variational criterion,
thin-plate splines

I. INTRODUCTION

In the first paper of this series [1] we have developed
a general theory for reconstructing a signal given a finite set
of linear measurements. Since this is in essence an ill-posed
problem, we proposed to search for the solution that minimizes
some quadratic variational criterion (regularization term) that
forces the solution to be smooth. We found the general
functional form of the solution to be a linear combination
of basis functions derived from the Green’s functions of the
respective regularization differential operator. By imposing
some fundamental invariance properties on the solution (trans-
lation, rotation and scale-invariance), we restricted the class of
allowable regularization functionals to a one-parameter family
that involves iterated Laplacian operator.

In this paper, we will use those theoretical results to explic-
itly compute the solution of the generalized sampling problem
which is schematically represented in Figure 1. This system
is an extended version of the one treated by Papoulis [2]—
it allows for non-uniform sampling at arbitrary locations. The
general theory [1] does not take explicit advantage of one
of its important characteristics: the convolutional form of the
measurement process (q-channel filterbank). We will see here
that this property translates into a multi-wavelet-like form of
the solution with one generating function per filter channel
(shift-invariant form of the solution).
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Fig. 1. Generalized sampling. Sampling is modeled as a multiplication with
a multidimensional train of Dirac’s masses. It yields a set of scalar values
sij . In Papoulis’s framework the sampling is uniform: xij = xj = jT and
the samples can be grouped to vectors sj . Here, the sampling locations xij

can be arbitrary.

Our goal in this paper is two-fold. First, we want to bridge
the gap between the theoretical formulation in Part I [1] and
the effective application of the results to specific sampling
cases. We will also simplify the translation from theory
to practice by doing a good part of the analytical work—
determination of the basis functions and providing computa-
tional recipes and implementation formulas that are directly
applicable. Second, we consider examples of applications of
variational sampling and present some experimental results.
We will also emphasize the connection between variational
sampling, splines and radial basis functions.

A. Example of a variational interpolation

To motivate the variational approach, let us consider the
task of interpolating a unidimensional function. As illustrated
in Figure 2, there is an infinite number of functions passing
through the given points. Nevertheless, most people would
probably agree that the smooth approximation curve in Fig-
ure 2 looks ‘more correct’ than the rugged noisy approxi-
mation. We can often quantify the degree of plausibility of
a function for a given application. Then, we search for the most
plausible function satisfying our interpolation (consistency)
conditions. The plausibility criterion J is the key concept
of our approach. From now on, we will concentrate on the
typical case where we want the solution to be ‘smooth’.
As smoothness can be measured by the amplitude of the
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Fig. 2. When interpolating a function from its values (circles), many solutions
are possible. However, smooth interpolation (bold line) is usually preferable
to a rugged one (thin line).

derivatives, maximizing smoothness translates into minimizing
the norm of various differential operators. In Figure 2, the
smooth curve minimizes the L2-norm of the second derivative
J(f) = ‖f ′′‖2

L2
, which is known to yield a cubic spline in-

terpolation [3, 4]. A corresponding task of interpolating scalar
values in a 2D space leads to so-called thin-plate splines [5–7].

B. Extensions of the example

The theory presented in [1] permits several extensions of
the simple example above. First, the plausibility (smoothness)
criterion can be tailored based on the nature of the underlying
data. If for example the measures correspond to the position
of a body moving with supposedly constant acceleration, then
the appropriate criterion should take into account the third
derivative f ′′′ instead of f ′′. Second, instead of the function
values (positions), we can conceivably base our reconstruction
on other linear measures of the underlying function, such as
the derivatives (the speed) or their means across a certain
region (average speed). Third, we can also use several of
these measures (called generalized samples) at the same time,
leading to multichannel sampling. Finally, the vector extension
enables us to deal with vector function interpolation, fre-
quently encountered in physical systems, permitting to treat all
three spatial coordinates at the same time. All these extensions
have been included in the generalized sampling system shown
in Figure 1.

II. PROBLEM FORMULATION AND SOLUTION

This section is designed as a guide to the practitioner for
translating the general variational theory [1] into a recon-
struction algorithm that is tailored to specific instances of the
generalized sampling problem in Figure 1. At the end of the
process, the solution is expressed as a linear combination of
continuously-defined basis functions with coefficients obtained
from the solution of a linear system of equations. Here, we
will step through the formulation in some detail and present
the key formulas and computations that will be required in
practice.

TABLE II

KERNELS OF MOST OFTEN USED DUCHON’S’ SEMI-NORMS IN

DIMENSIONSm = 1, 2, 3. M IS THE ORDER OF THE SEMI-NORM.

R
m DM kernel of ‖f‖2

DM
for f : R

m → R

R
1 D2 a0 + a1x

R
1 D3 a0 + a1x+ a2x

2

R
2 D2 a0 + a1x+ a2y

R
2 D3 a0 + a1x+ a2y + a3x

2 + a4y
2 + a5xy

R
3 D2 a0 + a1x+ a2y + a3z

A. Sampling structure

The generalized sampling in Figure 1 can be described using
a filterbank Hn×q = [h1 . . .hq], consisting of q filters1 hi of
size n × 1. At the output of the filterbank we obtain a set
of filtered signals hTi ∗ f in. We measure (sample) each of the
filtered signals at N arbitrary points xij which gives a set of
qN real samples

sij = hTi ∗ f in(xij) =

∫

Rm

hTi (x) f in(xij − x) dx (1)

for i ∈ {1 . . . q} and j ∈ {1 . . .N}. This is a special case
of the inner-product formulation in Section II-C of [1] if we
define the following

ri+q(j−1)(x) = hi(xij − x) and Nq = Q (2)

We require the reconstruction f out to be consistent, which
means that the signal f out must provide exactly the same
measurements as the original signal f in when run through our
measurement system:

(
hTi ∗ f in

)
(xij) = sij =

(
hTi ∗ f out

)
(xij)

∀ i ∈ {1 . . . q}, j ∈ {1 . . .N} (3)

B. The criterion

Since there is an infinity of signals satisfying (3), we will
look for the one that minimizes the plausibility criterion J .
To select this criterion, we invoke Theorem 1 in [1]. We
will demand the scale, translation, and rotation invariance of
the solution, to guarantee that the reconstruction remains the
same regardless of the coordinate system. Together with the
requirement of linearity this essentially restricts the choice of
the plausibility criterion to Duchon’s semi-norms [5, 6] (see
Section IV-G of [1])

J(f ) = ‖f‖2
DM

=
N∑

i=1

‖fi‖
2
DM

(4)

The most often used Duchon’s semi-norms are summarized in
Table I. Table II gives their kernels (the functions f for which
J(f) = 0), in our case polynomials of degree M − 1. See [1]
for general formulas.

The choice of the order of the semi-norm influences the
reconstructed function, as shown in Figure 3. The higher the
order the smoother the solution, but also higher overshoot and
more pronounced ringing.

1These filters may be distributions. For instance, the identity (no filter)
corresponds to Dirac’s distribution δ, satisfying δ ∗ f = f .
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TABLE I

MOST OFTEN USED DUCHON’S’ SEMI-NORMS IN DIMENSIONSm = 1, 2, 3. M IS THE ORDER OF THE SEMI-NORM. FOR OTHER COMBINATIONS OF m

AND M SEE SECTION IV-G IN [1]

R
m DM ‖f‖2

DM
for f : R

m → R

R
1 D2

∫ (
d2f

dx2

)2

dx

R
1 D3

∫ (
d3f

dx3

)2

dx

R
2 D2

∫ (
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy

R
2 D3

∫ (
∂3f

∂x3

)2

+ 3

(
∂3f

∂x2∂y

)2

+ 3

(
∂3f

∂x∂y2

)2

+

(
∂3f

∂y3

)2

dxdy

R
3 D2

∫ (
∂2f

∂x2

)2

+

(
∂2f

∂y2

)2

+

(
∂2f

∂z2

)2

+ 2

(
∂2f

∂x∂y

)2

+ 2

(
∂2f

∂x∂z

)2

+ 2

(
∂2f

∂y∂z

)2

dxdydz
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Fig. 3. The dependence of the reconstruction result on the order of the
semi-norm M used. High order semi-norms tend to produce slowly varying
curves with large overshoots and vice-versa.

C. Fundamental solutions

Theorem 2 in [1] tells us that the solution of the generalized
interpolation problem lies in a vector space, determined by the
criterion J and the sampling filterbank H. Its generating (basis)
functions ϕ : R

m → R
n are called fundamental solutions

and they can be obtained by convolution with the sampling
operators:

[ϕ1 . . .ϕq ] = Φn×q = Ψn×n ∗ Hn×q (5)

where the functions ψ are Green’s functions [8, 9] corre-
sponding to the criterion J . Table III gives the scalar Green’s

R
m DM cψ(x) ĉ ψ̂(ω) remark

R
1 D2 ρ3 |ω|−4

R
1 D3 ρ5 |ω|−6

R
2 D2 ρ2 log r ‖ω‖−4

R
2 D3 ρ4 log r ‖ω‖−6

R
3 D2 ρ ‖ω‖−4

R
m Dα ρ2α−m log ρ ‖ω‖−2α if 2α −m is even

R
m Dα ρ2α−m ‖ω‖−2α otherwise

TABLE III

GREEN’S FUNCTIONSψ IN DIMENSIONm, CORRESPONDING TO

DUCHON’S SEMI-NORM ‖f‖DM
. THE MULTIPLICATIVE CONSTANTS c, ĉ

CAN BE DETERMINED BUT ARE IRRELEVANT FOR OUR PURPOSES. THE

FUNCTIONS ARE ALL EXPRESSED USING EUCLIDEAN DISTANCE ρ = ‖x‖.

THE LAST FORMULA IS VALID ALSO FOR NON-INTEGER α.

functions for the most often used Duchon’s semi-norms as
well as in the general case. Note that it is enough to consider
the scalar case (n = 1); in the vector case (n > 1), we get
Ψ = ψIn×n.

D. Explicit solution

The solution to our generalized interpolation problem,
a function f out minimizing the criterion (4) under the con-
straints (3), is given by the following result, a restatement of
Theorem 2 in [1] for our particular multichannel system. The
main difference is that here we get one generating function
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ϕi per channel which is then shifted to all sampling locations,
while in [1] we had one function per measurement.

Theorem 1 (Interpolation problem solution) The
generalized interpolation problem is solved by a function

f out(x) =

P−1∑

k=0

akpk

︸ ︷︷ ︸

kernel part

+

q
∑

i=1

N∑

j=1

λijϕi(x − xij)

︸ ︷︷ ︸

fundamental part

(6)

where ϕi are the fundamental solutions, {pk}
P−1
k=0 is the basis

of the kernel of the semi-norm J (e.g., polynomials), if and only
if the following three conditions are satisfied:

(i) The solution f out is consistent with the constraints:

sij = h
T
i ∗ f out(xij) for all i, j (7)

(ii) The coefficients λij satisfy the ‘orthogonality’ condition
∑

ij

λij
(
hTi ∗ pk

)
(xij) = 0 for all k (8)

(iii) The solution f out is admissible, i.e., J(f out) <∞

The condition (iii) is usually ensured by the coefficients
obtained in (i) and (ii).

Equivalently, conditions (i) and (ii) can be written in a ma-
trix form as [

A Q

QT 0

]

︸ ︷︷ ︸

B

[
λ

a

]

=

[
s

0

]

(9)

where the parameters have been arranged in vectors as λ =
[λ1,1 . . . λ1,N λ2,1 . . . λq,N ]T and a = [a1 . . . aP ]T . The
components of the matrix A of size Nq × Nq are given by
(
A
)

iN+k,jN+l
= hTi ∗ ϕj(xik − xjl) and represent the con-

tribution of the fundamental solutions to each measurement.
The components of the matrix Q are given by

(
Q

)

iN+j,k
=

h
T
i ∗ pk(xij) and represent the kernel part of the solution as

well as the orthogonality conditions.
We see that the solution (6) consists of two parts. The

first, kernel part, does not contribute to the criterion, J(f +
pk) = J(f ), so we can intuitively tell that it is useful to
accommodate in it as much as possible of f out. In fact, the
orthogonality conditions (ii) ensure that the fundamental part
of the solution (6) is orthogonal to any element of the kernel.

The second, fundamental part of the solution consists of
a linear combination of shifted basis functions ϕj positioned
at the sampling points. Interestingly, the fundamental part is
reminiscent of a wavelet (or multi-wavelet) like expansion
for it also involves shifts of some generating functions. One
difference is that here the basis functions ϕi(x − xij) in (6)
are not necessarily uniformly spaced. Another difference is
that wavelets are usually well localized while the functions ϕi
(related by convolution (5) to the Green’s functions ψ from
Table III) are typically not, they increase as one moves away
from the origin. However, the orthogonality conditions (8)
localize the functions LT ∗ ϕi (where J(f) = ‖LT ∗ f‖2,
see Section III-E in [1]), which has the effect of taming

the growth of the solution at infinity. Dropping the scale-
invariance requirement leads to basis functions that grow more
slowly [10].

E. Numerical aspects

The presented method requires the solution of a large, non-
sparse system of equations. Additional research is required to
develop fast numerical solvers [11], such as specialized iter-
ative methods [12, 13]. Related aspect is the ill-conditioning
of the system matrix due to the non-local nature of the basis
functions. We believe this can be improved using adequate pre-
conditioners, e.g., by localizing the basis functions, similar
to the construction of B-spline basis [14]. Other techniques
include domain decomposition [15], or algebraic manipulation
suitable for special form of the matrices ([16], Chapter 4).

F. Generalized approximation problem

In some applications, for example if the measurements are
noisy, we do not want the reconstructed function f out to pass
exactly through the measured points. Instead, we want it to
be a compromise between its smoothness (or plausibility), as
measured by the criterion J , and the closeness of the fit to the
sampled points, as measured for example by the sum of the
squared differences. In a generalized approximation problem
(Section VI in [1]) we minimize a combined criterion Ja. For
the standard regularized least-squares approximation, Ja has
the form

Ja(f ) = J(f) + γ
∑

ij

(

h
T
i ∗ f (xij) − sij

)2

︸ ︷︷ ︸

data term Jd

(10)

where J is the regularization criterion defined by (4) and sij
are the measured points close to which we want to pass. The
problem is equivalent to finding a f out which minimizes J
under the constraint Jd ≤ ε, where ε is an a priori given
error bound. The γ should be chosen such that the error ε
correspond to the expected noise (error) in the measurements.
If the measurement noise is not known, a suitable γ can be
found for example using the leave-one-out technique [17].

The solution of the approximation problem (see Theorem 3
and its sequels in [1]) has the same form f out defined by (6)
and the parameters ai and λij satisfy the matrix equation

[
A + γ−1I Q

QT 0

]

︸ ︷︷ ︸

B

[
λ

a

]

=

[
s

0

]

(11)

where the symbols are the same as in (9).
The simplicity of (11) is a consequence of the continuous

regularization and of using the fundamental solutions as the
basis of our space. Our variational formulation of the approx-
imation problem is similar in spirit to using discrete regular-
ization [18–20] to deal with the ill-poseness of some inverse
problems. Our regularization, however, is completely specified
in the continuous domain. Also, those discrete regularizations,
often used in combination with nontrivial basis functions, such
as the finite element method (FEM), modify the equation set
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in a much more complicated and less predictable way: the
identity matrix I is replaced by some general matrix which
needs to be determined on a case-by-case basis.

III. EXAMPLES

We now give various examples of how the theory can be
used and present some experimental results.

A. Reconstruction from irregular samples

Let us consider the problem of finding a function f :
R → R, passing through a finite number of points (xi, yi)
and minimizing a criterion J(f) = ‖f‖2

D2
= ‖f ′′‖2 (see

Table I). From Table III we see that the fundamental solution
corresponding to the semi-norm J is proportional to |x|3. The
kernel corresponding to this semi-norm is the class of all linear
polynomials a0 + a1x; i.e.; the class of functions for which
f ′′ = 0 everywhere. The reconstruction is thus

f(x) = a0 + a1x+

N∑

i=1

λi|x− xi|
3 (12)

which has N + 2 unknown parameters. The consistency
conditions f(xi) = yi give us N linear equations, while
the orthogonality requirements

∑
λi = 0 and

∑
λixi = 0

yield the remaining two. A nice consequence of the orthog-
onality conditions is to make the second derivative f ′′(x) =
6

∑

i λi|x − xi| vanish after the last sampling point which
ensures that J(f) < ∞ and thus f ∈ F . Note, that f is
a piecewise cubic polynomial with continuous second deriva-
tives; i.e., it is a cubic spline. This result is known, see [3,
21]. An example of a spline reconstruction (interpolation) is
shown in Figure 4.

For uniform sampling, the basis functions |x− xi|
3 can be

localized using digital filtering (with iterated finite difference
filter) to obtain compactly supported uniform cubic B-splines,
which makes an interesting link with existing theory [22, 23].
For non-uniform sampling, the localization is also possible
using divided differences [24] leading to non-uniform B-
splines. In both cases, if we increase the order M of the
semi-norm, the order of the splines will increase, too, and
the corresponding interpolation will converge to the sinc in-
terpolation [25, 26]. This shows the relation with the classical
sampling theorem [27].

B. Smoothing splines

If the measured points from the preceding example are not
exact, it is more appropriate to replace interpolation by approx-
imation (see Section II-F). The reconstruction formula (12)
remains, while the equation set (9) used to determine the
parameters ai and λi is now replaced by the equation set (11).
An example of a result for the same sampled points as before
is shown in Figure 5. The smoothing spline method that we
have just described is a non-parametric regression technique
widely used in statistics [28].
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Fig. 4. Interpolation from function values.
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Fig. 5. Approximation between given points for γ = 10−3.

C. Derivative sampling

Let us add derivative constraints y′i = f ′(xi) to the example
from Section III-A. The sampling filters will become H =
[
δ δ′

]
. The first fundamental solution corresponding to h1 =

δ remains ϕ1 = c|x|3. The second one, corresponding to h2 =
δ′, is obtained by convolving ϕ1 with h2 which gives ϕ2 =
3c|x|x. The reconstruction formula is thus

fout(x) = a0 + a1x+
N∑

i=1

λi,1|x− xi|
3 + 3λi,2|x− xi|(x − xi)

The 2N+2 unknown parameters can be determined from 2N
consistency equations f(xi) = yi and y′i = f ′(xi) and two
orthogonality conditions

∑
λi,1 = 0 and

∑
λi,2 +λi,1xi = 0.

These orthogonality conditions come from the requirement (8)
that

∑

i λi,1pk(xi) + λi,2p
′
k(xi) = 0, where p1 = 1, p2 = x

is the basis of the kernel. An example of reconstruction from
derivative sampling is shown in Figure 6. A trivial extension
is to sample the derivative values at different points than the
function values.
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Fig. 6. Interpolation from function values and derivatives.

D. Landmark based warping

The problem of image registration is encountered in many
areas of image processing. The task is to find correspondences
between pixel coordinates in two distinct but similar images. In
other words, we search for a function which gives us for each
point in the first image the coordinates of the corresponding
point in the second image. In some cases, it is necessary to
use manual methods [29]. These mostly require the expert
to specify a set of pairwise corresponding landmarks [7]
(reference points) in both images. Then, an interpolation
method is needed to find the deformation function also be-
tween the landmarks, which is exactly the problem studied
in this paper. Supposing we want to find the 2D deformation
function minimizing Duchon’s semi-norm of order two, we see
from Table III that we need to interpolate using the ρ2 log ρ
functions, also called thin-plate splines.

Figure 7 shows an example where landmark warping is
used to compensate distortion in functional MRI (fMRI)
images by registration with anatomically correct (proton den-
sity) MR images [30]. More examples of landmark interpo-
lation using different interpolating functions can be found
in [31]. Some demonstrations are available on our web page
http://bigwww.epfl.ch/demo.

E. Reconstruction consistent with Laplace equation

The problem treated in [32] by numerical integration—
which we shall solve explicitly here—consists of reconstruct-
ing a function R

3 → R minimizing the norm of the 3D
Laplacian operator J∆(f)2 =

∫

R3 ‖∆f‖
2dx. The problem

is ill-posed without additional constraints, because the kernel
K∆ is too big, including all functions that satisfy Laplace’s
equation ∆f = 0, such as x2 − y2. It therefore permits an
infinity of solutions with zero cost. To avoid this ambiguity, we
will instead minimize a criterion J(f) = ‖f‖D2

, the explicit
expression of which can be found in Table I. This makes
sense because when f is well behaved, the two criteria J

and J∆ are equal. The corresponding fundamental solution is
ϕ(x) = ρ (where ρ = ‖x‖). Since the kernel consists of linear

polynomials, the solution takes the form

fout(x) =
[
a0 a1 a2 a3

]
[
1
x

]

+

N∑

i=1

λi‖x− xi‖ (13)

with the auxiliary conditions
∑

i λi = 0, and
∑

i λixi =
∑

i λiyi =
∑

i λizi = 0 for j = 1, 2, 3, where xi =
[xi yi zi]

T are the coordinates of the i-th measurement point.
As before, the coefficients ai and λi must be determined in
such a way that fout passes by the desired points.

F. Derivative sampling in 2D

Adding another level of complexity, we are going to extend
the derivative sampling from Section III-C to two dimensions.
The task is to find a function f : R

2 → R given its values
f(xi) as well as the values of its first partial derivatives
∇xf(xi) at sampling points xi = [xi yi]

T . Our analysis filters
are therefore:

H =

[

δ
∂δ

∂x

∂δ

∂y

]

For reasons given later, we choose f that minimizes J(f) =
‖f‖D3

. The kernel of this criterion consists of bivariate
polynomials of degree less than or equal to 2 and its Green’s
function (see Table III) is ψ(x) = c ρ4 log ρ. Consequently, the
fundamental solutions ϕi corresponding to the three sampling
filters are respectively ψ, and its partial derivatives with respect
to both x and y.

This means that the solution fout, besides the term from the
kernel, consists of a linear combination of shifted fundamental
solutions (see (6))

fout(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy+

N∑

i=1

λTi





ψ(x − xi)
∂ψ
∂x

(x − xi)
∂ψ
∂y

(x − xi)



 (14)

where λi = [λi,1 λi,2 λi,3]
T . There are six orthogonality

constraints (from (8)) corresponding to the six basis functions
of the kernel:

1 :
∑

i

λi,1 = 0

x :
∑

i

xiλi,1 + λi,2 = 0 y :
∑

i

yiλi,1 + λi,3 = 0

x2 :
∑

i

x2
iλi,1 + 2xiλi,2 = 0 y2 :

∑

i

y2
i λi,1 + 2yiλi,3 = 0

xy :
∑

i

xiyiλi,1 + yiλi,2 + xiλi,3 = 0

Note that some care is needed in selecting the regularization
criterion J . Had we chosen the classical criterion ‖f‖D2

, we
would have obtained ψ(x) = ρ2 log ρ as the fundamental
solution, the second derivative of which is not bounded
around zero, thus preventing the evaluation of the measures
∇xfout(xi) of (14) at grid points. No such (nontrivial) fout

would belong to F ; the problem would not admit a solution
in F .

As an example, we have approximated a 2D Gaussian
using thin-plate splines, r4 log r functions without and with
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(a) (b)

Fig. 7. Corresponding slices of (a) functional MR and (b) anatomical (proton density) MR images with landmarks put manually at important points. The
deformation field between landmarks is determined by interpolation using variational reconstruction method (equivalent to thin-plate splines in this case).

the derivative information. The results are shown in Figure 8.
The higher order approximation with r4 log r functions leads
to a smoother function than the thin-plate spline solution
(r2 log r) and therefore performs better for approximating
a Gaussian which is a very smooth function. Not surprisingly,
the method using the derivatives we have just described gives
the best results.

This approach can be easily extended for finding vector
functions f : R

2 → R
2 by taking J(f) = J(fx)+J(fy), where

(fx, fy) = f are the components of f . As the components are
treated separately, the solution can be calculated independently
for each of them. One possible application is semi-automatic
landmark image warping with derivative constraints.

G. Tomographic reconstruction

A nice example of a classic inverse problem that also falls
into our framework is tomographic reconstruction [33, 34]. It
consists of reconstructing a cross section of an object from
its transaxial projections. We now show that tomographic
reconstruction lends itself well to the variational formulation.
Alternative algorithms involve wavelets [35] and polynomial
convolutional kernels [36].

Let f(x, y) be the unknown cross section of the object to
be reconstructed. We measure the projections of f at q angles
θi. For each angle, we measure an integral along a ray at N
positions uj , that is

sij =

∫

R

f(t cos θi − uj sin θi, t sin θi + uj cos θi)dt (15)

This integral corresponds to our sampling operator. The vari-
ational formulation of the reconstruction problem is thus:
Find a function fout consistent with measurements sij (yielded
by (15)) and minimizing a plausibility criterion J . We choose
J to be Duchon’s semi-norm J(f) = ‖f‖D2

.

The projection/sampling operator (15) can be written as
a convolution

sij = 〈δ(x sin θi − y cos θi + uj), f〉

=
(
δ(−x sin θi + y cos θi)
︸ ︷︷ ︸

hi

∗f
)
(− sin θiuj , cos θiuj
︸ ︷︷ ︸

xij

) (16)

The fundamental solution ϕi for the sampling operator (16)
needs to satisfy the defining equations from Section V-D in [1]
which in this case lead to

∆2ϕi(x, y) = δ(−x sin θi + y cos θi) (17)

To find ϕi, we rotate our coordinate system by −θi, which
yields a 1D problem equivalent to the one in Section III-A with
solutions |x′|3. In our 2D case, after rotating the coordinate
system back, we get

ϕi = | − sin θix+ cos θiy|
3 (18)

Putting the pieces together, we find that our reconstruction
takes the form

fout(x, y) = [a0 a1 a2]





1
x

y



 +

q
∑

j=1

N∑

i=1

λij | − x sin θi + y cos θi − uj |
3 (19)

The interesting thing is the structure of the generating
functions ϕi that are back-projections (extensions) of the
corresponding 1D fundamental solutions along the projection
rays. They have the same form as in the standard back-
projection algorithm [33].

For a more realistic application, we consider that the mea-
surements s are noisy, and we therefore use the approximation
formulation from Section II-F. Second, instead of integrating
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Fig. 8. Reconstructing a 2D Gaussian (a) from information at sampling points (b). The difference between the true function and the approximation gets
progressively smaller as we use (c) thin-plate spline r2 log r approximation, (d) approximation using r4 log r, and (e) approximation using r4 log r with
measurements of derivatives. The respective SNRs are: (c) 13.4 dB, (d) 18.7 dB, (e) 34.2 dB. The approximation using derivatives gives the best results. Bear
in mind, though, that the derivative method uses an extra information (the derivatives) that the other methods cannot use.

over the whole space in (15),(16), we only integrate over
the part corresponding to the measurement device. If we also
evaluate the regularization criterion in the same domain, the
fundamental solutions ϕi remain the same.

Figure 9 shows a comparison of the reconstruction using the
variational algorithm and classical filtered back-projection [33]
as implemented in Matlab. We can observe that for a small
number of measurements, the variational reconstruction algo-
rithm gives better result than the filtered back-projection. For
a large number of measurements, the results of the variational
reconstruction are comparable to that of the filtered back-
projection. Thus, our method is especially useful in the case
of few angles. More details can be found in [37].

IV. CONCLUSIONS

We have presented an interpolation and approximation
scheme capable of treating non-uniformly sampled multichan-
nel output of a filterbank. The reconstruction is optimal in
the sense of a user-chosen criterion. The method is easily
modifiable to adapt to various sampling (measuring) systems
and can take advantage of an a priori knowledge about the
reconstructed object.

We present mathematical recipes that should facilitate the
derivation of the relevant formulas for specific problems and
the subsequent use of the variational reconstruction.

We believe that our reconstruction algorithm is especially
useful for applications where there are few measurements as
it permits to use them in the best possible way. We have
presented several examples to illustrate its possible uses.
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