

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Katedra biomedicínské techniky

Monitorovanie procesu decelularizácie planárnych tkanív Monitoring of planar tissue decelularisation

Diplomová práce

Študijní program: Študijní obor: Biomedicínská a klinická technika Biomedicínský inženýr

Autor diplomovej práce: Vedúci diplomovej práce: Bc. Dominika Sedlačková Ing. Roman Matějka

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Sedlačková	Jméno:	Dominika	Osobní číslo:	434174			
Fakulta:	Fakulta biomedicínského inženýrství							
Garantující katedra:	Katedra biomedicínské techniky							
Studijní program:	Biomedicínská a klinická technika							
Studijní obor:	Biomedicínský inženýr							

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Monitorování procesu decelularizace planárních tkání

Název diplomové práce anglicky:

Monitoring of planar tissue decelularisation

Pokyny pro vypracování:

Upravte konstrukční řešení kultivační komory pro decelularizaci planárních tkání, prasečího a hovězího perikardu, pro možnost umístění optického snímače. Tuto komoru mplementujte do stávajícího systému decelularizace a řešení ověřte laboratorním experimentem. Vyhodnoťte relativní absorpci a kolorimetrickou změnu tkáně a výsledky korelujte s histologii.

Seznam doporučené literatury:

[1] Lanza, R., Langer, R., Vacanti, J., Principles of Tissue Engineering, ed. 3rd Edition , Elsevier Academic Press, 2007, ISBN 978-0123706157

[2] Lucie Bacakova, Martina Travnickova, Elena Filova, Roman Matejka, Jana Stepanovska, Jana Musilkova, Jana Zarubova and Martin Molitor, Muscle Cell and Tissue - Current Status of Research Field, ed. 1, kapitola Vascular Smooth Muscle Cells (VSMCs) in Blood Vessel Tissue Engineering: The Use of Differentiated Cells or Stem Cells as VSMC Precursors, 2018, IntechOpen

Jméno a příjmení vedoucí(ho) diplomové práce:

Ing. Roman Matějka

Jméno a příjmení konzultanta(ky) diplomové práce:

Ing. Jana Štěpanovská

Datum zadání diplomové práce: **18.02.2019** Platnost zadání diplomové práce: **20.09.2020**

prof. Ing. Peter Kneppo, DrSc. podpis vedoucí(ho) katedry prof. MUDr. Ivan Dylevský, DrSc. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

,

2

Student(ka) bere na vědomí, že je povinnen(a) vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

21.3.2019

Vecllosters c

Datum převzetí zadání

Podpis studenta(ky)

PREHLÁSENIE

Prehlasujem, že som diplomovú prácu s názvom Monitorovanie procesu decelularizácie planárnych tkanív, vypracovala sama a použila som k tomu pramene, ktoré uvádzam v zozname použitej literatúry.

Nemám závažný dôvod proti použitiu tohoto školského diela v zmysle §60 Zákona č.121/2000 Sb., o práve autorskom, o právach súvisiacich a právom autorským a o zmene niektorých zákonov (autorský zákon).

V Kladne 9. 5 .2019

Bc. Dominika Sedlačková

POĎAKOVANIE

Rada by som poďakovala vedúcemu mojej práce Ing. Romanovi Matějkovi za pomoc a podporu pri práci na experimente a následnom vypracovaní textu diplomovej práce.

Podporené z programového projektu Ministerstva zdravotnictví ČR s reg. č. 15-29153A a NV18-02-00422.

ABSTRAKT

Monitorovanie procesu decelularizácie planárnych tkanív

Diplomová práca rieši problematiku sledovania priebehu decelularizácie planárnych tkanív. Po správne vykonanej decelularizácii má tkanivo úplne stratiť svoj histokompatibilný komplex. Potreba monitorovať decelularizáciu vychádza práve z nutnosti mať toto potvrdené. Hypotézou bolo predpokládané, že tkanivo mení vlastnosti viditeľného svetla v závislosti na fáze prebehnutej decelularizácie, teda na množstve bunkových zvyškov nachádzajúcich sa v okolí tkaniva. Hypotéza bola potvrdená experimentom s viditeľným svetlom a optickým senzorom. Kolorimetrom bola vzorka tkaniva osvetlená a zároveň kolorimeter aj snímal svetlo na vzorke decelularizovaného tkaniva. Podobnosť nameraných výsledkov s výsledkami histológie decelularizovaných vzoriek tkanív potvrdzuje, že je možné monitorovať decelularizáciu optickým systémom s využitím viditeľného svetla.

Kľúčové slova

decelularizácia, tkanivo, viditeľné svetlo, kolorimetria

ABSTRACT

Monitoring the Decellularization Process of Planar Tissues

The diploma thesis deals with the problem of tracking the decellularization of planar tissues. Once properly decellularized, the tissue should completely lose its histocompatibility. The need to monitor decellularization is based on the need to have this confirmed. The hypothesis was that the tissue changes the properties of visible light depending on the phase of the decellularization, that is, the amount of cell debris in the surrounding tissue. The hypothesis was confirmed by an experiment with visible light and an optical sensor. A tissue sample was illuminated by the colorimeter, while the colorimeter also scanned the light on a decellularized tissue sample. The similarity of the measured results with the histology results of the decellularized tissue samples confirms that it is possible to monitor the decellularization by the visible light optical system.

Keywords

decelularisation, tissue, visible light, colorimetry

Obsah

Zoz	znam	symbolov a značiek	3
1	Úvo	19	9
	1.1	Prehľad súčasného stavu)
		1.1.1 Hlavný histokompatibilný komplex9	
		1.1.2 Xenotransplantácia	
		1.1.3 Decelularizácia10	
	1.2	Ciele práce	3
		1.2.1 Hypotéza	
2	Mete	6dy14	1
	2.1	Stanovenie stupňa decelularizácie – pilotné merania14	4
	2.2	Monitorovanie procesu decelularizácie)
		2.2.1 Ofsetové zrovnanie hodnôt	
		2.2.2 Vyhodnocovanie výsledkov	
	2.3	Histológia vzoriek decelularizovaných tkanív	1
3	Výsl	edky24	5
	3.1	Výsledky stanovovania stupňa decelularizácie – pilotné merania	5
	3.2	Výsledky monitorovania procesu decelularizácie	1
	3.3	Histologické výsledky	5
4	Disk	usia38	3
5	Záve	er4	l
Zoz	nam	použitej literatúry42	2
Prí	loha A	A: Skript na výpočet intenzity svetla z fotografie40	5
Prí	loha l	3: Skripty na vyčítanie a vynesenie dát do grafov48	3
Prí	loha	C: Dáta namerané sledovaním priebehu decelularizácie pre jednotlivé	
vzo	rky		2

Zoznam symbolov a značiek

Symbol	Jednotka	Význam
A	-	Hladina významnosti
R	Ω	Elektrický odpor
U	V	Elektrické napätie
U_{Ref}	V	Referenčné napätie
U_D	V	Napätie generované fotodiódou

Zoznam symbolov

Zoznam skratiek

Skratka	Význam
AV ČR	Akademie věd České republiky
CVD	Cardiovascular disease - kardiovaskulárne ochorenia
D	Vzorka po preplachu DNAzou
FBMI	Fakulta biomedicínskeho inženýrství
HLA	Human leucocyte antigen – molekuly na povrchu buniek, ktoré zodpovedajú za
	histokompatibilitu tkanív u človeka
MHC	Major histocompatibility complex - hlavný histokompatibilný komplex
Ν	Natívna vzorka
NK bunky	Natural killer – bunky nešpecifickej imunity
OZ	Operačný zosilňovač
Р	Vzorka po záverečnom preplachu
SDS	Dodecyl sulfát sodný
V1-V4	Vzorky počas pôsobenia SDS v decelularizačnom cykle

1 Úvod

Decelularizácia je pokročilá metóda tkanivového inžinierstva umožňujúca získať extracelulárnu matrix so zachovanou štruktúrou, priestorovým usporiadaním a rozmermi. V priebehu decelularizačného cyklu dochádza k premývaniu tkaniva detergentmi, čím sa rozrušia bunkové štruktúry a zvyšky buniek sa vyplavujú preplachmi z tkaniva von. [1] Využitie má značné a to najmä na prípravu biometeriálov pre transplantáciu, najčastejšie pri ochoreniach kardiovaskulárnej sústavy. Pri transplantáciách od iných živočíšnych druhov je veľmi dôležité, aby bola decelularizovaná časť tkaniva úplne zbavená živých buniek. Zvyšky buniek by mohli spôsobiť imunitnú reakciu príjemcu, v horších prípadoch zlyhanie transplantátu, či vážne ohrozenie života pacienta. [2] Motívom tejto práce je určovanie stupňa decelularizácie. Keďže sa jedná o proces časovo pomerne náročný, možnosť monitorovania jeho priebehu bude prínosom pre prax.

1.1 Prehľad súčasného stavu

Transplantácia je prenos tkaniva, alebo orgánu z jedného miesta na druhé. Najčastejšie ide o alogénnu transplantáciu, čo je transplantácia medzi príslušníkmi toho istého druhu. Ďalej poznáme autológnu transplantáciu, čo je prenos z jedného na druhé miesto u toho istého jedinca, napr. koža. Syngénna transplantácia je prenos medzi geneticky identickými jedincami, čo sú jednovaječné dvojčatá. Xenogénna transplantácia je prenos medzi rôznymi živočíšnymi druhmi. Mechanizmus transplantačnej imunológie je špecifický pre každý orgán, ale v podstate princíp je všade ten istý. Dochádza ku kontaktu imunitného systému príjemcu s orgánom darcu a cieľom je navodiť toleranciu a zachovať funkčnosť orgánu. Pri transplantácií inkompatibilného orgánu môže vzniknúť rejekcia. Poznáme hyperakútnu, akútnu a chronickú rejekciu. [3] Za najväčšiu prekážku pri transplantácii sa považuje histokompatibilita tkanív, ktorá je daná HLA molekulami na povrchu buniek darcu a príjemcu. [4]

1.1.1 Hlavný histokompatibilný komplex

Označuje sa aj ako MHC (Major histocompatibility complex). Sú to molekuly na povrchu buniek, ktoré zodpovedajú za histokompatibilitu tkanív. U človeka sa tieto melekuly označujú ako HLA (Human leukocyty antigen), lebo boli objavené na leukocytoch. Cieľom je transplantovať taký orgán, ktorého HLA molekuly na povrchu buniek sa budú čo najviac zhodovať s príjemcom. Čím menej sa HLA molekuly zhodujú, tým je vyššie riziko rejekcie. Najideálnejší príklad je, keď sú darca a príjemca jednovaječné dvojčatá, ktoré majú identické HLA molekuly. Medzi imunologické bariéry transplantácie patria aj iné ďalšie molekuly. Špecifickú imunitnú odpoveď zabezpečujú B a T-lymfocyty. Keď sa B-lymfocyt stretne s antigénom, čo je pri transplantácii alogénna HLA molekula, tak tento B-lymfocyt začne proliferovať a diferencovať na plazmatické bunky. Plazmatické bunky potom produkujú protilátky proti alogénnej HLA molekule. [5] [6]

1.1.2 Xenotransplantácia

Xenotransplantácia má potenciál predstavovať alternatívu k materiálom ľudského pôvodu a preklenúť nedostatok ľudského materiálu na transplantáciu. Je to transplantácia s prenesením transplantátu jedinca iného druhu alebo s použitím umelého transplantátu. Xenotransplantáty môžu pomôcť tisícom pacientov, ktorí čakajú na darované orgány. Zvierací orgán, pravdepodobne z prasaťa alebo paviána, by mohol byť geneticky pozmenený s ľudskými génmi, aby popudil imunitný systém pacienta, aby ho prijal ako súčasť svojho vlastného tela. Xenogénna transplantácia však nesie riziká najmä prenosu známych alebo aj zatiaľ nerozpoznaných xenogénnych infekčných činiteľov zo zvierat na ľudí a od príjemcov xenogénnych transplantátov na širokú verejnosť. [7]

Celosvetový nedostatok orgánov na klinickú implantáciu spôsobuje, že 20-35% pacientov, ktorí potrebujú náhradné orgány, zomierajú na čakacom zozname. Postupy, z ktorých niektoré sú skúmané v raných klinických skúškach, sa zameriavajú na použitie buniek alebo tkanív z iných živočíšnych druhov na liečbu život ohrozujúcich a invalidizujúcich ochorení, ako je rakovina, cukrovka, zlyhanie pečene alebo Parkinsonova choroba. Ak sa môžu zlepšiť podmienky životnosti, mohlo by sa umožniť dlhodobé uchovávanie xenogénnych buniek, tkanív a orgánov tak, aby boli ľahšie dostupné na transplantáciu. [8]

1.1.3 Decelularizácia

V súčasnej dobe dochádza k nárastu výskytu kardiovaskulárnych ochorení (CVD – cardiovascular disease) a tento problém je jedným z najčastejších príčin smrti. [9] Chirurgická liečba CVD často vyžaduje náhradu poškodeného tkaniva.

V Spojených štátoch amerických je viac ako 500 000 arteriálnych bypass operácií vykonávaných každý rok. Autológne cievy sú uprednostňované ako náhradný štepový materiál, avšak až 40% pacientov, ktorí potrebujú bypass, nemajú zdravú tepnu alebo žilu vhodnej dĺžky na použitie ako autotransplantát. Aj keď je pre transplantáciu k dispozícii vhodné venózne tkanivo, prestavba in vivo v dôsledku zranenia alebo zvýšeného zaťaženia nemusí byť reálne prístupná. Syntetické štepy sú v súčasnosti štandardnou klinickou alternatívou k autológnemu štepu, no stále existujú relatívne rozdiely v mechanických vlastnostiach medzi štepmi vytvorenými z týchto materiálov a pôvodnými cievami. Nadmernou snahou organizmu pacienta o remodeláciu cievy

môže dôjsť k zúženiu cievy, veľkým počtom nanovo vzniknutých buniek. Toto patologické zahustenie nazývané intimálna hyperplázia a je hlavným dôvodom zlyhania štepu. Výsledkom je nízka dlhodobá miera priechodnosti pre arteriálne štepy s malým priemerom. [10]

Používaním syntetických materiálov sa objavujú stále nedoriešené problémy, ktoré bránia plnému prijatiu materiálu telom pacienta. Existuje široká škála materiálov, no žiaden nie je plne vyhovujúci. Taktiež zostáva zaťažujúce, že syntetický materiál nerastie spolu s pacientom, pri náhradách tkaniva napríklad u detí. [11]

Decelularizácia je nová technológia v pokročilom tkanivovom inžinierstve, ktorá umožňuje vytvoriť nové materiály pre cievne náhrady a cievnu reparáciu xenogénneho pôvodu, ale s výrazne zníženou imunogénnou aktivitou. [12] [13] Decelularizácia využíva rôzne prístupy k odstráneniu buniek z tkaniva a k izolácií tkanivovo špecifickej extracelulárnej matrix. Extracelulárna matrix sa nachádza v okolí buniek a je komplexom zloženým predovšetkým z kolagénu, glykoproteínov, proteoglykánov, elastínu, a laminínu. Je charakteristická svojim usporiadaním pre daný typ tkaniva a netvorí len oporu, ale je aj dynamicky zapojená do celkovej funkcie daného tkaniva. [14] Decelularizovaná extracelulárna matrix má zachované zloženie a architektoniku pôvodného tkaniva. Javí sa tak ako ideálny materiál na implantáciu do organizmu. [15]

Fyzikálne metódy, ktoré sú väčšinou prvým krokom decelularizácie spôsobujú lýzu bunkových membrán, ktorá sa dokončí chemickými detergentmi alebo enzýmami narušujúcimi cytoplazmatický obsah bunky. Pozostatky buniek musia byť vyplavené pomocou pufrov, čím sa značne zníži imunologická aktivita molekúl, ktoré by mohli po implantácii biomateriálu vyvolať imunitné odmietnutie hostiteľským organizmom. Premývanie extracelulárnej matrix vytvorenej decelularizáciou pomáha tiež k vyplaveniu reziduí decelularizačných agnes, ktoré by neskôr mohli mať nepriaznivý vplyv na hostiteľský organizmus. [14] Cieľom je teda rozrušiť a vyplaviť všetky bunkové štruktúry z tkaniva, čím sa má vytvoriť ideálne lešenie pre znovuosídlenie novými vhodnými bunkami. [16]

Efektivita decelularizácie závisí na kombinácií všetkých druhov decelularizačných agnes. Je nutné prispôsobiť výber druhu tkaniva či orgánu, ktorý má byť decelularizovaný. Detergenty sú najčastejšie používané decelularizačné agnes a to najmä vďaka vysokej efektivite. Jedná sa o organické zlúčeniny, ktoré majú nepolárny hydrofóbny reťazec a polárnu hydrofilnú hlavičku. [17]

Nedávne štúdie arteriálnych aloimplantátov a xenotransplantátov ukázali, že arteriálne matrice môžu byť po decelularizácii zachované bez zmeny ich biomechanických vlastností, trojrozmernej štruktúry a zloženia pôvodného tkaniva. Naočkovaním týchto implantátov hostiteľskými endotelovými bunkami sa zabráni imunogénnemu odmietnutiu. [10]

Nové decelularizované matrice majú byť relatívne ľahko dostupné s nízkymi nákladmi v porovnaní s autológnymi tkanivami, ktoré sa v implantológii stále považujú za "zlatý štandard". Okrem toho majú podobné zloženie, mechanické vlastnosti a 3D štruktúru ako natívne tkanivá a môžu sa preto považovať za vhodnejšie na náhradu tkanív ako syntetické polymérne cievne štepy, ktoré sa v súčasnosti používajú v klinickej praxi. Obzvlášť syntetické vaskulárne štepy s priemerom menším ako 4 mm u ľudských pacientov podliehajú restenóze. V tkanivovom inžinierstve je predpoklad dobrej využiteľnosti decelularizovaných matríc. Verí sa, že po správne vykonanej decelularizácii tkanivo úplne stratí svoj histokompatibilný komplex, čím vzniká možnosť transplantácie tejto matrice do cudzieho organizmu. [8]

Decelularizované matrice, ak sú správne pripravené, môžu ponúknuť mikroprostredie prirodzene husté, schopné riadiť endogénnu biologickú výrobu nového tkaniva. [6]

O priebehu remodelácie vieme, že matrica je v tele degradovaná enzýmami a postupne infiltrovaná bunkami, ktoré tiež podporujú uvoľňovanie rastového faktoru z matrice. U takej decelulariovanej matrice, aj keď nie je úplne imunologicky čistá, sa ukázalo, že resorbcia prebieha pomerne rýchlo. V psom tele nastala úplná resorbcia po troch mesiacoch. [18]

Najdôkladnejšia štúdia bola multicentrická klinická štúdia stotroch pediatrických a dospelých pacientov, ktorí dostávali stotridsať dva implantátov CorMatrix® na rôznych miestach, z ktorých bolo tridsať osem chlopní. CorMatrix Cardiovascular Inc. je regeneratívna biotechnologická spoločnosť zaoberajúca sa riešením najväčších svetových kardiovaskulárnxch klinických potrieb. Päť z tridsať osem pacientov s výmenou chlopní vyžadovalo reoperáciu v dôsledku zlyhania matrice v rozmedzí 2,5 - 34,1 mesiaca. Hoci bola CorMatrix® degradovaná, v každom prípade nebola úplne resorbovaná a chýbalo štrukturálne a funkčné remodelovanie spojené s organizovanými kolagénovými vláknami. [19] CorMatrix® bol tiež testovaný ako vaskulárny štep. Výsledky však neboli veľmi povzbudivé. Cievkové štepy s malým priemerom majú vo všeobecnosti veľmi zlú dlhotrvajúcu priechodnosť. Žiadne lepšie výsledky sa nepozorovali ani pri použití kortikálneho cievneho transplantátu CorMatrix®. Transplantát implantovaný do ovčieho modelu, vykazoval nízku odolnosť voči dilatácii a vysokú tendenciu k oklúzii. [20] Preto hľadanie nových matríc na inžinierstvo a opravy kardiovaskulárneho tkaniva je vždy rozumné.

Hlavné ventily srdca sú zodpovedné za jednosmerný prietok krvi z predsiení do komôr a z komôr do srdcových tepien. Niektoré patológie, ako je reumatická horúčka alebo infekčná endokarditída, môžu viesť k zmene funkcií srdcových chlopní. Vrodené vady srdca môžu tiež ovplyvniť ventily. Valvulárne srdcové ochorenia sú časté v bežnej populácii a môžu viesť k zvýšeniu frekvencie srdcovej činnosti a arytmiám. [21] V súčasnosti je liečba chlopňových ochorení srdca najčastejšie chirurgická. Mechanické

ventily, najbežnejšie používané protézy, majú vynikajúcu trvanlivosť ale nesú riziko tromboembolických a hemoragických udalostí počas celej životnosti. Bioprotektívne ventily sú často prasacími aortálnymi ventilmi namontovanými na stent alebo inú podložku, niekedy sú tiež vyrobené z hovädzieho perikardu. V budúcnosti sa očakáva, že tkanivové inžinierstvo poskytne trvalé a neimunogénne srdcové chlopne, pravdepodobne schopné rásť a remodelovať sa v závislosti od veku pacienta. Pri tradičnom tkanivovom inžinierstve je základnou požiadavkou na inžinierstvo srdcových chlopní trojrozmerné lešenie s vhodnými mechanickými vlastnosťami, ktoré sa naočkuje vhodnými bunkovými typmi. To všetko môže spĺňať decelularizované tkanivo srdcovej chlopne iného živočíšneho druhu. [6]

Vývoj decelularizácie smeruje k rutinnému využívaniu decelularizovaných cievnych transplantátov v klinickej praxi, čím sa má zlepšiť hojenie a fungovanie cievnych štepov a náplastí a tým aj kvalita života pacientov. [22]

1.2 Ciele práce

Cieľom práce je navrhnúť metodiku a vytvoriť optický snímač na stanovenie stupňa decelularizácie na modelových tkanivách. Vzorky decelularizovaných tkanív budú osvietené stálym zdrojom viditeľného svetla. Svetlo bude prechádzať natiahnutým tkanivom, a tým má dôjsť k zmene intenzity a ku kolorimetrickým zmenám tohoto svetla. Je potrebné nájsť vhodnú metódu snímania intenzity alebo iných vlastností svetla, meniacich sa na decelularizovanom tkanive. Po nájdení vhodnej metódy v laboratórnych podmienkach je ďalej cieľom práce upraviť konštrukčné riešenie kultivačnej komory pre decelularizáciu tkanív, prasacieho a hovädzieho perikardu tak, aby bolo možné umiestniť tam merací svetelný systém. Ďalej implementovať túto novú konštrukciu do súčasného systému decelularizácie tak, aby bolo možné monitorovať priebeh decelularizácie. Cieľom práce je taktiež overiť funkčnosť meracieho systému experimentom a výsledky korelovať histológiou vzoriek laboratórnym S decelularizovaných tkanív.

1.2.1 Hypotéza

Predpokladom je, že decelularizované tkanivo pozmení vlastnosti svetla, ktorým je osvetľované. V priebehu decelularizácie sa mení povrch tkaniva a tým, by sa malo meniť aj to, aká zmena svetla nastane. Počas prebiehajúcej decelularizácie budú sledované zmeny vlastností svetla, a tak vyhodnocovaný stupeň decelularizácie. Pilotným meraním bude vybraná najvhodnejšiu metóda snímania svetla. Táto metodika potom bude implementovaná do decelularizačného systému, kde bude možné sledovať priebeh zmien tkaniva na základe zmien svetla. Pomocou tohto zariadenia bude možné monitorovať priebeh decelularizácie planárnych tkanív.

2 Metódy

Decelularizácia tkanív bola uskutočnená na biotechnologickom ústave Akadémie vied Českej Republiky vo Vestci. Počas prebiehajúcej decelularizácie nedochádzalo k žiadnym zmenám oproti bežnému postupu decelularizácie tkanív. Na rozrušenie bunkových stien a štruktúr bol ako decelularizačné agnes použitý 0,5 % dodecyl sulfát sodný (SDS), ktorý je najznámejším a najrozšírenejším agens na poli decelularizácie. Ten pôsobil v komore 60 minút (6 x 10 minútový cyklus) a následne bolo tkanivo prvý krát prepláchnuté. Po prepláchnutí bola do komory pridaná DNA-za (0,5 ml v 60 ml pufru), tá cirkulovala v systéme 20 minút. Po uplynutí tejto doby nasledoval finálny preplach destilovanou vodou v trvaní 1200 minút (120 x 10 minút). Decelularizačná komora používaná v bežnej praxi na ústave AV ČR nebola nijako pozmenená ani upravená. Vzorky tkanív z prasacieho perikardu boli na pilotné merania odoberané postupne počas prebiehajúcej decelularizácie v presne daných časových momentoch, uložené jednotlivo do roztoku, ktorý zabezpečoval ich trvanlivosť a v chlade prevezené na Fakultu biomendicínskeho inženírství do Kladna. V laboratóriu na Fakulte biomedicínskeho inžinierstva v Kladne prebiehali všetky pilotné merania na hodnotenie stupňa prebehnutej decelularizácie. Všetky vzorky pochádzajú z laboratórnych zvierat, rovnakého pohlavia aj veku, z rovnakej hmotnostnej kategórie. Všetky zvieratá boli pred ich zabitím a použitím na vedecké účely zdravé a neprejavili sa u nich ani žiadne telesné vady.

2.1 Stanovenie stupňa decelularizácie – pilotné merania

Pomocou programu Autodesk Inventor (Autodesk Inc, San Rafael, Kalifornia, USA) bol vytvorený návrh konštrukcie tvaru H na upevnenie vzorky tkaniva, pre ďalšie práce so vzorkou. Konštrukcia sa skladá z dvoch častí spojených štyrmi skrutkami. Konštrukčný návrh, presnejšie jedna jeho časť je zobrazená na obrázku z prostredia Autodesk Inventor (Obr. 2.1). Pomocou tohto návrhu bol vytvorený skutočný kus konštrukcie na upevnenie vzorky decelularizovaného tkaniva z polykarbonátu. Je 10 cm široký a jeho rozmery sú 60 cm a 76 cm.

Obr. 2.1: Konštrukčný návrh časti držiaka na tkanivo [zdroj: autor]

Medzi dvoma konštrukciami bola umiestnená vzorka tkaniva medzi mikroskopickými sklíčkami. Pomocou štyroch skrutiek a matíc bolo zabezpečené, že nedošlo k posunutiu vzorky počas merania. Oceľové skrutky veľkosti M4 prechádzali skrz oboje konštrukcie. Názorne to zobrazuje nasledujúci obrázok (Obr. 2.2).

Obr. 2.2: Názorný obrázok uchytenia decelularizovanej vzorky tkaniva v konštrukcii [zdroj: autor]

Na jednej strane bolo tkanivo osvetlené diódou. Dióda bola napájaná zo zdroja napätia 12 V, pričom zapojenie bolo upravené tak, aby diódou tiekol stály prúd, naviac aby sa veľkosť tohto prúdu dala regulovať. V prostredí Autodesk Eagle (Autodesk Inc, San Rafael, Kalifornia, USA) bol návrh tejto schémy vyhotovený aj ako návrh dosky plošných spojov a následne boli všetky súčiastky naspájkované na túto dosku. Na obrázku je schéma zapojenia (Obr. 2.3), kde referencia REF 02 stabilizuje napätie zo zdroja o veľkosti 12 V na hodnotu 5 V. Toto napätie, označované ako V0 vstupuje do trimra, pomocou ktorého je možné regulovať napätie v rozmedzí 0 - 5 V. Pred trimrom je tiež zapojený kondenzátor C1 s kapacitou 1µF, ten má zabrániť ďalším výkyvom od nominálnej hodnoty. Napätie je privádzané na neinvertujúci vstup operačného zosilňovača, napájaného nesymetricky, napätím o hodnote 12 V. Privedením napätia na vstup CTRL dôjde k čiastočnému otvoreniu tranzistora, čím nastavíme konkrétnu hodnotu jeho pracovného bodu. Pomerom odporu rezistora R2 a odporu spätnoväzobnej slučky je nastavené zosilnenie OZ. Výstupné napätie OZ je teda priamo úmerné napätiu na neinvertujúcom vstupe OZ.

Obr. 2.3: Schéma zapojenia LED diódy [zdroj: autor]

Samotné meranie bolo uskutočnené troma rôznymi spôsobmi. Na prvý z nich bola požitá USB kamera Platinum. Na zaistenie stálosti osvetlenia bola použitá kartónová krabica. Tým sa zabránilo prístupu svetla z vonkajšieho prostredia do okolia meracieho systému, zaistené tak bolo, že snímané svetlo kamerou pochádzalo z LED diódy a prešlo vzorkou decelularizovaného tkaniva Dióda na jednej strane bola napájaná prúdom 0,01 A. Meranie intenzity bolo uskutočnené pomocou troch rôznych zdrojových LED diód. Konkrétne sa jednalo o tieto diódy: White L5 WAT- LC (biela), Blue L5 WW-LC (modrá) a Red L53 SRC-DW (červená). Kamera bola vo vzdialenosti

10 cm od tkaniva. Pomocou programu Imaging Control (The Imaging Source Europe GmbH, Bremen Germany) boli zaznamenané snímky uložené v počítači. Následne skriptom, ktorý je súčasťou príloh (príloha A) spracované tak, aby bolo možné porovnať množstvo svetla, na vzorke decelularizovaného tkaniva. Bol na to využitý program Matlab (MathWorks, Natick, Massachusetts, USA). Výsledky z tohto merania sú uvedená v kapitole Výsledky (Tab. 3.1 a Obr. 3.1). Na tabuľke je možné vidieť namerané hodnoty intenzity svetla, ktoré prešlo vzorkou ku kamere postupne od troch rôznych typov zdrojových LED diód. Intenzita je predstavovaná ako bezrozmerné číslo, čím vyššie číslo tým väčšia intenzita. Nasledujúci obrázok (Obr. 2.4) zobrazuje ako vyzerala meracia sústava v skutočnosti. Na pravej strane sú už spomínané dve H konštrukcie spojené štyrmi skrutkami. Medzi nimi bola umiestnená medzi hodinovými sklíčkami vzorka decelularizovaného tkaniva. Na fotografii vľavo je kamera Platinum, ďalej pripojená k počítaču.

Obr. 2.4: Meranie pomocou kamery Platinum [zdroj: autor]

Druhý spôsob, ktorým bolo uskutočnené meranie množstva svetla na druhej strane tkaniva od LED diódy je taký, kde bola využívaná fotodióda. Namerané boli hodnoty napätia, pričom vieme, že čím vyššie je generované napätie, tím viac svetla sa na fotodiódu dostalo. Výsledky merania sú opäť uvedené v kapitole Výsledky (Tab. 3.2, Obr. 3.2) . Zapojenie fotodiódy je zobrazené na obrázku (Obr. 2.5) z programu Autodesk Eagle (Autodesk Inc, San Rafael, Kalifornia, USA). Kondenzátor C1 a C2 spolu s rezistormi R1 a R2 vytvárajú delič napätia, ktorý delí napätie 5 V symetricky. Napätie v strede deliča je 2,5 V, pretože v deliacom moste je dva krát umiestnený rezistor s rovnakou hodnotou odporu R1 = R2 = 10 k Ω . [23]

$$U_{ref} = \frac{U_{in}}{R_1 + R_2} \cdot R_2 \tag{2.1}$$

Toto napätie je privádzané na neinvertujúci vstup operačného zosilňovača, čím je tvorená napäťová referencia. Na jeho invertujúci vstup je privedené napätie z fotodiódy. Spätná väzba OZ vedie cez rezistor R3 s hodnotou odporu 100 k Ω . Keďže sa vnútorný odpor diódy ani odpor R3 nemení je dané stále zosilnenie OZ. OZ je zapojený v invertujúcom zapojení a napájaný nesymetricky, napätím 5 V. Fotodióda generuje nízke hodnoty napätia, menšie ako je referenčné napätie 2,5 V, toto napätie je považované za záporné a privádzané na invertujúci vstup OZ. Výstupná hodnota napätia OZ je invertovaná o 180° voči vstupnému napätiu a zosilnená stálym zosilnením ovplyvneným hodnotou odporu rezistora R3. Toto kladné zosilnené napätie je privádzané na konektor pin 5, kde je možné pridaním ďalších pomôcok zobraziť jeho hodnotu. Rezistor R4 s hodnotou odporu 150 k Ω je v zapojení z dôvodu toho, aby nedochádzalo k ovplyvňovaniu výstupného napätia, vplyvom meracieho prístroja.

Obr. 2.5: Schéma zapojenia fotodiódy [zdroj: autor]

Vzorka decelularizovaného tkaniva bola rovnako ako v prvom meraní umiestnená medzi hodinovými sklíčkami prichytená H konštrukciami na danom mieste. Opäť bola LED dióda napojená na zdroj napätia 12 V a napájaná prúdom 0,01 A. A takisto opäť boli použité ako zdroj svetla postupne tri rôzne typy LED diód. Na druhej strane tkaniva bola umiestnená snímacia fotodióda. Takisto ako v predchádzajúcom prípade bolo zabránené príchodu svetla z vonkajšieho prostredia do meracieho systému. Namerané boli hodnoty napätia generovaného fotodiódou pre všetkých sedem vzoriek, pomocou troch rôzne farebných zdrojových LED diód.

Na tretí spôsob merania bol použitý systém EZO RGB. Jedná sa o kolorimeter, teda prístroj na meranie farby svetelného lúča. Množstvo buniek na čiastočne decelularizovanom tkanive spôsobuje zmenu farby prechádzajúceho lúča svetla z LED diódy. Na udržanie senzoru kolorimetra bol vytvorený iný konštrukčný systém podobného tvaru H. Návrh modelu z programu Autodesk Inventor (Autodesk Inc, San Rafael, Kalifornia, USA) je zobrazený na nasledujúcom obrázku (Obr. 2.6). Rozmery tejto konštrukcie sú zhodné s tými z predchadzajúcich meraní. Líšia sa vo veľkosti diery uprostred.

Obr. 2.6: Konštrukčný návrh časti držiaka na kolorimeter EZO RGB [zdroj: autor]

Do otvoru tvaru kruhu bol vložený kolorimeter a ďalšie dva H konštrukcie pridržiavali vzorku tak, ako aj v predchádzajúcich dvoch prípadoch merania. Použitá bola taktiež aj kartónová krabica na zabránenie dopadu svetla z okolia do meracieho systému. EZO RGB bol v systéme merania pripojený k počítaču pomocou mikrokontrolérovej dosky Arduino Uno. Napájaný zdrojom napätia 5 V. Tak bola nastavená jeho funkcia a to konkrétne, že bol použitý aj ako zdroj svetla aj ako snímací senzor. Najprv boli hodnoty namerané s 50% svietením, neskôr s 12%. Výsledky tohto merania sú uvedené v kapitole Výsledky (Tab. 3.3, Obr. 3.3, Tab. 3.4 a Obr. 3.4) intenzitu predstavuje bezrozmerné číslo, čím vyššie číslo, tým vyššia intenzita. Ako vyzeral merací systém v skutočnosti predstavuje obrázok (Obr. 2.7). Viac vpravo je vzorka decelularizovaného tkaniva v konštrukcii dvoch H súčiastok a viac vľavo senzor EZO RGB, ktorý bol použitý tiež ako zdroj svetla, uchytený tiež v dvoch H konštrukciách. Na fotografii hore je Arduino Uno, ďalej pripojený k počítaču.

Obr. 2.7: Meranie pomocou kolorimetra EZO RGB [zdroj: autor]

2.2 Monitorovanie procesu decelularizácie

Na monitorovanie procesu decelularizácie bolo z pilotných meraní vybrané tretie meranie pomocou kolorimetru EZO RGB. Tento výber prebehol na základe pilotných meraní, ktoré sú podrobnejšie popísané v predchádzajúcej kapitole (2.1 Stanovenie stupňa decelularizácie). A popis dôvodov a kritérií pre tento výber je diskutovaný v kapitole Diskusia. Výber dát na spracovávanie z hodnôt intenzít červenej zložky viditeľného svetla bol uskutočnený tiež na základe pilotných meraní. Nie náhodou boli na osvetľovanie tkanív v prvých dvoch pilotných meraniach použité rôzne LED diódy.

Pred samotným meraním bolo potrebné upraviť držiak na EZO RGB tak, aby bolo možné ho inštalovať do komory pre decelularizáciu. Pre kolorimetrický snímač bola vytvorená nová konštrukcia, jej model navrhnutý v programe Autodesk Inventor (Autodesk Inc, San Rafael, Kalifornia, USA) je zobrazený na obrázku (Obr. 2.8). Táto konštrukcia bola následne umiestnená na kultivačnú komoru pre decelularizáciu.

Obr. 2.8: Upravený konštrukčný návrh držiaka na kolorimeter EZO RGB [zdroj: autor]

Kolorimeter prichytený konštrukciou držiaka na kultivačnú komoru osvetľoval a následne snímal hodnoty intenzít jednotlivých zložiek farebného viditeľného svetla, počas prebiehajúcej decelularizácie. Decelularizácia prebiehala v klasickom, nezmenenom režime v decelularizačnej komore na ústave AV ČR vo Vestci. Kolorimeter vyžaroval svetlo v 12% svojich maximálnych možností a snímal hodnoty, ktoré boli pomocou počítača ukladané do tabuľkového dokumentu (Microsoft Excel, Redmond, USA). Nasledujúci obrázok (Obr. 2.9) predstavuje ako vyzerala decelularizačná komora už s namontovaným držiakom kolorimetra EZO RGB. V tejto komore následne prebiehala decelularizácia prasacích tkanív a zároveň monitorovanie celého procesu decelularizácie po dobu dvadsiatich dvoch hodín.

Obr. 2.9: Systém s kolorimetrom na decelularizačnej komore

Vzorky tkanív, ktorých decelularizácia bola vyhodnocovaná, sú označené skratkami a názvami, ktoré rešpektujú zachovanie anonymity. Všetky vzorky pochádzajú z rovnakého živočíšneho druhu. Je možné, že sa líšia hrúbkou, no to je pre účely tohto monitorovania nepodstatné. Laboratórne zvieratá, z ktorých boli vzorky na decelularizáciu, boli zdravé prasce rovnakého pohlavia, veku aj hmotnostnej kategórie.

Za pomoci programu Matlab (MathWorks, Natick, Massachusetts, USA) boli nasnímané dáta vyčítané a vynesené do grafov, aby bolo možné ich ďalej analyzovať a porovnávať. Skripty použité na tento účel sú súčasťou príloh (Príloha B). Výsledky meraní sú predstavené na ukážkových grafoch (Obr. 3.5 A Obr. 3.6) v nasledujúcej kapitole (Výsledky). Všetky zozberané dáta sú tiež zaznamenané v tabuľkách (Tab. C.1 a Tab. C.2) v prílohách (príloha C).

2.2.1 Ofsetové zrovnanie hodnôt

Keďže namerané hodnoty boli rôzne posúvané po ose y, bolo pred ďalším spracovávaním toto posunutie zrovnané. Pre vyhodnotenie experimentu bolo zaujímavé skôr to, ako sa hodnoty menili v priebehu decelularizácie, nie to aké maximálne respektíve minimálne hodnoty boli dosiahnuté. Posunutie bolo vykonané prostým odčítaním rovnakej číselnej hodnoty od všetkých hodnôt daného farebného kanálu. Veľkosť menšiteľa bola určená nasledujúcim spôsobom: boli zistené maximálne hodnoty intenzity červenej zložky farebného viditeľného svetla snímaného systémom EZO RGB pre každú vzorku jednotlivo, najmenšie číslo z maxím bolo zvolené za hodnotu, na ktorú mali byť upravené všetky ostatné hodnoty maxím, z rozdielu maxima hodnôt pre danú vzorku a hodnoty, na ktorú je chcené sa dostať vznikla hodnota menšiteľa všetkých hodnôt v danom stĺpci tabuľky, teda všetkých hodnôt nameraných intenzít červenej zložky viditeľného svetla namerané z jednej vzorky. Takto bolo postupované pre každý farebný kanál každej vzorky, čím bolo dosiahnuté že maximum červenej zložky farebného viditeľného svetla všetkých nameraných vzoriek je rovnaké. Takisto maximum zelenej zložky aj modrej zložky farebného viditeľného svetla všetkých decelularizovaných vzoriek je rovnaké. S takto posunutými hodnotami bolo ďalej pracované v štatistickom vyhodnocovaní dát. Výsledok tohto komplikovane vysvetleného, ale jednoduchšie uskutočneného zrovnania zobrazuje obrázok v nasledujúcej kapitole Výsledky (Obr. 3.7).

2.2.2 Vyhodnocovanie výsledkov

Podľa tvaru grafu boli namerané dáta rozdelené do piatich úsekov. Vynechané boli tie hodnoty, kde bola najnižšia zdanlivá linearita. Tak vznikli úseky, ktoré mohli byť porovnávané v rámci ich strmosti. Úseky, označené číslami 1-5 sú označené na obrázku (Obr. 2.10).

Obr. 2.10: Graf závislosti nameranej intenzity červenej zložky farebného svetla na čase decelularizácie a názorné zobrazenie úsekov s najvyššou mierou linearity hodnôt

V tabuľkovom procesore (Microsoft Excel, Redmond, USA) boli hodnotami z daných úsekov prekladané trendové spojnice. Z prepisu ich lineárnych rovníc boli hodnoty koeficientov strmosti vynesené do tabuľky (Tab. 3.5) v kapitole Výsledky, aby bolo možné porovnávať strmosť jednotlivých úsekov grafov.

Taktiež v každom úseku boli v prostredí Matlab (MathWorks, Natick, Massachusetts, USA) určené diferencie hodnôt intenzít červenej zložky svetla pre každý úsek každej meranej decelularizovanej vzorky. Hodnoty diferencií odpovedajú strmostiam jednotlivých úsekov a ich porovnaním bola porovnaná podobnosť jednotlivých úsekov grafov. Hodnoty diferencií boli vynesené do krabicových grafov pomocou programu R (R-Tools Technology Inc. Richmond Hill, Canada), ktoré zobrazujú rozloženie hodnôt okolo mediánu. Všetky krabicové grafy pre hodnoty diferencií z daných úsekov v červenom kanále nameraného viditeľného svetla sú na obrázku (Obr. 3.8) v kapitole Výsledky.

Na hodnotenie rozptylu bol použitý Wilcoxonov test strednej hodnoty pre jeden rozptyl. Pretože výber hodnôt je malý bol zvolený neparametrický test. Z výberu neparametrických testov práve Wilcoxonov test, kvôli jeho väčšej sile oproti znamienkovému testu. Test vychádza z absolútnych hodnôt rozdielov medzi meraniami a hodnotou mediánu, ktoré sú zoradené podľa veľkosti. Testuje sa nulová hypotéza, že stredná hodnota je zhodná so zvolenou hodnotou, proti alternatívnej hypotéze, že zhoda nie je. Menšia hodnota zo súčtov poradí menších alebo väčších diferencií oproti porovnávanej hodnote mediánu je porovnávaná s kritickou hodnotou pre zvolenú hladinu významnosti. [24] Tabuľka kritických hodnôt dostupná na internete aj v knihách štatistických tabuliek. [25]

V každom z úsekov bol spočítaný Wilcoxonov test a tieto výsledky sú uvádzané a diskutované v nasledujúcich kapitolách (Výsledky, Diskusia). Hladina významnosti bola zvolená na hodnote α =0,05.

2.3 Histológia vzoriek decelularizovaných tkanív

Počas prebiehajúcej decelularizácie boli odoberané vzorky v presne daných časových krokoch aj na histologické merania. Histológia bola uskutočnená Ing. Romanom Matějkom na AV ČR v máji 2018, kedy boli uskutočnené aj prvé pilotné merania na FBMI. Fotografie (Obr.3.9), ktoré mi boli dodané ako výsledky, boli porovnané s výsledkami pilotných meraní. V nasledujúcej kapitole (Výsledky) sú označené skratkami začiatočných písmen N ako natívna vzorka, V1-V4 vzorky kedy pôsobila SDS, D ako DNAza, ktorá nasledovala v decelularizačnom procese a posledná P, čo je vzorka po záverečnom preplachu.

3 Výsledky

3.1 Výsledky stanovovania stupňa decelularizácie – pilotné merania

Výsledky prvého pilotného merania zobrazuje tabuľka a obrázok (Tab.3.1 a Obr.3.1). Jedná sa o meranie pomocou kamery Platinum. Kamerou boli vytvorené snímky decelularizovaného tkaniva, hodnoty v tabuľke (Tab. 3.1) sú hodnoty intenzít získané spracovaním fotografií skriptom, ktorý je súčasťou príloh (príloha A), z programu Matlab (MathWorks, Natick, Massachusetts, USA). Čím dlhšie prebiehala decelularizácia, tým viac svetla sa cez vzorku tkaniva dostalo ku snímacej kamere. Posledné hodnoty sú nižšie oproti predchádzajúcim, tieto hodnoty odpovedajú stavu decelularizovaného tkaniva po preplachu vodou. V tabuľke o veľkosti intenzity vypovedá bezrozmerná veličina.

Tab. 3.1: Namerané hodnoty svetla na decelularizovanom tkanive, snímané pomocou USB kamery Platinum

Fáza decelularizácie	Biela L5 WAT- LC	Modrá L5 WW-LC	Červená L53 SRC-DW
0 - natívny	97	133	99
1 – 15 min SDS	218	184	172
2 – 30 min SDS	221	195	180
3 – 45 min SDS	225	201	183
5 – 60 min SDS	228	205	185
6 – SDS + 20 min DNáz	a 234	209	192
7 – SDS + DNáza +	226	195	185
preplach vodou 22 hod			

Obr. 3.1: Namerané hodnoty z merania pomocou USB kamery Platinum, graf závislosti intenzity svetla decelularizovaného tkaniva na fáze decelularizácie

Druhé pilotné meranie bolo uskutočnené pomocou fotodiódy. Tá snímala opäť intenzitu svetla, na vzorke decelularizovaného tkaniva. Znova je možné pozorovať stúpajúcu tendenciu grafu (Obr. 3.2), až na posledné hodnoty, ktoré odpovedajú stavu decelularizovaného tkaniva po preplachu vodou. A teda, čím viac svetla sa cez decelularizované tkanivo dostalo na fotodiódu, tým väčšia bola hodnota elektrického napätia indukovaného fotodiódou.

Fáza decelularizácie	Biela L5 WAT- LC	Modrá L5 WW-LC	ČervenáL53 SRC-DW
	(mV)	(mV)	(mV)
0 - natívna	58	320	120
1 – 15 min SDS	59	360	125
2 – 30 min SDS	63	418	187
3 – 45 min SDS	75	560	193
5 – 60 min SDS	99	620	206
$6 - SDS + 20 \min DNaz$	za 118	649	212
7 – SDS + DNáza +	112	628	202
preplach vodou 22hod			

Tab. 3.2: Namerané hodnoty napätia generovaného na fotodióde v závislosti na množstve svetla na vzorke decelularizovaného tkaniva

br. 3.2: Namerané hodnoty z merania pomocou fotodiódy, graf závislosti generovaného napätia fotodiódou na fáze decelularizácie

Tretia sada výsledkov je z merania pomocou kolorimetra EZO-RGB. Kolorimeter je zariadenie, ktoré svetlo vyžaruje aj sníma jeho jednotlivé farebné zložky. Takisto aj v týchto prípadoch pozorujeme stúpajúce hodnoty, až vždy na tú poslednú, ktorá je po preplachu vodou. Tabuľka a graf (Tab. 3.3 a Obr. 3.3) predstavujú výsledky merania s intenzitou svietenia LED diódy kolorimetra na úrovni 50 % jeho maximálneho výkonu. Ďalšia tabuľka a ďalší graf v poradí (Tab. 3.4 a Obr. 3.4) predstavujú výsledky merania s intenzitou svietenia LED diódy kolorimetra na úrovni 12 % jeho maximálneho výkonu.

Fáza decelularizácie	Červená	Zelená	Modrá
0 - natívna	599	671	665
1 – 15 min SDS	603	691	685
2 – 30 min SDS	677	843	771
3 – 45 min SDS	851	985	924
5 – 60 min SDS	881	1040	980
$6 - SDS + 20 \min DN$ áza	936	1203	998
7 – SDS + DNáza +	723	857	840
preplach vodou 22hod			

Tab. 3.3: Namerané hodnoty intenzity farebných zložiek svetla na vzorke decelularizovaného tkaniva, snímané senzorom EZO RGB, intenzita osvetľovania 50 %

Obr. 3.3: Namerané hodnoty z merania pomocou senzoru EZO RGB (intenzita osvetľovania 50 %), graf závislosti hodnôt intenzít farebných zložiek svetla decelularizovaného tkaniva na fáze decelularizácie

Tab. 3.4: Namerané hodnoty intenzity farebných zložiek svetla na vzorke decelularizovan	ıého
tkaniva, snímané senzorom EZO RGB, intenzita osvetľovania 12 %	

Fáza decelularizácie	Červená	Zelená	Modrá
0 - natívna	103	112	125
1 – 15 min SDS	116	137	132
2 – 30 min SDS	126	141	142
3 – 45 min SDS	130	142	158
5 – 60 min SDS	154	163	164
$6 - SDS + 20 \min DN$ áza	160	174	170
7 – SDS + DNáza + preplach	157	185	168
vodou 22hod			

Obr. 3.4: Namerané hodnoty z merania pomocou senzoru EZO RGB (intenzita osvetľovania 12 %), graf závislosti hodnôt intenzít farebných zložiek svetla decelularizovaného tkaniva na fáze decelularizácie

3.2 Výsledky monitorovania procesu decelularizácie

Výsledky monitorovania decelularizácie, ktorá prebehla na ústave AV ČR vo Vestci zobrazujú nasledujúce grafy. Prvý graf (Obr. 3.5) zobrazuje jednotlivé farebné zložky svetla snímané na decelularizovanej vzorke tkaniva s interným označením pp24. Snímanie intenzity svetla prebiehalo pravidelne s časovým odstupom 5 minút. Nasledujúci graf (Obr. 3.6) zobrazuje namerané hodnoty intenzít červenej zložky farebného svetla, pre jednotlivé vzorky s internými označeniami (pp24, pp18, pp06, pp07 a pp15), ktorých priebeh decelularizácie bol vyhodnocovaný.

Zvislé čiary v grafoch oddeľujú jednotlivé fázy decelularizácie. Konkrétne: SDS, prvý preplach, DNAzu a druhý preplach. Na grafoch je možné pozorovať najprv stúpajúcu tendenciu až do maximálnej hodnoty, kde dôjde k zmene a krivka začne rázne klesať. Klesajúca tendencia grafov odpovedá v skutočnosti druhému preplachu, preplachu destilovanou vodou, ktorý trval 22 hodín.

Obr. 3.5: Graf závislosti nameraných hodnôt intenzít jednotlivých zložiek farebného svetla na čase decelularizácie pre vzorku decelularizovaného tkaniva s označením pp24

Obr. 3.6: Graf závislosti nameraných hodnôt intenzít červenej zložky farebného svetla na čase decelularizácie pre jednotlivé vzorky decelularizovaných tkanív

Ostatné vzorky vykazujú analogickú tendenciu stúpania a klesania hodnôt. A teda ďalšie namerané vzorky a hodnoty ich intenzít sú uvedené v tabuľkách (Tab. C.1 a Tab. C. 2), ktoré sú súčasťou príloh (príloha C).

Na ďalšom obrázku (Obr. 3.7) sú zobrazené krivky nameraných hodnôt intenzít červenej zložky farebného viditeľného svetla po posunutí ofsetu. Je zrejmé, že maximálna hodnota pre každú vzorku je na rovnakej úrovni na ose y, takisto aj všetky ďalšie hodnoty pre danú vzorku decelularizovaného tkaniva sú posunuté s rovnakým rozdielom ako maximálna hodnota.

Obr. 3.7: Graf závislosti posunutých nameraných hodnôt na rovnakú úroveň maxima pre všetky vzorky v červenej zložke farebného viditeľného svetla na čase decelularizácie

Na grafoch nameraných hodnôt bolo vybraných päť úsekov. V každom z úsekov bola hodnotami preložená trendová spojnica. Hodnoty koeficientov strmosti z prepisu lineárnych rovníc trendových spojníc nameraných hodnôt intenzít červeného kanálu farebného viditeľného svetla pre jednotlivé vzorky v jednotlivých úsekoch zobrazuje tabuľka (Tab. 3.5). Červeným písmom je v tabuľke označená hodnota, ktorá sa výrazne líši od ostatných hodnôt, a preto nebola zahrnutá do výpočtu priemernej hodnoty. Na nasledujúcom obrázku (Obr. 3.8) sú priemerné hodnoty koeficientov ako popisy jednotlivých úsekov grafu nameraných hodnôt. Prvé tri úseky sú stúpajúce pre všetky vzorky, posledné dva úseky majú klesajúci charakter, takisto pre všetky hodnotené vzorky decelularizovaných tkanív. V pozadí úsekov je prerušovanou čiarou graf z nameraných hodnôt intenzít červenej zložky farebného viditeľného svetla decelularizovanej vzorky pp24.

	Koeficient strmosti								
Vzorka	Úsek 1	Úsek 2	Úsek 3	Úsek 4	Úsek 5				
pp24	2,78	0,62	2,36	-0,5263	-0,1181				
pp18	2,38	1,18	2,46	-0,6252	-0,0441				
pp06	2,10	0,74	1,74	-0,5096	-0,1322				
pp07	1,80	1,02	0,48	-0,5645	-0,1038				
pp15	2,90	1,62	2,10	-0,4733	-0,1660				
Priemer	2,392	1,036	2,165	-0,53978	-0,11284				

Tab. 3.5: Hodnoty koeficientov strmosti lineárnych trendových spojníc

Obr. 3.8: Úseky s priemernou hodnotou koeficientov strmosti lineárnych trendových spojníc

Obrázok (Obr. 3.9) predstavuje rozloženie hodnôt okolo mediánu. Krabicové grafy sú grafickým vyobrazením mediánu, prvého a tretieho kvartilu a takisto aj maximálnej a minimálnej hodnoty, z hodnôt diferencií nameraných dát v danom úseku pre intenzitu červenej zložky nemeraného farebného viditeľného svetla pre všetky vzorky decelularizovaných tkanív. Číslami 1-5 sú označované, ktorý krabicový graf platí ku ktorému úseku hodnôt. Rozdelenie úsekov bolo podrobnejšie popisované v predchádzajúcej kapitole (2.2.2 Vyhodnocovanie výsledkov).

Obr. 3.9: Krabicové grafy diferencií nameraných hodnôt intenzít červenej zložky farebného viditeľného svetla v danom úseku nameraných hodnôt

Wilcoxonovým testom boli vyhodnotené diferencie nameraných hodnôt v jednotlivých úsekoch. Nasledujúca tabuľka (Tab. 3.6) a ukážka výpočtu predstavuje výsledok Wilcoxonovho testu. Pre prvý úsek boli hodnoty diferencií nameraných hodnôt v jednotlivých úsekoch v červenom kanále z programu Matlab (MathWorks, Natick, Massachusetts, USA porovnávané s hodnotou 58.

						5	1					
					W	Vilcoxo	onov te	st				
Hodnota	55	70	43	64	85	54	50	79	54	61	77	47
diferencie												
Rozdiel od zvolenej	-3	12	-15	6	22	-4	-8	21	-4	3	19	-11
hodnoty												
Poradie	1,5	8	9	5	12	3,5	6	11	3,5	1,5	10	7

Tab. 3.6: Wilcoxonov test strednej hodnoty pre dáta z úseku 1

Súčty T_+ a T.: súčty poradí, kde je rozdiel väčší od zvolenej hodnoty (T₊) a menši od zvolenej hodnoty (T₋).

$$T_{+} = 47,5$$

 $T_{+} = 30,5$

Menšie číslo, teda 30,5, porovnávame s kritickou hodnotou zo štatistických tabuliek. Pre n=12 (počet všetkých hodnôt) je na hladine významnosti α =0,05 kritická hodnota 13. 30,5 > 13 nezamietame H0.

Obdobne prebehol výpočet aj v nasledujúcich 4 úsekoch. V každom z úsekov bola hodnota Wilcoxonovho testu vyššia než kritická hodnota zo štatistických tabuliek. Preto nemohla byť v žiadnom úseku zamietnutá nulová hypotéza.

3.3 Histologické výsledky

Výsledky histológie vzoriek decelularizovaných tkanív, ktoré boli hodnotené aj optickými metódami predstavujú nasledujúce obrázky (Obr. 3.10).

Obr. 3.10: Snímky decelularizovaných vzoriek z histológie [zdroj: R. Matějka]

4 Diskusia

Celá práca sa venuje problematike decelularizácie. Navrhnutá metodika sledovania priebehu decelularizácie je hlavným prínosom tejto práce.

Tri pilotné merania tvoria základ vytvorenia a určenia tej najvhodnejšej optickej priebehu decelularizácie. metódy na monitorovanie Vzorky odoberané z decelularizačnej komory v presne daných časových intervaloch podľa fázy decelularizácie boli troma rôznymi metódami analyzované. Všetky tri metódy na určenie stupňa prebehnutej decelularizácie pracujú s viditeľným svetlom. Časť čiastočne decelularizovaného tkaniva bola pomocou LED diódy osvetlená. Merania sa líšia spôsobom, akým je toto svetlo následne snímané. V prvom prípade bola na snímanie použitá USB kamera Platinum. Kamerou nasnímané fotografie boli upravené v programe Matlab tak, aby bolo možné porovnávať intenzitu svetla, ktoré sa na vzorke decelularizovaného tkaniva. Výsledky vykazujú stúpajúcu tendenciu dát. Natívna vzorka má viditeľne nižšie hodnoty intenzity svetla, čo je značným prejavom začiatku decelularizácie. Už prvá vzorka odobraná z decelularizačnej komory má čiastočne rozrušené bunkové štruktúry, čo dokazuje ten fakt, že bola nameraná väčšia intenzita. Postupne s pribúdajúcim časom pôsobenia SDS v decelularizačnom cykle sledujeme aj pribúdanie intenzity svetla nameranej kamerovým senzorom. Pri práci so vzorkou bolo tiež možné odpozorovať, že vzorka, ktorá bola podrobená decelularizácií dlhší čas, viac decelularizovaná, bola hrubšia už na prvý pohľad. Hrúbka tkaniva je teda decelularizačným cyklom mierne pozmeňovaná, tkanivo nabobtnáva. DNAza použitá na konci decelularizačného cyklu sa používa, aby boli odstránené aj nukleové kyseliny zo vzorky tkaniva. Keď sú následne nukleové kyseliny aj všetky ostatné zvyšky buniek z komory odstránené, záverečným preplachom sa intenzita nameraného svetla ustáli na hodnote a môžeme decelularizáciu považovať za ukončenú. Medzi posledným a predposledným meraním vzniká mierny pokles hodnoty intenzity snímaného svetla, a to je možné vysvetliť faktom, že po záverečnom preplachu dôjde k obnove rozmerov tkaniva. Záverečný preplach trvá 22 hodín. Za tento čas dôjde k takému ustáleniu, že štruktúra tkaniva sa už ďalej nemení. Natíska sa teda otázka, či je potrebné aby záverečný preplach trval tak dlhú dobu, čo by mohlo byť predmetom ďalších štúdií.

Aj druhé meranie intenzity svetla decelularizovaného tkaniva predstavuje veľmi podobné výsledky. Opäť pozorujeme zvýšenie intenzity svetla, ktorá analogicky odpovedá nameranému napätiu na fotodióde. Hneď na druhej vzorke čiastočne decelularizovaného tkaniva bola nameraná vyššia hodnota napätia, má väčšiu intenzitu svetla ako jej natívna predchodkyňa, aj keď zmena nie je tak výrazná ako v predchádzajúcom meraní pomocou USB kamery Platinum. Celý čas sledujeme stúpanie hodnôt, až na mierny pokles po záverečnom preplachu. V tomto prípade by bolo možné diskutovať o predĺžení jednotlivých fáz decelularizácie, dalo by sa tak

odobrať viac vzoriek tkaniva s časovými odstupmi, ale v rovnakej fáze decelularizačného cyklu. Otázkou ostáva či sa bunky rozrušia hneď po styku s detergentom a v ďalšom priebehu danej decelularizačnej fáze sa len vyplavujú alebo či sa postupne rozrušujú a postupne vyplavujú, kedy by bolo možné dostať lineárnejší priebeh.

V prvých dvoch metódach boli použité tri rôzne farby osvetľovacích LED diód. Pomocou LED diódy červenej farby Redd L53 SRC-DW v prvom aj druhom meraní boli zaznamenané najnižšie výkyvy od linearity, čo je jednoducho možné vidieť na grafoch závislostí nameraných hodnôt na stupni decelularizácie.

V poradí tretia metóda merania stupňa decelularizácie bola uskutočnená pomocou kolorimetra EZO RGB. Táto metóda bola vyhodnotená ako najlepšia z troch metód a kritéria tohto výberu sú detailnejšie popísané nižšie. Ukázalo sa, že decelularizované tkanivo mení rozloženosť viditeľného svetla do jednotlivých farebných kanálov R, G a B (červený, zelený, modrý). Z grafov, ktoré predstavujú výsledky pilotných meraní použitím kolorimetra je pozorovateľný priebeh veľmi blízky predchádzajúcim dvom meracím metódam, pričom za najvhodnejší bol určený priebeh práve tretieho pilotného merania. V prvých fázach decelularizačného cyklu sa k senzoru dostalo viac svetla, grafy nameraných hodnôt sú stúpajúce. Takisto ako aj pri použití prvého aj druhého meracieho systému, tak aj v tomto treťom, došlo k poklesu nameranej hodnoty intenzity svetla po záverečnom preplachu. Merania pomocou kolorimetra EZO RGB prebehli s dvoma zvolenými hodnotami osvetľovania. Konkrétne 12 % a 50 % výkonu LED diódy, ktorá je súčasťou kolorimetra. To, že meranie bolo uskutočnené dvakrát s rôznymi hodnotami, dovolilo určiť, ktorá hodnota bude vhodnejšia na použitie kolorimetra pri monitorovaní priebehu decelularizácie kontinuálne. A výber prebehol na základe tvarov grafov z nameraných intenzít s výsledkom, že 12 % výkon svietenia LED diódy je vhodnejší.

Na základe pilotných meraní bol uskutočnený výber najvhodnejšej metódy merania, ktorý bol následne použitý pri monitorovaní priebehu decelularizácie. Vylučovacie kritérium pre použitie metódy s kamerou Platinum bolo náročnosť spracovania nasnímaných fotografií. Keďže bol cieľ diplomovej práce monitorovať priebeh decelularizácie kontinuálne, bolo by nutné snímať ohromné množstvo fotografií, čím by sa vyhodnocovanie značne skomplikovalo a predĺžilo. Snímanie druhou metódou bolo taktiež vylúčené, a to z dôvodu náročnosti inštalácie systému LED diódy a fotodiódy do decelularizačnej komory, kde je obmedzený priestor. Pre prvú aj druhú metódu taktiež platí vylúčenie z dôvodu konštrukčných komplikácií. Keďže je kolorimeter EZO RGB rovnako zdrojom ako aj senzorom, je jeho inštalácia do decelularizačnej komory značne zjednodušená. To všetko ovplyvnilo výber tretej metódy snímania, metódy pomocou kolorimetra EZO RGB, ako najvhodnejšej pre monitorovanie procesu decelularizácie. Takisto na základe pilotných meraní bolo vypozorované, že najlepšia odozva bola nameraná použitím LED diódy červenej farby. To ovplyvnilo výber červeného kanála

zo snímaných hodnôt kolorimetra ako kanál, s ktorým sa má ďalej pracovať a ktorý sa má hodnotiť.

Po úprave konštrukcie držiaka kolorimetra, ktorá bola nutná na jeho inštaláciu do decelularizačnej komory, boli namerané dáta, predstavujúce monitorovanie procesu decelularizácie. V programoch Matlab a R boli tieto dáta upravené a spracované. Výsledky potvrdili to, čo bolo namerané aj pri pilotných meraniach. S pribúdajúcim časom pôsobenia SDS na tkanivo z prasaťa v decelularizačnej komore, stúpala aj hodnota intenzity červenej zložky farebného viditeľného svetla na vzorke decelularizovaného tkaniva a to pre všetky merané vzorky. Po záverečnom preplachu sa hodnota opäť znížila a postupne stabilizovala. Na vyhodnotenie správnosti nameraných výsledkov bola porovnávaná strmosť grafov v úsekoch, v ktorých sa stúpanie alebo klesanie najviac podobalo lineárnej krivke. Bolo tak určených päť úsekov. Najprv boli hodnotami v jednotlivých úsekoch preložené trendové spojnice a z prepisu ich lineárnych rovníc do tabuľky vynesené koeficienty strmosti. Keďže nešlo štatisticky dokázať podobnosť piatich čísel, následne bolo pracované s diferenciami jednotlivých hodnôt v danom úseku. Spočítané diferencie, vypovedajúce práve o strmosti, boli vynesené do krabicových grafov, ktoré predstavujú rozloženie hodnôt okolo mediánu. Pomocou Wilcoxonovho testu bolo štatisticky testované, že všetky hodnoty diferencií v jednotlivých úsekoch sú rovnomerne rozložené okolo mediánu. Ani v jednom z úsekov nemohla byť nulová hypotéza, že sa hodnoty od seba vzájomne líšia, zamietnutá. Tak bolo potvrdené, že vymývanie buniek zo vzoriek prebiehalo rovnako rýchlo na každej zo vzoriek, ktorých decelularizácia bola monitorovaná.

Výsledky histológie tkanív s rôznym stupňom prebehnutej decelularizácie potvrdili výsledky meraní, ktoré boli uskutočnené v rámci meraní na tejto diplomovej práci. Počas pôsobenia SDS sú ešte viditeľné stopy jadier buniek. Po DNAze a záverečnmom preplachu už jadrá patrné nie sú. Nutnosť použitia DNAzy bola tiež potvrdená, a to z dôvodu lepivej hmoty v okolí vzorky decelularizovaného tkaniva. V priebehu decelularizácie dochádza k nabobtnávaniu tkaniva, čo bolo tiež potvrdené takisto výsledkami histológie, ako aj už na prvý pohľad pri práci so vzorkami tkanív a ich umiestňovaním do systému na stanovovanie stupňa decelularizácie, ktorý je jedným z výsledkov tejto diplomovej práce. Po finálnom preplachu sa obnovila hrúbka vzorky tkaniva na pôvodnú hodnotu, čím histológia preukázala aj zachovanie rozmerov tkaniva po decelularizácii. [26] Na snímkach je možné pozorovať, že prvá, označená N ako natívna vzorka obsahuje jadrá buniek, výrazné svetlo modré bodky. Ďalšie, ktoré nesú V1-V4 sú postupne odoberané vzorky počas pôsobenia označenie SDS v decelularizačnej komore a je na nich vidieť rozrušené zvyšky buniek, ako rozmazané fl'aky. Posledné dve fotografie D a P, teda po pôsobení DNAzy a po záverečnom preplachu, už nenesú takmer žiadne známky buniek.

5 Záver

Diplomovou prácou bol vytvorený optický snímač na meranie stupňa decelularizácie a to hneď v troch rôznych variantoch. Vždy sa jednalo o svietenie LED diódou na vzorku decelularizovaného tkaniva, no metódy sa líšili systémom snímania množstva svetla práve na tejto osvetlenej vzorke. Z rôznych metód bola vybraná tretia metóda merania viditeľného svetla pomocou kolorimetra, ako najvhodnejšia na monitorovanie procesu decelularizácie. Systém bol upravený a inštalovaný do decelularizačnej komory. V priebehu práce boli namerané dáta, hodnotiace stupeň decelularizácie neskôr aj dáta monitorujúce jej priebeh. Podobnosť nameraných hodnôt vykazuje o tom, že je možné hodnotiť stupeň decelularizácie optickým systémom s viditeľným svetlom, výsledok bol potvrdený aj štatistickým testom. Keďže v priebehu decelularizačného procesu nedošlo k žiadnej zmene oproti bežnej praxi, mohli byť vzorky porovnané aj s výsledkami histológie a tieto výsledky potvrdili výsledky meraní optickou metódou.

Predpoklad, že decelularizované tkanivo pozmení vlastnosti svetla, ktorým je osvetľované bol potvrdený už meraniami stupňa decelularizácie, následne aj výsledkami z monitorovania priebehu decelularizácie planárnych tkanív. Tak bola potvrdená v úvode stanovená hypotéza o decelularizovanom tkanive. Mám za to, že všetky ciele diplomovej práce boli splnené.

Zoznam použitej literatúry

CRAPO, Peter M., Thomas W. GILBERT a Stephen F. BADYLAK. An
overview of tissue and whole organ decellularization processes. Biomaterials [online]. 2011, 32(12), 3233-3243 [cit. 2019-04-21]. DOI: 10.1016/j.biomaterials.2011.01.057. ISSN 01429612. Dostupné z: https://linkinghub.elsevier.com/retrieve/pii/S0142961211000895

KUMAR KUNA, Vijay, Bo XU a Suchitra SUMITRAN-HOLGERSSON.
2] Decellularization and Recellularization *Methodology for Human* Saphenous Veins. JoVE [online]. University of Gothenburg, 2018, 2018(2), 137 [cit. 2019-04-21]. DOI: 10.3791/57803. Dostupné z: https://www.jove.com/video/57803/decellularization-recellularization-methodology-for-human-saphenous

MOLITOR, Martin. Transplantace v rekonstrukční chirurgii. 1. vydání. Praha:
Grada Publishing, 2017. Edice celoživotního vzdělávání ČLK. ISBN 978-80-247-5546-5.

CHOO, Sung Yoon. The HLA System: Genetics, Immunology, Clinical
[4] Testing, and Clinical Implications. Yonsei Medical Journal [online]. 2007, 48(1)
[cit. 2019-04-21]. DOI: 10.3349/ymj.2007.48.1.11. ISSN 0513-5796. Dostupné z: https://synapse.koreamed.org/DOIx.php?id=10.3349/ymj.2007.48.1.11

BLAHÚT, Peter. Základy transplantácie orgánov. TechMed [*online*].
5] Bratislava: 1. Interní klinika Kramáre, 2017 [cit. 2018-11-07]. Dostupné z: https://www.techmed.sk/zaklady-transplantacie-organov/

MIRABELLA, Teodelinda a Francesco MORONI. Decellularized matrices for6] cardiovascular tissue engineering. Am J Stem Cells. 2014, 1401005(201431, 20. ISSN 2160-4150.

Xenotransplantation. In: WHO [online]. Geneva: Technical report series, 2005 7] [cit. 2018-11-07]. Dostupné z: http://www.who.int/transplantation/xeno/en/ BOCCAFOSCHI, Francesca, Margherita BOTTA, Luca FUSARO, Francesco
 COPES, Martina RAMELLA a Mario CANNAS. Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and regeneration. *Journal of Tissue Engineering and Regenerative Medicine* [online]. 2017, **11**(5), 1648-1657 [cit. 2018-05-08]. DOI: 10.1002/term.2103. ISSN 19326254. Dostupné z: http://doi.wiley.com/10.1002/term.2103

Heart Disease and Stroke Statistics: Update 2015. Circulation. 2014, 2015(17), 9] 131.

- CAPALDI, Franco, , FITZPATRICK a Peter CLARK. Effect of 10] Decellularization Protocol on theMechanical Behavior of Porcine Descending Aorta. International Journal of Biomaterials. 2010, 2010(620503), 11. DOI: 10.1155/2010/620503.
- YIN, Anlin, Gary BOWLIN, Rifang LUO, Xingdong ZHANG, Yunbing
 11] WANG a Xiumei MO. Electrospun silk fibroin/poly (L-lactide-ɛ-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. *Regenerative Biomaterials* [online]. 2016, 3(4), 239-245 [cit. 2018-05-08]. DOI: 10.1093/rb/rbw026. ISSN 2056-3418. Dostupné z: https://academic.oup.com/rb/article-lookup/doi/10.1093/rb/rbw026
- ORLANDO, Giuseppe. Regenerative medicine applications in organ 12] transplantation. 1st ed. Boston: Elsevier Academic *Press*, 2014. ISBN **978-0-12-398523-1**.
- UMASHANKAR, P., A. SABAREESWARAN a Sachin SHENOY. Long13] term healing of mildly cross-linked decellularized *bovine pericardial aortic* patch. Journal of Biomedical Materials Research Part B: *Applied Biomaterials* [online]. 2017, **105**(7), 2145-2152 [cit. 2018-06-22]. DOI: 10.1002/jbm.b.33755. ISSN 15524973. Dostupné z: http://doi.wiley.com/10.1002/jbm.b.33755
- HREBÍKOVÁ, Hana. Decelularizace a recelularizace tkání. Hradec Králové,
 14] 2018. Disertační práce. Univerzita *Karlova, Lékařská fakulta* v Hradci Králové. Vedoucí práce Jaroslav Mokrý.
- GILPIN, Anna a Yong YANG. Decellularization Strategies for Regenerative 15] Medicine: From Processing Techniques to Applications. BioMed Research International [online]. 2017, 2017, 1-13 [cit. 2019-04-22]. DOI: 10.1155/2017/9831534. ISSN 2314-6133. Dostupné z: https://www.hindawi.com/journals/bmri/2017/9831534/

ADAMČÍK, Richard. Decelularizace jako slibná metoda tkáňového 16] inženýrství. Ústav histologie a embryologie LF HK, 2013. Student's Scientific Activities. Univerzita Karlova, Lékařská fakulta v Hradci Králové. Vedoucí práce Daniel Diaz.

- ZHOU, Jianliang, Shidong HU, Jingli DING, Jianjun XU, Jiawei SHI a
 17] Nianguo DONG. *Tissue engineering* of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization. *BioMedical Engineering OnLine* [online]. 2013, **12**(1) [cit. 2019-04-09]. DOI: 10.1186/1475-925X-12-87. ISSN 1475-925X. Dostupné z: http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-12-87
- NEVES, Nuno a Rui REIS. Biomaterials from nature for advanced devices and 18] therapies. 1st. *Hoboken, New* Jersey: John Wiley & Sons, Inc., 2016. ISBN 9781119178071.
- PADALINO, Massimo, Andrea QUARTI, Emanuela ANGELI, Anna FRIGO,
 19] Vladimiro VIDA, Marco POZZI, Gaetano GARGIULO a Giovanni STELLIN. Early and mid-term clinical experience with extracellular matrix scaffold for congenital cardiac and *vascular reconstructive surgery: a* multicentric Italian study. Interactive CardioVascular and Thoracic Surgery [online]. 2015, 21(1), 40-49 [cit. 2018-06-22]. DOI: 10.1093/icvts/ivv076. ISSN 1569-9293. Dostupné z: https://academic.oup.com/icvts/article-lookup/doi/10.1093/icvts/ivv076
- MOSALA NEZHAD, Zahra, Alain PONCELET, Laurent DE KERCHOVE,
 20] Pierre GIANELLO, Caroline FERVAILLE a Gebrine EL KHOURY. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. *Interactive CardioVascular and Thoracic Surgery* [online].
 2016, 22(6), 839-850 [cit. 2018-06-22]. DOI: 10.1093/icvts/ivw020. ISSN 1569-9293. Dostupné z: https://academic.oup.com/icvts/article-lookup/doi/10.1093/icvts/ivw020
- BRINKLEY, DM a EV GELFAND. Valvular heart disease: classic teaching 21] and emerging paradigms. *Am* J Med. 2013, 2013(12612, 126. DOI: 10.1016/j.amjmed.2013.05.022.
- GILBERT, T, T SELLARO a S BADYLAK. Decellularization of tissues and 22] organs. Biomaterials [online]. 2006 [cit. 2019-04-21]. DOI: 10.1016/j.biomaterials.2006.02.014. ISSN 01429612. Dostupné z: https://linkinghub.elsevier.com/retrieve/pii/S0142961206001682
- REICHL, Jaroslav. Dělič napětí. Encyklopedie Fyziky: Elektřina a 23] magnetizmus [online]. 2015, 2015(1), 3 [cit. 2019-02-18]. Dostupné z: http://fyzika.jreichl.com/main.article/pdf/1662-delic-napeti

HENDL, Jan. Přehled statistických metod: analýza a metaanalýza dat. Páté,

- 24] rozšířené vydání. Praha: Portál, 2015. ISBN 978-80-262-0981-2.
- Statistické tabulky. In: Biostatistika [online]. Brno: Veterinární a 25] farmaceutická univerzita Brno, 2007 [cit. 2019-05-02]. Dostupné z: https://cit.vfu.cz/statpotr/POTR/Teorie/tabulky.htm#Wilcoxon

MATĚJKA, Roman. Strojová decelularizace perikardu. 2.5.2018. Vestec: AV 26] ČR, 2018.

Príloha A: Skript na výpočet intenzity svetla z fotografie

```
clc; close all; clear all;
N=imread('N1.bmp');
subplot 121
imshow (N);
title('nativni');
subplot 122
V=imread('P.bmp');
imshow (V);
title('vzorekP');
Nr=N(:,:,1);
Ng=N(:,:,2);
Nb=N(:,:,3);
Ng=rgb2gray(N);
Vr=V(:,:,1);
Vg=V(:,:,2);
Vb=V(:,:,3);
Vg=rgb2gray(V);
figure
plot(Nr(206,:),'r');
hold on
plot(Nr(255,:),'r');
hold on
plot(Nr(303,:),'r');
hold on
plot(Vr(252,:),'k');
hold on
plot(Vr(283,:),'k');
hold on
plot(Vr(334,:),'k');
title ('red (nativni je cerveny)');
figure
plot(Ng(206,:),'g');
hold on
plot(Ng(255,:),'g');
hold on
plot(Ng(303,:),'g');
hold on
plot(Vg(252,:),'k');
hold on
plot(Vg(283,:),'k');
hold on
plot(Vg(334,:),'k');
title ('green (nativni je zeleny)');
figure
plot(Nb(206,:),'c');
hold on
plot(Nb(255,:),'c');
hold on
plot(Nb(303,:),'c');
hold on
```

plot(Vb(252,:),'k'); hold on plot(Vb(283,:),'k'); hold on plot(Vb(334,:),'k'); title ('blue (nativni je modry)'); figure

```
plot(Nb(206,:),'m');
hold on
plot(Nb(255,:),'m');
hold on
plot(Nb(303,:),'m');
hold on
plot(Vb(252,:),'k');
hold on
plot(Vb(283,:),'k');
hold on
plot(Vb(334,:),'k');
title ('gray (nativni je ruzovy)');
```

Príloha B: Skripty na vyčítanie a vynesenie dát do grafov

```
Skript prvý:
clc; clear all; close all;
vsetky data=xlsread('decel PP 5min interp.xlsx');
cas=vsetky data(:,1);
pp24_R=vsetky_data(:,2);
pp24_G=vsetky_data(:,3);
pp24_B=vsetky_data(:,4);
plot (cas,pp24 R,'r');
xlabel('čas(min)');
ylabel('intenzita farby (-)');
title ('pp24');
hold on
plot (cas,pp24_G,'g');
hold on
plot (cas,pp24 B,'b');
hold on
plot ([65 65],[500 1300],'k');
hold on
plot ([80 80],[500 1300],'k');
hold on
plot ([100 100],[500 1300],'k');
%% pp18
figure
pp18_R=vsetky_data(:,5);
pp18_G=vsetky_data(:,6);
pp18 B=vsetky_data(:,7);
plot (cas,pp18 R,'r');
xlabel('čas(min)');
ylabel('intenzita farby (-)');
title ('pp18');
hold on
plot (cas,pp18 G,'g');
hold on
plot (cas,pp18 B,'b');
hold on
plot ([65 65],[500 1300],'k');
hold on
plot ([80 80],[500 1300],'k');
hold on
plot ([100 100],[500 1300],'k');
%% pp06
figure
pp06 R=vsetky data(:,8);
pp06 G=vsetky data(:,9);
pp06_B=vsetky_data(:,10);
plot (cas,pp06 R,'r');
xlabel('čas(min)');
```

ylabel('intenzita farby (-)'); title ('pp06'); hold on plot (cas,pp06_G,'g'); hold on plot (cas,pp06_B,'b'); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100],[500 1300],'k'); %% pp07 figure pp07 R=vsetky data(:,11); pp07 G=vsetky data(:,12); pp07 B=vsetky data(:,13); plot (cas,pp07 R,'r'); xlabel('čas(min)'); ylabel('intenzita farby (-)'); title ('pp07'); hold on plot (cas,pp07_G,'g'); hold on plot (cas,pp07_B,'b'); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100], [500 1300], 'k'); %% pp15 figure pp15 R=vsetky data(:,14); pp15 G=vsetky data(:,15); pp15_B=vsetky_data(:,16); plot (cas,pp15 R,'r'); xlabel('čas(min)'); ylabel('intenzita farby (-)'); title ('pp15'); hold on plot (cas,pp15_G,'g'); hold on plot (cas,pp15 B,'b'); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100],[500 1300],'k'); %% R figure plot (cas,pp24 R); xlabel('čas(min)'); ylabel('intenzita farby (-)');

title ('R'); hold on plot (cas,pp18_R); hold on plot (cas,pp06 R); hold on plot (cas,pp07_R); hold on plot (cas,pp15_R); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100],[500 1300],'k'); legend('pp24','pp18','pp06','pp07','pp15'); %% G figure plot (cas,pp24 G); xlabel('čas(min)'); ylabel('intenzita farby (-)'); title ('G'); hold on plot (cas,pp18_G); hold on plot (cas,pp06_G); hold on plot (cas,pp07_G); hold on plot (cas,pp15_G); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100],[500 1300],'k'); legend('pp24', 'pp18', 'pp06', 'pp07', 'pp15'); %% B figure plot (cas,pp24_B); xlabel('čas(min)'); ylabel('intenzita farby (-)'); title ('B'); hold on plot (cas,pp18 B); hold on plot (cas,pp06 B); hold on plot (cas,pp07 B); hold on plot (cas,pp15_B); hold on plot ([65 65],[500 1300],'k'); hold on plot ([80 80],[500 1300],'k'); hold on plot ([100 100],[500 1300],'k'); legend('pp24','pp18','pp06','pp07','pp15');

Skript druhý:

```
clc; clear all; close all
selpath = uigetdir;
files = dir('*.csv')
for i=1:numel(files)
    expression = ' ';
    splitStr= regexp({files.name}, expression, 'split');
    name_cell(i,1)=splitStr(1,i);
    name(i,:)=name_cell{i};
end
time=str2double(name(:,2));
for i = 1:numel(files)
      data(i,1:3)=csvread(files(i).name);
      data(i,4)=time(i,1);
end
%% datum a cas
  vec=cell2mat(name(:,2));
 vec2=cell2mat(name(:,1));
 datum=datetime(vec2, 'inputFormat', 'yyMMdd');
  cas=datetime(vec,'inputFormat','HHmmSS','Format','HH:mm:SS');
    datet=datum+timeofday(cas);
```

		d	ecelulari	Izovaný	ch tkan	ÍV				
			PP24			PP18			PP06	
Fáza	Čas (min)	R	G	В	R	G	В	R	G	В
SDS	0	608	674	668	527	588	567	664	653	599
	5	608	677	672	527	601	575	653	662	602
	10	610	685	682	529	619	586	649	679	609
	15	612	697	695	531	641	599	648	701	619
	20	625	730	715	542	669	615	657	733	644
	25	652	788	744	565	705	635	681	776	687
	30	686	845	778	595	745	661	712	822	731
	35	741	899	827	659	795	705	770	872	774
	40	811	954	885	744	852	761	850	926	818
	45	854	992	928	786	896	807	904	970	851
	50	869	1014	952	785	929	840	927	1007	869
	55	879	1031	969	783	956	868	944	1039	882
	60	884	1042	981	782	968	880	951	1052	898
1. preplach	65	886	1048	987	828	969	880	911	1036	925
	70	889	1054	992	814	961	906	948	1034	909
	75	893	1060	994	821	1001	917	934	1074	946
DNAza	80	896	1064	996	815	987	911	958	1054	913
	85	905	1089	997	822	1007	902	969	1075	919
	90	918	1137	997	837	1051	891	978	1120	933
	95	931	1182	998	851	1095	881	984	1165	946
2. preplach	100	936	1203	998	858	1115	875	986	1185	952
	105	936	1203	998	858	1115	872	986	1185	952
	110	936	1202	998	858	1114	870	986	1184	952
	115	935	1201	997	857	1113	867	985	1183	951
	120	935	1199	997	856	1112	864	985	1181	951
	125	934	1197	996	856	1110	862	984	1179	950
	130	933	1195	995	854	1107	859	983	1177	949
	135	932	1192	994	853	1105	857	982	1174	948
	140	931	1189	993	852	1102	855	981	1171	947
	145	930	1186	992	850	1098	853	980	1167	946
	150	928	1182	991	849	1095	850	979	1163	944
	155	927	1178	990	847	1091	848	977	1159	943
	160	925	1173	988	845	1086	846	976	1155	941
	165	924	1169	986	843	1082	844	974	1150	939
	170	922	1164	985	840	1077	842	972	1145	937
	175	920	1158	983	838	1072	840	971	1139	935

Tab. C.1: Namerané hodnoty intenzít farebných zložiek viditeľného svetla pre jednotlivé vzorky decelularizovaných tkanív

Príloha C: Dáta namerané sledovaním priebehu decelularizácie pre jednotlivé vzorky

180	918	1153	981	836	1067	839	969	1134	933
185	916	1147	979	833	1061	837	967	1128	931
190	914	1141	977	830	1056	835	965	1122	929
195	912	1135	975	828	1050	834	962	1115	927
200	909	1129	973	825	1044	832	960	1109	924
205	907	1122	971	822	1037	830	958	1102	922
210	904	1115	968	819	1031	829	956	1096	920
215	902	1109	966	816	1024	827	953	1089	917
220	899	1102	964	813	1018	826	951	1082	914
225	897	1095	961	810	1011	825	948	1074	912
230	894	1088	959	806	1004	823	946	1067	909
235	891	1081	957	803	997	822	943	1060	906
240	889	1073	954	800	990	821	940	1053	904
245	886	1066	952	797	983	820	938	1045	901
250	883	1059	949	793	976	819	935	1038	898
255	880	1052	947	790	969	818	932	1031	895
260	878	1044	944	787	962	817	930	1023	893
265	875	1037	942	783	955	816	927	1016	890
270	872	1030	939	780	948	815	924	1009	887
275	869	1023	937	777	941	814	922	1001	884
280	866	1016	934	774	934	813	919	994	882
285	864	1009	932	770	927	812	916	987	879
290	861	1002	929	767	921	811	914	980	876
295	858	995	927	764	914	811	911	973	874
300	856	988	924	761	908	810	908	967	871
305	853	982	922	758	901	809	906	960	868
310	850	975	920	755	895	808	903	954	866
315	848	969	917	752	889	808	901	948	863
320	845	963	915	749	883	807	898	942	861
325	843	957	913	746	877	806	896	936	859
330	840	952	911	744	872	806	893	931	856
335	838	946	909	741	867	805	891	925	854
340	835	941	907	739	862	805	889	920	852
345	833	936	905	736	857	804	886	916	850
350	831	932	904	734	852	804	884	911	848
355	829	928	902	732	848	803	882	907	846
360	827	924	900	730	844	803	880	904	844
365	825	920	899	728	840	803	878	900	843
370	823	917	898	727	837	802	877	897	841
375	822	914	896	725	834	802	875	895	840
380	820	912	895	724	832	801	873	892	839
385	819	910	894	723	829	801	872	891	838
390	817	908	893	722	828	801	870	889	837
395	816	907	893	721	826	800	869	888	836
400	815	906	892	720	825	800	868	888	835
 405	814	905	891	719	824	800	867	888	834

410	813	905	891	719	823	799	866	888	834
415	812	904	890	718	823	799	865	887	833
420	811	904	890	718	822	799	864	887	833
425	810	903	889	717	821	799	863	887	832
430	809	903	889	717	820	798	862	887	831
435	808	902	888	716	819	798	861	887	831
440	807	902	888	716	819	798	860	887	830
445	806	901	887	715	818	797	859	886	830
450	805	901	887	715	817	797	858	886	829
455	804	900	887	714	817	797	857	886	829
460	803	900	886	714	816	797	856	886	828
465	803	899	886	713	815	796	855	886	828
470	802	899	885	713	815	796	854	886	827
475	801	899	885	713	814	796	853	886	827
480	800	898	884	712	813	796	852	886	826
485	799	898	884	712	813	796	851	885	826
490	798	897	884	711	812	795	850	885	826
495	797	897	883	711	811	795	849	885	825
500	796	897	883	711	811	795	848	885	825
505	796	896	882	710	810	795	847	885	874
505	795	896	882	710	810	795	846	885	824
515	797	896	882	710	800	797	8/5	885	823
520	703	890	881	710	808	794	845 845	885	823
525	755	805 805	001 991	705	808	704	24J 24J	00J 005	025 972
520	792	801	001 991	703	808 807	794	044 9/2	00J 00J	023 977
525	792	094 004	001	709	807 807	794	045 045	004 001	022 077
535	791	094	000	708	807	794	042	004 001	022
540	790	094	000	708	800	794	041	004 001	022
545	709	094	000	708	800 805	795	040 920	004	021
550	789	893	879	708	805	793	839	004	821
555	700	893	879	707	805	793	039	004	821
560	787	893	879	707	804	793	838	884	820
505	780	892	878	707	804	793	837	884	820
570	786	892	878	706	803	793	836	884	820
575	785	892	878	706	803	793	835	884	819
580	784	891	8//	706	802	792	835	884	819
585	/83	891	8//	706	802	792	834	884	819
590	/83	891	8//	705	801	792	833	884	818
595	782	891	877	705	801	792	832	883	818
600	781	890	876	705	801	792	831	883	818
605	781	890	876	705	800	792	831	883	817
610	780	890	876	704	800	792	830	883	817
615	779	890	875	704	799	792	829	883	817
620	779	889	875	704	799	791	829	883	817
625	778	889	875	704	799	791	828	883	816
630	777	889	875	704	798	791	827	883	816
635	777	889	874	703	798	791	826	883	816

640	776	889	874	703	797	791	826	883	816
645	776	888	874	703	797	791	825	883	815
650	775	888	874	703	797	791	824	883	815
655	774	888	873	702	796	791	824	883	815
660	774	888	873	702	796	791	823	883	814
665	773	888	873	702	796	790	822	883	814
670	773	887	873	702	795	790	822	883	814
675	772	887	872	702	795	790	821	883	814
680	771	887	872	701	795	790	820	883	813
685	771	887	872	701	794	790	820	883	813
690	770	887	872	701	794	790	819	882	813
695	770	886	872	701	794	790	818	882	813
700	769	886	871	701	793	790	818	882	812
705	769	886	871	700	793	790	817	882	812
710	768	886	871	700	793	789	816	882	812
715	768	886	871	700	792	789	816	882	812
720	767	885	870	700	792	789	815	882	811
725	766	885	870	700	792	789	815	882	811
730	766	885	870	699	792	789	814	882	811
735	765	885	870	699	791	789	813	882	811
740	765	885	870	699	791	789	813	882	810
745	764	885	869	699	791	789	812	882	810
750	764	884	869	698	790	788	812	882	810
755	763	884	869	698	790	788	811	882	810
760	763	884	869	698	790	788	811	882	809
765	762	884	868	698	790	788	810	882	809
770	762	884	868	698	789	788	810	882	809
775	761	883	868	697	789	788	809	881	809
780	761	883	868	697	789	788	808	881	808
785	760	883	868	697	789	788	808	881	808
790	760	883	867	697	788	787	807	881	808
795	759	883	867	696	788	787	807	881	807
800	759	882	867	696	788	787	806	881	807
805	758	882	867	696	788	787	806	881	807
810	758	882	867	695	787	787	805	881	807
815	758	882	866	695	787	787	805	881	806
820	757	882	866	695	787	786	804	881	806
825	757	881	866	695	787	786	804	881	806
830	756	881	866	694	786	786	803	881	805
835	756	881	865	694	786	786	803	881	805
840	755	881	865	694	786	786	802	880	805
845	755	881	865	693	786	786	802	880	804
850	754	880	865	693	785	785	801	880	804
855	754	880	864	693	785	785	801	880	804
860	753	880	864	692	785	785	801	880	803
 865	753	880	864	692	785	785	800	880	803

870	753	879	864	691	784	784	800	880	802
875	752	879	863	691	784	784	799	880	802
880	752	879	863	691	784	784	799	880	802
885	751	879	863	690	784	784	798	879	801
890	751	879	863	690	783	784	798	879	801
895	750	878	862	689	783	783	797	879	800
900	750	878	862	689	783	783	797	879	800
905	750	878	862	689	783	783	797	879	800
910	749	877	861	688	783	782	796	879	799
915	749	877	861	688	782	782	796	879	799
920	748	877	861	687	782	782	795	878	798
925	748	877	861	687	782	782	795	878	798
930	747	876	860	686	782	781	794	878	797
935	747	876	860	686	781	781	794	878	797
940	747	876	860	685	781	781	794	878	796
945	746	876	860	685	781	780	793	878	796
950	746	875	859	684	781	780	793	877	796
955	745	875	859	684	780	780	792	877	795
960	745	875	859	683	780	779	792	877	795
965	745	875	858	683	780	779	792	877	794
970	744	874	858	682	780	779	791	877	794
975	744	874	858	681	779	778	791	876	793
980	743	874	858	681	779	778	790	876	793
985	743	874	857	680	779	777	790	876	792
990	743	873	857	680	779	777	790	876	792
995	742	873	857	679	778	777	789	875	791
1000	742	873	857	678	778	776	789	875	791
1005	741	873	856	678	778	776	788	875	790
1010	741	872	856	677	778	775	788	875	790
1015	741	872	856	677	778	775	788	875	789
1020	740	872	855	676	777	774	787	874	789
1025	740	872	855	675	777	774	787	874	788
1030	740	871	855	675	777	774	786	874	788
1035	739	871	855	674	777	773	786	873	787
1040	739	871	854	673	776	773	786	873	787
1045	738	870	854	673	776	772	785	873	786
1050	738	870	854	672	776	772	785	873	786
1055	738	870	854	671	776	771	785	872	785
1060	737	870	853	671	776	771	784	872	785
1065	737	869	853	670	775	770	78/	872	787
1005	737	860	853	660	775	770	794	872	704
1075	726	860	000 850	660	775	760	704	07Z	792
1020	726	860	0JZ 022	660	כוו דרך	760	705 702	0/1 071	201 201
1085	726	003	0JZ 022	667	כוו דרך	769	705 702	0/1 071	702 707
1000	725	000	0JZ 022	666	כוו גרך	700	207 797	071 070	702 701
1090	725	000	0JZ 0E1	666	774 777	700	702 702	0/U 070	701 701
CEDT	122	000	100	000	//4	101	102	0/0	101

1100	735	868	851	665	774	767	782	870	780
1105	734	867	851	664	774	766	781	869	780
1110	734	867	851	664	774	765	781	869	779
1115	734	867	850	663	773	765	781	869	779
1120	733	867	850	662	773	764	780	869	778
1125	733	866	850	661	773	764	780	868	778
1130	733	866	850	660	773	763	780	868	777
1135	732	866	849	660	773	763	779	868	776
1140	732	866	849	659	773	762	779	867	776
1145	732	865	849	658	772	762	779	867	775
1150	731	865	849	657	772	761	778	867	775
1155	731	865	848	657	772	760	778	866	774
1160	731	865	848	656	772	760	778	866	774
1165	730	864	848	655	772	759	778	866	773
1170	730	864	848	654	772	759	777	865	772
1175	730	864	847	653	771	758	777	865	772
1180	729	864	847	652	771	757	777	864	771
1185	729	864	847	652	771	757	776	864	771
1190	729	863	847	651	771	756	776	864	770
1195	729	863	846	650	771	755	776	863	769
1200	728	863	846	649	771	755	776	863	769
1205	728	863	846	648	770	754	775	863	768
1210	728	862	845	647	770	754	775	862	768
1215	728	862	845	647	770	753	775	862	767
1220	727	862	845	646	770	752	775	862	766
1225	727	862	845	645	770	752	774	861	766
1230	727	861	844	644	770	751	774	861	765
1235	727	861	844	643	770	750	774	861	765
1240	726	861	844	642	770	750	774	860	764
1245	726	861	844	641	769	749	774	860	763
1250	726	860	843	641	769	748	773	859	763
1255	726	860	843	640	769	748	773	859	762
1260	725	860	843	639	769	747	773	859	762
1265	725	860	843	638	769	746	773	858	761
1270	725	859	842	637	769	746	773	858	760
1275	725	859	842	636	769	745	772	857	760
1280	725	859	842	635	769	744	772	857	759
1285	724	859	842	634	769	744	772	857	758
1290	724	858	841	633	768	743	772	856	758
1295	724	858	841	633	768	742	772	856	757
1300	724	858	841	632	768	742	772	856	757
1305	724	858	841	631	768	741	771	855	756
1310	723	857	840	630	768	740	771	855	755

			PP07			PP15			PR24	
	Čas (min)	R	G	В	R	G	В	R	G	В
SDS	0	638	739	609	538	584	688	608	674	668
	5	648	731	626	538	586	685	608	677	672
	10	659	728	643	538	593	684	610	685	682
	15	669	728	661	539	603	684	612	697	695
	20	678	755	678	552	637	704	625	730	715
	25	686	816	696	582	698	749	652	788	744
	30	700	877	719	619	755	796	686	845	778
	35	750	934	764	680	802	845	741	899	827
	40	829	993	823	757	847	897	811	954	885
	45	883	1035	869	804	878	936	854	992	928
	50	905	1061	899	818	895	962	869	1014	952
	55	922	1081	924	828	907	982	879	1031	969
	60	928	1095	934	832	922	990	884	1042	981
1. preplach	65	901	1103	932	825	947	977	886	1048	987
	70	921	1108	963	861	955	985	889	1054	992
	75	906	1136	937	854	938	984	893	1060	994
DNAza	80	951	1117	942	858	948	998	896	1064	996
	85	954	1143	945	867	983	1010	905	1089	997
	90	957	1200	948	879	1042	1021	918	1137	997
	95	958	1256	949	889	1097	1030	931	1182	998
2. preplach	100	958	1282	950	894	1121	1033	936	1203	998
	105	958	1282	950	894	1121	1033	936	1203	998
	110	958	1281	950	894	1120	1033	936	1202	998
	115	957	1280	949	893	1119	1032	935	1201	997
	120	957	1278	949	893	1117	1032	935	1199	997
	125	956	1276	948	892	1115	1031	934	1197	996
	130	955	1273	947	892	1113	1030	933	1195	995
	135	954	1270	947	891	1110	1029	932	1192	994
	140	953	1267	946	890	1106	1028	931	1189	993
	145	951	1263	944	889	1103	1027	930	1186	992
	150	950	1259	943	887	1099	1025	928	1182	991
	155	948	1254	942	886	1094	1024	927	1178	990
	160	946	1250	940	885	1089	1022	925	1173	988
	165	945	1244	939	883	1084	1020	924	1169	986
	170	943	1239	937	882	1079	1018	922	1164	985
	175	941	1233	936	880	1074	1017	920	1158	983
	180	938	1227	934	878	1068	1015	918	1153	981
	185	936	1221	932	876	1062	1012	916	1147	979
	190	934	1215	930	875	1055	1010	914	1141	977
	195	931	1208	928	873	1049	1008	912	1135	975
	200	929	1201	926	871	1042	1006	909	1129	973
	205	926	1194	924	868	1035	1003	907	1122	971

Tab. C.2: Namerané hodnoty intenzít farebných zložiek viditeľného svetla pre jednotlivé vzorky decelularizovaných tkanív - pokračovanie

210	924	1187	922	866	1028	1001	904	1115	968
215	921	1179	919	864	1021	998	902	1109	966
220	918	1172	917	862	1014	996	899	1102	964
225	915	1164	915	860	1006	993	897	1095	961
230	912	1157	912	857	999	990	894	1088	959
235	910	1149	910	855	991	988	891	1081	957
240	907	1141	908	852	983	985	889	1073	954
245	904	1133	905	850	976	982	886	1066	952
250	901	1125	903	848	968	980	883	1059	949
255	898	1118	900	845	960	977	880	1052	947
260	895	1110	898	843	952	974	878	1044	944
265	892	1102	895	840	945	972	875	1037	942
270	889	1094	893	838	937	969	872	1030	939
275	886	1086	891	835	929	966	869	1023	937
280	883	1079	888	832	922	963	866	1016	934
285	880	1071	886	830	914	961	864	1009	932
290	877	1064	883	827	907	958	861	1002	929
295	874	1057	881	825	900	956	858	995	927
300	871	1049	879	822	892	953	856	988	924
305	868	1042	876	820	886	951	853	982	922
310	866	1036	874	818	879	948	850	975	920
315	863	1029	872	815	872	946	848	969	917
320	860	1023	870	813	866	943	845	963	915
325	858	1017	868	810	860	941	843	957	913
330	855	1011	866	808	854	939	840	952	911
335	853	1005	864	806	848	937	838	946	909
340	850	1000	862	804	842	935	835	941	907
345	848	995	860	802	837	933	833	936	905
350	846	990	858	800	832	931	831	932	904
355	844	986	857	798	828	930	829	928	902
360	842	982	855	796	824	928	827	924	900
365	840	978	853	794	820	927	825	920	899
370	838	975	852	792	816	925	823	917	898
375	836	972	851	790	813	924	822	914	896
380	835	970	850	789	811	923	820	912	895
385	833	968	849	787	808	922	819	910	894
390	832	967	848	786	806	921	817	908	893
395	831	966	847	784	805	921	816	907	893
400	830	965	846	783	804	920	815	906	892
405	829	965	845	782	803	920	814	905	891
410	828	965	845	781	803	919	813	905	891
415	827	964	844	779	802	919	812	904	890
420	826	964	843	778	801	918	811	904	890
425	826	964	843	777	801	918	810	903	889
430	825	964	842	776	800	918	809	903	889
435	824	963	842	775	799	917	808	902	888

440	823	963	841	774	799	917	807	902	888
445	822	963	841	772	798	917	806	901	887
450	821	963	840	771	797	916	805	901	887
455	820	963	839	770	797	916	804	900	887
460	820	962	839	769	796	916	803	900	886
465	819	962	838	768	795	915	803	899	886
470	818	962	838	767	795	915	802	899	885
475	817	962	837	766	794	915	801	899	885
480	816	962	837	764	794	914	800	898	884
485	815	962	836	763	793	914	799	898	884
490	815	961	836	762	792	914	798	897	884
495	814	961	835	761	792	914	797	897	883
500	813	961	835	760	791	913	796	897	883
505	812	961	834	759	791	913	796	896	882
510	811	961	834	758	790	913	795	896	882
515	811	961	833	757	790	913	794	896	882
520	810	961	833	756	789	912	793	895	881
525	809	960	832	755	789	912	792	895	881
530	808	960	832	753	788	912	792	894	881
535	808	960	832	752	788	912	791	894	880
540	807	960	831	751	787	912	790	894	880
545	806	960	831	750	787	911	789	894	880
550	805	960	830	749	786	911	789	893	879
555	805	960	830	748	786	911	788	893	879
560	804	960	829	747	785	911	787	893	879
565	803	960	829	746	785	911	786	892	878
570	803	959	829	745	784	910	786	892	878
575	802	959	828	744	784	910	785	892	878
580	801	959	828	743	783	910	784	891	877
585	800	959	827	742	783	910	783	891	877
590	800	959	827	741	782	910	783	891	877
595	799	959	827	740	782	910	782	891	877
600	798	959	826	739	781	909	781	890	876
605	798	959	826	738	781	909	781	890	876
610	797	959	826	737	781	909	780	890	876
615	797	959	825	736	780	909	779	890	875
620	796	959	825	736	780	909	779	889	875
625	795	958	825	735	779	909	778	889	875
630	795	958	824	734	779	909	777	889	875
635	794	958	824	733	779	908	777	889	874
640	793	958	824	732	778	908	776	889	874
645	793	958	823	731	778	908	776	888	874
650	792	958	823	730	778	908	775	888	874
655	792	958	823	729	777	908	774	888	873
660	791	958	822	728	777	908	774	888	873
 665	791	958	822	727	777	908	773	888	873

670	790	958	822	727	776	907	773	887	873
675	790	958	821	726	776	907	772	887	872
680	789	958	821	725	776	907	771	887	872
685	789	958	821	724	775	907	771	887	872
690	788	958	820	723	775	907	770	887	872
695	788	958	820	722	775	907	770	886	872
700	787	957	820	722	775	907	769	886	871
705	787	957	820	721	774	907	769	886	871
710	786	957	819	720	774	906	768	886	871
715	786	957	819	719	774	906	768	886	871
720	785	957	819	719	773	906	767	885	870
725	785	957	818	718	773	906	766	885	870
730	784	957	818	717	773	906	766	885	870
735	784	957	818	716	773	906	765	885	870
740	784	957	818	716	773	905	765	885	870
745	783	957	817	715	772	905	764	885	869
750	783	957	817	714	772	905	764	884	869
755	782	957	817	713	772	905	763	884	869
760	782	957	816	713	772	905	763	884	869
765	782	956	816	712	772	905	762	884	868
705	702	956	010 016	712	771	202	762	004 994	868
775	701	950	010	711	771	004	761	004	000
775	701	930	010	711	771	904	701	000	000
700	701	950	015	710	771	904	761	000	000
785	780	950	815 015	710	771	904	760	003	808
790	780	956	815	709	771	904	760	883	867
795	780	956	815	708	771	904	759	883	867
800	780	956	814	708	770	903	759	882	867
805	779	956	814	707	770	903	758	882	867
810	779	956	814	707	770	903	758	882	867
815	//9	955	814	706	//0	903	/58	882	866
820	779	955	813	705	770	902	757	882	866
825	779	955	813	705	770	902	757	881	866
830	778	955	813	704	770	902	756	881	866
835	778	955	813	704	770	902	756	881	865
840	778	955	812	703	769	902	755	881	865
845	778	955	812	703	769	901	755	881	865
850	778	955	812	702	769	901	754	880	865
855	778	954	811	702	769	901	754	880	864
860	777	954	811	701	769	900	753	880	864
865	777	954	811	701	769	900	753	880	864
870	777	954	811	700	769	900	753	879	864
875	777	954	810	700	769	900	752	879	863
880	777	954	810	700	769	899	752	879	863
885	777	954	810	699	769	899	751	879	863
890	777	953	810	699	769	899	751	879	863
895	777	953	809	698	769	898	750	878	862

900	777	953	809	698	769	898	750	878	862
905	777	953	809	698	769	898	750	878	862
910	777	953	808	697	769	897	749	877	861
915	777	952	808	697	769	897	749	877	861
920	777	952	808	697	769	897	748	877	861
925	777	952	808	696	769	896	748	877	861
930	777	952	807	696	769	896	747	876	860
935	777	952	807	695	769	895	747	876	860
940	777	951	807	695	769	895	747	876	860
945	777	951	807	695	769	894	746	876	860
950	777	951	806	694	769	894	746	875	859
955	777	951	806	694	769	893	745	875	859
960	777	950	806	694	769	893	745	875	859
965	777	950	805	693	769	892	745	875	858
970	777	950	805	693	769	892	744	874	858
975	777	950	805	693	769	891	744	874	858
980	777	949	805	692	769	891	743	874	858
985	777	949	804	692	769	890	743	874	857
990	777	949	804	692	769	890	743	873	857
995	777	948	804	691	769	889	742	873	857
1000	777	948	804	691	770	889	742	873	857
1005	777	948	803	691	770	888	741	873	856
1010	777	947	803	690	770	887	741	872	856
1015	777	947	803	690	770	887	741	872	856
1020	777	947	803	690	770	886	740	872	855
1025	777	947	802	689	770	886	740	872	855
1030	777	946	802	689	770	885	740	871	855
1035	777	946	802	689	770	884	739	871	855
1040	777	946	802	688	770	884	739	871	854
1045	777	945	801	688	770	883	738	870	854
1050	777	945	801	688	770	882	738	870	854
1055	777	944	801	687	770	882	738	870	854
1060	777	944	801	687	771	881	737	870	853
1065	777	944	800	687	771	880	737	869	853
1070	777	943	800	686	771	880	737	869	853
1075	777	943	800	686	771	879	736	869	852
1080	777	943	800	686	771	878	736	869	852
1085	777	942	799	686	771	877	736	868	852
1090	777	942	799	685	771	877	735	868	852
1095	777	941	799	685	771	876	735	868	851
1100	777	941	799	685	771	875	735	868	851
1105	777	9 <u>4</u> 1	798	684	772	874	734	867	851
1110	777	940	792	684	772	874	734	867	851
1115	,,, 777	9 <u>4</u> 0	792	62/	772	872	72/	867	850
1120	,,, 777	0 <u>4</u> 0	702	621	772	872	722	867	850
1125	,,, 777	020	702	683	772	871	722	866	850
 1120	111	222	130	005	112	0/1	100	000	020

1130	777	939	797	683	772	870	733	866	850
1135	777	938	797	683	773	870	732	866	849
1140	777	938	797	683	773	869	732	866	849
1145	777	937	797	682	773	868	732	865	849
1150	777	937	796	682	773	867	731	865	849
1155	777	937	796	682	773	866	731	865	848
1160	777	936	796	682	774	865	731	865	848
1165	777	936	796	682	774	865	730	864	848
1170	777	935	796	681	774	864	730	864	848
1175	777	935	795	681	774	863	730	864	847
1180	777	934	795	681	774	862	729	864	847
1185	777	934	795	681	775	861	729	864	847
1190	777	933	795	681	775	860	729	863	847
1195	777	933	795	680	775	859	729	863	846
1200	777	933	794	680	775	859	728	863	846
1205	777	932	794	680	776	858	728	863	846
1210	777	932	794	680	776	857	728	862	845
1215	777	931	794	680	776	856	728	862	845
1220	777	931	794	680	776	855	727	862	845
1225	777	930	793	679	777	854	727	862	845
1230	777	930	793	679	777	853	727	861	844
1235	777	929	793	679	777	852	727	861	844
1240	777	929	793	679	777	851	726	861	844
1245	777	928	793	679	778	850	726	861	844
1250	777	928	792	679	778	849	726	860	843
1255	777	927	792	679	778	848	726	860	843
1260	777	927	792	679	779	848	725	860	843
1265	777	926	792	678	779	847	725	860	843
1270	777	926	792	678	779	846	725	859	842
1275	777	925	792	678	780	845	725	859	842
1280	777	925	791	678	780	844	725	859	842
1285	777	924	791	678	780	843	724	859	842
1290	777	924	791	678	781	842	724	858	841
1295	777	923	791	678	781	841	724	858	841
1300	777	923	791	678	781	840	724	858	841
1305	777	923	790	678	782	839	724	858	841
1310	777	922	790	678	782	838	723	857	840