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A dissertation thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Electrical Engineering and Information
Technology

Prague, August 2020



Supervisor:
doc. Ing. Lenka Lhotská, CSc.
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Czech Institute of Informatics, Robotics and Cybernetics
Czech Technical University in Prague
Jugoslávských partyzán̊u 1580/3
160 00 Prague 6
Czech Republic
and Department of Neurology
Mayo Clinic
Rochester, MN 55905
United States of America

Copyright © 2020 IVA MILERSKÁ
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Abstract

Musculoskeletal problems are widespread throughout the world. Sedentary jobs are cur-
rently increasing. Lack of movement leads to a gradual loss of muscles and builds up their
imbalance. This results in muscle shortening and poor spine stabilization. Sooner or later,
unpleasant complications of the musculoskeletal apparatus such as muscle blockages, neck
or lumbar spine pain, head or shoulder pain will occur. Sleep disorders, which negatively
affect the physical health of a person, occur more and more frequently. For these reasons,
the number of sleep laboratories, rehabilitation and health centers dealing with the causes
and consequences of musculoskeletal problems is also increasing. The electromyographic
approach and the measurement of muscle tone by so-called myotonometry are mainly used
to obtain muscle parameters. However, the development of new devices for these meas-
urements also brings a larger increase in data, which must be processed in both analysis
and graphical evaluation of results. Our proposed methods utilize the latest approaches
to the processing of electomyographic signals in combination with methods used in elec-
troencephalography and electrocardiography. We also focus on analyzing the processing of
myotonometric parameters, which helps us to expand our knowledge of the current state
of muscle. The main aim of this work is to propose an effective and non-invasive approach
(method) of measuring muscle activity for use in clinical and rehabilitation practice.

Keywords:
SEMG, HD SEMG, myotonometry, joint patterns, REM sleep behavioral disorders,

muscle imbalance.
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Abstrakt

Problémy s pohybovým aparátem jsou rozš́ı̌rené po celém světě. Sedavých zaměstnáńı
v současné době stále přibývá. Nedostatek pohybu vede k postupnému úbytku sval̊u
a vytvářeńı jejich dysbalance. To má za následek zkracováńı sval̊u a špatnou stabil-
izaci páteře. Dř́ıve či později se objev́ı nepř́ıjemné komplikace pohybového aparátu, jako
např́ıklad svalové blokády, bolest krčńı či bederńı páteře, bolesti hlavy nebo ramen. Stále
častěji se vyskytuj́ı i spánkové poruchy, které negativně ovlivňuj́ı psychické i fyzické zdrav́ı
člověka. Z těchto d̊uvod̊u roste i počet spánkových laboratoř́ı, rehabilitačńıch a zdra-
votnických center, zabývaj́ıćıch se př́ıčinami a následky muskuloskeletárńıch problémů.
Pro źıskáńı svalových parametr̊u se nejčastěji využ́ıvá elektromyografický př́ıstup a měřeńı
svalového tonu pomoćı takzvané myotonometrie. Vývoj nových zař́ızeńı pro tato měřeńı
však přináš́ı i větš́ı nár̊ust dat, která se musej́ı zpracovávat jak při analýze, tak při grafickém
vyhodnocováńı výsledk̊u. Námi navrhované metody využ́ıvaj́ı nejnověǰśı př́ıstupy zpra-
cováńı elektomyografických signál̊u v kombinaci s metodami použ́ıvanými v elektroence-
falografii a elektrokardiografii. Zaměřujeme se také na analýzu zpracováńı myotonomet-
rických parametr̊u, která nám pomáhá rozš́ı̌rit znalost o aktuálńım stavu svalu. Hlavńım
ćılem této práce je navrhnout efektivńı a neinvazivńı př́ıstup (metodu) měřeńı svalové
aktivity pro použit́ı v klinické a rehabilitačńı praxi.

Kĺıčová slova:
SEMG, HD SEMG, myotonometrie, kloubńı vzorce, spánkové poruchy v REM fázi,

svalová dysbalance.
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Chapter 1

Introduction

All parts of the body which have a function if used in moderation and exercised in labors
in which each is accustomed, become thereby healthy, well developed and age more slowly;
but if unused and left idle they become liable to disease, defective in growth and age
quickly.

—Hippocrates, c. 450 B.C.

Musculoskeletal problems are widespread throughout the world. There are more and
more professions characterized by sitting. Sedentary occupation and lack of exercise lead to
the gradual muscle wasting and the development of muscle imbalance. Muscle imbalance
involves a weakening of muscles, shortening of muscles and impaired spine statics and
dynamics in a long-term sitting position. Sooner or later, unpleasant complications in the
locomotor system will occur. This can be a muscle block, a neck or chest pain, a headache
or a shoulder pain. Increasingly, sleep disorders occur which negatively affects the physical
health of a person.

1.1 Motivation

The number of sleep laboratories, rehabilitation and health centres using electromyography
(mostly non-invasive surface electromyography - SEMG) approach is rising. They use this
method for diagnosis of various disorders such as dysfunction of posture, coordination or
sleep disorders. Development of new devices for measurement brings more and more data
growth. Thus time demands for classic processing are growing too. This places increasing
demands on the processor. New methods are looking for reducing the time required not only
for mathematical analysis but also for imaging methods that quickly and efficiently process
large amounts of data. The number of companies and software vendors for diagnostic tools
already in use is growing. However, not every software is user-friendly and tends to delay
its use. When developing new devices or user interfaces, the most important thing is good
cooperation with the end-user.
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1. Introduction

This thesis deals with the processing of SEMG signal according to predefined needs of
physiotherapists and doctors for a given diagnostic problem. There are used both classical
methods of SEMG signal processing in the time domain and less used spectral analysis.
A multi-channel electrode was designed for this purpose. Based on the deep search, charged
knowledge and case studies, a muscle contraction detector was designed for muscle timing
analysis. This detector has been modified to detect REM sleep behaviour disorder.

By definition, electromyographic measurements cannot be used outside the laborat-
ory or diagnostics department. It is therefore an attempt to replace this expensive and
time-consuming measurement with another, less demanding method that meets the re-
quired parameters. Information about total muscle load and fatigue can be complement
by measuring biomechanical parameters. A myotonometric measurement was designed
using a MyotonPro device for this purpose.

On the basis of cooperation with physiotherapists and doctors, three non-binding topics
were created, whose task is to understand, simplify and facilitate the time-consuming
evaluation of the issues.

1.2 Goals of the Dissertation Thesis

The main goal of the thesis is to propose effective non-invasive methods for measuring
muscle activity for use in clinical and rehabilitation practice. In the described research, we
investigate measurement problems of joint patterns, muscle parameters and detection of
REM sleep behaviour disorder. The main goal is divided into three subgoals, formulated
as follows:

◦ To investigate the representation of joint patterns. To study the problem of de-
tection muscle activity. To propose a method for measuring and detecting muscle
contractions.

◦ To propose a detection method for REM sleep behavioral disorders. To implement
a designed solution and test it on the real polysomnographic data from several sub-
jects suffering from sleep disorders.

◦ To study the problem of measuring biomechanical muscle parameters to complement
electromyographic measurement. To design the measurement, test it on the subjects
and to create methods for results evaluation.

1.3 Structure of the Dissertation Thesis

Pursuing the goals, the thesis is structured in the following way: Chapter 2 provides med-
ical and technical background for measurement of muscle parameters, electromyography
and myotonometry. Representation of joint patterns by using surface electromyography
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Chapter 2

State of the Art

This chapter contains all needed prerequisites for further reading - short introduction
to anatomy consequences, introducing basic approaches to measuring muscle response,
characteristics of signals and their measurement and processing.

2.1 Functional Anatomy of the Muscle

The muscle system is responsible for movement of the human body, posture, movement
of substances inside of body, and for generation of body heat. There are three main
types of muscle in the human body: skeletal, smooth, and cardiac. Each skeletal muscle
is an organ that consists of various tissues such as skeletal muscle fibers, blood vessels,
nerve fibers, and connective tissue. Each muscle is wrapped in an epimysium (a sheath of
dense, irregular connective tissue), which allows a muscle to contract and move powerfully
while maintaining its structural integrity, separates muscle from other tissues, and allowing
the muscle to move independently. Muscle fibers are organized into individual bundles
(fascicle), by the perimysium (a middle layer of connective tissue). Inside each fascicle,
each muscle fiber is encased in endomysium (a thin connective tissue layer of collagen
and reticular fibers). The plasma membrane of muscle fibers is called the sarcolemma.
The functional unit of the muscle fiber is a highly organized arrangement of the contractile
myofilaments actin and myosin called sarcomere [12, 13, 3]. Structural hierarchy of skeletal
muscle is shown in Fig. 2.1.

Functional and biomechanical units of muscles are motor units (MUs). A MU consists
of the individual muscle fibers innervated by a single motor nerve cell, or motoneuron.
The site where a motor neuron’s terminal meets the muscle fiber is called the neuromuscular
junction (NMJ) [12]. The essential role of the NMJ is to convert a temporal sequence
of action potentials (APs) in motor neurons into muscle contractions [14]. The NMJ is
composed of synaptic end bulbs, motor end plate and synaptic clef.

◦ Synaptic end bulb is a bulbous swelling at the end of each axon terminal, which
contains many synaptic vesicles such as neurotransmitter called acetylcholine (ACh).
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2. State of the Art

Figure 2.1: Structural hierarchy of skeletal muscle. Adopted from [3].

The ACh is responsible for transmission of impulse from axon to muscle fiber through
the synapse.

◦ Motor end plate is the part of the sarcolemma, which is in the closest proximity to
the synaptic end bulb.

◦ Synaptic cleft is the space between the presynaptic and postsynaptic membranes
(the motor end plate and synaptic end bulb) [4, 15].

The terminal boutons of the motor nerve axon contain mitochondria and small spherical
synaptic vesicles that store the ACh. Synaptic cleft contains an amorphous-looking basal
lamina that, among many functions, anchors the enzyme acetylcholinesterase (AChE).
The peaks of the postsynaptic folds are particularly electron dense because of their high
concentration of acetylcholine receptors (AChRs). When the action potential (AP) reaches
the motor nerve terminal, the depolarization opens voltage-gated calcium channels (VGCCs),
resulting in the Ca2+−dependent release of ACh into the synaptic space. ACh diffuses
rapidly to the postsynaptic membrane and binds to the AChRs, leading to opening of
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2.1. Functional Anatomy of the Muscle

the ACh-gated ion channel and a local depolarization called the end plate potential (EPP).
If the EPP exceeds a certain threshold, voltage-gated sodium channels that lie at the bot-
tom of the postsynaptic folds are opened, which results in generation of the muscle action
potential that propagates along the muscle fiber and activates muscle contraction. The ac-
tion of ACh is terminated by its dissociation from the AChR by hydrolysis by AChE, and
by diffusion from the synaptic cleft. Meanwhile, in the motor nerve terminal, the resting
membrane potential is restored through the opening of voltage-gated potassium channels
(VGKCs) [15].

Figure 2.2: Events at the neuromuscular junction. A) An action potential in the axon
terminal causes the uptake of Ca2+ into the axon terminal and the subsequent release of
the neurotransmitter. B) The neurotransmitter (ACh) is released from the synaptic vesicles
and diffuses across the synaptic cleft. C) Generation of action potential: The binding of
the ACh to receptors of the sarcolemma causes a change in membrane permeability, causing
the AP to be initiated in the sarcolemma. D) The AP is propagated into the interior of
the cells via the T tubules. Adopted from [4].

Basically, there are two approaches to measuring skeletal muscle response (electrical
and mechanical). Electrical methods include electromyography and mechanical repres-
ents myotonometry.
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2. State of the Art

2.2 Electromyography

Electromyography (EMG) signals are generated by skeletal muscles, which are the motors
allowing the movement of our bodies. This process supports central control strategies,
signal transmission along nerve fibers and across neuromuscular junctions and electrical
activation of the muscle fibres. Those fibers are organized in elementary MUs. MUs
produce forces that result in movement of bones by a chain of complex biochemical events.
The EMG signals provide a window on the actor as well as on its controller [5].

2.2.1 Electrodes

EMG signals can be measured directly from muscles by needle electrodes or from skin
by surface electrodes. The signals are used for observation of the musculoskeletal system
functions. Those are estimated by the rate of involvement of muscle fibers, monitoring local
changes in EMG during muscle fatigue and by analysing intervals (i.e. during gate analysis
or study movement trajectory). EMG amplitude of the bipolar measurement is used for
monitoring muscle activation levels and forces produced during muscle contraction [16].

EMG electrodes can be divided in groups shown in Fig. 2.3.

Figure 2.3: Types of electrodes

Application of surface EMG (SEMG) electrodes requires proper skin preparation be-
forehand. In order to obtain a good quality of SEMG signal, the skin and hair must be
completely removed from the location where the SEMG electrodes are to be placed. It is
advisable to use an abrasive gel to reduce amount of dry skin layer.

Gelled Electrodes

Gelled SEMG electrodes contain electrolytic gel as an interface between skin and elec-
trodes. Solution of potassium chloride (KCl) is used as an electrolyte and silver-silver
chloride (Ag-AgCl) is the most common composite for the metallic part of these elec-
trodes. Their disadvantage is the possibility of their movement during measurements that
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2.2. Electromyography

creates a motion artifact in measured SEMG signal [17]. The scheme of gelled electrodes
is shown in Fig. 2.4 B).

Dry Electrodes

Advantage of dry electrodes is that they do not require gel interface between the skin and
the electrode body. Bar electrodes and electrodes grids are examples of dry electrodes.
Disadvantage is the possibility of formation of a half-cell potential due to perspiration.
Another disadvantage is the variable area of the electrodes due to the changing pressure
on the electrodes to the skin, which can cause a change in capacity [17]. The scheme of
dry electrodes is shown in Fig. 2.4 A).

Figure 2.4: Scheme of A) dry electrodes and B) gelled electrodes.

Needle Electrodes

Small pickup area of needle electrodes enables to detect individual motor unit action po-
tentials (MUAPs) during relatively low force contraction. Advantage is that the electrodes
may be conveniently repositioned within the muscle (after insertion) so that new tissue
territories may be explored. Nevertheless, their application is more complicated than
the surface ones and may be uncomfortable for the patient [17]. Exact placement of these
electrodes must be checked using an ultrasound device, which makes the procedure more
demanding.

Fine Wire Electrodes

Wire electrodes are made from any small diameter, highly non-oxidizing, stiff wire with
insulation. They are placed directly into the cell and measure potential difference across
the cell membranes. In order not to destroy the function of the cell we must take into
account the size of each electrode. Most common design is a metal film vapor-deposited
on a thin glass fiber or micropipette [17].
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2.2.2 Electrode Location

The paradoxical problem with SEMG is that it is one of the easiest electrophysiological
signals to measure, but also one of the hardest to interpret quantitatively. The raw surface
electromyography recordings contain the signal that originates in the muscle and various
noise components that are unavoidable. There are many aspects that affect the purity
of the recorded signals. The first question is where to actually place the electrodes on
a muscle to reach the purest signal as possible and with the maximal amplitude.

Recommendations for the location of sensors (a bipolar electrode montage) for a number
of often studied muscles are given by idea of SEMG for the Non-Invasive Assessment of
Muscles (SENIAM) [18]. SENIAM works with sensors instead of electrodes, because there
are more types of measuring devices than electrodes.

SENIAM recommendations are derived from several principles. The most important
one is respect to the longitudinal (in fiber direction) location of the sensor on the muscle.
It is recommended to place the sensor halfway the (most) distal motor endplate zone to
the distal tendon. With respect to the transversal location of the sensor on the muscle,
it is also recommended to locate the sensor on the surface away from the ‘edge’ of other
subdivisions or other muscles so that the geometrical distance to other muscles is maxim-
ized [18, 19].

During last several years the importance of electrode configuration and location has
been addressed in a number of methodological and clinical publications [5, 16, 20, 21].
The monopolar configuration contains the entire information available from the recorded
signal but is used almost exclusively used in research applications because of its sensitivity
to common mode signals. The single differential also referred to as bipolar differential is
the most widely used configuration [5].

The single differential signal generated by a single fiber and detected with electrodes
placed symmetrically with respect to the NMJ will theoretically be zero. Because of scatter
of the NMJs neuromuscular junctions this electrode location corresponds to a minimum
of signal amplitude. When electrodes are applied in spite of SENIAM (i.e. over the in-
nervation zone (IZ) of a muscle) single differential electrode systems usually detect signals
that are of low amplitude and contain lot of noise. Those configurations also carry little
information because of the cancellation effect due to the bidirectional propagation, and
are extremely sensitive to small displacements between electrodes and muscle [5]. Situ-
ation example can be seen in Fig. 2.5 that highlights the importance of a correct electrode
placement.

2.2.3 Multichannel SEMG

In recent years, great effort has been performed to overcome the limitations of the classic
bipolar SEMG recording technique. The major reason for increasing the number of elec-
trodes in SEMG is to increase the number of recording positions placed over the muscle in
order to obtain a map of the potential distribution over the skin rather than a single local
observation [22, 23].
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2.2. Electromyography

Figure 2.5: An example of SEMG signal recorded with linear electrode array in single dif-
ferential mode during a strong contraction of a Vastus medialis muscle. The observed signal
amplitude minimum over the IZ (A) and the phase reversal (B1 and B2) is the consequence
of both the single differential recording mode and the movement of the depolarized zones
toward tendon terminations in opposite direction. Adopted from [5].

Linear electrodes arrays and electrode grids are assumed for multichannel recordings.

2.2.3.1 Linear Electrode Arrays

The linear electrode arrays provide valuable information about muscle. It is used to find
the locations of the IZ and tendons, and the fiber length. Another use is for estimation
of muscle fiber conduction velocity or investigation of single MU control and conduction
properties [24]. Measuring modalities are shown in Fig. 2.6.

2.2.3.2 Electrode Grids

An electrode grid makes the analog movie, which evolves in space and time under a 2 di-
mensional array. Each image of the movie is time specific and defines an area in the x and
y directions. The distribution of SEMG amplitude provides a topographical representation
of muscle activity [25].
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Figure 2.6: Modalities of detection of SEMG signals with linear electrode arrays. Adopted
from [5].

2.2.4 Signal Processing

One unfortunate but unavoidable fact with regards to acquisition of biological electrical
signals is that pure signals are very rarely, if ever, obtained. Elements contaminating pure
SEMG signals are other biological signals (e.g. from the heart) and noise (generated by
electrical equipment in proximity or from moving wires during data measuring). The pro-
cess of removing this contamination is known as signal processing. It is in fact a series
of mathematical steps which attempt to remove the additional elements and leave only
the pure SEMG signal [26].

Type of Noise

◦ Inherent Noise in the Electrode

The surface electrodes are widely used for SEMG recordings. It has been found that
these silver electrodes give adequate signal-to-noise ratio and are electrically very
steady [27, 28].

When the electrode size enlarges, the impedance decreases. However, electrode size
should not be very large. On the other hand, high electrode impedance effectively
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reduces the signal quality and gives low signal-to-noise ratio. Therefore, both para-
meters should be taken into consideration. Researchers are allowed to use high elec-
trode impedances for experiments in which statistical power is high or in which large
numbers of electrodes are necessary, but tend to switch to low electrode impedances
for experiments in which statistical power would otherwise be too low [28, 29].

◦ Movement Artifacts

The most common disturbing signal is a motion artifact that is caused by move-
ment of the cable connecting the electrode to the amplifier and the interface between
the detection surface of the skin and the electrode [28]. The harmonics of this un-
wanted signal are usually in the 0-20 Hz frequency range. Information concerning
the firing rates of the active motor units is unfortunately partially also contained in
this spectrum range [29].

◦ Electromagnetic/Power-line Noise Artifacts

Ambient noise is generated by electromagnetic devices such as computers, force
plates, power lines etc. The dominant concern for the ambient noise arises from
the 50 Hz (or 60 Hz) radiation from power sources, which is also called Power-Line
Interference. This is caused by differences in the electrode impedances and in stray
currents through the patient and the cables [30].

◦ Electrocardiographic Artifacts

The most interfering component in SEMG signals is electrical activity of the heart.
This physiological artifact is called an “electrocardiogram (ECG) artifact”. In general
the EMG recordings containing the ECG artifacts can often be determined by mere
visual inspection. Nonetheless it is difficult to algorithmically remove the contamina-
tion because of the ECG’s complicated waveform (broad-band spectral distribution).
This distribution covers many higher harmonics characterizing the ECG but also
reflects the transient nature of the heart rate, which causes peaks at harmonics to
broaden substantially [31, 28].

◦ Cross-talk Artifacts

Crosstalk is undesirable EMG signal from a muscle group that is not commonly
monitored. It contaminates the signal and can cause an incorrect interpretation of
the signal information. It can be minimized by choosing electrode size and inter-
electrode distance. The mathematical relationship between the target muscle EMG
and crosstalk is presented as [28]:

T 2
b = Rb2c + T 2

i +Ob2c , (2.1)

where Tb is the background EMG activity recorded at the target muscle, Ti is the in-
trinsic activity of the target muscle itself, Rb is the crosstalk from the remote muscle
and Ob is the crosstalk from other muscles.
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Before any type of filtering to remove noise, the signal itself must be viewed and the fre-
quency content of the signal must be considered. One approach to analyze the frequency
of a signal is to use Fourier analysis. Fourier analysis is a process to determine the range
of frequencies present in a signal. Typically fast Fourier transform is used to analyze
frequency content of signals and as such is available in a wide variety of programming
languages [26].
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Figure 2.7: Example of original signal y(t) amplitude before filtering and its spectrum
based on frequency analysis using Fourier transform. Power line artifacts are manifest as
spectral peaks at the power line frequency (here 50 Hz) and multiples.

Visible noise in raw signal

A primary characteristic of the raw myoelectric signal is that the signal is centered around
zero. Zero offset is simply a graph which is not centered on the zero line, i.e. the middle
of the graph is slightly above or below the zero line. The simplest way to check for zero
offset, other than to view it on a graph is to calculate the average value for the signal. If
the average of the signal is not zero the simplest correction is to subtract the average value
from each data point in the signal [26].

The majority of the EMG signal frequency concentration is between 20-200 Hz, with
minor contributions potentially extending up to 1000 Hz. Therefore, very low frequencies
e.g. 1-5 Hz in the signal are likely to be noise, and as such they should be removed [26].
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In Fig. 2.7 a 50 Hz electrical noise and its higher harmonic components are observed. These
frequencies have to be removed.

2.2.5 Signal Denoising

There are two key groups for considering signal filters. The first one is low pass filters
which retain signal frequencies below the filter cut-off frequency and attenuate frequencies
above the filter cut off frequency. A low pass filter response is shown in the Fig. 2.8 A).

A low pass filter can be developed by using a resistor-capacitor (RC) circuit (Fig. 2.8 C)).
This circuit is a first order low pass filter. It is the simplest low pass filter possible. The cut-
off frequency fc of the low pass filter is given in Eq. (2.2) [32].

fc =
1

2πRC
, (2.2)

The second group is high-pass filters which are filters that retain signal frequencies
above the filter cut off frequency and attenuate frequencies below the filter cut off frequency.
A high pass filter response is shown in Fig. 2.8 B) [26].

A RC circuit of high pass filter is in Fig. 2.8 D). The cut-off frequency equation is
the same as that of Eq.(2.2).

Figure 2.8: A) Low pass filter response. B) High pass filter response, C) RC circuit of low
pass filter, D) RC circuit of high pass filter

To remove the unwanted frequency range 0-20 Hz the high-pass filter is therefore de-
signed with a cutoff frequency in the 15 to 20 Hz (or in movement analysis in the 25 to 30 Hz)
range [5].
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With the exception of few cases, about 95% of SEMG power is accounted for by har-
monics up to 400 Hz and most of the remaining percent by electrode and equipment noise.
A low pass filter should be applied to the signal to further attenuate these unwanted
components. The cut-off frequency is usually chosen near to 500 Hz and the sampling
frequency must then be 1000 samples/second or higher (sampling theorem: sampling must
be > 2 times the highest frequency in the signal) [18].

The simplest method of removing narrow bandwidth interference from a recorded signal
is to use a notch filter. Digital notch filters come in a variety of different forms that can
be used for various purposes and that achieve different results. An example of notch
filter response is shown in Fig. 2.9. In general, this is not a good practice because it
removes power from a frequency band where EMG shows high-power density and introduces
phase rotation that extends to frequencies below and above the central frequency thereby
dramatically changing the waveform of the EMG [5, 33].

Figure 2.9: Notch Filter Response, f0 denotes the center frequency and ∆f denotes the fre-
quency bandwidth

2.2.6 Signal Analysis

Two basic approaches are used to process signal from SEMG. The first one involves ana-
lyzing the characteristics of interference patterns, such as the number of times the SEMG
signal changes direction, called turns. The second one is based on power spectral ana-
lysis. Analysis of interference patterns has one main advantage according to D. A. Gabriel
et al. [34]: the SEMG signal does not need to be stationary. The only methodological
control required is that they perform contractions that are standardized from session to
session. Patients can either maintain a constant level of force or exert a maximum effort
contraction [34].

2.2.6.1 Time domain signal analysis

This type of analysis of the measured SEMG signals is characterized by a signal waveform
display.
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2.2. Electromyography

Spike shape analysis

Spike shape analysis uses two major components of the SEMG signal: spikes and peaks
(Fig. 2.10). A spike is composed of a single upward and downward deflection. A peak is
defined as a pair of upward and downward deflections within a spike that do not together
constitute a discrete spike [6].

Figure 2.10: An illustration of SEMG spike shape analysis. Adopted from [6]

The variables computed to perform a spike shape analysis include mean spike amplitude
(MSA), mean spike frequency (MSF ), mean spike slope (MSS), mean spike duration
(MSD) and mean number of peaks per spike (MNPPS). The MSA calculation is shown
as

SAy =
(By − Ay) + (By − Cy)

2
, (2.3)

and

MSA =
NS∑
i=1

SAy
NS

, (2.4)

where SAy is spike amplitude, the x and y subscripts are the x- and y-coordinates of points
A (the beginning of each spike), B (the highest peak in a spike) and C (the end of each
spike) and NS is the number of spikes in a given sample of SEMG [6].

MSF is calculated by taking the NS seen in the data window and dividing by the total
duration (TD) of that data analysis window. The MSF algorithm is shown as
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MFS =
NS

TD
, (2.5)

where NS is the number of spikes and TD is the total duration of a given sample of
SEMG [6].

Individual spike slopes are calculated from the beginning of each spike (point A) to its
peak (point B) simply based on the x- and y-coordinates of points A and B on the spike.
Once the slope for each spike is calculated, the mean spike slope across the data window
is determined as the sum of the spike slopes divided by the number of spikes (NS) seen
within that data window. The MSS algorithm is shown in as

SS =
By − Ay
Bx − Ax

, (2.6)

and

MSS =
NS∑
i=1

SS

NS
, (2.7)

where SS is the spike slope and NS is the number of spikes of a given sample of SEMG [6].
MNPPS is calculated by determining the number of peaks (P ) in the recording window

and dividing it by the NS in the same window. The MNPPS algorithm is shown as

MNPPS =
P

NS
. (2.8)

MSD is calculated by determining the duration of each individual spike. The duration
of all of the spikes within the data window are then summed and divided by the NS.
The MSD algorithm is shown as

MSD =
NS∑
i=1

Cx − Ax
NS

, (2.9)

where NS is the number of spikes in a given window of SEMG [6].
As an additional parameter to evaluate the SEMG signal, the averaged rectified value

(ARV) and the root mean squared value (RMS) are used.

ARV =
1

n

∑
n

|xn|, (2.10)
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RMS =

√
1

n

∑
n

x2n, (2.11)

where xn are the values of the SEMG signal, and n is the number of samples. Furthermore,
the number of zero crossing (ZCR, that tracks the number of times the waveform crosses
zero, switching from a positive signal to a negative one) is used. [35, 36].

2.2.6.2 Spectral analysis

Time domain analysis may not provide us with sufficient signal description. Frequency
domain data processing is used for more advantageous analysis. The basic mathematical
operation, which is used to transform most of the biological signals from time to frequency
domain is Fourier transform. Thus, the Fourier transform tells us what frequencies are
contained in a given signal.

Fourier transform

The Fourier Transform (FT) of input signal x(t) is defined as the following notation:

F (ω) =

∫ +∞

−∞
x(t)e−jωtdt, (2.12)

where ω is the angular frequency and ω = 2πf with f as the input frequency, x(t) is the
time domain signal. Then F (ω) is its FT represented in frequency domain, which is the
sum over all time of the signal x(t) multiplied by complex exponential [37].

In digital signal processing, determining the frequency content of a signal by a technique
called Discrete Fourier Transform (DFT) is one of the main aspects in feature extraction
and understanding the characteristics of a digital signal. Fast Fourier Transform (FFT) is
the practical application name used for the DFT that maps discrete-time sequences into
discrete-frequency representation as in equation:

F (k) =
N−1∑
n=0

x[n]e−j2πkt/N , (2.13)

where x is the input sequence, F is the DFT, 2πk is the angular frequency of input
sequence frequency k andN is the number of samples in both discrete-time and the discrete-
frequency domains [37].

Thanks to FFT we can display the frequency spectrum of the signal(Fig. 2.11). The power
spectrum or power spectral density (PSD)(Fig. 2.12) gives us the signal power distrubution
along the frequency axis. So we see which frequency is the most powerful.
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Figure 2.11: Example of SEMG signal and frequency spectrum.

Figure 2.12: Example of SEMG signal and power spectral density (PSD[dB])

In PSD we are mostly interested in the most powerful component, i.e. the maximum
of this spectrum and the mean or median power. The power density median frequency is
the frequency at which the cumulative sum of the spectrum reaches 50% of the total value.
Furthermore, the first spectral moment is used, which represents the center of energy
distribution in the spectrum. It is therefore a weighted average of the spectral lines.
The second spectral moment represents the spread of the spectrum and it is analogous
to statistical variance and is an indicator of spectrum spreading. Generally, the spectral
moment can be described by equation [38]:

m
′

n =
1

I

c2∑
l=c1

S(l)(l/N∆t)n, (2.14)

where N is the power spectrum (S(l)) length, I is the frequency range from frequency c1
to frequency c2 and ∆t is the sampling interval.
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Wavelet transform

In the last decade, wavelet transform (WT) became an effective tool to extract useful
information from the EMG signal [39, 40]. WT can essentially be divided into discrete and
continuous forms. It efficiently transforms the signals with a flexible resolution [28].

This new tool differs from the Fourier transform in the way in which it localizes the in-
formation in the time-frequency plane. It is capable of trading one type of resolution for
the other. This makes it especially suitable for the analysis of non-stationary signals [41].

The basic idea in wavelet theory is to reject the concept of fixed size windows. WT
decomposes a signal into several multiresolution components according to a basis function
called the wavelet function (WF). The WF is both dilated and translated in time under-
taking a two-dimensional cross correlation with the time domain SEMG signal [42, 43].

WT consists of two stages. The first is analysis (decomposition) and the second is
synthesis (reconstruction). Analysis is the calculation of approximations and details of
signal using wavelet filters. Generating an original signal of these values is called synthesis.
If we denote approximations on the p level as ap and details on the p level as dp, wavelet
transformation on the p level we can represent by the Fig. 2.13.

Figure 2.13: Example of signals (s) wavelet transform (type coif1) and wavelet tree where
a1, ..., ap is space of approximations and d1, ..., dp is space of details.

The signal s can be imagined as a vector which can be expressed as the directive sum:

s = ap ⊕ dp ⊕ dp−1 ⊕ · · · ⊕ d1, (2.15)
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2.3 Myotonometry

The optimal concentration of blood plasma salts and ions and the protein composition
is necessary for the normal activities of biological tissue and it depends on the tone and
biomechanical properties [44]. Skeletal muscle never completely relaxes. Some fibers are
always slightly contracted so they are in an active state and ready for further contraction.
This slight contraction is called muscle tone [45].

Objective measurement of myotonometric parameters would greatly enhance detec-
tion of risk of injury and monitoring the effects of interventions, such as treatment [46].
The principal difference between myotonometry and traditional measurement of muscle
parameter is that it can measure the tone, elasticity and stiffness simultaneously.

2.3.1 Measurement Equipment

The probe at the end of myometer (Fig. 2.14) has to be placed perpendicularly to the sur-
face of the skin. Constant pre-pressure (pre-load force of 0.18 N) is applied between
the probe and the surface of the skin for compressing subcutaneous tissues which allows
for the registration of the damping natural oscillation of the muscle through the skin and
subcutaneous tissues. A short mechanical impulses (duration 15 ms, 0.58 N) are delivered
to the tissue under the probe. The mechanical impulses generate damped oscillations
within the muscle, which are recorded by an accelerometer in the form of an acceleration
curve (shown in Fig. 2.15) from which five parameters are calculated [47, 48].

◦ Oscillation frequency

Oscillation frequency F [Hz] characterizes the tone (intrinsic tension on the cellular
level) of a muscle in its passive or resting state without any voluntary contraction
and is defined as the maximum frequency (Eq. (2.16)) computed from the signal
spectrum by FFT [49, 7].

F = fmax. (2.16)

The higher the natural oscillation frequency, the higher is the tone. F is known to
increase with contraction (state of tension) and stretch [7].

◦ Dynamic stiffness

Dynamic stiffness S[Nm−1] characterizes the resistance of a muscle to a contraction
or to an external force that deforms its shape and is calculated as [7]:

S = mprobe
amax
∆l

, (2.17)

where mprobe is a mass of the measurement mechanism and ∆l is a maximum dis-
placement of the tissue [7].
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Figure 2.14: MyotonPro Device. www.myoton.com

◦ Logarithmic decrement

Logarithmic decrement D represents muscle elasticity and indicates how much mech-
anical energy is lost in the tissue during an oscillation cycle. D is expressed in
arbitrary units [7]:

D = ln

(
a1
a3

)
, (2.18)

where a1 is a maximum tissue resistance and a3 is a maximum displacement of
the second period of oscillation which takes place due to the recuperation of stored
residual mechanical energy in the tissue. The smaller the decrement value, the smal-
ler will be the dissipation of mechanical energy and higher will be the elasticity of
tissue. Decrement of zero would represent absolute elasticity and zero dissipation of
mechanical energy [7].

◦ Mechanical stress relaxation time

Mechanical stress relaxation time R[ms] is the time for a muscle to recover its shape
from deformation after a voluntary contraction or a removal of an external force. It
is calculated as:
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Figure 2.15: Oscillation curve. a: acceleration of the damped oscillation, a0: maximum ac-
celeration, a1: maximum displacement, a2: maximum opposite displacement due to the re-
sidual inertia of the tissue oscillation, a3: maximum displacement of the second period of
oscillation which takes place due to the recuperation of stored residual mechanical energy,
∆S: precompression of subcutaneous tissues above the muscle being measured, ∆l: max-
imum displacement of the tissue, S: displacement (tissue oscillation), t: time, tmi: the end
of mechanical impulse, t0: the time when maximum acceleration was reached, tT : start
of the mechanical impulse, tr: the time when tissue returns to its initial shape, ts: zero
acceleration and maximum velocity due to the force of deformation, V : oscillation velocity.
Adopted from [7]

R = tR − t1, (2.19)

where tR is the time when tissue returns to its initial shape and t1 is the time when
maximum displacement was reached [50].

◦ Creep (Deborah number)

Creep C is the gradual elongation of a tissue over time when placed under a con-
stant tensile stress. This is the ratio of the relaxation and deformation time of
the muscle [50]. Creep can be described by equation:

C =
R

(t1 − tT )
, (2.20)
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where R is the mechanical stress relaxation time, t1 is the time when maximum
displacement was reached and tT is the start of the mechanical impulse. The smaller
the difference of relaxation and deformation time, the higher the value of the C
parameter indicating the creep. Younger and healthier muscles have a smaller value
of the C parameter [50].

2.4 Conclusion

This chapter provides basic information about anatomical consequences. There are de-
scribed basic principles of measuring muscle response by electromyography and myotono-
metry. Further information is always given in the introduction to each chapter.

The following text is divided into three main chapters that focus on three main themes
(and sub-goals) of the thesis. The first one deals with the measurement of joint patterns
using electromyography. Based on the charged information, a separate topic of semiauto-
matic detector development was created. The third topic is measuring muscle parameters
using myotonometry.
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Chapter 3

Representation of Joint Patterns

3.1 Introduction

Investigation of joint patterns is one of many ways to detect soft tissue pathology. It
is examination of the joint mobility of a given joint. Limiting this momentum indicates
damage to structures that affect the performance of isolated motion in the joint. For
identification, passive and active motion range tests performed by a physiotherapist are
used. So-called articular blockages can result in reactive changes in skeletal muscle tension.

Functional blockage of the joint is a common clinical term that expresses one of the most
common functional disorders in the musculoskeletal system. It can be defined as a mal-
function that is not accompanied by a structural disruption of the joint. The total range
of motion does not change with the functional joint block, but there is a relative change in
the magnitude of the partial movements that make up the total motion around one joint
axis [51]. According to Velé [52], joint motion is a small movement in the joint in other
direction than those typical of its function. Loss of joint clearance is manifested by stiff-
ness in the joint and deterioration of joint mobility. The articular clearance is defined by
the elasticity of the articular capsule and the pull of the short muscles that clamp around
the joint and act parallel to the axis of the movable segment [52].

Lewit [53] divides joint blocking symptoms to limit joint movement, loss of joint clear-
ance, and reactive changes in skeletal muscle tension that cross the blocked joint and
perform active movement there. Joint blockades have a high tendency to chaining. In this
way, the flexion or extension chains of joint dysfunctions arise in the limbs. On the lower
limb, these chains are caused by many causes, such as defective pelvis position, and trau-
matic conditions of the hip, knee and ankle.

The examination of the articular barriers according to Rychĺıková [54] consists in delay-
ing the bones that form the joint and subsequently in shifting the bones to one another. It is
therefore an examination in non-physiological ways, when movements are performed pass-
ively. The examination of the joint in physiological directions, i.e. in flexion or extension, is
dealt with by Tichý [51]. In this examination, skeletal muscles are much more pronounced,
and in addition to them other soft tissues that cover the joint (fascia, subcutis, skin). Hy-
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pertonus or skeletal muscle spasm will most likely affect the position of the physiological
joint barrier and the size of its joint will based on the assumption that skeletal muscle
tension changes in joint blockages. This change could be detected by SEMG.

This chapter is divided into three parts and based on my conference articles [8, 55, 56, 1].
The first section deals with the measurement of joint paterns using bipolar electrodes on
the muscles vastus lateralis and vastus medialis. One set of bipolar electrodes was used
on each muscle. The findings of this experiment are followed by the second section, which
extends the measurement to multichannel one, using up to ten sets of bipolar electrodes.
There was designed and built a special multi-channel electrode, due to the large size of the
electrodes used in the previous experiment. The last third section describes the solution.

3.2 Surface Electromyography

3.2.1 Experiment Introduction

This section explains the preliminary results of the study of muscle activity in knee ex-
tension by using bipolar electrodes. The quadriceps femoris muscle is the great extensor
of the knee. This muscle consists of four parts: rectus femoris, vastus lateralis, vastus
medialis, and vastus intermedius. Rectus femoris is located in the middle, while vastus lat-
eralis forms the bulk of the lateral thigh, vastus medialis is in the medial thigh, and vastus
intermedius lies deep to the rectus femoris between vastus lateralis and medialis. Rectus
femoris is a particular muscle (it is also a flexor muscle at the hip joint) while the other
components are monoarticular muscles [57]. It is expected that the different morphological
and dynamic behavior of the quadriceps components would cause these muscles respond
differently to artificially induces joint blockages by a reflective heel pad.

3.2.2 Materials and Methods

3.2.2.1 Subjects

19 subjects, 15 females (23.5 ± 4.0 years) and 4 males (32.8 ± 11.8 years) participated
voluntarily in this study. First, they were informed about the entire study procedure.
Then they were examined by a physiotherapist. Anamnesis included the determination of
the dominant limb and functional examination whether the patient does not suffer from
bacterial inflammation and does not show neurological changes conducting reflex activity
in the lower dominant limb.

3.2.2.2 Electrodes Localization

Bipolar electrodes (40.8 x 34 mm) with scanning area 13.2 mm2 (Ambu Blue Sensor P)
were placed on two heads of quadriceps femoris muscle - vastus medialis (VM) and vastus
lateralis (VL). According to the study A. Reinoldi [58] was the IZ VL localized at a distance
94±13.2 mm on the line from lateral patella to the anterior upper of the hip bone and
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the VM muscle was located at a distance 51.7±13.0 mm below fifty degrees from the patellar
line and the upper pin hip bone (Fig. 3.2).

3.2.2.3 Measurement Procedure

The measurement was carried out on a special measuring chair (Fig. 3.1) for using the
equipment Biomonitor ME6000. The angle in the knee joint was set to 70◦ flexion and hip at
120◦ between pelvis and femur which corresponds to relaxed sitting. Each patient did three
isometric maximum voluntary contraction (MVC) at knee extension before the experiment.

Figure 3.1: The special designed meas-
uring chair with adjustable angles in the
knee and hip. Adopted from [8]

Figure 3.2: The electrode location on the
muscle vastus medialis and vastus lat-
eralis. Adopted from [8].

The contraction always lasted 2s with a rest period of 30 s. During these contractions,
a force sensor value was recorded, which was then used to calculate a submaximal (60%)
MVC value. After a two-minute rest period, three submaximal 60% contractions were
measured with 2min rest between contractions. The measurement was carried out without
heel pad (WHP) and with the use of a pronation heel pad (PHP) and supination heel pad
(SHP)(Fig. 3.3). At the end of the experiment there was performed MVC measurement
for investigation of the muscle fatigue again.
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Figure 3.3: Pronation and supination of the ankle and the example how to use the heel
pad. Adopted from [1].

3.2.2.4 Signal Preprocessing

Recorded raw SEMG signals contained several contaminating elements (e.g. power grid
frequency, offset and baseline wander). Interference frequency alternating current was
eliminated by measuring device and grounding. The signal offset was dealt with by sub-
traction of the signal median from the raw SEMG. Obvious baseline wander presented in
the raw SEMG was removed by nonlinear filtering aiming to find and subtract isoline from
the signal.

Individual steps of isoline subtraction were based on the triple decimation of the original
signal, its filtration (low pass - 4th order Butterworth filter with normalized cutoff frequency
0.4) and triple backward interpolation to the original sampling frequency of 1 kHz.

3.2.2.5 Contraction Detector

Before own SEMG analysis of isometric contractions it was necessary to detect these con-
tractions and to choose 2s segments where subject maintained the value of submaximal
contraction slightly fluctuating around 60% of MVC (shown in Fig. 3.4 D). To do so
a smoothed Hilbert envelope of the signal was calculated. Value of 3 standard deviations
(SD) of recorded SEMG was used as the threshold for detection of single contractions
(spindles) (shown in Fig. 3.4 B). SEMG 60% MVC segments where subjects maintained
a constant force were located at the end of each found spindle. Value corresponding to
the median amplitude calculated from spindle amplitudes was used as the threshold to find
the start of 60% MVC segment coming from the end of found spindles. From that point
backward 2s SEMG record was considered as 60% MVC segment (Fig. 3.4 D).

3.2.2.6 Contraction Analysis

Nineteen parameters were calculated on the extracted 2s parts of SEMG based on Spike
shape analysis and frequency and time domain analysis. Parameters include calculation
of the spike amplitude, mean spike amplitude, mean spike frequency, mean spike slope,
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Figure 3.4: Illustration of 2s segment of the SEMG signal and the process of extraction
useful part of the signal for further analysis. A) One out of three isometric contractions
is shown to present the process of next steps of signal selection. B) The original signal
rectified. A setup threshold level 3 SD of the signal – marked in green and envelope of
the signal (red). C) A detected contraction (green) is shown. D) 2s of useful signal for
further analysis (green). Selection is made from the end of contraction showed in C and
tracked from the back end of the signal forward (right to left). 2s of signal from the point
where envelope of the signal is higher than 3 SD are taken into account. Adopted from [8]

mean number of peaks per spike, number of spikes, mean spike duration, zero-crossing
rate, most powerful frequency in the spectrum, median of PSD, the first spectral moment,
the second spectral moment, average rectified filtered SEMG signal, median, maxima, min-
ima, standard deviation and power of the signal after rectification. (Detailed description
of parameters can be found in 2.2.6).

3.2.3 Experiment Results

A two-way analysis of variance (ANOVA) was performed on the 19 computed parameters.
The factors were application of the heel pad and the subject. Significance was set to p<0.05.
Pair-wise comparisons were performed with post hoc Tukey method. Significance was
set to p<0.05. Two statistically significant (p<0.05) effects of changes in heel pad have
been proved for parameters median for the VM muscle and first spectral moment for
the VL muscle. It was shown, that there are statistically significant differences in muscle
activity in measurements without reflex heel pad vs. supine reflex heel pad (parameter

31



3. Representation of Joint Patterns

Median SEMG, absolute value of the differences between means: 1.07 µV, p<0.05) and
also in measurements without reflex heel pad vs. pronation reflex heel pad (parameter
first spectral moment of SEMG, absolute value of the difference between means: 1.15 Hz,
p<0.05) (Fig. 3.5).

Figure 3.5: Tukey method for parameter madian and first spectral moment. WHP means
measurement without heel pad, SHP - supine heel pad, PHP - pronation heel pad.

3.2.4 Discussion and Conclusion

This study investigates changes in SEMG parameters based on spike shape analysis and fre-
quency and time domain analyzes. It shows that there are statistically significant changes
in the muscle patterns in a situation where the subject is exposed to artificially triggered
flexion or extension reflex chains. The question is whether these changes will be reflected
in muscle timing analysis. Based on the results, another measurement was designed using
a higher number of bipolar electrodes to determine whether the joint pattern paths chain
differently using reflective heel pads.

3.3 High Density Surface Electromyography

3.3.1 Experiment Introduction

Based on the results of the previous experiment 3.2, another measurement using high
density SEMG (HD SEMG) was proposed. HD SEMG is a technique to measure electrical
muscle activity with multiple (more then two) closely spaced electrodes. A major reason
for increasing the number of electrodes is to increase the number of recording position,
leading to topographical information concerning the distribution of the EMG activity over
a muscle or the timing relationships between different muscles [59]. We hypothesize that
a reflective heel pad artificially induces joint blockages and thus results in topographical
SEMG signals changes caused by flexors and extensors in the leg. The muscles rectus
femoris and vastus medialis were selected for this purpouse by using HD SEMG.
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3.3.2 Materials and Methods

3.3.2.1 Subject

One healthy proband (male, 46 years) was randomly selected to conduct this experiment.
Information to this study was provided before examination by a physiotherapist. Medical
history provided information about the dominant lower limb and functional examination.
No bacterial inflammation or neurological rewiring reflex activity in the dominant lower
limb was recorded.

3.3.2.2 Measurement Procedure

The measurement was set as in the previous study described in 3.2. Eight electrodes were
placed on the proband’s dominant lower limb on VMs (channels Ch1-Ch4) and twelve
on rectus femoris (RF) (channels Ch5-Ch10) with bipolar electrode connection (shown in
Fig. 3.6). Selected SEMG signals were recorded during three isometric MVC of the knee
extensors with two minutes rest between contractions. First one consisted of extension
without heel pad. The second and third one used pronation and supination heel pad
respectively.

Figure 3.6: Bipolar connection of electrodes and its placement on the muscle vastus medialis
and rectus femoris. Adopted from [1].
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3.3.2.3 Signal Processing

Signals from all channels were processed by our designed algorithms successively implemen-
ted in Matlab environment. First, each signal was filtered by using Butterworth bandpass
filter of second order with cutoff frequency 20 Hz and 350 Hz respectively. The envel-
ope after rectification was calculated using a moving average method with 0.4 s window.
The threshold used to get the contractions is one SD of the whole signal. Because the start
depends on the threshold size and is different for each signal, we used the method similar to
the study [60]. We created a slope line from the point where the threshold crosses the en-
velope (it is the position where the signal falls below the threshold) to 1 s before this point
and looked for the maximum difference between the slope line and the signal envelope for
detection of the contraction start. Fig. 3.7 shows an example of how the measurement is
performed to assess the start of the contraction.

Figure 3.7: Method for estimation of contraction start (point C). After selecting the peak
where the threshold crosses the envelope (point A) and a line from this point to the pos-
ition 1s before (point B) is created. Then the differences between the line and the signal
envelope are calculated and the position where the difference has its maximum is the start
of contraction. Adopted from [1].

This method was applied to all channels (Ch1-Ch4 VM, CH5-Ch10 RF) and all con-
tractions. The starts of contraction are linked for better visual evaluation. An example of
it is shown in Fig. 3.8.

3.3.2.4 Data Analysis

Because the specific topic in this study was to investigate the joint pattern and the muscle
timing, it was necessary to find out the way how to explain the result.

Muscle activation pattern is represented by contraction starts in all channels. The first
order polynomial model was chosen to investigate these patterns. For each contraction we
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Figure 3.8: Example of start position of third contraction on the channel (Ch1-Ch4 vas-
tus medialis, Ch5-Ch10 rectus femoris). (a) Start of contraction without using heel pad
(WHP), (b) start of contraction with pronation heel pad (PHP), (c) start of contraction
with supination heel pad (SHP). Red triangles represent the start of contraction. These
point are linked by blue line for better visual evaluation. Adopted from [1].

fit this model in the least-squares sense. Then the mean approximation curve was calculated
for each type of measurement (WHP, PHP and SHP). Since the data was measured on
one proband only, it is not possible to prove statistically significant changes. Based on
these results, contraction starts were sorted from the fastest channel to the slowest one
and represented in Tab. 3.1.

3.3.3 Experiment Results

The positions of contraction start on all channels were interleaved with a straight line using
the least squares approximation (the example is shown in the Fig. 3.9).

The mean approximation curve was calculated for contraction without using heel pad,
with pronation and supination heel pad. Mean approximation curve is shown in the Fig. 3.10.

The slope of the mean approximation curves without using heel pad and with pronation
heel pad is similar. The mean approximation curve with supination heel pad has a reverse
slope. These results indicate that the muscle rectus femoris starts the contraction in
the cases WHP and PHP and vastus medialis starts contraction with SHP.

The start positions of contraction were sorted from the fastest channel for better un-
derstanding of the result. The results are more clearly interpreted in the table (Tab. 3.1).
Muscle rectus femoris is faster in all three contractions and the SEMG signal spreads in
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Figure 3.9: Example of start position of third contraction on the channel (Ch1-Ch10) and
approximation curve. (a) Start of contraction without using heel pad (WHP), (b) start of
contraction with pronation heel pad (PHP), (c) start of contraction with supination heel
pad (SHP). Adopted from [1].
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Figure 3.10: Mean approximation curve without using heel pad (WHP, blue line), with
pronation heel pad (PHP, red line) and supination heel pad (SHP, black line). Adopted
from [1].

the same way. Muscle vastus medialis is slower than rectus femoris. A signal propaga-
tion is more complicated in the cases with using pronation and supination heel pad and
the muscles mutually cooperate.

3.3.4 Discussion and Conclusion

This study deals with timing analysis and HD SEMG signal propagation on the muscle
vastus medialis and rectus femoris.

Three measurements were carried out (without heel pad, with using pronation and
supination heel pad) on the previously designed chair. The angle of the knee joint was
fixed at 70◦ flexion and hip at 120◦ between the pelvis and the femur. The electrodes were
placed on the muscle vastus medialis and rectus femoris. HD-SEMG signals were recorded
during three isometric voluntary contractions of the knee. Desired three muscle contraction
on all ten channels were apparent after filtration without evidence of greater interference.

Firstly, one standard deviation was used as the threshold for the detection of con-
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3.3. High Density Surface Electromyography

Table 3.1: The positions of contraction (con) starts sorted from the fastest channel. WHP-
without using heel pad, PHP- pronation heel pad, SHP- supination heel pad. Adopted
from [1].

WHP PHP SHP
1.con 2.con 3.con 1.con 2.con 3.con 1.con 2.con 3.con

4.1347 10.5917 16.8117 1.4754 7.7484 14.7017 1.7734 6.9928 12.5982

4.13510 10.59510 16.81810 1.4868 7.8048 14.72110 1.8342 6.9932 12.6118

4.1786 10.6086 16.8656 1.4972 7.8077 14.7316 1.8347 7.0225 12.6323

4.1959 10.6269 16.8919 1.5157 7.81010 14.7524 1.83410 7.0417 12.6391

4.2085 10.6371 16.9065 1.5161 7.8121 14.7578 1.8429 7.04310 12.6475

4.2128 10.6423 16.9178 1.52010 7.8232 14.7625 1.8461 7.0544 12.6624

4.2164 10.6482 16.9221 1.5273 7.8286 14.7819 1.8463 7.0633 12.6687

4.2352 10.6524 16.9272 1.5466 7.8313 14.8452 1.8596 7.0639 12.66810

4.2471 10.6615 16.9343 1.5469 7.8399 14.9091 1.8715 7.0701 12.6869

4.2553 10.6648 16.9394 1.5505 7.8657 14.9143 1.8958 7.0776 12.6976

1,2,3,4 Number of the channel on the muscle vastus medialis
5,6,7,8,9,10 Number of the channel on the muscle rectus femoris

traction starts. Then a slope line was calculated from the point where threshold crosses
the signal envelope to the point 1 s before. The new position of contraction was calculated
as the maximum difference between the slope line and the signal envelope.

Muscle quadriceps femoris (with patella and ligament patellae) is the only knee ex-
tensor. Muscles vastus medialis and vastus lateralis have an extension and stabilization
function. Muscles vastus intermedius and rectus femoris have only extension function.

The need for knee stabilization is eliminated by fixing the leg in the chair in a position
corresponding to the relaxed sitting position and without using heel pad. Thus, at the be-
ginning, it is not necessary to stabilize the knee and the vastus medialis muscle will engage
the extension function to assist the muscle rectus femoris in contraction. When using
the heel pad, the knee is artificially destabilized and the vastus medialis muscle performs
both stabilizing and extension functions, which our results match (Tab. 3.1).

The described research was a pilot study that had as its main aim to prove the feas-
ibility of the proposed experiment and successive data analysis. Although the tests were
performed on one subject they are promising. Based on these results, a multichannel
electrode with 10 mm symmetric distances around 5 mm centre gab was designed and
developed.
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3.4 Multi-channel Surface Electrode

3.4.1 Experiment Introduction

Based on the results of a previous study (3.3), it was found that the use of standard
electrodes is not sufficient because of their size. It is not possible to accurately determine
the location of innervation zone and it is very difficult to detect the propagation of the signal
across the muscle. Therefore, a new multi-channel electrode was designed. Unfortunately
this electrode encounters problems with standard equipment for the measurement of SEMG
signals. New measuring equipment had to be designed. This study aims to determinate
functionality and suitability of these novel designs for evaluation of joint patterns.

3.4.2 Materials and Methods

3.4.2.1 Measurement Equipment

The initial prototype of our electrode was based on Merletti’s multi-channel electrodes [5].
It results in dry uninsulated multi-channel electrode with twenty silver contact surfaces.
Size of each contact area is 12 mm2. Its design is symmetric with 10 mm distances around
5 mm center gap (shown at Fig. 3.11).

Figure 3.11: Multi-channel electrode with 10 mm symmetric distances around 5 mm center
gab. Adopted from [8].

We have created a prototype of new measurement equipment (Fig. 3.12). This device
is delta-sigma analog to digital multi-channel converter with matching input impedance of
operational amplifier.

Theoretical number of quantization levels is equal to 24 bits. It has a programmable
sampling rate (500 up to 32,000 samples per second), which fully suits the measurement of
SEMG signals. Modular involvement allows measurement up to 256 channels in the bipolar
multi-electrode array. This device is able to record signals from used electrodes together
with measurement parameters. Resulted stored record allows for later detailed analysis
and evaluation. Extensive work on corresponding software has been conducted.
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3.4. Multi-channel Surface Electrode

Figure 3.12: Prototype of the new measurement equipment. Adopted from [8].

3.4.2.2 Subjects

One healthy proband (male, 46 years) was randomly selected to conduct this experiment.
Information to this study was provided before examination by a physiotherapist. Medical
history provided information about the dominant lower limb and functional examination.
No bacterial inflammation or neurological rewiring reflex activity in the dominant lower
limb was recorded.

3.4.2.3 Measurement Procedure

The measurement was set as in the previous study described in 3.2.2.3. Multi-channel
electrode was placed on the proband’s dominant lower limb on vastus medialis. Selected
SEMG signals were recorded during three isometric maximum voluntary contractions of
the knee extensors. First one consisted of extension without heel pad (WHP). The second
and third one used supination (SHP) and pronation heel pad (PHP) respectively.

3.4.2.4 Signal Processing

Sixteen out of twenty available channels were connected to check the function of the elec-
trode. All 16 channels were processed by our designed algorithms in Matlab environment.
First, the frequency spectrum (Fig. 3.13) was calculated by frequency analysis based on
Fourier transform.

Interferences caused by main hums were removed by IIR notch filter (notch located
at 50 Hz, or 0.1 π radians per sample). Low frequencies (offset null output signal and
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3. Representation of Joint Patterns

Figure 3.13: Example of original signal amplitude from channel five before filtering and its
spectrum based on frequency analysis using Fourier transform. Adopted from [2].

motion artifacts) were removed by high-pass filter (Butterworth filter, 4th order with nor-
malized frequency 0.02). Suppression of ratio interferences were removed by IIR filter
(Butterworth filter, 8th order, type low-pass with normalized frequency 0.25 ).

3.4.3 Experiment Results

Three measurements were carried out (without heel pad, using pronation and supination
heel pad). Desired three muscle contractions on all channels were apparent after filtra-
tion without evidence of greater interference. Examples of ten filtered signals are shown
in Fig. 3.14. Such modified signals are suitable for subsequent processing and parametriz-
ation to determine the effect of using reflective heel pad to knee joint patterns.

For simple comparison there were calculated the most powerful frequency and the first
spectral moment (weighted average of spectral lines) of two second long segments. Results
of the parameters for channels 7-16 are shown in Tab. 3.2 and in Tab. 3.3.

As we can see at Tab. 3.4, the parameter the most powerful frequency is increased in one
channel and decreased in eight channels when using supination heel pad. There was further
observed increase in three cases and decrease in seven cases when using pronation heel pad.
The parameter first spectral moment increased in seven channels and decreased in three
channels when using the supination heel pad and increased in five cases and decrease in
five cases when using the pronation heel pad.

3.4.4 Discussion and Conclusion

Based on conducted measurements we conclude that introduced electrode can be used
to subsequent analysis of joint patterns. At this time, the measuring device is further
developed. Signal processing and parametrization are simultaneously in progress. Prelim-
inary results anticipate sufficient potential for new clinical discoveries.
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3.5. Conclusion

Figure 3.14: Example of signal amplitude from channels number 7-16 after filtration. Ad-
opted from [2].

3.5 Conclusion

This chapter has discussed investigation of joint patterns using different measurement
SEMG methods. The first part was focused on signal analysis using spike shape analysis
and analysis with frequency and time domain. Only two bipolar electrodes were placed on
the muscles of vastus medialis and vastus lateralis. 19 probands participated in the study.
Each first performed three maximum voluntary contractions from which the 60% MVC
was calculated. Patients maintained this value three times in succession without the use of
a heel pad, with supination and pronation heel pad. From these contractions, the 2s seg-
ment was selected, with the submaximal contraction value fluctuating around 60% MVC.
19 parameters were then calculated on these segments. Two-way ANOVA and post-hoc
Tukey method were used. Statistically significant changes were detected in the parameter
Median (non-heel pad versus supination-heel pad measurements) and the first spectral
moment (non-heel pad versus pronation-heel pad measurements). The basic thresholding
method was used to detect contractions. A value of 3 standard deviations was used as
a threshold.

The second part deals with HD SEMG measurements using eight bipolar electrodes on
the muscle vastus medialis and twelve on the muscle rectus femoris. The SEMG signal
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Table 3.2: Comparison of the parameter most powerful frequency (mean value ± standard
deviation SD ) without heel pad (WHP), with pronation heel pad (PHP), with supination
heel pad (SHP). Adopted from [2].

Most powerful frequency [Hz]
mean ± SD

channel WHP PHP SHP

Ch7 31.00 ± 8.04 25.33 ± 4.64 25.67 ± 5.44
Ch8 33.67 ± 11.03 33.33 ± 1.70 28.00 ± 7.79
Ch9 33.33 ± 4.11 39.67 ± 6.34 23.67 ± 7.36
Ch10 26.00 ± 5.10 34.00 ± 12.03 20.00 ± 7.48
Ch11 29.00 ± 11.05 35.60 ± 12.81 25.33 ± 4.50
Ch12 31.00 ± 11.22 28.00 ± 9.80 36.00 ± 2.94
Ch13 37.33 ± 4.92 31.33 ± 9.57 37.33 ± 2.62
Ch14 41.33 ± 10.66 35.67 ± 5.25 35.33 ± 8.73
Ch15 34.67 ± 5.25 31.00 ± 10.71 31.33 ± 2.87
Ch16 35.00 ± 0.82 33.67 ± 11.15 34.33 ± 5.56

was recorded during the three maximum voluntary contractions without heel pad, with
pronation and supination heel pad. In this study, we focused on examining muscle timing.
A contraction detector that combines several methods has been proposed for this purpose.
It is a combination of thresholding and Philips QT Interval Measurement Technique [60],
which is used in ECG signal processing. The value of one standard deviation is used as
the threshold. The point where the signal envelope exceeds the set threshold is connected
to the point by 1s earlier. The maximum distance from the signal envelope is sought from
this line. This point is intended as the beginning of contraction. However, the use of
20 standard electrodes is not sufficient due to their size. It is not possible to accurately
determine the location of the innervation zone and it is very difficult to detect the spread
of the signal through the muscle.

Therefore, the third part of this chapter deals with the design and examination of
the functionality of a new multi-channel electrode. The initial prototype of the electrode
was based on Merletti’s multi-channel electrodes [5]. It is dry uninsulated multi-channel
electrode with twenty silver contact surfaces. Size of each contact area is 12mm2. Its design
is symmetric with 10 mm distances around 5 mm center gap. A control measurement was
made with this electrode to determine its usability and functionality. Measured signals
do not show any sign of greater interference. Preliminary results anticipate sufficient
potential for new clinical discoveries.

Thanks to the acquired knowledge from these measurements the research described
in the next chapter was performed that let to the development of a new semi-automatic
detector for polysomnography REM sleep without atonia in REM sleep behavior disorder.
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3.5. Conclusion

Table 3.3: Comparison of the parameter first spectral moment (mean value ± standard
deviation SD ) without heel pad (WHP), with pronation heel pad (PHP), with supination
heel pad (SHP). Adopted from [2].

First spectral moment [Hz]
mean ± SD

channel WHP PHP SHP

Ch7 80.57 ± 11.87 79.35 ± 7.79 78.27 ± 9.28
Ch8 83.42 ± 10.81 80.46 ± 7.47 87.35 ± 7.09
Ch9 76.69 ± 4.90 93.85 ± 9.92 78.28 ± 9.77
Ch10 85.91 ± 6.88 85.54 ± 7.19 73.76 ± 6.03
Ch11 71.36 ± 1.36 70.75 ± 3.01 73.03 ± 4.36
Ch12 65.18 ± 1.78 71.90 ± 7.37 71.91 ± 8.41
Ch13 75.04 ± 3.37 85.22 ± 2.82 83.27 ± 9.84
Ch14 76.79 ± 0.61 79.15 ± 3.22 82.61 ± 14.69
Ch15 69.12 ± 3.57 76.60 ± 6.31 81.01 ± 5.89
Ch16 79.59 ± 3.47 71.81 ± 3.90 74.94 ± 1.18

Table 3.4: General overview of increasing or decreasing parameters most powerful frequency
and first spectral moment.

increase decrease
parameter SHP PHP SHP PHP

Most powerful frequency 1 3 8 7
First spectral moment 7 5 3 5
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Chapter 4

Polysomnography REM Sleep without
Atonia in REM Sleep Behavior Disorder

4.1 Introduction

Sleep is essential for optimal human health and brain function. Polysomnography (PSG)
is used to display and characterize the architecture of human sleep for clinical and research
purposes [61]. PSG records human bioelectrical signals including electroencephalography
(EEG), electrooculography (EOG), and electromyography (EMG) to determine non-rapid
eye movement (NREM) and rapid eye movement (REM) sleep stages, and cardiorespiratory
polygraphy to detect sleep disordered breathing. REM sleep was described by the eminent
French neurophysiologist Michel Jouvet as somneil paradoxique (paradoxical sleep), since
EEG (brain wave activity) resembles the awake state, while the EMG channels demonstrate
skeletal muscle paralysis [62, 63].

Parasomnias are undesirable, potentially injurious complex behaviors arising from either
NREM or REM sleep. REM sleep behavior disorder (RBD) is increasingly recognized as
a common human parasomnia,occurring in approximately 1-7 % of the elderly adult popu-
lation, and is diagnosed when there are vocalizations or complex motor behaviors such as
screaming, shouting, punching, arm flailing, or kicking movements that parallel nightmares
and represent dream enactment, accompanied by the loss of normal REM sleep atonia [63].
REM sleep atonia loss, also known as REM sleep without atonia (RSWA), results from
dysregulation of normal REM sleep atonia (paralysis). Quantifying RSWA relies on expert
visual scoring by a sleep neurologist or somnologist, which is labor intensive, time consum-
ing, and variable between laboratories [64, 65, 66]. A variety of automated RSWA scoring
methods have also been developed, but to date have not been widely applied in the field
since they typically either require expensive commercial software or expert computer pro-
gramming resources [67, 68, 69, 70, 65].

SEMG recordings of the submentalis and anterior tibialis muscles are used for stand-
ard RSWA scoring [71]. RSWA identified by EMG recordings are of three types which
are defined by both amplitude and duration criteria. Phasic muscle activity bursts have
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an amplitude four times larger than the background EMG voltage amplitude, with a dur-
ation lasting at least 0.1 seconds up to an upper limit of either 4.9 or 14.9 seconds
(with a mean duration of less than approximately 0.5 seconds in normal people, although
most patients with REM sleep behavior disorder have longer phasic burst duration than
0.5 seconds). Tonic muscle activity has an amplitude that is at least twice the lowest REM
background voltage and lasting 15 or more seconds in duration. Any muscle activity meets
the standards for either phasic or tonic muscle activity and occurs within 3 second min-
iepochs of time, within a standard 30 second PSG epoch used for sleep stage scoring. Any
muscle activity meets the standards for either phasic or tonic muscle activity, and is scored
positively when either muscle activity type occurs. Current conventions derive the quantity
of these REM sleep muscle activity metrics by counting the amount of positively scored
phasic or tonic muscle activity and dividing by total REM sleep time, yielding percentages
of abnormal muscle activity during REM sleep. Investigators have defined various levels
or thresholds of REM sleep muscle activity that distinguish RBD patients from controls
without RBD [64, 66, 68].

In this chapter, we present fully automated or semi-automated detection of electro-
physiological signature of RSWA implemented in Matlab programming environment. Sev-
eral options of parameters and settings can be used within the system such as filters, ECG
detectors, methods for envelope calculations and settings for clinical rules and thresholds.
An expert clinical neurologist scorer has an opportunity to change a score suggested by
automated analysis based on a further visual, manual review of the data. We plan to util-
ize the methods described to create a framework and a graphical user interface for clinical
practice. This chapter based on article [9].

4.2 Semi-automated detection of PSG RSWA in RBD

4.2.1 Experiment Introduction

Various methods exist for automated extraction of muscle activity in PSG recordings
(for both phasic and tonic muscle activity). One method is to compare the signal’s envel-
ope to a set threshold. The threshold is most often derived from baseline signal amplitude
characteristic (mean and SD). Different thresholds are used in the literature, for example
2 SD (this value includes 95 % of noise amplitude) [72, 73] and 3 SD (includes 99.7 %
of noise amplitude) [74, 75]. A signal envelope that crosses above a defined threshold
value is considered as an onset of EMG activity. The offset of muscle activity is the point
where the envelope falls under a defined threshold [72]. Raw or rectified data are used
most often for visual, manual evaluations [76]. On the other hand, automatic methods
require a calculated envelope to its function [77].

There are several methods for creating signal envelopes, but for biosignals only a subset
is relevant. The most widely used is linear envelope [78]. Another widely used method
applies a Savitzky-Golay filter, which is basically a specialized FIR filter [79, 80]. The last
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method we consider is based on another approach. Peaks of rectified/powered signals are
connected, thus creating a peaks interpolated envelope instead of filtration.

SEMG signal validity for automated analysis depends on excellent technical recordings
which are not overly contaminated by environmental noise or biological artifacts such as
sweat, excessive muscle or movement artifact, or especially cardiac electrical activity [81].
Electrical activity of the heart muscle (ECG) has a similar electrophysiological signature as
phasic muscle activity in EMG leads, and the ECG activity is ubiquitous in many clinical
recordings which utilize yoked or combined limb recordings due to amplification of ECG
QRS cycle artifact by long interelectrode distances [81]. It is difficult to remove ECG
contamination of SEMG correctly by signal de-noising because of the ECG’s complicated
waveform (broadband spectral distribution) that lies in a frequency range that is similar
and partially overlapping with that of muscle activity [82]. One example of the methods
for ECG artifact removal can be wavelet de-noising [83]. Wavelets commonly used for de-
noising biomedical signals include the Daubechies (db2, db4, db8 and db6) wavelets that
are chosen because of having shapes similar to the biomedical signals [83, 84].

4.2.2 Materials and Methods

The design of the presented detector is modular. The modular diagram is shown in Fig. 4.1.
Each module can be turned on or off. Optimal function of each module is obtained by
tuning particular parameters used within the module.

Default settings of each module were set by using Precision-Recall (P-R) analysis on
training datasets (see in 4.2.2.3). The examination here is focused on testing and comparing
results of automated methods using several types of envelope creation, ECG detection
method, and filtering approaches. These methods are optimized using training datasets
and tested using validation on an out-of-sample dataset. An expert neurologist scorer can
also correct the automated results of the detector in the graphical interface, where he/she
simply clicks on the desired detection and chooses to delete it. This detection is then
cleared not only from the graphical interface but also from the stored automatic detection.
Our results are focused on comparison of three different types of envelope calculations
while maintaining other optimized parameters.

4.2.2.1 Dataset

PSG recordings were conducted on 16-channel Nicolet NicVue digital system, according
to previously published general acquisition method [85, 86]. Since all PSG data were
completely deidentified, the Mayo Clinic IRB considered this research project as meeting
exempt status for Human Subjects research review. EMG recordings included submentalis,
bipolar linked (yoked) anterior tibialis muscles, which are commonly sampled in clinical
sleep laboratories, and the extensor digitorum communis (arm) muscle, since arm muscles
may be more specific for RBD diagnosis [87, 88]. 30-second PSG epochs were used for
standard sleep stage scoring [89]. The presence of RSWA in RBD may invalidate ap-
plication of standard sleep scoring rules, so similar to previous well established methods,
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Figure 4.1: RSWA detection workflow module diagram. Dataset consists of EMG and ECG
signals and scoring of contractions by an expert. Several options of parameters and setting
can be used (filters, ECG detectors, methods for envelope calculations, settings of clinical
rules and thresholds). Preprocessing input data and parameters are used for creating
the new folder for saving of settings and results of each individual patient. The QRS
detector is used to find QRS complexes and their subsequent representation in the EMG
signal. The detector of muscle activity shows RSWA. RSWA detections are evaluated
based on the results of an automatic detector. QRS complexes and visual, manual review
and scoring by an expert can then suggest the possibility of changing parameters and
detections. The expert role in semi-automated processing is called ”expert-in-the-loop”.
Adopted from [9].

we considered the occurrence of the first rapid eye movement in the EOG channel for
determination of REM sleep onset, and the end of REM sleep by absence of rapid eye
movements for 3 consecutive minutes, or when EEG features of awakening or NREM sleep
(i.e. K complexes or sleep spindles) were observed [64, 90, 85, 86]. EMG channels were
set with a sensitivity of 5 µV/mm with low frequency filter of 10 Hz, high frequency filter
of 70 Hz, and a sampling rate of 500 Hz, similar to previously published method [85, 86].
ECG signal was preprocessed as EEG data. Interference frequency alternating current
(f = 60 Hz) was eliminated from all signals by use of a notch filter.

All datasets were manually scored by a neurologist (EKS) who was board-certified in
sleep medicine, by 30 sec epochs according to guidelines [89, 91]. For detector purposes
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overnight SEMG from the left leg was used as SEMG channel for REM sleep muscle activity
detection and ECG II lead signal was used for detection of QRS.

4.2.2.2 Semi-Automated RSWA Detector – Expert-in-the-loop Approach

The core of RSWA detector is composed of four main parts. The first part is responsible
for preprocessing of input data and parameters. The second part consists of detection of
QRS complexes in the anterior tibialis muscle. Automatically detected heartbeat events
are further used to decrease false positive rate of muscle activity detection (the third part).
The final processing step is the overall evaluation of detected muscle activity events. Expert
neurologist scorers can also repeat the process with changes of optional parameters.

QRS Detector

We used ECG lead II channel of PSG (sampling frequency 500 Hz) to obtain detection
and precise timing where ECG artifacts can occur in SEMG. The ECG signal is often
corrupted by noise from power line interference (50/60 Hz), motion artefacts and changes
in the electrode-skin interface. Large and wide P and T waves can also act as sources of
interference.

In current state of the art literature, standard frequency band for detecting QRS com-
plexes of ECG is from 2-40 Hz [92, 93, 94, 95, 96]. However, this depends on the used
filtering method and the magnitude and phase response of the filters.

The methodology used to detect QRS complexes involves several stages. The first
stage is filtration of baseline wander (frequency range up to 2 Hz) using band pass filter
with frequency band 2-40 Hz [92]. In our case, the Butterworth filter (5th order, type band
pass with lower cutoff frequency 0.02 and higher cutoff frequency 0.16 which corresponds to
the frequency band 2-40 Hz according to Nyquist theorem, Magnitude and Phase Response
is shown in Figure 4.2) is used by zero-phase digital filtering.

Figure 4.2: Magnitude and Phase response of the Butterworth filter, 5. order, type band
pass with cutoff frequency [0.02 0.16]. Adopted from [9]

Zero-phase filtering uses the information in the signal at points before and after the cur-
rent point. The input signal is filtered once in the forward direction, then the filtered se-
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quence is reversed and run back through the filter (the block diagram of filtering is shown
in Figure 4.3). The result has zero phase frequency characteristic [97].

Figure 4.3: Block diagram of zero-phase filtering. Adopted from [9].

If x[n] is the input sequence and h[n] is the filter’s impulse response, then the result of
the first filter pass z[n] is:

Z(ejω) = H(ejω)X(ejω), (4.1)

where Z(ejω), X(ejω) and H(ejω) are the Fourier transforms of z[n], x[n] and h[n], respect-
ively. Time reversal corresponds to replacing ω by −ω in the frequency domain, so after
time-reversal we get W (ejω)(the Fourier transforms of w[n]):

W (ejω) = H(e−jω)X(e−jω). (4.2)

The second filter pass v[n] (V (ejω), respectively) corresponds to another multiplication
with H(ejω):

V (ejω) = H(ejω)W (ejω) = H(ejω)H(e−jω)X(e−jω), (4.3)

which after time-reversal finally gives for the spectrum of the output signal y[n](Y (ejω),
respectively):

Y (ejω) = V (e−jω) = H(ejω)H(e−jω)X(ejω) =
∣∣H(ejω)

∣∣2X(ejω), (4.4)

because for real-valued filter coefficients we have H(e−jω) = H∗(ejω). Equation (4.4) shows
that the output spectrum is obtained by filtering with a filter with frequency response
|H(ejω)|2, which is purely real-valued [98, 99].

The second stage is highlighting QRS complexes by the energy of samples (equation
4.5) from voltage amplitude.

E(t) = y(t)2, (4.5)

where y(t) is the signal y[n] after filtering in the time domain[100].
The energy of signal is smoothed by zero-phase filtration (using FIR filter, numerator

length 32, and denominator length 1).
The floating mean average interpolation is used for the suppression of the amplitude

drifting. The window is set to the 15 s with 50 % overlap for calculation of the mean value.
After dividing the signal energy by this estimate, we get the signal without the amplitude
drifting (shown in Figure 4.4).

Maximal amplitudes above the set threshold (mean of signal + 2|SD|) [72, 101] are
detected as positions of QRS complexes. The whole process is shown in Figure 4.5.
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Figure 4.4: The suppression of the amplitude drifting. A) Energy of the ECG signal and
floatind mean average interpolation, B) Energy of the ECG signal without the amplitude
drifting. Adopted from [9].

Detector of Muscle Activity

Discrete wavelet transformation (DWT) and inverse discrete wavelet transformation (IDWT)
are used for SEMG filtration to diminish ECG contamination. In DWT, the signal x(t) is
decomposed on different scales as follows:

x(t) =
K∑
i=1

∞∑
k=−∞

di(k)ψi,k(t) +
∞∑

k=−∞

aK(k)φK,k(t), (4.6)

where ψi,k(t) are discrete analysis wavelets and φK,k(t) are discrete scaling functions, di(k)
are detailed signals (wavelet coefficients) at scale 2K , and aK(k) is the approximated signal
(scaling coefficients) at scale 2K .

DWT can be implemented by the scaling and wavelet filters:

h(n) =
1√
2
〈φ(t), φ(2t− n)〉 (4.7)

g(n) =
1√
2
〈ψ(t), ψ(2t− n)〉 = (−1)nh(1− n). (4.8)
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Figure 4.5: Process of R-waves detection. A) Raw ECG signal; B) ECG signal after
filtration of baseline wander and T-wave interference; C) Highlighting of QRS complex by
the energy of the signal; D) The envelope of the energy of ECG signal after smoothing and
floating mean average interpolation and detection of the maximum. Adopted from [9].

The estimation of the detail signal at level j will be done by convolving the approximate
signal at level j − 1 with the coefficients g(n). Convolving the approximate signal at level
j−1 with the coefficients h(n) gives an estimate for the approximate signal at level j [102].
The discrete scaling function plays a key role. As this function Daubechies wavelets are
commonly used for denoising biomedical signals. Wavelets are generally chosen whose
shapes are similar to those of the QRS complexes [39, 103]. Daubechies wavelet trans-
formation of the 4th order (db4) is used in our case (Daubechies function and db4 Wavelet
are shown in Figure 4.6). Decomposition low-pass filter (cutoff frequency 144.4 Hz) and
decomposition high-pass filter (cutoff frequency 105.5 Hz) are applied for computing wave-
let decomposition by DWT. Single-level reconstructed detail coefficients vector is used for
removing ECG artifact by IDWT. The whole process is shown in Figure 4.7.
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Figure 4.6: A) db4 wavelet scaling function, B) db4 wavelet. Adopted from [9].

The filtered SEMG signal was first rectified to create the selected envelope. The first
tested option how to create the envelope was a linear envelope created by moving average
(MA) filter (length 26 based on sampling frequency 500 Hz - 0.1 s). The second option
is a peak interpolation (PKS) method (peaks of rectified/powered signals are connected
thus creating peaks interpolated envelope instead of filtration), and the third option to
create the envelope used a Savitzky-Golay (SavGol) filter (5th order, window size 0.3 s).
The visual description can be found in Figure 4.8.

Then the filtered signal and its envelope was entered a thresholding procedure to detect
the onset and the offset of muscle activity based on an iterative method. Three standard
deviations of data from all REM periods for a given whole night PSG recording were used
as the default threshold. In the first iteration, the submitted signal was used. Other
iterations did not take the whole signal, but only parts without previously detected muscle
activity. Iteration process ended while the difference between the lengths of detected EMG
activity was not less than 0.008 seconds, which corresponded to accuracy of 4 samples
(8 % of minimal length of contraction). This was optimized by data driven optimization
procedure with fitness function F1 score. We run the optimization procedure on training
data only. An example of onset detection using iterative method is shown in Figure 4.9.

Since this detector is running by default in REM sleep phases to detect RSWA, all
other parts of the data are skipped for detection analysis (taken from sleep stage scoring
done manually). If the automated detector runs without ECG suppression or filtering, and
because of overlapping SEMG and ECG spectrum, far fields of ECG QRS complexes in
SEMG channel creates an unwanted artifactual signal that is prone to false positive detec-
tions of the detector. The occurrence of these false positive detections can be suppressed
if chosen by using the information from QRS detector.

The last step of the detector is to connect detections that are close to each other.
That is based on predefined clinical rules [104]. RSWA detections that are longer than
the predefined length (15s – according to clinical standards) are removed and are not
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Figure 4.7: Wavelet filtration of SEMG signal. A) SEMG signal before filtration; B)
The DWT performs a single level one-dimensional decomposition with respect to a par-
ticular wavelet decomposition filters (low-pass and high-pass filter by db4 wavelet); C)
The IDWT performs a reconstruction with respect to reconstruction filters (low-pass and
high-pass filter by db4 wavelet); D) SEMG signal after wavelet filtration using single-level
reconstructed detail coefficients vector. Adopted from [9].
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Figure 4.8: A) Absolute value of the signal (ABS) and envelope by moving average filter;
B) Absolute value of the signal (ABS) and envelope by peaks interpolation; C) Absolute
value of the signal (ABS) and Savitzky-Golay envelope. Adopted from [9].

Figure 4.9: The iterative method to find optimal onsets detection. The threshold (dashed
red line) is calculated as 3 SD from the entire filtered signal (black line) in the first iter-
ation. Then detected muscle activities (signal envelope (blue line) above the threshold)
are removed from the signal, and the threshold is calculated again (iteration 2). Iteration
end is while the difference between two consecutive found onsets of EMG activity is less
than 0.008 second. Onsets of the muscle contraction are marked by the red arrow for each
iteration. Adopted from [9].

considered as part of phasic RSWA muscle activity. Minimal length of contractions (0.1 s)
and join cluster of RSWA if gap is less than set time (0.2 s) adhere to standard approaches
for visual, manual scoring [85, 86].

4.2.2.3 Statistical Analysis and Optimization of Automated Classifier

Original dataset was randomly split to training (data of 2 patients) and validation data set
(data of 5 patients). The binary classification class imbalance problem was solved by using
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relevance measures P-R to assess precision (P, equation 4.9) and recall (R, equation 4.10),
and F1 measure (harmonic mean of P-R, equation 4.11).

P =
TP

TP + FP
, (4.9)

R =
TP

TP + FN
, (4.10)

F1 = 2 · P ·R
P +R

, (4.11)

where TP are true positives, FP false positives and FN false negatives RSWA detec-
tions. P-R analysis on training data set was used to set up optimal parameters (Table 4.1).

Table 4.1: Default setting of parameters based on the best result using optimization pro-
cedure on training data.

Use Wavelet transformation for filtering of SEMG signal X
Use absolute value of the SEMG signal for muscle activity detection X
Use the energy of the SEMG signal for highlighting muscle activity x
Number of standard deviations used for detection 3
Minimal difference of selected time for contractions between iterations [s] 0.008
Window size for MA filter [s] 0.1
Window size for SavGol filter [s] 0.3

Setup of the classifier that maximized the area under the curve (AUC) [105, 106] on
training data was then used to be tested on the out-of-sample dataset. Results are presented
as those P, R, and F1 using out-of-sample validation dataset (Table 4.2).

4.2.3 Experiment Results

The original dataset consisted of 7 individual PSG recordings of individual adult RBD
subjects. The average time of PSG signals was 6.4 ± 2.03 hours. (1.05 ± 0.47 hours
containing REM stages). Detection was performed with three different envelope methods.
Table 4.2 summarizes the final results for all considered events. By the wide margin,
the worst results were achieved by the PKS envelope. Thus no further in-depth results
for this method are shown. Best performance of automated classifier was achieved by MA
method (recall 0.908 ± 0.083. precision 0.617 ± 0.111 and F1 0.726 ± 0.077).

Further in-depth results of our analysis for MA envelope compared to manual detections
are shown in Table 4.3. Mean recall of the validation data set was 0.9163 ± 0.1007 with
precision 0.6424 ± 0.1234. The lowest recall was 0.7557 with precision 0.7433. The lowest
precision was 0.4286 with one hundred percent recall.

Table 4.4 shows results of detection for SavGol envelope. Mean recall was 0.8821± 0.1292
and precision 0.6673 ± 0.1537 for validation data set. The lowest recall was 0.6694 with
precision 0.8223. The lowest precision was 0.4175 with 100 % recall.
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Table 4.2: Statistical results summary across all processed datasets. The average recall,
precision, and F1 score are shown. MA: moving average filter, SavGol: Savitzky-Golay
filter, PKS: peaks interpolation

MA SavGol PKS
recall 0.908 ± 0.083 0.874 ± 0.106 1.000 ± 0.000
precision 0.617 ± 0.111 0.642 ± 0.135 0.065 ± 0.040
F1 0.726 ± 0.077 0.726 ± 0.083 0.121 ± 0.069

Table 4.3: Results of analysis for individual RBD subjects in the study by using MA
envelope. The number of true positive events (TP), false positive events (FP), false negative
events (FN), recall, precision and F1 score are shown.

Subjects P3 and P7 (set used for training)
TP FP FN recall precision F1

P3 234 214 32 0.8797 0.5223 0.6555
P7 104 73 12 0.8966 0.5876 0.7099

Subjects P1, P2, P4, P5, P6 (validation set)
TP FP FN recall precision F1

P1 178 78 13 0.9319 0.6953 0.7964
P2 362 125 117 0.7557 0.7433 0.7495
P4 42 56 0 1 0.4286 0.6
P5 22 10 0 1 0.6875 0.8148
P6 253 132 30 0.894 0.6571 0.7575

4.2.3.1 Detection Evaluation

An example of the performance of individual detection algorithms in SEMG analysis by
using MA envelope is shown in Figure 4.10. The figure displays process of the particular
algorithm from raw data to the RSWA signal. QRS detection in ECG data is also shown
in the figure because of their reflection of the SEMG signal.

4.2.4 Discussion and Conclusion

In the past it was believed that the evaluation of the SEMG background is difficult because
of mixture of multiple motor units firing at various period [107]. A short abstract [108]
reported a very preliminary study of an automatic quantification of the chin SEMG activity
by criteria of duration and amplitude. During the previous years, some authors have used
computer automated techniques to analyze RSWA [109, 110, 111], but most of them were
using chin SEMG for analyzing. According to the study [112], highest rates of phasic
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Table 4.4: Results of analysis for individual subjects in the study by using SavGol envelope.
The number of true positive events (TP), false positive events (FP), false negative events
(FN), recall, precision and F1 score are shown.

Subjects P3 and P7 (set used for training)
TP FP FN recall precision F1

P3 225 194 37 0.8588 0.5370 0.6608
P7 98 59 17 0.8522 0.6242 0.7206

Subjects P1, P2, P4, P5, P6 (validation set)
TP FP FN recall precision F1

P1 177 77 16 0.9171 0.6969 0.7920
P2 324 70 160 0.6694 0.8223 0.7380
P4 43 60 0 1.0000 0.4175 0.5890
P5 24 8 1 0.9600 0.7500 0.8421
P6 241 130 38 0.8638 0.6496 0.7415

EMG activity were found in the mentalis muscle, the flexor digitorum superficialis muscle
in the upper limb muscles, and the extensor digitorum brevis muscle in the lower limb
muscles.

In current literature, the semi-automated scoring algorithm was compared with the visual
observation of two human raters in the study by Jeppesen [111]. Agreements of human
and computer scoring on single epoch level were high for all activity types (’tonic’ activity
both raters 97 %, ’phasic’ activity 95 % & 93 %, ’any’ activity both raters 95 %). Nev-
ertheless, authors discarded 17 % of 30 second epochs and 12 % of 3 seconds mini-epochs
for the elimination of flow events, arousal, and artifacts. Motor activity during REM sleep
was quantified manually and computer assisted in the study by Hackner [113]. Computer-
derived indices (with and without artifact correlation) for the SEMG activity correlated
well with the manually derived indices (all Spearman rhos 0.66-0.98).

Because of the subjective nature of visual, manual scoring, even by expert raters, the re-
liability of this gold standard remains somewhat uncertain. During our evaluation phase,
we encountered many detected RSWA events that were selected by visual, manual ex-
pert scorer differently than by the detector that were inconsistent with previously selec-
ted/discarded events of the same nature (length, amplitude of envelope, frequency charac-
teristic and even visual evaluation).

It is commonly accepted that only about 10 % of information that is hidden in recorded
signal is obtainable by visual observation. Even if this is not true, there remains a level of
skepticism in the internal reliability of expert evaluation that is not supported by machine
pre-evaluation. Since expert scorers interested in or capable of validly visually scoring
RSWA are extremely limited in number, making the routine scoring of PSG for RBD
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Figure 4.10: An example of SEMG data with RSWA detection. From top to bottom:
A) EMG data with automated QRS detection (purple) by using ECG lead data (plot C),
manual RSWA scoring performed by visual, manual scoring by an expert scorer (light
green), automated RSWA detections by suggested method (blue); B) plot shows principle
and threshold of RSWA detection on filtered SEMG envelope. Bottom plot C) shows ECG
signal with QRS detection. Adopted from [9]

patients a very resource intensive and scarce resource, automated techniques that are
reliable for RSWA detection are greatly needed in the field for both further research and
future clinical application in diagnosis. Every module has been primarily selected to help
expert evaluation. The automatic detection part is only the natural evaluation thus our
main focus is on recall. Based on the results this approach seems to be working because
of globally increasing recall with decreasing precision.

However, results of automatic detections are very likely to be both more accurate and
consistent than human visual detections. In our preliminary studies, it appears highly
likely that our detector was optimized on a training dataset that contained more difficult
to evaluate RSWA signals than in the validation set, in which performance of our detector
appeared significantly better.

The worst performance was observed using the peaks interpolation envelope methods,
which is therefore of limited use in automatic detection for RSWA, although it may still be
useful as an advisory tool with adjustment of advanced settings to detect subtle or difficult
to discern RSWA muscle activity.
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4.3 Conclusion

In this chapter, a supervised automated classifier is described. It was built on a com-
bination of methods to detect RSWA of SEMG signals automatically. It was developed,
implemented and tested in this chapter. The method was tested on data from 7 indi-
vidual PSG recordings of individual human adult subjects with RBD, and all parts of our
designed framework appeared reliable. For detection three methods were used for creat-
ing envelopes. Best detection was achieved using the mean envelope (average precision of
64.24 ± 12.34 %, recall 91.63 ± 10.07 %, and F1 score 74.36 ± 8.47 %). These results
indicate that automated detector of RSWA can provide useful information to the physician
and followed by expert additional overscoring and correction by visual, manual review, can
be used within our framework for fast semi-automated RSWA quantification.

The degree of freedom in relation to selectable parameters of our framework are likely
to assist in decreasing human error during visual manual evaluation, and inform the visual
RSWA scoring process. Future studies analyzing blinded visual scoring with and without
consideration of automated scoring detections may be useful to determine the influence of
automated RSWA detection for research and clinical applications.

The next chapter deals with measuring myotonometric muscle parameters.
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Chapter 5

Biomechanical Parameters of Muscles

5.1 Introduction

Human movements are composed of muscle-tendon complexes which perform contractions
of muscle fibres linked by tendons. Many research groups focused on the analysis of indi-
vidual movements, called rapid aimed movements or target-directed movements. Based on
the understanding of these simpler activities, the understanding of the more complex ones
is expected [114].

Objective measurement of myotonometric parameters would greatly enhance detection
of risk of injury and monitoring of the effects of interventions, such as treatment [46]. It
also helps top athletes and their coaches to set the right workload to achieve maximum
performance and avoid injury from an over-training. The principal difference between
myotonometry and traditional measurement of muscle parameter is that it can measure the
tone, elasticity and stiffness simultaneously and non-invasively. MyotonPro device is based
on the responses of soft tissue induced by a mechanical impulse and the subsequent simul-
taneous computation of the parameters such as oscillation frequency F [Hz](representing
the muscle tone), dynamic stiffness S[Nm−1], logarithmic decrement D (muscle elasti-
city), mechanical stress relaxation time R[ms] and creep C [47, 48]. More information and
parameter calculations are provided in the section 2.3.

This chapter is divided into three parts. The first section deals with an investigation of
muscle parameters using MyotonPro device in two groups: active sportsmen and inactive
individuals during physical exercise demonstrating by the squats and based on [10]. The
second part is focused on differences in values of myotonometric parameters before and
after rehabilitation process using INFINITY® method. Based on these studies, a third
experiment was developed that deals with muscle imbalance before and after rehabilitation
exercises aimed at strengthening the deep stabilization system. In this section there is also
described graphical user interface created on the basis of cooperation with physiotherapists.
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5.2 Objective Assessment Using MyotonPro

5.2.1 Experiment Introduction

In this study, we used the MyotonPRO device to determine muscle parameters during
physical exercise (demonstrating by squats) in the group of active sportsmen (SA) and in
the group of people who do not do any sport (SI) on the desired muscle: gluteus maximus
left (GML), gluteus maximus right (GMR), vastus lateralis left (VLL), vastus lateralis
right (VLR), vastus medialis left (VML) and vastus medialis right (VMR). The main aim
was to compare muscle parameters in both groups (SA and SI).

5.2.2 Materials and Methods

5.2.2.1 Subjects

Twenty healthy male volunteered to participate in this study. Group 1 included 10 subjects
(mean age: 23.5±3.2 years) which are active in the sports. Group 2 included 10 sport
inactive subjects (mean age: 25.1±5.4 years). All subjects met the inclusion criteria (no
chronic diseases affecting the musculoskeletal system such as diabetes mellitus, osteoporosis
or rheumatism; no surgery or injuries of the lower limb and the foot; no intake of anabolic
or other drugs affecting the musculoskeletal system).

5.2.2.2 Experimental Procedure

The site of measurement was located by visual observation and palpation of the largest
area of muscle bulk during contraction of each muscle. A physical marker was positioned
to ensure the same location of the sensor throughout the whole experiment.

The MyotonPRO device (version 5.0.0.203) was positioned at the measurement location
and held while the device performed the predefined series of measurements: a multi-scan
mode of five mechanical impulses.

The entire measurement process was divided into three phases. The first phase included
the measurement of muscle parameters in a relaxed lying position. The second phase
contained four sets of exercises. The proband had to make five squats in each set. Muscle
parameters were measured in the relaxed lying position after each set. The third relaxation
phase contained measurements in a relaxed lying position after 2, 4, 6, 8 and 10 minutes.
The measurement process is summarized in Fig. 5.1).

5.2.2.3 Numerical and statistical analysis

Data were downloaded from the MyotonPRO device in the form of .CSV file and processed
using Matlab 2018a software. The raw dataset contains values of all five mechanical im-
pulses. The mean value with SD was first calculated for each subject, each muscle and
each parameter. The data should be split into two parts for comparison of SA and inact-
ive sportsmen (SI) groups. The first part contains the data from the squat phase (SP).
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The first phase

Pulpation of muscles
The measurement of muscle parameters in a relaxed lying position
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The third phase - Relaxation phase

 
 

 
 

 

5x

Relaxation (1 set = 2 minutes)
The measurement of musles parameters in a relaxed lying position

Palpation of muscles

Figure 5.1: Diagram of whole measuring process. Adopted from [10].

The second part contains data from the relaxation phase (RP). The area under the curve
representing the values of these two parts was calculated as the integration of function
using the trapezoidal method. An unpaired t-test with 5% significance level was used for
statistical analysis. To reject or confirm the null hypothesis (that the area value of SA and
SI group comes from independent random samples from normal distributions with equal
means and equal but unknown variances), a p-value must be calculated.

5.2.3 Experiment Results

A total of 20 healthy subjects (split into two groups: SA and SI group) were measured.
The example of the mean value and SD for parameter Frequency and Creep is shown in
Tab. 5.1 (Subject number: 1, group: SA, muscle: GML) and in Tab. 5.2 (Subject number:
1, group: SI, muscle: GML).

The area under the value representing squads (SP) and relaxation (RP) phase for each
subject, each muscle and each parameter was calculated. Example of the area (subject: S1,
group: SA, muscle: GML, parameter: Frequency) is shown in Fig. 5.2. Comparison of
Frequency and Creep area (mean value±SD from SA and SI group) is shown in Tab. 5.3.
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Table 5.1: Mean value±SD of parameter Frequency and Creep for Subject 1, SA group,
muscle: GML

Mode Frequency [Hz] Creep
SA Before Squat 12.58±0.48 1.436±0.051

05 Squats 12.14±0.06 1.160±0.190
10 Squats 12.28±0.08 1.260±0.242
15 Squats 11.62±0.11 1.220±0.219
20 Squats 12.42±0.54 1.386±0.125
02 minutes 11.46±0.06 1.260±0.072
04 minutes 12.82±0.08 1.396±0.011
06 minutes 11.38±0.13 1.218±0.027
08 minutes 11.30±0.07 1.290±0.086
10 minutes 11.42±0.05 1.352±0.010

Table 5.2: Mean value±SD of parameter Frequency and Creep for Subject 1, SI group,
muscle: GML

Mode Frequency [Hz] Creep
SI Before Squat 10.86±0.09 1.804±0.016

05 Squats 11.38±0.27 1.690±0.113
10 Squats 11.68±0.05 1.712±0.013
15 Squats 10.62±0.15 1.984±0.020
20 Squats 11.30±0.29 1.824±0.024
02 minutes 11.38±0.13 1.526±0.247
04 minutes 11.20±0.19 1.736±0.175
06 minutes 10.84±0.21 1.720±0.169
08 minutes 10.68±0.08 1.784±0.055
10 minutes 11.54±0.18 1.588±0.223

5.2.3.1 Gluteus Maximus

If the p-value is smaller than the significant level set to 5%, we reject the null hypothesis
that mean values of the area are equal. Due to the result, the area of parameter Oscillation
frequency was significantly smaller for the SI group than the SA group on the right side in
the relaxation phase. The parameter Mechanical stress relaxation time was significantly
higher for the SI group than for the SA group in the relaxation phase on both sides of
muscle. A similar result was achieved with the Creep parameter, where the area value was
larger for the SI group than for the SA group on both sides of the body in the relaxation
phase and on the right side in the squat phase (Example of mean value of parameter Creep
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Figure 5.2: Area under the curve representing parameter Frequency. Subject 1, SA group,
Muscle: gluteus maximus, left. Grey part represent area for SP and white part for RP.
Adopted from [10].

for left side is shown at Fig. 5.3).

5.2.3.2 Vastus Lateralis

The area of Stiffness parameter was significantly smaller for the SI group than for the SA
group on the left side of the body in the relaxation phase of the experiment. In the squat
phase, there was significantly higher area for the SI group than SA group in both sides of
the body for Decrement parameter.

5.2.3.3 Vastus Medialis

In the relaxation phase, there was a significantly smaller area value for the SI group than for
the SA group for both sides of parameter Oscillation frequency and Stiffness. In the squat
phase, there was calculated smaller area value for the SI group than for SA group on the
right side for Oscillation frequency and Stiffness parameter and higher for the SI group
than for the SA group for parameter Mechanical stress relaxation time.

5.2.4 Discussion and Conclusion

Because MyotonPro software has a very limited evaluation of results, we have decided to
process the results by evaluating the area of each measurement phase using Matlab.

The parameter Oscillation Frequency characterises the muscle tone. Low tone is exper-
ienced as ”floppy, mushy, dead weight” and high tone is experienced as ”light, tight, and
strong”. Muscles with high tone are not necessarily strong and muscles with low tone are
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Figure 5.3: Value of mean area for parameter Creep. Muscle GM. Adopted from [10].

not necessarily weak. In general, low tone does increase flexibility and decrease strength
and high tone does decrease flexibility and increase strength [115]. It can, therefore, be
assumed that subjects in the SA group will have a higher muscle tone due to stronger
but less flexible muscles. This was confirmed in the vastus medialis muscle and gluteus
maximus.

The parameter Logarithmic decrement characterizes muscle’s elasticity. Elasticity is
inversely proportional to the decrement. A lower level of decrement reveals a better muscle
elasticity and the ability of contraction [116]. Due to the result, the difference between
area value is proved only on the muscle vastus lateralis on both sides of the body. Thus,
we cannot say with certainty that in the SA group, the muscles are more elastic than in
the SI group.

Stiffness is the biomechanical property of a muscle that characterises the resistance to
a contraction or to an external force that deforms its initial shape [117]. Nevertheless,
it does not imply that athletes have higher muscle stiffness. In case of abnormally high
stiffness, a greater effort is required from the agonist muscle to stretch a stiff antagonist
which leads to an inefficient economy of movement [118]. Our study only shows that in
the SI group in the vastus medialis and vastus lateralis muscles, this value was significantly
lower in the relaxation phase.

Mechanical Stress Relaxation Time is the time that the muscle needs to recover its shape
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Table 5.3: Mean area±SD for the parameter Oscillation Frequency and Creep, SP-area of
squat phase, RP-area of relaxation phase, SA-sport active group, SI-sport inactive group,
GML-gluteus maximus left, GMR-gluteus maximus right, VLL-vastus lateralis left, VLR-
vastus lateralis right, VML-vastus medialis left, VMR-vastus medialis right.

O. frequency [Hz]
SP RP

SA SI SA SI
Mean±SD Mean±SD Mean±SD Mean±SD

GML 47.64±2.95 45.99±2.20 58.68±2.61 56.26±3.16
GMR 49.01±4.37 46.05±3.43 59.13±3.93 55.27±2.94
VLL 76.73±5.31 70.40±11.98 90.82±7.71 87.56±14.87
VLR 75.81±8.09 71.66±9.77 94.85±12.19 86.24±10.44
VML 55.66±4.12 51.73±4.96 70.65±4.74 64.76±5.94
VMR 56.80±3.42 50.89±4.73 72.64±7.69 64.41±6.62

Creep
SP RP

SA SI SA SI
Mean±SD Mean±SD Mean±SD Mean±SD

GML 5.99±0.87 6.60±0.57 7.51±0.83 8.47±0.74
GMR 5.84±0.92 6.96±0.51 7.55±1.12 9.02±0.60
VLL 3.69±0.42 4.27±1.03 4.93±0.66 5.35±1.31
VLR 3.64±0.54 4.08±0.92 4.63±0.73 5.28±1.16
VML 5.10±0.60 5.57±0.77 6.33±0.66 6.90±0.86
VMR 4.98±0.53 5.62±0.83 6.15±0.84 6.94±1.17

from deformation after a voluntary contraction. As a result, in the SA group, the gluteus
maximus muscle is recovered more rapidly than in the SI group.

The following section is focused on the evaluation of muscle parameters before and after
the rehabilitation process using the INFINITY® method. The method is briefly described.
The analysis also includes the symmetry index, which indicates the degree of symmetry of
the parameters on the right and left sides of the body.

5.3 Objective Assessment of INFINITY® Rehabilitation
Process

5.3.1 Experiment Introduction

Musculoskeletal problems are widespread throughout the world [119]. The most common
musculoskeletal problem is low back pain (LBP). It is the fifth most common reason for

67



5. Biomechanical Parameters of Muscles

all physician visits [120].

From many studies and practice, it is clear that not only prevention but also follow-up
care for a patient with LBP must include regular physical activity along with an appro-
priate method indicated rehabilitation that does not interfere with the musculoskeletal
system [121].

The special rehabilitation method called INFINITY® has been developed at the Rehab-
ilitation Clinic Brandys nad Orlici, and is used to rehabilitate patients with musculoskeletal
problems. This method uses movement in the shape of infinity sign in part of exercises and
is focused on the stabilization and strengthening of trunk muscles, dorsal and abdominal
muscles, including the deep stabilization system. Rehabilitation is based on relaxation,
extension, and mobilization of the soft tissues of the motor system [121].

The purpose of this section is to verify the presence of differences between the measured
myotonometric parameters before and after the rehabilitation process using INFINITY®

method by the MyotonPro device.

5.3.2 Materials and Methods

5.3.2.1 Subjects

Five healthy females (age: 27.2 ± 4.3 years) and five males (age: 23.6 ± 1.7 years)
volunteered to participate in this study. All subjects met the inclusion criteria (no chronic
diseases affecting the musculoskeletal system such as diabetes mellitus, osteoporosis or
rheumatism, no intake of anabolic or other drugs affecting the musculoskeletal system).

5.3.2.2 Measures

Upper trapezius (TU), middle trapezius (TM), lower trapezius (TL), erector spinea (ES),
external oblique (EO) and rectus abdominis (RA) muscles were selected for measurement
on both sides of the body. The site of measurement was located by visual observation and
palpation of the largest area of muscle bulk during contraction of each muscle. A physical
marker was positioned to ensure the same location of the sensor throughout the whole
experiment. The example of using MyotonPro device is shown in Fig. 5.4.

Oscillation frequency, dynamic stiffness, logarithmic decrement, mechanical stress re-
laxation time, creep and symmetry index were quantified using the damped oscillation
method of the MyotonPro device.

The probe at the end of device was placed perpendicularly to the surface of the skin
overlying all the selected muscles. Slight pressure (pre-compression force of 0.18 N) was
applied between the probe and the surface of the skin, and a short mechanical impulses
(5 single measurement with interval of 0.8 second with 0.4 N for 15 ms ) were delivered to
the tissue under the probe. The mechanical impulses generate damped oscillations within
the muscle, which are recorded by an accelerometer. The device provides the resultant
oscillation curve from which all parameters are calculated.
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Figure 5.4: Example of using MyotonPro device.

5.3.2.3 Design and Procedure

All outcomes were obtained with the participant lying in a prone position (muscles: TU,
TM, TL, ES) and in a supine position (muscles: EO, RA), with the upper extremities
placed along the trunk. Myotonometric measurements were performed at one day before
and immediately after the INFINITY® rehabilitation process.

INFINITY® rehabilitation process

There exist two principal types of Infinity motion: the macro-movement (amplitudes in
a range of centimeters) and the micro-movement (amplitudes in a range of millimeters)[121].

Macro-movements were selected for our experiment. In upright standing a patient
actively moves the center of gravity of the upper body along a specified infinity shape
curve with ten repetitions (shown in Fig. 5.5).

5.3.2.4 Numerical and Statistical Analysis

Data were downloaded from the MyotonPRO device in the form of .CSV file and processed
using Matlab 2018a software. Raw data set contains values of all five mechanical impulses.
The mean value with the standard deviation (SD) was first calculated for each subject,
each muscle and each parameter. Symmetry index was calculated by the formula:

(y − x)/((y + x)/2) ∗ 100, (5.1)
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Figure 5.5: Trajectories of upper body center of gravity and its∞ projection into the trans-
versal plane. [11]

where y is value of parameter on the right side and x on the left side of the body.

Data were examined for normality using the one-sample Kolmogorov-Smirnov test with
the 5% significance level and two-sided t-test.

5.3.3 Experiment Results

A total of 10 healthy subjects were measured. The example of the mean value and SD for
one participant, two muscles and two parameters are shown in Tab. 5.4

The example of p-value of a two-sided t-test is shown in Tab. 5.5.

Statistically significant difference (p<0.05) was found in symmetry index of parameter
Creep on the muscle upper trapezius and parameter Stiffness on the muscle rectus ab-
dominis.

5.3.4 Discussion and Conclusion

According to the results of this experiment, the symmetry index of upper trapezius and
rectus abdominis muscle creep and stiffness were improved after moving by the center of

70



5.3. Objective Assessment of INFINITY® Rehabilitation Process

Table 5.4: Example of mean value and SD for one participant, Creep (C) and Stiffness
(S) parameters, erector spinae (ES) and rectus abdominis (RA) muscles, before and after
infinity process.

C S [N/m]
Muscle (side) Mean±SD Mean±SD

Before ES (left) 1.16±0.02 278.40±3.44
ES (right) 0.94±0.03 351.40±14.08
RA (left) 1.19±0.03 259.60±5.50
RA (right) 1.48±0.17 231.40±25.12

After ES (left) 0.98±0.03 341.80±12.34
ES (right) 0.83±0.10 385.00±24.57
RA (left) 1.45±0.06 223.80±6.98
RA (right) 1.18±0.04 288.00±9.92

Table 5.5: Example of p-value of symmetry index (SI) for muscle upper trapezius (TU),
erector spinea (ES), external oblique (EO), rectus abdominis (RA) and parameter Creep
(C) and Stiffness (S).

p p
Muscle SI for C SI for S
TU 0.024 0.967
ES 0.200 0.338
EO 0.383 0.532
RA 0.627 0.024

gravity along a specified Infinity shape curve. Results showed that MyotonPro device has
good interrater reliability in measuring.

However, we have faced several difficulties in this experiment. The biggest problem is
the representation of the results supplied software for this device, which are exported to
tables or austere charts and are not entirely suitable for the work of physiotherapists. For
this reason, the following experiment was designed, which aims, among other things, to
design a graphical user interface tailored to the needs of physiotherapists.
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5.4 Investigation of Muscle Imbalance

5.4.1 Experiment Introduction

Sedentary occupation and lack of exercise lead to the gradual muscle wasting and its
shortening of the whole body and the development of muscle imbalance. This imbalance
and closely related poor posture lead to back pain. At the beginning of greatest number of
problems is the weakening of the deepest layers of muscles that fix the spine and allow us to
upright standing (the so-called deep muscle system (DMS)). Insufficient functioning of the
DMS leads to excessive strain on the joints and segments of the spine. The function of deep
spine stabilizers is partially taken over by the superficial muscles and muscle imbalance
occurs [122].

There are more and more professions characterized by sitting. Muscle imbalance in-
volves a weakening of muscles, shortening of muscles and impaired spine statics and dy-
namics in a long-term sitting position. Sooner or later, unpleasant complications in the
locomotor system will occur. This can be a muscle block, a neck or chest pain, a headache
or a shoulder pain. There is a typical increased muscle tension in the neck, back and neck
area. Muscle stiffness of the lumbar and sacral spine may be manifested as hip or knee
pain. There is also a shortening of the calf muscles and thus less resistance of the Achilles
tendon [123].

Prevention of muscle imbalance should be aimed at eliminating their causes, ie. stretch-
ing the shortened and strengthening weakened muscles (so-called compensatory exercise).

In this experiment, we focused on examining muscle myotonometric parameters before
and after a physiotherapeutic exercise aimed at strengthening and stretching the deep
muscular system by MyotonPro device. A graphical user interface (GUI) was designed for
this purpose.

5.4.2 Materials and Methods

5.4.2.1 Measures

Eight females (age: 56.9±8.4 years) volunteered to participate in this study.

The experiment settings and used methods were the same as in the previous study 5.3.
Upper trapezius (TU), middle trapezius (TM), erector spinea (ES), rectus abdominis (RA),
pectoral major (PM) and gluteus maximus (GM) were selected after consultation with a
physiotherapist. All muscles were measured before and after an exercise lasting an hour
and a half in an upright posture. The symmetry index was calculated by the formula 5.1.

5.4.2.2 Graphical User Interface

Because Myoton software does not allow graphical display of results, a graphical user
interface was designed using Matlab2019a. After starting the application, the user selects
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which patient and which parameter wants to display using the Validate button. After that
the measured muscles were figured (example for two patients is shown in Fig. 5.6).

Figure 5.6: Graphical user interface. User can choose which patient and which parameters
want to display in the left side. Measured muscles were displayed after pressing the Validate
button.

The results of each parameter are displayed in a simple table along with a graph of
pre- and post-treatment values and a symmetry index calculation (shown in Fig. 5.7).

5.4.3 Experiment Results

Symmetry index was calculated for all five parameter. The negative values indicate left-
sided symmetry. It means, that the value of calculated parameter is higher on the left
side. The results of symmetry index for parameter Decrement and Oscillation Frequency
are shown in the Tab. 5.6 and the Tab. 5.7 respectively. Graphical interpretations of
symmetry index for parameter Oscilation Frequency is shown in the Fig. 5.8.

The overall results for the symmetry index are summarized in the Table 5.8.

5.4.4 Discussion and Conclusion

Overall, symmetry improved in 119 cases out of 240. In 55 cases the right-left symmetry
changed to left-right or vice versa. Evaluating the effectiveness of collective physiotherapy
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Figure 5.7: Results for patient P1 with graphical interpretation for parameter Oscillation
Frequency.

exercise is quite complicated. The group is inhomogeneous. Each proband does a different
job. Some probands have other sports activities. Some go to this physiotherapy exercise
only. However, they all have a common factor - sedentary occupation, suggesting the similar
nature of musculoskeletal problems caused by muscle wasting and the development of poor
posture leading to back pain. This study was designed as a feasibility study performed with
the aim to answer the question whether this type of measurement can show objectively
effect of special rehabilitation exercises focused on deep muscle system that is difficult
to measure in general. The main conclusion is that the values of symmetry and other
parameters indicate improvement in a very transparent way. Our future research is aimed at
longitudinal measurement of the volunteers’ group. For better and easier understanding of
the results, a graphical user interface has been designed. The physiotherapist can choose an
individual proband and compare the results before and after exercise. Based on the results
of symmetry index in the next exercise he/she can focus on individual muscle parts where
the symmetry was not achieved. This enables better efficiency of physiotherapy exercises.

5.5 Conclusion

This chapter has discussed investigation of biomechanical muscle parameters using Myoton-
Pro device. The first part was focused on finding differences of muscle parameters in the
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Table 5.6: Symmetry index [%] for parameter Decrement for patients P1-P8 before and
after treatment. The negative values indicate left-sided symmetry and the positive values
indicate right-sided symmetry.

Muscle P1 P2 P3 P4 P5 P6 P7 P8
Before PM 6.15 -16.17 -18.18 -10.03 0.82 -2.33 1.84 21.51

RA -1.77 -10.00 14.50 10.74 -5.94 12.26 0.39 -8.67
TU 1.55 8.00 11.82 -3.04 0.00 11.25 -18.79 24.36
TM -11.17 -10.10 4.43 -6.75 -26.87 -1.91 19.23 20.25
ES 11.68 16.42 -3.93 8.99 -33.40 -17.19 24.15 20.31
GM 25.26 9.73 -4.96 16.97 -4.65 -10.21 -37.37 0.70

After PM -8.71 -2.91 -25.35 0.45 14.26 -1.29 -5.31 10.09
RA -7.19 -5.85 4.37 4.67 -10.46 -9.21 -15.11 -7.09
TU -6.13 5.66 14.91 8.79 -0.76 -0.95 -10.04 9.31
TM -16.49 -11.13 12.62 -2.43 19.50 -8.52 0.93 17.90
ES 18.17 14.86 -7.61 10.49 -30.24 2.57 0.47 16.67
GM -10.69 8.20 -27.36 19.84 4.18 7.38 -17.12 -3.96

group of active sportsmen and inactive individuals. The measurement was performed
during physical exercise (demonstrated by squats). The entire measurement process was
divided into three parts: measurement before exercise, measurement during squats sets
and during relaxation phase. Although some differences were statistically significant in
this experiment, MyotonPro is not an entirely suitable tool for continuous measurement.
Representing the results is not easy to grasp. For this reason, a second experiment was
created in which we focused on the evaluation of muscle parameters before and after the
rehabilitation process using the INFINITY® method. The symmetry parameter was used
for the analysis, which is always calculated from the left and right muscle parameters.
The physiotherapists reported this parameter as crucial. Based on the physiotherapists’
requirements, a third experiment was created, which is focused primarily on the symmetry
index. A beta version of the graphical user interface was created as a by-product of this
study.
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Table 5.7: Symmetry index [%] for parameter Oscillation Frequency for patients P1-P8 be-
fore and after treatment.The negative values indicate left-sided symmetry and the positive
values indicate right-sided symmetry.

Muscle P1 P2 P3 P4 P5 P6 P7 P8
Before PM -17.74 11.50 -6.85 0.84 -1.43 12.92 -2.09 2.82

RA -0.53 0.00 -2.08 -2.77 -3.47 1.42 -2.59 -2.56
TU -17.66 -7.27 -10.18 -10.96 11.90 -6.58 3.93 -12.73
TM -9.64 -0.28 9.31 7.07 15.17 4.66 8.67 -3.17
ES 18.67 22.37 -8.82 11.13 16.83 12.35 3.92 0.63
GM -1.95 -5.79 4.58 -4.67 1.22 9.05 -7.80 6.28

After PM -12.12 0.84 18.66 -6.12 -4.51 4.59 -5.22 15.69
RA -2.66 2.78 0.73 -4.25 -5.55 -0.85 -2.87 -6.80
TU -14.78 -4.92 -11.94 -12.36 6.65 0.86 19.86 -14.75
TM -4.30 8.60 14.39 0.82 8.42 13.18 8.26 14.07
ES 18.03 16.69 -4.94 13.35 25.32 15.32 9.43 -2.38
GM 4.17 2.84 -1.35 1.09 2.44 7.22 -7.61 0.00

Table 5.8: Summary results for the symmetry index expressed as the number of patients
who improved symmetry and a change from left-right to right-left or vice versa for para-
meter oscillation frequency (F), mechanical stress relaxation time (R), logarithmic decre-
ment (D), dynamic stiffness (S), creep (C).

Improvement Change
Muscle F R D S C F R D S C
PM 3 4 4 4 4 2 1 3 1 1
RA 2 3 5 5 3 2 3 2 5 2
TU 4 5 4 5 5 1 0 4 0 0
TM 4 4 4 4 4 2 1 1 1 2
ES 3 2 5 4 3 1 0 1 0 0
GM 6 3 5 4 4 4 6 4 1 4
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P1 P2

P3 P4

P5 P6

P7 P8

Figure 5.8: Graphical interpretations of symmetry index [%] for parameter Oscillation
Frequency for patients P1-P8 before (blue line) and after (red line) treatment. The negative
values indicate left-sided symmetry and the positive values indicate right-sided symmetry.
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Chapter 6

Summary and Perspective

This thesis deals with complex evaluation of muscle parameters. We did not focus only
on the analysis of SEMG signals, but we also expanded the work with myotonometric
measurement, which deepens the knowledge of the overall state of muscle. While SEMG
measurements are more suitable for continuous measurements in a laboratory environment,
myotonometrics provide us with knowledge of muscle stiffness at a particular time. Thanks
to its handy use, MyotonPro device can be used, for example, directly on the sport grounds
to adjust the athlete’s weight to minimize injury from excessive training.

Based on cooperation with physiotherapists, doctors and coaches, three main topics of
this thesis were proposed. Using recent advances in SEMG signal analysis, detection of
muscle contraction and other fields we have designed reliable methods and applications that
will help research and diagnostics both in the laboratory and can serve trainers and athletes
directly in the sport field. To achieve the objectives of this work we used both expertise
and practical experience. In addition to the theoretical description of each experiment, we
also describe implementation methods, which allows for repeated experiments.

6.1 Thesis Achievement

The main research aims set in Section 1.2 have been described in detail in Chapters 3, 4, 5
and accomplished as follows:

◦ Investigation of joint patterns is one of many ways to detect soft tissue pathology.
Currently, the examination is performed manually and the passive and the active mo-
tion range test performed by a physiotherapist is used for identification. Our aim was
to design a measurement using SEMG that would facilitate this examination. At first
it was necessary to get acquainted with the whole issue of joint patterns. We know
from practice that if we use pronation heel pads, the joint range in the knee joint
will change. However, the question was whether changes in joint patterns would
also occur when measured using SEMG. The largest extensor of the knee joint is
the quadriceps femoris. Therefore, the muscles vastus medialis and vastus lateralis
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were selected for the first experiment (Section 3.2). Two bipolar electrodes were
localized according to the study A. Reinoldi [58]. Nineteen probands participated in
our study and nineteen parameters were calculated for SEMG signal analysis. Stat-
istically significant changes were only confirmed for two parameters where subjects
were exposed to artificially triggered flexion or extension chains. The question is
whether these changes will be reflected in muscle timming analysis, when twenty
electrodes in bipolar connection is used (Section 3.3). Detector that combines many
methods of signal analysis has been designed for muscle timming analysis. Due
to the large electrode size, it is not possible to accurately locate the inertial zone
and it is very difficult to detect the spread of the signal through the muscle. For this
reason, we proceeded to develop our own multi-channel electrode (Section 3.4), which
would be better suited to this analysis. The basic prototype is inspired by Merletti’s
multi-channel electrode [22]. Basic measurements to determine its functionality and
usability was made with this electrode. Sub results of muscle timming by developed
detector for finding muscle contraction starts anticipate sufficient potential for new
clinical discoveries.

Joint patterns were examined. Based on a study of muscle contraction detection,
experiments were designed and a detector was developed to detect the beginning of
muscle contractions for muscle timming analysis.

◦ Sleep is essential for optimal human health and brain function. REM sleep was de-
scribed as paradoxical sleep, when the skeletal muscles are paralyzed. REM sleep
behavior disorder is accompanied by the loss of normal REM sleep atonia. Quan-
tifying RSWA relies on expert visual scoring by a sleep neurologist or somnologist.
Variety of automated RSWA scoring method have also been developed but to date
have not been widely applied in the field since they typically either require expensive
commercial software or expert computer programming resources [67, 68, 69, 70, 65].
In this part of the thesis we used acquired knowledge and we proceeded from the pre-
vious muscle contraction detector, which we designed before. The beta version of the
graphical user interface (Section 4.2) that allows to detect the loss of normal REM
sleep atonia was developed. The functionality of the detector was tested on real PSG
data from 7 subjects suffering from sleep disorder. Our detector reached average
precision of 64.24 ± 12.34 %, recall 91.63 ± 10.07 %, and F1 score 74.36 ± 8.47 %
on validation dataset (Section 4.2.3). These results indicate that automated detector
of RSWA can provide useful information to the physician and followed by expert
additional overscoring and correction by visual, manual review, can be used within
our framework for fast semi-automated RSWA quantification 4.3.

◦ The principal difference between traditional SEMG measuring of muscle paramet-
ers and myotonometry is that myotonometry can measure the tone, elasticity and
stiffness simultaneously. This allows us to expand our knowledge of muscle state. Ob-
jective measurement of myotonometric parameters would greatly enhance detection
of risk of injury and monitoring of the effects of interventions, such as treatment.
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Therefore, we do not need to use time-consuming and expensive SEMG measure-
ments to determine the effectiveness of treatment. However, it cannot be argued
that in any situation SEMG measurements can be replaced. Three experiments were
made for this purpose. The first experiment (Section 5.2)was focused on examina-
tion of muscle parameters during physical exercise (demonstrated squats). Ten active
athletes and ten non-athletes participated in the study. A three-part measurement
was proposed. Muscle parameters had been measured before squatting in the first
phase. The second phase consisted of four consecutive series of five squats where
muscle parameters were measured after each series. The measurement in the third
relaxation phase was made five times at two minutes interval. MyotonPro software
has a very limited evaluation of results, so we have decided to process the results by
evaluating the area of each measurement phase. The results of the study show some
statistically significant differences in muscle parameters in the group of athletes and
non-athletes (Section 5.2.3). However, their representation is not easy to grasp and
SEMG analysis would be useful for this experiment. For this reason, another experi-
ment was created to help us deepen the knowledge of myotonometric analysis and its
usefulness (Section 5.3). The study is focused on comparison of muscle parameters
before and after the rehabilitation process, when the index of symmetry was used for
the analysis. The major problem is that the representation of the results exported
to tables or austere charts are not entirely suitable for the work of physiotherapists.
For this reason, the third experiment was designed (Section 5.4). The main aim was
to design a graphical user interface tailored to the needs of physiotherapists.

The biomechanical muscle parameters were studied on the basis of the three experi-
ments. Thanks to the experience gained in practice, we have created a graphical user
interface that facilitates the evaluation of measured data (Section 5.4.2.2).

6.2 Future Work

Regarding the representation of joint patterns, we would like to make progress in the ana-
lysis of muscle timing by multichannel SEMG mapping using an electrode grid. For the de-
composition of the SEMG signal, the independent component analysis would be used, which
could reveal the location of individual motor units and thus make it easier for us to find
joint patterns and their changes when using reflective hell pads.

In future work, we would also like to concentrate on development of our graphical
user interface for RSWA detection. We would like to put this interface into practice.
This will require further improvements and modifications proposed methods. Our detector
is based on semi-automation and is still dependent on a neurologist who detects REM
sleep phases in advance. This opens up the next stages of the process. We would like
to fully automate the proposed detector, which will include: automatic REM sleep phase
detection, accelerating QRS complex detection, for example by removing cardiac artifacts
directly from the SEMG signal using wavelet filtering along with independent component
analysis. We will test detection capability in future studies that will include data analysis
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from healthy subjects as well as subjects suffering from sleep disorders. We will also try
to get scored data from more neurologist experts to achieve better detector accuracy.

Furthermore, we will develop a graphical user interface for the analysis of myotono-
metric parameters and its use in rehabilitation practice. Additional modules will be added
to select the measurement and select the necessary analysis. We would also like to cre-
ate a mobile application on this basis. The increasingly rapid development of technical
equipment currently provides us with several aspects that we would like to use for future
work. In particular, the development of wireless SEMG measurement, which would allow
extending the use of this method outside the laboratory. The wireless device also provides
better usability during motion, allowing continuous measurement directly during physical
exercise without any movement restrictions.

Another useful sector is the so-called smart textiles. However, their development is at
the beginning and so far there is no perfect solution to prevent, for example, the movement
of electrodes on the tissue during movement and sweating. However, it is one of the ways
to move our development forward.

82



Bibliography
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[2] Novotná, I.; Křemen, V.; Holub, M.; et al. Case Study: Functional Verification of
Multichannel Surface Electrode for Joint Patterns Investigation. In LHOTSKÁ, L., et
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