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Abstract

Reinforcement Learning is a technique
proven by uncountable use-cases in the
robotics community and many other
machine-learning fields. It allows training
optimal decision policies without know-
ing precisely which actions are the best
at any given moment. A reward function
and some number of policy rollouts suffice
to estimate the best decision policy.

However, for complex systems or tasks,
the number of required rollouts goes to
millions or even more. That is not suitable
for mobile robots.

This thesis shows several ways of deal-
ing with the problems mentioned above.
During our research, we have concluded
that the best way to overcome the real-
world limitations is to employ simulation
and machine learning to some degree. In
the first part we explore ways in which
guaranteed safe reinforcement learning
can be implemented. In the second part
we show how active exploration helps to
deal with uncertain or even unknown mea-
surements, and how to integrate active ex-
ploration into existing machine learning al-
gorithms. The last part shows how impre-
cise simulation can help training a policy
that performs well even in the real world.
That is not possible without interaction
with the real world, but the presented
method greatly decreases the number of
required real-world experiments.

Keywords: reinforcement learning,
machine learning, autonomous, safe
learning, mobile robots, tracked robots,
simulation, ROS, Gazebo

Supervisor: Tomas Svoboda
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Abstrakt

Technika posilovaného uceni jiz nescet-
nékrat prokazala svou uziteénost v robo-
tice a dalsich aplikacich strojového uceni.
Dovoluje ucit strategie rizeni robott bez
presné znalosti, jakd akce je ve kterém
stavu idealni. K nalezeni optimalni strate-
gie staci dodat funkci uzitku a nékolikrat
systém spustit.

Pro komplexni systémy ¢i tlohy ovsem
roste pocet nezbytnych testti na redlném
systému do miliont. To je bohuzel na mo-
bilnich robotech nepfipustné.

V této dizertaci predstavujeme nékolik
cest, jak se s vySe zminénymi problémy vy-
poradat. V pribéhu vyzkumu jsme zkon-
statovali, ze nejlepsi cesta k prekonani pro-
blémt spojenych s ucenim v redlném svété
bude ¢aste¢né vyuziti simulace. V prvni
¢asti prace rozebirame zpusoby, jakymi se
da dosahnout zarucené bezpecného posilo-
vaného uceni. Druha ¢ast ukazuje, jak se
pomoci aktivniho prizkumu vyrovnat s
nepresnymi, ¢i dokonce chybéjicimi senzo-
rickymi mérenimi, a jak aktivni prizkum
kombinovat s existujicimi metodami stro-
jového uceni. Posledni ¢ast je vénovana
myslence, jak lze vyuzit nepresny simu-
lator pro nauceni strategii, které budou
uspésné i v redlném svété. To samoziejmeé
iplné bez interakce s redlnym robotem
nelze, ale navrzend metoda pocet tako-
vych interakci vyrazné snizuje.

Klicova slova: posilované uceni,
strojové uceni, autonomni, bezpecné
uceni, mobilni robot, pasovy robot,
simulace, ROS, Gazebo

Preklad nazvu: Bezpecéné autonomni
posilované uceni
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Chapter 1

Introduction and Goals

Autonomous capabilities of mobile robots are more and more crucial for their
adoption by end-users. The times of pure teleoperation have long been gone,
as well as pre-programmed behaviors ignoring the outer world.

Cybernetics, a field established in late 40s, specifies the direction towards
machines that are aware of their environment and act according to feedback
gathered by their sensors. For a long time, real applications of cybernetics were
limited to simple systems operating in well known or controlled conditions.
With the development of better sensors, processors with higher computational
capabilities and novel methods, robots started to take their first steps into
the unstructured real world.

Currently, Reinforcement Learning seems to be one of the key methods that
allow robots to learn good decision policies even for complex tasks. When
a precise model of the system (also called transition probabilities) is known
and every action can be rewarded by a known quantity, the algorithm breaks
down to iterations of the Bellman equation until the underlying dynamics
system converges.

Problems arise when either the model is known only approximately or not
at all. Likewise, episodic rewards (which are awarded only at the end of
a whole sequence of actions) impose higher demands on computational power
and the amount of real-world interactions. Autonomous cars are a good
example of mobile robots in less structured environments. There are still
some guarantees given by e.g. road construction standards and traffic laws,
but the sensory input can vary greatly, each road is a little different, and so on.
Car makers are big companies that have the resources to gather big datasets,
construct test courses for training the algorithms, and could potentially afford
to run a standard reinforcement learning algorithm on the real robot and
gather thousands or even millions of trajectories.

Search and rescue robotics, on the other hand, is a small field with not so
many resources, but with even more challenging environment. The robots
have to traverse previously unmapped terrain, overcome various obstacles
(or decide they can not overcome them), the area is often full of dust, smoke
or other substances that degrade sensor performance, geometric priors do
not hold. .. Even in such a hostile environment, search and rescue robots are
expected to explore large areas and transmit valuable information to other
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rescue team members. Developing algorithms for such robots is very different
from car making: gathering datasets is usually expensive and even dangerous,
so not so much data can be collected. The datasets usually try to cover large
variety of possible environments, but cannot capture them in high detail or
many times. Thus, the algorithms have to be written in such a way that they
can distill the most out of the limited data collection.

In this thesis we present several contributions that help making rein-
forcement learning in unstructured environments possible. We begin with
definitions and description of the very basic algorithms reinforcement learning
builds upon. Second, in [Part I, we present a theoretical framework which
allows (guaranteed) safe behavior in the exploration phase of reinforcement
learning. That, of course, comes with some important limitations on structure
of the environment, of the dynamics model and of the tasks. Next, we explore
the ways of dealing with incomplete measurements in reinforcement learning.
We also provide an efficient algorithm for balancing the cost of finding the
missing pieces of data and exploring larger areas (Part II)). In [Part III, we
present a way how simulators can be used to leverage the utility of data
collected during real-world execution. That is a core part of success in
learning for search and rescue robotics. The millions of samples needed for
reinforcement learning are done mostly in simulation and real data are used
just to “calibrate” or guide the simulator. This way the real robot is kept safe
for the largest part of the learning loop and only a few real-world trajectories
are needed. In [Part IV] we conclude the thesis and outline possibilities for
followup work.

This whole thesis depends on a simulator of the robot behavior. At the
beginning of the Ph.D. study, research was conducted showing that there are
no publicly available simulators that would be capable of proper and fast
simulation of tracked vehicles. That needed to be fixed, so I have implemented
a tracked vehicle motion model in Gazebo and published it as open-source.
As this topic is interesting, but stands a bit aside from the main topic of this
thesis, the research describing the motion model is attached in |[Appendix Al

The concepts presented in this thesis have not only been tested in various
experimental sessions verifying the particular algorithms, but also during two
international research projects in the field of search and rescue. TRADR
project [Kruijff-Korbayova et al., 2015] aimed at finding ways how humans
and robots can form a rescue team together and make use of what each of
them is best at. The robots had to reach high level of autonomy so that they
were useful during the mission and not a burden. Specifically, related to this
thesis, the robots were controlling their flippers via the autonomous traversal
algorithm presented in this work. That helped the rescuers to concentrate on
the mission goals and not on how to overcome each obstacle that came into
the way of the robots. In DARPA SubT Challenge |DARPA, 2019, a team
of robots is expected to enter an unknown underground tunnel system and
search for traces of survivors. This challenge requires almost full autonomy
of the robots, because communication is very limited in tunnel systems. Each
robot is therefore responsible for planning its own path and traversing any
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obstacles on its way, or detecting which passages it can not traverse due
to its physical limits. That is also a place where autonomous capabilities
described in this thesis come into play. These projects are described in detail

in [Appondix Bl






Chapter 2

Basics

B 2.1 Reinforcement learning basics

This section reviews the basic definitions and algorithms used throughout this
thesis. The reader should make sure he/she is familiar with these terms. The
following subsections are mostly excerpts from our publications mentioned

in |Appendix El
B 2.1.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the standard model for deliberating
about reinforcement learning problems. They are based on a lot of sim-
plifications, but are sufficiently robust to describe a large set of real-world
problems.

The simplest discrete stochastic MDP [Kaelbling et al., 1996] comprises:

| 3 finite set of states S
B 3 finite set of actions A

B 3 stochastic transition model P:
Pi(s,a,s") = Pr(siy1 =8| st = s, a4 = a) foreach s,s' €S, a € A,
where Pr stands for probability

® and the immediate reward function R: SXxA — R (or R: SXxAxS — R
if the reward depends on the stochastic action result)

To interpret this definition, we say that the at every time instant ¢ the
agent is in a state s;, and by executing action a; it gets to a new state s;41.
Furthermore, executing a particular action in a particular state may bring
reward r¢ to the agent (defined by R).

The most important and interesting property of MDPs is the Markov
property. Looking at the definition of the transition model, the next state
only depends on the current state and the chosen action. Particularly, the
next state is independent of all the previous states and actions but the current
one. To give an example, the robot’s battery level cannot be treated implicitly
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by counting the elapsed time, but rather it has to be modeled as a part of
the robot’s state.

Once the model is set up, everything is ready for utilizing an MDP. “The
agent’s job is to find a policy m mapping states to actions, that maximizes
some long-run measure of reinforcement” [Kaelbling et al., 1996]. The “long-
run” may have different meanings, but there are two favorite optimality
models: the first one is the finite horizon model, where the term J,, = Z?:o T
is maximized (h is a predefined time horizon and r; is the reward obtained in
time instant ¢ while executing policy 7). The dependency of r, on the policy
is no longer obvious from this notation, but this is the convention used in
literature when it is clear which policy is used. This model represents the
behavior of the robot which only depends on a predefined number of future
states and actions.

The other optimality model is called discounted infinite horizon, which
means we maximize the discounted sum J, = > 52, v'r; with v € (0,1) being
the discount factor. The infinite horizon tries to find a policy that is the best
one taking into account the whole future. Please note the hidden dependency
on the policy 7 (and the starting state sg)—it is the policy that decides on
which action to take, which in turn specifies what will the reward be.

Other extensions of MDPs to continuous states, time or actions are beyond
the scope of this overview. However, some referenced papers make use of these
continuous extensions, which proved to be useful for practical applications.

B 2.1.2 Reinforcement Learning

Reinforcement learning (RL) as an MDP-solving method has been thoroughly
examined since 80’s. In 1981, [Barto et al., 1981] inspired themselves in
the reinforcement learning discoveries in behavioral psychology and devised
the Temporal Difference machine learning algorithm that had to simulate
psychological classical conditioning. In contrast with supervised learning,
reinforcement learning does not need a teacher’s classification for every
sample presented. Instead, it just collects rewards (or punishment) on-the-go
and optimizes for the expected long-term reward (whereas supervised learning
optimizes for the immediate reward). The key advantage is that the design
of the rewards is often much simpler and straight-forward than classifying all
data samples.

B 2.1.3 Value lteration

Value iteration is one of the basic reinforcement learning methods. The
long-term reward corresponds to the wvalue of each state [Kaelbling et al..
1996]. From such values, we can compose a policy which tells the agent to
always take the action leading to the state with the highest value. As an
addition, state values can be easily interpretable for humans.

To describe the Value iteration algorithm, it is first needed to define the
essential notion of the optimal value of a state. In this whole subsection we

6
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suppose the discounted infinite horizon model, but analogous results can be
shown for finite horizon, too. “The optimal value of a state is the expected
infinite discounted sum of reward that the agent will gain if it starts in that
state and executes the optimal policy.” [Kaelbling et al., 1996] Given a policy
7, the induced value function is therefore defined as

Vi(s) =E [i rm’“] , (2.1)
t=0

where E denotes the expected value and rj are the rewards for executing
policy w. Taking the best value function over all policies then yields the
optimal value function V*: [Kaelbling et al., 1996]

V*(s) = max Vi(s). (2.2)

Inversely, if the value function is given, we can derive a policy from it. It
is a simple policy that always takes the action leading to the most profitable
neighbor state (with the highest value).

One useful formulation of the properties of the optimal value function is the
formulation using the recurrent Bellman equations which define a dynamic
system that is stable for the optimal value function. We can say a state’s
optimal value is the best immediate reward plus its best neighbor’s optimal
value: [Kaelbling et al., 1996|

V*(s) = max R(s,a) +~ Z P(s,a,s")-V*(s') | . (2.3)
s'eS

Analogously, we can find the optimal policy using the same Bellman equation:

7" (s) = argmax (R(s,a) + Z P(s,a,s’) .V*(s’)) : (2.4)

a€cA s'eS

The Value iteration algorithm is based on trying to compute the solution
of Equation 2.4| using iterative Bellman updates (refer to |Algorithm 1). In
the algorithm, a structure called Q is used to store the “value” of state-action
pairs. In Value iteration it is just a structure to save intermediate results,
but it is the core of the Q-learning algorithm (described in section 2.1.4).
The stopping criterion of the Value iteration algorithm is not obvious, but
Williams and Baird [Williams and Baird, 1993] derived an easily applicable
upper bound on the error of the computed value function.

That said, after a sufficient number of those simple iterations, we can
compute the almost optimal value function. The number of iterations needed
for Value iteration to converge may be impractically high, but it is shown
that the optimal policy converges faster |[Bertsekas, 1987], thus making Value
iteration practical.
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Algorithm 1 The Value iteration algorithm [Kaelbling et al., 1996]

Input: an MDP (states S, actions A, rewards R, transition model P)
Output: the optimal value function V*, resp. the optimal policy 7* derived
from the value function

V(s) := arbitrary function
7 := the policy derived from V
while 7 is not good enough do
for all s € S do
for all a € A do
Update: Q(s,a) :=R(s,a) +v X P(s,a,s)V(s)
end for e
V(s):= max Q(s,a)
end for
7 := the policy derived from V
. end while
V=V, 7mf =1

© XN oUW

— = =
O~ O

B 214 Q-Learning

Just a small change to the Value iteration algorithm results in Q-learning
[Watkins and Dayan, 1992|. The basic algorithm is the same as Value
iteration, just the update step is done differently (refer to Algorithm 2)).
The consequence of this change is that no model of the system (transition
function P) is needed. It is sufficient to execute all actions in all states equally
often, and [Watkins and Dayan, 1992] proved that if Q-learning were run
for an infinite time, the computed Q would converge to the optimal Q* (an
analogue of V*). Q-learning is often used in connection with safe exploration.

B 2.1.5 Policy lteration

Policy iteration is a completely different approach to computing the optimal
policy. Instead of deriving the policy from the Value or Q function, Policy
iteration works directly with policies [Howard, 1960]. In the first step,
a random policy is chosen. Then a loop consisting of policy evaluation and
policy improvement repeats as long as the policy can be improved |[Kaelbling
et al., 1996 (refer to|Algorithm 3| for details). Since in every step the policy
gets better, and there is a finite number of different policies, it is apparent
that the algorithm converges [Puterman, 1994].

Policy iteration can be initialized by a known, but suboptimal policy. Such
policy can be obtained e.g. by a human operator driving the UGV. If the
initial policy is good, Policy iteration has to search much smaller subspace and
should thus converge more quickly than with a random initial policy |Garcia
Polo and Rebollo, 2011].
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Algorithm 2 The Q-learning algorithm [Kaelbling et al., 1996]

Input: an MDP (states S, actions A, rewards R, transition model may be

unknown), learning rate « € R

Output: the optimal state-value function Q*, resp. the optimal policy 7*

— =
=)

e B e

derived from the state-value function

Q(s, a) := arbitrary function
7 := the policy derived from Q
while 7 is not good enough do
for all s € S do
for all a € A do
Update: Q(s,a) += oz{R(s, a) + 7y max Q(s',d") — Q(s, a)}

end for
end for
7 := the policy derived from Q
end while
Q*=Q, =7

Algorithm 3 The Policy iteration algorithm [Kaelbling et al., 1996]

1. « = arbitrary policy
2. repeat

3.
4

mi=m
Policy evaluation: (system of linear equations)
Va(s) =R(s,7(s)) +v X P(s,7(s),s)Va(s)
s'eS
Policy improvement:
7'(s) := argmax [R(S, a)+v > P(s,a, s’)Vﬂ(s’)}
acA s'eS
until 7 = 7’

2.1.6 Policy Gradient Search (PGS)

Policy Gradient methods are used in the continuous setting when the policy
7(s) has a parametric form and can be written as m(s|w), where w is a pa-
rameter vector. They stochastically optimize the expected sum of rewards by
direct sampling in the policy parameter space. Thus, the learning performance
of PGS methods does not depend on the complexity of controlled systems,
but only on the number of policy parameters that are optimized [Tedrake
et al., 2009]. The general algorithm is described in |Algorithm 4l It is based
on gradient ascent of the objective function

T
I(r(w)) = E ) [Z »y] (2.5)

all trajectories (si,m(sslw)ri)li—g |i—0

As the policy is fully determined by the parameters w, the objective function

9
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notation is usually simplified to

J(w) = In(w) = I(x(-|w)) (2.6)

Algorithm 4 The Policy Gradient Search algorithm [Kaelbling et al., 1996]

1. w’ = random parameter vector
2. repeat
3. 7, = sample trajectory (s;,a;, 7’1’)?:0 induced by policy 7(w’)

T ,
4. J(w’) —TF [Z VT_1+1Ti1
=0
_ 9J(w")
5. W =W a5

6. until w ~ W’

If the policy is differentiable, we can make use of the so called log-ratio trick
to compute the policy gradient from a rolled-out trajectory (s, a;, ;)| :

aJ(w')
ow’

T T
~ va, log 7(a;|si, w’) ( Z ’ytilrt) (2.7)
=0

t=i+1

B 2.2 Absolem UGV

In this section, we describe the custom-made robotic platform used throughout
the whole thesis for experimental verification of the results. An overview look
at the platform is given in [Figure 2.1 and [Figure 2.2 It is a tracked ground
robot of approximate dimensions 0.8 x 0.5 x 0.5 meters and weight 25 kilograms
(and more in case additional sensors are added). Its electromotors and onboard
devices are powered by Lithium-Ion batteries which provide 1-3 hours of
run time. The two main tracks are attached to the body via hinge joints
and are connected with a lockable differential that ensures that either (i) the
relative pose of tracks against the body is fixed, or (ii) the angle of left track is
inverse to the angle right track relative to the body (the tracks make opposite
movements). Each main track has two flippers on its ends, whose angle can be
controlled independently. The main tracks are velocity-controlled, and flippers
provide either positional or velocity control. There is also a user-configurable
limit on maximum current flowing in the flipper motors. If the current should
get higher than this limit, the motors switch to a force-compliant mode and
let the flipper deviate from the positional/velocity target. This is utilized to
set the “stiffness” of the flippers when the robot supports or lifts itself with
them.

Main sensory equipment is IMU providing gyro-odometry, an omnidi-
rectional camera Ladybug LB-3 which provides a 360° view of the robot
surroundings, and 2D lidar Sick LMS-151 on a rotating pivot. The rotation of
the joint is precisely measured and thus a full 3D scan of robot surroundings
can be captured using the 2D lidar once every 3s (which is the duration of
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2.2. Absolem UGV

one revolution of the joint). The position of the lidar on the robot body
allows it to capture points on various parts of the robot body itself, thus
a laser filtering pipeline is implemented which subtracts the expected 3D
shape of the robot body from the laser scans so that they only capture the
environment and not the robot body itself. For some tasks, a stereo camera
can be attached to the robot. We have mainly tried cameras Intel RealSense
R200 and D435. The robot has multiple options for wireless communication,
but they are not important for this thesis, so we omit the details.

The control software runs on an industrial-grade computer which contains
a 4-core/8-thread x86_64 CPU, 16 GB RAM, and SSD drive. Operating
system Ubuntu Linux provides a base for the ROS middleware which is a core
part of the control software. We use some publicly available ROS packages,
but the core functionality is tailor-made for this type of robot. It is running
INS odometry fused with track odometry as a base localization algorithm,
and combines it with ICP laser mapping to get more precise localization and
build long-term maps. Also, angles of flippers relative to their main tracks are
available, as well as the angle of main tracks against the robot body. There
are 5 basic combinations of flipper positions and motor current limits that
were found useful when teleoperating the robot; we refer to them either as
flipper pose, flipper posture or flipper configurations.
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In this part, we overview different approaches to safety in (semi)autonomous
robotics. Particularly, we focus on how to achieve safe behavior of a robot if
it is requested to perform exploration of unknown states. A safe or at least
gentle-to-wear, but not completely prohibitive exploration is desired for any
interaction with a real system. The presented methods are studied from the
viewpoint of reinforcement learning. To collect training data for reinforcement
learning, the robot is required to freely explore the state space—which can lead
to possibly dangerous situations. The role of safe exploration is to provide
a framework allowing exploration while preserving safety. The examined
methods range from simple algorithms which utilize precise physical models
to sophisticated methods based on previous experience or state prediction. We
also address the issues of how to define safety in the real-world applications.
Further, our algorithm called CREPS is presented, which can be used to
perform safe exploration on a real robotic platform.

The text of this part is largely based on the following papers. It has been
edited to fit the thesis structure and goals.

® Pecka, M. and Svoboda, T. (2014). Safe Exploration Techniques for
Reinforcement Learning — An Overview. In Hodicky, J., editor, Modelling
and Simulation for Autonomous Systems, Lecture Notes in Computer
Science, pages 357-375, Rome, Italy. Springer. DOI: |10.1007/978-3-319-
13823-7

® Pecka, M., Zimmermann, K., and Svoboda, T. (2016). Autonomous Flip-
per Control with Safety Constraints. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2889-2894,
Daejon, South Korea. IEEE. DOI:|10.1109/IROS.2016.7759447
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Chapter 3

Safe Exploration Techniques

. 3.1 Introduction

What do most reinforcement learning methods have in common, is the need
for rather large training data sets. For simulated discrete environments it
is usually not a problem. But with real robotic hardware, the collection of
training samples is not only lengthy, but also dangerous (be it mechanical
wear or other effects). Another common feature of RL algorithms is the need
to enter unknown states, which is inherently unsafe.

Safety is an important issue connected with reinforcement learning, but is
often neglected since many algorithms are only tested in simulations. Thus,
the first articles focused on maintaining safety during exploration started
to appear much later after the “discovery” of RL. Among the first,
“borrowed” the concept of a worst-case criterion from control theory
community. In 1994 he created a variant of Q-learning where maximization of
long-term reward is replaced with maximization of minimum of the possible
rewards. That basically means his algorithm prefers to never encounter a bad
state (or, at least to choose the best of the bad states). This approach has
one substantial drawback—the resulting policies are far from being optimal
in the long-term-reward sense |Garcia and Fernandez, 2012].

In this part we show the various approaches to safe exploration that have
emerged so far. In we review methods published up to year
2014, which we covered in [Pecka and Svoboda, 2014]. Further research and

followup work is presented in chapter 5

We classify the methods by various criteria and suggest suitable use cases
for them. To better illustrate some practical details, we use the Absolem UGV
described in as a reference agent. It may happen that in these
practical details we assume some advantages of UGVs over UAVs (Unmanned
Aerial Vehicles), like the ability to stand still without much effort, but it is
mostly easy to convert these assumptions to UAVs; too.
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N 3.2 Defining Safety

To examine the problems of safe exploration, it is first needed to define
what exactly is the safety we want to maintain. Unfortunately, there is no
unified definition that would satisfy all use cases; thus, several approaches
are found in the literature. An intuitive (but vague) definition could be e.g.:
“State-space exploration is considered safe if it doesn’t lead the agent to
unrecoverable and unwanted states.” It is worth noticing here that unwanted
doesn’t necessarily mean low-reward. In the following subsections we present
the main interpretations of this vague definition.

B 3.2.1 Safety Through Labeling

The largely most used definition of safety is labeling the states/actions with
one of several labels indicating the level of safety in that state/action. What
varies from author to author is the number and names of these labels.

To start with, [Hans et al., 2008] have the most granular division of
state/action space. Their definitions are as follows (slightly reformulated):

® an (s, a, v, s') tuple (transition) is fatal if the reward r is less than
a certain threshold (s is the original state, a is an action and s’ is the
state obtained after executing a in state s, yielding the reward r),

B an action a is fatal in state s if there is non-zero probability of leading
to a fatal transition,

B state s is called supercritical if there exists no policy that would
guarantee no fatal transition occurs when the agent starts in state s,

B action a is supercritical in state s if it can lead to a supercritical state,

B state s is called critical if there is a supercritical or fatal action in that
state (and the state itself is not supercritical),

B action a is critical in state s if it leads to a critical state (and the action
itself is neither supercritical nor fatal in s),

B state s is called safe if it is neither critical nor supercritical,

B action a is safe in state s if it is neither critical, nor supercritical, nor
fatal in state s,

® and finally a policy is safe if for all critical states it leads to a safe state
in a finite number of non-fatal transitions (and if it only executes safe
actions in safe states).

Since we will compare other definitions to this one, it is needed to define one
more category. A state s is called fatal if it is an undesired or unrecoverable
state, e.g. if the robot is considered broken in that state. The fatal transition
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can then be redefined as a transition ending in a fatal state. Opposite to the
precisely defined terms in the definition of Hans et al., the meaning of words
“undesired” and “unrecoverable” here is vague and strongly task-dependent.

Continuing on, [Geibel, 2001] defines only two categories—fatal and goal
states. “Fatal states are terminal states. This means, that the existence of
the agent ends when it reaches a fatal state” [Geibel, 2001]. This roughly
corresponds to our defined set of fatal states. Goal states are the rest of final
states that correspond to successful termination. Since Geibel only considers
terminal states for safety, his goal states correspond to a subset of safe states.
The other categories need not be represented, since they are meaningless for
final states.

An extension of Geibel’s fatal and goal states is a division presented
by |Garcia and Fernandez, 2012]. Their error and non-error states correspond
to fatal and goal states, but they add another division of the space—the
known and unknown states, where known states are those already visited (and
known have empty intersection with error). Then they mention a prerequisite
on the MDP that if an action leads to a known error/non-error state, then
its slight modification must also lead to an error/non-error state (a metric
over the state space is required).

In the work of [Ertle et al., 2012], again the two basic regions are considered—
they are called desired and hazardous (corresponding to safe and fatal).
However, due to the used learning technique, one more region emerges—the
undesired region. It contains the whole hazardous region and a “small span”
comprising desired states, and denotes the set of states where no training
(safe) samples are available, because it would be dangerous to acquire those
samples. In particular, they say that “The hazards must be ‘encircled’ by the
indications of the undesired approaching so that it becomes clear which area
[...] is undesired” [Ertle et al., 2012].

A summary of the labeling-based definitions is shown in [Figure 3.2l We
examined the apparent imbalance between the number of categories Hans et al.
define and the other definitions, and that led us to the following observations.

The first observation is that creating labels for actions or transitions is
unnecessary. If we need to talk about the “level of safety” of an action, we
can use the worst label out of all possible results of that action (which retains
compatibility with definitions of Hans et al.). Moreover, as “it is impossible
to completely avoid error states” [Geibel and Wysotzki, 2011], we can ignore
the effects of the action which have only small probability (lower than a safety
threshold)—we will call such effects the negligible effects.

A second remark is that the fatal and supercritical sets can be merged.
In [Hans et al., 2008], we haven’t found any situation where distinguishing
between supercritical and fatal would bring any benefit. Specifically, they
state that: “Our objective is to never observe supercritical states,” which
effectively involves avoiding fatal transitions, too. And since we avoid both
supercritical and fatal, we can as well avoid their union.

Third, safety of a state does not necessarily depend on the reward for
getting to that state. E.g. when the UGV performs a victim detection task
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as in [Petricek et al., 2019], going away from the target area may be perfectly
safe, but the reward for such action should be small or even negative.

Putting these observations together, we propose a novel definition of safety
for stochastic MDPs, which is a simplification of the model of Hans et al. and
a generalization of the other models:

® A state is unsafe if it means the agent is damaged/destroyed/stuck. .. or
it is highly probable that it will get to such state regardless of further
actions taken.

B A state is critical if there is a not negligible action leading to an unsafe
state from it.

B A state is safe if no available action leads to an unsafe state (however,
there may be an action leading to a critical state).

To illustrate the definition on a real example, please refer to [Figure 3.1
In [3.1(a), the UGV is in a safe state, because all actions it can take lead
again to safe states (supposing that actions for movement do not move the
robot for more than a few centimeters). On the other hand, the robot as
depicted in 3.1(b)| is in a critical state, because going forward would make
the robot fall over and break. If the robot executed action “go forward” once
more, it would come to an unsafe state. Right after executing the action it
would still not be broken; however, it would start falling and that is unsafe,
because it is not equipped to withstand such fall and therefore it is almost
sure it will break when it meets the ground.

B 3.2.2 Safety Through Ergodicity

An MDP is called ergodic iff for every state there exists a policy that gets the
agent to any other state [Moldovan and Abbeel, 2012|. In other words, every
mistake can be remedied in such MDP. Moldovan and Abbeel then define
d-safe policies as policies guaranteeing that from any state the agent can get
to the starting state with probability at least ¢ (using a return policy, which is
different from the d-safe one). Stated this way, the safety constraint may seem
intractable, or at least impractical—it is even proved, that expressing the set
of d-safe policies is NP-hard [Moldovan and Abbeel, 2012|. An approximation
of the constraint can be expressed in the terms of two other MDP problems
which are easily solved; that still leads to d-safe policies, but the exploration
performance may be suboptimal.

In our view, safety through ergodicity imposes too many constraints on
the problems the agent can learn. It sometimes happens that a robot has to
learn some task after which it is not able to return to the initial state (e.g.
drive down a hill it cannot go upwards; a human operator then carries the
robot back to the starting position). But the inability to “return home” in
no means indicates the robot is in an unsafe state.
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B 3.2.3 Safety Through Costs

Another definition of safety is to define a cost for taking an action/being in
a state and minimize the worst-case cost of the generated policies (up to some
failure probability). Such approach is presented in .

However, unless a threshold is set, this definition leads only to the safest
possible policies, which are not necessarily safe, nor optimal. Expressing
the safety using costs is natural for some RL tasks (e.g. when learning the
function of a dynamic controller of an engine, the engine’s temperature can
be treated as a cost). Unfortunately, not all unsafe states can be described
using such costs in general. In addition, specifying the right costs may be
a difficult task.

B 3.2.4 Safety as Variance of the Expected Return

An alternative to safety as minimization of a cost (either worst-case or
expected) is minimizing both the cost and its variance. This approach is
called expected value-variance criterion [Heger, 1994] and is used mainly in
works prior 2000, e.g. [Coraluppi and Marcus, 1999|]. A safe policy by this
criterion can be viewed as a policy that minimizes the number of critical
actions (because fatal transitions are expected to yield much larger costs than
safe transitions, increasing the variance significantly).

As stated in |Garcia and Fernandez, 2012], the worst-case approach is too
restrictive and cautious. The other expected value-variance criteria suffer
from the same disadvantages as safety through costs—mainly from the general
difficulty to tune up the costs.

B 3.3 safe Exploration Approaches

Finally, when the theoretical concepts have been shown and the various
safety definitions have been presented, we can focus on the main part of
this overview. Our categorization of safe exploration techniques is based
on the work of [Garcia and Fernandez, 2012]. The basic division is as

follows: approaches utilizing the expected return or its variance (section 3.3.1)),
labeling-based approaches (section 3.3.2)) and approaches benefiting from prior
knowledge (section 3.3.3).

B 3.3.1 Optimal Control Approaches

Techniques in this category utilize variations of the expected value-variance
safety criterion. The most basic one is treating the rewards as costs (when
a reward is denoted by r¢, the corresponding cost is denoted by ¢;). Standard
RL methods can then be used to solve the safe exploration task, as described
e.g. in |[Coraluppi and Marcus, 1999| for discounted infinite horizon.
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The RL objective function

J.=E [i ’ytct] (3.1)
t=0

is called the risk-neutral objective. To make this objective risk-sensitive, we
specify a risk factor o and rewrite the objective as: [Heger, 1994]

1 oo o0 o0
J. = o log E [exp (aZ’ytctﬂ ~E [Z et + %Var [Z’ytctl (3.2)

t=0 t=0 t=0

which is also called the expected value-variance criterion. Unsafe actions
should carry high costs, so minimizing both costs and their variance can be
seen as seeking a solution with low expected costs and low probability of
entering unsafe states.

This approach is a part of theory using exponential utility functions, which
is popular in optimal control [Mihatsch and Neuneier, 2002]. To complete this
section, the worst-case objective function (also called the minimaz objective)

is defined as -
J. =sup [Z ytct] : (3.3)
t=0

As can be seen, the objective functions containing expectations cannot in
fact assure that no unsafe state will be encountered. On the other hand,
the minimax objective provides absolute certainty of the safety. However, it
may happen that some unsafe states can only be reached with a negligible
probability. In such cases, the a-value criterion defined by |[Heger, 1994]
can be used—it only takes into account rewards that can be reached with
probability greater than «. In the work of [Mihatsch and Neuneier, 2002|,
a scheme is presented that allows to “interpolate” between risk-neutral and
worst-case behavior by changing a single parameter.

[Delage and Mannor, 2007] take into account the uncertainty of parameters
of the MDP. It is often the case that the parameters of the MDP are only esti-
mated from a limited number of samples, causing the parameter uncertainty.
They propose a possibility that the agent may “invest” some cost to lower
the uncertainty in the parameters (by receiving some observations from other
sources than exploration). A whole research area then appears—to decide
whether it is more valuable to pay the cost for observations, or to perform
exploration by itself. We follow this direction in [Part II.

An approximation scheme for dealing with transition probability uncertainty
is presented in [Nilim and El Ghaoui, 2005|. It considers a robust MDP
problem and provides a worst-case, but also robust policy (with respect to
the transition probability uncertainty).

A theory generalizing these approaches can be found in [Schneider, 1996].
The theory states that the optimal control decision is based on three terms—
the deterministic, cautionary and probing terms.

The deterministic term assumes the model is perfect and at-
tempts to control for the best performance. Clearly, this may lead
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to disaster if the model is inaccurate. Adding a cautionary term
yields a controller that considers the uncertainty in the model and
chooses a control for the best expected performance. Finally, if the
system learns while it is operating, there may be some benefit to
choosing controls that are suboptimal and/or risky in order to obtain
better data for the model and ultimately achieve better long-term
performance. The addition of the probing term does this and gives
a controller that yields the best long-term performance. [Schneider:
1996|

To conclude this section, we think that these methods are not well suited for
safe exploration—the expected value-variance and similar criteria provide no
warranties on the actual safety. On the other hand, the worst-case approaches
seem to be too strict.

Bl 3.3.2 Labeling-Based Approaches

The approaches utilizing some kind of state/action labeling (refer to |sec-
tion 3.2.1 for the various labeling types) usually make use of two basic
components—a safety/risk function and a backup policy. The task of the
safety function is to estimate the safety of a state or action. In the simplest
case, the safety function can just provide the labeling of the given action;
or it can return a likelihood that the action is safe; and in the best case, it
would answer with a likelihood to be safe plus a variance (certainty) of its
answer. The backup policy is a policy that is able to lead the agent out of
the critical states back to the safe area. It is not obvious how to get such
a policy, but the authors show some ways how to get one.

In the work of [Hans et al., 2008], the most granular labeling is used, where
fatal transitions are said to be the transitions with reward less than a given
threshold. The safety function is learned during the exploration by collecting
the so-called min-reward samples—this is the minimum reward ever obtained
for executing a particular action in a particular state. The backup policy
is then told to either exist naturally (e.g. a known safe, but suboptimal
controller), or it can also be learned. To learn the backup policy, an RL task
with altered Bellman equations is used:

Q:m'n(sﬂ CL) = Isr,lg%( min R(Sa a, S,)v gleai( Q;knin(sla CL/)

A policy derived from the computed Q,,;,, function is then taken as the

backup policy (as it maximizes the minimum reward obtained, and the fatal
transitions are defined by low reward). A policy is safe, if it executes only safe
actions in safe states and produces non-fatal transitions in critical states. To
learn such safe policy, a level-based exploration scheme is suggested (although
no proofs why it should be better than any other exploration scheme are
given). This scheme is based on the idea that it is better to be always near
the known safe space when exploring. All unknown actions from one “level”
are explored, and their resulting states are queued to the next “level”. For
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exploration of unknown actions it is proposed that the action should be
considered critical until proved otherwise, so the exploration scheme uses the
backup policy after every unknown action execution. A disadvantage of this
approach is that the agent needs some kind of “path planning” (or resets) to
be able to get to the queued states and continue exploration from them.

The PI-SRL algorithm [Garcia and Fernandez, 2012] is a way to safeguard
the classical policy iteration algorithm. Since the labels error/non-error
are only for final states, the risk function here is extended by a so called
Case-based memory, which is in short a constant-sized memory for storing
the historical (s, a, V(s)) samples and is able to find the nearest neighbors
for a given query (using e.g. Euclidean distance). In addition to the error
and non-error states, they add the definition of known and unknown states,
where known states are those that have a neighbor in the case-based memory
closer than a threshold. A safe policy is then said to be a policy that always
leads to known non-error final states. To find such policy, the policy iteration
is initialized with the safe backup policy and exploration is done via adding
a small amount of Gaussian noise to the actions. This approach is suitable
for continuous state— and action-spaces.

Another approach is presented in [Geibel, 2001], where the risk and objective
functions are treated separately. So the risk function only classifies the states
(again only final states) as either fatal or goal, and the risk of a policy (risk
function) is then computed as the expected risk following the policy (where
fatal states have risk 1 and goal states have risk 0). The task is then said to be
to maximize the objective function (e.g. discounted infinite horizon) w.r.t. the
condition that the risk of the considered policies is less than a safety threshold.
The optimization itself is done using modified Q-learning, and the optimized
objective function is a linear combination of the original objective function
and the risk function. By changing the weights in the linear combination the
algorithm can be controlled to behave more safely or in a more risk-neutral
way.

A generalization of Geibel’s idea to take the risk and reward functions
separately can be found in the work of [Kim et al., 2012]. In this work, the
constrained RL task is treated as a Constrained MDP and the algorithm
CBEETLE for solving the Constrained MDPs is shown. The advantage of this
work is that it allows for several independent risk (cost) functions and doesn’t
need to convert them to the same scale. However, the CBEETLE algorithm
solves the task only approximately, which means some safety criteria may not
be satisfied by the optimal policy.

A similar approach of using constrained MDP to solve the problem can be
found in the work of [Moldovan and Abbeel, 2012]. They do, however, use
the ergodicity condition to tell safe and unsafe states apart. Moreover, this
approach is only shown to work for toy examples like the grid world with
only several thousands of discrete states, which may not be sufficient for real
robotics tasks.

The idea of having several risk functions is further developed by [Ertle
et al., 2012]. The agent is told to have several behaviors and a separate safety

24



3.3. Safe Exploration Approaches

function is learned for each behavior. This approach allows for modularity
and sharing of the learned safety functions among different types of agents.
More details on this work will be provided in the next section, because it
belongs to learning with teachers.

An approach slightly different from the previously mentioned in this section
is using the methods of reachability analysis to solve safe exploration. |Gillula
and Tomlin, 2011] define a set of keep-out states (corresponding to unsafe
in our labeling) and then a set called Pre(7) is defined as a set of all states
from which it is possible to get to a keep-out state in less than 7 steps.
Reachability analysis is used to compute the Pre(7) set. Safe states are then
all states not in Pre(r) for a desired 7. This approach, however, doesn’t
utilize reinforcement learning, it computes the optimal policy using standard
supervised learning methods with one additional constraint—that the system
must use safe actions near the Pre(7) set. On the other hand, the system is
free to use whatever action desired when it is not near Pre(T).

As was presented in this section, the labeling-based approaches provide
a number of different ways to reach safety in exploration. They are, however,
limited in several ways—some of them make use of the (usually hard-to-
obtain) transition probability, the others may need to visit the unsafe states
in order to learn how to avoid them, or need the state-space to be metric.

Bl 3.3.3 Approaches Benefiting from Prior Knowledge

The last large group of safe exploration techniques are the ones benefiting from
various kinds of prior knowledge (other than the parameters of the MDP).
We consider this group the most promising for safe exploration, because “it is
impossible to avoid undesirable situations in high-risk environments without
a certain amount of prior knowledge about the task” [Garcia and Fernandez.
2012].

The first option how to incorporate prior knowledge into exploration is
to initialize the search using the prior knowledge. In fact, several works
already mentioned in previous sections use prior knowledge—mnamely the
approaches with a backup policy ( [Hans et al., 2008, |Garcia and Fernandez.
2012]). Also, Garcia and Ferndndez suggest that the initial estimate of the
value function can be done by providing prior knowledge, which results in
much faster convergence (since the agent does no more have to explore really
random actions, the estimate of the value function already “leads it” the right
way).

Another option how to incorporate prior knowledge is by using Learning
from Demonstration (LfD) methods. Due to the limited space, we will not
give the basics of LfD—a good overview is for example in [Argall et al., 2009].
For our overview, it is sufficient to state that LfD methods can derive a policy
from a set of demonstrations provided by a teacher. What is important, is
that the teacher does not necessarily have to have the same geometrical and
physical properties as the trainee (although it helps the process if possible).
It is therefore possible to use LfD to teach a 5-joint arm to play tennis, while
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using 3-joint human arm as the source of demonstrations (but the learned
policy may be suboptimal; RL should then be used to optimize the policy).

In Apprenticeship Learning |Abbeel et al., 2007], the reward function is
learned using LfD. The human pilot flies a helicopter at his best, and both
system dynamics and the reward function are learned from the demonstra-
tions. It is however apparent that the performance of the agent is no longer
objectively optimal, but that it depends on the abilities of the human pilot.

Another way of incorporating prior knowledge into the learning process is
to manually select which demonstrations will be provided, as in |[Ertle et al..
2012]. In the work it is suggested that more teacher demonstrations should
come from the areas near the unsafe set, in order to teach the agent precisely
where the border between safe and unsafe is located.

Interleaving autonomous exploration with teacher demonstrations is an
interesting combination of the mentioned approaches. As in the previous
case, some teacher demonstrations are provided in advance, and then the
exploration part starts utilizing the teacher-provided information. After
some time, or in states very different from all other known states, the agent
requests the teacher to provide more examples [Argall et al., 2009,|Chernova
and Veloso, 2007]. The idea behind this algorithm is that it is impossible to
think out in advance what all demonstrations will the agent need in order to
learn the optimal policy.

Prior knowledge can generally be provided in terms of (even partial or
stochastic) transition model, reward function estimate or safety function
estimate. The safety and optimality of the learning process depends on
what guarantees can be provided for the estimates. We present a general-
purpose safe exploration algorithm called Constrained Relative Entropy Search
(CREPS) in |chapter 4]

Finishing this section, the algorithms utilizing prior knowledge seem to be
the most promising out of all the presented approaches. They provide both
a speedup of the learning process (by discarding the low-reward areas) and
a reasonable way to specify the safety conditions (via LfD, interleaving or
estimates).
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(a) A safe state.

(b) A critical state—if the robot went still forward, it would fall down and probably break.

Figure 3.1: An illustration of safe and critical states.
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SUPERCRITICAL
CRITICAL
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Geibel
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Figure 3.2: A summary of the definitions of safety. The basic division is taken
from [Hans et al., 2008 and fatal states are added. States are drawn with solid
background and white-headed arrows (—) denote the possible actions in the
states. Actions are rendered with striped background and black-headed arrows
(=) end in states where it is possible to end up using the action.
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Chapter 4
Constrained REPS

In this section, we describe our algorithm called CREPS which aims at solving
the safe exploration problem in continuous state- and action-space in case
a cautious simulator is available.

The algorithm has been published in: Pecka, M., Zimmermann, K.,
and Svoboda, T. (2016). Autonomous Flipper Control with Safety Con-
straints. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2889-2894, Daejon, South Korea. IEEE. DOI:
110.1109/TROS.2016.7759447. This section is an adapted version of the publi-
cation.

As mentioned in the complexity of Policy Gradient Search
algorithms doesn’t depend on the complexity of the policy or the dynamics
model, but only on the number of policy parameters. Such property makes
them suitable for learning of controllers for robotic systems for which robust
real behavior prediction using the first-principle models is difficult (such as
closed form equations describing kinematic and/or dynamic behaviors for
rover-terrain interaction, or Navier-Stokes aerodynamic laws). Unfortunately,
PGS usually requires many trials which endanger the real system or cause its
excessive wear. Therefore, it is usually not used directly on the real system,
but on data-driven models. For example, [Kupcsik et al., 2017] demonstrate
data-driven PG learning of the ball throwing problem with a robotic arm,
and [Tedrake et al., 2009] argue that Policy Gradient learning for aerial
maneuvers with an ornithopter may be very efficient. |[Transeth et al., 2009]
show that for snake-like robots with significant side-slip, no closed form
expression of the snake’s motion exists, therefore policy learning must resort
to approximate simulation.

B 2.1 Relative Entropy Policy Search Algorithms

Relative Entropy Policy Search (REPS) [Peters et al., 2010] is a model-free gra-
dient policy search algorithm which utilizes Kullback-Leibler divergence (KL
divergence) to limit the “distance” of the updated policy from the previous one.
This was shown to practically help both stability of the learning and finding
policies with higher expected return. Contextual REPS [Kupcsik et al., 2017]
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uses a stochastic upper-level policy which generates deterministic lower-level
policy samples. The performance of these policies is evaluated by executing
them, and is used to estimate the upper-level policy gradient. The Gaussian
Process REPS (GPREPS) method by |[Kupcsik et al., 2017] adds a Gaus-
sian Process (GP) in the loop, which learns a representation of the system
dynamics. The GP is used for better evaluation of the policies without the
need for executing more real-world samples. Several PGS methods also take
constraints into account: [Uchibe and Doya, 2007| propose constrained policy
search for GPOMDPs. However, GPOMDPs belong to early PG algorithms
which use the likelihood-ratio trick to compute the gradient of the expected
sum of rewards and then update the policy parameters by a user-defined learn-
ing rate. [Prashanth, 2014] proposes constrained PG method for Stochastic
Shortest Path problem with inequality constraints on Conditional Value-at-
Risk (CVaR) as a risk measure. This method does not allow including implicit
constraints and cannot be easily extended for general episodic rewards, such
as minimum distance of the trajectory from a target position. In this part, we
propose a combination of GPREPS with the work of Uchibe and Doya—to
extend Contextual REPS with constraints. The proposed method is called
Constrained REPS, (CREPS). It evaluates the generated policies in a simula-
tor and successively constrains the upper-level policy distribution. This (i)
reduces the number of needed samples/iterations and consequently speeds-up
the learning process of the model, and (ii) provides a safe policy when used
with the real system.

Since it is difficult to provide any guarantees on data-driven models created
from real-world samples without any prior knowledge about the underlying
physics [Ross and Bagnell, 2012,|Akametalu et al., 2014, we replace the GP
model from GPREPRS by a cautious physics-based simulator that certifies
the safety of policies.

. 4.2 Cautious Simulator

Let us assume a simulator is given that is able to approximately model
some real system and assess the safety of executed actions and trajectories
(categorize them as safe or unsafe). It is called cautious if the safety
assessment can be wrong only in the case when some action is safe in the
real system and the simulator tells it is unsafe. The other kind of error, e.g.
misclassifying an unsafe action as safe is not permitted.

In simple cases, it can be an equation (even implicit), that checks some
constraints of arbitrary order. When modeling a complex system, standard
software physics and dynamics simulators can be used. The only requirement
is that the simulation has to fulfill the cautiousness condition. From the
implementation point of view, the cautiousness can be a core part of the
simulator design or it is achieved by adding noise to the inputs and outputs,
and testing more possible values of uncertain parameters (such as track-soil
interaction). This way, it should be possible to create cautious simulations of
most real-world systems (given the simulator can simulate all the important
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interactions and influences).

If there is need for classifying states as critical, it is e.g. possible to specify
a time limit, and if the simulator doesn’t get into an unsafe state after trying
for the specified time limit, it can categorize the state as safe. On the other
hand, if some simulation gets into an unsafe state, we can mark some number
of preceding states as critical.

. 4.3 Contextual REPS

Model-free policy search algorithms usually follow these steps: (i) generate
trajectories from the real-world system, (ii) compute a policy maximizing
the expected sum of rewards on the so-far-generated trajectories, (iii) use
the policy to generate a new real-world trajectory, (iv) repeat from (ii).
Contextual REPS [Kupcsik et al., 2017] adds a task-dependent context
s (a changing property of the environment, e.g. the height of an obstacle),
from which it extracts a feature vector ¢(s). The policy is hierarchically
divided into two parts: upper-level policy q(¢(s)) and lower-level policy 7 (+|w).
The upper-level policy generates parameter vectors w which parametrize the
lower-level policy. As the upper-level policy is usually a distribution over
the parameters w conditioned by ¢(s), we simplify the notation as ¢(s,w).
Samples w ~ ¢(s) are evaluated on the model (which is called a rollout) and
the corresponding sums of collected rewards RL@, (called return) are recorded.
Using this data, Contextual REPS searches for a new wupper-level policy
p(s,w), which maximizes the expected sums of rewards while staying close to
the so-far-generated trajectories. The distance of trajectories is measured by
KL divergence. Bounding the KL divergence between p(s,w) and ¢(s,w) as

follows: ( )
p(s,w

s,w)lo
ZS:%:P( ) & (s, w)

IN

€,

where € specifies the trade-off between exploration and exploitation, was
shown to lead to uniform convergence in the whole parameter space |[Daniel
et al., 2016]. Another constraint imposed on the upper-level distribution in
Contextual REPS is to preserve the average distribution of context features:

> D ps,w)és) = @,

where QAS is the average feature value.

. 4.4 Constrained REPS

We extend Contextual REPS with additional constraints. In particular, for
systems which are not inherently safe, or which are prone to wear, we use
a cautious physics-based simulator (see section 4.2)) to determine a rollout
safety Ss,. The safety equals to 1 if policy p(s,w) generated a safe trajectory
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4. Constrained REPS

for context s, and equals to 0 otherwise. We force the upper-level distribution
p(s,w) to have expected safety bigger than user-defined threshold ¢

> pls,w)(1 - Sw) <6 (4.1)

Another source of additional constraints is prior knowledge of physical
limits such as the maximal joint angles (which are the control actions in
our experiment). Violating such constraint is usually not safety-critical,
because reaching an impossible pose is often prevented by some low-level
motor drivers. However, evaluating many impossible samples naturally slows
down the learning process.

Since all these constraints have the same form, we compose a vector Cg,
as a collection of evaluated quantities (e.g. safety and mechanical constraints)
and vector d as a collection of corresponding bounds. Such notation yields
the following set of inequalities

Z Zp(s,w)(l - Csw) < 0 (4.2)

where 1 denotes a vector with all-ones of a corresponding dimension.
Constrained REPS searches for an upper-level policy distribution p(s, w)
corresponding to the solution of the following optimization problem:

max zsz zw:p(s, W) Rsw,
s.t. Z Zp(s, w) log p(s,w) <k,
S w

q(s,w)

> p(s,w)(1 — Cgp) <46, (4.3)
Z Zp(& w)¢(s) = (Z)a
Z Zp(s, w)=1.

We follow the same derivation as proposed in [Kupcsik et al., 2017] and solve
the problem by the method of Lagrange multipliers (the detailed derivation
is provided in [Kupcsik et al., 2017] and is not given here due to space
constraints). By setting the gradient of the corresponding Lagrangian with
respect to p(s,w) to zero, we obtain the closed form solution

Rsw — 0T¢(S) - 7T1 + ”/Tcsw) (4'4)

p(s,w) x q(s,w) exp ( p

where «, 8 and 7 are solutions of the following dual problem

max g(n,7,0)
1,7,0

sit.iy >0, (4.5)
n >0,
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with

9(n,7,6) =nlog Y > q(s,w) exp

+ne+0"d+~"8.

(st —0"Tp(s) —~vT1+ 7Tcsw>
n

(4.6)

Using a dataset D = [s["],w[i},R[sﬂ,,CLZ;]‘,]Z-:L._,, ~ where samples are picked
from distribution ¢(s,w), we can rewrite the previous equation as

1 X R[SZL — 0T¢(s[i]) —~T1+ 'yTC[sﬂ,
9 3071) = 1 AT
9(n,7,6;D) =nlog NZem( )

i=1 n

+ne+0"d+~"4,

Dual problem (4.5)) is a convex function with lower bound constraints. We
achieved the fastest convergence with the interior point algorithm [Byrd et al..
1999] with supplied gradients:

on N = 7

3N, 261, wl)(RE, — 0T (s1) — 471 + 4T CL)

n SN, Z(sl wlil) )
dg SN Z(sll, wlil)cl,
oy 0TS T 0 4.9
v N Z(sli], wlil) (4.9)
R N [{] .,li] (1]

05 _g - i JS 5w 0T, (4.10)
00 SN Z(sll, wlil)

where Z(sl!, wl) = exp <R£ﬂ;—9T¢(Smn)—7T1+VCLﬂ:>.

Probabilities pl! of the new upper-level distribution are estimated from the
optimal dual variables 0, ~, n:

[ _ T arcliy _ AT T 7]

Dl o exp (
n

To generate samples from this distribution, we either use weighted maxi-
mum likelihood to fit a normal distribution into samples (wl’, sl) weighted
by probabilities pl!l as suggested in [Kupcsik et al., 2017] or we use impor-
tance sampling to generate samples from the non-parametric distribution.
Constrained REPS is described in |Algorithm 5|

Figure 4.1] shows a toy example. We generate 1000 samples from one-
dimensional normal distribution ¢(w) with both mean and variance equal
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Figure 4.1: Toy example demonstrating solution of problem . Resulting
upper-level probability distribution is in black. Please notice the maximum
reward is located in an unsafe area. Therefore, CREPS computes a distribution
that prefers safe, though suboptimal choices.

to 0.3. We have intentionally chosen the position of rewards maximum into
w = 0, safety equal to one for w > 0.5 and mean of ¢ into 0.3 to make all
constraints active. We set the upper bound on KL-divergence ¢ = 0.1 and
the lower bound on safety § = 0.6. We verify the average safety of samples
generated from the distribution given by is 0.6064, which is indeed
above the required safety bound.

B a5 Experimental Verification

B 4.5.1 Safe Traversal Task Description

The robot has to learn a flipper control policy that would allow it to traverse
an obstacle without any prior knowledge about the correct traversal strategy.

This task has been chosen because it very well separates good and bad
policies (as well as safe and unsafe). A bad policy is not even able to get the
robot on top of the obstacle, and therefore the robot gets stuck in front of
it and travels only a short distance (receiving low reward). This task also
allows for a wide variety of unsafe policies.

Some results of this experiment are compared to a similar task called
Adaptive Traversability (AT) presented in |[Zimmermann et al., 2014] and
improved in [Zimmermann et al., 2015]. The goal of AT is to find a policy to
control the flippers so that the robot maximizes a weighted sum of rewards
(and minimizes penalties). The training process is a combination of supervised
and reinforcement learning and requires a large set of manually annotated
data. Since the forward speed is constant in the task, we compare the policies
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4.5. Experimental Verification

Algorithm 5 Constrained REPS
1. Input: maximal information loss €, vector of constraints &, context
distribution u(s), initial upper-level policy ¢(w|s), number of policy
updates K, number of samples .

2. for k=1,...,K do

3. fori=1,...,Ndo

4. Observe sl from p(s).

5. Generate parameters wl! from g(w|sl?).

6. Using wl execute lower-level policy on the model and collect
&, cll.

7. end for

8. Fill in dataset: D = [S[i],wm, [sﬂ,, C[si]‘,]izl’m,N.

9. Optimize dual function: [n,~, 0] = argmin,, . ¢ g(n,7,0; D).

10.  Compute weights pl! for all samples in D, Eq. (4.11).
11.  Update upper-level policy g(w|s) with weighted ML (or collect pEil N
for importance sampling).

12. end for

using the penalties for high pitch angle and for high acceleration.

We use a similar environment for the Safe Traversal (ST) task. The
tracked robot starts in front of a standard wooden EUR 1 pallet. The robot
is automatically driven forward by a constant speed, and the experiment ends
after 30 seconds.

States. States of the ST task are: (i) robot body pitch, and (ii) height
of the terrain approximately 20cm in front of the robot body (read from
an octomap built online from laser scans).

Actions. ST policy controls independently the pairs of front and rear
flippers using positional control. Therefore, the action space is continuous
and 2-dimensional.

Rewards and Safety. In the AT task, safety is not modeled separately, and
some safety features are part of the reward. The reward for the AT task is
a weighted sum of (i) manually assigned safety penalty, (ii) high pitch/roll
angle penalty, (iii) penalty for excessive flipper motion, (iv) robot forward
speed reward, and (v) motion roughness penalty measured by accelerome-
ters [Zimmermann et al., 2014].

In the ST task, the reward is simply the distance traveled in 30 seconds
over the pallet (the choice of policy influences e.g. track slippage and motor
stress, which lower the speed). Safety is modeled explicitly by the cautious
simulator, which marks as unsafe all rollouts in which the robot tops over,
hits hard on the ground or obstacle (measured as deceleration), or hits objects
with delicate parts of its body (e.g. sensors). Please note that this safety
definition is related to the robot body, and is independent from the specific
task and rewards.
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Lower-level Policy. We use a policy that is linear in the states, and that
controls front and rear flippers separately. The state vector is 2-dimensional,
which yields 3 parameters per action (2 for state variable multipliers and
a constant), summing up to 6 policy parameters, w = (w1,...,ws), to be
learned.

Context. In this experiment, we did not make use of the context—it was
always set to zeros. This helped to keep the experiment simple, and was
also needed to keep the possibility of comparing ST and AT results. The
framework, however, supports the use of context.

B 4.5.2 Simulator Setup

To run the simulation on a computer, we use the simulator described in
Appendix Al The collision model used in the simulator consists of simple-
shape collision links (boxes, cylinders) approximating the CAD model of the
robot. Therefore, the size of the links should reflect reality very well. Weights,
centers of mass, inertias, friction coefficients and other dynamics coefficients
are estimated manually. It is important to estimate these parameters pre-
cisely enough, so that the simulator can be assumed cautious (which can be
easily done using the CAD model). Or, in case of very influential unknown
parameters, the simulator has to be run with multiple possible values and
the worst-case outcome treated as the simulation result.

The simulator reports unsafe rollout if it encounters any of the unsafe
states defined in previous section. However, the rollout is not stopped at that
moment (the simulated robot does not break—if it hits hard on the ground,
it can still continue). However, if it tops over, it naturally cannot go any
further. We utilize this setting to show the safety constraint is not related to
low rewards (and also to allow comparing with unconstrained REPS).

B 45.3 Experiment Setup

First, 10 to 30 iterations of the CREPS algorithm are done using only the
simulator (until the policy converges). It returns an upper-level policy, from
which we can draw lower-level policies that are safe in the simulator and
lead to high expected rewards. In each iteration, we test approximately
150 simulated rollouts to estimate the new upper-level policy parameters.

For improvement by real-world samples, the experiment continues with
10 lower-level policies sampled from the optimal upper-level policy and checked
in the simulator for safety. If they are safe, they are executed on the real
robot. Otherwise, different policies are sampled until the desired number of
safe policies is reached.

These real samples are further used to update the upper-level policy in
the CREPS algorithm. This way we can correct the policy if the simulator
estimated the rewards incorrectly.
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B 4.5.4 Results

We tested the algorithm with several settings to show it consistently converges
to high rewards in safe regions. The settings differed in e.g. the initial policy,
upper-level policy representation (either a multivariate Gaussian distribution
or the Importance Sampling mechanism as described in section 4.4), and the
expected safety lower bound (generally 0.8, but in one experiment it was set
to 0.0 to simulate unconstrained REPS).

The probability distribution of safe/unsafe policies showed to be very
complex during the experiments, and it is far from being Gaussian or uniform.
As can be seen in [Figure 4.2 most of the time, the mean safety of rollouts
is below the desired threshold of 0.8. However, it still tries to reach the
threshold. In this case, the Importance Sampling method yields better results,
as it better represents the complex distribution.

In the two experiments with unconstrained REPS, comparing [Figure 4.2
and [Figure 4.3 it is clear the algorithm strived for the highest rewards possible
and safety quickly dropped to almost zero (which means the traversal was
faster, but the robot hit ground too hard during the rollout). Interestingly,
one of the unconstrained experiments reached a level of expected rewards
not seen in any of the safety-constrained cases, which suggests that the best
policies are unsafe and CREPS correctly avoids these maxima.

Figures 4.2/ and 4.3 show that the CREPS algorithm maximizes the rewards
in cca the first 10 iterations, and then it holds the good rewards and tries to
satisfy the expected safety constraint. As we discussed earlier in this section,
since the safe policy distribution is difficult to represent, the expected safety
constraint is often broken. However, it does not mean that the robot could
be damaged because of this imperfection. It only means that we probably
need to sample more lower-level policies until a safe one is found (which is
always tested in the simulator before real execution).

We compared the high-pitch and high-acceleration penalties gathered by
both an optimal policy for the ST task and also for the AT task. We performed
10 rollouts with each of the methods, and compared the penalties; results
are shown in [Figure 4.4. The pitch histogram was essentially the same for
both tasks, so only the acceleration histograms are shown in [Figure 4.4, The
figure illustrates that the CREPS policy doesn’t generate more dangerous
trajectories than the AT policy (which was however trained with a large set
of manually annotated data).

Last, we closed the loop improving one of the best policies found in the
simulator by real-world reward samples. We executed two CREPS iterations,
each with 10 samples. Safety was always checked in the simulator, then the
sampled policy was executed, and the real-world reward collected. After two
gradient search steps, the expected reward is higher than the best reward
achieved in the simulator, as is shown in Table 4.1, It is important to note
that the policy search now cannot reuse samples from the simulator, since
the reward estimate may be biased by imperfection of the simulator.
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Figure 4.2: Mean safety during rollouts. w; is the initial value of the first
element of the policy parameter vector, and it showed to have large influence
on safety. Multiple curves with equal description correspond to multiple runs
with different values of ws...ws which are omitted from the figure for simplicity.
The solid black curve is from a policy initialized close to a local maximum of the
safety function. Compare with [Figure 4.3|to see that the reward increased very
slowly with expected safety higher than the desired threshold of 0.8. The last two
policies were not constrained by safety at all (behaving like Contextual REPS),
and they quickly found the best rewards lie in the unsafe space. Also note the
Importance Sampling experiments tend to achieve higher expected safety.

B 4.5.5 Conclusion

In a small number of iterations (and with about 2000 simulated trajectories),
the robot learned how to safely traverse a previously unknown obstacle, and
even the learning process itself was safe—thanks to the cautious simulator.
We show that the cautious simulator can be designed in such a way that it
does not constrain the possible actions too much and the robot is still able to
reach the safe optimal rewards.
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Figure 4.3: Mean reward during rollouts. The last policy not constrained by
safety converged to an optimum with the highest expected reward.
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Figure 4.4: Comparison of acceleration during 10 rollouts with AT and with
ST (shown as relative histograms). Values over 2 (right to the blue line) are
penalized in the AT task.
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Iteration | Kind Policy Converged | Mean Reward
29 Simulated | yes (in sim.) 0.80 £ 0.01
30 Real no 0.734+0.10
31 Real yes (in real) 0.85+0.05

Table 4.1: Execution in the real world. The converged simulated policy
performance was lower when used in the real world, but after only 2 real-world
iterations, the CREPS algorithm converged to the real-world optimum (which is
different from the simulated optimum, since the simulator is only approximate).
The reader should notice that the simulated optimum had to be close to the
real-world optimum, since CREPS doesn’t allow large changes of the policy.
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Chapter 5
Followup and Related Work

In this section we review relevant literature that was published after our
publications [Pecka and Svoboda, 2014] and [Pecka et al., 2016]. An abun-
dance of safe exploration algorithms has been presented. Some followed the
categorization from the overview and just improved on existing algorithms
and some came with completely new ideas. It is still apparent that the
definition of safety is largely domain-dependent, and researchers in one area
need completely different safety guarantees and assumptions than researchers
in other areas.

Several other overviews of in Al learning safety were published. Almost
concurrently with our overview, |Garcia and Fernandez, 2015] published
another view on safe reinforcement learning, dividing algorithms into two main
categories—those modifying the optimization criterion, and those modifying
the exploration process. The thesis of [Moldovan, 2016] also reviews many
aspects of safe learning on MDPs. Further overviews are given in
and [Herndndez-Orallo et al., 2019]. [Amodei et al., 2016] provide
a structured view on the key aspects that need attention, concentrating on
cases where Al could cause harm when badly designed. Being written shortly
after the advent of deep networks, they suggest attention should be given
to them in the field of safe learning. Four years later, there still are not
many works that would connect safety and deep networks. Further, they
suggest demonstrations or simulation should be used to speed up learning.
As can be seen further in this section, many authors did exactly that. Last,
they suggest a benchmarking test suite should be created for safe learning.
We can see several such benchmarks appeared since then, such as Safety Al
Gym from [Ray et al., 2019] for continuous tasks with large action spaces,
Open Physical Environment Benchmark from [Mirzaei et al., 2017] which
includes not only the software part, but also 3D printing instructions to
create canonical test environments (it however seems to not be actively used
or developed anymore), Al safety gridworlds from [Leike et al., 2017], and
most recently SafeLife from [Wainwright and Eckersley, 2020] which is an
interesting combination of the Game of Life and discrete MDPs.

One of the possible definitions of safety is that it is connected with the re-
ward function, and negative reward areas are considered as unsafe. [Fernandez
\Gauna et al., 2015] came with a modular value iteration algorithm that
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decomposes the learned task into several modules—one for the optimized
behavior, and one for each identified danger (these are called veto modules).
This modularization speeds up training, and veto modules make sure the
final policy does not execute any unsafe actions. [Koert et al., 2016 use an
additional reward term to enable obstacle avoidance in trajectories learned
by imitation learning. [Hadfield-Menell et al., 2017] note that the reward
function does not necessarily be treated as a final design choice. Instead, they
propose to treat the given reward function just as an observation of a “true”
reward function. |[Tangkaratt et al., 2017] present a variant of Contextual
REPS suitable for high-dimensional contexts. The reward function is esti-
mated from collected data, and to keep the problem tractable, the context
dimensionality is reduced using nuclear norm optimization, which is shown
to serve as a convex surrogate on a low-rank matrix constraint. [Paolo et al..
2017| train a control policy for a tracked vehicle, and their definition of safety
can be viewed as implicit, or functional—if the vehicle passes an obstacle, it
had to do it safely (because unsafe actions would not let it continue). But
this is only admissible if learning on a real robot is not intended, or if perfect
policy transfer from simulation to reality can be achieved. A surprising
approach is presented in [Turner et al., 2019] and [Turner et al., 2020]. They
argue that adding completely unrelated terms to the reward function actually
robustifies the final policy. Viewing the “original” reward function only as an
observation of the true reward function, this approach only makes sure that
the final policy performs well also for other reward functions than only the
specified one—hopefully also for the true function. [Krakovna et al., 2019|
define safety as in terms of unwanted side-effects. They introduce the relative
reachability measure which tells how many possible paths will the considered
action “close” for future, if it is executed. However, the presented algorithm
does not scale well and is only usable in small grid worlds. [Nass et al., 2019]
add a risk-related term to the reward function, which affects how safe or
risky should the exploration be. Risk is treated as policy variance in a vari-
ant of Relative Entropy Policy Search. Different from other reward-hacking
methods, [Papini et al., 2019] introduce a framework with guaranteed im-
provement of the objective function (up to some probability), which effectively
makes reward-hacking a guaranteed method for enforcing safety. It comes
at the cost of quite limited policy classes which satisfy the requirements of
the method. [Vemula et al., 2020] published an algorithm which utilizes an
imperfect simulator in a reinforcement learning setting (similar to our idea
from |chapter 4| or Part III). However, they do not update the simulator
output in any way—they just repel the policy search from areas in which the
simulator output differs from the observations.

Sometimes the safety function is known in advance and can be expressed
as a constraint on policy optimization. Various constrained optimization
techniques can then be used, providing various guarantees on the process and
its outcome. [Achiam et al., 2017] present an algorithm called Constrained
Policy Optimization, which is based on theory that gives guarantees on safety
of the learning process and the final policy—if all the required quantities
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would be known. However, they usually have to be estimated from samples,
and that hinders the guarantees. They try to at least recover from bad
gradient updates by performing a line search to stay within the current
estimate of the safe space, but the guarantees no longer hold absolutely. [Lu
et al., 2017] try to identify an unknown linear system while satisfying some
known safety constraints. A big help to their algorithm is the requirement
to provide a mominal safe action, which is an action that would drive the
system from any state to a known safe region. |Ge et al., 2019] provide
a globally optimal constrained MDP solution in case the safety constraints
are linear. The algorithm can work also with other types of constraints,
but it needs to linearize them, and thus loses all kinds of guarantees. The
algorithm is said to be model-free, but it seems the model is needed to
correctly evaluate the safety function. And there are more unclear points
in the algorithm description. [Hasanbeig et al., 2019] and |[Hasanbeig et al..
2020| generalize the constraint-based reinforcement learning by formulating
the problem in Linear Temporal Logic. This way it is possible to specify
even complex conditions for both the optimized reward function and the
safety constraints. The method is “partly model-free”—it needs to be able
to recognize unsafe states in the close vicinity of the agent during learning.
The algorithm also uses two kinds of “learners”—an optimistic one, which
is unconstrained deep Q-Learning, and a pessimistic one, which builds an
approximation of the dynamics model and applies the safety conditions on
the actions of the optimistic learner’s Q-function. The method seems to be
still too sample-inefficient to be used on more complex real systems. An
extension to modular deep reinforcement learning is shown in |[Zun Yuan
et al., 2019], which is however still too sample-inefficient to do experiments
with real robots.

A combination of the previous formulations is the work of [Dimitrova et al.!
2016], which allows setting both a maximum cost threshold and maximum
probability of getting to an error state in a discrete uncertain MDP. With
partial knowledge of the transition probability (which is defined by a limited
number of uncertain parameters) they augment the original MDP in such
a way that the new MDP represents only the safe paths.

Learning safe optimal policies of partially known MDPs requires a different
exploration scheme than in normal unconstrained MDPs. Several works tackle
this problem by searching policies which do not only use the best possible
safe action, but allow for a whole range of safe actions to be executed. This
usually helps exploration. [Junges et al., 2016] call such policies permissive
schedulers. The dangerous environment is modeled as a Markov Chain (to
allow for dynamic environments), and the permissive schedulers are used to
play a game against the environment. As [Pazis and Lagoudakis, 2011] note,
special care is needed in case the number of possible actions is too high when
using Q-Learning. Even the sole act of selecting the best action may become
computationally expensive.

Other works try to convert the safe learning problem to standard rein-
forcement learning by constructing some safeguards that watch actions of
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the policy and override it in case it could execute an unsafe action. [Alshiekh
et al., 2018 prove that if this safeguard (called shield in their framework)
is minimally interfering, the learning process should converge to the safe
optimum. However, computation of the shields requires prior knowledge
of both reward and safety functions. In [Jansen et al., 2019], the authors
extend the framework to the setting of a multiplayer game against stochas-
tic adversaries. [Wabersich and Zeilinger, 2018 construct Model-Predictive
Safety Certification Schemes, which are similar to shields, but in context
of Model-Predictive Control of linear systems. They say these safeguards
can be added to any safety-ignorant algorithm to make it explore the whole
safely reachable space. [Mannucci et al., 2018| introduce the safe learning
algorithm SHERPA, which utilizes a risk-percieving function. Whenever it
tells the intended action might be unsafe, a backup policy is used to get to
safer states. The backup policy is found automatically when some assumption
about the transition function hold. The method of [Fisac et al., 2019] can
be used if the transition model is known up to some bounded stochastic
disturbances. They use a Gaussian Process to model these disturbances, and
with its help they propagate the safe states boundary. And a safe backup
controller is constructed which takes over control only on the boundary of
the safe region. The algorithm also constantly verifies whether the observed
dynamics complies to what the GP model predicts, and in case some larger
disturbances are encountered, it is able to quickly react and retract to safer
regions, until it gets a better model of the new disturbance. [Rathi et al..
2020] propose a combination of Q-Learning and Model-Predictive Control.
The algorithm estimates some “critical” states, in which MPC is run instead
of the best action according to Q-function. To speed up learning, it also tries
to remember the MPC-generated actions in the Q-function. This method
however requires full knowledge the MDP including transition probabilities
and safety function.

As reinforcement learning is much easier to solve with a known reward
or safety function, many authors decide to learn it in case it is inaccessible.
This is usually “paid” by having to accept some regularity or smoothness
assumptions about the function. A popular function approximator for this
case are Gaussian Processes, which can not only learn the estimated function
values, but can also estimate uncertainty of the predictions. This uncertainty
is usually used as a measure of safety, or a safeguard telling the probability
of ending up in unsafe areas. [Sui et al., 2015] use the Gaussian Process to
estimate reward, and use its uncertainty to not only prevent exploration
of low-reward zones, but also to guide the exploration to areas with high
uncertainty. With a few more assumptions, they prove an e-optimality bound
of the found solution with high probability of not entering the unsafe states.

Connecting standard reinforcement learning approaches with optimal con-
trol brings interesting and deep insights in safe learning. [Turchetta et al..
2016| started by giving up on reward-optimal exploration, and substituted
the reward function with the unknown safety function, again represented
as a Gaussian Process and with some strong assumptions on the function
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properties. This work concentrated at proving that there is a high prob-
ability of exploring all reachable safe states without visiting any unsafe
state. [Berkenkamp et al., 2016] look at a very similar task from a different
viewpoint, and treat discovering safe areas as finding the maximal region of
attraction of the unknown dynamics system. In following work, [Berkenkamp
et al., 2017] split the unknown dynamics of the system to a known part
and a part which estimates the unmodeled dynamics, and is represented
with a Gaussian Process. Reachability theory is then applied to find policies
that are safe and optimal. However, the used framework limits both the
usable policy classes and safety formulations by many requirements. The
control-theory—based safe learning is summed up in the thesis of [Berkenkamp.
2019].

Some methods suggest that a teacher can be used. This teacher is expected
to have more complex task knowledge, maybe even know more than what
the used state representation can cover. |[Martinez et al., 2015] solve a path-
planning task with a stochastic, but known transition function and an unkown
(but learnable) safety function. Unsafe states are defined as “dead ends” where
the planner gets stuck, so they are not actually fatal. The algorithm tries
to find planning ezcuses to identify the decisions which were “responsible”
for ending in the unsafe state. If the planner finds out that all unexplored
actions might lead to unsafe states, it asks the teacher, if the risk they pose is
acceptable or not. [Kahn et al., 2017b| present the PLATO algorithm which is
an efficient policy search method. It requires that a teacher is available during
training (in this case an MPC algorithm with access to perfect sensing). The
teacher is used to guide learning of the control policy. If a safe teacher is used,
the learning process itself will also be safe. A teacher-friendly method called
Parenting is presented in [Frye and Feige, 2019]. There is a semi-autonomous
Direct Policy Search running on the agent, and whenever it gets into a not
well known state, it requests teacher input. To make it easier for the teacher,
it only chooses two actions and asks the teacher which one seems better. The
algorithm also has the ability to record “videos”, which it can replay to the
teacher later and ask him or her which behavior was better.

Deep neural networks also started to be used in the domain of safe explo-
ration. Their hard-to-express function approximation properties usually do
not allow to provide any guarantees on the safety of the learning process
or the resulting policy, however in some scenarios, being safe often can be
sufficient. [Kahn et al., 2017a] train a deep obstacle predictor used when
controlling ground or aerial vehicles. The predictor is able to provide both
mean and variance of the approximated function. The variance is used as
a regularizer in exploration—hitting obstacles in uncertain areas is penalized
more than in already known areas. This effectively forces the algorithm to
slowly expand the known space, where it can act aggressively, while staying
cautious in unknown areas. [Held et al., 2017] train manipulation tasks on
a PR2 robot in a simulator. They want to transfer the learned policy to the
real robot. Some small amount of unsafe actions (e.g. collisions) is allowed
during the adaptation, but they argue that with a lower torque limit the
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damage the unsafe action would cause will be lower. They thus present an
algorithm that starts with the policy learned in simulator and gradually lifts
the torque limit as the policy gets better in reality, with the aim to keep
expected damage of the policy below some threshold. They exploit properties
of the particular learning algorithm (TRPO) to provide guarantees on the ex-
pected damage. These guarantees can, however, not be met, as the quantities
they work with need to be estimated from samples. [Huang et al., 2019] use
reward-hacking to add penalties for hard impacts in a gentle manipulation
task. Surprisingly, they discovered that this modification of reward function
yields policies which avoid contact at all. So some more reward hacking is
needed to actually end up with a policy that achieves gentle manipulation.
By executing tens of thousands of trajectories with the real robot, they were
also able to learn the deep neural network policy in reality. But it did not
leverage any knowledge collected during the simulated experiments. [Fan and
Li, 2019] present one of the few deep RL algorithms that try to treat safety
as constraints. Their algorithm works in case the safety function can be
observed up to Gaussian noise. They use a Gaussian Process to estimate the
safety function during learning, and use reward-hacking to repel the policy
from unsafe areas and to attract it to areas with high covariance of the GP.

Further research has brought several improvements to REPS-based algo-
rithms. [Abdolmaleki et al., 2015] present a model-based REPS variant which
efficiently improves convergence speed of REPS algorithms by optimizing
a quadratic surrogate of the objective function. We did not observe problems
with premature convergence, so this improvement was not needed. A gen-
eralization of KL-divergence called f-divergence was presented in |Belousov
and Peters, 2017|. This formulation allows to “interpolate” between various
behaviors of policy search algorithms by changing a parameter. REPS or
TRPO are shown to be just special cases of f-Divergence Constrained Policy
Improvement. [Frans et al., 2018] developed a meta-learning algorithm which
also uses two-level policies. However, they not only suggest the upper-level
policy should act on some smaller state space—they also suggest the timescale
it operates on should be coarser. Another view on the multi-level policies is
that the upper level does not generate context, but latent states of the lower
level policies, as is done in e.g. [Haarnoja et al., 2018]. This way, construction
of a whole hierarchy of policies is simplified. [Liu et al., 2019] have shown that
initializing REPS with a non-unit covariance can help exploration if some
symmetries in the state-action space can be identified. [Klink et al., 2019]
connect Contextual REPS with curriculum learning. They suggest to start
with high value of the context KL-divergence bound to let the agent learn
simpler (but maybe unrelated) tasks, and eventually tighten the bound to
force it to learn tasks closer to the real context distribution.

[Schulman et al., 2017] point to an interesting property of RL algorithms—
Q-learning can be shown to perform the same type of updates as policy search
algorithms under some mild constraints. [Aslund et al., 2018] examine the case
of infected MDPs, which are MDPs in the beginning, but become POMDPs
at some time during execution. In other words, environment observations
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become imprecise, but the agent does not know when that happened. They
propose an algorithm that can act mostly safely in such a setting. [Mason.
2018] suggests “shrinking” the original MDP to a much smaller Abstract
MDP, which only captures the “important” states and transitions between
them. If this AMDP is constructed accurately, a safe (or abstract) policy can
be computed for this smaller MDP much easier. However, it the conversion
to AMDP has some imperfections, no safety can be guaranteed. The learned
policy can only be considered safe if the learning process fully converged, not
in the meantime. |[den Hengst et al., 2020] make a weak link between safe
learning and personalized learning (which is a softer variant of safe learning).

47



48



Chapter 6

Conclusion

In this part, we have first summarized many recent approaches on defining
safety in the framework of optimal control and reinforcement learning. We
have also proposed a definition of safety which divides the state space to safe,
critical and unsafe states. We have shown that all other labeling-based safety
definitions are covered by our definition.

In section 3.3, many safe exploration methods are categorized into three
basic groups—algorithms from optimal control theory, reinforcement learning
algorithms based on state labeling, and algorithms utilizing extra prior
knowledge. We have shortly summarized the advantages and disadvantages
of the particular approaches. An important observation is that some safe
exploration algorithms need to visit unsafe states to correctly classify them
later, which discards them from usage scenarios where the unsafe states are
really fatal.

In [chapter 4, we extend an existing Gradient Policy Search algorithm
(Contextual REPS) [Kupcsik et al., 2017] by adding implicit constraints that
help keeping the gradient in a promising direction. We call the algorithm
Constrained REPS (CREPS). One of the additional constraints includes robot
(system) safety which is determined by a cautious simulator.

As is shown further in this thesis, transferring the policies learned in
simulator to the real robot is much more complex topic. The domain transfer
method we used in CREPS depended on the fact that we had 1:1 instances
of the environment in the simulator and reality (a standardized pallet), and
on the assumption that localization is precise. These are very restrictive
requirements which we try to alleviate in the following parts.

The review of literature following our research confirms that there are still
many interpretations of what safety actually means. More powerful algorithms
with less strict requirements were published. Some of them are based on
similar ideas as CREPS, adding more guarantees, cases for which specially
efficient implementations can be found, or providing more suitable exploration
strategies. Other types of algorithms depend on control and reachability
theory, and if all relevant functions can be proved to satisfy special smoothness
conditions, these approaches are powerful both in performance and safety
guarantees. The most promising novel method is—in our point of view—
Cautious RL by [Hasanbeig et al., 2020|. It only requires local estimates of
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safety of the explored actions and provides a rich language for specifying
not only the constraints, but also the task. However, it is still the case that
transferring the safe learning algorithms from simulators to reality either
loses guarantees, requires special conditions, or requires numerous samples to
be gathered by the real robot.

50



Part 11

Dealing with Incomplete
Measurements
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In this part, we present our algorithm for incorporating data from imperfect
sensors into reinforcement learning. First, we shortly overview the problem
and sum up the main contributions. Further, we include a verbatim copy of

our publication:

8 Pecka, M., Zimmermann, K., Reinstein, M., and Svoboda, T.
(2017). Controlling Robot Morphology From Incomplete Measurements.
IEEE Transactions on Industrial Electronics, 64(2):1773-1782. DOI:
10.1109/TTE.2016.2580125

Last, we review followup and relevant literature that has been published
since this paper was accepted.
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Chapter 7

Problem Statement

Autonomous driving in previously unknown complicated terrain brings many
dangers to robotic platforms. If a high level of autonomy is required, the
control algorithm has to have a way of telling if it has enough data to decide
whether (or how) a part of the terrain can be traversed.

For example, the Absolem tracked robot uses a lidar to capture the shape
of the environment. And there are many reasons why some distance measure-
ments may be missing: geometric constraints (occlusions), laser reflectivity
problems, dust, water reflections or even sensor failure. As we cannot pose
any assumptions on terrain smoothness, holes in the estimated floor can be
dangerous. But not all of them—e.g. a 10 cm hole is not a problem because
the tracks will easily overcome it. However, if there were a 30 cm long hole,
the robot could fall down into it and break irreversibly.

The control algorithm has to be able to differentiate such situations. If
the robot had no other sensors available, the only safe option would be to
not go over the risky part of the terrain. Fortunately, there are many ways
how a missing terrain height measurement can be obtained, other than lidars.
On the Absolem platform, we attached a robotic arm which could measure
terrain height by touch similarly to how sight-impaired people do. Other
alternative sensors were tried, too, including touch sensors on the edges
of the flippers [Salansky et al., 2016|, an IR stereo depth camera, or even
repositioning the robot itself so that it gets a different viewing angle.

However, most of the alternative height sensors share a common trait—
getting the measurement takes a relatively long time, which makes the
alternative sensor “expensive” to use. Thus, in our work [Pecka et al., 2017a],
we sought for an efficient algorithm that could distill the most information
from the current set of measurements, and suggest an optimal sequence of
actions in case more information were needed.
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Chapter 8

Summary of Contributions

The work captures several aspects of the above-mentioned complex problem:
first, we show a definition of an approximate safety measure that can efficiently
distinguish the situations where more data is needed. Next, we examine several
representations that allow for more efficient evaluation of the control policy
and compare them with previous approaches. And finally, we show how to
find an optimal policy for capturing as small set of additional data as possible.
Validity of all the proposed methods is certified by a large-scale real-world
experiment and a set of simulation-based experiments.
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Chapter 9

Paper: Controlling Robot Morphology
from Incomplete Measurements

This paper has been accepted and published in IEEE Transactions on Indus-
trial Electronics.
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Controlling Robot Morphology from Incomplete
Measurements

Martin Pecka, Karel Zimmermann, Member, IEEE, Michal Reinstein, Member, IEEE,
Tomas Svoboda, Member, IEEE,

Abstract—Mobile robots with complex morphology are
essential for traversing rough terrains in Urban Search
& Rescue missions (USAR). Since teleoperation of the
complex morphology causes high cognitive load of the
operator, the morphology is controlled autonomously. The
autonomous control measures the robot state and sur-
rounding terrain which is usually only partially observable,
and thus the data are often incomplete. We marginalize the
control over the missing measurements and evaluate an
explicit safety condition. If the safety condition is violated,
tactile terrain exploration by the body-mounted robotic arm
gathers the missing data.

Index Terms—Adaptive control, Intelligent robots, Learn-
ing systems

|. INTRODUCTION

INCE exploration of unknown disaster areas during Urban

Search & Rescue missions (USAR) is often dangerous,
teleoperated robotic platforms are usually used as a suitable
replacement for human rescuers. Motivation to our research
comes from field experiments with a tracked mobile robot
with four articulated subtracks (flippers, see Fig. 1). The robot
morphology allows to traverse complex terrain. A high number
of articulated parts brings, however, more degrees of freedom
to be controlled. Manual control of all available degrees of
freedom leads to undesired cognitive load of the operator,
whose attention should be rather focused on reaching the
higher-level USAR goals. To reduce the cognitive load of the
operator, the autonomy of the platform has to be increased;
however, it still has to fall within the bounds accepted by the
operators—a compromise known as accepted autonomy has to
be reached [1].

In [2], a Reinforcement-Learning—based autonomous con-
trol (AC) of robot morphology (configuration of flippers)
is proposed. Its goal is to allow smooth and safe traversal
of complex and previously unknown terrain while letting
the operator specify the desired speed vector. The traversing

Manuscript received November 30, 2015; revised April 7, 2016 and
May 10, 2016; accepted May 11, 2016. The research leading to these
results has received funding from the European Union under grant
agreement FP7-ICT-609763 TRADR,; from the Czech Science Founda-
tion under Project GA14-13876S, and by the Grant Agency of the CTU
Prague under Project SGS15/081/OHK3/1T/13.

All authors are with the Dept. of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech republic.
K. Zimmermann is the corresponding author (phone: +420-22435-5733,
email: zimmerk@fel.cvut.cz).

M. Pecka and T. Svoboda are partly with the Czech Institute of
Cybernetics Robotics and Informatics, Czech Technical University in
Prague, Czech republic.

Fig. 1. Left: Controlling robot morphology (flippers) allows for traversing
obstacles. Right: Robotic arm inspects terrain below water surface
compensating thus incomplete lidar measurement.

task is called Adaptive Traversal (AT). Natural and disaster
environments (such as forests or collapsed buildings) yield
many challenges that include incomplete or incorrect data due
to reflective surfaces such as water, occluded view, presence of
smoke, and deformable terrain such as deep snow or piles of
rubble. Since simple interpolation of the missing terrain profile
has proved to be insufficient, we presented an improved AC
algorithm that better handles incomplete sensory data (using
marginalization) [3].

In this work, we extend and improve the AC pipeline intro-
duced in our previously published work [2], [3] (see Fig. 2 for
an overview). The novel contributions include: (i) introduc-
ing a safety measure which allows to invoke tactile exploration
of non-visible terrain if needed; (ii) several strategies for the
tactile exploration with a body-mounted robotic arm; (iii) two
Q-function representations which allow easier marginalization
and achieve comparable (or better) results; (iv) and finally, an
extensive experimental evaluation of the Autonomous Control.
The real-world experiments cover more than 115 minutes of
robot time during which the robot traveled 775 meters over
rough terrain obstacles.

Il. RELATED WORK

Many approaches focus on optimal robot motion control
in environments with a known map, leading rather to the
research field of trajectory planning [4], [5], [6]. Contrary to
planning, AC is useful in previously unknown environments
and hence can provide crucial support to the actual procedure
of map creation. We rather perceive AC as an independent
complement to trajectory planning and not as its substitution.

Many authors [7], [4], [8] estimate terrain traversability
only from exteroceptive measurements (e.g. laser scans) and
plan the (flipper) motion in advance. In our experience, when
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the robot is teleoperated, it is often impossible to plan the
flipper trajectory in advance from the exteroceptive measure-
ments only. The reasons are three-fold: (i) it is not known
in advance, which way is the operator going to lead the
robot, (ii) the environment is usually only partially observable,
(iii) analytic modeling of Robot-Terrain Interaction (RTI) in
a real environment is very challenging because the robot can
slip or the terrain may deform. Ho et al. [9] directly predict
the terrain deformation only from exteroceptive measurements
to estimate traversability. They do not provide any alterna-
tive solution when exteroceptive measurements are missing.
Abbeel et al. [10] use a different approach—they use only
proprioceptive measurements for helicopter control, which
often works well for aerial vehicles (unless obstacle avoidance
is required). We propose that reactive control based on all
available measurements is needed for ground vehicles (where
obstacle avoidance or robot—ground interaction is essential).

An ample amount of work [11], [12], [13] has been devoted
to the recognition of traversal-related manually defined classes
(e.g. surface type, expected power consumption or slippage
coefficient). However, such classes are often weakly connected
to the way the robot can actually interact with the terrain. Few
papers describe the estimation of RTI directly. For example,
Kim et al. [14] estimate whether the terrain is traversable or
not, and Ojeda et al. [15] estimate power consumption on
different terrain types. In literature, the RTI properties are
usually specified explicitly [15], [16], [14] or implicitly (e.g.
state estimation correction coefficient [17], [18]).

Since RTI properties do not directly determine the optimal
reactive control, their estimation can be completely avoided.
Zhong et al. [19] present a trajectory tracking approach,
in which they control a hexapodal robot and utilize force
sensors in the legs to detect unexpected obstacles and walk
over them. The algorithm tries to minimize the trajectory
error caused by obstacles, so that the underlying controller
does not need to take them into account. We proposed
a different algorithm [2] that explicitly takes the terrain into
account (which should yield better results than trying to hide
the terrain from the controller). The algorithm is based on
Reinforcement Learning, which has been successfully used
e.g. in learning propeller control for acrobatic tricks with an
RC helicopter [10], [20]. Since it is possible to model the
helicopter-air interactions quite plausibly, an RTI model can
be used to speed up the learning. In case of ground vehicles,
analytical modeling of RTI is very difficult. Therefore, we
rather focus on a model-free RL technique called ()-learning
(used e.g. to find optimal control in [21]). In @Q-learning, state
is mapped to optimal actions by taking “argmax” of the so-
called @ function (the sum of discounted rewards). In our case,
the state space has high dimension (some dimensions with
continuous domain), and therefore the () function cannot be
trained for all state—action pairs. Thus, it is modeled either by
Regression Forests (RF) or by Gaussian Processes (GP). Re-
gression Forests are known to provide good performance when
a huge training set is available [22], with learning complexity
linear in the number of training samples. Gaussian Processes
present an efficient solution in the context of Reinforcement
Learning for control [23].
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To deal with incomplete data, the ) function values have to
be marginalized over missing features. Such marginalization
is often tackled by sampling [24], [25] or EM algorithm [26].
Especially for GPs with Squared Exponential kernel, the
Moment Matching marginalization method was proposed by
Deisenroth et al. [23]. Marginalization by Gibbs sampling was
evaluated for GPs and piecewise constant functions in [3].

We are not aware of any real mobile platform which would
use a robot arm as an active sensor for inspecting unknown
terrain. Most of the efforts in active inference are directed
towards active classification [27], [28], [29] or active 3D re-
construction. Doumanoglou et al. [27] use two robotic arms for
folding an unknown piece of cloth whose type is recognized
from RGBD data (Kinect). One view is usually insufficient,
therefore the cloth needs to be turned around to generate
an alternative view. The turning action is implicitly learned
with Decision Forests. Bjorkman et al. [28] also recognize
objects from RGB-D data. In contrast to [27], Bjorkman et al.
use the robotic arm as an active sensor, to touch the self-
occluded part of the object in order to reconstruct the invisible
3D shape. While all these classification approaches actively
evaluate features in order to discriminate the true (single)
object class from other possible classes as fast as possible,
the ()-learning—based inference presented here evaluates the
features in order to find some of the (multiple) suitable flipper
configurations that allow for a safe and efficient traversal.

I1l. OVERVIEW

Q-learning: The proposed AT solution is adapted from
the RL technique called ()-learning (described first to empha-
size the differences). The first step in the learning process is
driving manually the robot over obstacles to collect a dataset.
The state x (e.g. body pitch angle or terrain shape; see Sec-
tion IV) is sampled at regular time intervals ¢ = 0,1,...,7. At
each time instant ¢, the operator chooses an action ¢! (e.g. the
desired flipper positions) that allows to go over the obstacle.
After the dataset is collected, each state-action pair (ct, x?)
is assigned a reward 7! reflecting suitability of choosing the
action in the given state.

Then the iterative (Q-learning process starts, which estimates
the ¢'-values that represent the sum of discounted rewards
the robot can gather by starting in state x*, executing action
ct, and always taking the action leading to maximum ¢ from
the following state onwards [30]. The ¢’ and @ values are
computed using the recurrent )-learning formulas [31]:

4 =qiq + Oé[V't + vrrlca}in,l(c’7x°+1) - Q¢71(6t7xt)} M

Qi(c,x) := mean(q! | ¢' = ¢ Ax* = x) := mean(gi(c,x)) (2)

where ¢¢ :=r%, a € [0,1] is the learning rate and v € [0, 1]
is the discount factor. From the computation above, it follows
that Q;(c,x) is an unbiased estimator of E[g;(c,x)].

When the Q-learning is done, we denote QQ = @; and ¢ =
q!, and the optimal action can be computed as:

c*(x) = argmaxQ(c,x) 3)
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Fig. 2. Principle overview: individual blocks in this scheme correspond
to Sections IV-VI.

QPDF: In this paper, we generalize the standard @-learning
to an algorithm that learns a distribution called QPDF instead
of the @ function. For the QPDF (denoted as p(¢|c, x)) it holds
that

Qe x) = Elg(e,x)] = / ¢ plale,x) dg

There are two reasons for modeling the full QPDF: (i) mea-
suring the safety of flipper configurations and (ii) marginaliza-
tion when only incomplete measurements of x are available.
In Section V, two QPDF models are presented: (i) Regression
Forests and (ii) Uncertain Gaussian Processes.

Given the QPDF and full feature vector x, the optimal action
c*(x) is:

Cx) =

argmax Q(c,x) = argmax F[q(c,x)] =

= argmax / q-plgle,x) dg “)

Missing Data: While proprioceptive data are usually fully
available, the exteroceptive data are often incomplete. This oc-
curs in case of reflective surfaces such as water or in presence
of smoke. We denote the missing parts of measurements as
X, and the available measurements as X, i.e. x = [X,X]. In
the case that X is not empty, p(q|c,x) is marginalized over
the missing data X to estimate p(g|c,X). The marginaliza-
tion processes for different QPDF models are described in
Section V. Given the marginalized distribution p(g|c,X) and
measurement X, the optimal action ¢* is estimated by a small
modification of Equation 4:

C®) = wgmx [qoplgeRd.
c

Any state-action pair yielding a negative g¢-value is in-
terpreted as unsafe considering our definition of the reward
function'. Therefore, the probability that the g-value is positive
(safe) can be computed, and only sufficiently safe state-action
pairs are to be considered further. The general trend is that the
more features are missing, the higher is the scatter of g-values.
Hence, we define the safety measure

o0
S(e%) = [ pla| %) da ©
0
IThis assumes the user-denoted penalty for dangerous states to be

sufficiently high and discount factor sufficiently different from one; see
Section |V for definition of the reward function.

that corresponds to the probability of achieving a safe state
(g > 0) with action c. Search for the optimal action c*
(Equation 5) is restricted only to safe actions:

S(e,x) > e @)

Active Exploration: If none of the available actions sat-
isfies the safety condition (Equation 7), the robotic arm is
used to measure some of the missing terrain features; see
Fig. 2 for the pipeline overview. In Section VI, we propose
several strategies that guide the active exploration of missing
features in order to find a safe action as fast as possible. If
all terrain features have already been measured and there is
still no action satisfying the safety condition, manual flipper
control is requested from the operator.

—I|-shape
V-shape
—L-shape
—U-shape soft
. —U-shape hard

\\
AN

-1

ax)

Fig. 3. Example of insufficient data. An active exploration is
necessary. The left figure shows the input data; the missing heights in
the DEM are outlined by red crosses in a blue rectangle, pitch is denoted
by a, mean absolute current over both main tracks is denoted I,,,
mean absolute current in the engines lifting the front flippers is denoted
by Iy. More details on the features are given in Section IV. The right
figure contains QPDFs for the five flipper configurations (“*-shape”). The
horizontal axis corresponds to the sum of discounted rewards (higher
are better), vertical axis contains QPDF. Figure adapted from [3].

Fig. 3 shows an example situation when active exploration
is needed. Looking at the right figure, the highest value of
the safety measure S(c,X) is approximately 0.5. If the safety
limit € is 0.8, tactile exploration is activated, because no action
satisfies the safety limit in the current state.

IV. ADAPTIVE TRAVERSABILITY TASK

The AT task is solved for a tracked robot equipped with two
main tracks, four independent articulated subtracks (flippers)
with customizable compliance?, rotating 2D laser scanner
(SICK LMS-151), Kinova Jaco robotic arm, and an IMU
(Xsens Mti-G); see Fig. 1. The task is detailed in the following
paragraphs, and a short summary is given in Table L

States: The state of the robot and the local neighboring
terrain is modeled as n-dimensional feature vector x € R"
consisting of: i) exteroceptive features: Individual scans
from one sweep of the rotating laser scanner (3 seconds)
are put into an Octomap [32] with cube size of 5cm. This
Octomap is then cropped to close neighborhood of the robot
(50 cm x 200 cm size). Further, the cubes are aggregated into
10cm X 10cm columns and mean height in each of these

2Upper limit of current in the flipper motor used to hold the flipper in
position.
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TABLE |
DESCRIPTION OF THE STATES, ACTIONS AND REWARDS

State x €R” DEM, speed, roll, pitch, flipper an-
gles, compliance, currents in flip-

pers, actual flipper configuration

Actions | c€ C={1...5}

r(e,x): CxR* - R

5 pre-set flipper configurations [2]
a X userreward Se,x +
B x pitchpenalty + v X
roughness penalty

Reward

Fig. 4. Digital Elevation Map (DEM): Example of the DEM representa-
tion with dark green used for missing values and light green representing
height estimate included in the feature space.

columns is computed. This yields a local representation of the
terrain with x/y sub-sampled to 10cm x 10cm tiles (bins)
and vertical resolution of 5 cm. This is what we call a Digital
Elevation Map (DEM); see Fig. 4. Heights in the bins are
used as exteroceptive features. ii) proprioceptive features:
Robot speed (actual and desired), roll, pitch, flipper angles,
compliance thresholds, actual current in flippers and actual
flipper configuration.

Actions: The robot has many degrees of freedom, but only
some of them are relevant to the traversal. The speed and
heading of the robot are controlled by the operator. AC is used
to control the pose of the four flippers and their compliance,
yielding together 8 DOF. Further simplification of the action
space is allowed by observations made during experiments—
only 4 discrete (laterally symmetric) flipper configurations are
enough for most of the terrain types, and 2 different levels
of compliance are also sufficient. The arm has to be in a
stable default “transport” position when the robot moves, so
its DOFs are ignored. Finally, 5 flipper configurations denoted
by ¢ € C = {1...5} are defined. These configurations named
I-shape, V-shape, L-shape, U-shape soft and U-shape hard are
described in detail in [2].

Rewards: The reward function r(c,x) : (C x R") — R
assigns a real-valued reward for using c in state x. It is ex-
pressed as a weighted sum of (i) user-denoted bipolar penalty
Sc,x specifying whether executing c in state x is permitted
(safe), (ii) high pitch angle penalty (preventing robot’s flip-
over), and (iii) the motion roughness penalty measured by
accelerometers.
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V. QPDF REPRESENTATION AND LEARNING

In our previous work [2] piecewise constant functions were
introduced as a method to represent () functions. For the
case of missing features, Gaussian Processes with Rational
Quadratic kernel were used to represent () functions in our
following work [3]. In the latter work, Regression Forests are
trained on fetaures completed by Gibbs sampling marginaliza-
tion of the missing features. In this section, we propose two
new approaches to QPDF representation that tackle the case
of incomplete data.

A. Regression Forests

The first method is based on Regression Forests with
incomplete data on their input, representing the QPDF in their
leaves (instead of first estimating the missing features and then
computing @ from a full feature vector, as the previous method
does). Thus we avoid the unnecessary step of reconstructing
the missing features, and can directly use the incomplete input
to estimate QPDF.

Learning: The QPDF for each configuration is modeled in-
dependently by a Regression Forest. The trees are constructed
sequentially, always building one until all leaves are terminal
(see further), and then starting to build another one. To train
each particular tree, a training set consisting of m training
samples [x1,...,X;,] is given, with corresponding g-values
[q1,---,Gm]. Each training sample x; is an n-dimensional
vector of features x; = [z1...27]". The tree is built by
a greedy recurrent algorithm, that selects the splitting feature
j* € J={1...n} and split threshold s*. The splitting feature
and threshold are selected to minimize the weighted variance
of g-values in the left and right sub-tree in each node as
follows [3]:

(s7,5") = argmin Ry (s, j)|- var(gx) + [Ra(s, )| var(gx)

(s.9) k€R1(s,5) k€R2(s.5)
where Ry (s,j) = {k | #} < s} is the set of indices descending
to the left sub-tree, and Ry(s,j) = {k | z], > s} is the
set of indices descending into the right sub-tree. The tree
is constructed recursively. If a stopping criterion is satisfied
(either minimum number of samples per node, or tree height),
a terminal leaf is created, which contains discretized QPDF
histogram (estimated from g¢-values of all training samples
that descended to that leaf). Specifically, if the value of the
splitting feature is unknown in sample x; (e.g. occluded), then
it descends into both sub-trees.

Marginalization: To obtain the marginalized distribution
p(gle, X), sample X is put to the input of the forest. If a tested
feature is missing in X, the algorithm descends into both sub-
trees similarly to the learning procedure. The final QPDF is
then a weighted average of histograms in all reached leaves in
all trees (properly normalized to be a distribution). Weights are
given by prior probabilities of leaves estimated from training
data. We call this Multiple Leaves marginalization.

B. Gaussian Processes

Gaussian processes [23] are the extension of multivariate
Gaussians to infinite-size collections of real valued variables
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and can be understood as joint Gaussian distributions over
random functions. The essential part of GP learning is given
by the choice of a kernel function (parametrized by a set of
hyper-parameters 8). We use the common Squared Exponen-
tial kernel function (SE), for which the Uncertain Gaussian
Processes are derived in [33]. This allows processing features
with unknown or uncertain values. In case Uncertain GPs are
not necessary, i.e. Gibbs sampling is used to handle uncertain
values (as in [3]), the Rational Quadratic (RQ) kernel that
performs slightly better than SE can be used. Both SE and
RQ kernels enable Automatic Relevance Determination [34],
which can be interpreted as embedded feature selection per-
formed automatically when optimizing over the kernel hyper-
parameters 6. The ARD values are utilized in Section VI-B.

Learning: A standard regression model is used, assuming
the data D = {X = [x1,...,%Xn]T,a = [q1, .-, qm]T } were
generated according to ¢; = h(x;) + €;, where h : R” — R,
and ¢; ~ N(0,02) is independent Gaussian noise. Thus, there
is a direct connection between h(x) and the QPDF. For each
configuration ¢, the Uncertain GP learning procedure is used to
train a GP model that predicts the given g-values. The learning
procedure?® is described in detail in [33].

Marginalization: GPs consider i as a random function in
order to infer posterior distribution p(h|D) over h from the
GP prior p(h), the data D, and assumption on smoothness
of h [33]. The posterior is estimated to make predictions
at inputs (the testing data) x € R™ about the function
values h(x), which can be used as the QPDFE. Since the
posterior is no longer a Gaussian, it is approximated by a
Gaussian distribution, using e.g. the Moment Matching method
described in [23].

VI. TACTILE TERRAIN EXPLORATION

Given the QPDF, safety condition (Equation 7) is evaluated
for all possible configurations. If more than one safe con-
figuration exists, AC chooses the one that yields the highest
g-value mean. If none of the configurations is safe, the robot
is stopped and Tactile Terrain Exploration (TTE) is triggered
(example situation is depicted in Fig. 3). This exploration
utilizes the robotic arm to measure the height in DEM bins in
which measurements are missing*. The arm actively explores
the missing heights until the safety condition (Equation 7) is
satisfied for at least one configuration, or there are no more
missing heights (we refer to both these cases as final states). If
the state in the latter case is still unsafe, the operator is asked
to control the flippers manually.

We propose several TTE strategies. The simplest TTE
strategy selects the bin to be explored randomly from the set of
all missing bins—we refer to this strategy as Random. Further,
we propose and evaluate also two better TTE strategies: (i) the
Reinforcement-Learning—based strategy trained on syntheti-
cally generated training exploration roll-outs (further referred
to as RL strategy), and (ii) a strategy based on Automatic
Relevance Determination coefficients for QPDFs modeled by
the GP (further referred to as the ARD strategy).

3Due to the page limitation, the detailed equations are not given here.
4The exploration using robotic arm is inherently slow. However, when
needed, it is still worth the extra time.

A. RL from Synthetically Generated Training Set

The Reinforcement-Learning—based TTE learns a policy
that minimizes the number n of tactile measurements needed
to satisfy the safety condition. In our implementation, a state
is the union of the state used in the AT task (i.e. the proprio-
ceptive and exteroceptive measurements), and the binary mask
denoting DEM bins with missing heights. Actions are discrete
decisions to measure the height in particular bins. Rewards
equal zero until a final state is reached. In the final state, the
roll-out ends and a reward equal to 1/n is assigned (i.e. the
longer it takes, the lower the reward).

Since it is not easy to collect sufficient amount of real
examples with naturally missing features, we generate training
samples from the real data with synthetically occluded DEMs.
The active exploration policy is thus trained by revealing the
already known (but synthetically occluded) heights. The Q-
learning algorithm learns the strategy in several episodes. The
initial training set is generated by simulating thousands of
TTE roll-outs with the Random strategy. The ) function is
modeled by a Regression Forest similar to the one used in
Section V (but this @) function is different from the one used
for Autonomous Control!). Once the @ function is learned, the
corresponding strategy is used to guide training data collection
in the following episode by the DAgger algorithm [35]. In
each episode of the DAgger algorithm, the learned policy is
used to select bins just with 0.5 probability, otherwise the
Random strategy is used (which supports exploration in the
policy space). After each episode, the policy is updated using
the (Q-learning recurrent formula (Equation 1).

B. ARD for Gaussian Processes

In Section V-B, it is mentioned that both SE and RQ kernels
allow for Automatic Relevance Determination (ARD), which
acts as feature selection. The ARD values are computed during
kernel hyper-parameters optimization (when training the GP),
so no extra computing power is needed. When the learning is
done, for each dimension (feature) d of the input data, we have
a number ARD(d) that describes how much this dimension
influences the output of the GP (lower values mean higher
importance). The TTE strategy utilizing ARD values is as
follows: i) estimate QPDFs using all GP models, ii) select the
action (GP model) with the highest Q-value (QPDF mean),
iii) in this GP, compare ARD(d) values for all DEM bin
features that are missing in the current state, and choose the
bin with the minimum ARD(d) value, iv) the chosen bin is
then explored using the arm. This corresponds to choosing the
missing feature whose value, if known, maximally influences
the QPDFs.

EXPERIMENTS

Experimental evaluation is divided into three sections.
In Section VII, we test the ability of AC to decrease cognitive
load of human operators while maintaining roughly the same
or better performance. Experiments in Section VIII demon-
strate that if the DEM is partially occluded, the proposed
method yields better results than the previous methods. Last,
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Section IX compares Random, ARD and RL methods for
tactile exploration.

In the experiments, different () function/QPDF representa-
tions are denoted by PWC for piecewise constant function
proposed in [2], GP-RQ stands for Gaussian Processes with
Rational Quadratic kernel used in [3], GP-SE denotes the
Uncertain GPs with Squared Exponential kernel, and finally
the Regression Forests defined in Section V are referred to as
Forest. The PWC and GP-RQ models can be used either with
Least Squares (LSq) interpolation of missing features, or with
Gibbs sampling used to marginalize the () function over the
missing data. Regression Forests utilize the Multiple Leaves
marginalization.

A metric called success rate is used throughout the exper-
iments to measure the traversal performance both on training
data (in the learning phase) and on test data. It requires that
the bipolar manually-assigned part of reward s.y defined
in Section IV is assigned for all actions in all states in the
dataset (not just for a single action, as is required for the
learning). The success rate denotes the ratio of states, in
which the AC algorithm selects one of the desired (safe)
configurations. Formally:

H{x e X:c=c"(x)Asex =1}
X
where X is a set of states, and ¢*(x) is the optimal config-

uration from Equation 3 or Equation 5 (depends on the used
AC algorithm).

success rate(X) =

®

VIlI. AUTONOMOUS CONTROL FOR TELEOPERATION

We evaluate performance of the AC algorithm (without
tactile exploration) on a large dataset comprising of 8 different
obstacles (some of them depicted in Fig. 5) in 3 types of
environment (forest, stairs, hallway) with the robot driven by
3 different operators in both MC and AC modes’. Each of the
traversals is repeated 3-10 times to allow for statistical evalu-
ation. The operators driving the robot are denoted as E (Ex-
perienced), IE (InExperienced) and IE2 (InExperienced #2).
The experiments cover more than 115 minutes of robot time
during which the robot traveled over 775 meters.

Experiments in this section only show the results achieved
with Regression Forests; other ) function representations were
tested in [2], [3], and Uncertain Gaussian Processes were only
tested together with the tactile exploration (see Section IX),
since without TTE they performed worse than the Regression
Forests (and for creating such a large dataset, we had to choose
one method).

A. Training Procedure

The algorithm was trained in controlled lab conditions
using two artificial obstacles created from EUR pallets® and
a staircase. The first obstacle is just a single pallet and the
second one is a simple simulated staircase composed from
three pallets.

See the attached multimedia showing the test drives.

5Type EUR 1: 800x1200x140mm, see en.wikipedia.org/wiki/
EUR-pallet
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Fig. 5. Top left: Forest obstacle. Top right: Rubble obstacle. Bottom left:
Stairs obstacle. Bottom right: Operator controlling the robot using only
sensor data.

We trained the QPDFs represented by RF (one QPDF
per flipper configuration) using the algorithm described in
Section V. Except the standard learning validation metrics,
we also evaluated the success rate (Equation 8). We trained
the RF QPDF model, and we accomplished a success rate of
97 % (which is shown in Fig. 6).

B. Testing Procedure

Each obstacle was traversed multiple times with both man-
ual (MC) and autonomous flipper control (AC) using RFs
following Equation 5, and the sensed states contained naturally
missing DEM features. We emphasize that the complexity
of testing obstacles was selected in order to challenge robot
hardware capabilities. See the examples in Fig. 5 and the
elevation maps (DEM) of testing obstacles computed online
by the robot in Table IIIb.

There is an additional mode called TPV (Third Person View)
in which the operator had not only the robot sensory data
available, but he directly looked at the robot (thus having
much more information than the robot can get). Except for
the TPV mode, the operators were only allowed to drive the
robot based on data coming from the robot sensors (3D map +
robot pose from sensor fusion [36]), which should accomplish
a fair comparison of AC and MC. The TPV mode should be
treated as a sort of baseline—it is not expected that AC or MC
could be better than TPV in all aspects.

To compare AC and MC quality, three different metrics
were proposed and evaluated: (i) traversal time (start and end
points are defined spatially), (ii) a sum of pitch angle penalty
and roughness of motion penalty, and (iii) the number of
flipper configuration changes (which increases cognitive load
of the operator in MC, and with the current manual controller,
it also takes approx. 1s to change the flipper configuration
and the robot has to be stopped). Table Illa and Table III
show quantitative evaluation of some of the experiments.
Table Illa depicts 4 out of 8 experiments carried out to verify
performance of AC using the best method found—Regression
Forests with Multiple Leaves marginalization. All errorbars
denote quartiles of the measured values and the circles are in
the positions of medians.
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(a) Overall statistics of the experiments. The computation of penalties is described in (b). High penalties for experienced operator with 3rd person view
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(b) Penalty details. The horizontal axis always denotes distance traveled during the experiment. Dashed lines in Pitch and Acceleration show the thresholds
(0.5rad or 2.5ms2) for counting a penalty point (which are plotted in Table IIla). Acceleration reflects the “roughness of motion” (the higher it is,
the worse for the mechanical construction of the robot). It is computed as y/a2 + a2 and is averaged over 0.2s intervals (where a; is the horizontal
acceleration perpendicular to robot motion, and a is vertical acceleration with gravity subtracted).
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Table III summarizes all MC/AC experiments (excluding
TPV mode experiments, since they should not be compared
with MC/AC).

TABLE Il
EVALUATION OF ALL AT EXPERIMENTS

Obstacle Operator || Time to finish [s] || Penalty Pose cl
MC] AC|[MCJ AC|[MC]  AC
Pallet long |E 56.2 43.3 1 3 6 16
Pallet short | E 41.0 39.3 2 4 6 15
Stairs E 154.0 150.6 28| 23 9 48
1IE 267.3 157.9 16| 16 12 41
1E2 273.7 178.8 21| 24 9 39
Rubble 1 |IE 164.0 66.9| 68| 33| 13 40
Rubble 2 1E2 114.0 63.2 7 3 10 26
Forest 1 E 65.7 74.4 0 2 6 18
Forest 2 E 36.8 35.7 || N/A|N/A 2 3
Forest 3 E 132.1 75.3 || N/A | N/A 4 10

Each pair of columns (MC/AC) shows the medians of the 3 metrics evaluated
for the experiments. Of each pair, the value in bold is better. Experiments
Forest 2 and Forest 3 are those conducted in [2]. Both robot construction and
AT algorithm changed in the meantime, so the values should not be compared
to the new results.

C. Results

It can be seen in Table III that the Time to finish with AC
tends to be shorter or comparable to MC (and with TPV, it is
even shorter, as expected). Subjectively, the operators report
a much lower level of cognitive load when driving with AC,
which means they can pay more attention to exploration or
other tasks.

Penalties with AC are also mostly better or comparable to
MC. The number of flipper configuration changes for AC is
approximately 2- to 4-times higher than for MC. However,
with AC, there is no time penalty for changing flipper con-
figurations, and it also adds no more cognitive load to the
operator.

From the experiments conducted it follows that AC yields
similar or even better performance than MC. Furthermore, AC
allows the operator to concentrate rather on higher-level tasks
while having the tedious and low-level flipper control done
automatically.

VIIl. ROBUSTNESS TO MISSING EXTEROCEPTIVE DATA

In this experiment, we quantitatively evaluate robustness
to the number of missing features for the various (Q/QPDF
representations. The robustness is presented as the relation
between success rate and the number of synthetically occluded
DEM bins.

The Regression Forests first compute the marginalized
QPDFs as described in Section V, and then choose a config-
uration according to Equation 5. The LSq interpolation/Gibbs
sampling methods first interpolate or marginalize the missing
data, then compute the () function on the interpolated data and
choose the configuration according to Equation 3.

For this experiment, a dataset consisting of hundreds of cap-
tured robot states (interoceptive + full exteroceptive features)
is used. The bipolar manual annotations s.x are assigned to
all state-action combinations.
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Fig. 6. Robustness to DEM occlusion: The chart shows the influence
of DEM occlusion (percentage of DEM bins in which measurements are
not available) on AC success rate. When 100 % of DEM is occluded,
the marginalized policies still depend on proprioceptive measurements,
while LSq interpolation reconstructs only flat terrain.

For 1 = 0...100, the set “states;” is generated from the
dataset by occluding ¢ DEM bins in each of the captured
states x (the same manual annotation s, x is used for all states
x generated from x). To avoid combinatorial explosion, we
did not try all combinations of ¢ occluded bins. We chose to
successively occlude DEM bins from the front of the robot,
until ¢ bins are occluded. Therefore, the dataset the robustness
is tested on contains tens of thousands of different states.
The success rate in Fig. 6 is computed as success rate(states; )
according to Equation 8.

Fig. 6 shows superiority of marginalizing methods over
LSq interpolation. Up to a DEM occlusion level of 40 %,
all methods behave comparably. The reasons are two-fold:
(1) the part of the occluded DEM is far in front of the
robot and there is no way to sense it from the proprioceptive
measurements, (ii) the obstacle hidden in this part of DEM is
usually far enough, therefore the V-shape configuration (the
one for flat terrain) is still allowed in most of the testing data.
When more than 40 % are hidden, success rate of the LSq
interpolation method drops rapidly down towards 0.4 — 0.5
(i.e. 40 %-50 % of states in which the permitted configuration
is selected) for both GP and PWC, while the marginalizing
methods preserve high precision. The figure also demonstrates
that the proposed Regression Forests provide better success
rate than the previous methods [2], [3].

IX. TACTILE TERRAIN EXPLORATION

To compare the strategies for Tactile Terrain Exploration
(TTE), we evaluate them on real (test) data with the front
50 % of the DEM synthetically occluded (since it is not easy
to provide a sufficient amount of real examples with naturally
missing features). Active exploration is simulated by revealing
the already known DEM heights.

The performance of TTE strategies can be expressed as
the average number of actively measured bin heights until a
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Fig. 7. Comparison of TTE methods: Curves on this graph show
success rate (with 50 % DEM bins occluded) as a function of the number
of measured bin heights. The compared TTE strategies are described
in Section VI.

safe configuration is found. However, for this experiment, we
let the exploration continue even if a safe configuration has
already been found, to see how much further exploration helps.
For different QPDF models and TTE strategies, the relation
between the number of measured heights and the success rate
is depicted in Fig. 7.

An ideal QPDF model and strategy would achieve 100 %
success rate with a single evaluated feature, i.e. the upper-
left corner in Fig. 7. The closer is the curve to this corner, the
better is the method. Results with the lowest success rate were
achieved with the GP-SE method (however, the ARD strategy
yields a significant improvement). Better results were achieved
by the GP-RQ method (for which the ARD strategy yields only
small improvement compared to the Random strategy). The
reason is that the RQ kernel allows for better generalization
than the SE kernel. For less than 15 features actively evaluated
(i.e. smaller safety thresholds), the GP-RQ method achieves
higher success rate than the Regression Forest method with
Random strategy. The best method in this comparison are
Regression Forests combined with the RL strategy, which
achieve the best success rate.

X. CONCLUSION

We extended the Autonomous Control algorithm [2], [3]
that increases autonomy in mobile robot control and reduces
cognitive load of the operator. To deal with only partially
observable terrain, missing or incorrect data, we (i) designed
and experimentally verified a more occlusion-robust QPDF
model, and (ii) we exploit a body-mounted robotic arm as an
additional active sensor for Tactile Terrain Exploration. TTE is
used in dangerous situations, where all actions have negative
expected rewards. The previous methods have to choose one
of the actions, even if the best expected reward is negative.
By tactile exploration of the unobserved part of the terrain,
the reward estimates get better and at least one of them should

get positive if the terrain is traversable. Several TTE strategies
were proposed and experimentally evaluated. We conclude that
the overall highest success rate was achieved by combining
Regression Forests with the RL strategy for the arm-based
exploration of missing data.
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Chapter 10
Followup and Related Work

Both literature and current events in the domain of robotics (e.g. DARPA
SubT challenge presented in |/Appendix B)) show that there is high demand
for robots that can autonomously and safely traverse various dangerous
environments. E.g. [Couceiro et al., 2019] propose to create an automatic
system that would help maintaining forests. And forests are one of the most
complicated navigation and locomotion environments. Also the previous and
current work mentioned in [Appendix Bl requires robots with complex and
safe traversal skills. |[Bjelonic et al., 2018] solve a very similar navigation and
locomotion task for a hexapod robot. They perceive the terrain by a stereo
camera, and each leg of the hexapod can also be used as a terrain-sensing
device. Their control algorithm does not directly consume the stereo images,
but there is a preprocessing step which extracts manually defined features of
the terrain. One of the features is the number of “hidden cells” in the field of
view, which correspond to NaNs or missing heights in our algorithm. The
control algorithm takes the number of missing heights (but not their positions)
into account and changes the gait also based on this number. But the robot
is not actively forced to explore the shadowed areas. On the other hand, its
terrain proprioception is much more capable than in our case, since it has six
fast legs; it can thus learn to actively measure the shadowed heights right in
front of the robot just by adapting the gait. [Fankhauser, 2018] concentrated
on locomotion of a quadruped robot equipped with 3D laser scanners or stereo
cameras. Thanks to the relatively high ground clearance of the robot, cases
where there would be substantial parts of the terrain in front of the robot
missing do not occur so often. Thus, the presented mapping and foothold
search algorithms do not explicitly care about the missing measurements. The
planner just does not plan to put a foothold on places where terrain is not
measured. [Motoi et al., 2019b] and |[Motoi et al., 2019a] targeted at assisted
teleoperation of a mobile robot. They found useful for the operator to receive
a kind of force feedback into the handheld controller, which would tell him or
her if an obstacle is nearby. This idea could also be used in our algorithm—for
example the feedback could be telling the operator how uncertain terrain is
in the driving direction. [Celemin et al., 2019| train the desired control policy
by first letting the robot do standard reinforcement learning, and whenever
they see it performs badly, a teacher is present, that can take over control
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and show the robot how to do the task it is trying to do. However, this is
much easier implemented for compliant manipulators than for mobile robots.

Gaussian Processes are popular in reinforcement learning algorithms, mostly
as estimators of the unknown transition probability. With such estimates
(which also provide covariance), model-based algorithms can be converted to
model-free (paying the cost of approximation and requiring much more samples
to become accurate). The covariance estimates also enable the algorithms
to recognize unknown situations and react to them. [Cully et al., 2015|] use
a Gaussian Process to model the performance of locomotion behaviors for
legged robots. Whenever the observed performance is too far from the GP
posterior (e.g. the robot was damaged), they try different behaviors in order
to find a new one that is the best under the new conditions. [McKinnon
and Schoellig, 2017] propose an ensemble of Gaussian Processes governed by
a Dirichlet Process which decides if the observed transitions are consistent
with one of the GPs, or whether a new GP should be added to ensemble,
modeling yet unobserved behavior. [Ewerton et al., 2019] also use automatic
relevance determination, but they use Pearson correlation of trajectories
instead. These relevance factors are used to alter predictions of the GP that
captures trajectory distributions.

There are cases where learning is not even required to produce intelligent
locomotion skills. Under the assumption of perfect perception (which can
be easily achieved in simulation), pure geometrical approaches also show to
be effective. [Singh et al., 2014] used simulation to find optimal coefficients
of controllers which drive a tracked robot with flippers over obstacles. The
control algorithm, however, needs to receive the step height from an external
precision measurement sensor. [Kharuzin et al., 2017] developed a obstacle
traversal method for a 3-link 6-wheel actively articulated robot. Their per-
ception module is able to read the obstacle height and distance, and the
algorithm only works for box-like obstacles. [Yuan et al., 2019] and [Yuan
et al., 2020] provide geometrical solutions to real tracked robot locomotion.
However, their algorithm expects that perfect sensing of both the terrain
and the pose of the robot can be provided, which is often an unrealistic
requirement. Even when the geometry of the robot is not known in advance,
intelligent locomotion can be achieved via embodiment. [Hoffmann and Pfeifer
2018| show that intelligence contained in the construction of the body of
a robot can play a major role in its performance, and can even be considered
essential for cognitive robots.

Deep neural networks started to be more and more important also in the
field of Reinforcement Learning. Although their application mostly requires
prohibitively many rollouts to be practical on real robots, even the simulation
results can often be useful. Many algorithms employ deep networks as
a translation layer between high-dimensional input (like images) and a latent
state representation. [Finn et al., 2016b] make use of deep autoencoder
networks, which are especially useful for dimensionality reduction. Together
with further pruning of the latent space, they were even able to train some
simple reinforcement learning tasks on a real manipulator with input from
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RGB cameras. Recently, when deep neural networks started to perform
better than humans in many tasks, requests for better explainability of their
behavior appeared. One of the few works that take this requirement into
account in the domain of mobile robotics is [Akrour et al., 2019b]. They
suggest to use nonparametric policies represented by state-space clusters. If
the dimensionality of state space is relatively low and the features are sensible
to a human, such policies can indeed be considered explainable. However,
extension to more dimensions and parametric policies is unclear.

The most impressive locomotion skills learned by a RL algorithm are so far
those trained only in a simulator with millions of rollouts. Having so much
data, the true strength of RL can be seen—having a good reward function
is enough to achieve close-to-optimal behavior. [Peng et al., 2016] use an
ensemble of actor-critic networks to train locomotion of various characters
with large state and action spaces. Their model even includes 1.5D perception
of the terrain. The result is similar to training motion primitives, as each
actor specializes at a different part of the behavior, although the model does
not explicitly support periodicity of the behaviors. [Sokolov et al., 2017b]
used neuroevolution to find an obstacle traversal policy for a tracked robot
using a vertically oriented 2D lidar. As neuroevolution also requires numerous
rollouts to train, they succeeded to finish the training in simulator only, and
they even had to train a special policy for each kind of obstacle.

One of the key problems when transferring control algorithms from simu-
lators to reality is the imperfection of data. With depth— or range-sensing
devices, it is even more problematic, because geometrical constraints make
some measurements impossible. This problem is surprisingly overlooked in
the literature, so our guess is that most authors employ some kind of averag-
ing, approximation or marginalization on the missing data to get full state
information. [Han et al., 2019] handle time-series data, and it can happen
that some data do not arrive on time, or at all. Their algorithm utilizes
previously captured data or a reference model to learn a prior of the data,
and if a point is missing, they fill it from the prior.

As can be seen from the paper introduced in this part of the thesis,
performance evaluation of reinforcement learning is not always an easy task.
Sometimes the reward function cannot capture all relevant aspects of what
we would call “good behavior”. Often, it is difficult to compare algorithms,
because the behavior of each has only been shown on a specific platform
the authors of the research have access to. Replication of experiments with
real hardware has been almost impossible and impractical. One try in this
direction was the Open Physical Environment Benchmark created by [Mirzaei
et al., 2017]. Unfortunately, this framework did not (yet) get generally
accepted. Its only practical use was described in [Mirzaei Buini, 2018], which
is however a work from the same author. Another option specifically for
benchmarking locomotion could be the standardized NIST step field [Jacoff
et al., 2008]. However, there are not many publications that would actually
use these step fields for benchmarking—it is usually used in training, or
evaluation by visual inspection, but rigorous reports are missing. Probably
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the most known use of these step fields is in the RoboCup Rescue League
competition [Holz et al., 2019]. However, it still remains unclear what should
be the measured quantities (time, accelerations, speed, agility, ...) and how
to account for the effect of robot body morphology.
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Chapter 11

Conclusion

In this part, we have shown that missing data in 3D perception carry
non-trivial information. The most common way of dealing with them—
interpolation—is shown to be suboptimal. Data-driven marginalization is
more computationally intensive, but provides an increase in safety and per-
formance of the learned policies.

We have presented two variants of Q-learning that utilize the imperfect
measurements and efficiently decide whether it is needed to collect more
“expensive” samples from the environment. One method is based on rep-
resenting the Q-function as a regression forest, and the other is based on
Ucertain Gaussian Processes. Last, we have presented two efficient methods
for collection of the “expensive” samples using tactile exploration—one based
on regression forest marginalization and the other on Automatic Relevance
Determination for Gaussian Processes.

As the followup literature overview shows, locomotion of tracked robots in
difficult terrain has still been an actively researched area. Even research for
legged mobile platforms shows that capturing terrain shape data and process-
ing them for locomotion purposes still has open questions. Algorithms that
would treat missing measurements as “first-class data” and not just as spaces
that need to be estimated, are scarce. Last, evaluation of locomotion policies
in unstructured terrain has still been missing a framework widely adopted
among robotics researchers, which results in difficult-to-compare publications
and algorithms. This stresses the importance of robotics competitions, as
detailed in |Appendix B.
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Part 11

Improving the Simulator
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This part is dedicated to the problem of policy transfer from an approximate
(or imprecise) simulator to reality. We begin with a short summary of the
problem we solved and stress out the main contributions of our paper, whose
verbatim copy is included:

® Pecka, M., Zimmermann, K., Petrlik, M., and Svoboda, T. (2018).
Data-Driven Policy Transfer With Imprecise Perception Simula-
tion. IEEE Robotics and Automation Letters, 3(4):3916-3921. DOLI:
10.1109/LRA.2018.2857927

We conclude this part with an overview of relevant literature that followed
after our paper was accepted.
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Chapter 12

Problem Statement

In the CREPS algorithm described in [Part I, we used a rather simple method
of transferring a simulator-trained policy to the real robot. We trained the
policy in simulator until convergence, and then we ran such policy on the
real robot, iterating again until the learning process converged on the real
robot. That approach, however, requires the simulator to behave very similar
to the real world, which is not always possible, desirable or practical.

Contrastingly, in [Part II, we proposed a method which learns directly
on the real data and does not make use of any kind of simulation. Such
method was able to learn a simple discrete-action policy. However, it could
not be easily extended to the continuous domain (or it would need enormous
amounts of data).

To do the domain transfer more properly, several other approaches are
possible. In our work [Pecka et al., 2018], we introduce a data-driven approach
that helps to transform the simulated perception to be closer to what the
real robot will see. As more and more real data are gathered throughout run
of the algorithm, the simulation gets closer and closer to the real world. We
argue that in case perception is the most important “gap” between simulation
and reality, this method can close the gap and let the learning algorithm
perform well even in the real world.
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Chapter 13

Summary of Contributions

The contribution of our work lies in proposing a new self-contained learning—

planning—transfer loop which simultaneously learns and transfers the policy

using a generative model, which refines imprecise perception in simulation.
Also, the proposed method is evaluated on the Absolem UGV described in
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Chapter 14

Paper: Data-Driven Policy Transfer With
Imprecise Perception Simulation

This paper has been accepted and published in IEEE Robotics and Automation
Letters.
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Data-Driven Policy Transfer With Imprecise
Perception Simulation

Martin Pecka

Abstract—This letter presents a complete pipeline for learning
continuous motion control policies for a mobile robot when only
a nondifferentiable physics simulator of robot—terrain interactions
is available. The multimodal state estimation of the robot is also
complex and difficult to simulate, so we simultaneously learn
a generative model which refines simulator outputs. We propose
a coarse-to-fine learning paradigm, where the coarse motion
planning is alternated with guided learning and policy transfer to
the real robot. The policy is jointly optimized with the generative
model. We evaluate the method on a real-world platform.

Index Terms—Learning from demonstration, learning and
adaptive systems, reactive and sensor-based planning, domain
transfer.

1. INTRODUCTION

IGH-DIMENSIONAL reactive motion control of com-

plex unmanned ground robots which substantially inter-
act with unstructured terrain is complicated. Main difficulties
are threefold: (i) the sample inefficiency and local optimality
of state-of-the-art reinforcement learning methods make direct
policy optimization on a real platform inconceivable, (ii) the
curse of dimensionality of planning methods [1] makes direct
search prohibitively time-consuming, and (iii) the simulation in-
accuracy of robot—terrain interactions often makes direct usage
of simulator-learned policies impossible [2]. We propose a com-
plete policy learning—planning—transfer loop, which addresses
all of these issues simultaneously.

The aim of this work is to learn motion control policy for four
independently articulated flippers of a tracked skid-steering
robot shown in Figure 2. The proposed method exploits
an analytically non-differentiable dynamics-engine—based
simulator of the real platform [3]. The learned policy maps
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Informatics”, and in part by the Grant Agency of the CTU Prague under Project
SGS18/138/OHK3/2T/13. (Corresponding author: Martin Pecka.)

The authors are with the Faculty of Electrical Engineering, Department
of Cybernetics, Czech Institute of Informatics Robotics and Cybernet-
ics, Czech Technical University in Prague, Prague 12135, Czech Repub-
lic (e-mail: peckama2@fel.cvut.cz; zimmerk@cmp.felk.cvut.cz; petrlmat@
fel.cvut.cz; svobodat@fel.cvut.cz).

This letter has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The Supplementary Ma-
terials contain two videos. This material is 28 MB in size.

Digital Object Identifier 10.1109/LRA.2018.2857927

, Karel Zimmermann, Matéj Petrlik

, and Tomas Svoboda

the local height map and pose of the robot to desired motion
of the flippers, which assures smooth traversal over complex
unstructured terrain.

The complexity of track—terrain interactions [3] slows the
simulation speed down to real-time, therefore collecting a huge
number of samples needed for accurate learning is impossible.
Consequently, we propose coarse-to-fine policy learning, where
the coarse motion planning is alternated with guided learning
and policy transfer to the real robot.

The proposed method starts by planning trajectories, which
approximately optimize traversal of randomly generated ter-
rains. Then guided learning provides a coarse initial policy.
Since it is impossible to simulate the state estimation described
in Section IV accurately, the state estimated on the real plat-
form significantly differs from the simulated state. Instead of
precise simulation, we suggest learning a conditional genera-
tive model of the state estimation procedure, which comprises
both the underlying noise of different sensors and the errors
caused by fusion of multi-modal measurements. This genera-
tive model is optimized together with the policy. In addition to
that, the successively learned policy allows to guide the node
expansion during planning which helps to obtain more accurate
plans faster. This procedure is iterated until convergence.

Contribution of the letter lies in proposing the new
self-contained learning-planning-transfer loop which simulta-
neously learns and transfers the policy using the generative
model, which refines imprecise perception in simulation. The
method is evaluated on a real platform.

II. RELATED WORK

Direct policy transfer methods: Owald et al. [4] demon-
strated direct transfer of motion navigation policy for Nao hu-
manoid robot. Policy was learned in a precise simulator and
then directly used on the real platform and it performed well.
Christiano et al. [5] suggest learning an inverse dynamics model
that can adjust actions from the simulator to execute in the real
world as intended. They however require a way to transfer the
real-world state into the simulator to execute their algorithm.
Nemec et al. [6] used value function learned in simulation to
bootstrap the real robot learning. We also initialize the policy
from the simulator.

Model-based reinforcement learning methods learn
simultaneously model and the policy. Since the model learned
from the scratch on real trajectories is typically a fast dif-
ferentiable function [7], [8], direct policy optimization is

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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often possible. But learning the motion and perception model
from real trajectories (i) endangers the robot and (ii) requires
prohibitively high number of trajectories. In contrast to these
approaches, we already make use of a sophisticated motion
model, and mainly focus on the perception transfer.

Data-driven refinement of perception simulator: The prob-
lem of transferring perception between different domains is well
studied. In computer vision Generative Adversarial Nets [9]
(GANS) have been recently used for generating synthetic train-
ing images. Shrivastava ez al. [ 10] have shown significant perfor-
mance boost if GANs are used to refine graphics-engine—based
images. Similarly, we also refine simulator-generated data.

Guided policy search: In Guided Policy Search [11], guiding
samples are utilized in a loop to guide direct policy search into
areas of search space which yield the highest reward. However,
it does not account for the reality gap between the simulated and
real world, and it is impossible to run the algorithm directly on
the real platform, since it requires too many samples.

A similar approach to our pipeline was tested by
Bousmalis et al. [12] for grasping. They use (non-cycle) GAN to
transform mostly static simulated images into the real domain,
and then a deep network that benefits from the simulated data.
In this work we show that using CycleGAN helps the domain
transfer even more.

III. PIPELINE OVERVIEW

Our pipeline follows three main assumptions: (i) the physics-
based simulator is slow and analytically non-differentiable, (ii)
simulation of the exteroceptive perception such as mapping from
multi-modal sensor fusion is not realistic, and (iii) there exists
an unknown generative model G which corrects the simulated
perception to be close to the real perception. Under these as-
sumptions, we search for control policy 7%, which minimizes
the expected sum of traversal costs ¢ of the real robot.

Let us denote p] the probability distribution of trajectories
7. = {(x!,a’)},; generated by the real robot under policy 7, and
pT (G) the probability distribution of trajectories 7, generated
by the simulator with generative model GG under policy 7. Each
trajectory (x',a’) is a sequence of state vectors x’ and action
vectors a’. We search for policy

7 =argminE; . {c¢(7)}. (1)

Using assumption (iii), we rewrite the optimization problem
using the simulator distribution p] (G) in the objective as follows

argmin {E. _pr ) {e(n)} | s4.p0(G)=pf} ()

Since trajectories collected with the simulator and with the real
robot are unpaired, direct supervised training of the genera-
tive model is impossible. Consequently, we replace constraint
pZr (G) = pI by the saddle point constraint on GAN-like loss
Laan (G, D, 7) induced under policy 7

arg mi(p E., ~pT (G) {e(ms)}

s.t. G = arg I%i,ﬂmgXﬁcAN(G,7 D, ), 3)
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Fig. 1. Proposed coarse-to-fine policy learning paradigm: the coarse
policy-guided motion planning is alternated with guided learning and policy
transfer to the real robot.

where D denotes a discriminator.
If the GAN loss Lgan (G, D, 7, 75) is pure GAN loss [9]

ET,. ~pr lOg D(T’V') + IErs ~pT (G) IOg(l - D(G(Te)))7

the saddle-point generator provides samples from the true dis-
tribution and the equivalence between eq. (2) and eq. (3) holds.
In order to achieve fast convergence on the high-dimensional
unpaired data, we use CycleGAN loss [13], therefore eq. (3) is
an approximation of the original problem.

By assumption (i), any direct optimization of eq (3) is
technically intractable. We propose approximated optimization
scheme, which minimizes the interaction with the slow
simulator and the real robot.

The optimization alternates between (i) planning guiding
samples 7, which approximately optimize objective

argminE {c(75)}, )

T,

(ii) collecting real and simulated trajectories 7,7, and (iii)
searching for the control policy and the generative model which
minimize the locally approximated criterion

J(m,Gm)= Y |In(Gx))~all ®)

(x,a)eT,

subject to locally approximated GAN loss Lgan (G, D, 7, 75)
around the collected trajectories 7, 7;. The proposed pipeline
is summarized in Figure 1 and Algorithm 1.

The generative model G is initialized as identity. The initial
policy 7 is initialized by guided learning (i.e.,we plan initial
trajectories 7, and estimate 7° = argmin, J (7, G°,7,)).
Given the initial policy, real trajectories are collected and alter-
nated optimization (lines 3-8) with K iterations is performed.
Finally, a new set of real test trajectories is collected and the
whole process is repeated until a satisfactory behavior of the
real robot is observed.

IV. REAL PLATFORM AND ITS SIMULATION MODEL

The real robot used in our experiments is the Absolem tracked
vehicle used in Urban Search and Rescue scenarios [3], [14],
which is depicted in Figure 3. It is equipped with a gyro provid-
ing its spatial orientation and with a rotating 2D lidar which pro-
vides full 3D laser scans at rate 0.3 Hz. The point map built from
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Fig. 2. Robot surmounting unstructured terrain during USAR mission.

Fig.3. Realand simulated DEMs. A visualization of Digital Elevation Maps
(DEMs) is shown above. Dark green cells represent NaNs. Top left: DEM
captured by the real platform. Bottom left: The real pose of the robot on
an obstacle. Top right: DEM from simulator. The shapes are ideal and all
measurements are available. Bottom right: DEM from simulator transformed
by G to appear realistic.

lidar scans by the state-of-the-art SegMatch algorithm [15] is
combined with high-precision track odometry in a multi-modal
fusion pipeline [16].

For simulation, we use our custom tracked vehicle dynamics
model implemented in the Gazebo simulator [3]. Parts of the
simulation are randomized or pseudo-randomized (e.g., search
of contact points of colliding bodies, solving of the underlying
dynamics equations), so every execution of even a deterministic
policy results in slightly different outcomes. This is useful
for us, because our pipeline requires a multitude of different
trajectories for every control policy. To achieve fast simulation,
several simplifications were implemented in the simulated
perception pipeline.

The most important of all policy inputs is the Digital El-
evation Map (DEM) of close robot neighborhood (visualized
in Figure 3). It is a horizontal 2D grid of rectangular cells where
each cell contains information about the highest 3D point lo-
cated in it. When there is no point measured inside a cell, a
Not-a-number (NaN) value is stored. The DEM is treated in
the coordinate frame of the robot with pitch and roll angles ze-
roed out. On the real robot, DEM is constructed from the point
map. In simulation, DEM measurement is done in a completely
different way to avoid inefficient laser ray-tracing: we directly
extract the height of the highest object (excluding robot body)
in each DEM cell, which is a fast operation. That means there
are no missing measurements in the simulator DEM, and also
no noise.

V. GENERATING GUIDING PLANS

The simulator is utilized by the path planner to sample tra-
jectories T,f’, which are further used in the pipeline as described
in Algorithm 1.
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Algorithm 1: Overview of the Real Policy Learning.

1: Initialize: G° as identity and policy 7.
. . 0
2: Collect real trajectories 7, ~ pJ
3: fork=0...K do
4: Plan guiding traj. 7% biased by 7* (Section V).
5: Optimize policy w.r.t. new generator (Section VI)

! argmin J(m, G*, 7,)
6: Collect simulated trajectories: 71 ~ pm ™' (GF)
7: Find trajectory-consistent saddle point
(Section VII)

Gl argrnénmgxﬁGAN(G,D,T,V,TSk\1)

8: end for
9: G < GX, 7% « 7X and repeat from line 2.

The planner works on a multitude of randomly generated
worlds (training worlds) with different obstacles, correspond-
ing approximately to the expected real obstacles. Each training
world has a predefined length of trajectories the robot has to
safely traverse to consider the trajectories valid (a time limit is
also in place).

Different definitions of valid trajectories can be used; they
are always closely related to the particular task. We utilize the
fact that if the flippers are controlled incorrectly, the robot is
not able to overcome obstacles and gets stuck or damaged.
Safety of trajectories is given implicitly by several criteria like
maximum allowed accelerations, limits on pitch and roll angles,
and parts of the robot body which cannot touch any part of the
environment.

Input of the planner consists of the training world specifica-
tion and possibly also a guiding policy 7. The task is to find
a valid trajectory T while keeping planned actions as close to
actions of 7 as possible (if 7 is given).

The planner uses an RRT-based algorithm of state space
search. Planning nodes capture the simulated DEM, robot ori-
entation and flipper configuration. Each expansion of a planning
node is evaluated in the simulator and a new planning node is
created for the returned state.

Even though a standard RRT planner can find a solution by ex-
ploring the state space uniformly in all dimensions, in reality itis
often impractically slow. In high-dimensional applications with
costly expansion (as in our case), a heuristic must be employed
to reduce the required iterations. Kinodynamic RRT* [17] is
widely used to compute asymptotically optimal trajectories
for robots with linear differential constraints. The method,
however, assumes the knowledge of explicit motion model.
Another general approach is to first find a discrete geometric
path in a simplified search space and then optimize it by
generating multiple trajectories with added noise [18] or by
biasing the sampling of a guided RRT planner [1], [19], which
is the method we use. A whole set of (different) trajectories is
expected to satisfy our validity criterion, so methods targeting
at getting close to a single optimal trajectory are not suitable.
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Policy 7 is used as a guide by sorting the actions by their
similarity to what 7 would do (we use Lo norm, but any mean-
ingful norm can be used). If 7 is not given, actions are selected
randomly. Node expansion is realized by executing the action
in simulator and checking the feasibility of the obtained node.
The tree cannot be optimized by RRT* rewiring [20], due to the
uncertainty introduced by executing an action, which prevents
connecting any two nodes of the tree. Trajectories generated
from the guided RRT are similar to trajectories sampled from
the guiding policy, but many sampled trajectories can be invalid,
and using the planner filters these automatically out.

An important property of the guiding approach is that with
more planning—learning iterations, the plans will be closer to
the subspace representable by the chosen policy class, which
should in return result in better fit of future policies to future
planned paths. The speedup gained by the guiding is utilized to
enlarge the searched action space or refine the time resolution.

We propose to start the planning in a reduced action space
which is practical to be explored without guiding, and once
a guiding policy is available, the dimensionality can be in-
creased. We start with 9 actions and time resolution of 1000 ms,
further we add more actions, and last, we refine the time resolu-
tion to 200 ms, which is more suitable for real-world execution
(but the plans need to be 5-times longer, which would be a sig-
nificant increase in computation time without guiding).

VI. GUIDED LEARNING

With a set of trajectories generated by the path planner, the
guided learning phase can start. Generally, it is possible to use
any kind of supervised learning in this part. We chose a deep neu-
ral network that is crafted to make use both of the 2D structure
of DEMs and to handle correctly Not-a-Number (NaN) values.

Inputs to the network are DEM, orientation of the robot and
current flipper positions. Outputs of the network are the 4 desired
flipper positions. Normally, if a NaN value would enter as a part
of the DEM, it would silently spread further and could eventually
end up in one of the outputs, which is undesirable.

A standard approach is to replace NaNs with a neutral value
(like 0) or interpolate them. In Section VIII we show that these
approaches yield worse results. Thus, we decided to treat the
NaN values as “first-class citizen” because they can also carry
useful information (the fact that a measurement is missing can
have geometrical reasons).

We propose the following input processing: the DEM is con-
verted into two matrices of the same shape—one with NaNs
replaced by zeros, and the other with ones in measured cells and
zeros in cells with NaNs (this part of architecture is shared with
the GANSs described in Section VII). Each of these matrices is
fed into its own convolutional layer, and their outputs are mul-
tiplied. This effectively means normalizing each patch covered
by a convolutional filter by the number of measured values in
this patch. From this layer on, no NaN values are in the network,
the output of the convolution is flattened, concatenated with the
1D inputs (robot orientation, flipper angles) and finally enters
a fully connected layer, whose output are the four desired flipper
angles.
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Fig. 4. CycleGAN architecture. Two GAN networks interconnected in such
a way that input dimension of generator G is the same as output dimension of
G and vice versa. The discriminators D¢ and D serve both for evaluation of
single generator loss and the cyclic loss.

L7k

T IITI7]
LTI 1R
LTI L
T TTITI7]
LTI

Fig.5. Generator architecture. The raw input is preprocessed to yield a ten-
sor of shape 21 x 5 x 2 which is then used by the rest of the network.

X, Gs(xr) G(Gs(xr)) X5 G(xs) Gs(G(xs))
HHH e
Fig. 6. DEMs transformed by the generators. Heights in the DEM:

blue = —1 m, green = 0 m, red = +1 m, white = NaN.

The regressor network is optimized using gradient descent
to minimize the error between the predicted flipper target posi-
tions and those provided in the dataset. The dataset is randomly
divided into training and test parts.

VII. DATA TRANSFORMATION VIA CGANS

The next key step is to find a suitable transformation between
the data observed on the real platform and data observed in the
simulator.

CycleGANSs [13] were shown to be useful in the task of mu-
tual mapping of two domains when only unpaired data are avail-
able. Specifically, Shrivastava et al. [10] used them to transform
a simulated dataset to look real and then applied standard deep
learning that expects real data at the inputs.

The mapping from simulated to real data is realized by gen-
erator (&, while the opposite process is represented by generator
(. The relation between the generators, their discriminators
and input datasets is shown in Figure 4.

The input data with special structure (20 x 52D data possibly
containing NaNs + 5 scalar constants), are preprocessed similar
to Section VI. In generators and discriminators, the input DEM
is transformed into a 20 x 5 x 2 tensor where the first channel
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contains the DEM with NaNs substituted with O s and the second
channel contains a mask with —1 s at NaN cells in the DEM,
and 1 s otherwise see Figures 5 and 6 for details.

The scalar inputs (robot orientation and flipper angles) skip
these first convolution layers and enter the network later as
inputs to a fully connected layer. At the output, the DEM and
the scalar values are again separated. This allows the network to
work as a standard image-to-image CycleGAN, but also allows
it to use the scalar information.

The internal structure of the generators and discriminators
contains several convolution layers that use the Leaky ReLU
activation function, and a final fully-connected layer.

Our pipeline suggests that the generators should be initial-
ized to identity, which is not generally possible with neural
networks containing non-linear activation functions. However,
implementing a skip-connection of the input data directly to the
fully-connected layer allows this initialization. Identity should
be a good initial guess for the generator, because we do not want
it to change the data too much.

Both discriminators use the pure GAN loss formulation
(see Section III).

Loss function of both generators is defined by their
corresponding discriminator (D for generator G; D for
generator Gy):

Lao(x)=+n- Y (log(D(x)) + A, - Z IIx: — G(x,)]]

We penalize distance of the generated output from the inputs
(pixel-wise), as it was shown to stabilize the learning [10]. One
additional component of L, can be added that penalizes any
NaN values in the output, since we know there are no NaNs in
the simulator DEMs.

The cycle loss L. (G, D, x,,Gs, Dy, xy) is defined as

Lp(G(Gs(x,))) + L, (Gs(G(xs)))

Training of the network is done by repeated optimization of
all generator and discriminator losses, where A, - L, 1. is added
to the loss of both generators. The training is done on simulated
data from 7 and real data from 7,..

It is usually difficult to tell when to stop GAN training. Al-
though it is not required for the training itself, we constructed
a small validation dataset consisting of pairs of data from the
simulator and their closest counterparts encountered in the real
data. If it is possible to collect more such correspondences,
a part of them can be added to the learning process via Lo loss
on these samples. In our tests, adding the correspondences fur-
ther helped training the GAN, but care must be taken to not
overfit the network to the correspondences.

VIII. EXPERIMENTS

Experimental evaluation of the learned policies is an essential
part of the learning loop. After several iterations of the learning,
planning and generator optimization, verification in the real
world is to be performed.

For the task of terrain traversal with a tracked robot, we
designed a real test scenario consisting of flat ground, a pallet
and a staircase, which are typical obstacles the robot can
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Fig. 7. Average policy performance in simulated worlds. Performance
of 100% means traversing all test worlds in a safe manner.

100

CycleGAN GAN no GAN

? proposed no cycle| baseline
S

=

>

=

©

o w

=

o

O w

c

2]

£

.g 20

()

o

77 nocycle 73 Z€TOS nterp
graspgan (xpg
Fig. 8. Average policy performance in real world.

encounter. The staircase is subdivided to 6 sections with
different characteristics — approach to stairs, on stairs, leaving
stairs, and the stairs can go either upwards or downwards. The
staircase is traversed with constant forward speed 0.3 m/s three
times and the pallet 10 times, resulting in execution of 13 trajec-
tories. Every trajectory is assigned one of three success levels
— good in case the trajectory was without problems, the robot
passed and did not endanger itself; unclear if there were minor
problems during the execution, but the robot traversed the whole
required length (e.g., behavior close to unsafe, the operator had
to reduce the otherwise constant travel speed, and so on); finally
fail level is assigned to trajectories that the robot could not finish
or executed an unsafe action. These levels carry numerical
value (good = 1.0, unclear = 0.5, fail = 0.0) and policy
performance is an average of these values over all executions.

Similar obstacles were modeled in the simulator and a set of
8 test worlds was created. The metrics for simulation is pro-
portion of good trajectories among all executed. Here good
means traversing the required length of the trajectory with con-
stant speed 0.3 m/s without executing any unsafe actions (as
described in Section IV).

Results of the learning process are summarized in Figures 7
and 8. First, 3 iterations (policies 7'—-m®) were using only
the simulator without GAN for adjusting perception. Further
simulator-only iterations showed little performance improve-
ment, so we assume the process converged at 7>. Policy 7°
is similar to what Guided Policy Search [11] with Adaptive
Guiding Samples would find, so we also call it GPS (we
use a different guiding sample generator — RRT instead of
DDP, and the RRT planner automatically generates adaptive
samples by prioritizing actions similar to the policy decisions).
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TABLE I
PATH-PLANNING PERFORMANCE

It. | Guided | GAN | # actions At Visited nodes | Avg. CPU time
1 X X 9 1000 ms 116 + 60 8 min
2 v X 9 1000 ms 103 £ 55 S min
3 v X 9 1000 ms 102 + 54 5min
4 v X 49 1000 ms 138 + 82 15 min
s| v |V 49 [1000ms|| 238+13 17 min
6 v v 49 200ms || 1239 4 811 40 min
7 v v 49 200 ms 924 £ 497 35 min
- X v 9 200 ms - >>>60 min

CPU-core-time and number of visited nodes needed to sample one trajectory by the path
planner. At is time resolution (i.e.,with A¢ = 200 a trajectory of some defined metric
length needs 5x more nodes than with At = 1000). Bold values highlight changes
between iterations.

Unfortunately, real-world trajectories cannot be used as guiding
samples in GPS, because the simulated and real domains differ
too much for the learning to converge.

Testing in real world started in the fourth iteration. Two of the
best policies found in simulator were tested in real world and
the better one became 7+ 1.

We cut off the whole pipeline once the policy achieved good
performance in the real world (after 7 iterations). That accounts
for ca 15 minutes of driving with the real robot to collect the
initial 7., then 4 x 13 trajectories for real-world policy verifica-
tion, which is about 20 minutes. No more real-world execution
was needed.”

To see the benefits of our pipeline, we tested running 73
aka GPS (the best simulator-only policy) directly on the real
robot. The performance was, as expected, poor. We also trained
two baseline policies (zeros and interp) which either zero-
out or bi-linearly interpolate the missing values (NaNs) in real
data. These policies can have a simpler structure (the second
channel for NaNs is removed). They were trained on the same
trajectories 7 was trained on. None of these policies managed
to outperform the proposed pipeline. Last, we also tested the
importance of the cycle loss in GANs. Policy no_cycle was
trained on a dataset transformed by a GAN that was trained
without the cycle loss, similar to GraspGAN [12], so we also
call it grasp_gan. Validation error of the GAN (as mentioned at
the end of Section VII) was about 12% higher than with cycle
loss, and performance of the no_cycle policy did also not beat
the proposed pipeline.

To train final policy 77 from scratch, we needed 800 CPU-
core-hours (of which 90% is spent on performance verification,
which could be lowered) and 50 GPU-hours (highly depends on
structures of the policy and GANS).

We also experimentally verified that guiding decreases path-
planning time or allows to plan paths in larger action spaces
or with longer planning horizon. A summary of computation
times is shown in Table I. We also tried unguided planning with
200 ms resolution, but no path was found in one hour.

“See the attached video with policy tests, or http://cmp.felk.cvut.cz/~
peckama?2/policy_transfer/ for more information and FullHD video.
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IX. CONCLUSION AND FUTURE WORK

We have proposed and experimentally evaluated the new
self-contained learning—planning—transfer loop, which employs
a simulator of robot—terrain interactions. The proposed method
simultaneously learned the policy in simulation and transferred
it to the real robot. The transfer was achieved by a generative
model which corrected imprecisely simulated perception. The
experimental evaluation showed that iterations of the learning—
planning—transfer loop improve performance of the policy on
the real robot. We also showed that it is possible to further re-
fine the action space of guiding policies without compromising
computational tractability.

Our ongoing research will focus on possibilities of making
the CycleGAN learning policy-aware, so that the generators are
trained with policy performance in mind.
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Chapter 15
Followup and Related Work

Domain transfer is a difficult task, which shows to be of ultimate importance
for real-world robotics. If done correctly, it would allow to utilize the much
faster and “cheaper” simulators to train optimal behaviors on real robots.
Since GANSs first appeared in the work of [Goodfellow et al., 2014] and
CycleGANSs in |Zhu et al., 2017], they quickly found their way to domain
transfer research. [Tzeng et al., 2015b| present a learning scheme which does
not exactly employ GANs, but uses the same ideas of training a “generator”
(in this case a labeling algorithm), and a discriminator which forces the
learning process to discover representations where the old and new domain
are indistinguishable. Surprisingly, the proposed algorithm is able to transfer
labels from the old domain to a new domain with only a few or even no
labels in the new domain (if the labels in both domains have similar and
nonuniform distributions). |[Tzeng et al., 2015a] similarly show that if we
can generate similarly distributed data from two domains, an unsupervised
or weakly supervised algorithm can align the distributions and transfer any
labeling from one domain to the other. |Christiano et al., 2016] choose an
approach that could be said to be opposite to what most other domain transfer
works do. They do not train a forward mapping from simulated states to
real states—instead, they train an inverse dynamics model for the real robot.
They can then use the simulator to extrapolate the state the robot would
like to reach, and use the inverse dynamics to compute the real action that
would take the robot to that state. This approach however assumes that
the real robot state would never diverge too much from the simulation, or
that we can run the simulator on the real state observations. This might be
possible when no or simple exteroceptive sensors are used, but will probably
never work in tasks with complex and imperfect exteroception. Convergence
of GANSs is generally a fragile problem, where a lot of different factors can
play an important role and values of many hyperparameters have to be set
correctly. [Wulfmeier et al., 2017] show a thorough study of the influence
of various hyperparameters and design decisions on GAN convergence. For
RGB images, [Tobin et al., 2017] show that randomizing the textures in
a simulator is a possible way to do domain transfer to images captured
by a real camera attached to a robot. When the geometrical properties of
the two domains remain close enough, and texture is the only difference,
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this algorithm learns to ignore the texture and instead learn only on the
geometrical features. The real images can then be treated only as a sample of
random textures in the simulator. Not only images, but also system dynamics
can be randomized, as in [Peng et al., 2018b]. They assume that there is
a known approximate model of the system with unknown parameters, and
that given optimal parameters, we can simulate the real dynamics up to
approximation error. In an Actor-Critic setting, they train a policy against
an ommniscient critic estimating the value function with the knowledge of the
dynamics parameters (which are known in simulation). Once trained, only
the actor network is used for execution, and the dynamics parameters are
thus no longer needed. If parameters of the real system are from a similar
distribution to the one the training dynamics samples were drawn from, the
learned actor policy should perform well when deployed on the real system,
without a single real trajectory recorded during the learning. By training on
various dynamics models, the policy should learn to use mainly dynamics-
independent features. The dynamics randomization approach is extended
in [Muratore et al., 2018| and [Muratore et al., 2019]. They add a measure
estimating how good is the current estimate of the objective function, and
use this measure as a stopping criterion for learning to prevent overfitting the
policy to simulation imperfections or specifics. |[Peng et al., 2018a] choose an
opposite direction for domain transfer than what is usual in RL. They start
with motion capture data of real people and try to learn a simulated policy
replicating these motions in various conditions. They verify that experience
replay (mentioned further in this chapter) is crucial for the success of learning
in high-dimensional spaces. [Fankhauser, 2018 shows in his thesis that it is
possible to hand-tune very efficient control policies directly on a real robot.
The terrain-adaptive quadruped gait control is definitively a very complex and
high-dimensional task. The thesis shows that no learning is required if there
is enough time to fine-tune lots of parameters and solve various special cases.
However, [Hwangbo et al., 2019] shows that using deep learning, a large part
of the hand-tuning can be overcome. They present a terrain-ignorant control
policy trained by TRPO that achieves even higher performance on the real
robot than any other manually-created policy tried on the robot. Of course,
the gap between terrain-ignorant and terrain-adaptive policies is huge, as the
state space in the latter is usually several orders of magnitude larger. [Peng
et al., 2019] propose an improvement for GAN training that imposes an
information-throughput limit between the generator and the discriminator.
By limiting the amount of information passed to the discriminator, they
make sure it never gets perfect, which has bad consequences for generator
gradient estimation. [Kang et al., 2019 propose to learn visual-based control
by training a deep Q-function predictor from simulated images, and copying
the convolutional layers to a reward estimator network. This network is then
trained on real data with weights of the copied perception layers being frozen.
The input of the reward estimator is a sequence of past images and a sequence
of planned actions up to some horizon. It outputs reward predictions for each
of the planned actions. A simple policy is based on the reward estimator—
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select such action that maximizes future rewards. A counter-intuitive result
is that fine-tuning also the convolutional layers on real data does not help the
policy performance. Another approach to domain transfer shown in [Vemula
et al., 2020] is to recognize the actions whose outcomes differ too much in the
old and new domain, and discourage the policy search algorithm from using
such actions. If there exists a policy using only the well-simulated actions,
the real-world performance can be expected to be satisfying. [Chen et al..
2020| solve the generally hard problem of evaluating the quality of CycleGAN
output. The most used Inception Score and Frechet Inception Distance can
only be used on a special type of photos of people and real-world objects. For
the task of map quality evaluation, the authors proposed a method based on
edge similarity.

For some problems, such as the one presented in this part, it is possible
to use some non-learning-based methods to generate a few good trajectories.
These methods, like planning, are usually too slow to be computed during
policy execution, but may prove extremely useful for the learning phase.
Guided Policy Search (GPS) |Levine and Koltun, 2013] is an algorithm
that can leverage a few initial trajectories during the policy search via
importance sampling. [Montgomery and Levine, 2016| improve this algorithm
with a different optimization procedure with automatic estimation of the step
size of gradient descent. This way, the algorithm achieves higher quality results
while having less hyperparameters to tune compared to GPS. [Montgomery:
et al., 2017] remove the requirement to preform resets from the basic GPS
algorithm. That means the algorithm can be run on-policy and is better suited
for running on real robots. The computation cost is higher, though, because
an E-M step needs to be performed that assigns historical trajectories to the
most likely current local policies. [Mendonca et al., 2019] introduce Guided
Meta Policy Search, which is a sample-efficient meta learning algorithm based
on GPS. In the meta-learning setting, they first pretrain the meta policy on
the demonstrations, which speeds up learning. Then they employ a classical
phase of learning multiple guiding policies which further help to optimize the
meta objective.

Deep and convolutional neural networks are a very powerful tool for function
approximation. [Stinderhauf et al., 2018| overview the problems that arise
when deploying deep learning algorithms in robotics. Sample complexity
is one of the major problems that needs to be tackled before deep learning
successfully settles as a learning technique for robotics. One of the possible
ways to reduce the number of required samples is reducing the dimensionality
of the states or actions they work with. [Luck et al., 2014] use a modified
variant of Principal Component Analysis for finding an efficient embedding of
the high-dimensional action space of a humanoid robot. This dimensionality
reduction allows running policy search in the much smaller latent space.
Thanks to that, the policy search algorithm gets practical even for experiments
with real robots. [Munk et al., 2016] alter the classical DDPG Actor-Critic
algorithm by adding a third network which learns a mapping from the
observations to some low-dimensional latent states. These latent states are
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used as input to the actor and critic networks. This approach is shown to
improve convergence, and in some cases it also results in better performance
than plain DDPG. [Peng et al., 2016] utilize high-level actions similar to
Motion Primitives (but non-periodic) to decrease the dimensionality of action
space. [Parisi et al., 2017] apply PCA to state observations and use it to
extract only task-relevant features from the observations. It is shown to speed
up the learning process and sometimes even leads to better policies. [Sermanet,
et al., 2018 show an algorithm that can extract low-dimensional and view-
independent state representation from series of time-synchronized views of
a robot. The approach is completely unsupervised and is able to learn spatio-
temporal relations just by observing the robot from multiple viewpoints at the
same time. Stochastic Latent Actor-Critic algorithm presented in [Lee et al..
2019] also reduces problem dimensionality by converting it to a latent space.
This method uses a Bayesian definition of the latent space and the resulting
algorithm is fully stochastic and Markovian, with no recurrent cells. It is
shown to find better policies than standard SAC. Another algorithm reducing
dimensionality via a latent space is [Vezzani et al., 2019]. They learn the
latent space representation using a multi-headed network with a shared part
which acts as the latent space encoder. Together with motivating the policy to
keep high entropy and stay close to high-reward areas, this approach is shown
to outperform TRPO in the performance of the resulting policies. [Zhang
et al., 2019a] show a very efficient algorithm that can be used with quadratic
costs, which employs learning such latent state representation which provides
the best performance for evaluating simple local models of dynamics. This
makes the dynamics models more precise and better suited for the MPC that
is a core part of the algorithm. In the end, the algorithm is able to learn
a block stacking problem using a robotic arm only from images within 2 hours
of robot run time. [Wu et al., 2019] reduce the dimensionality of a pick-
and-place problem by applying structure on the actions. They subdivide
them to subactions “pick” and “place” and establish some relations between
these parts. Such structure improves learning speed and accuracy. Another
interesting way to reduce dimensionality of the problem is to directly turn
the original MDP into an abstract MDP with fewer states and actions, as is
done in [Zun Yuan et al., 2019]. They expect that the task to learn is given
as a temporal logic formula and that only state transitions relevant to this
formula are important for the policy. In connection with DDPG, this shows
to be a very efficient modular RL method.

Another way to reduce the number of samples that are required for rein-
forcement learning algorithm convergence is to incorporate prior knowledge,
either from the same, or from a similar domain. [Cutler and How, 2015| train
a Gaussian Process modeling the unknown dynamics of a robot in simulation
(which is usually considered cheap), and use this model to speed up policy
search on the real system. Contextual learning is another way to reuse data
from previous experience. [Rusu et al., 2016|] present the Progressive Neural
Networks which are a kind of compositional neural networks. For each task
(context sample), there is a “column” of the neural network, which is trained
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and optimized for the given task, and once it is finished, the weights in the
“column” are frozen and a new “column” is added for a new task. However,
all outputs of all layers from the previous “columns” are available to the
newly added one, so that it can efficiently reuse what the network has al-
ready learned. [Kahn et al., 2017a] use a special type of neural network with
dropouts to predict uncertainty in training data. This network, similarly to
Gaussian Processes, is able to output a mean and uncertainty of a function
estimate. In this particular case, they use this network as a collision predictor
for autonomous flight. They use the uncertainty to guide the policy in areas
which need more real data, but also modify the behavior to a safer one in
these dangerous zones. In the field of meta-learning, MAML algorithm [Finn
et al., 2017a] became very popular. Given a differentiable model and objective,
it trains a control policy which “ends up” one or few gradient steps from the
optimum. It is trained on data from multiple domains and the remaining
gradient steps represent adaptation to a specific domain. The adaptation
is very sample-efficient, assuming the new environment is sampled from the
same distribution used during training. [Marco et al., 2017] show a framework
how simulated and real samples can be incorporated into a single learning
system, taking into account the fact that obtaining the real samples is more
costly than running simulation. The main idea is to alter a Gaussian Process
learning the system dynamics so that it learns the simulator dynamics as
one part and the differences of the real behavior as a second part. However,
the algorithm probably does not scale very well to larger state or action
spaces. [Martinez-Tenor et al., 2018| show that previously collected informa-
tion about the Q function can be used to bias exploration. When selecting an
action in a standard Q-learning setting, a bias term is added, which specifies
that similar actions should be taken for similar states. They also suggest
a short history of actions should be kept to asses if the agent did not enter
a low-reward loop. If so, the action-selection algorithm should be allowed to
take more diverse actions. [Sun et al., 2018a] show a framework which can
interpolate between imitation learning and “pure” reinforcement learning.
They expose a parameter that specifies the length of a horizon of a cost-to-go
estimator, which is initialized from demonstrations. In this framework, the
user can select whether it is more important to keep the sample complexity
low, or if better policies are desired. [Lempitsky et al., 2018] show an interest-
ing property of deep neural networks. In image recognition tasks, the largest
part of the “success” of the network lies in the structure of its connections, not
in the learned weights themselves. [Finn et al., 2017b| present an algorithm
for efficient learning on a distribution of MDPs. They expect that they have
labels (rewards) available for some of the MDP samples, and use these to
initialize a reward predictor for the unlabeled MDPs. An EM loop then
interleaves policy optimization and reward predictor improvement. [Stark
et al., 2019] show a way to utilize already learned skills (probabilistic motion
primitives) for initialization of primitives for new tasks. The closest already
known skill is used as prior in search for the optimal solution for the new
task. If covariance of the closest skill is also to be transferred, it needs to
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be scaled by a hand-tuned factor to mitigate task bias. Prior knowledge can
also be provided in terms of known reward function. [Kahn et al., 2020] show
that for an end-to-end visual driving task, automatic state annotations allow
for generating datasets of size impractical for manual labeling. But if a GPS
sensor can tell whether the robot follows the given path and an IMU can
tell whether it crashed into an obstacle, the annotations can be extracted
automatically and the otherwise difficult RL task is converted to supervised
learning. This method, however, needs to visit unsafe states (often) to learn
about them, which is usually not an acceptable requirement.

Except for incorporating prior knowledge or reducing the search space, there
are other ways to reduce the required number of samples in Deep RL. |Clavera
et al., 2018] train not one, but several dynamics models in an ensemble, which
can provide more precise modeling of dynamics of the system. If the reward
function is a priori known, a meta-learning algorithm can be employed to
find a policy for the given RL problem with unknown learned dynamics.
This approach is shown to require significantly less training samples than
other model-free Deep RL methods (however still impractically much for
training on real robots). [Kahn et al., 2018] use a deep recurrent network with
LSTM cells to model the unknown dynamics, and perform the reinforcement
learning in a generalized computation graph which allows for interpolating
between model-free and model-based learning. |Tosatto et al., 2019] found
a method similar to Intrinsic Motivation methods that speeds up convergence
by guiding the agent to high reward areas. An ensemble of Q-function
estimators provides uncertainty of the estimate, and this uncertainty is then
added to the objective function to motivate the agent to explore uncertain
areas. [Zhang et al., 2019b] show a way how to improve the run-time of
a learning algorithm by parallellizing the usual “collect data—update model—
update policy” loop used in model-free learning. [Tosatto et al., 2020 present
a new off-policy learning formulation via Nonparametric Bellmann Equation
for which they compute analytical closed-form gradient. Using this gradient,
lower variance is achieved than with standard policy gradient methods based
on Bellmann Equation. Although the approach does not scale to large search
spaces, on the smaller ones it converges with an order of magnitude less
samples than state-of-the art off-policy algorithms like DDPG.

Reinforcement learning works with the assumption that the underlying
system is an MDP (i.e. outcomes of an action depend solely on the current
state, not on the previous states and actions). This requirement is not
satisfied when first looking at some tasks, e.g. Atari games do not capture
all relevant information in a single screen frame (e.g. velocity of objects is
not encoded in the frame). Fortunately, it is possible to make some tasks
RL-compatible by expanding the state space, e.g. stacking multiple input
frames together; it is also possible to use networks with memory. [Hausknecht
and Stone, 2015 take a Deep Q Network and substitute its first layer with
LSTM cells. This way, they incorporate memory in the network, and it is
able to solve many games which are normally considered Partially Observable
MDPs. This comes at the cost that it is not possible to restart the inference
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from an intermediate state and immediately expect optimal performance. [van
Hoof et al., 2017] examined the time-series dependencies in RL and found
a generalized policy update formulation that allows to interpolate between
time-independent (MDP) and time-series (non-Markovian) formulations.

Sometimes it is difficult to craft the reward function for reinforcement
learning so that the learned policies do exactly what was expected. It can
be much easier to just show demonstrations of what we consider a good
behavior, and let Inverse Reinforcement Learning deduce the correct reward
function. [Finn et al., 2016a] present an Inverse Optimal Control algorithm
that takes human demonstrations as input and estimates the distribution from
which they are sampled. Based on the estimate of this distribution, they can
also estimate the reward function. At the same time, they search for a policy
that optimizes the currently estimated objective. [Ewerton et al., 2016a] show
a way to incorporate “online” teacher feedback into a learning scheme for
Probabilistic Motion Primitives (ProMPs). The algorithm assumes there is
a robot (manipulator) with whose actions the human teacher can interfere
while they are executed and “override” them with the teacher behavior. This
way, the robot can learn the differences between the policy behavior and
teacher behavior, and update the MPs to be closer to the teacher feedback.
In [Ewerton et al., 2016b|, they improve the basic definition of ProMPs to
allow multiple phase parameters. An EM-like algorithm can then be used to
decompose the motion into shape, phase and amplitude parameters. |[Nair
et al., 2018] assume that even the teacher trajectories can be suboptimal.
They extend the classical DDPG algorithm with another term in the objective,
which penalizes difference of the learned behavior from the demonstrations,
but only in case the learned behavior is worse than the demonstrations. This
way, the exploration can find policies which are substantially better than the
teacher’s policy. For learning from demonstrations, it is also crucial to a have
a good measure of similarity of trajectories. [Urain and Peters, 2019] improve
the standard £ norm comparison by developing a correlation coefficient that
is invariant to linear transformations. It would be although even more helpful
to develop a measure invariant also to affine transforms and time-stretching
(if that is suitable for the given task).

Many published algorithms stress the point that Reinforcement Learning
is more efficient and converges better if the reward function is not used as
is, but is instead subtracted from some baseline. A variant of this approach
is using the advantage function instead of the reward function for policy
search. |[Schulman et al., 2016] and [Schulman, 2016| propose a Generalized
Advantage Estimator network that improves the efficiency of TRPO model-
free algorithm and takes its sample complexity closer to model-based learning.
However, the experiments with humanoids would still need weeks of data if
they were applied to real robots. So the sample complexity becomes only
impractical for real-world experiments, not completely out of scope. [Sun
et al., 2018b| present the Dual Policy Iteration algorithm, which utilizes
two polices—a fast and reactive approximator, and a slower policy utilizing
model-based optimal control. The slow policy can get better insights into the
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direction where high-reward areas are, but is too slow to be used in practice.
So it is only used during learning to guide the faster policy. This approach
achieves faster convergence than plain TRPO on the class of problems with
smooth dynamics and reward function.

Deep learning algorithms that require vast amount of samples suffer from
the so-called catastrophic forgetting. If the optimized policy is used for
exploration at the same time, it can happen that policy search finds an area
with relatively high rewards and starts generating trajectories which are only
close to this area. But if there was a similar, maybe only a little bit worse,
area, the policy will stop visiting it so often, which makes the weight of errors
in this area lower. This way, it can happen that the policy search algorithm
completely forgets how to act in this slightly worse area. This forgetting
is usually prevented by using replay buffers, which store historical samples
and require the policy to take them into account, too. But as literature
shows, the naive FIFO implementation of the replay buffers is not the best
strategy. |Andrychowicz et al., 2017] propose a variant of replay buffers for
contextual/meta RL called Hindsight Experience Replay (HER). The idea
is that with sparse rewards, it might be very difficult to find even the first
trajectory that gets some positive reward. And until then, standard RL has no
prior about which directions might be promising. HER tackles this problem
by extending the replay buffer not only with the context-trajectory-reward
tuples that were actually executed, but also with tuples that have the same
trajectory, but change the context and reward in such a way that it looks
like the algorithm actually intended to execute precisely the given trajectory.
This way the learning process becomes similar to curriculum learning, where
the agent first learns how to perform simpler tasks, and the knowledge gained
during learning these smaller steps helps it to finally reach the original goal.
According to [Ren et al., 2018], the choice of samples going into a replay
buffer is also important. They propose a curriculum-learning—like algorithm
which prioritizes samples with low TD error, which should be easier to learn
and correct in the next iteration. Another view on HER is provided in [Li
et al., 2020]. They generate the false experiences by finding tasks that suit
them more than the original task, but in dense rewards setting, where HER
does not normally help. The false experiences can either be found using
inverse RL or searching for most similar trajectories in a memory buffer. If
that is computationally demanding, another alternative is to relabel the false
experience with the task for which it has the highest value of the advantage
function.

Recent research shows that keeping some entropy in stochastic policies
is beneficial for learning. The Soft Actor-Critic algorithm [Haarnoja et al..
2017] shows convergence rate speed-ups of an order of magnitude compared
to other model-free Deep RL methods—by requiring that the policy should
keep some amount of entropy even at convergence. [Haarnoja et al., 2019]
show an experiment where they used Soft Actor-Critic to learn a control
policy on a small quadruped within 2 hours of real experiment time. |[Akrour
et al., 2018] and [Akrour et al., 2019a] provide a policy search algorithm
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which intentionally limits not only the KIL-divergence from the previous
policy, but also entropy loss. They show an approach that can solve the
constrained optimization problem without the use of Lagrange multipliers.
This approach seems to be more suitable for the cases when the number
of samples is very limited. [Parisi et al., 2019b] verified a similar effect for
tabular RL. They not only search for the optimal control policy, but also for
a different exploration policy based on accumulated visitation counts. Such
algorithm was shown to perform better in case the rewards are sparse. [Parisi
et al., 2019a] observe that in Actor-Critic methods, high variance of the
critic output is destabilizing the interaction between the actor and the critic.
They suggest adding a TD-error—related regularizer to the actor network
objective function, which effectively decreases the learning rate if the critic is
unsure. The method is general and can be used to improve the stability and
convergence rate of almost any actor-critic algorithm.

[Tamar et al., 2017] use neural networks different from most of the men-
tioned algorithms. They encode the Value Iteration policy search algorithm
itself into a differentiable neural network, which can then be trained by
standard gradient descent. For small discrete problems, it shows better gen-
eralization, but it does not scale well to larger or continuous problems. [Shen
et al., 2019| present a meta policy search algorithm that does not use gradients
for optimization, but employs Evolution Strategies instead. This approach
might be suitable for cases where the gradient is difficult to obtain or known to
not exist. [Nagabandi et al., 2019] show an unusual meta RL setting—it does
not consist of a task distribution and a multilevel policy. Instead, a sequence
of last states is taken as the task, and a dynamics model is trained to predict
the following sequence of states. This model is then used to perform super-
vised learning and online adaptation of the meta policy. Such algorithm can
learn very robust policies, which are able to adapt in a few seconds to severe
changes, e.g. disabling one leg on a quadruped robot. [Rothfuss et al., 2019]
found a new formulation of objective for meta-learning called Low- Variance
Clurvature which is shown to have lower variance than standard meta-learning
objectives. This naturally speeds up convergence of the learning.
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Chapter 16

Conclusion

In this part, one possible way of learning and transferring policies from
simulation to reality was presented. Although the experimental results
show the method as promising, some pieces of the algorithm still need more
attention. First, the GAN training process is fragile, and there are no clear
guides on how to enforce (or even measure) convergence for non-photographic
data. Human input is thus needed to decide when to stop learning and how
to tune the hyperparameters. Also, the design of the neural network has so
far been an arbitrary process depending on human intuition. We think that
closer connection between the GAN and the policy could be a way to improve
the final policy performance on real-world data.

The reviewed literature shows that domain transfer for visuomotor tasks
for manipulators has already been solved to a degree which allows practical
use. Also transfer between photographic domains (e.g. ImageNet-based)
shows very impressive results. But neither the general problem of transfer
learning, nor the specific problem of 3D sensing transfer from simulators to
reality, have been solved with a generally applicable algorithm. Generative
Adversarial Networks (used in domain transfer algorithms) also still suffer
from the non-existence of good convergence measures.

One of the most important discoveries in deep learning was experience
reuse. Starting with simple replay buffers, more and more insight has been
gathered into various aspects like replay buffer management or Hindsight
Experience Replay. Information throughput limiting shows to be another
helpful technique. Many implementations are available, from autoencoders to
direct information-throughput limiting, but all head towards a common goal—
force the neural network to find efficient features and data representations.

Last, guiding or prior knowledge utilization seem to be the way to make
policy search for real robots tractable. The standard deep policy search algo-
rithms require prohibitively many samples, and thus techniques for utilizing
already collected data are needed. There are many approaches—contextual
policy search, inverse RL, meta-policy search or just utilization of learned
dynamics models.
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Part |V

Conclusions
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Conclusion

In this thesis, we have shown several approaches that connect Reinforcement
Learning and safety in different ways. Classical risk-ignorant Reinforcement
Learning has achieved many successes both in simulated and real-world
tasks. Recently, deep learning helped RL to succeed in even more areas.
However, mobile robotics has not yet benefited from this connection fully.
Two main obstacles lie in the way to successful deep RL—the number of
samples required for learning and safety of the learning process (because real
robots are vulnerable). This thesis presents theory and algorithms showing
how these gaps could be closed or at least made smaller.

In the first part, recent approaches to safety in RL are reviewed. Further,
the Constrained REPS algorithm is presented. In small continuous state
and action spaces, it efficiently performs policy search under given linear
constraints. These constraints are general and can encode for example safety
of trajectories or other limitations of the real system. The learning process can
thus be considered risk-aware, but it is not forced to be risk-averse (as is often
the case in other algorithms). As long as the search distribution maintains
the given safety constraints, it is free to explore any area. The constraints
also guide the exploration process to feasible areas, which decreases the
number of required samples. As was shown in the experiments, this method
requires high-capacity function approximators to work well. Also, scaling to
high-dimensional states such as images is not feasible with this method.

The second part is focused on handling the imperfect sensory data robots
have to work with. It stresses the important (but often neglected) idea that
missing measurements are as valuable as the actually measured values. We
have shown a RL algorithm that utilizes the missing measurements to assess
if its planned actions will be safe, or if more measurements need to be taken.
In this case, the policy can choose to utilize a robotic arm to measure terrain
in places which are obstructed for camera or laser views. As this kind of
additional measurements is inherently very slow, it is desired to maximize
the utility of each such measurement. We present a way to find a policy that
chooses the optimal order of these measurements.

Another approach to utilize the imperfect sensing in a learning loop is
presented in the last part. To tackle the problem of sample complexity of
deep RL, we propose to do most of the “work” in simulation. Under the

107



Conclusion

assumption that perception is the major difference between simulation and
reality, we develop an algorithm that transfers the simulated perception into
a domain closer to the real world. The proposed learning—planning—transfer
loop converges to a policy trained mostly in the simulator, which however
behaves optimally in the real world. One of the difficult parts of this algorithm
is tuning the CycleGAN to converge and recognize when it actually converged.

In [Appendix Al we also show a prerequisite for most of the work presented
in this thesis—a plausible yet fast method for simulation of tracked vehicles.
It has been released as open source and to the best of our knowledge, it is
the first plausible open-source implementation of non-deformable tracks for
mobile robots.

. Future Work

Safety and deep neural networks in RL still have many open questions. We list
some that we find the most interesting and which we would like to continue
investigating.

The safe exploration approach by [Hasanbeig et al., 2020] seems to be the
most practical for mobile robots. It does not require deep theoretical analyses
of the dynamics model, safety or reward function. Instead, it only requires
an oracle that can label actions and states in the immediate vicinity of the
agent as either safe or unsafe. The method, however, shows no clear way how
to transfer it to real robots in large state and action spaces. In simulation,
implementation of the oracle is straightforward. We would like to investigate
if it is possible and practical to construct such oracle also for the real robot
with its imperfect sensing and all other complications.

Another promising research path is extending the method from [Part IIT
with a tighter feedback between the CycleGAN and the learning part. If the
CycleGAN knew not only the gradients with respect to its discriminators,
but also the gradients with respect to the policy, the learning process could
be more stable and it could provide a convergence measure. Conversely, if the
policy will know the limitations of the CycleGAN, it can learn to compensate
for them. The review of relevant literature in [Part 111 also shows many ways
of improving convergence properties of GANs. And, of course, we would like
to integrate the safety constraints from CREPS together with this algorithm,
which would yield safe deep reinforcement learning.
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Appendix A

Tracked Vehicles Simulation

This appendix presents our novel technique that allows for both computation-
ally fast and sufficiently plausible simulation of vehicles with non-deformable
tracks. Such simulation model was a requirement for many experiments
described throughout this thesis.

The method is based on an effect we have called Contact Surface Motion.
A comparison with several other methods for simulation of tracked vehicle
dynamics is presented with the aim to evaluate methods that are available off-
the-shelf or with minimum effort in general-purpose robotics simulators. The
proposed method is implemented as a plugin for the open-source physics-based
simulator Gazebo using the Open Dynamics Engine.

The text of this appendix is largely based on our work:

® Pecka, M., Zimmermann, K., and Svoboda, T. (2017). Fast simulation of
vehicles with non-deformable tracks. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6414-6419,
Vancouver, Canada. IEEE. DOI: [10.1109/IR0OS.2017.8206546

It has been edited to fit the thesis structure and goals.

. A.1 Introduction

It is common in robotics research that the initial development of algorithms
is first conducted in a simulator or game engine to avoid excessive wear
of the real vehicle. In this phase, approximate simulation methods usually
suffice, differing by the level of approximation and computation time. General-
purpose simulators like Gazebo, V-REP, Webots, MORSE and Actin are often
used for this task [Drumwright et al., 2010], providing various approximate
motion models implemented in their physics engines (ODE, Bullet, Havoc).

Simulation of wheels is straightforward in these simulators, thus all of
them provide means to simulate wheeled vehicles, including skid-steer motion
of multi-wheel vehicles. However, there is no straightforward approach for
tracked vehicle simulation, thus this motion model is not available in most
simulators. After an exhaustive search, only two simulators were found
that provided a tracked robot in their robot model library—the commercial
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simulators Webots and V-REP. However, none of these implementations is
both plausible on difficult terrain and computationally light.

The most plausible and general simulation methods for rubber belts are
based on finite elements analysis, where the belt is subdivided in many small
elements that interact in a defined way. We omit this class of methods here
due to their inherent excessive computational complexity which makes them
impractical for quick algorithm prototyping. Further argument for omitting
these methods is that none of the most used open-source dynamics engines
used in robotics supports simulation based on finite elements.

In this appendix, we present a novel technique for non-deformable tracks
simulation, which we implemented in the open-source simulator Gazebo
. The method provides a fast, simple and plausible simulation of non-
deformable tracks with minimal changes to the simulator code and no changes
to its physics engine (ODE). We would like to emphasize that our motivation
is to have a fast and plausible method that can be easily integrated into
existing robotics simulators and does not require implementation of state-of-
the art physics engine components (which are usually absent in the robotics
simulators).

We compare this method to other already known motion models. Finally,
we propose a set of metrics that allow to compare the methods in terms of
plausibility, computational time, and the range of track types that can be
simulated by each of the respective techniques.

Figure A.1: Track models. Top left: A vehicle with chain-like deformable
tracks. This is the model available in model database of the V-REP simulator
(courtesy of Qi Wang). Top right: Non-deformable track model used for the
proposed method. Bottom left: Track approximated by 4 wheels. Bottom
right: Track made of 2 cm plates with grousers.
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B A2 Types of Caterpillar Tracks

To clearly specify the type of vehicles this work is focused on, a short taxonomy
of track types follows.

Based on the material the track is made of, the two basic types are metal
tracks and rubber tracks. Metal tracks are usually made of many small track
plates connected together with hinge-like joints. They are used wherever
heavy load, high reliability and easy repairability are required. Rubber tracks
are made of a continuous steel-reinforced band of rubber. Their common use
cases are lighter tracked vehicles (like robots) and conveyor belts.

Another distinctive feature of different track types is the deformability of
the outer shape of the track. The deformable track systems need a set of
inner (sometimes also outer) wheels keeping the track approximately in the
required shape and providing suspension (see |[Figure A.1). The track can
bend in between the wheels, hence the name deformable tracks. Metal tracks
are usually deformable, and also deformable rubber tracks exist.

Non-deformable tracks have solid guides (infills), which prevent the outer
belt shape from bending and deformation (see |[Figure A.1)). This design is
often chosen for rubber tracks, and it is the type this comparison is focused on.

A special category—conveyor belts and escalators—may be added to this
taxonomy. In many design principles they are similar to the tracks for vehicles,
but the main difference is they are always fixed to the environment and thus
have no dynamics as a whole.

Independently from the above categories, tracks can be equipped with
grousers. These protrusions enlarge the contact surface and help to increase
traction in soft materials (depicted in Figure A.1).

B A.3 Related Work

Depending on the purpose of the simulation, either very precise and detailed,
or approximate models can be used. The former ones have been studied
extensively in literature, whereas the approximate models, due to their
triviality and inaccuracy, have not been examined profoundly despite their
frequent use in nowadays robotics.

B A.3.1 Precise Models

Simulation of the deformable tracks can be completely set up using existing
robotics simulators—the track consists of a set of solid track plates connected
with hinge joints, several wheels and, possibly, suspension of the wheels. All
these components are available in simulators like Gazebo, Webots or V-REP.
However, this type of simulations is both computationally intensive and very
unstable for the high number of constrained dynamic elements [Kenwright
and Morgan, 2012]. Only the V-REP simulator provides a reliable simulation
of this type, and many parameters have to be very finely tuned for it to
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work. [Sokolov et al., 2017b| tried to implement this method in Gazebo, but
the reported results are unsatisfactory.

When the general-purpose simulators fail, specialized simulators were
developed to simulate the deformable track dynamics. [Wallin et al., 2013
compared several formulations of the mechanical joints when applied to
metal tracks. They conclude that each formulation has its advantages and
disadvantages and has to be chosen with respect to the specific use-case.

As discussed in the introduction, considerable effort is devoted to simulation
of tracks using the Finite Elements Analysis |Arias, 2012|, [Ma and Perkins!
2006]. But the precision and computational demands are of higher orders
than the methods we focus on.

In agriculture and military research, the track-soil interaction is of high
interest (mainly due to sinkage of the track plates). Most of these works
seem to only consider planar motion of the vehicle [Ferretti and Girelli.
1999, Janarthanan et al., 2012, Rubinstein and Hitron, 2004] and mainly
concentrate on computing correct sinkage-induced behavior. [Yamakawa and
Watanabe, 2004] provide a fully three-dimensional simulation taking into
account the track-soil interactions and wheel suspension.

B A.3.2 Approximate Models

Common feature of the models described in the previous section is that they
properly simulate some effects, but are either very computationally intensive,
or neglect some other important effects (they e.g. assume motion on flat
ground with small obstacles only).

We are not aware of any approximate model for the deformable track type,
because its behavior is highly nonlinear and it essentially requires to model
the individual parts of the track separately. The rest of this section thus
concentrates on approximate models for non-deformable tracks.

In some environments, only flat ground is present (e.g. in household
robotics or storehouse helper robots). Then there is effectively only a very
small difference between a tracked robot and a 4-wheel robot with skid-steer
control. In such scenarios, simulating the track by 4 wheels may be sufficient
(with synchronized velocity of the wheels on each side).

In some cases, the tracks can be treated completely passive and the robot
motion can be roughly estimated by setting zero friction to the track surface,
and pushing the robot with a virtual force instead of driving the tracks. This
force can be applied via a P(ID) controller, so that the robot achieves the
desired velocity and keeps it. However, the usual effects of friction can not be
simulated. Consequently, the robot can not stand on a tilted plane without
control force (which the real robot can do).

When negotiation of obstacles needs to be accounted for, the 4-wheel
approximation would fail because the robot could not support itself on
obstacle edges by the middle parts of the tracks. In this case, the problem
is often solved by putting more virtual intersecting wheels inside the track.
This approach has been tested in [Sokolov et al., 2016], and is available as
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a predefined model in V-REP and Webots simulators. The model still uses
the skid-steer wheel control with synchronized wheel velocities on each side.
On one hand, it has problems imitating the skid-steer behavior properly.
On the other hand, the robot is able to overcome some obstacles and can
support itself by any part of the track, and the motion can be initiated in the
“physically-correct” way by applying torque to the wheels. But the geometry
of such model does not correspond to the real geometry, which is why these
models cannot plausibly simulate e.g. climbing up a staircase. We have
observed in jsection A.5|that this model also gets stuck in some cases where
the real robot would continue going. These models also do not work very well
with the standard friction pyramid approximation of friction direction—it is
instead needed to use the more precise (and more computationally expensive)
friction cone model [Drumwright et al., 2010].

The V-REP simulator offers another method of approximate simulation,
which is only suitable for conveyor belts and other static elements. It bypasses
the physics by directly setting linear velocity of the whole conveyor belt
mechanism, letting it interact with other bodies, and resetting all forces that
acted on it afterwards. This way, the conveyor belt can exert forces on objects
colliding with it, but at the same time, it stays on its place unaffected by any
kind of dynamics (because the forces are zeroed-out each simulation step).

B A.3.3 Skid-steer Motion

The slippage in the skid-steer behavior is an essential part of motion of
tracked vehicles. While it automatically emerges from the precise simulation
models as a result of track tension and other forces acting on the individual
parts of the track, a kinematic model is also available for approximate or
kinematics-only simulations.

[Martinez et al., 2005] define virtual points called Instantaneous Centers of
Rotation (ICR) which depend on the desired turning radius and on a coefficient
called steering efficiency. The robot follows a circular path centered at the
ICR and if the steering efficiency is equal to 1, the motion is the same as the
motion of a geometrically equal differential-drive wheeled vehicle.

[Janarthanan et al., 2011] extend this theory for tracked vehicles with
road wheels.

. A.4 Model Based on Contact Surface Motion

Our novel method exploits the dynamic simulation formulation as Linear
Complementarity Problem (LCP), which is used in ODE [Smith et al., 2005]
and other robotics simulators. It does not, however, depend on any particular
LCP solver implementation.
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B A.4.1 LCP Formulation

The dynamic simulation problem is an application of Newton’s second law:

d(M4)
dt

F=Ma= (A.1)
where t is time, F' is the force acting on the dynamic system, M is the mass and
inertia matrix, and q is the linear and angular velocity of the bodies (which is
the derivative of the system state q). The force F is split into external force
Fe and constraint force Fo [Kenwright and Morgan, 2012|, which is a set of
forces generated by joint constraints that keep joint constraints valid in the
next time step.
The constraints are written in the form

Clq)=Jq>0 (A.2)

where J is the constraint Jacobian. An observation in [Kenwright and Morgan!
2012| states that the direction of the constraint force is given by J, so it is
sufficient to search for the constraint force magnitude A (so that Fe = J A).

In simulation, the derivative is discretized into short time steps At (usually
1 ms) and the state of the system is integrated step-by-step using Euler’s
integration [Kenwright and Morgan, 2012|. The state of the system in the
next time step n + 1 can be expressed as

dn+1 =dn + Vn+1At

where the new velocity vector vy 11 (corresponding to ¢ in the continuous
setting) is obtained from |[Equation A.1}

Vi1l = Vn+ M Y (Fe+ Fo)At
=vp+ M Y Fe+ JN)AL

The unknown constraint force magnitude A is the solution of the following
LCP [Kenwright and Morgan, 2012]:

JMYITAAL + J(va + M FoAt)
given A\ > 0, J(vp + M 'F.Al)
(J(va + MTIFAL)TA

>
>

0
0
0

B A.4.2 Contact Constraint Equations

In each time step, when links L1 and Lo collide, a set of contact points {Ci}i]\;[)
is generated at places where the links touch or penetrate each other. Every
contact point is assigned a contact joint, which is a temporary constraint
between L and Ls. The set of constraints yielded by the contact joint
consists of a position constraint (repelling the two links from each other
along the contact normal), and a velocity constraint for friction (stopping
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parallel motion of the two links), which often utilizes the Coulomb friction
representation [Trinkle and Pang, 1997,|Kaufman et al., 2008|.

Linear velocity of L; is denoted by vy, angular velocity by wy, and rq; is the
vector from the center of L to Cj; respective definitions hold for Lo. Further,
t; denotes the main tangential friction direction (which is perpendicular to
the contact normal).

The approximate velocity constraint for Coulomb friction at contact point
C; with friction coefficient p; is [Trinkle and Pang, 1997]:

oC;
ot

= (V2 +wz xrai — (Vi +wi Xry3)) =0 (A.3)
—pi <A < pi (A.4)

which can be interpreted as “stop any motion in direction t;”. The LCP
solver tries to find magnitude of the friction force in direction —t; (which is
bounded by p;) that would satisfy this equation.

B A.4.3 Contact Surface Motion Model

With the previous definitions, our novel method can be described as a mod-
ification of [Equation A.3. To account for the desired track velocity vy,
Equation A.3|is adjusted to:

oc;

o
which might be interpreted as “find a force that would keep relative motion
of Ly and Loy at velocity v;”. With this change, the model will move just by
applying the modified friction constraints and setting v;.

Nevertheless, this model is not able to correctly simulate grousers. If the
real track has grousers, one way to add a similar effect to the simulation is to
increase the friction coefficient.

There are more precise models for contacts with friction [Kaufman et al.,
2008|, but the practical experiments have shown that even the friction pyramid
approximation used in ODE is sufficient for our method to work.

This method can be also easily used for tracks of various shapes. The only
requirement is to be able to compute the normals of contact points on the
tracks.

Bl A.4.4 Enabling Skid-Steer Motion

The last part to be defined is the friction direction t;. If only forward motion
is required, it can be simply set to be parallel to the tracks. However, this
setting causes problems when the robot should turn around using skid-steering
motion (since the friction forces are not consistent with the turning maneuver).

Here we connect the dynamic simulation with the kinematic model of
tracked vehicle motion by Martinez et al. introduced in [section A.3.3| The
whole vehicle is said to be following a circular path centered at ICR (or
driving straight if JC'R is at infinity). Thus, we know the desired trajectory
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of all contact points on the track, and we set each direction t; to be tangent
to this trajectory, see [Figure A.2

Implementation of the proposed method and the wheel-approximated tracks
was merged into the Gazebo simulator [Pecka, 2017).

i W (@M

:

Figure A.2: Instantaneous Center of Rotation. Left: A schematic view of
the IC'R. If the vehicle doesn’t slip to the sides, IC'R lies always on the depicted
horizontal line passing through the centers of the tracks [Martinez et al., 2005].
The distance of IC'R from the center depends on forward velocity v, and angular
velocity w, (inverse kinematics), or the speeds of the left and right track V; and
V.. (forward kinematics). Right: Computed directions of the friction forces t;
(red lines) for the case where ICR lies in the center of the red disk. The friction
forces are perpendicular to the (black) lines connecting the contact points with
ICR.

B A5 Comparison of Models

In this section, a comparison of methods of modeling non-deformable tracks
is presented.

B Ab5.1 Tested Models

The tested models are described in the following sections (and depicted
in [Figure A.1). Each model is shortly introduced, and an abbreviation for
it is defined, which is used throughout the rest of the text and figures. All
the tested models differ only in representation of the main tracks—all other
properties, such as mass, inertia, shape etc. were the same for all models.

With each of the models, identification of the most realistic set of parameters
was done. The optimized parameters were always linear and angular gain—
ratios that convert control inputs from simulator to velocity commands for
the models. Other parameters were added only for the models they make
sense with, and consist of steering efficiency and friction coefficients in the
first and second friction direction.

First, we tried to manually find a suitable set of parameters and estimated
the ranges for each of them. Then we did 5 iterations of optimization, in each
of which we examined 5 samples from a multivariate Gaussian distribution
centered on the so far best set of parameters (with covariance derived from
the estimated ranges). Examination of each sample consisted of traversing all
defined scenarios with model settings taken from the sample, and summing
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up the weighted metric values (defined further in this section). To account
for the uncertainty in the simulator, each traversal was tried 3 times and the
metric value was averaged over these trials.

B Model based on Contact Surface Motion

This is the novel model shortened as CSM.

B Wheels instead of tracks

Model with 4 wheels instead of each track (4wheels) or 8 wheels (8wheels).
All wheels are velocity-controlled using a skid-steer wheel control mechanism
(with wheels on each side synchronized in velocity).

B Subdivision to plates

Model with belt subdivided into 10 cm plates (plates10) or 2 cm plates
(plates2) interconnected by hinge joints, plus sprocket and idler wheels.
Versions with grousers attached to the track plates are shortened as plates10g
and plates2g. The inner space of the track is filled with a solid box which
can collide with the track plates, thus emulating the non-deformability of
the track. Only the sprocket wheel is controlled, using torque control. This
model requires more tuning in the simulator. To simplify it, the sprocket
wheel is represented by a cylinder with infinite friction with the track plates
(so that it efficiently transfers force to them without the need to model the
teeth and their interaction with the plates). Further, lateral motion of track
plates has to be avoided (otherwise, they would slip off the track very easily).
This would be best done with a planar joint, which is however not available
in Gazebo/ODE. As a workaround, placing two virtual vertical plates to the
sides of each track (that collide only with the track plates) yields a similar
behavior (although it is not ideal).

B No friction

Model with zero friction between the tracks and ground (no__friction). The
collision shape of the track is the same as in the CSM model, but the friction
of the track is set to zero, and the whole model is force-controlled by applying
a virtual force at its center of mass. The applied force is always perpendicular
to the vertical axis of the robot.

B The real robot

The real robot was also part of the test. It is the Absolem platform described
in section 2.2l Position of the robot in 6D space was measured by an IMU
combined with track odometry and ICP laser SLAM [Kubelka and Reinstein.
2012].
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B A5.2 Test Scenarios

The models were tested in the following scenarios. Each scenario specifies
a different metric showing how successful the model was, and was selected
specifically to discover weak points of the models. All the scenarios start with
the robot in rest, no initial speed, forces or torques. A view on the obstacles
in the scenarios is provided in

CPU time was measured in all scenarios. It represents the (real-world) time
difference between the start of first scenario execution, and the end of the
last scenario execution (so it is summed up over all scenarios for each model).
The simulators were running with high process priority without an upper
bound on performance. The time complexity could be probably lowered for
most of the models by adjusting the dynamics engine for the particular case;
our measurements show CPU time needed by the implementation in the stock
simulator without any code modifications.

Where a metric refers to the error from real robot trajectory, it means the
scenario was traversed with the real robot, and the trajectory was recorded
as a reference.

o
NS>

Figure A.3: Obstacles used in test scenarios. Obstacles that appear in
the test scenarios (from the left): ramp, pallet, staircase. Also flat ground was
used in scenarios. The models of the obstacles are 1:1 models of the obstacles
traversed by the real robot.

B Straight drive

Drive straight on a building floor using velocity 0.3 m.s~! for 10 seconds.
Metric: distance from point (3.0,0.0,0.0)7.

B Rotating in place
Keep the center at one place while rotating at 0.6 rad.s™! for 10 seconds.
Metric: Angular distance from heading 6.0 rad, metric distance from the

starting point.

120



A.5. Comparison of Models

B Circular path

Follow a circular path by driving left track at velocity 0.1 m.s~! and right
track at velocity 0.3 m.s~! for 10 seconds. Metric: Sum of positional errors
(from real robot trajectory) sampled at 10 Hz.

B Ramp

Drive straight on a tilted ramp using velocity 0.3 m.s~! for 10 seconds. Metric:
Sum of positional errors sampled at 10 Hz, sum of angular errors sampled at
10 Hz.

B Staircase

Climb down a staircase using velocity 0.3 m.s~! for 10 seconds. Metric: Sum
of positional errors (from real robot trajectory) sampled at 10 Hz, sum of
angular errors sampled at 10 Hz.

B Stand on staircase

Stand on a staircase with no control commands for 10 seconds. Metric:
Distance from the starting point, angular offset from the starting orientation.

B Pallet

Climb over a pallet using velocity 0.1 m.s~! for 30 seconds. Metric: Sum
of positional errors (from real robot trajectory) sampled at 10 Hz, sum of
angular errors sampled at 10 Hz.

I Back and forth

Drive using velocity 0.2 m.s~! back and forth 10 times, with 2 seconds
between every direction switch. Metric: distance from the starting point.

B Ab5.3 Test results

Each model was tested 10 times in each scenario, and the values of the metrics
were averaged over these tests.

The detailed results are shown in [Table A.1Il A summary extracted from
the test results is given in [Table A.2.

From the table, it follows that the track plate models are slower by an
order of magnitude or two than the other models. We have also observed,
that the 10 cm plates are too rough approximation of the smoothly curved
belt, and the resulting model’s motion could be described as “bumpy”. Last
observation for track plate models is that without grousers, the robot is often
not able to climb up the pallet. That, however, corresponds to the expected
real behavior of a belt without grousers.
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The wheeled models are computationally fast and provide good plausibility
in most scenarios. They suffer from unrealistic slippage in the stand on
staircase scenario, because the friction forces have unrealistic directions. The
pallet scenario showed to be a big problem for these methods—if a sharp edge
(e.g. a step or pallet edge) touches the track in a point where neighboring
wheels intersect, the model suddenly stops moving as a result of unrealistic
forces and their directions. We think it is not a bug in our implementation,
since the same behavior was also observed with the wheeled track model
available in V-REP simulator (which even uses a different dynamics engine—
Bullet).

The no__friction model provided good results in all tested scenarios, except
stand on staircase. That failure is obviously caused by the missing friction
between tracks and ground. It was the fastest tested model.

The proposed Contact Surface Motion model was the second fastest tested
model. It provided good results in all tested scenarios except circular path.
Here, the parameter optimization was not able to find a set of parameters
that would provide good performance for both rotate in place and circular
path; with the best set of parameters, the robot was turning too quickly in
the circular path scenario. Together with no_ friction, only these two models
traversed the pallet without problems.

. A.6 Conclusion

Simulation of tracked vehicles is a complicated task even when it is narrowed
down only to simulation of non-deformable tracks. The presented Contact
Surface Motion model proved to be one of the fastest methods that still
provides highly plausible results in most cases. It is the first computationally-
light method allowing the use of precise geometry of the tracks while keeping
plausible dynamic behavior. It can be utilized not only for simulation of
tracked vehicles, but also for conveyor belts, treadmills and any other kind of
moving planar surfaces.

The Gazebo plugin that implements tracked vehicles using Contact Surface
Motion was merged to mainline Gazebo on May 2019. It has been used by
several other robotics labs since then, including CSIRO Data61, LIRS at
Kazan Federal University, or TU Eindhoven.
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Metric|csm (proposed) |4wheels 8wheels |no__friction
Straight dy 0.1 +0.0 0.1 +0.0 0.1+0.0 0.2+0.1
Rotate dy, 0.1+0.0 0.5+ 0.0 1.6 £0.0 0.1+0.1
Circular Sody 157.8 £ 5.7 455+ 1.7 116.9+ 6.4 (47.44+ 2.2
Back&forth |dg 0.0£0.0 0.0+ 0.0 0.0+0.0 0.1£0.0
Ramp Sdy, 1.8+£0.0 2240.1 1.8+0.0 2.0£0.0
Sdy 8.0+ 2.7 46+1.3 5.3+ 0.8 16.8 +4.3
Staircase > dy 14.0+£0.8 10.24+0.1 10.7+0.3 |17.1+04
> dy 121+1.0 16.3 + 2.3 152+0.9 |13.0+3.7
Stand on st.|d 0.0£0.0 0.1£0.0 0.2+0.0 0.2+0.0
d,, 0.0+0.0 0.0+0.0 0.0£+0.0 0.1£+0.0
Pallet > dy, 2764+09 277+ 12.5 283+ 17.7 |31.8+1.0
Sody 49.94+ 2.5 116.9 £ 76.2 |157.8 +46.6/45.2+ 3.4
CPU time ‘time ‘38.9 +14 475+ 1.7 8244+33 [33.0+1.3
Metric|plates10 plates2 plates10g |plates2g
Straight dy 1.6 +0.0 1.3+ 0.0 1.6 +0.1 0.5+0.0
Rotate dy, 1.4+£0.6 1.0£0.1 2.51+0.2 3.1+0.0
Circular > dy 210.5 4+ 30.6 189.5 + 4.7 564.9 + 36.3/195.7 + 6.5
Back&forth |dg 1.3+0.1 0.1£0.0 2.6 £0.2 0.3+0.0
Ramp Sdy, 46=+1.1 26+04 10.5+4.1 |34.7+1.9
Sdy 36.3+1.6 61.74+ 0.2 36.9+3.5 [121.9+1.1
Staircase S dy, 36.0 £ 31.3 84+1.8 25.1+11.1 |455+ 1.8
> dy 111.5+5.9 86.8 + 2.5 14.4+70 |163.0£1.6
Stand on st.|dy 0.6 £0.6 0.2+0.0 0.2+0.2 0.2+0.0
dy, 04+04 0.1£+0.0 0.2+0.2 0.1£+0.0
Pallet > dy, 164.4 +151.5 |47.6 £4.7 83.0 £ 13.1 |64.3+2.6
> dy 508.3 + 146.3 181.1 + 3.8 198.6 + 72.7|78.4 + 1.2
CPU time |time [254.9 4 4.9 2282.6 + 112.7/203.5 + 8.3 [2241.3 + 31.8

Table A.1: Numerical comparison of the simulation methods.

Numer-

ical results of the conducted experiments. Each model-scenario pair was executed
10 times, and the averages and standard deviations of the defined metrics are
shown in the table. Shorthand d; means the distance to target point metric (units
are meters), dg; is distance from start. Term d,, denotes the smallest angular
offset from target roll-pitch-yaw orientation (units are radians). Terms . d; and
> d,, stand for the sum of positional errors or sum of angular errors respectively
(with units meters and radians). CPU time (in last row) is not a scenario, but as
it is aggregated over all scenarios for each model, we display it as a row of values.
The duration of all scenarios in simulation time is 110 seconds, so a run-time of
30 seconds means the simulation ran at 1—31 real-time speed on the test notebook.
Best results in each scenario are highlighted in bold for better orientation.
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CSM | Wheels | Plates | No friction
Computation speed v v X v
Plausibility on flat surfaces v v v v
Plausibility on rough terrain| X v X
Non-deformable tracks v v v v
Deformable tracks X X v X
Grousers X X v X
Table A.2: Summary results. This table presents an overview based on

the results of the conducted experiments. Sign “v'” means that the model is
suitable for /supports the given use-case. Sign “x” means that the method is
not suitable for/does not support the given use-case.
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Appendix B

Involved International Research Projects

Throughout the course of my Ph.D. study, I was part of one European
research project and one international robotics challenge team. Both gave
me priceless experience with the practical and real-world robotics. Taking
the algorithms out into the wild, giving the remote controllers to unknown
people and watching them trying to find the physical limits of the systems
was a big motivation in making all the algorithms robust and general. Or,
in case of the robotics challenge, sending the robots into a deep and dark
tunnel and knowing that for the following hour, they will have to “take care
of themselves”, having no safety people around that would help a stuck robot
or stop it a second before a self-destructive action.

Making the algorithms both robust and user-friendly is a long-lasting
process, but it bears its fruit. There were many simpler ways or approaches
to the problems we tackled, but we knew that solving only the simple cases
would not be sufficient. This was the drive that forced us going the difficult,
but scientifically more interesting way. Each of the projects had different
requirements in general, but the basics related to my work were the same—
help the robot in traversing difficult parts of terrain. Thus, the project
requirements were well aligned with the goals of this thesis, which helped
keeping focused.

B B.1 TRADR: Long-Term Human-Robot Teaming
for Disaster Response

The main goal of the EU FP7 research project TRADR was to explore ways in
which robots and humans can form a cooperating human-robot team in Urban
Search&Recsue scenarios [Kruijff-Korbayova et al., 2015]. Following a user-
centric design methodology, we iterated countless times the development of
the software with practical tests with first responders who gave us feedback.
We developed a persistent system for heterogeneous teams of robots and
humans that can cover long-lasting, even multiple-day scenarios.

From the robot software developer point of view, one of the most important
features of this project was developing tools that allow working in shared
autonomy mode. In this mode, the robots should autonomously perform
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“lower-level tasks” (e.g. flipper control), whereas the “higher-level” control
still had to be in the hands of the end-users. Generally, the low-level control
may sometimes get into trouble, and in such cases it is very important to
find an efficient way to communicate this to the operator. But sometimes
the operator himself can try to get the robot into trouble (e.g. because
of cognitive overload), and this is where safety comes into play and has
to autonomously decide that the robot should rather stop than follow the
operators’ commands.

When the team of robots is equipped with the described kind of shared
autonomy functions, it gets much easier for the operator to drive the robots.
And even a higher level of autonomy can be reached—e.g. one operator
supervising (semi-)autonomous work of several robots.

In the time frame of TRADR project, a big earthquake struck Italy. The
Italian first-responders asked the TRADR team to get to the most destroyed
city of Amatrice and use the robots to examine the level of damage to the
Sant’Agostino and San Francesco churches [Kruijff-Korbayova et al., 2016].
The robots did successfully investigate both churches and provided Vigili
del Fuoco (Italian fire brigade) 3D maps and RGB images of the interiors of
the churches. The end-users were extremely satisfied both with the data the
robots gathered and with the fact they did not have to risk human lives to
gather this essential information.

The project has ended in 2018 getting the best review rating possible. For
this, a big “thank you” belongs to all the colleagues who took part in this
journey.

B B.2 DARPA Subterranean Challenge

In DARPA SubT Challenge, the goal is to build an almost autonomous team of
robots that will explore and precisely map a previously unknown underground
space. Providing situational awareness to the single mission operator, as well
as detecting interesting artifacts throughout the course, is crucial for scoring
in the challenge. The underground severely limits the communication between
robots and with the base station at the tunnel entrance, which results in
the need for a high degree of autonomy. The single mission operator can
command the robots, but only as long as communication link is maintained;
to get a better score, the robotic team has to be able to autonomously explore
the unknown spaces and after some time return to the base reporting what
they found.

Our team, CTU-CRAS-Norlab (or, at the beginning, only CTU-CRAS),
develops a heterogeneous team consisting of tracked, wheeled and multi-legged
ground robots and medium-sized UAVs. As the teams are not permitted to
gather any prior knowledge about the competition venues, all the autonomous
robots have to be prepared to drive in unknown terrain. The organizers can
even make the courses more difficult by adding artificial obstacles. All of this
results in the need for high quality safety estimation and terrain traversal
capabilities.
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In the first competition round held in August 2019 in Pittsburgh, PA, USA,
our team scored the 3rd place out of 11 competing teams [Roucek et al..
2020]. The terrain in the coal mine was not difficult, so the autonomous
traversal capabilities were not tested very thoroughly and only a simplistic
traversal /self-protection algorithm was enough.

The second round of competition took part in February 2020 near Olympia,
WA, USA. Among the 10 competing teams, we were again able to rank 3rd,
and we again won among all teams which are not funded by DARPA. This
round consisted of more complicated industrial terrain, but as we expected
that the only real obstacle the robots will need to traverse will be staircases,
we deployed a handcrafted control policy which was tuned to work well on
staircases.

However, the following competition rounds will certainly include non-
trivial obstacles, which will thoroughly test the motion capabilities. We are
developing a more capable autonomous traversal algorithm which will not
only control the flipper motion, but will also have the ability to reposition
the robot so that it encounters obstacles in the most appropriate way.
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Patrolling Task8 id 9 Patrolling Task8 fid 11

Figure B.4: TRADR: Operator Control Unit view of two robots autonomously
patrolling a specified area. The orange-white cones specify places to patrol
(nodes), and the yellow lines visualize the patrolling graph. Each node displays
its idleness (how long it has not been visited), and the control algorithm tries to
minimize the idleness of all nodes.
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Figure B.5: SubT Challenge: The three UGVs ready to start a training mission.
Strong on-body illumination is apparent in this photo, and was required in the
dark parts of the tunnels in the competition.
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Figure B.6: SubT Challenge: Operator console showing mostly maps of the
explored environment, detected artifacts, and if connection is good, also video
stream from all exploring robots.
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Figure B.7: SubT Challenge: An Absolem robot in front of the competition
tunnel entrance. It is observing calibration marks (AprilTags) to align its
coordinate frame with the competition coordinate frame.
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Figure B.8: SubT Challenge: Three UGVs and one UAV (hard to spot) explore
the competition tunnel at the same time.
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Appendix C

Open Source Contributions

A big part of the successes my teams have achieved was thanks to the
use of open-source software. Particularly, Robot Operating System (ROS)
and Gazebo simulator. But as no software is perfect, we developed many
improvements. As a thanks to the community who created these great
projects, I contributed and published some of the improvements. And I would
like to thank the numerous reviewers who helped to make my contributions
even better.

All pull requests can be found via github.com search’| |

Selected contributions to ROS-related projects (descriptions are taken from
the repositories):

® ros-planning/geometric__shapes: Representation of geometric shapes.
18 pull requests, 12 accepted.

® ros/ros__comm: ROS communications-related packages, including core
client libraries. 10 pull requests, 4 accepted.

® ros-planning/moveit: The Movelt motion planning framework. 9 pull
requests, 4 accepted.

® ros/xacro: With xacro, you can construct shorter and more readable
XML files by using macros that expand to larger XML expressions. 6 pull
requests, 4 accepted.

® ros-simulation/gazebo__ros_ pkgs: Wrappers, tools and additional
APT’s for using ROS with Gazebo. 5 pull requests, 3 accepted.

® ros-perception/laser_ filters: Assorted filters designed to operate on
2D planar laser scanners. 4 pull requests, 2 accepted.

® ros/geometry2: A set of ROS packages for keeping track of coordinate
transforms. 3 pull requests, 1 accepted.

® ros/robot__state_ publisher: Allows you to publish the state of
a robot via the “tf” transform library. 2 pull requests, 1 accepted.

Ihttps://github. com/pulls?page=3&q=is%3Apr+authory3Apecil
“https://github.com/osrf/gazebo/search?q=author3Apecil&type=Commits
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C.

Open Source Contributions

Selected contributions to Gazebo-related projects:

osrf/gazebo: Open source robotics simulator. 14 pull requests, 9 ac-
cepted.

osrf/gazebo__tutorials: Tutorials for gazebo. 7 pull requests, 3 ac-
cepted.

ignitionrobotics/ign__common: Ignition Common is a component in
the ignition framework, a set of libraries designed to rapidly develop
robot applications. 3 pull requests, 2 accepted.

ignitionrobotics/ign__ math: Ignition math library is a general pur-
pose math library for robot applications. 2 pull requests, 2 accepted.

Selected maintained ROS packages:

pecil /robot__body__ filter: Filters the robot’s body out of laser scans
or point clouds. Released in ROS Melodic.

pecil /rosbash__params: Tools for writing ros-node-like bash scripts.
Released in ROS Kinetic and Melodic.

pecil/dynamic__robot__state__publisher: Improved  ROS
robot__state_ publisher which can update the robot model via
dynamic_ reconfigure. Released in ROS Kinetic and Melodic.

pecil /tf2__server: An upgraded tf2_ros/buffer_server which allows
clients to request only subparts of the TF tree. Released in ROS Melodic.

tradr-project /tensorflow__ros_ cpp: Catkin-friendly C++ bindings
for tensorflow.

tradr-project/tf_remapper_ cpp: More efficient version of
tf/tf remap able to handle TFs at kHz with tens of subscribers. Released
in ROS Indigo, Lunar, Kinetic and Melodic.

tradr-project/static__transform__mux: A helper node that makes
sure everybody knows about all static transforms, even if they are
published by multiple publishers. Released in ROS Indigo, Lunar, Kinetic
and Melodic.

tradr-project /nimbro__network: ROS network stack: Topic/service
transport over unreliable network connections. Fork of AIS-
Bonn/nimbro__network with many improvements.

pecil /gazebo__custom__sensor__preloader: Gazebo plugin that al-
lows writing custom Gazebo sensors.

pecil /gazebo_ noisy__depth__camera: Noisy depth camera sensor
for Gazebo.

pecil /gazebo__rotating_ lidar: Gazebo Lidar sensor which accounts
for scanning plane motion during a single scan.
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