scheduling Aloorithms For Time-Triggered
Communication Protocols

Jan Dvorak June 2020

Scheduling Algorithms For
Time-Triggered Communication
Protocols

by

Jan Dvoradk

CzeEcH TECHNICAL UNIVERSITY IN PRAGUE
FAcuLTYy OF ELECTRICAL ENGINEERING
DEPARTMENT OF CONTROL ENGINEERING

Doctoral Thesis

Supervisor: Zdenék Hanzalek.

Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics

Submission date: June 2020

Jan Dvorak: Scheduling Algorithms For Time-Triggered Commu-
nication Protocols, Ph.D. Thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, Department of Control
Engineering, June 2020, Prague.

ii

Acknowledgments

The long way to the Ph.D. study started a long time ago when I discovered my
passion for technical disciplines. Thus, my special thanks belong to my father from
whom I inherited the passion for them and who opened the world of natural science
to me. Even if he died shortly before I started my Ph.D. study, he was a driving
force for me all the time.

The Ph.D. study would be impossible for me without my outstanding supervisors.
First of all, I express my thanks to Zdenék Hanzalek, who always had an idea
of how to improve the obtained results and how to present them to the readers
better. Unfortunately, I was never able to make it as sexy as he wanted. Despite his
busy schedule, he always finds a spot in his diary for me. Thanks to Petr Stuchlik,
who was my supervisor in SKODA company. He showed me that science has two
sides - the academic side and the industrial side - and that it is maybe the greatest
challenge to find a bridge between them. I am also grateful to Pfemek Sticha who,
even not being my official supervisor, was there to help me, and for his, maybe even
more important, positive encouragement.

Man can not be satisfied with a job without a good team, and I have been
extremely lucky and was part of an amazing collective. I thank my tablemate,
Aasem Ahmad, who opened my mind to other cultures and who forced me to speak
English every day. I am also grateful to Anna Minaeva (for showing me how far one
can get if he is working hard), Libor Bukata (for his effort to master me in C++
and Linux), Roman Véclavik (for his art of making a bright day even from a crappy
one), Istvan Modos (for competing me in Ph.D. thesis writing and, thus, forcing
me to make progress), Tonda Novék (who always make me describe everything as
rigorous as I was able to), Zdenék Baumelt (for supervising my diploma thesis and
opening the way to Ph.D. study), Svatava Petrachova (for helping me shake off all
the administrative stuff), Michal Sojka, Pavel Pisa and many others. During my
Ph.D. study, I have met many students that influenced me. Among others, I am
thankful to Martin Heller, who cooperated on the scheduling of the time-triggered
communication in the TTEthernet network in his diploma thesis.

Personal life is as important as work life. Thus, I would like to thank to at
least few of my friends Jan Hampl, Jifi Veselka, Petr Korner, Jonas Kycek, Ondrej
Hampl and Tom&s Kotek here too. They know how to set my mind at ease, even if
circumstances are unfortunate.

Last but not least, I do want to express my gratitude to my family. Whole Ph.D.
studies and this thesis would not be possible without their love and support. Namely,
thanks to my wife Eliska, who pushed me to conclude the Ph.D. study as soon as
possible and to my son Richard, who makes me postpone the thesis submission as
far as possible. I am also very grateful to my mom and sister, who helped me to find
some free time to finish the thesis and, together with my grandparents, supported
me during my whole life.

Finally, I thank SKODA AUTO company, where I attended their Ph.D. program.
This cooperation between university and industry made my narrow personal view
much wider and helped me to distinguish between theoretical and practical problems.

Moreover, this thesis has been supported by the European Union’s Horizon 2020

iii

iv

research and innovation program under grant agreement No. 688860 (HERCULES),
the Grant Agency of the Czech Republic under the Project GACR P103/12/1994
and by the Grant Agency of the Czech Republic under the Project FOREST GACR
P103-16-23509S.

Jan Dvorak
Prague, June 2020

Declaration

This doctoral thesis is submitted in partial fulfillment of the requirements for the
degree of doctor (Ph.D.). The work submitted in this thesis is the result of my
own investigation, except where otherwise stated. I declare that I worked out
this thesis independently and I quoted all used sources of information in accord
with Methodical instructions about ethical principles for writing academic thesis.
Moreover, I declare that it has not already been accepted for any degree and is also
not being concurrently submitted for any other degree.

Jan Dvorak
Prague, June 2020

vi

Abstract

Modern automotive systems present a number of new technological challenges for
developers and researchers in the field of electronic control systems. There appear
efforts to replace the originally mechanical, hydraulic, or pneumatic components with
electronic systems. Steer-by-wire, break-by-wire, or x-by-wire systems are examples
of emerging technologies, where the original mechanical connection is replaced by an
electrical or electromechanical connection. However, such an electrical connection
puts high demands on the reliability and time-determinism of the entire system, an
important part of which is the communication system. Moreover, the requirement
to use a shared communication system for the whole system, which leads to cost
savings and thus better competitiveness of the final product, is also frequent. The
problem becomes even more complicated as the number of assistance systems in
cars and, consequently, the units that need to be interconnected is increasing. In
addition, the approaching era of vehicles with autopilot features requires high
volume demanding communication, such as signals from cameras or lidars, be part
of the control loop of the system. Therefore, they have to meet high reliability too.
As a result, modern automotive systems require communication systems that are
able to transfer large volumes of data reliably and deterministically. Time-triggered
communication protocols such as FlexRay or TTEthernet have been designed for
this purpose. However, their reliability and efficiency are closely tied to the quality
of the schedule that communication follows.

This work deals with the problem of scheduling time-triggered communication
on FlexRay and TTEthernet protocols. The first part of the work focuses on the
problem of communication scheduling of FlexRay, which provides two communication
channels that can be used independently. Since electronic units can be connected to
only one channel, the scheduling method aims to determine which channel the unit
will be connected to, so that the resulting communication schedule is as efficient as
possible. The second part is also focused on creating schedules for FlexRay. Here,
however, the issue of scheduling in the development process, where it is necessary to
take into account several variants of the product and also backward compatibility
with previous products, is studied. An example of such a development process can
be found in the automotive industry, where multiple variants of a car are created
on a common platform, and they are required to be compatible with each other.
The third part of the study is focused on scheduling time-triggered communication
in the TTEthernet network. In compliance with the second part of the study, it is
required to maintain backward compatibility with its predecessor.

Each part of the study includes an analysis of related works and a formal
definition of the problem to be solved. Subsequently, the proposed algorithm that
solves the defined problem is described. The algorithm is then verified from the
qualitative and quantitative point of view, and the phenomena of given specific
problems that are reflected in the resulting schedules are studied in experiments.

Keywords: time-triggered communication scheduling, combinatorial op-
timization, real-time systems

vii

viii

Abstrakt

Moderni automobilové systémy prinaseji fadu technologickych vyzev pro vyvojate
elektronickych fidicich systému. Objevuji se snahy nahradit puvodné mechanické,
hydraulické ¢i pneumatické komponenty elektronickymi systémy. Piikladem toho
mohou byt tieba systémy steer-by-wire, break-by-wire ¢i x-by-wire, kdy ptuvodné
mechanické propojeni je nahrazeno elektrickym ¢i elektromechanickym propojenim.
Takovéto elektrické propojeni vsak klade vysoké naroky na spolehlivost a deter-
mini¢énost celého systému, jehoz dulezitou ¢asti je komunikaéni systém. Casty
je navic i pozadavek vyuziti spoleného komunika¢niho systému pro cely systém,
coz vede k finanénim tsporam a tim i lepsi konkurenceschopnosti finalntho pro-
duktu. Vse se stava jesté komplikovanéjsim problémem ve chvili, kdy se rozsifuje
pocet asisten¢nich systému v automobilech a tedy i jednotek které je mezi sebou
potfeba propojit. Blizici se éra vozidel s prvky autonomniho fizeni navic vyzaduje,
aby i komunikace spotiebovavajici znatnou ¢ast prenosového pasma, jako jsou
tfeba signaly z kamer ¢ lidaru, byla soucasti fidiciho systému a tudiz je nutné
splnit vysokou spolehlivost téz. Ve vysledku to znamend, ze moderni automobilové
systémy vyzaduji komunikaéni systémy, které jsou schopny pienést velké objemy
dat spolehlivé a deterministicky. Pro tento 1icel byly navrzeny komunika¢ni pro-
tokoly fizené casem jako je FlexRay ¢i TTEthernet. Jejich spolehlivost a prenosové
vlastnosti jsou vSak tzce svazany s kvalitou rozvrhu, dle kterého se komunikace idi.

Tato prace se vénuje problému vytvareni rozvrhu pro komunikaéni protokoly
FlexRay a TTEthernet. Prvni ¢dst se zaméfuje na problém vytvéreni rozvrha pro
FlexRay, ktery poskytuje dva komunika¢ni kanaly, které mohou byt vyuzity nezavisle.
Jelikoz mohou byt elektronické jednotky pripojeny jen k jednomu kandlu, snadzi se
metoda ur¢it ke kterému kandlu bude jednotka pripojena tak, aby byl vysledny rozvrh
komunikace co nejefektivnéjsi. Druha cast prace je také zaméfena na vytvaieni
rozvrhu pro FlexRay. Zde je vSak studovéna problematika vytvafeni rozvrhu ve
vyvojovém procesu, kdy je potieba brat v potaz vice variant produktu najednou a
navic i zpétnou kompatibilitu s predeslymi produkty. Piiklad takového vyvojového
procesu muzeme najit v automobilovém prumyslu, kdy vice variant automobilu je
vytvareno na spoleéné platformné a je pozadovano, aby byly mezi sebou kompatibilni.
Posledni, tfeti ¢ast studie, je zaméfena na rozvrhovani komunikace fizené casem v
siti TTEthernet. Stejné jako v druhé ¢asti i zde je pozadovano zachovani zpétna
kompatibility s predeslou verzi produktu.

Pro kazdou ¢ést studie je vypracondna reSerSe s rozborem piibuznych védeckych
praci a forméalné nadefinovan problém, ktery dand ¢ast fesi. Nasledné je popsan
navrzeny algoritmus, ktery nadefinovany problém fesi. Kazdy algoritmus je pak
ovéren z pohledu kvalitativniho i kvantitativniho a na experimentech jsou studovany
jevy danych specifickych problému, ktery se projevuji na vyslednych rozvrzich.

Klicova slova: rozvrhovani komunikace, kombinatorickd optimalizace,
systémy realného casu

ix

Goals and Objectives

The thesis should focus on scheduling safety-relevant time-triggered communication
on modern communication systems. The main goals, the thesis should achieve, are
the following:

e Examine literature, papers, and specifications related to the time-triggered
communication systems and find open challenges and possible improvements
in the scheduling area. Focus on the problems that obstruct introducing
time-triggered communication in the industrial sector.

e Deduce a formal description of the discovered problems. Formulate the
problem constraints and objectives while considering the safety-relevant and
time-deterministic behavior.

e Develop exact or heuristic algorithms that can solve the scheduling problems for
industrial-sized instances. The schedules have to be obtained in a reasonable
time for the product development process.

e Verify the developed algorithms by experiments. Discuss the obtained results
from the quality point of view as well as from the time complexity and
scalability point of view. Investigate the uncommon properties of the stated
problems and the proposed algorithms.

xi

xii

Contents

3

1.1 Communication systems| L. 3
[L.2 Variant management|o 4
[I.3 Objectives and constraints of scheduling] 4

jons of the thesisl. 5

[.L5__Outline of the thesisl 6

2 FlexRay Static Segment Scheduling on Two Independent Chan- |
[nels with Gateway| 9
2.1 Introductionl. 9
2.2 Problem statement| oo oo 13
2.3 gorithm|o 16
214 Experimentalresults 22
B5 _Conclusion] . .« v v v e 25
[3__Multi-variant scheduling of critical time-triggered communication |
[in incremental development process: Application to FlexRa 27
B.1 Introductionl. 27
8.2 Problem statement|o oo 31
3.3 Algorithm| 35
[3.4 Experimental results| 00000 46

70 01 57

3.6 Appendix - Benchmark instance generation procedure| 58

4 Incremental scheduling of the Time-Triggered traffic on TTEther- |

L__net networkl 61
I Abstractl. 61
4.2 Introduction|. 61
4.3 Problem statement|o 66
4 Algorithm| 69
A5 Experimentalresults 73
6 Conclusionl 86

6 Conclusions and Future Workl 87
B1 Conclusions 87
B2 Tulfillment of the Goald 89

Bibliographyi 98

[A_Curriculum Vitae] 103

[B_T.ist of Author’s Publications| 105

xiii

xiv CONTENTS

List of Figures

2.1 FlexRay communication scheme|. 11
2.2 FlexRay network with two independent channels| 14
2.3 Feasible schedules for Example 1} 15
2.4 Hypergraph for Example 1f. 0oL 17
2.5 The MILP formulation for the ECU-to-channel assignment problem| 19
2.6 'The dependence of the number ot allocated slots on the percentage |

| of common ECUs and fault-tolerant signals| 25
3.1 Example of product lifetimes], 28
3.2 Venn diagram for Variant | and Variant II, and its original schedules |

[for Example 1. . . o v o v v o 34
3.3 Venn diagram for all the three variants, and a feasible schedule for |

| the new Variant TII o v v v e e e e e e 34
3.4 Feasible original multischedule for Example 1| 35
8.5 Flow chart of the algorithm| 38
3.6 Example 2 - The conflict graph C'G for scheduling Variant IV con- |

| taining all the signals from variants I, Il and IIIf. 39
8.7 Example 3 - Process of dummy signals generation|. 42
3.8 Example 3 - Slot rescheduling in the extensibility optimization| . . . 43
8.9 Example 4: Graph Ggror coloring| 44
13.10 Distribution of signal parameters in Synth sets| 46
13.11 Distribution of signal parameters in SAE sets| 47
13.12 Ewvaluation of different scheduling techniques| 48
13.13 Ewvaluation of the non-incremental multi-variant scheduling] 50
13.14 Evaluation of incremental multi-variant scheduling] 51
13.15 Evaluation of extensibility optimization for the incremental scheduling| 52
13.16 Influence of the network parameters on the efficiency of the resulting |

| schedulel 54
13.17 The block diagram with wiring ot the evaluation system| 56
13.18 FlexRay system with six Rapid Prototyping Plattorm boards| 57
4.1 An example of the T'T'Ethernet network topology with the routing |

| and scheduling of message m; from nodel tonodeq 62
4.2 The example of the communication on a link in one cluster cycle| . . 63
4.3 Visualization of the difference between message occurrence and mes- |

| sage Instancelo oL e 68
4.4 The evaluation of the routing quality] 75
4.5 The difference between the incremental and non-incremental scheduling) 76
4.6 The average utilization of the communication over the whole topology| 77
4.7 'The porosity of the most utilized link|] 78
4.8 'The scalability of the scheduling method according to used message |
engths|. 80

XV

xvi LIST OF FIGURES

4.9 The scalability of the scheduling method according to the used

| message periods|.o e 81
4.10 The scalability of the scheduling method according to the used

| harmonic periods| L Lo 82
[4TT The scalability of the scheduling method according to the number of

| TNESSAZES| . .« v v v e e e e e e e e e e e e e e e e e e 83
4.12 The evolution ot the duration of the part ot the incremental cycle

| used by the T communication in the time domain|. 84
4.13 The histogram ot the links utilization|. 85

List of Tables

2.1 Comparison of the ECU-to-channel assignment algorithms| 23
[2.2 The number of the allocated slots of the static segment for individual |

| algorithms| oo 23

[2-3 The computation times of different algorithm variants in ms| 24
[3.1 Signal mutual exclusion matrix for Example 1). 36
3.2 U mutual exclusion matrix for Example 1| 36

| scheduling algorithm on different sets|. 53

xvii

xviii LIST OF TABLES

List of Algorithms

2.1 'The pseudocode for the iterative static segment scheduling algorithm| 16
[2.2 Heuristic algorithm for the KCU-to-channel assignment problem| . . 20

2.3 euristic algorithm for the channel scheduling problem|. 21
3.1 Reading of the original multischedulel. 39
3.2 Scheduling of unscheduled/new signals| 41
3.3 Algorithm for the network parameters exploration| 46
3. ulti-variant benchmark instance generation process| 58
3.5 Generation of the consequent interations of benchmark instances for |

the incremental scheduling. 59

LIST OF ALGORITHMS

Chapter

Introduction

We live in a period of the rapid development of new technologies. Technology
progress became a part of our lives and allowed us to live in comfort. Informatics and
electronics are among the fields which evolved most in the last decades. Electronic
systems with relatively simple functionality were huge and heavy devices fifty years
ago. The systems with much more complex functionality can be wearables today.
This advancement influenced even industries, e.g., automotive, avionic, or health
care, that tends to be somewhat conservative. The products of these industries
interact closely with humans, and any failure of a system can cause jeopardy of life.
Thus, it is necessary to be able to prove that the system behaves as expected and
to minimize the probability of system failure. The concrete example is a trend in
the automotive industry where vehicles with autonomous driving are expected to
appear in series production in the second half of the next decade. The logic of the
autonomous driving control system needs to fuse different dataflows, as signals from
the camera, lidar, and other sensors, process them, and deduce the commands for
steering, braking, etc. To perform this task in a way that the safety of passengers is
ensured puts demands on system determinism, real-time processing, fault-tolerance,
etc. It is a great challenge to satisfy all these demands.

1.1 Communication systems

Complex systems are often distributed among several control units, sensors, and
actuators. All these communication nodes need to be interconnected by a commu-
nication system that allows the exchange of information among them. Thus, the
communication system is a crucial part of the whole system, and its reliability is
strongly dependent on the reliability of the interconnection.

The communication systems can be categorized into two groups - Event-Triggered
and Time-Triggered. The approaches differ in the way the message with the infor-
mation is triggered to be transmitted into the communication system. Transmission
to the ET communication system is decided at run-time. Thus, the message can be
transmitted whenever some event occurs. These transmissions can be triggered by
an external event, e.g., change in the state of the environment, or by an internal
event, as timer timeout, for example. The main advantage of this approach is
its flexibility. The communication system can accommodate new signals or nodes
without the necessity of the system redesign. Moreover, communication is utilized
according to actual demands, which reduces unnecessary overhead. However, the
principle of the triggering makes the communication system to be nondeterministic.
In the case of a safety-critical control system, proving the correct worst-case func-
tionality of the communication system is necessary. The worst-case analysis can
ensure the correct behavior, but it also reduces all the advances of the ET.

On the other hand, the transmission of a message to the TT communication
system is triggered according to the schedule, which is determined in the system
design time. Together with the time synchronization among nodes, which is

3

4 Variant management

essential here, TT communication systems ensure time-deterministic information
exchange among nodes in the system. Thus, the reliability and easy verification
of the correct function of the communication system is obtained at the price of
flexibility loss. These benefits are essential for safety-critical systems where the use
of TT communication makes the certification process significantly shorter and less
expensive. However, the reliability of the whole TT system is dependent on the
quality of the schedule, which the communication follows. Thus, the responsibility of
the satisfying, for example, the timing constraints, is moved to the schedule designer.
To create a feasible schedule becomes a challenging task with the increasing number
of messages or requirements.

Modern communication systems as FlexRay, TTEthernet, or Ethernet with
802.1Qbv aim to take advantage of both principles and combine TT communication
and ET communication into one communication protocol. In that case, the TT
communication follows the schedule while transmission of the ET communication
can occur only in a time when no TT communication transmission is scheduled.
The use of both principles at once helps to keep the certification of high-critical
systems simple and also to keep flexibility for low-critical systems.

1.2 Variant management

The problem of the schedule creation becomes even more complicated in the real
development process. The manufacturer often develops and creates several products
that share the same components. If the schedules for the communication systems of
each safety-critical product are built from scratch, it is needed to certificate each one
individually, which results in extra costs. Thus, it is beneficial to consider the variant
management during the product design phase and create such a schedule that can
be shared among the resulting variants of the product. The variant management
is even more critical in the industry with the after-sale market where you would
need to adapt the schedule in the component (e.g., parking camera in a vehicle)
according to product version in which it should be replaced. Without a shared
schedule, the component/modular systems would lose their benefits as the product
variants, and their components would be unmanageable.

Moreover, the products develop in time. To keep the principles of variant
management valid even in this case, the new product variants should be built
incrementally, and the backward compatibility with its preceding variants must be
satisfied as much as possible.

1.3 Objectives and constraints of scheduling

As modern communication systems use ET and TT altogether, it is not only neces-
sary to find a feasible schedule that satisfies all the constraints. The schedule has to
be compact as much as possible to keep sufficient bandwidth for ET communication.
Moreover, there has to be a free capacity in the communication system kept for
future product variants. Without that free capacity, it would not be possible to
incorporate new devices and messages to the communication system and to keep

INTRODUCTION 5

backward compatibility. Thus, the main objective is to find the most compact
schedule that satisfies all the real-time and application requirements.

1.4 Contributions of the thesis

The work of the thesis is focused explicitly on scheduling TT communication in two
communication systems - the FlexRay bus and the TTEthernet network. The main
contributions of the thesis in the field of scheduling TT communication on FlexRay
bus are:

1.

w

9.

Provided idea of utilizing both independent FlexRay communication channels
based on the classification of signals into two groups: signals that do require
and do not require fault-tolerance [Sec.

. Formal formulation of the TT communication scheduling problem in the

FlexRay bus that allows utilizing both communication channels [Sec. [2.2]
23]

. The NP-hardness of the stated scheduling problem is proved [Sec.
. The heuristic algorithm with the problem decomposition to the ECU-to-

channel assignment subproblem and channel scheduling subproblem is pre-
sented [Sec. and includes

e The MILP formulation for the exact solution of the ECU-to-channel
assignment subproblem [Sec. [2.3.1]

e The heuristic method for solving the ECU-to-channel assignment sub-
problem for big instances [Sec.

e The heuristic method for channel scheduling subproblem [Sec.

. Evaluation of the scheduling algorithm from objective function (number of

allocated slots) point of view and computation complexity point of view, and
comparison of provided the ECU-to-channel assignment methods with the
alternative method based on genetic algorithm [Sec.

. Provided idea of considering the practical product development process con-

sisting of multi-variant management and incremental development in the
FlexRay TT communication scheduling procedure [Sec. |3.1.1]

. Formal formulation of the incremental multi-variant FlexRay static segment

scheduling problem with real-time constraints [Sec. [3.2]

. The incremental and multi-variant heuristic scheduling algorithm [Sec. ,

which includes:

e The exact algorithm for resolving the conflicts in the original schedule
while minimizing the number of changes [Sec.

e The signal scheduling algorithm based on First-Fit Decreasing method
for Bin-Packing problem [Sec.

e A new extensibility optimization method, which can adapt to a particular
input instance by utilizing the probability distribution of the signal
parameters [Sec.

e The graph coloring formulation of slot scheduling sub-problem and its
convenient ILP formulation [Sec.

Examination and discussion of the impact of multi-variant and incremental

essence on scheduling [Sec. Sec. [3.4.3]

6 OQutline of the thesis

10. Evaluation of the algorithm on the sets of both synthetic and real-case inspired
instances and the significance of the extensibility optimization [Sec. m
Sec. Sec.

11. Evaluation and discussion on how basic network configuration parameters
influence the bandwidth efficiency of the resulting schedules [Sec.

12. Verification of the resulting schedules on the FlexRay powered system [Sec.

The main contributions in the field of scheduling TT communication on TTEth-
ernet network are:

1. Provided idea of considering backward compatibility in the TTEthernet
scheduling process [Sec.

2. Use of TT communication schedule makespan as the criterial function (which
follows the practice from FlexRay bus) [Sec.

3. Formal formulation of the incremental TT communication scheduling problem

on TTEthernet, with real-time constraints. [Sec. [4.3]
4. The three-stage heuristic scheduling algorithm [Sec. [4.4], which includes:
e The routing algorithm that balances the communication load among
links [Sec. 4.4.1]
e The message-to-integration cycle assignment algorithm that balances the

communication load among integration cycles [Sec. [4.4.2]
e The message scheduling method based on RCPSP model of the problem

[Sec. 23]

5. Examination and discussion of the impact of incremental essence on the

TTEthernet scheduling [Sec. Sec. 4.5.3]

6. Evaluation of the proposed algorithm from the quality and the performance

point of view [Sec.

1.5 Outline of the thesis

The rest of the thesis is organized as follows. Chapter [2] studies the problem of
efficient use of both communication schedules provided by the FlexRay bus. The
study utilizes the fact that not all messages and ECUs are included in the fault-
tolerant application and, thus, are not necessarily transmitted into both channels.
Moreover, if an ECU is not part of a fault-tolerant application, it can be connected
to the FlexRay bus only through one port. The heuristic scheduling algorithm is
provided for this problem, and it is evaluated on real-case and synthetic datasets.

The constraints of the multi-variant management and the incremental develop-
ment process are introduced to the FlexRay TT communication scheduling problem
in Chapter [3] The multi-variant management demands to create schedules for a set
of product variants at once such that the shared signals are scheduled in the same
position. On the other side, the incremental development process demands to keep
the backward compatibility of the new product variants with their predecessors.
The problem is solved by the heuristic algorithm that is able to create schedules
even for instances of industrial size is described and evaluated. Finally, the essence
of the multi-variant and incremental scheduling on the creation of FlexRay TT
communication schedules is examined and discussed.

INTRODUCTION 7

Chapter [4] focuses on the problem of creating schedules for TT communication
in the TTEthernet network while considering the backward compatibility. The
problem of creation of the TT communication schedules on TTEthernet is even
more challenging than in the case of FlexRay because the simple bus topology is
replaced by the switched network topology. Thus, not only one schedule is needed
for the whole communication system, but there must be created the schedule for
each link in the network, and, moreover, the message routing needs to be decided.
The MILP and CP based heuristic algorithm are described to solve the problem.
The algorithm is examined in detail for its scalability evaluation, and its usability
for the industrial size instances is discussed.

Chapters and [4] corresponds to individual journal papers and each one
tackles different problems. Thus, the chapters are self-contained and can be read
separately.

Chapter [5] concludes the thesis, discusses the achieved results, and the topics
left open for future work.

OQutline of the thesis

Chapter

FlexRay Static Segment

Scheduling on Two 2
Independent Channels with

Gateway

The FlexRay bus is a communication standard used in the automotive industry.
It offers a time-deterministic message transmission in the static segment following
a time-triggered schedule. Even if its bandwidth is ten times higher than the
bandwidth of CAN, its throughput limits are going to be reached in high-class car
models soon. A solution that could postpone this problem is to use an efficient
scheduling algorithm that exploits both channels of the FlexRay. The significant and
often neglected feature that can theoretically double the bandwidth is the possibility
to use two independent communication channels that can intercommunicate through
the gateway.

In this chapter, we propose a heuristic algorithm that decomposes the scheduling
problem to the ECU-to-channel assignment subproblem which decides which channel
the ECUs (Electronic Control Units) should be connected to and the channel
scheduling subproblem which creates static segment communication schedules for
both channels. The algorithm is able to create a schedule for cases where channels
are configured in the independent mode as well as in the fault-tolerant mode or
in cases where just part of the signals are fault-tolerant. Finally, the algorithm is
evaluated on real data and synthesized data, and the relation between the portion
of fault-tolerant signals and the number of allocated slots is presented.

2.1 Introduction

Nowadays, the automotive industry is evolving fast. Modern vehicles consist of many
critical systems, like powertrain and chassis control or advanced driver assistance
systems. There is also a huge effort to supplant obsolete mechanic and hydraulic
control systems by electronic systems. Consequently, the number of latest vehicle
models will aim to use x-by-wire systems (already used in Nissan Infinity Q50 for
example) shortly. This trend causes an increase in the number of ECUs and also in
the number of messages that have to be exchanged among these units. Therefore, it
is hard for conventional communication buses, such as the CAN bus, to follow this
trend. The FlexRay bus has been designed to satisfy such a demand as it is well
suited for real-time and safety-related applications and provides transmission rates
up to 10Mb/s. Its static segment with the time division multiple access (TDMA)
scheme can handle real-time requirements, while the message transmission follows a
given schedule. The interconnection with other buses (e.g. CAN) is usually done
via a gateway node.

10 Introduction

2.1.1 Motivation

In practice, the FlexRay standard has been used just for a few years, but its limits
could be reached soon if we do not take advantage of all the opportunities it offers.
This problem currently occurs in premium class vehicles because they contain a
lot of advanced driver assistance systems that need a generous bandwidth. For
example, data from an intelligent camera become subject to safety requirements.
The same also holds for lidar, radar, ultrasonic and other signals which require
deterministic processing. Some signals need to fulfill the fault-tolerant requirements
while others just need to be transmitted deterministically. The problem with a
lack of bandwidth is often solved by splitting the whole network into separate
buses which are interconnected by gateways. Unfortunately, this solution causes
synchronization problems when real-time constrained messages have to be exchanged
between different buses. It is also economically inconvenient because an additional
infrastructure involves extra costs. The Automotive Ethernet [6,31] could introduce
the desired bandwidth, but it does not provide the safety by design in its 2nd
generation. Thus, the Ethernet is still more suitable for infotainment than safety-
related applications today.

One way to efficiently use the bandwidth provided by the FlexRay bus is to
create an efficient schedule for the TDMA part. Another way, unique to the
FlexRay standard, is to use the FlexRay channels independently. Despite that it
can theoretically multiply the transmission rate by two, this property is usually
overlooked by scheduling algorithms.

In this chapter, we combine both ways to minimize the number of slots used by
the periodic message transmission in the static segment and, consequently, to save
the bandwidth for the dynamic segment.

2.1.2 FlexRay overview

The FlexRay bus, standardized in ISO 17458 - FlexRay communications systems [29],
is a modern bus that has been developed to satisfy the performance and safety
requirements of the advanced driver assistance systems. This is often coupled
with the AUTOSAR Specification [4,/5] in the automotive industry. The FlexRay
communication is organized in cycles. Each communication cycle has its own six-bit
identifier, denoted as cycleID, and there can be up to 64 cycles. The sequence of
these cycles is denoted as a hyperperiod and is periodically repeated. An example
of the communication scheme on the FlexRay bus is depicted in Fig. wherein
the hyperperiod consists of four communication cycles. Each communication cycle
contains four segments:

e Static segment

e Dynamic segment

e Symbol window (SW)

e Network idle time (NIT)

The time-critical signals are exchanged, using a time-triggered scheme, based on
time division multiple access in the static segment. The dynamic segment fulfills the
requirements of event-triggered communication. The other two segments, SW and

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 11

Static | Static | Static
Slot 1 | Slot 2 {§ Slot 3

gy NIT

- Communication cycle |

Static segment Dynamic segment o

Comm. cycle 1 | Comm. cycle 2 H Comm. cycle 3 H Comm. cycle 4 H Comm. cycle 1

\ A

| Time
Figure 2.1: FlexRay communication scheme

NIT, are used for network management and inner clock synchronization. Among
all these, only the static segment and NIT are mandatory.

This chapter deals only with the time-triggered communication in the static
segment. The static segment is divided into time intervals of same duration, called
static slots (referred to as just slots, hereafter). A given slot is reserved for a given
ECU (i.e., the frames transmitted to a given slot need to be from the same ECU
in all cycles)ﬂ The data structure used by the ECUs in transmitting the data is
called a frame. Each frame is identified by its cycle and slot number. The frame
can contain more than one signal, but the sum of payloads of these signals must
not exceed the duration of the slot. The signals packed into the same frame can be
distinguished by the offset in the frame. The schedule determines in which instant
the frame is transmitted to the network.

The bus offers two channels for communication: channel A and channel B. An
ECU can be connected to both or just to one of them. At least two ECUs, called
synchronization ECUs, must be common to both channels. The communication can
operate in two modes from the channels point of view: in the independent mode
(when the communication on channel A is independent of the communication on
channel B) or in the fault-tolerant mode (when the communication on channel B
is synchronized with the transmission on channel A). The fault-tolerant mode is
beneficial for error detection. However, fault-tolerance is usually not necessary for
all the signals and in these cases the utilization of independent channels can be an
efficient way to save the bandwidth.

In this chapter, we focus on the assignment of ECUs to two independent channels
and the scheduling of signals to a particular cycle, slot and offset in the frame for
both channels.

1The FlexRay standard 3.0 and later allow different nodes to transmit frames within the same
slot, on the same channel, in different communication cycles. However, this feature was not used
in this study, because it requires different scheduling model which introduces extra complications
with variant management in subsequent incremental scheduling iterations, defeating the idea
of keeping the schedules easily manageable even in later scheduling iterations without breaking
backward compatibility.

12 Introduction

2.1.3 Related works

A significant effort was made to find bandwidth saving and safety-related constraints
satisfying communication schemes for the FlexRay protocol over the last six years.
The FlexRay communications system is described in detail in ISO 17458 [29]. In the
automotive industry, this bus is often coupled with the AUTOSAR Specification [4}5]
which extends the FlexRay standard by new safety-related constraints. Nowadays,
BMW, Audi, Mercedes-Benz, etc. use the FlexRay bus in several series-production
vehicles.

A milestone in the static segment scheduling area is the work of Lukasiewycz
et al. [39] where the transformation of the fundamental static segment scheduling
problem to a specific two-dimensional bin packing problem was introduced. The
authors presented an ILP model and also a successful heuristic based on the first fit
policy for the bin packing problem. The objective is to minimize the number of
scheduled slots and to obtain an extensible schedule. A similar problem extended by
time constraints was proposed by Hanzalek et al. [26]. This work employs the idea
of a two-stage heuristic, where, in the first step, the frame packing is performed and,
in the second step, the schedule of time-constrained frames is obtained. Kang et al.
suggested another frame packing algorithm in [32] where the best fit decreasing
heuristic and the ILP model were utilized. However, the paper minimizes the
number of used frames instead of the number of allocated slots and the period
of signals can be an arbitrary multiple of the communication cycle. Tanasa et al.
used the CLP formulation to strengthen the system reliability by the repetitive
transmission of more critical signals in [63]. In [19], we proposed a heuristic for
the time-constrained static segment scheduling problem that takes more vehicle
variants into account and creates a multi-schedule for all of them at once.

Lange et al. [36] used the rate monotonic scheduling method for the response
time analysis of the static segment. However, this paper requires modifications of
the middleware. Bouhouch et al. described an analysis of Data Distribution Service
(DDS) for the FlexRay bus based on the subscription-publication paradigm in [8] and
Sojka et al. [55] considered flexible reservation mechanisms for distributed real-time
applications. The concept of time analysis considering both static and dynamic
segment of the FlexRay communication protocol is presented in [28] and [42].

The methods described in the previous papers consider the channels to be set
into the fault-tolerant mode. Thus, communication is duplicated even for signals
that do not require the fault-tolerant scheduling and the potential to save the
bandwidth is wasted.

It is necessary to decide, for each ECU, if the ECU should be connected to
channel A, B or to both of them to divide the communication between the chan-
nels. A similar problem from computer science is clustering. Some widespread
clustering methods are expectation-maximization (EM) and the K-Means algo-
rithm [22]. Graph clustering and spectral clustering methods [24] are important
for clustering problems that can be modeled by graphs. Another classical com-
binatorial optimization problem related to assigning items to subsets is number
partitioning [43].

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 13

2.1.4 Outline of the chapter

The rest of this chapter is organized as follows: Section describes the FlexRay
static segment scheduling problem for two independent channels with a gateway. In
Section the NP-hardness of the problem is proved, and the heuristic algorithm
with the problem decomposition to the ECU-to-channel assignment subproblem
(solved by exact and heuristic method) and channel scheduling problem (solved
by heuristic method) is presented. A computational efficiency and a performance
evaluation of the proposed approach are presented in Section Section [2.5
concludes the chapter.

2.2 Problem statement

The problem is to create FlexRay static segment schedules for independent channels
that can intercommunicate via a gateway. Such a model is used in cases where
fault-tolerance is not critical (an undetected loss of one signal instance cannot cause
a jeopardy) for all the signals. Our aim is to find a schedule that minimizes the
number of allocated slots and, consequently, reduces the length of the static segment
in the communication cycle as much as possible.

The configuration of the FlexRay network contains many parameters, which are
not directly related to the schedule optimization process, such as the duration of
the communication cycle L, the payload of the static slot, etc. We assume that
these parameters are given by network designers, and they follow the specification
of the manufacturer.

The set of ECUs A consists of three disjoint subsets A= N U NGW y yComm_
where N is the set of one port ECUs. These ECUs can be connected either to
channel A or channel B but not to both of them. An ECU connected to one channel
may need to receive data from the second channel. A special gateway ECU NSW
serves as a mediator for such a data exchange between channels. The gateway has
no own data to transmit. It just receives data from one channel and sends them to
the second one. The gateway can interconnect the FlexRay bus with the CAN bus
in practice, but it is not the subject of interest in this work. There can be more
than one gateway ECU to decrease the impact of the single point of failure problem
when the gateway ECU is malfunctioning. This issue is tackled in [53]. However,
it is assumed for the sake of simplicity that there is just one gateway ECU in the
NSW set in the rest of the chapter. N°™™ represents the set of common ECUs.
These ECUs are connected to both channels. According to the FlexRay standard,
the minimal number of common ECUs is two because at least two ECUs have to
be used to synchronize the network. The common ECUs can transmit their data
to both channels, but they are not allowed to transfer any data between channels.
The assignment of the ECUs to the subsets of A/ is given.

The data that have to be exchanged in the network are represented by a signal
set S. Fach signal s; from the set S has the following parameters:

14 Problem statement

¢; - unique identifier of the ECU which transmits s;
p; - the signal period

¢; - signal length/payload in bits

r; - release date

d; - deadline

fi - fault-tolerance of the signal

Q; - the set of signal receivers

The ¢; identifier of a signal can be any ECU from N or N€°™™ hut it cannot be
NGW. The signal s; is assumed to be transmitted only once in the FlexRay cycle.
Its period p; must be a multiple of the cycle duration L, and no jitter is allowed.
Furthermore, according to the AUTOSAR specification, the period must be equal
to L multiplied by some power of two (i.e. p; = {h-2" | n=1...6}). The payload
of the signal ¢; represents the data payload. The fragmentation of signals is not
allowed. Signals can be packed to be transmitted in one frame, but the sum of
their payloads must not exceed the static slot payload. The fault-tolerance f; of
the signal is equal to 1 if the signal s; has to be transmitted to the both channels
at once otherwise it is equal to 0. Note that if f; = 1 then ¢; € NC°™™ otherwise it
would not be possible to transmit the signal to both channels by ECU g;. The signal
receivers set (); contains identifiers of all ECUs that need to receive the signal. If a
receiver is in a different channel than the transmitter and ¢; € N then the gateway
has to receive the signal from the channel with the transmitting ECU and forward
it to the second channel. The signals transmitted by the gateway to the second
channel are called signal images, and we denote them by s..

A

ECU|| |ECU ECU| |ECU ECU

GW 1 2 3 4 5

Figure 2.2: FlexRay network with two independent channels

The goal is to find an assignment s; — [b;, yi, t;, 0;], where b; represents the
channel to which the signal is transmitted, y; is the identifier of the first signal
occurrence communication cycle (cycleID) in the schedule, ¢; is the identifier of
the slot (slotID) and o; is the offset of the signal in the frame and, furthermore, to
find an assignment s; — [0}, vy}, t;, 0;] for images of signals that have any receiver
connected to a different channel than the transmitter. Note that we can deduce
the position of all signal occurrences in S and S’ (the set of signal images) from
this assignment because signals have no jitter. No two signals are tolerated to be
overlapped in the schedule for a particular channel. Therefore, it is necessary to
know which channel the ECU from N is connected to. Consider the example shown
in Fig. The common ECUs N©°™™ are highlighted by double borders. The
ECU labeled as GW is the gateway ECU NGW. The ECUs from N©°™™ and NGW

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 15

are always connected to both channels. The assignment of the ECUs from NN to a
channel is unknown (indicated by a dotted line in Fig. and it is the subject of
the optimization. Our aim is to find a feasible assignment in such a way that the
maximal identifier of any used slot is minimal.

2.2.1 Example 1: Simple case with two cycles and ten signals

We introduce a simple example for a better understanding of the problem statement.
The infrastructure presented in Fig. is used. The duration of the communication
cycle L = 1ms and slot payload 8 bytes is assumed. The hyperperiod consists of
two cycles. There are ten signals s; ... s19 with the following parameters:

g =11,2,2,2,3,3,4,5,5, 4],

pi=1[1,22221,1,1,2 2] in ms,

¢ =[8,4,8,8, 4,4, 4,4, 4, 4] in bytes,

fi =[1,0,0,0,0,0,0,0,0, 0],

Qi = [{2, 3}, {4, 5}, {4}, {5}, {4, 5}, {4, 5}, {3, 5}, {2}, {3, 4}, {3}].

The release date r; = 0 ms and deadline d; = 2ms for all the signals for the sake of
simplicity. One optimal solution is shown in Fig. 2.3

Channel A

%l1 B s s (s | s] ESER
& 7l s IR | Ss | LSs | 87
I 1 ! 2 3 4 i 5
Channel B
=11/ E2EA EREN B
o
1 2 3 4 5

slot

Figure 2.3: Feasible schedules for Example 1

The schedule for channel A is shown at the top of Fig. and the schedule for
channel B is at the bottom. The rows of the schedule for the given channel represent
the cycles, and the columns represent the slots. For example, the signals sg and
sg (its first occurrence) are packed in the same frame scheduled in the third slot
of the first cycle in channel A. The signal sg has the zero offset, and the signal sg
has an offset of 4 bytes. It is denoted as ss — [A,1,3,0] and s3 — [B,2,2,0]. The
remaining occurrences of a signal sg can be deduced from its period (pg = 1 ms).
The signal images are marked by an apostrophe (e.g. signal image of s5 is s5). The
pale labels above the columns determine which ECU operates in the given slot.
Please notice that even though signals sg and s7 are transmitted by different ECUs

16 Algorithm

(ECU 3 and ECU 4 respectively), their images si and s/ can be transmitted in the
same slot.

From Fig. the reader can derive that ECU 3 and ECU 4 are connected to
channel B, ECU 5 to channel A and ECUs 1, 2 and GW are allowed to transmit
signals to both channels.

2.3 Algorithm

The design of the proposed algorithm is explained in this section. The problem
is very complex because even the channel, which the individual ECUs from N are
connected to, is unknown. Solving an industrial-sized problem by exact methods
would result in an unacceptable computation time. Thus, a heuristic algorithm
depicted in Algorithm is used.

Algorithm 2.1 The pseudocode for the iterative static segment scheduling algo-
rithm

Input: S, N, o

Output: Best found schedule for FlexRay static segment

ChannelAssignment Asg
Schedule Schd, bestSchd
B+ 1
repeat
Asg < ECU-TO-CHANNEL(S, N, a, 3)
Schd < CHANNELSCHEDULING (S, Asg)
maX,es ,us’, s
B maxsesBusz ts
bestSchd < GETBETTER(Schd, bestSchd)
until 1ISSTOPCONDITIONMET(Asg);
return bestSchd

The iterative algorithm is divided into three phases. In the first phase, the
ECUs from N are assigned to the channels and the schedules for channels A and B
are created in the second phase. The last phase updates coefficient f.

The coefficients « and g are modifiers of the ECU-to-channel assignment criterion
function. « is the weight of the gateway throughput penalization and it can be
determined by a network designer. 8 outbalances the payload of the individual
channels. An optimal result of the first phase does not ensure an optimal result
of the channel scheduling phase. The balanced ECU-to-channel assignment (the
assignment where the payload in both channels is almost equal) can still result in
a schedule with significantly more slots occupied in one channel than in another.
Thus, the § coefficient is recalculated to counterweight this imbalance in the next
iteration. The new value of 5 is equal to the square root of the ratio between the
number of slots allocated in channel A to the number of slots allocated in channel
B. The actual schedule Schd (representing schedule for channel A and B together
here) is compared with the best schedule already found bestSchd at the end of each
iteration. The one that needs smaller number of allocated slots is stored. The stop

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 17

condition of the iterative algorithm is met if the number of iterations exceeds a
threshold or if the cycling of the algorithm is detected (the actual assignment was
already found in the past).

Best found schedule bestSchd is returned in the form of a FIBEX [3]| database at
the end. The FIBEX file allows direct loading of resulting schedules to tools often
used in the automotive industry (such as Vector CANoe).

2.3.1 ECU-to-channel assignment

Each ECU from N is assigned to a particular channel at the ECU-to-channel
assignment phase. Our aim is to find such an assignment which seems to be
promising for finding a good schedule in the second phase. It is assumed that if
there is a smaller data payload to be transmitted in a channel, then the resulting
schedule of the channel will be shorter. According to that assumption, the task is
to find such an assignment that minimizes the number of bits transmitted in any
channel.

ECU1 ECU3
l..

Figure 2.4: Hypergraph for Example 1

The problem can be modeled by a hypergraph. Fig. depicts the example of
a hypergraph resulting from the data in Example 1. Each vertex represents one
ECU from the sets N and N©°™™_ The vertices are connected by hyperedges. One
hyperedge represents an aggregated set of signals with the same endpoints. The
endpoints are receivers and the transmitter of the signal. The signals ss, sg, s7,
s9 in Example 1 can be aggregated to one hyperedge e3 because their set of the
endpoints is the same: {3,4,5}. A payload of the hyperedge w, is the sum of its
signal payloads. It is not necessary to distinguish between the transmitter and the
receiver here.

The task is to mark vertices which represent the ECUs from N. The marking
corresponds to their assignment to the channels. The ECUs connected to both
channels are not outlined (ECU 1 and 2). The ECUs assigned to channel A have a
solid black outline (ECU 5) and the ECUs with a dashed outline are assigned to
channel B (ECU 3 and ECU 4).

The criterion value of the given ECU-to-channel assignment is evaluated in the

18 Algorithm

following way: If no endpoint of the hyperedge is assigned to channel B, then the set
of signals it represents is transmitted only in channel A and their payload is added
to the payload of A (denoted as P4). On the other hand, if none of the endpoints
are in channel A then the set of signals is only transmitted in channel B and their
payload is added to the payload of B (Pg). If the hyperedge has endpoints from
A and at least one from B then the set of signals must be transmitted in both
channels and traverse the gateway. Their payload must be added to the payload of
both channels (P4 and Pg) and the payload of the gateway (Pg). After applying
the modifiers, the objective is to minimize

max(8Pa, Pg) + - Pg (2.1)

When o =1/}, ¢; then the criterion ensures that among the solutions with the
same channel payload, the one with a lower gateway throughput is chosen.

The well known two-partition optimization problem [43] (deciding whether a
multiset of positive integers can be partitioned into two subsets such that the sum
of the numbers in both subsets is the same) can be reduced to the ECU-to-channel
assignment subproblem in polynomial time as follows: Each item from the multiset
of the positive integers is modeled by one ECU connected to a self-loop. The weight
of loop w, is equal to the value of the item. Then the two-partition problem can
be solved by an algorithm designed for the ECU-to-channel assignment. Thus, the
ECU-to-channel assignment must be at least NP-hard because the two-partition
optimization problem belongs to the NP-hard [43] class.

ILP model of the ECU-to-channel assignment

The exact solution can be obtained by MILP formulation. The MILP model is
presented in Fig. [2.5] where z; is a binary variable determining which channel
ECU 1 is connected to. If ; = 1 then ECU 1 is connected to channel A otherwise it
is connected to channel B. Variable u. 4 = 1 says that hyperedge e from the set
of hyperedges F is connected to at least one ECU from N that is connected to
channel A (e.g. in Fig. Uey,4 = 1 because ECU 5 is connected to channel A).
Similarly, the value of u. g = 1 means that the hyperedge e is connected to at least
one ECU from N that is connected to channel B (e.g. e, = 1 and e, p = 0
in Fig. . In other words, the set of signals represented by hyperedge e has to
appear in the schedule for channel B. Variable z is a slack variable that helps to
substitute the maxz (8P4, Pg) statement. Note that MILP formulation only contains
|N| integer/binary variables. The rest of the variables can be continuous because
the minimization criterion ensures its integer value at any resulting solution. N,
represents the set of endpoints of the hyperedge e which are from N (ECU 3, 4,
and 5) and w, is the payload of the hyperedge.

Equations (1), (2), (3) correspond to the problem criterion. Equations (4),
(5) and (6) calculate the values of P4, Pp and Pg. Variables z; and u. 4 are
interrelated by (7). Variables x; and u. g are interrelated by (8). For example, in
Fig. ue,,B = 1 because ECU 4 is one of the endpoints of e4 and it is connected
to channel B (z4 = 0). Therefore, according to (8), —0 — ue, 5 < —1 and after
simplification u., g > 1. The problem is symmetric because if all ECUs are swapped
to the second channel, the resulting criterion value will be the same. This symmetry

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 19

min z+ a- Pg (1)
s.t. PPy <z (2)
Pg <z (3)
PA+PB*Zwe:PG (4)
c€E
Z We Ue,a = Pa (5)
ecE
Z We - Ue,p = Pp (6)
e€E
T — Ue,a <0 V{e,ili € N.} (7)
i+ uep >1 V{e,ili € N.} (8)
g =1 9)
where: z; € {0,1} Vie N (10)
Ue, Ay Ue,B €< 0,1 > Yeec £ (11)
Py, Pp,Pg,z € RT (12)

Figure 2.5: The MILP formulation for the ECU-to-channel assignment problem

is partially broken by Equation (9) which forces the first ECU to be connected to
channel A.

The model is efficient because even if the number of variables is large (e.g. many
signals in the problem) there are only a few decision variables (equal to the number
of ECUs in N) and |[N| < |S] in real cases. The number of decision variables
cannot be reduced as follows from the proof of NP-hardness. However, the maximal
number of constraints in this problem is 6 423 ., [Vel.

ECU-to-channel assignment heuristic (CAH)

Even though the MILP model scales well with respect to the number of signals,
it may take a very long time to find a solution if the number of ECUs in N gets
bigger or if the sets of signal endpoints are wide-ranging (which causes a large
cardinality of E). It is beneficial to use a heuristic approach which finds a good
solution in a reasonable time in such a case. It is even more important if CAH is a
subproblem whose optimal solution does not guarantee the optimal solution of the
whole problem. Thus, it is enough to have a good solution that can be obtained
quickly.

The problem is similar to many problems from other areas (clustering [12}/13}24],
partitioning [43] or scheduling on two parallel identical resources [1]). We examined
these problems and proposed our solution outlined in Algorithm 2.2} The algorithm
is structured as a 3-stage local search. It uses a restart method which starts a new
search from a random position of the search space to escape from a local optimum.

At the beginning of the loop, the ECUs from N are randomly ordered to the list
NL. Then the GREEDY ASSIGNMENT function based on the idea of the List Scheduling
algorithm [1] constructs an initial ECU-to-channel assignment solution and stores it

20 Algorithm

Algorithm 2.2 Heuristic algorithm for the ECU-to-channel assignment problem
Input: N, FE
Output: Best found ECU-to-channel assignment

ChannelAssignment Asg, bestAsg
ECUList NL
bool changed
for triesCount do
NL < RANDOMIZE(N)
Asg < GREEDYASSIGNMENT(NL, E)
changed <« true
while changed do

| [changed, Asg] < EXCHANGEALG(Asg)
end

bestAsg < GETBETTER(Asg, bestAsg)
end
x < 2-OPTALG(bestAsg)
return bestAsg

into Asg. It takes the ECUs from NL one by one. First, it tries to connect the ECU
to channel A and evaluates the objective function for a partial assignment. Then
it does the same with channel B. The ECU is assigned to the channel for which
the assignment has a lower criterion value and the GREEDYASSIGNMENT function
continues with the next ECU from NL.

The initial assignment is repeatedly improved by the EXCHANGEALG. The
method tries to find an ECU whose move from the original channel to the second
one would improve the criterion value. If such an exchange is found, the assigned
channel for the given ECU is changed too. This process is repeated until there is
no improvement in the assignment Asg. The newly obtained solution is compared
to the best found assignment bestAsg. If it is better than bestAsg, the new solution
is stored.

The 2-Opt [54] like algorithm tries to improve the best found assignment bestAsg
at the end. It takes all pairs of ECUs (v;,v;) where v; is an ECU that is connected
to channel A and v; is an ECU connected to channel B. Then it swaps the channels
for both ECUs v; and v;. If the resulting criterion value is lower than the original
one, the channel for v; is set to B and for v; to A. All the criterion evaluations are
performed in the delta evaluation manner. It ensures that the computation time
is not wasted on the recalculation of the whole objective function but only on the
calculation of the differences to the original value.

2.3.2 Channel scheduling heuristic

The input of the channel scheduling consists of the set of signals S and the
ECU-to-channel assignment Asg. The FlexRay static segment scheduling methods
for single channel were already presented in a number of papers as described in
Section The key idea used here comes from [39] where the similarity of the
static segment scheduling and two-dimensional bin packing problem was shown. An

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 21

algorithm outlined in Algorithm is used in this chapter.

Algorithm 2.3 Heuristic algorithm for the channel scheduling problem

Input: S, Asg

Output: SA4, SB

SL < Sort(S)

11

initialize SAB

while fsr, =1 do
PLACETOSCHEDULE(SAB, SL;)
14 1+1

end

SA < SB < SAB

for i to |SL| do

CH <DETERMINECHANNEL(SL;, Asg)
PLACETOSCHEDULE(CH, SL;)
end

REORDERSLOTS(SA4, SB)

First, set S is ordered by the SORT function and stored into the ordered signal
list SL. The SORT function orders signals by a stable sorting algorithm according
to their decreasing payload, increasing gap between release date and deadline and
increasing period. This ordering was shown to return near-optimal solutions in [19].
SL is ordered such that the fault-tolerant signals are at the beginning of the list.

Then the algorithm takes the signals one by one from the signal list SL. The
schedule SAB (common to both channels) consisting only of fault-tolerant signals is
created by placing the signals to the schedule by the PLACETOSCHEDULE function
in the first step.

The PLACETOSCHEDULE function is a slightly modified signal-to-schedule plac-
ing function described in [19]. The function uses the first-fit based policy for placing
signals to the schedule. It tries to find the first feasible position in the schedule
(cycleID, slotID, offset in the frame) where the first signal occurrence could be
placed. When this place is found, it is checked if all the other occurrences can be
inserted into the schedule. If so, the signal is placed into the position. Otherwise,
the algorithm looks for a new position. If no position can be found, it allocates a
new slot and places the signal there.

Schedule SAB is distributed to the schedule of channel A (SA) and channel
B (SB). It guarantees that the fault-tolerant signals will be transmitted to both
channels at once.

Non-fault-tolerant signals are scheduled in the second step. The DETERMINECHANNEL
function determines the channel CH to which the signal should be placed (it can
be channel A, B or both) for each signal from SL as follows: If all receivers and the
transmitter are connected to the same channel, it returns that particular channel.
If the signal must be transmitted in both channels then both channels are returned.
The last option occurs when all receivers and the transmitter are connected to both
channels (e.g. if there would be a hyperedge between ECU1 and ECU2 in Fig. [2.4).

22 Experimental results

Then the schedule of the channel in which the signal will be transmitted is chosen
according to the current volume of the payload in the channels. The one with a
lower volume is returned.

The signal SL; is placed into the determined schedule(s) by the PLACETOSCHEDULE
function afterward. Eventually, the signal image is placed to the second channel
in the same manner, but the transmitter is NGW. Tt is necessary to satisfy the
precedence relations (y; < yi) for these signals. However, this can be done by the
modification of the release date of signal image according to the cyclelD, in which
the signal is transmitted.

The described algorithm does not ensure that the schedules are feasible because
the transmission of the signal image s, can precede the transmission of the signal
s; in the same cycle (it means that t; < ¢;). This problem is solved by the
REORDERSLOTS function. The function reorders the slots from schedule (SA, SB)
to satisfy the constraint ¢; < ¢;. The signal images can be transmitted only by
NSW. Thus, the REORDERSLOTS function takes each gateway slot V. jGW and finds
the slot, in which the latest original signal is transmitted. Let us denote that slot
by @. Then it postpones slot NjGW after slot Q. Note that if slot NJGW is in the
schedule for channel A then slot @ is in the schedule for channel B because only
the signal images of signals from channel B can be placed in NV,

At the end, the schedules for both channels are obtained.

2.4 Experimental results

The proposed algorithm was coded in C++ and tested on a PC with Intel ®
Core™ 17 CPU (3 GHz) and 8 GB RAM memory. A Gurobi Optimizer 6.5 was used
for solving ILP formulation. The experiments were performed on a few different
benchmark sets. The first one is the RealCase instance. This instance reflects the
behavior of the algorithm on the set of signals from a real car of our industrial
partner. It consists of 24 ECUs and 5043 signals. The five busiest ECUs transmit
more than 3500 signals altogether. Almost 65% of the signals have a period equal
to 40ms. The longest signals have a payload of 4 bytes, and each signal has two
receivers at most. This instance was analyzed, and its probability model was
created. A new synthesized benchmark set (Synth) of 100 instances was generated
according to the probability model. The rest of the benchmark sets are based on the
Society of Automotive Engineers (SAE) instances generated by Netcarbench [10]
and extended to include information about the signal receivers. These sets are
denoted as SAE; ... SAE; and contain 100 instances each. The instances consist of
more than 5000 signals that are spread to more than 22 ECUs.

The SAE benchmark sets differ from each other in the distribution of the number
of signal receivers. On one hand, there are about 75% of signals with only one
receiver in SAE;. On the other hand, there are only 5% of signals with only
one receiver and more than 75% of signals are received by four or more ECUs in
SAE7. The instances contain no fault-tolerant signals because the differences in the
evaluations are most significant in this configuration.

The comparison of the ECU-to-channel assignment algorithms is presented in
Table 2.1l The captions of the benchmark sets, which are situated in the rows,

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 23

Table 2.1: Comparison of the ECU-to-channel assignment algorithms

Set ILP | CAH | CAH,,, GA | GAgap
RealCase | 174843 | 174843 | 0.00% | 174843 | 0.00%
Synth 314748 | 314844 | 0.30%0 | 316405 | 5.24%
SAE, 241516 | 241524 | 0.03% | 247237 | 23.14%
SAE, 259586 | 259608 | 0.08%0 | 263469 | 14.74%
SAE; 275871 | 275932 | 0.22%0 | 279408 | 12.66%
SAE, 300177 | 300300 | 0.41%0 | 302439 | 7.48%o
SAE; 316842 | 316976 | 0.42%0 | 318516 | 5.26%
SAEq 326049 | 326182 | 0.41%0 | 327591 | 4.71%
SAE, 343301 | 343387 | 0.25%0 | 344279 | 2.84%

Average | 297108 | 297191 | 0.27%c | 299762 | 9.5%:

Table 2.2: The number of the allocated slots of the static segment for individual

algorithms
Set LBSC | ISSS1 | ISSS1gw | ISSS || ISSSgw
RealCase | 210.0 | 121.0 13.0 | 121.0 13.0
Synth 219.6 | 160.3 40.9 | 158.4 40.4
SAE, 1914 | 126.1 26.1 | 125.6 25.9
SAE, 191.2 | 134.7 32.3 | 133.7 31.9
SAE; 191.8 | 142.0 37.5 | 141.0 37.0
SAE, 191.2 | 152.3 46.0 | 151.0 45.5
SAE; 190.9 | 159.7 51.7 | 158.4 51.4
SAEg 191.3 | 164.1 54.4 | 162.9 53.9
SAE; 191.2 | 172.1 59.9 | 171.1 59.4
Average | 194.8 | 1514 | 43.6 [150.2 || 43.1

are in the first column. The second column presents the criterion value of the
optimal solution of the ECU-to-channel assignment obtained by the ILP. The value
is calculated according to Equation [2.1] from Sec. where the a coefficient is set
to 1/3,cg¢i and = 1. The criterion value of the ECU-to-Channel Assignment
Heuristic (CAH) is in the third column. The triesCount is set to 10000 for CAH.
Column CAH,,, presents the average optimality gap between the ILP and heuristic
solution. It is equal to 0 %o for RealCase because there was just one instance and
CAH found the optimal ECU-to-channel assignment for it. The fifth column presents
the criterion value obtained by a binary genetic algorithm (GA). The size of the
population is set to 100. Each individual is represented by an assignment vector
of length |N| where each binary value determines if the given ECU is assigned to
channel A or channel B. The GA is stopped after 100 generations or if the number
of generations without an improvement reaches 20. The last column presents the
optimality gap for the results of the GA with respect to the ILP.

Table contains the resulting number of allocated slots given by Algorithm
The feasibility of solutions was check by the inbuilt validator of Vector FIBEX
Explorer. The lower bound for the single channel scheduling (LBSC) is in the
second column. The computation of the lower bound is derived from the lower

24 Experimental results

Table 2.3: The computation times of different algorithm variants in ms

Set ILP | CAH GA || ISSS1 ISSS
RealCase 1163 | 1121 826 313 996
Synth 21841 | 2696 | 3094 571 4028
SAE, 16942 | 1377 | 2193 370 1491
SAE, 89943 | 2354 | 3401 502 2753
SAE; 232520 | 3027 | 4260 665 4902
SAE, 722658 | 4676 | 5906 865 7063
SAEs 1521635 | 6213 | 7276 1120 | 11401
SAEq 1964601 | 7364 | 8177 1275 | 12762
SAE, 3062509 | 9316 | 9387 1596 | 15212

Average | 810384 | 4238 [4947 [[870 | 7443

bound for the 2D bin packing which is evaluated for each ECU separately. The
LBSC is then the sum of the rounded up lower bounds of the ECUs. The third
column (ISSS1) contains the average number of slots allocated by the Iterative
static segment scheduling heuristic after the first iteration of the algorithm, and
the fourth column (ISSS1gw) contains the number of slots used by the gateway
ECU. The same values for the best found schedule by the algorithm are in the fifth
and sixth column. The Iterative Static Segment Scheduling heuristic (ISSS) uses
the CAH for ECU-to-channel assignment with ¢riesCount equal to 1 000.

The average execution times, in milliseconds, of each individual part of the
algorithm are presented in Table It is organized in a similar way to Table

A new set of instances based on SAE; set was created such that each subset of
100 instances has a different percentage of fault-tolerant signals and common ECUs.
The percentage varies from 0% to 100% with the step of 5%. Fig[2.6] presents the
dependence of the number of allocated slots on the percentage of common ECUs
and the percentage of fault-tolerant signals from these ECUs. It can be observed
that the results are strongly affected by the percentage of fault-tolerant signals for
the case with a big percentage of common ECUs. Theoretically, the bandwidth used
by a schedule with no fault-tolerant signals is equal to 50% of the bandwidth used
by the schedule where all the signals are fault-tolerant if all the ECUs are common.

From Table it can be observed that CAH finds a near-optimal solution
(about 0.2%c gap in average). It appears that, for comparable computation times,
the results obtained by CAH are closer to the optimal value in comparison to GA.
Furthermore, CAH returns an optimal solution in 633 out of 801 cases, and its
result is obtained significantly faster with respect to ILP.

According to the ISSS and LBSC results, the usage of the independent channels
with gateway can save about 10% to 45% of the bandwidth. It strongly relies on
the number of signal receivers and their diversity. It is possible to save about 45%
of the slots if the diversity is small (e.g. in the RealCase). At the other extreme,
SAE; contains signals with a lot of receivers per signal, and the diversity of the
signal receivers is large. Therefore, there is a saving of just about 10%. The use
of the iterative algorithm encapsulating the ECU-to-channel assignment and the
channel scheduling helps to save about one static slot on average. The interesting

FLEXRAY STATIC SEGMENT SCHEDULING ON TwO INDEPENDENT CHANNELS
WITH GATEWAY 25

Number of allocated slots

Figure 2.6: The dependence of the number of allocated slots on the percentage of
common ECUs and fault-tolerant signals

observation is that it does not only help to balance the schedule but it also slightly
decreases the number of slots transmitted by the gateway ECU.

It is possible to observe from Table that the execution time of the ILP
increases significantly with the increasing number of signal receivers even for a
similar number of signals and ECUs. It is caused by the signal aggregation which is
not able to reduce the number of hyperedges in these instances.

2.5 Conclusion

Even if the Automotive Ethernet is being pursued to replace the currently used
buses in vehicles, it will not be capable of handling high-critical applications in a
reliable way in near future. Thus, the efficient FlexRay communication scheduling
is a crucial problem for applications as x-by-wire or chassis control systems. The
solution that aims to save the bandwidth by utilizing the benefits of the independent
channels and efficient scheduling was described in the chapter.

We developed the heuristic algorithm which decomposes the complex problem
to two subproblems, the ECU-to-channel assignment subproblem and the channel
scheduling subproblem, and iteratively solves the subproblems with modified values
of the parameters. The proof of the NP-hardness and the efficient ILP model
were provided for the ECU-to-channel assignment subproblem. Furthermore, the
polynomial time local search algorithm, which returns a near-optimal solution,
was designed to deal with the computational complexity of the exact algorithm.
The channel scheduling subproblem for placing both fault-tolerant as well as non-
fault-tolerant signals was solved heuristically by the first fit policy based algorithm.

26 Conclusion

Obtained schedules are feasible according to the FlexRay specification.

The evaluation of the algorithm on the synthesized and real problem instances
showed that utilizing the independent channels can save around 30% of the single
channel bandwidth depending on the diversity of the signal recipients. The problem
appeared to be sensitive to the percentage of fault-tolerant signals in cases with a
high percentage of common ECUs. This feature predetermines our approach mainly
for applications where the percentage of fault-tolerant signals is not too high and
the number of signal receivers is relatively small.

Chapter

Multi-variant scheduling of
critical time-triggered
communication in incremental
development process:
Application to FlexRay

The portfolio of models offered by car manufacturing groups often includes many
variants (i.e., different car models and their versions). With such diversity in car
models, variant management becomes a formidable task. Thus, there is an effort
to keep the variants as close as possible. This simple requirement forms a big
challenge in the area of communication protocols. When several vehicle variants
use the same signal, it is often required to simultaneously schedule such a signal in
all vehicle variants. Furthermore, new vehicle variants are designed incrementally
in such a way as to maintain backward compatibility with the older vehicles.
Backward compatibility of time-triggered schedules reduces expenses relating to
testing and fine-tuning of the components that interact with physical environment
(e.g., electromagnetic compatibility issues). As this requirement provides for using
the same platform, it simplifies signal traceability and diagnostics, across different
vehicle variants, besides simplifying the reuse of components and tools.

This chapter proposes an efficient and robust heuristic algorithm, which creates
the schedules for internal communication of new vehicle variants. The algorithm
provides for variant management by ensuring compatibility among the new variants,
besides preserving backward compatibility with the preceding vehicle variants.
The proposed method can save about 20% of the bandwidth with respect to the
schedule common to all variants. Based on the results of the proposed algorithm,
the impact of maintaining compatibility among new variants and of preserving
backward compatibility with the preceding variants on the scheduling procedure
is examined and discussed. Thanks to the execution time of the algorithm, which
is less than one second, the network parameters like the frame length and cycle
duration are explored to find their best choice concerning the schedule feasibility.
Finally, the algorithm is tested on benchmark sets and the concept proved on the
FlexRay powered hardware system.

3.1 Introduction

The cars currently being produced by automotive industry contain a lot of elec-
tronic control units (ECUs), which are becoming progressively more important in
the upcoming vehicle models, where x-by-wire systems should be able to replace
mechanic and hydraulic control systems. This approach has been already used by,

27

28 Introduction

= A
El | e
o | | 1
e\ |)=
1! ! v Variant V D
| I I
o gy |
WOWMNNOY = SOWED»
1! Variant II ! Variant III !
Al ®_@) . dOWED>
: Variant 1 ' ' Variant IV .
2011 2014 2017 calendar year

Figure 3.1: Example of product lifetimes

for example, Nissan Infinity Q50 called as Direct Adaptive Steering technology [40].
The spectrum of the electronic systems used, however, varies from one model to the
other.

3.1.1 Motivation

Nowadays, the car manufacturers have to manage a huge number of model variants.
For example, Volkswagen group proclaimed in [66] that their product portfolio
consists of 340 model variants already. Handling such a large number of variants is
indeed challenging for the car designers. The basic approach adopted in dealing
with such situations is by building most vehicle models on a common technological
platform. The vehicle models, such as the Audi A3, SEAT Leon, Volkswagen
Golf and Skoda Octavia, for example, share a modular construction of the MQB
(Modularer QuerBaukasten) platform [11]. Moreover, these vehicle models also have
many versions (e.g., a configuration with an adaptive LED frontlight system or
with common halogen lamps, etc.). Thus, an efficient variant management can be a
significant economical and competitive factor [49].

Having the internal vehicle communication as similar as possible for all the
vehicle variants (referred to as variants hereafter) is desirable to simplify the reuse of
components and decrease the development costs spent, for example, on fine tuning of
electromagnetic compatibility related parameters. Creating just one communication
schedule for all the signals of different variants would be ideal from this perspective.
However, such a schedule results in low utilization of the bus, because each variant
uses only a subset of the signals. It is important to have a bandwidth-efficient
solution, because the demand for communication bandwidth has been increasing
significantly, while transmission of messages from a camera or a lidar becomes a
part of safety-related systems in modern vehicles. These bandwidth consumming
messages will be evan more critical for a safety reinsurance in autonomous driving
systems. Therefore, some systematic solution will have to be found to utilize the
bandwidth efficiently. In the present case, the design practice, derived from the
designer requirements, has been followed, wherein the same signals are placed at the

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 29

same positions in all the schedules in which they participate. This method facilitates
the trade-off between compatibility of the schedules among the variants and their
bandwidth efficiency. Consequently, each vehicle variant will have a schedule, which
differs only in the positions of specific signals. Therefore, the objective of this
study is to find a multivariant schedule, which includes individual schedules for all
variants.

Furthermore, designing a car is an iterative process; while the previous variant is
in production, the new one is in the design stage. An example of product lifetimes
is depicted in Fig. While designing a new variant, the previous variants cannot
be changed, but the new variant should maintain backward compatibility with the
previous variants, to the extent possible. This is called the incremental design
process during which the new variant is not built from scratch, but the variant
is based on its predecessors. This implies that, if a new vehicle variant is being
developed, its schedule should be inherited from the original variant.

It is also necessary to proactively enhance the extensibility of the schedule, so
that it can create compact schedules in all the development iterations, because the
schedule will be probably considered as the original schedule (the schedule on which
the schedule for the new variant is based) for successive iterations. This type of
incremental problem is even more challenging, because, for example, the inheritance
from more than one predecessor can entail conflicts that need to be resolved with
the least number of disruptions for ensuring backward compatibility.

With such a multischedule, it is easier and cheaper to develop diagnostic tools,
because one tool can be used for many variants. Also, it simplifies the configuration
of electronic control units (ECUs), typically supplied by third parties, because
one bus configuration of the ECU may fit several variants. This eliminates many
mistakes, (e.g., relating to time dependent electromagnetic interference), and thus
reduces verification and certification expenses. Additionally, it reduces the likelihood
of failure during the verification process, and hence likelihood of additional redesign
costs and, consequently, postponing the release date of the product [48].

In this chapter, the focus is on the design and implementation of the algorithm
for solving the above described multi-variant and incremental scheduling problems.
For verification and demonstration of the algorithm, the FlexRay static segment
has been chosen as the protocol for time-triggered communication. The FlexRay
standard has been designed to handle the safety and criticality-related requirements
on the complex interconnected electronic system. A static segment of the FlexRay
protocol, with time division multiple access, can be used for time-critical signals,
which need to fulfill real-time constraints as release date or deadline. The signals
are to be transmitted to the bus at exact time instants, as determined by a schedule,
which must be known in advance.

3.1.2 Related works

Product variant management is a problem faced by many companies, because they
have to fulfill the individual requirements of their customers. Bley and Zenger |7]
investigated this problem in the planning process of an assembly, whose final product
consists of many parts. According to Wallis et al. [67], this problem is even more
relevant to digital factories, wherein, nowadays, digital manufacturing data provides

30 Introduction

the information necessary for automatic planning of production. A similar problem
has been tackled in software development process. Variants of the software product
and their source codes need to be managed carefully [69,70] otherwise the product
becomes uncontrollable with smelly code [23]. Sagstetter et al. [49] observe that, by
rapidly increasing number of vehicle model variants, variant management becomes
an important and challenging problem for the fast evolving automotive industry.
They have shown that vehicle variant management is strongly linked to the creation
of time-triggered communication schedules.

A significant effort has gone into developing a methodology for finding a reliable,
time-deterministic and bandwidth-efficient communication schedule for suitable
in-vehicle networks, such as Ethernet, FlexRay or TTP.

For TTEthernet and Automotive Ethernet, Steiner et al. provide the whole
scheduling and time analysis framework [15,/57,/58,/60]. They used SMT Solver,
Tabu Search and Network calculus to create a schedule of time-triggered traffic
and evaluate the schedule from the event-triggered communication point of view.
More detailed description of works related to Automotive Ethernet is present in
Chapter [4]

Several papers that focus on the FlexRay protocol, and particularly the static
segment scheduling problem, were published during the last ten years. The mathe-
matical basics required for scheduling time-triggered and event-triggered communi-
cation were laid down by Schmidt and Schmidt [50,/51]. Their scheduling method
was based on ILP formulations for signal-to-frame packing and frame scheduling.
In the static segment scheduling area, Lukasiewycz et al. [39] are the pioneers in
introducing the method for transformation of the basic static segment scheduling
problem, without time constraints, into a two-dimensional bin packing problem.
Their objective is primarily to minimize the number of the allocated slots and,
secondly, to obtain such a schedule that can accommodate further signals with no
need for allocation of new slots. They also explain how their algorithm behaves in
the case of incremental scheduling, where no conflicts can occur. Hanzalek et al. [26]
propose the static segment scheduling problem with real-time constraints. They
present a two-stage scheduling algorithm; in the first stage, the signals are packed
into the frames and in the second, the schedule is created by a frame scheduling
algorithm. The reliability of the broadcast FlexRay communication was studied by
Souto et al. [18].

The methods for an extensible TTP protocol scheduling, based on the original
schedule, are described by Pop et al. [44]. They first find the solution that satisfies
the hard real-time constraints, and then they try to improve the availability of the
resource for further use by the iterative algorithm.

Of late, some scientists have been focusing on cooperation of the deterministic
buses in automotive industry. The key component of the reliable system, is the
gateway that interconnects its constituent heterogeneous buses. After studying the
problem of time synchronization between FlexRay and Ethernet [37], Jeon et al.
proposed a framework for reliable gateway development [33].

A proposal for Multi-variant Scheduling was first presented in [19], wherein
schedules for more variants were created, all at once. This was later followed up by
Sagstetter et al. [49] who have iteratively constructed a multi-schedule, in which the
signals common to all the variants are scheduled in the first iteration, the shared

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 31

signals in the intermediate iterations, and the signals specific to just one variant in
the last iteration. To the best of the authors’ knowledge, all the published methods
for scheduling the time-triggered communication have been built on greenfield,
without considering previous/original schedules.

The 2D bin packing problem is closely related to the time-triggered scheduling,
as observed by Lukasiewycz et al. [39]. The main problems of incremental scheduling
for bin packing was investigated by Gutin et al, who presented the lower bound
for the asymptotic competitive ratio of any algorithm [25|. Later, Ivkovié and
Lloyd [30] described the algorithm and its 2 competitive ratio for the fully dynamic
case of bin packing problem, with Insert and Delete operations. They classified the
items into groups, according to their size.

3.1.3 Outline of the chapter

The rest of the chapter is organized as follows: Section [3.2) describes the incremental
static segment scheduling problem, encompassing the real-time constraints and pro-
viding multi-variant scheduling scheme, together with a brief example; Section [3.3
introduces the data structures which support the efficiency of the proposed algo-
rithm and then proposes an efficient heuristic algorithm for incremental scheduling;
Section [3.4] presents the signal set and the experiments carried out on the extensive
benchmark set; finally, Section 3.5 concludes the chapter.

3.2 Problem statement

3.2.1 Periodic scheduling with real-time constraints

The scheduling problem addressed in this chapter is as follows: Let S be a set of all
signals that must be exchanged. Each signal s; € S has the following parameters:

e p, - period
e ¢; - payload length
e n,; - identifier of the transmitting ECU

e 7, - release date

d; - deadline

According to the AUTOSAR Specification, the period p; is a multiple of power of
two (i.e., p; € {L-2'|1=0...6}), where L is the duration of one communication
cycle. The payload ¢; of a signal must be in the range of 0 to 254 bytes. The signal
must be transmitted by the ECU as a whole, without being fragmented. The unique
identifier n; determines which ECU transmits signal s;. Real-time constraints
are represented by the release date r; and deadline d;. Both the parameters are
considered to be relative to the beginning of the schedule and it is supposed that
d; < p;. In order to simplify the problem, release date r; and deadline d; are
considered to have been rounded to the length of the cycle (as in [26]). This
simplification is adequate, because the precise specification of the release dates and

32 Problem statement

deadlines will have influence only if these values fall in the static segment. However,
if they fall in the dynamic segment, they are rounded to the length of the cycle
anyway. This rounding simplifies the scenario, because the position of a signal
within the static segment of a particular cycle is insignificant, compared to that
of the signal within the hyperperiod. Rounding of the release dates and deadlines
allows the scheduling of each ECU separately (because the position of the slots of
the given ECU is not important from the viewpoint of real-time constraints), which
reduces the combinatorial complexity of the problem.

The FlexRay network configuration consists of many parameters. The following
parameters, which are assumed to have been chosen by network designers, are not
influenced by the optimization algorithm:

e [- duration of the communication cycle,
e W - maximal frame payload length (duration of the slot).

We assume that the number of slots in the static segment of the communication
cycle does not exceed slots threshold (i.e., the maximal number of slots that fits one
communication cycle), and, thus, is sufficient to accomodate the generated schedule.
Section [3.3.5 discusses how to deal with the case when the number of the allocated
slots exceeds the slots threshold.

The aim of the scheduling problem is to find a schedule - an assignment s; —
[ys, ti, 05], where

e y;ldentifier of the communication cycle represents the identifier of the commu-
nication cycle (cycleID) for the first signal occurrence (instance of the signal
in the hyperperiod),

e t; denotes the identifier of the slot (slotID),

e 0; is the offset in the frame (offset) in which the first occurrence of the signal
s; will be transmitted.

The signals are assumed to be strictly periodic (no jitter in period p; is allowed).
Thus, all the other signal occurrences are scheduled at the same slotID and offset.
The cycleID of j-th signal occurrence is calculated from the cycleID of the first
occurrence and its period p; as y; + (j — 1)p;. The goal is to find such an assignment,
in which max;cg t; is minimal.

3.2.2 Multi-variant scheduling
Considering the multi-variant scheduling, the following holds:
e Each signal s; can be used in one or more variants.

e Sharing constraint: If two or more variants use signal s;, the signal must
be placed in the same position (cycle, slot, even offset in the frame) of these
schedules.

e The slots assigned to some ECU are assigned to this ECU in all the variants
in which the ECU is used.

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 33

These are the reasons why it is not possible to create schedules for all variants
independently. To identify which variant uses which signals, the binary matrix V is
introduced as follows:

1, if variant j contains signal s;.

Vij= .
0, otherwise.

The resulting schedule must fulfill all the described constraints. Moreover, no
two signals are allowed to overlap in any variant.

(3.1)

3.2.3 Incremental scheduling

For incremental multi-variant scheduling problem, original assignment s; — [g;, £;, 6;]
is defined for the subset of signals s; € S where S € S. The assignment s; —
[7i, s, 6:]|Vsi € S is called the original schedule in this chapter.

The aim of incremental scheduling is to find the assignment for all the signals
from S, which fulfills all the constraints of the multi-variant scheduling, minimizes
max t; and where the number of changes compared to the original schedule is
minimal.

It is to be noted that not only new signals, but even new variants are introduced
in incremental multi-variant scheduling. It follows the real case, when a new vehicle
variant is proposed. This is the reason why even signals from the original schedule
could cause a violation of the constraints because a newly introduced variant can
use two signals that overlap in the original schedule (because they were not used in
any variant together so far).

Example 1: A simple example of incremental scheduling

A simple example is introduced for a better understanding of the given problem
statement. Here, the communication cycle duration L is set to 5 ms and the frame
payload W to 16 bits. The original schedules for Variant I and Variant II are
depicted in the lower part of Fig.[3:2} In this figure, the individual communication
cycles are placed, one below the other, in vertical rows, in contrast to those in
Fig. where they are placed laterally, one next to the other, in the timeline.
Moreover, only the static slots of the communication cycles are presented in Fig. 3.2
This visualization will be used hereafter. In total, there are eight signals, s; ... ss,
which are to be transmitted from three ECUs. The identifier of the ECU, assigned
to a slot, is determined by the pale label above the slot. Thus, one can derive from
the figure that, for example, signal s; is to be sent by ECU 1 in Variant I only, it
has the period 5 ms and the payload 8 bits. The deadlines and release dates of all
the signals are ignored in this simple case. Variant I uses signals s1, s2, S3, S¢, S7 and
Variant II uses s2, s3, 4, S5, Sg, Sg, Which means that signals s, s3, s are shared and
must be placed in the same position in both the variant schedules (Venn diagram
for the variants is depicted in the upper part of Fig. |3.2).

Now, the task is to create the new variant - Variant III, which should use all the
signals of Variant I and Variant II and, furthermore, it should also accommodate
new signals sg and s1g. Signal sg has the period of 5 ms and is transmitted by
ECU 2. Signal s;1p has the period of 10 ms and is transmitted by ECU 1. The

34 Problem statement

Variant | Variant |l

Variant | Variant |l
ECU1 1 ECU1 ECU 2 ; ECU1 ECU1 ECU3
1 S2 H ss || 87| o1 [S][se | ss |
<|2EN e -
2|5 s
4 4
1 2 3 ‘ 1 2 3
slot slot

Figure 3.2: Venn diagram for Variant I and Variant II, and its original schedules
for Example 1

Venn diagram for all the three variants and the resulting schedule are presented in

Fig.[3.3]

Variant | Variant |l

Variant Il
ECU1 ., ECU1 ECU 2 ECU 3

-S2H 5o |[821 8o]| ss]
<2
5

s B
3

1 2
Varlant i slot

Figure 3.3: Venn diagram for all the three variants, and a feasible schedule for the
new Variant III

All the common signals of the new variant should be placed in the same positions
as those in Variants I and II. However, it is not always possible to satisfy this
backward compatibility constraint in incremental multi-variant scheduling, and
some signals, signals s; and sg in this example, must be rescheduled to prevent
collisions. In the case of sg, not only the signal had to be moved, but the entire slot
has to be moved from the third slot to the fourth slot. Otherwise, both ECU 2 and
ECU 3 would operate in slot 3, which is not allowed.

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 35

3.3 Algorithm

In this section, the main data structures used in the proposed algorithm are
introduced first and then the components of the proposed algorithm explained.

3.3.1 Multischedule

For schedule representation, choosing the right data structure is crucial to the
efficiency of algorithm. The most natural way is to have different schedules for
different variants (as in Fig. , which are called here as native schedules. How-
ever, this representation renders the algorithm inefficient, because the checking of
the sharing constraint and the allocation of signals in native schedules introduce
significant overhead, when the common signals increase in number. It is enough if
their position is known just in one schedule, because the position must be the same
for all the variants.

ECUL , ECU1 , ECU3
| [Sg |
1 d Sy | Sg l S, |
S5 | Sy | |
| 2 ! | |
2 . | |
O | | |
3 Sg || S¢ | !
! i i i

1 2 3 slot

Figure 3.4: Feasible original multischedule for Example 1

Therefore, a more efficient representation is used by creating just one shared
schedule, called multischedule, for all the variants, instead of separate native sched-
ules for each variant. The common signals are placed once, and there is no
redundancy caused by checking the constraints. Native schedules are derived from
the multischedule by removing the signals that have not been used in the particular
variant. In the multischedule, two or more signals may be scheduled at the same
position (this situation is denoted as overlapping). Just as the native schedule con-
sists of frames, the multischedule (MS) consists of multiframes, which are denoted
as MS; ;, where ¢ is the cycle number and j is the slot number. The original multi-
schedule (the multischedule derived from the original schedules) from Example 1 is
presented in Fig. where the lower half of each multiframe represents the first
variant and the upper half the second variant. An example of signal overlapping
can be seen in MS>; where signal s5 shares its position with that of signal s;.

36 Algorithm

3.3.2 Mutual exclusion matrices

For placing signals in the multischedule, one needs to know the signals that may
be overlapped. Overlapping can arise only when two signals are not scheduled in
the same variant; otherwise, it would result in an infeasible native schedule for a
variant that uses both the signals. Information relating to two given signals that can
overlap is stored in a Signal Mutual Fxclusion Matriz (SEM), which is a symmetric
binary matrix, generated from matrix V. SEM, ; is equal to 1 if, and only if, signals
s; and s; are to be scheduled together in some variant, otherwise, 0. Thus, two

(%]
w
(2]
~
(2]
(&
[%2]
(=
wn
~
(%2]
©

S1
S2
S3
Sq
Ss
Se
S7
Sg

o
=
Ju—y
o

O |- |—|O|O|H|F| =Y
e L N e e T e K

el L Ll L L L
=l e i
ROR R R Rk RO
el Ll L Ll L Ll
ORI OO RF
=l i L el il L

Table 3.1: Signal mutual exclusion matrix for Example 1

signals s; and s; can overlap only if SEM;; = 0. This holds only for the pairs
{s1,84}; {s1,85}; {s1,88}; {54, 87}; {85, 57} and {s7; s} in Variants I and II, from
Example 1 shown in Table

The multischedule has one extra feature in addition to the native schedule. As
can be seen in Fig. one slot in the multischedule can be occupied by more than
one ECU. In the present case, signals sy and sg are scheduled in multiframe MS; 3.
However, signal s7 is from ECU 2 and signal sg is from ECU 3. This results in a
feasible multischedule only if the signals from these two ECUs do not appear in the
same variant. The information is represented by the ECU Mutual Exclusion Matriz
(EEM). EEM,; ; is equal to 1 if, and only if, ECUs ¢ and j appear in some variant
together, otherwise, 0. The EEM matrix for Variant I and Variant II of Example 1
is shown in Table. 3.2

ECU1 ECU2 ECU3

ECU1 1 1 1
ECU 2 1 1 0
ECU 3 1 0 1

Table 3.2: ECU mutual exclusion matrix for Example 1

3.3.3 Conflict graph

New variants are added to the multischedule during the incremental scheduling.
These new variants can cause an unavoidable violation of backward compatibility
because two signals that were placed in the same position can appear in the new

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 37

variant together. To minimize the number of such violations, tracking of these
signal conflicts is necessary. The conflict graph CG is introduced for the purpose.

Each node from the set of nodes from the conflict graph Ngog represents a
signal that conflicts. The undirected edges Ec¢ then represents the conflict itself.
Moreover, the nodes can be marked by the weighting function to express the
significance of backward compatibility violation when the position of the signal,
represented by the node, is changed. The used weighting function will be described
in detail later in the chapter.

3.3.4 Incremental scheduling algorithm

The main idea of incremental multi-variant scheduling algorithm, depicted in Fig.|3.5
is to place a signal in the multischedule, according to a given order (described in
Sec. . The algorithm is divided into three stages, A, B and C. In Stage A,
algorithm initialization and signal sorting are performed.

In Stage B, the signals are placed in unit multischedules (one per-ECU). Because
the entire slot is reserved for a particular ECU, and no two slots can overlap in a
native schedule, a unit multischedule is made for each ECU separately. The unit
multischedule decides the cycleIlD and the offset in the frame from which a particular
signal will be sent. Moreover, for each ECU it is known as to how many slots are
to be allocated by the algorithm in the final multischedule, at the end of Stage B.
While Stage B is executed on per-ECU basis, the computational complexity of the
algorithm is reduced following the divide-and-conquer paradigm.

During Stage C, the slots from unit multischedules are merged into the final
multischedule. The following is the detailed explanation for each part of the
algorithm:

Ordering of the Signal set

Order of signals is important, because the signals are placed into the multischedule,
one by one. In [39], the authors have shown that the 2D bin-packing problem
and the static segment scheduling problem have similar features. They propose to
organize the signals in the order of their increasing period. This ordering works
well when no time constraints are defined. Therefore, the proposed algorithm uses
a combination of multiple orderings. The signal set is sorted in three steps (i.e. the
sorting criteria are applied one after the other while a stable sorting algorithm is
used), according to the decreasing payload, increasing window (gap between the
release date and the deadline) and increasing period.

Sorting according to the decreasing payload and the increasing period en-
sures that most bandwidth-demanding signals are scheduled first; less bandwidth-
demanding signals, which are more suitable for filling small gaps of the remaining
bandwidth, are scheduled later. Ordering according to the increasing window ensures
that the signals which are hard to schedule (their placement in the multischedule
is more limited by the time constraints) are scheduled sooner. This policy has
been found to obtain the most efficient solutions for non-incremental scheduling, as
shown in [19], where different scheduling policies were empirically examined.

38 Algorithm

El) Ordering of the Signal set} bS

-

23p)g

E— For each ECU

2) Reading of the
orlgmal schedule

3) Repamng of the

E original schedule by the } =

2801g

maximal mdependent set

unscheduled/new signals b,

4) Schedulmg of
Y
the first fit placmg policy

5) Extensibility optimizatimﬂ

6) Slot scheduling by a %
graph coloring K

Figure 3.5: Flow chart of the algorithm

Reading of the original multischedule

At the beginning of Stage B, it is necessary to read the positions of the signals
from the original multischedule MS 9 and place all their occurrences at the same
position in the unit multischedule MSZCY of the currently scheduled ECU. If the
signal is not placed in the original schedule, it is added to the set of new signals
SLY that need to be scheduled later. The pseudocode is shown in Alg.

The currently placed signal occurrence can violate a constraint which prevents
the simultaneous transmission of two signals. This happens if the newly introduced
variant has two signals that were never used together in any variant, and were
occupying overlapping positions in the original multischedule (e.g., signals s; and
s5 in Example 1). Hence, it is important to check this violation after placing each
signal occurrence, by using the method FINDCONFLICTINGSIGNALS. The SEM
matrix was used for this purpose. If two signals s; and s; overlap and the value of
SEM ;; =1, then the violation occurs. If this violation arises, unordered pair(s)
{si,s;} are added to the conflict graph CG as new edge in Ec¢, where s; is the
current signal and s; is the signal that conflicts with s;. At the end, the CG contains
all signals with a conflict.

In Example 1, while scheduling unit multischedule in cycle 2 of ECU 1 for the
new Variant III, the signal s5 conflicts with signal s;.

Repairing of the original multischedule

After reading of the original multischedule, the violations are still included in the
original unit multischedule, but they are represented by C'G. The only way to

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 39

Algorithm 3.1 Reading of the original multischedule

Input :Original multischedule MS9,
Ordered set of signals SL,
Signal Mututal Exclusion Matrix SEM
Output : Original unit multischedule MS E CU,
Conflict graph CG, Set of new signals SLV
for each signal s; in SL transmited by the ECU do
if s; is in MS© then
place signal s; into MSZCY at the same position as in MS©
CG «+FINDCONFLICTINGSIGNALS(s;, MSPCY, SEM)
else
| SLN =SV us;
end
end

avoid the violation is to remove some conflicting signals from the unit multischedule.
It is beneficial, as expressed by the objective, to keep as many signals (their
occurrences) in the original positions as possible to have the minimal number
of backward compatibility violations. This sub-problem can be expressed as the
maximal independent set problem (MIS) in the conflict graph. The resulting subset
of signals is denoted as Sy;;s.

In Example 2, let a new set of original variants - Variant I to Variant III as
shown in the upper part of Fig. to be considered. In the current scheduling
iteration, what is needed is the creation of new Variant IV that contains all the
signals from all the original variants (Variants I to III). The graph that represents
CG for ECU 1 of the given Example 2 is shown in the lower part of Fig. This

Variant | Variant 1l Variant Il
ECU 1 ECU 1

Figure 3.6: Example 2 - The conflict graph C'G for scheduling Variant IV containing
all the signals from variants I, IT and III

example is rather simple, but it can be much more complicated in real situations.

If the subset Shssg is the solution of MIS over the conflict graph, then Nog\Snrs
will be the minimal subset of signals, whose removal would solve all the conflicts. In
the case of Fig. the solutions {ss, s4, S5, S, $7} = Smrs and {ss, s, S7, S, S9} =
Swm1s are equivalent from the viewpoint of the number of signals. However, solution
{83, $4, 85, S6, 57} = Smrs is assumed to be better, because signals s4 and s5 have

40 Algorithm

two occurrences each, against signals sg and sg, which have just one occurrence.
Considering this, it is preferred to remove the signals with fewer occurrences.
Therefore, the algorithm uses priorities for solving this problem. The number of
signals has a higher priority, compared to the number of occurrences of the signal,
which is achieved by using the proper conflict graph nodes weighting function
w; = |Neg| + pi According to the formula, adding one extra signal to Sars
increases the objective value by at least |Nog|. Taking into account that p; > 1,
the sum of L over all nodes in the conflict graph cannot exceed the value |[Nog|. It
ensures thatlany change in the number of signals used in Sy;;g is more significant
than the change in the number of signal occurrences. Thus, the weight w; reflects
the priorities. The extension of MIS to the maximal weighted independent set
problem (MWIS) is needed for this purpose.
ILP model is employed for solving MWIS thus:

max E W; T4
T

i|s;€Nca
subject to z; +x; <1, Vi, j | {si,s;} € Eca
1
where w; = |NCG| + — Vi€ Ngg (2)
pi
x; € {0, 1} Vi € Neg

In the model, Nog represents the set of nodes in conflict graph CG. Signal s;
belongs to the subset Sysrs if, and only if, x; = 1. Signals from Ngg \ Sars are,
consequently, removed from the unit multischedule.

Scheduling of unscheduled /new signals

New signals and conflicting signals removed from the original multischedule are put
in an ordered set, called the signal list SLY (the list contains {s, s5} for ECU 1 in
Example 1). This list is ordered as explained in Sec. Algorithm takes the
signals, one by one, from the SL" and tries to place their first occurrence in the first
feasible position, in the unit multischedule, using the FINDPOSITIONFORSIGNAL
method. It checks all offsets in the first frame (the frame in the first slot and in
the cycle of the signal’s release date) first. If it is not possible to place the signal
there, the algorithm keeps repeating this exercise up to the cycle, determined by
the signal’s deadline. If it is still not possible to find a place in the first slot, the
algorithm continues trying to find a place in the second slot, third slot and the
subsequent ones. Once the feasible position for the first occurrence is found, the
other occurrences are also checked for feasible placement.

If no position is available for the signal in the unit multischedule, the algorithm
calls for the ALLOCATESLOT method to allocate a new slot and places the signal into
it with the cyclelD equal to the release date and offset equal to 0. This procedure
is repeated until all the signals from the SL” are scheduled.

Using this one-shot constructive heuristics for scheduling instead of two-stage
heuristics (e.g., the one introduced in [26]) has a significant benefit as it can schedule
signals with a larger period in frames with a shorter period.

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 41

Algorithm 3.2 Scheduling of unscheduled/new signals

Input :Original unit multischedule MSZCY
Ordered set of unscheduled /new signals SL"
Signal Mututal Exclusion Matrix SEM,
Conflict graph CG
Output : Unit multischedule MSECY
for each signal s; in SLY do
infeasiblePosition < true
while infeasiblePosition = true do
placePosition = FINDPOSITIONFORSIGNAL(MSZCY | s, SEM)

if placePosition not found then
| break

end

(cycle, slot, offset) < placePosition
infeasiblePosition < false

while cycle < hyperperiod do

if (cycle, slot, offset) is not suitable for signal then
infeasiblePosition < true

break
end
cycle += p;
end
end

if infeasiblePosition then
| placePosition +ALLOCATESLOT(MS?CY, s,)
end

place signal s; into MSECY at placePosition
end

Extensibility optimization

Now, the final number of slots that the ECU will maintain is known. However,
it is needed to care about the future signals for the incremental scheduling and
proactively enable their insertion. Experiments with the non-incremental problem
have shown that the proposed scheduling algorithm allocates a near optimal number
of slots, when all the signals are ordered according to the procedure outlined under
Sec. [3:3.4] This is not true in the case of incremental scheduling, because, for
example, a signal from the original multischedule, with a larger period, will be
scheduled before some new signal with a shorter period. The reader can imagine
the case where the payload of the slot is 16 bits; there is only one variant with
16 signals with the one bit payload, the period equal to the hyperperiod and an
empty original multischedule. In that case, the first cycle of the first slot will be
filled completely, according to the first-fit policy of the scheduling algorithm, while
the other cycles remain unfilled. In the second iteration, a new variant will have
to be crated, which uses all the signals and, furthermore, one signal with a period
equal to one communication cycle, and a payload of one bit. The algorithm will

42 Algorithm

have to allocate a new slot for the new signal during the incremental scheduling,
because the first slot of the first cycle has already been filled completely. However,
one slot would have been enough even in the second iteration of the incremental
scheduling if the algorithm would spread the signals smartly in the first iteration,
and that is why Extensibility optimization is introduced.

ECUL1 | |freeBits|=40b
1 S4|Ssf d;
7/, ;
2 W T4 |56 (14] 0 d;

<920 0|15
1o 15] 0

' s; 7%
W%

8§ 16 1 T 8
offset [bit] payload [bit]
a) freeBits b) Contingency c¢) Dummy signals
computation matrix

Figure 3.7: Example 3 - Process of dummy signals generation

Extensibility optimization aims to restructure the multischedule so that the mul-
tischedule remains ready for future scheduling iterations (i.e., it can accommodate
as many new signals as possible) and the number of allocated slots is preserved.
One way to satisfy this requirement is to perform the extensibility optimization on
each slot separately. In the beginning, the algorithm computes the number of bits
U in the slot (considering all cycles) that are not allocated to any signal. It means
that the sum of the payloads of the signal occurrences that could be added to this
slot in future is equal to U in the ideal case.

In Example 3, where only new signals s3, s4 and s; are present in the slot
currently being optimized, the value U is equal to 40 bits, which is counted from the
hatched part of the schedule (see Fig. a). Moreover, the probability distribution
of these parameters in the schedule is known from the p; and ¢; of the signals used
in the schedule. This probability distribution is represented by a contingency table
shown in Fig. [3.7]b. If the explicit parameters distribution for future signals is not
given by designers, the algorithm assumes that the parameters of the future signals
will follow this derived distribution.

A set of dummy signals D, whose sum of the payloads of all signal occurrences
is equal to or slightly less than U and whose payloads and periods correspond to
the contingency table, is generated. The generated set of dummy signals D for
Example 3 is presented in Fig. [3.7lc. All signals placed in the current iteration
(those that were in the SL” list) are, consequently, removed from the multlschedule
of the slot and merged with those in set D to the ordered set SLS see F1
List SL® is also ordered according to the procedure outlined under Sec. [3.3.4 T hen
the signals from SL® are scheduled back to the slot according to the procedure
given under Sec. [3

If the resulting multischedule has only one slot, as in the one shown in Fig. [3.8]b,
then the dummy signals are removed from the slot, and the extensibility optimization
for the given slot is finished. Fig. [3:8lc shows the resulting structure of the slot

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 43

d,-d ECU1
s AT 2
2
S3
dd di [l
8 16
offset [bit] offset [bit]

a) Ordered set SL® b) Resulting ¢) Removed
multischedule ~dummy signals

Figure 3.8: Example 3 - Slot rescheduling in the extensibility optimization

after the extensibility optimization of Example 3. Then the algorithm goes to the
next slot.

Otherwise, the new U is calculated as Upew = |[W - H —1.05- (W -H -U)|,
where W is the maximal frame payload length and H is the height of the slot (i.e.,
number of cycles in the hyperperiod). This formula represents the 5% decrease in
the volume allocable by the new dummy signal in the slot (i.e., the total number of
free bits in the slot over the entire hyperperiod). Then, the new dummy signals are
generated according to Uyeyw, and the scheduling is again started. This procedure is
repeated until only one slot is scheduled or Upew < 0.

Slot scheduling

After completing Stage B for all the ECUs, the values of y; and o; become known
for all the signals. Also, the number of slots allocated for each ECU becomes known.
Then, the last step is to find the positions of the slots from the unit multischedules
of the ECUs in the final multischedule. According to the problem definition, slots
of no two ECUs can overlap in one variant, but those not used in the same variant
(ECU 2 and ECU 3 in the original multischedule of Example 1) can overlap in the
multischedule.

The slot scheduling problem is then to assign the slots, from the unit multi-
schedules to the final multischedule, so that the number of allocated slots in the
multischedule will be minimal. The problem can be formulated in terms of graph
theory.

The algorithm constructs graph Ggror, where the nodes are the slots of the
unit multischedules. There is an undirected edge between slots [; and [;, if, and
only if, their transmitting ECUs h; = ECU(l;) and h; = ECU(l;) are both used
by some variant - i.e., EEMy, 5, = 1. It is to be noted that the slots from one
ECU form a clique in Ggpor. Moreover, the slots that are to be scheduled in
one variant together form a clique. Now, graph coloring is used to solve the slot
scheduling sub-problem. Each color of the resulting graph corresponds to one slot
in the multischedule.

For Example 4, let it be assumed that there are five ECUs and each ECU has
scheduled only one slot (b ... hs) in the unit multischedule (let the slots be labeled
as ly...ls where hy = UCU 1, etc.) Furthermore, assume that there are three
variants. Variant I uses [y, lo, I3, Variant II uses l1, [3, {4, and Variant III uses [y,

44 Algorithm

lg, l5. The graph Ggror for this problem is depicted in Fig. The resulting

*3

Slot distribution in the final multischedule

slot

Figure 3.9: Example 4: Graph Ggpor coloring

color/slotID in the final multischedule is indicated by the colored number, next to
the node on the right side of the figure. In the example, the final multischedule has
three slots.

The graph coloring problem is known to be NP-hard, but the heuristic algorithm
can often find an optimal solution in polynomial time for slot scheduling cases. The
minimum number of colors in the graph (chromatic number) must be bigger than
or equal to the number of nodes in the biggest clique. It often so happens that the
size of the biggest clique is equal to the chromatic number of Gsror, because in
real cases cliques in graph Ggror are big. Finding the maximum graph clique is
also an NP-hard problem. Fortunately, it is possible to use the number of slots in
the variant, with the most slots as the lower bound, which is consequently a valid
lower bound (LB) for the chromatic number too. Then, sequential heuristics is
used to solve the graph coloring problem. The heuristics takes all the nodes in an
arbitrary order and tries to color them, one by one, using the minimum possible
number of colors. The biggest used color number becomes the upper bound (UB)
for the coloring problem. If this upper bound is equal to the lower bound, then it is
considered that heuristics has found an optimal solution, otherwise the bounded
ILP model for the graph coloring, presented by the system of equations (3), is
used. Note that the ILP model is accelerated by the knowledge (i.e., LB and UB)

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 45

obtained by the heuristics too.

min z
subject to k-w;p <z Vi, k
> wip=1L; Vi
k=1..UB
wi g +wie <1 Vi, j, k| EEM, ; =1
wip =1 Vi, k| W, =1
where wik € {0,1}; Vi, k
z € [LB,UB]| (3)

Here z represents the biggest assigned color number (i.e., slotID). Variable w; j, = 1,
if i-th ECU has the k-th slot of the final multischedule. @; j is equal to 1, if, and
only if, the i-th ECU has the k-th slot of the original multischedule and if the slot
is not a conflicting one according to the EEM. L; is the number of slots in the
unit multischedule of the i-th ECU, and LB (UB) is the given lower bound (upper
bound respectively).

If there is a conflict (as in Variant 11T of Example 1), the conflict is resolved by
WMIS as explained in Sec. [3.3.4] with the difference that now the vertices in the
conflict graph are slots rather than signals.

After slot scheduling, the full assignment s; — [y;, t;, 0;] (final multischedule)
becomes known for all the signals. It is also decided, whether the resulting schedule
is feasible. If the number of allocated slots does not exceed the slots threshold, the
schedule is considered feasible.

The proposed algorithm can be used for non-incremental scheduling too, and its
results will be better than or comparable to those presented in [19].

3.3.5 Schedule feasibility

The provided algorithm tries to find the schedule with the minimum number of
allocated slots. However, for given network parameters, the resulting schedule
can be infeasible, because it exceeds the slots threshold. Nevertheless, if the basic
network parameters are not strictly given, it could be possible to find a feasible
schedule with modified configuration of the network parameters. Considering that
the signal parameters are immutable, the Exploration algorithm can modify the
length of the frame or the duration of the communication cycle. The exploration
algorithm enumerates all possible combinations of the network parameters and
evaluates them by the above described algorithm. The results are provided to the
network designer, who can choose the most suitable one. Thanks to the small
computation complexity of the scheduling algorithm (see Table , the exploration
can be accomplished in a reasonable time.

It is important to note here, that exploration of the network parameters is possible
in the first iteration of the incremental scheduling only. Tuning would introduce a
significant backward compatibility violation later on. Thus, if the resulting schedule
of some later incremental iteration is not feasible, it is recommended to generate
the new one by non-incremental multi-variant scheduling. On one hand, this means

46 Experimental results

Algorithm 3.3 Algorithm for the network parameters exploration

Input :Benchmark instance
Output : Number of allocated slots for different frame length and cycle duration

for each frame payload length w € {max ¢;, max¢; + 16,--- ,2048} do

f?ir each duration of the communication cycle m € {minp;, - ,%, %}
o
| Call scheduling algorithm with W = w, M =m
end
end

the loss of backward compatibility completely, but, on the other hand, it saves both
the number of allocated slots, as will be shown in Sec. and the bandwidth, as
the result of parameters tuning.

3.4 Experimental results

The proposed algorithm was coded in C++ and tested on a PC with an In-
tel®@Core™2 Duo CPU (2.8 GHz) and an 8 GB RAM memory.

Eight different benchmark sets were used to evaluate the algorithm and assess the
impact of the used methodologies on the resulting schedules. One of the instances
used for testing was obtained from an industrial partner, and that represents a
realistic case with 23 ECUs (11 ECUs are common to all variants) and more than
5000 signals. This instance was analyzed, and a probabilistic model derived to
generate 30 instances, with parameters similar to those of the real case instance.

Distribution of payloads in Synth set Distribution of periods in Synth set

@
=

)
<1l
2

Do
w

=

=
«®

Percent of signals
& 3
Percent of signals
Do

Ut

—_

12345678 9101112131632 5 10 20 40 80 160 320
Payload [bits] Period [ms]

Figure 3.10: Distribution of signal parameters in Synth sets

The distributions of payloads and periods in this set are shown in Fig. [3.10]
Neither release date nor deadline constraints were imposed on the signals here.
These synthesized instances belong to the Synth benchmark set.

The remaining sets were based on the extended Society of Automotive Engineers

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 47

(SAE) benchmark set (originally used [26] and generated by the Netcarbench
tool |10]). The signal parameters’ distributions of these sets are shown in Fig.

Distribution of payloads in sets SAFE; to SAFE; Distribution of periods in sets SAF, to SAE:

50t 601 B SAF w0 SAE, ||
 SAE;

m

o o

“‘ L

Ee :

-2 Gy

Bt 2

g g

10 5

& &

=% 92 3 4 7 8 U715 30 60 120 240 480 960

Payload [bits] Period [ms]

Figure 3.11: Distribution of signal parameters in SAE sets

The parameters of the instances are shown in Table [3.3] where the second
column presents the number of ECUs included in the particular set. The third
column presents the duration of the communication cycle, and the fourth one
presents the maximum frame payload length. The fifth and sixth columns present
the percentage of the signals with imposed real-time constraints. The seventh
column presents the slots threshold calculated for the network configuration with
the communication cycle containing only static segment and NIT with duration of
50 ps. It can be observed, from the table, that the benchmark sets SAF; to SAFEg

Set ECUs[-] | L[ms] | W [bits] Release | Deadline [%)] Slots

dates [%)] threshold [-]
Synth 23 5 64 0 0 176
SAE, 3 15 32 0 0 641
SAE, 3 15 32 25 0 641
SAE; 3 15 32 19 19 641
SAE, 3 15 32 40 0 641
SAE; 6 15 64 20 0 546
SAEg 6 15 32 20 20 641
SAE, 23 15 32 0 0 641

Table 3.3: Parameters of individual benchmark sets

share the same periods and payloads distributions, but they differ in the real-time
constraints imposed on them and the number of ECUs used in the instance. While
the instances SAFE; to SAE, used just three ECUs, the instances SAE5 and SAEg
used six ECUs. The instance SAFE; used 23 ECUs. The portion of the signals, with
imposed real-time constraints (i.e., release dates or deadlines), varies from 0% in set
SAE; to 40% in set SAE,. All the sets use FlexRay with 10 Mbit/s of bandwidth.

48 Experimental results

The SAF sets were designed for non-incremental, single-variant scheduling only.
Therefore, the multi-variant instances for incremental scheduling iterations were
generated artificially. A detailed description of the generation process can be found
in Appendix The benchmark generator and all its configuration files (one for
each benchmark set) used in this study, are available in [20].

In the following subsections and the focus would be on non-incremental
case instances, while subsections [3.4.3], [3.4.4] and [3.4.5] deal with the investigation
of incremental multi-variant cases. Exploration of suitable network parameters is
investigated in subsection [3.4.6 and subsection [3.4.7] concludes this section with the
verification of the proposed schedules on a real FlexRay network.

3.4.1 Evaluation of various scheduling techniques for non-
incremental scheduling

Different approaches to scheduling are proposed in the introductory part of this
chapter. The first technique that completely prevents the problem of dissimilarities
among particular vehicle variants is to create one schedule for all variants, with all
the signals included. However, this technique needs the most bandwidth (i.e., it
allocates the highest number of static slots). This explains why this technique is
used as a reference for other related investigations. It means that the number of the
allocated slots by such a common schedule (blue star) represents 100 % in Fig. [3.12

+

i

= 100 % * * * * * * *
RS

w S

<2 | &

22

=]

E3wl v s 8 8 |
—

< =

5% $ ¢ $ ¢ 3
5]

< &

m o

i v
= NS 60 1
=IR3)

& % % Scheduling all signals to one schedule “ Independent schedule

8 A A Multivariant schedule [B LB for independent schedule
;% @ @ LB for Multi-Variant schedule V V¥V Volume of messages

40

@ @ ¢ ¢ ¢ & <
PN o 2 o o o o

Figure 3.12: Evaluation of different scheduling techniques

Creating independent schedules (aqua colored diamond in Fig. separately
for each vehicle variant is the opposite extreme. This technique provides an ideal
solution from the viewpoint of bandwidth utilization. However, this is the most
unacceptable solution from the viewpoint of compatibility of variants, because one

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 49

signal is placed in different positions in different variants.

The proposed multi-variant scheduling solution, which preserves bandwidth
utilization, besides sharing constraints to the maximum extent possible, is depicted
as blue triangles in Fig. [3.12] The scheduling problem is NP-hard. Thus, the
algorithm (Fig. can, sometimes, miss the optimal solution as a trade-off for
reduction in time complexity. That is why the lower bound values are presented
in the figure. The idea of lower bound calculation is based on the lower bound
algorithm for 2D bin packing. The minimal number of slots a; ; needed to exchange
the required volume of the data through the bus is calculated independently for
each ECU ¢ and each variant j. Then, the minimal number of slots needed by
ECU 7 in the multischedule is equal to a; = max; a, j, because the multischedule
has to contain signals from all variants. Consequently, the exact algorithm used for
slot scheduling, explained under Sec. is utilized to compute the feasible lower
bound used here.

Moreover, the figure presents the volume of the messages (i.e., the total number
of bits used by all signals over the hyperperiod, divided by the bit capacity of one
slot and the number of cycles in hyperperiod) as downward pointing green triangles.
Thus, the reader can evaluate the optimality gap of the heuristic algorithm.

It can be seen that the multi-variant scheduling solution needs just a little more
bandwidth than independent scheduling, while preserving the sharing constraint.
Compared to the common schedule, it can save about 10-30 % of the bandwidth.
Moreover, the scheduling algorithm provides the solutions that are close to the
lower bound (as many as 179 out of 240 solutions reached the lower bound value).

3.4.2 Evaluation of the influence of similarity on non-incremental
multi-variant schedule

The parameters of instances influence the result of multi-variant scheduling. This
evaluation aims to capture the sensitivity of multi-variant scheduling to the similarity
of the variants. Benchmark instances, based on Synth set restricted to four variants,
were created for this experiment. Three different coefficients were used to express
the variants’ similarity. Coefficient o represents the portion of the variant specific
signals, which are included in a single variant only. Coefficient v represents the
portion of common signals, which form part common to all variants. The percentage
of the shared signals (i.e., the remaining signals, which are common to two or more
variants, but not to all of them) is described by coefficient § = 100 — o — 7. The
graph, showing the dependency of the number of allocated slots on these coefficients,
is shown in Fig. [3.13

If all signals are common to all variants (see left corner of Fig. , then
it is enough to create one common schedule. This case naturally allocates the
most slots. In the other extreme, when all signals are specific (see right corner
of Fig. , the schedules can be created independently, and those schedules
overlap each other. Hence, in the case of four variants, the schedules allocate almost
one-quarter of bandwidth regarding the common schedule. The central corner in
Fig. represents the instances, wheref = 100% (o = v = 0%). Here, the
number of used slots is close to one-half, as compared to those of the common
schedule. The rest of the space almost represents the linear interpolation between

50

Experimental results

Z
o N
- SO
o AR X
NSNS
o3 ‘.‘;ﬁizti:!i’tisﬁt;" SRS
© SR R S NS
S S S S R AR SR ONRE IS
2 120 OSRERNOSRRGIIR ‘2“;:v‘tg“;?;‘ts\!:‘:ﬁ:i\ &
R SO SRS AT N SRS NIRRT
g 110 SRR
X S S A o YWY S
2 RS OASRARNR
T 100 R RN RRRNRR
ROREIINR
o 90 SR
-
80
Q
s} 70
®, 60
—
— 50
Q
& 40
) 0
=t
® A\\o\a
" S
= 2
P
[
87,
€2, 80
Us
Q, 100 100
%

Figure 3.13: Evaluation of the non-incremental multi-variant scheduling

those three extreme cases.

3.4.3 Evaluation of the influence of similarity on the incre-
mental multi-variant schedule

So far, all the experiments were performed for non-incremental scheduling scenarios

to investigate how the increasing number of iterations influences the solution in
incremental scheduling.

to study the multi-variant scheduling aspect first. Therefore, the next step is
For this, let extensibility optimization be set aside for now. The multi-variant
coefficients of the Synth benchmark set were simplified for this experiment so that
the result can be visualized in a 3D graph. The number of common signals is equal
to the number of shared signals in the benchmark set used here (mathematically
expressed =y = 100770‘) in the first iteration. For the later interations, instead of
trying to preserve the multi-variant coefficients as much as possible, the new variants
follow the more realistic scenario, wherein the new variant is based on the randomly
choosen preceding variant. This new variant introduces new variant-specific signals
and ECUs, besides introducing changes in shared signals. The common signals are
preserved. This way, the results follow the real case situation.

Fig. [3:14) presents the dependence of the number of allocated slots in resulting

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 51

multischedule on the portion of common and shared signals and the iteration of
the incremental scheduling. The maximum increase in the number of used slots is

$10[S PoYedo[[e Jo Jequint agerany

Figure 3.14: Evaluation of incremental multi-variant scheduling

between the first and the second iteration. This increase is caused by the density of
the multischedule, created during the first iteration. Often, the new signal does not
suit any slot allocated for a given ECU in the original schedule, and, therefore, a
new slot has to be allocated for such a signal. If such a situation occurs for each
ECU, the total number of slots will have to be increased by 23 (it is to be noted that
the Synth benchmark set contains 23 ECUs). Those new slots introduce porosity in
the multischedule, which reduces the need for allocation of new slots in subsequent
iterations. One can see that the slope, which indicates the increase in the number of
slots, correlates with the slope after the first iteration in Fig. 14 (it equals the line
from o = 100, v = 0 to @ = 0, v = 50). The slope becomes progressively gentler

during subsequent iterations of incremental scheduling, because new variants cannot
preserve the multi-variant coefficients.

52 Experimental results

3.4.4 Evaluation of the extensibility optimization for the in-
cremental scheduling

The algorithm of extensibility optimization, introduced under Section tries to
restructure the multischedule in such a way that the probability of the algorithm
needing allocation of extra slots for new signals in future is small. In the ideal case,
when the extensibility optimization knows the future, the resulting incremental
multischedule would be the same as the multischedule, created by non-incremental
scheduling. As the algorithm does not know the future, it just tries to predict
(as explained under Sec. [3.3.4). This experiment evaluates the behavior of the
extensibility optimization in Fig. In the upper part of the figure, four rows

A&—4A Incremental scheduling without extensibility optimisation
@—@ Incremental scheduling with extensibility optimisation
9 Non-incremental scheduling

140} | == Lower bound 1

130t .

120} .

110} .

Average number of allocated slots

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘

Iteration

Figure 3.15: Evaluation of extensibility optimization for the incremental scheduling

are shown. Among these, the row with square marks refers to the lower bound.
The row with rhomboid marks denotes the results of non-incremental scheduling
for comparison of incremental versus non-incremental solution. It is to be noted
that, in case of non-incremental scheduling, no backward compatibility is preserved.
The row marked by solid circles and the one marked by triangles represent the
results achieved for incremental scheduling algorithm, the former with extensibility
optimization and the latter without it. The difference between non-incremental and
incremental scheduling cases is the cost of preserving backward compatibility.
The results show that extensibility optimization is most successful during the first
iteration. It follows from the scope over which the optimization can operate. While
the algorithm can restructure the entire multischedule during the first iteration,

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 53

when all the signals are new, the scope becomes significantly restricted during
subsequent iterations. That explains why during the last iteration, the upper two
lines of the graph are close to each other. The optimization is not able to suppress
the number of allocated slots to the number of allocated slots by non-incremental
scheduling. This is caused primarily by two constraints: backward compatibility
constraint that affects mainly late iterations, and the constraint that restricts the
algorithm to keep the number of allocated slots equal to the number of those
allocated in the case without optimization (recall that extensibility optimization
affects the number of allocated slots in subsequent iteration and not during the
current one). The second constraint is most significant in the first iteration.

It is also an important observation that in later iterations, the lines representing
incremental scheduling are similar to those representing non-incremental scheduling,
in terms of their slope. Thus, the scheduling can utilize the porosity in the schedules
efficiently.

3.4.5 Evaluation of Incremental Multi-variant scheduling al-
gorithm

This section focusses on a comprehensive evaluation of the performance of the
proposed algorithm, in contrast to previous evaluations, which focused only on
the behavior of incremental and multi-variant scheduling, and aims to present the
results in a precise form.

The evaluation-sets follow the parameters’ distribution, as described under the
introduction of Sec. The instances contain more than 5000 signals in the first
scheduling iteration and more than 6000 in the last one.

Tteration
Set ‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘ 10
Synth 105.7 | 114.3 | 118.9 | 121.9 | 124.5 | 127.9 | 130.3 | 132.2 | 134.7 | 136.5
SAE_1 122.8 | 139.6 | 143.9 | 147.2 | 149.7 | 153.4 | 156.5 | 160.3 | 163.9 | 167.3
SAE_2 131.5 | 143.7 | 147.8 | 151.1 | 154.7 | 158.2 | 161.3 | 164.0 | 167.2 | 170.2
SAE_3 131.6 | 1449 | 1494 | 152.6 | 156.6 | 160.3 | 162.8 | 165.2 | 168.4 | 170.9
SAE 4 132.0 | 1429 | 146.9 | 150.3 | 153.0 | 156.0 | 158.7 | 161.5 | 164.0 | 167.1
SAE._5 64.8 75.2 78.2 80.6 82.9 84.9 86.6 88.4 90.1 91.7
SAE_6 127.1 | 145.9 | 151.4 | 155.0 | 158.6 | 161.8 | 165.1 | 168.3 | 171.5 | 174.6
SAE_7 99.3 | 120.6 | 127.3 | 133.0 | 136.9 | 140.4 | 143.5 | 147.4 | 150.6 | 153.6

Ex. time [ms] | 314.0 | 20.0 | 16.6 | 17.3] 162 | 18.7] 19.4] 174 19.0] 186

Table 3.4: Number of slots and execution time of incremental multi-variant schedul-
ing algorithm on different sets

The results of the algorithm are presented in Table In this table, the row of
the cell determines the set, and the column the iteration of incremental scheduling.
Each cell presents the number of allocated slots in the multischedule. The value is
averaged over all the instances in the set. The last row shows the execution time of
the algorithm, for the given iteration, averaged over all the benchmark instances.
The first iteration has been the slowest one, because it has to place the biggest
number of signals; besides, the conflict graph also is mostly much larger. Even

54 Experimental results

though, the execution time in hundreds of milliseconds for industrial sized instances
is incomparable with a development cycle of any vehicle variant.

3.4.6 Exploration of the network parameters

In order to evaluate the influence of the network parameters, an extra benchmark
instance, for which the number of allocated slots in the resulting schedule reaches
the slots threshold, was created. The duration of the communication cycle is 8 ms
in the instance. Similarly, the minimum period minp; is also 8 ms and, hence,
the evaluated durations of the communication cycle are 8, 4, 2 and so on down
to %ms. The instance contains more than 25000 signals. The signals follow the
signal parameter distribution as signals in the Synth benchmark set, but the signal
periods were changed from a 5ms scale to an 8 ms scale. The network parameters
were enumerated and evaluated by Algorithm and the results are presented
in Fig. 3.16] In the figure, each point represents one combination of the network
parameters together with the resulting schedule. The figure shows three data

o)
(}
r c..’o TN 150
> S
- X ° S,
= 140 —
-~.. N ._04
g o 130 &
 ~ ¢ e g
.‘.".. 4 120 =
® ‘ ® p
ot J e 10 =
@D « ?‘ ° é)
.-....... : 100 :
s 3 G
o
2 x S > 4 :
80 &
2 4 < S
k 0
S
7 8 9000 1750 1500 1250 1000 750 500 250

W [bit]

Figure 3.16: Influence of the network parameters on the efficiency of the resulting
schedule

rows, where each data row represents one configuration of the duration of the
communication cycle. Only three different values for communication cycle duration
are shown in the figure to simplify the readability. Note that the modification of
the network parameters does not only influence the number of slots in the resulting
schedule, but it also influences the slots threshold. Thus, Fig. [3:16] presents the

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 55

number of allocated slots as a percentage of the slots threshold rather than as a
number directly. The percentage is also represented by the color of each point,
where all the points with dark blue color are over 100 %. It loosely corresponds
to the portion of the communication cycle used by the static segment, taking into
account that NIT is minimal and the Dynamic segment and Symbol window are
not used.

The length of the frame is bounded from the bottom by the payload of the
longest signal (which is 32 bits in our case). Similar limitation holds for the duration
of the communication cycle which is bounded from the top by the signal with the
smallest period.

It can be observed from Fig. that the decrease in the duration of the com-
munication cycle causes the increase in the allocated portion of the communication
cycle. The signals with the longest period (e.g., 512ms in our case) must be trans-
mitted with the shorter period (e.g., 256 ms, if the duration of the communication
cycle was decreased from 8 ms to 4ms), which causes the signal retransmissions
and, consequently, the increase in the allocated portion of the communication cycle.
Thus, this modification often does not solve the problem with the infeasibility of
the resulting schedule.

On the other hand, the modification of the length of the frame can significantly
decrease the allocated portion of the communication cycle. If the length of the
frame is prolonged, then the bandwidth of the bus is used more efficiently because
fewer macroticks are consumed by, for example, the inter-ECU synchronization
mechanisms (action points), etc. The prolongation is efficient as long as the number
of allocated slots is strictly greater than the number of ECUs. If the resulting
number of allocated slots is small, the overhead of the non-filled slots overwhelms
the gained efficiency.

3.4.7 Verification of the resulting schedules on hardware

The last step in evaluation is to verify the feasibility of the resulting schedules, for
which, two methods were used. The first method utilizes the feasibility validator,
which goes through all the hard constraints, derived from the communication
protocol (in the present case FlexRay protocol), multi-variant and incremental
scheduling, and then checks the validity of their results. The advantages of validator
are its versatility and efficiency, because they can handle a huge number of instances
in a matter of seconds. This algorithm was used to check all the schedules used
for the present evaluations. However, the validator cannot check all the hardware-
related constraints and parameters, because its point of view is at too high a level
(it just checks the correctness of schedules with respect to the mathematical model
of the bus, and not the real bus). While deploying the schedule to the real network,
the low-level parameters (such as duration of macrotick- and microtick-relating to
the bandwidth used, the number of macroticks in communication cycle, duration
of static slot in the number of macroticks, duration of static segment, static slot,
symbol window, and network idle time, besides more than 80 other parameters -
for more details the reader can refer FlexRay specification [29]) will have to be
properly set to obtain the functional solution. For this reason, the second method -
verification of the resulting schedules on hardware - was also included.

56 Experimental results

Figure 3.17: The block diagram with wiring of the evaluation system

For the testing purpose, the authors used a system of six ECUs, represented
by Rapid Prototyping Platform boards, constructed in their labs , which were
interconnected with FlexRay bus (see Fig. [3.17). The bus was connected to a
notebook with FlexRay analyzer and Vector CANoe software for capturing and
examining the communication. Figure |[3.18| presents a photograph of the system
used.

The scheduling algorithm provides the resulting schedules and all the network
configuration parameters in FIBEX database format [3]. CANoe can read the
database and accordingly parse the captured communication. Such a link between
scheduler and analyzer facilitates easy verification of the communications happening
on the bus. Moreover, CANoe also provides the counters for erroneous frames (e.g.,
frames, which do not follow the schedule as presented in FIBEX database).

A new set of instances was used for verification, because the number of ECUs
was only six. The signal set was generated in such a way that the communication
in the static segment almost covers the full bandwidth. The payload data was set
to 1’ for each signal. It allows distinguishing the signals in a plain stream from
analyzer (the value ’1’ in the stream serves as the delimiter of messages), even
when the FIBEX database is not used. The firmware generator, which takes the
schedule for a given iteration of given variant and generates the code in C for each
board involved, was implemented. The code was compiled and uploaded to the
corresponding board.

The second method is more rigorous, but is much more time-demanding. As it is
necessary to analyze the schedule for each variant and each iteration, independently,
this method takes hours to go through the process for just one instance. Moreover,
this method cannot check if the constraints, relating to multi-variant and iterative
scheduling (e.g., sharing constraint and backward compatibility constraint) are
satisfied. Therefore, both methods were used to demonstrate the correctness of the

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 57

[‘H—L
1

Figure 3.18: FlexRay system with six Rapid Prototyping Platform boards

proposed algorithm.

3.5 Conclusion

This chapter tackles the problem of scheduling of the time-triggered internal vehicle
communication for multiple vehicle variants. It presents the solution where the
shared constraint among variants is preserved, while optimizing the utilization of
the bandwidth. Moreover, the proposed solution takes the incremental iterations of
variant development into account and minimizes the number of backward compati-
bility violations. It also uses an extensibility optimization heuristic, which tries to
predict future signals of the following design iteration and enhances the schedule,
such that it allocates less bandwidth subsequently. The results of the algorithm were
verified on the FlexRay bus system to prove the validity of the concept. However,
the described methodology is not restricted to FlexRay.

The experimental results are discussed, focusing on the analysis of dependence of
the bandwidth demands on the multi-variant and incremental scheduling paradigm.
Besides, the bottlenecks and limitations are also pointed out. The linear relation
between the similarity parameters of variants and the resulting number of allocated
slots in the schedule shows the advantages of the multi-variant approach. The
relation between bandwidth occupancy and the iteration of incremental scheduling
appears to be more complicated, which, among others, is the consequence of the
impossibility of correct prediction. The algorithm was evaluated on SAE group
with real-case inspired instances, demonstrating that its performance complexity is
negligible. The used instances are accessible in [20].

58 Appendix - Benchmark instance generation procedure

3.6 Appendix - Benchmark instance generation
procedure

In this section, the process of the multi-variant benchmark instance generation
is described. The process is depicted from a high-level in Algorithm At the

Algorithm 3.4 Multi-variant benchmark instance generation process
Input :Instance parameters
Output : Multivariant benchmark instance

Read the instance parameters
for each signal s; in S do

Generate the signal period

Generate the signal payload

Generate the signal deadline

Generate the signal release date
end
Assign the transmitting ECU to commom signals
Assign the transmitting ECU to specific signals
Assign the transmitting ECU to other signals
Generate variant matriz V; ;
Repair instance V; ;

beginning, the required instance parameters are read. These parameters consist
of distributions presented in Fig. or Fig. parameters from Table
the number of signals and the number of variants to generate, the multi-variant
coefficients a and (8 for signals and similar coefficients for ECUs. Note that ECUs
can be common to all variants (so-called common ECUs) or specific to just one
variant (so-called specific ECUs) in the same way as signals can be.

Subsequently, the basic signal parameters are generated for each signal. The
periods and payloads follow the requested distributions. Deadlines and release
dates are generated only for the requested portion of the signals determined by
the instance parameters. The deadline is set to the end of a randomly chosen
communication cycle from the last third of the signal period. The release date is set
to the beginning of the communication cycle also randomly chosen from the first
six communication cycles.

After generation of basic signal parameters, the transmitting ECUs are assigned
to the signals. Firstly, the ECUs are assigned to the common signals. The common
signals can be transmitted from the common ECUs only. The common ECUs similar
to the common signals have to be included in all variants. Secondly, the ECUs are
assigned to the specific signals. Inversely to the case with common signals, specific
ECUs are allowed to transmit specific signals only. Otherwise, the specific ECUs
would be forced to appear in more than one variant. In the end, the ECUs are
assigned to the rest of the signals that are shared, and it is assured that each ECU
transmits at least one signal.

The generation of variant matrix V; ; is divided into two steps. The first step is
deciding which ECUs are used in which variant. The common ECUs are used in all

MULTI-VARIANT SCHEDULING OF CRITICAL TIME-TRIGGERED COMMUNICATION IN
INCREMENTAL DEVELOPMENT PROCESS: APPLICATION TO FLEXRAY 59

variants, and the specific ECUs are used only in one randomly chosen variant. The
rest of the ECUs are distributed to the random subset of variants. In the second
step, the signals are assigned to the variants. All the common signals are assigned
to all the variants. The specific signals that are transmitted by the specific ECUs
are assigned to the same variant as the specific ECUs. The rest of the specific
signals are assigned to randomly chosen variants to which the transmitting ECU
is assigned. For the case of shared signals, random probability from 30 to 70 % is
chosen for each variant. This probability determines whether it is rather luxurious
or economy variant. With this probability, the shared signals are assigned to the
particular variant if the transmitting ECU is used in the variant.

According to this strategy of assigning signals to variants, situations can occur
when some signal is not assigned to any variant. Thus, it is necessary to repair such
issues in matrix V; ;. Each signal in V; ; is checked whether the signal is assigned
to some variants. If it is not, the signal is assigned to a random subset of variants
assigned to its transmitting ECU. Finally, the admissible multi-variant instance is
generated that satisfies all the requested instance parameters.

However, the described process does not take into account any predecessor
benchmark instance and, thus, it is useful only for the generation of the benchmark
instance for the first iteration of incremental scheduling. The generation of subse-
quent iterations follows a process depicted in Algorithm [3.5] The generation starts

Algorithm 3.5 Generation of the consequent interations of benchmark instances
for the incremental scheduling

Input :Instance parameters
Instance for the previous incremental iteration
Output : Incremental multivariant benchmark instance

Read the instance parameters
Read the instance for the previous incremental iteration
for each new signal s; in S\ S do
Generate the signal period
Generate the signal payload
Generate the signal deadline
Generate the signal release date
end
Assign the transmitting ECU to the new signals
Add the new variant to variant matriz V; ;

with the reading of the requested instance parameters. Then, the instance of the
previous incremental iteration is read. The new instance is going to be based on
this so-called original instance. All the signals and ECUs from the original instance
will be present in the new instance with the unchanged basic parameters.

Then the basic parameters are generated for each new signal. The generation
process is the same as in case of non-incremental instance generation. However,
in this case, it cannot be assured that the new instance will follow the requested
instance parameters because the parameters distribution in the original instance
can vary significantly from the requested instance parameters.

In the next step, the new signals are assigned to its transmitting ECUs. If

60 Appendix - Benchmark instance generation procedure

there is no new ECU, then the signals are uniformly distributed among all ECUs.
However, if there are some new ECUs, 70% of the new signals are distributed
among these new ECUs, and the rest is uniformly distributed among all the ECUs.
Moreover, it is assured that all new ECUs are used in the new instance.

Finally, a new variant is added to the variant matrix V; ;. No variant used in
the original instance is changed. The new variant is based on a randomly chosen
variant (so-called original variant) from the original instance, and all new signals
and new ECUs are assigned to it. Because it is not often the case, in practice,
that the new variant just adds new signals and ECUs to the original one, part of
the variant matrix V; ; copied from the original variant is mutated. The signals
from the original instance are processed one by one. Each signal has a 70 % chance
that it will not be passed to the mutation stage at all. Once the signal reaches the
mutation stage, the following mutation rules are employed:

e If the signal appears in the original variant, it has a 35 % chance that it will
not appear in the new variant.

e If the signal does not appear in the original variant and its transmitting ECU
appears in original variant, it has 65 % chance that it will appear in the new
variant.

o If the signal and its transmitting ECU does not appear in the original variant,
it has %% chance that it will appear in the new variant. In this case, the
transmitting ECU is added to the original variant also.

After all these steps, the new incremental multi-variant benchmark instance is
ready.

Chapter

Incremental scheduling of the
Time-Triggered traffic on 4
TTEthernet network

4.1 Abstract

Complex systems are often developed incrementally when subsequent models must
be backward compatible with the original ones. This requirement is relevant not only
to particular components of the system, but also to the technology that interconnects
them. The need to exchange high-volume data, for example, multimedia streams for
infotainment in the avionic systems, together with safety-critical data, puts demands
on both the high bandwidth and the deterministic behavior of the communication.
TTEthernet is a protocol that has been developed to face these requirements while
providing the generous bandwidth of Ethernet with up to 1 Gbit/s and enhancing its
determinism by enabling the transmission of the time-triggered messages. However,
the efficiency of the time-triggered communication depends on the schedule it follows.
Thus, synthesizing a good schedule that meets all the real-time requirements and
preserves the backward compatibility with the schedules of preceding models is
essential for the performance of the whole system.

In this paper, we study the problem of designing periodic communication
schedules for time-triggered traffic. The aim is to maximize the uninterrupted gap
for the remaining non-real-time traffic. The provided scheduling algorithm, based
on MILP and CP formulation, can obtain good schedules in a reasonable time while
preserving the backward compatibility. The experimental results show that the
time demands of the algorithm grows exponentially with the number of messages
to be transmitted, but, even for industrial-sized instances with more than 2000
messages, the algorithm is able to return the close optimal schedules in the order of
hundreds of seconds.

4.2 Introduction

The development process in many industrial fields, e.g., automotive or avionics, is
based on incremental steps where new models are an evolution of the previous ones.
This incremental process enables the cost-efficient development for companies and
reduces the test effort. Moreover, the customer is guaranteed that the new model
is an upgraded version of the model that he or she is comfortable with. These
benefits are a side effect of the backward compatibility that should be assured among
incremental development steps. Backward compatibility affects external systems,
e.g., human-machine interface, as well as internal ones such as the communication
subsystem. The backward compatibility in communication subsystems significantly
reduces the costs spent on debugging, testing, and maintenance as newly developed

61

62 Introduction

Figure 4.1: An example of the TTEthernet network topology with the routing and
scheduling of message m, from node I to node q

Electronic Control Units (ECUs) and diagnostic tools can follow an agreement on
sharing of communication resources achieved in previous development steps.

The incremental development process is already ingrained in the industrial
practice. However, there is an ongoing effort to develop and produce new models
even more cost-efficiently. One possibility on how to reduce production costs
in complex interconnected systems is to combine safety-related communication
together with non-critical communication into one common medium . Safety-
related communication requires determinism, while non-critical communication
demands a huge bandwidth without hard timing constraints. In the past, these two
communication flows were conducted separately, as there were no communication
protocols that could handle the requirements of both. However, modern protocols,
like TTEthernet, were developed to bear such a difficult task.

In TTEthernet, safety-related communication is exchanged based on a periodic
time-triggered communication schedule, while non-critical communication fills the
empty gaps in the schedule. Such a communication schedule has to be designed
in a way that all the real-time requirements are met to enable the reliable and
deterministic operation of the application. The creation of the schedule involves
additional complexity compared to the bus or passive star topologies of networks

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 63

Part of the integration cycle
used by TT communication

Y

minimal 10

102 .ITT%' T] TT4 ! guaranteed gap

=

o |
5 | 20
S I

el

E { 30
—

.194ll E 1 o)

time [ms] 40

Figure 4.2: The example of the communication on a link in one cluster cycle

like FlexRay [29] or CAN because TTEthernet supports complex switched topolo-
gies [64]. These aspects, together with the real case problem proposed by our
avionics industry partner, have motivated us to face the problem of scheduling time-
triggered communication on the TTEthernet network while keeping the incremental
development process in mind.

The paper presents the algorithm for creating schedules for time-triggered traffic
on the TTEthernet network while maximizing the minimal guaranteed continuous
gap for the traffic with lower criticality. The study aims to develop the periodic
scheduling algorithm, which preserves the backward compatibility with the original
schedule. Finally, the influence of the backward compatibility on the communication
schedule is analyzed, and the scalability of the proposed algorithm is presented.

4.2.1 TTEthernet Overview

TTEthernet (TT stands for Time-Triggered) is an extension of Ethernet for deter-
ministic communication developed as a joint project among the Vienna University
of Technology [34], TTTech, and Honeywell, and standardized as SAE AS 6802 [47]
in 2011. Tt operates at Level 2 of the ISO/OSI model, above the physical layer
of Ethernet. It requires a switched network with full-duplex physical links, such
as Automotive Ethernet standard 1000BASE-T1. An example of the TTEthernet
topology is depicted in Fig.

The global time in the system is assured by the clock synchronization protocol,
where the clocks of all the interconnected ECUs are being synchronized periodically.
Every synchronization period is called an integration cycle.

The traffic with various time-criticality is integrated into one physical network.
There are three traffic classes in TTEthernet. These classes, ordered by decreasing
priority, are Time-Triggered (TT), Rate-Constrained (RC) and Best-Effort (BE)
traffic.

The TT traffic class has the highest priority. A jitter shorter than ps can be

64 Introduction

achieved on a physical layer (the physical layer jitter also depends on the connected
network devices). The TT messages are periodic. We assume that they are strictly
periodic (i.e., no jitter in application level is allowed) in agreement with [62]. The
least common multiple of their period is called the cluster cycle.

For traffic with less strict timing requirements, the RC traffic class can be used.
This traffic class conforms to the ARINC 664p7 specification [2] (also called AFDX).
The RC traffic represents event-triggered communication, which does not follow
any schedule known in advance.

A simple example of the TT traffic, together with the RC traffic on one direction
of a physical link, is presented in Fig. [£:2] In the figure, the particular integration
cycles are situated in rows, and the horizontal axis represents the time instants in
the particular integration cycle. The length of the cluster cycle (40ms) is equal
to four times the length of the integration cycle (10 ms) here. The figure shows
that messages TTy, TT3 and TTy have the same period (twice the duration of
the integration cycle - i.e., 20ms) and TT5 has a period equal to four times the
integration cycle length. The dark message at the beginning of each integration
cycle is the synchronization message.

Standard Ethernet traffic can be transmitted through the network too. Such
traffic is called the Best-Effort (BE) traffic and has the lowest priority.

When the TT traffic is used together with other traffic classes, a TT message
could be delayed by another RC or BE message. The delay happens when a T'T
message arrives while an RC or BE message is in transmission. The Timely block
integration policy, which causes no extra delay of the TT traffic, is used in this
paper. In this case, an RC or BE message can only be transmitted if there is
enough time for the transmission of the entire message before the next T'T message
is scheduled. If there is insufficient time, the transmission of the RC or BE message
is postponed until after the TT message is transmitted. It additionally means that
the TT traffic follows the schedule without any delays.

4.2.2 Related works

The area of time-triggered communication scheduling on Ethernet-based networks
has already been examined in many publications. Steiner [57| was among the first
to study the problem. They described the basic constraints for scheduling the
communication in the TTEthernet network and provided the Satisfiability Modulo
Theories (SMT) formulation that was able to find a feasible schedule for small
instances with up to 100 messages. The concept of schedule porosity was introduced
in [58]. The porosity (the allocated blank slots for RC messages spread over the
integration cycle) is introduced to the schedule to decrease the delay posed on
RC traffic by T traffic. Thus, the porosity allows improving the communication
delays while the complexity of the direct delay optimization [52] is tackled. To
evaluate the impact of the porosity on the RC traffic, Steiner et al. provided a
pessimistic worst-case delay calculation, which was consequently tightened by a
new method published by Tamas-Selicean et al. in [62]. A more detailed study
of the impact of the time-triggered schedule on the RC communication has been
presented in [9]. In [61], Tamas-Selicean et al. employed the TabuSearch algorithm
to overcome the scalability problem of previous SMT formulations. As noted by [59],

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 65

porosity scheduling has a disadvantage that gaps introduced at the beginning of
the scheduling process do not consider the profile of the RC traffic. The concept
of porosity is also weak in the case of scheduling TT messages with short periods.
Wang et al. [68] used back-to-back schedule optimization, which aims to minimize
the standard deviation of the messages offset in the integration cycle (hence, create
as compact schedule as possible), to overcome the weakness of the porosity approach.
The concept of minimization of the TT communication block length, called makespan
minimization, was presented by Dvorak et al. in [21]. The paper formulated the
scheduling problem as an RCPSP model to solve the problem efficiently. However,
their method did not allow one to preserve the backward compatibility, and the
quality of the resulting schedule was limited by the use of naive shortest-path-tree
routing algorithm. Pozo et al. in [45] used a divide-and-conquer method to overcome
the scheduling scalability limitations in large-scale hybrid networks considered to
be used in, for example, smart cities in the future.

Based on the given TTEthernet communication schedule, Craciunas et al.
scheduled the tasks on the communication endpoints in [17]. Furthermore, they
presented a holistic scheduling algorithm that makes network-level schedules together
with task-level schedules in [14]. Zhao et al. studied the problem of holistic security-
aware scheduling in [72]. They used a modified TESLA authentication mechanism
to protect the authenticity of the messages and provided MILP-formulation based
scheduling algorithm.

The closely related problem to TTEthernet scheduling is the scheduling of
TT communication for IEEE 802.1Qbv, which is the standard of the IEEE Time-
Sensitive Networking group. Craciunas et al. derived the scheduling constraints for
the TT communication on IEEE 802.1Qbv in [16] and provided an SMT model that
aims to minimize the number of queues needed to schedule a given set of messages.
Consequently, Zhao, together with Pop and Craciunas, provided the calculus for
the Worst-case delays in [71]. Rottenstreich et al. [46] are using a greedy algorithm
to find the shortest schedule for strictly periodic data streams and show that the
greedy algorithm is able to find the optimal solution in special cases that often
occur in practice.

All the published papers aim to create schedules from scratch, and none of them
considers backward compatibility with the preceding systems, which limits the use
of the proposed method in industries with an incremental development process.

4.2.3 Contribution and paper outline

The main contributions of this paper are:

1. The formal description of the incremental TTEthernet scheduling problem
with real-time constraints.

2. The three-stage heuristic algorithm, which includes

e the routing algorithm that balances the communication load among the
links

e the message-to-integration cycle assignment algorithm that balances the
communication load among the integration cycles

66 Problem statement

e the message scheduling method based on the constraint programming
model of the problem

3. An examination and discussion of the impact of the incremental aspect on
TTEthernet scheduling.

4. An evaluation of the proposed algorithm from quality and performance point
of view.

The paper is organized as follows: Section describes the studied problem of
the incremental T'T message scheduling in the TTEthernet network comprehensively.
In Section[4.4] the proposed method of the schedule creation is described consisting of
a message routing method, a load-balancing heuristic, and a CP based formulation of
the scheduling problem. The method and the impact of the backward compatibility
on the scheduling are evaluated and discussed in Section Section [4.6| concludes
the paper.

4.3 Problem statement

This paper aims to design a method for finding feasible strictly periodic schedules
for time-triggered communication on the TTEthernet network so that the maximal
part of the remaining bandwidth can be preserved for the RC and BE messages, the
timing constraints are satisfied, and the backward compatibility with the original
schedule is preserved. All aspects of the tackled problem are described in this
section.

4.3.1 Messages

Each message m; from a set of the TT messages M that is to be scheduled has the
following parameters:

e p; - period

e ¢; - message length in the number of bits consisting of a payload, headers and
interframe gap

o d; - deadline
e 1; - release date
e ¢; - identifier of the transmitting node

e (; - set of the receiving nodes identifiers (the set contains only one receiving
node in case of a unicast message)

The message period p; is assumed to be an integer multiple of the length of the
integration cycle ic. The length of the resulting schedule is determined by the length
of the cluster cycle cc. The cluster cycle consists of set of the integration cycles
I. The transmission time of message m; has to be smaller than or equal to the
duration of the integration cycle (it would not be possible to send a synchronization

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 67

message otherwise), and its length ¢; does not exceed the maximal Ethernet frame
length of 1530 bytes. Deadline d; and release date r; are assumed to have the value
in the range 0 <r; < d; < p;.

4.3.2 Network topology

The TTEthernet topology consists of nodes and links which interconnect them. The
nodes e; € E are divided into two classes: redistribution nodes ET and commu-
nication endpoints E€. The communication endpoints are nodes that generate or
process the data (e.g., sensors, actuators, control units, and other ECUs). Thus,
only the identifier of a communication endpoint can be assigned to message m;
as transmitter ¢; or one of the receivers from set ;. The redistribution nodes,
on the other side, are switches without any of their own data to transmit and
serve as intermediary nodes for the communication. In Fig. the communication
endpoints are titled by "ECU”, and the redistribution nodes have arrows drawn on
the top side. The front side of each node is labeled by its name.

Each hop in the network introduces a technical delay caused by queuing in the
ingress and egress port. Such a delay in a switch is represented by parameter 7 for
the TT messages. The value of 7 can be in the range from 1ps to 2.4 s according
to the network configuration [56].

Each link k; ; from a set of links K connects two nodes e; and e;. This connection
covers just one direction of the full-duplex communication. Therefore, two links k; ;
and k;; model one full-duplex physical link between nodes e; and e;. These two
links are two independent resources from the scheduling point of view. The instance
of message m; in link k; ,,, is called a message instance mim The set of all the
message instances is denoted by M. All the transmissions of some message m; in
one particular link represent the same message instance. The message occurrence,
on the other hand, represents all the transmissions of some message m; in one
particular integration cycle. The difference between the message instance and
the message occurrence is graphically explained in Fig. The figure shows the
detailed view on the sub-segment of the network topology from Fig. with node
e, em and e, only. Both links of any physical link are labeled here already.

4.3.3 Message routing

A sequence of the links R = (kim,km,o, .., kpq) represents the routing path of
message m; from transmitter ¢; = e; to receiver e, €); through the redistribution
nodes €, ..., ¢,. The union of all the routing paths UR{ |Vg € Q; for given message
m; determines the routing tree R;. For example, the transmission of message m;
through routing path S is presented in Fig. Only one direction of each physical
link is labeled in the figure for the sake of simplicity. The routing paths R are not
known in advance. Therefore, finding the appropriate routing trees is part of the
optimization process.

4.3.4 Original schedule

Additionally, the original schedule is given for the incremental scheduling. The
original schedule defines the start time of transmissions for the message instances

68 Problem statement

0.0
km,| km,o

K, . e
mm b
/5 m; e a !
’ ! i - _\\‘\\
Lo the same,
Jrcllllgsggéneeoccurrence message instance

Figure 4.3: Visualization of the difference between message occurrence and message
instance

ﬁlf’l from the subset of the message instances MI C MI which are already present
in the original schedule. The original schedule can be determined for a subset
of messages as well as for a subset of its message instances. This representation
of the original schedule even allows the extension of the topology as well as the
extension of the set of receivers for the already present messages. More precisely, all
the modifications of the topology and message set that do not force the backward
compatibility to be broken are allowed in the incremental development process.

4.3.5 Schedule

The schedule is so-called strictly periodic, which means that the next message
occurrence of message m; in a particular link appears in the schedule exactly p; time
units after the current one. Therefore, the positions of all the message occurrences
of message m; in the strictly periodic schedule can be deduced from the position of
the first message occurrence and its periodicity.

A feasible schedule has to fulfill the following hard constraints:
Completeness constraint: Each message m; € M has to be scheduled.
Contention-free constraint: Any link is capable of transferring at most one
message at a time.

Timing constraint: Each message has to be transmitted after its release date and
received by all the receivers before its deadline.

Transmission compactness constraint: The message transition from transmit-
ting node ¢; to all the receivers from @; has to be accomplished in one integration
cycle.

Backward compatibility constraint: The start of transmission time must be
preserved for all the message instances participating in the original schedule.
Precedence constraint: Message m; has to be scheduled in link &, , at least 7

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 69

time units after it is scheduled in ky ,, if ki, precedes ky, , in RY.

4.3.6 Objective

The coherent TT traffic segment should be compressed as much as possible to
preserve the maximum part of the remaining bandwidth for the RC and BE traffic.
This idea follows the practice from the FlexRay bus or Profinet, where the dedicated
communication segment is allocated for the TT traffic. The TT traffic can be
scheduled at the beginning of the integration cycle, and the remaining coherent
gap in the integration cycle without the TT traffic is preserved for the RC and BE
traffic. The gap, which is the shortest among all the links, is denoted as a minimal
guaranteed gap (see Fig. . Considering the constraints and aspects above, the
goal of the scheduling is to find a feasible schedule for the TT messages, which
maximizes the minimal guaranteed gap.

4.4 Algorithm

The described problem is extensively complex as it involves scheduling together
with routing. The algorithm that would solve the whole problem at once would put
extreme demands on the computational resources or time needed to find the solution.
Thus, the incremental scheduling problem proposed in the paper is decomposed
into three subproblems to tackle the computational effort. The solution of each
subproblem fixes some decisions for the subsequent problem. Hence, the incremental
scheduling algorithm can be considered as being divided into three stages. In the
first stage (Sec. 7 the routing of the messages is established. In the second stage
(Sec. , the algorithm finds the assignment of the messages to the particular
integration cycles. The transmission times for each message in each link are decided

in the last stage (Sec. 4.4.3)).

4.4.1 Messages routing problem

The network topology is often a tree in industrial networks. It means that there
are no cycles and, therefore, only one possible path from a communication endpoint
to any other endpoint exists. Thus, the determination of the routing is trivial in
such a case. However, the TTEthernet does not restrict the network topology to
the tree. The cycles introduce new redundant paths for messages that can serve as
a backup during a partial network malfunction. Moreover, the appropriate selection
of the routing path of the message can balance the load among the network. Thus,
redundant paths can remove the bottleneck of the tree topology. However, the

70

Algorithm

TT messages have to know which path they are routed through in advance.

min G
st. gm <G
l,m CcC
E ¢, T lom = 9lm

Di

p
E Til,m = 1
l
E Lilm > 1
m
E xi,l,mg E Li,m,k
l k
§ Lilm S 1
l
>k Tiymyk
k ~t,m,
E Tilm 2 = —

l deg~(m)
Sim > 1+8,1—B+Brim
Sim <1+s;i;+B—Bxijm
s, =20
Titm =1
xiim €40,1}
gi,m € Z(—)’_
GeR

Sil € ZS_

Vkl’m e K
\V/]Cl,m e K

VYm; € M; Ym € Q;
‘v’mieM;l:qi
Vm; € M; Ym € EF

Vm; € M; Ym € EF

Vm; € M; Ym € EF

vm; € M; Yk, € K
vm; € M; Yk € K
VYm; € M; | = g
Vmi™ e M1

VYm; € M; Vl,m e E
Viom € E

VYm; € M; Vle E
(4.1)

Therefore, the first stage of the algorithm finds the routing. In accordance with the
claim above, the algorithm aims to find such a routing that the network load is as
balanced among the links as possible. The balanced network gives a good premise
that the resulting communication schedules will be shorter than in the case of an
unbalanced network. Thus, this routing objective corresponds to the aims of the
scheduling algorithm.

An MILP model is used to solve the routing subproblem and decide routing tree
R; for each message.

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 71

The binary variable x; ; ,, decides whether the message m; is routed through the
link £ ,,, and variable g; ,, represents the load of the link k; ,,,. The real variable
F' is, consequently, the load of the busiest link. The auxiliary variable s;; assigns
a numerical label to each node e; for each message m;. The label determines the
depth of the node ¢; in the routing tree R;. The artificial constant B represents
any number that is bigger than the maximal depth (maxs;;). Parameter c?m
represents the transmission time of message m; in link /; ,,,. Note, that if the links
are configured to have a different bandwidth, then the transmission time of the
same message varies among the links.

The objective of the MILP model minimizes the load of the busiest link. The
first constraint, together with objective, ensures that the value of G' equals the
load of the busiest link. The second constraint calculats the load g;,, for each
link. The third and fourth constraints force the routing path for each message to
also contain the receiving nodes and the transmitting node. The fifth, sixth, and
seventh constraint assure that the redistribution nodes serve as the inner nodes of
the routing tree. The eighth, ninth and tenth constraints guarantee the routing tree
of any message not to contain the cycle. B represents any constant that is larger
than the number of nodes in the topology. Its aim is to make the model ignore the
constraints if the value of x;; ,,, is equal to zero. The eleventh constraint forces the
resulting routing to satisfy the backward compatibility.

The routing tree R; defines the set of links in which the message is to be
scheduled and specifies the precedence relations among the message instances.

4.4.2 Integration cycle assignment problem

To distribute the messages among the integration cycles, we used an idea from
the multiprocessor scheduling area. In the area, if all the workload of the tasks is
distributed among the processors evenly, then the part of the integration cycle used
by the TT communication has a good chance to be minimal. Following that, the
algorithm tries to distribute the messages among the integration cycles evenly. All
the precedence constraints, the time lags imposed by the switch delay 7, and the
real-time constraints are relaxed here. The integration cycle assignment problem is
formulated as the following MILP model

The binary variable a; ; = 1 iff message m; is assigned to the integration cycle
j €{0...p;}. Similarly, the binary parameter a; ; = 1 iff message m; was scheduled
to the integration cycle j € {0...p;} in the original schedule. The first constraint
assures that the first message occurrence appears in exactly one of the possible
integration cycles. Thus, it satisfies the completeness constraint. The second
constraint makes the variable z to have the value equal to or greater than the time
needed to exchange all the messages in any integration cycle of any link in the
network. The constraint is evaluated for each link and each integration cycle in the
cluster cycle so that the transmission times of all the message occurrences assigned
to the particular integration cycle in the given link are summed up. The resulting
total time must be less than or equal to variable z. The aim of the MILP model is
to find such an assignment that minimizes z. Thus, the maximal time needed for
the message exchange among all the resources is minimized. The third and fourth
constraint force the messages to be assigned to the integration cycle, which can

72 Algorithm

satisfy the release date and deadline constraints. The last constraint forces the
messages from the original schedule to be assigned to the corresponding integration
cycle in the new schedule.

min z
ai,j

s.t. Zai,j =1 Vie M
J

, , cc
Z ™ med p <2 Vi Lm|je{0... E}

m;Ek,m

a;; =0 Vi, j|d; < j-ic

a;; =0 Vi, jlri>(+1)-ic
a;j =1 Vi,jlai; =1

a;; €{0,1}; z€ R Vi, j

(4.2)
The resulting assignment balances the load among the integration cycles, follows
the routing of the messages, and preserves the timing and backward compatibility
constraints.

4.4.3 Link schedules creation problem

The constraint programming model is employed to create the resulting schedule.
For the description of the model, the IBM CP Optimizer formalism [35] will be
used. The CP model is based on so-called interval variables which, in our case,
represent each message instance mi’k C MT in the schedule. The set of message
instances to be scheduled on a particular link is known since the routing of the
messages has been already decided. For each interval variable, the solver decides
its start time. In the model, the time is considered as a relative offset to the start
time of the integration cycle. Thus, two message instances that are scheduled with
the same offset in the integration cycle, but with a different integration cycle are
considered as being scheduled at the same time.

The objective of the scheduling is to minimize the part of the integration cycle
used by the TT communication:

min max endOf(mé’m)

i,l,m
The length of the message is preserved by:

lengthOf(mh™) = ™ |Vie M;l,m e E

K2

Further constraints have to be introduced to satisfy the timing constraints. Due
to the known message instance to the integration cycle assignment, the release

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 73

date 7; and deadline d; relative to the integration cycle in which message m; is
transmitted are also known. Thus, the timing constraints can be defined as the
start time limitation of the related interval variable:

startMin(mi’m) =7 |Vm§’m c MI
endMax(nl™) = d; |l € 211

Similarly, the backward compatibility is assured to be satisfied by:
startOf(m.™) = startOf(my™) |vmb™ e MI

where startOf(ﬁlﬁ’m) denotes the offset of the message instance in the original
schedule.

The contention-free constraint is necessary to be satisfied next. From the model
point of view it means that no two message instances, which appear in the same
integration cycle and on the common link, can overlap. As the assignment of the
message instances to the links (routing) and integration cycles is already decided, it
can be trivially deduced in which link and integration cycle message m; appears. Let
us denote M If "™ the set of message instances which appear in the same integration
cycle ic; and link %; ,,,. Now, the contention-free constraint is stated as:

noOverlap(MI'™) |Vie I;l,m e K

where noOverlap is a CP operator that keeps all the interval variables in the given
set to be scheduled in distinct time intervals.

Finally, it is necessary to keep the precedences among message instances. In this
case, the precedence constraints are given by the routing of the message R; and by
the technical delay caused by switching the logic in the redistribution nodes. Let
P™ be the set of predecessors of the message instance m>™ in R;. The message
instance mf’l is part of the Pil’m if and only if z;; ;; = 1 (see the MILP model for
the routing). Consequently, the precedence constraint is formulated as:

endBeforeStart(p, mé’m, T) |V¥pe€ Pil’m;Vi eM;lime K

With these constraints, the CP model for the message scheduling is defined
completely.

4.5 Experimental results

The proposed scheduling method was tested on a PC with Intel ® Core™ i7-4610M
CPU (two cores with 3 GHz and hyper-threading) and 32 GB RAM. The algorithm
uses the Gurobi ILP Solver for determining the messages routing and for solving
the Integration cycle assignment problem. The Link schedules creation problem
was solved by the IBM CP Optimizer. The time to solve a benchmark instance was
limited to 5 min.

The benchmark instances used in this study were synthetically generated. The
benchmark generator defines the topology first. In this study, a random graph

74 Experimental results

topology is generally used. Consequently, the message parameters are generated
randomly, considering the imposed limitations. These imposed limitations are
described individually in detail for each test in the following sections. Each message
is assigned to either the broadcast, multicast, or unicast group. Finally, the set of
receivers is generated for each message according to the group.

The generation of the incremental scheduling benchmark instances was performed
in reversed order, i.e., the benchmark instance for the last incremental iteration was
generated first. Then the original instances for the incremental scheduling are made.
For example, to generate an instance for the penultimate incremental iteration, the
last instance is taken, and some of the messages, nodes, and links are removed from
the instance according to the given pruning ratio.

To provide statistically significant results, thirty instances of each benchmark
set were generated, and the presented values represent the mean value from all
these instances.

4.5.1 Evaluation of the routing algorithm

The proposed algorithm uses the message routing that aims to support the scheduling
objective by the uniform scattering of the messages among the links. Thus, it
unloads the communication on the most utilized links. To evaluate the algorithm’s
performance, the proposed routing method is compared to the Shortest path tree
(SPT) routing method. The SPT routing method minimizes the number of hops
the message needs to take to get from the transmitter to the receivers. It optimizes
the overall bandwidth utilized by the communication on the network, but it does
not prevent the bottlenecks caused by the individual overutilized links.

The comparison of both methods is presented in Fig. [I:4] For the evaluation,
the complete scheduling algorithm was executed while the MILP or SPT method
was used for the routing.

Benchmark sets with 200 T'T messages generated with periods in a range from
one to three integration cycles and with Ethernet frame lengths in full range (i.e.,
up to 1500 bytes) were used to test the routing algorithm.

Fig. [f4] presents how the method is able to utilize the redundant links in the
graph. The x-axis denotes the number of redundant links added to the tree topology.
The left y-axis, related to the Schedule SPT and Schedule ILP lines, represents the
duration of the part of the integration cycle used for the TT communication and
the right y-axis, related to the New link ILP and New link SPT line, represents the
volume of the data exchanged through the newly introduced links.

As can be observed from “Schedule SPT” and “Schedule ILP” lines in Fig. [£.4]
adding nine additional edges to the tree topology can shorten the duration of
the part of the incremental cycle used by the TT communication to almost 50%.
However, the benefits of the redundant links is that it can utilize the proposed
method based on the MILP model (labeled as “Schedule ILP” in the figure) better
than the method based on the SPT algorithm. On the tree topology, both methods
behave equally as the routing tree is already decided by the topology. However, as
the number of additional links is increasing, the proposed method acts significantly
better than the SPT method.

The “New link” lines, on the other hand, shows how the significance of the

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 75

45000

N
e}
=
=
o
O

- Schedule SPT
—¢ Schedule ILP

New link SPT .
—-o— New link ILP

e
()
)
S
()
:
DO
([@x}

o

Ut

o

o

(-}
!

[\

Ut

o

o

(@]
!

Volume of data exchanged
through the new link [Byte]

20000 1

5

Part of the integration cycle
used by T'T communication [ns]
g
-]

-]

(@)

15000 1= - - - - - - - - — 50000
o 1 2 3 4 5 6 7 8 9
Number of additional edges in the topology

Figure 4.4: The evaluation of the routing quality

newly introduced links evolves with the number of additional edges in the topology.
The routing algorithms are able to forward through the last added message only
about one-third of the data volume compared to the data volume it was able to
forward through the first added link.

4.5.2 Impact of the incremental scheduling on the schedule

The backward compatibility constraint introduced to the scheduling problem causes
the overhead in the resulting schedule. To measure the overhead of the incremental
scheduling over the non-incremental scheduling, another experiment was performed.
The new set of benchmark instances was generated with ten incremental iterations.
In the case of the incremental scheduling, the resulting schedule from the previous
iteration was used as the original schedule. The first incremental scheduling iteration
has an empty original schedule. All the messages were generated with a period in a
range from one to three integration cycles and with Ethernet frame lengths in full
range. The last incremental iteration instances contained 500 TT messages.

The results from the experiment are presented in Fig. 4.5l The incremental
scheduling iteration is situated on the x-axis of the graph, and the schedule duration
of the part of the integration cycle used by TT communication is on the y-axis.
The dark purple row represents the result from the algorithm where the original
schedule is considered, while the orange row represents the results of the algorithm,
assuming no original schedule is given.

The result for the first incremental iteration is the same for incremental and
non-incremental scheduling as no original schedule is used and, consequently, no
backward compatibility constraint is applied in both cases. The most notable change

76 Experimental results

500000

- Incremental
—¢« Non-incremental

=

=.450000 -

ns|

on

t

400000 A

1ca

350000 +

300000 ~

Part of the integration cycle

2 250000

used by TT commun

200000 ~— : : : ;
12 3 4 5 6 7 8 9 10
Incremental scheduling iteration

Figure 4.5: The difference between the incremental and non-incremental scheduling

in the difference between the incremental and non-incremental scheduling is present
in the second incremental iteration. The prolongation caused by new messages
in the case of the incremental scheduling is almost twice as much compared to
the prolongation caused by the new messages in the case of the non-incremental
scheduling. This causes the fact that the messages that were already scheduled
in the first incremental iteration cannot be moved in the incremental scheduling.
Thus, the new messages cannot be incorporated in such an efficient way as in the
case of the non-incremental scheduling. However, this overhead also introduces a
new porosity to the schedule. The further incremental scheduling iterations are able
to use this porosity to place the new signals into those gaps efficiently. That is the
reason why the overhead stays almost constant in the future scheduling iterations,
and the difference between the incremental and non-incremental schedule is almost
the same as can be observed in the graph.

4.5.3 Evolution of the schedule utilization over incremental
iterations

To support the statement from the previous section, the way how the utilization
of the schedule evolves with the incremental iterations has been studied more
deeply.For the purpose of this section, the utilization of the schedule (or just
utilization) is defined as the portion of the part of the integration cycle used for the

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK it

TT communication that is utilized by the message transmission averaged over all
the integration cycles. In other words, considering only the part of the integration
cycle used by the TT communication, the utilization represents the portion of the
time when the link is busy. In order to test the utilization, similar benchmark
instances were generated to the testing of the impact of the incremental scheduling.
The only exception is the topology of the network. To avoid the impact of the
routing on the porosity test, the generated instances use a tree topology. Two
different measurements were performed.

Firstly, the average of the schedule utilization over the whole network (all the
links) has been measured. The resulting graph can be seen in Fig. The figure

- Untouched topology
—¢ Augmented topology
29.5 1
252 29.01
S 2851
=4 5 28.01
= £ 2751
= = 27.01
g’o% 26.5
== 26.01
%055
=2 2501
24.5 4
24.0 4
93.51 A
23.0 - - - - - : ; ; ; .

1 2 3 A4 5 6 7 8 9 10
Incremental scheduling iteration

Figure 4.6: The average utilization of the communication over the whole topology

presents the evolution for two cases: the dark purple line shows how the utilization
evolves when the topology is not extended during the incremental iterations; the
orange line shows the utilization evolution when the topology grows together with
the number of messages. The x-axis represents the incremental scheduling iteration,
and the y-axis represents the average utilization of the schedule in percent. This
unutilized/free space can be used by the new messages in the future incremental
scheduling iteration that are local (their transmitter and receivers are close to each
other according to the network topology). Note that less than 30 % of the schedule
is used according to the graph. This small amount is caused by the tree topology,
where the links close to the leaves of the topology are rarely used. The figure also
shows that the overall schedule utilization increases if there is no topology extension
which is caused by adding new messages to the schedule and the significant part

78 Experimental results

of them are local messages (thus, the part of the integration cycle used by the TT
communication is not prolonged too significantly). If the topology is extended, the
new sparse links introduce a lot of unutilized bandwidth to the schedule, which
causes a decrease in the overall utilization.

Opposed to the new local messages that, as can be observed from Fig. [4.6] can
be easily incorporated into the schedule without prolongation of the part of the
integration cycle used by TT communication because of the low utilization of the
links close to leaves, the new messages that need to transit the root node could
cause the prolongation of the part easily. To study how the schedule utilization can
impact the scheduling of these messages, the second measurement was performed
where the utilization was calculated only on the most utilized link.

—

5 - —¢ Augmented topology
— Untouched topology

o oo OO
o W
1 1 1

-~ o0
o O

-~ =
-3 @

Utilization of the most utilized link [%
o

-3
D

1 2 3 4 5 6 7 8 9 10
Incremental scheduling iteration

Figure 4.7: The porosity of the most utilized link

The utilization of the most utilized link is presented in Fig. [£.7] Here, the
utilization is about 77 to 86 %, depending on the particular incremental scheduling
iteration. This makes it harder to incorporate the long-distance messages efficiently
into the schedule without prolongation of the part of the integration cycle used by
the TT communication. The figure also shows that there is no significant difference
for the long-distance messages, whether the topology is extended (but no cycles
introduced) or not as the topology does not influence the flow of the messages over
the most utilized link.

These graphs also support the statement from the last section as both the

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 79

utilization metrics are the worst in the first incremental scheduling iteration, making
the second scheduling iteration the most difficult. After that, the utilization metric
changes slowly and, thus, the difference between the efficiency of the incremental
and non-incremental scheduling is similar.

4.5.4 Scalability of the scheduling algorithm

The previous experiments aimed to study the quality and the impact of the incremen-
tal scheduling on the resulting schedule. However, the scalability of the algorithm
and its computational complexity needs to be examined next. The scalability of
the algorithm is strongly dependent on three factors - the lengths of the messages,
the distinct message periods, and, finally, the number of messages in the instance.
The impact of all of these factors on the algorithm’s runtime will be studied in the
following subsections.

D.1 The scalability of the algorithm based on the message length

Firstly, the influence of the maximal allowed message length is presented. For
this experiment, the instances with the maximal allowed message lengths from
1 byte to 1500 bytes of the payload were generated. To ensure that the finding of the
optimal schedule and proving that the found solution is optimal will be accomplished
in twenty minutes (the time limit for the computation of one benchmark instance is
extended for all the scalability tests), the instances contained just 50 messages. The
period of the generated messages is randomly chosen from one, two, four, or eight
times the duration of the integration cycle. The results of the test are presented in
Fig. [4:8

The x-axis of the graph represents the maximal allowed message length while the
y-axis represents the time needed to solve the given instance set in the logarithmic
scale. The orange line presents the time needed for the routing, the red line presents
the time needed for finding the assignment of the messages to the incremental cycles,
the magenta line represents the time needed to find a solution and to prove that its
value is at maximum 1% off the optimum, and the dark purple line is the total time
needed for the creation of the optimal schedule. Note that the error bars represent
the range in which the results for the particular benchmark set were acquired (the
lower cap is minimal obtained value, and the upper cap is maximal obtained value)
rather than the standard deviation because the standard deviation was often larger
than the mean (and it is not possible to depict them in a logarithmic scale). The
position of the markers was slightly adjusted for each line of the graph, even if they
represent the same value on the x-axis, to make the reading of the error bars easier.

The graph shows that the major part of the time is consumed by the link
scheduling algorithm. The time complexity of the routing algorithm and also the
messages to the integration cycle assignment algorithm does not depend on the
message lengths at all. On the other hand, the time demands of the link scheduling
algorithm are almost constant for messages with lengths up to 32 bytes, and then
it grows exponentially. Also, the time range for solving the instances was much
wider in the case of instances with a payload larger than 64 bytes. The variance in
time demands for those instances is caused by the uncertain difficulty of proving
that the current scheduling solution is optimal. It can also be read, from the figure,

80 Experimental results

10% 4 -8 Complete T =
1 == Complete with 1% tolerance
1 = Assignment T
10% 5 Routing

N

(D)

=~

S 1079

2

o

)

[<B]

ElOOE

o

10—1_
e e S i oy oy S S ol ey w i -
I £ e = e = e i I B & S e = i & S, A S, & S S

10—2_

N 9 O » o 0 » QD
v \%%CO@@%Q@%@Q

Maximal allowed message length [byte]

Figure 4.8: The scalability of the scheduling method according to used message
lengths

that the tolerance of 1% can reduce the scheduling time by one order in the case of
messages with a full variety of their lengths.

D.2 The scalability of the algorithm based on the message periods

The second experiment evaluates the influence of the time demands on the
allowed set of message periods. Two different scenarios are commonly used in
practice - messages with arbitrary periods and messages with harmonic periods.
The messages with arbitrary periods can have periods equal to any integer multiple
of the integration cycle, while, in the case of harmonic periods, the messages can
have periods only equal to any duration of the integration cycle multiplied by a
power of two. The harmonic periods ensure the shortest possible cluster cycle,
which can grow fast in the case of arbitrary periods because the cluster cycle is
equal to the least common multiple of all the possible periods. To examine the
behavior of the algorithm in both scenarios, two separate tests were performed.

Each benchmark instance contains 50 messages with up to eight bytes of payload.
The general graph topology has been used. The results for the messages with the
arbitrary periods are presented in Fig. [1.9] and the results for the messages with

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 81

the harmonic periods are shown in Fig. The x-axis of the graphs represents
the maximal allowed message period used.

I = Complete
- —% Complete with 1% tolerance
{ =& Assignment
Routing
.
101 .
=
o
w0
S
) 100 4
2
S
10—t E
==
1072 4

1 2 3 1 ! 6 7 8 9 10
Maximal allowed message period [ic|

Figure 4.9: The scalability of the scheduling method according to the used message
periods

The routing algorithm is not dependent on the set of used periods, and its
computing demands stay low during the whole evaluation. The assignment algorithm
is affected by the number of the used message periods because the messages
with longer periods have more possible integration cycles to be assigned to. The
computational complexity of the link scheduling algorithm grows exponentially
with an increasing set of possible periods. However, the computational demands
grow much steeper in the case of arbitrary periods. It is caused by the difficulty
in the scheduling of the messages whose periods are co-prime. This statement is
also supported by the observation that the computational complexity grows most
significantly if a new prime period is introduced to the instance (specifically, if the
messages with periods 5-4c and 7-ic are introduced in our case). The second reason
is that the long cluster cycle (e.g., 2520 - ic for the case with a maximal allowed
period equal to 10 -4c) means a significant increase in the scheduling model variable
domains for the constraint programming optimization. The computation complexity
of the algorithm is considerably much lower if the periods are harmonic. In this
case, the complexity growth is mainly cause by the prolongation of the cluster cycle,
which is not significant as in the case of the instances with the arbitrary periods

82 Experimental results

10° - 3 Complete

} == Complete with 1% tolerance
1 = Assignment

Routing

—_

o=}
—
Il

Time to solve [s]

10’13

pEm———

1 2 1 8 16 32 64 128 256
Maximal allowed message period [ic|

Figure 4.10: The scalability of the scheduling method according to the used harmonic
periods

because the cluster cycle is only as long as the longest period here. The graphs
also show that the benevolence of the loss of 1% in the optimality does not help to
reduce the time demands much here.

D.3 The scalability of the algorithm based on the message counts

The most important thing is to know how the complexity grows with the increas-
ing number of messages, which is the subject of the third scalability experiment.
The benchmark instances with messages containing up to 8 bytes of payload and
with a maximal allowed period equal to 8 - ic were generated. For these benchmark
instances, harmonic periods were used, and the topology of the network corresponds
to a general graph. The results of the experiment are depicted in Fig. The
x-axis represents the number of messages used in the instance.

The results show that the routing algorithm and assignment algorithm are
affected by the number of messages in a similar way as the link scheduling algorithm.
The narrow range of the results (with the exception of instance set with 50 messages
which is affected by outliers) shows that the increase in the number of messages
stably influences the computational complexity. However, the complexity grows
exponentially in the number of messages. While scheduling links with instances
containing 100 messages to optimality took 1s, the instances with 2000 messages

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 83

10° - - Complete
1 =% Complete with 1% tolerance
1 = Assignment
107 5 Routing
)
o
S
'6* 10 3
2]
o
)
= 0
&]
107" 5
10—2_

20 50 100 200 500 1000 2000
Number of messages in instance

Figure 4.11: The scalability of the scheduling method according to the number of
messages

needed almost 20 min. For bigger instances, the result with a proven distance of
the link scheduling objective function value not further than 1% from the optimal
value can be obtained faster by an order even if this tolerance needs to be proven
by the solver.

4.5.5 Evolution of the scheduling objective function in time

It is necessary to note that the optimal solution for the routing algorithm, together
with the optimal solution for the link scheduling algorithm, does not ensure the
optimal solution from the problem statement point of view. Thus, in practical
cases, it is not needed to wait until the link scheduling algorithm proves that the
current solution is optimal (or close to optimum in the case of the 1% tolerance),
and the search can be stopped sooner. This allows for creating schedules for bigger
industrial size instances in a reasonable time. To show how the duration of the
part of the incremental cycle used by the TT communication evolves in time, the
same benchmark instance set with 2000 messages as in Section [£.5.4]3 was used.
The evolution of the duration of the part of the incremental cycle used by the TT
communication during the link schedule creation is presented in Fig.

The x-axis of the figure represents the time limit for the scheduling. At the
time of 1200s, all the instances in the set were solved to optimality. The left y-axis

84 Experimental results

. —¢_ Objective value w.r.t optimal one L1920
% é 355000 4 -#- Objective function evolution in time .
5 5 354500, 00 E
== 354000 | =
% Cé 353500 A | 20 =
= é 353000 | s
< Z 352500 o 2
> S 352000) o
ﬁg 351500 1 -
S 351000 I g
5= 350500 -
A2 350000 20 A

=

; ; — ()

Time limit [s]

Figure 4.12: The evolution of the duration of the part of the incremental cycle used
by the TT communication in the time domain

represents the average duration of the part of the integration cycle used by the TT
communication over the whole benchmark set. The left y-axis represents the ratio
of the obtained objective value at a particular time compared to the optimal one in
percentage. Until time 100 s, the scheduling algorithm was not able to find a feasible
solution for two instances out of thirty. At time 200s, there was only one instance
without finding a feasible solution. In all further times, all the instances have found
a solution. The major change in the duration occurs in the beginning, and the slope
is decreasing in time. Even if there is some improvement in the average duration of
the part of the integration cycle used by the TT communication during the whole
scheduling period, the improvement between the average duration obtained at time
100s and 1200s is less than 1.3 %. Thus, it is sufficient to use a solution, which is
not necessarily optimal from the link schedules creation problem point of view but
obtained in a shorter time, in many practical cases.

4.5.6 Scheduling of the real industrial instances

The work has been motivated by our industrial partner, who develops electronic
systems for the avionic industry. This section describes the behavior of the proposed
algorithm on the real instance obtained from the partner. The instance contains
1922 messages (407 unicast messages and 1515 multicast messages) with a payload
of up to 1036 bytes and periods from the set {12.5ms, 25 ms, 50 ms, 100 ms, 200 ms,
1000 ms}. The system consists of 38 nodes. The topology is based on three switches
SW1, SW2 and SW3 that are mutually interconnected. Each such switch is in the
topology twice called SW1_A and SW1_B, and these two instances are interconnected
too. Thus, the backbone of the network is based on such a double triangle topology.

INCREMENTAL SCHEDULING OF THE TIME-TRIGGERED TRAFFIC ON
TTETHERNET NETWORK 85

Each endpoint is connected to one of those switches. The schedule for this instance,
which is optimal from all the subproblem’s point of view, was obtained after less
than 250s. The schedule utilization of the most utilized link reached 96.3% while
the schedule utilization averaged over the whole network was only 19.6%. This
shows that the integration cycle assignment was able to distribute the messages
in the most utilized link very efficiently. Figure presents how the payload is
distributed among the links in the network. The links are classified according to

65.22

(=2}
(==}
1

ot
fe=)
1

40 1

18.12

Percent of links belonging to

the particular class [%]

—_
fe=)
1

6.52

3.62 4.35
0.72 0.72 0.72
0 II i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
01 02 03 04 05 06 07 08
Bandwidth of links consumed by the TT traffic [MB/s]

Figure 4.13: The histogram of the links utilization

the volume of the TT data transmitted through them per second. The first class
includes links with the volume from 0 to 0.1 MB/s, the second one includes the
links with the volume from 0.1 to 0.2 MB/s, etc. The y-axis then represents the
percentage of the links that belong to the particular class. The histogram shows
that almost 70 % of the links have very low utilization of the links. About 50 % of
these links are empty. That means that these links are connected to the endpoints
that serve as a transmitter or a receiver (note that each transmission direction of
the Full-duplex physical link is represented by two separate links here). Moreover,
there is just one link in the class with 0.7 - 0.8 MB/s. This link (and also the
links from classes with 0.5-0.6 MB/s and 0.6-0.7 MB/s) connects the redistribution
node with the communication endpoint. Thus, the routing algorithm was not able
to reroute some messages from this link through another path to lighten the link.
The backbone links belong to the 0.2-0.3MB/s and 0.3-0.4 MB/s classes. The

86 Conclusion

interesting observation is that, considering the 100 MB/s TTEthernet network, the
TT communication utilizes less than 1% of the bandwidth in this instance. The
rest of the bandwidth is used for the RC and BE communication.

4.6 Conclusion

The paper focuses on the problem of the incremental time-triggered communication
scheduling on the TTEthernet network, and studies the influence of introduced
backward compatibility on the resulting schedules.

The incorporation of the event-triggered Rate-Constrained traffic with the
Time-Triggered traffic is very important for mixed-criticality applications [41].
Event-triggered communication is usually used in industrial applications nowadays.
However, the pressure placed on, for example, the automotive or avionics industries
to verify and certify its systems on a component and system integration level pushes
system developers to use time-triggered traffic for safety-related communication as
its behavior is deterministic. However, the creation of schedules for time-triggered
communication is a challenging task.

We have followed the idea of separating the time-triggered traffic and event-
triggered traffic already used in [21], which was inspired by the scheme of the
FlexRay bus communication cycle. The objective has been to maximize the minimal
guaranteed coherent gap left in each integration cycle on each link that can be
continuously used by the Rate-Constrained and Best-Effort traffic while keeping
the backward compatibility with the original schedules created in the previous
development iterations. The problem has been decomposed into three subproblems
- (i) message routing, (ii) deciding in which integration cycles each message will be
exchanged and, finally, (iii) creating schedules for each link on the network. We
have designed the algorithm based on the MILP formulation of the routing and
integration cycle assignment problem and the CP formulation of the link scheduling
problem.

The experiments show that the incremental scheduling on one side prolongs
the part of the integration cycle used by the TT communication in the order of
a percent (in the experiments it was about 1%), but it brings the advantage of
backward compatibility. The performance of the algorithm is dependent on the
number of messages in the instance, the length, and the periodicity of the messages.
However, the experiments show that the method can return good results even for
industry sized instances in a few minutes.

Chapter

Conclusions and Future Work

This section concludes the thesis. We will discuss how the goals of the thesis were
accomplished and what lessons we learned from the studied topics. The open points
and directions for future work are presented in the end.

5.1 Conclusions

Demands posed on the capacity of communication systems grows together with
the necessity of time-deterministic and reliable data exchange. Time-triggered
communication protocols are a suitable solution for time-deterministic data exchange
in critical applications. Modern time-triggered communication systems can transfer
a great amount of data already, and they are able to accommodate non-time-
triggered communication too. For example, FlexRay, TTEthernet, or 802.1Qbv
can be considered as some of them. A common factor that determines whether the
deployment of the time-triggered communication system is successful is a feasible
and efficient communication schedule. However, it is a challenging task to find
such a schedule as the problem belongs among the NP-hard class - i.e., there is
no known algorithm that is able to solve this kind of problems in a polynomial
time. In industrial-sized instances, there can be more than thousands of messages,
which implies that the exact schedulers are not a suitable tool for time-trigger
communication schedule creation. To overcome this inconvenience, the thesis in
hand proposed a set of heuristic algorithms that can solve even industrial-sized
instances in reasonable time and quality.

All the proposed algorithms aim to reach the same goal: to find such a feasible
time-triggered communication schedule, which utilizes the communication system
efficiently and leaves as much as possible bandwidth free for non-time-triggered
communication. The problems the algorithms aims to solve are different from each
other in aspects they consider and constraints derived from particular use-cases or
communication systems.

The problem from Chapter [2| aims to reduce the bandwidth demands of time-
triggered communication by utilizing the potential of two independent channels
in FlexRay bus. The problem considers that not all the signals that are to be
transmitted are necessarily fault-tolerant. Moreover, the ECUs that transmits only
non-fault-tolerant messages can have only one FlexRay port implemented and, thus,
can be connected to one communication channel only. The proposed scheduling
algorithm employs the communication hypergraph to decide into which channel
each ECU should be connected. Once the infrastructure of the network is decided,
the schedule for each independent communication channel is created, such that the
fault-tolerance of critical signals is preserved. According to the experimental results,
the use of independent channels can save from 10% to 45% of communication
bandwidth in real cases even without compromising the fault-tolerance of the
system. Such a significant saving of the bandwidth can enable further development

87

5

88 Conclusions

or allow integration of more ECUs into one FlexRay bus and thereby save production
costs.

Chapter [3] then focuses on the creation of FlexRay static segment communication
schedules in the development process that is directly inspired by the automotive
industry. The scheduling algorithm adapts to the requirements of the industry that
demands to preserve the compatibility among resulting products. The compatibility
requirement can be divided into two sub-requirements: keep compatibility among
products in current development (multi-variant scheduling constraints) and keep
backward compatibility with already existing products (incremental scheduling
constraints). Meeting these requirements brings significant savings in the production
and after-sale segment. The sophisticated algorithm has been developed to satisfy
these compatibility requirements and to optimize bandwidth utilization. Moreover,
the algorithm tries to preventively improve the structure of the final schedule so
that it is possible to find more efficient schedules even in the further incremental
scheduling iterations. The chapter also tries to solve the case when the algorithm is
not able to find a feasible schedule by providing the enumerative algorithm manages
network parameters. It aims to find such a network parameters configuration
that allows finding the most efficient schedules. The experimental results show
that the described algorithm can find efficient schedules in less than one second,
even for industrial-sized instances. Additionally, to the performance and quality
experiments, the influence of multi-variant and incremental scheduling constraints
on the resulting schedules was studied. The schedule is linearly dependent on the
portion of common signals (signals common to more product variants) and specific
signals (signals specific to one particular product variant) in the instance. The
incremental scheduling introduces a strong linkage between current and original
schedules. It is not possible to move the signals in the schedule arbitrary as backward
compatibility forces to minimize the number of changes among original and current
schedule. Consequently, the free space left in the original schedule most probably
does not fit to the new signals, which finally implies an allocation of extra slots. The
more compact the schedule, the more likely a new signal will not fit the free space.
That is the reason why the most significant increase in the number of allocated
slots is in the second incremental development iteration (the first one with the
original schedule), and then the increase eases. The experiments show that this
phenomenon can be efficiently reduced by predictive extensibility optimization
of the schedule, which helps most in the initial incremental scheduling iterations.
Finally, the feasibility of the obtained results was validated directly on the FlexRay
bus powered system.

Chapter [4]leaves the FlexRay bus scheduling and tackles the problem of schedul-
ing time-triggered communication on the TTEthernet network. A similar practice,
as in the case of FlexRay, was followed where the aim is to separate the segment
dedicated to the time-triggered communication. The duration of the segment should
be minimal possible to preserve the rest of the bandwidth for RC and BE commu-
nication classes. The backward compatibility with previous schedules is kept here
to comply with the industrial needs. The creation of TTEthernet schedules is a
significantly more complex task than in the case of FlexRay, mainly because the
single shared medium is replaced by a set of full-duplex point-to-point connections.
That means that instead of one schedule, it is necessary to create foe each physical

CONCLUSIONS AND FUTURE WORK 89

link of the TTEthernet network two schedules (one for each communication direc-
tion). Moreover, it is necessary to decide the path through which the message will
be routed. The proposed algorithm tackles the problem complexity by dividing the
whole problem into three subproblems: routing, determination of the integration
cycle in which the message will be exchanged, and finally, the creation of sched-
ules for each link. The routing subproblem and the integration cycle assignment
subproblem were solved by its formulation as a MILP model. Thanks to the fixed
routing and integration cycle assignment, the amount of possible combinations for
the link scheduling is significantly reduced. CP model, which is employed to find
time intervals in which the message is exchanged in particular links, can conse-
quently solve a scheduling problem in a reasonable time even for industrial-sized
instances. The resulting experiments show that the time demands of the algorithm
are exponentially dependent on the number of messages in the instance. However,
they also snow that the algorithm can find efficient schedules even in the case when
the search of link schedules is stopped before finding the optimal schedule by the CP
solver. The scalability is also influenced by the maximal allowed length of a message
and the number of different message periods. The increase of the complexity caused
by the increased number of message periods can be reduced by the use of harmonic
periods instead of arbitrary ones. This can accelerate the algorithm by one order.
The experiments also examined the influence of backward compatibility on the
duration of the scheduled time-triggered segment and its porosity. According to
the results, the backward compatibility introduces the overhead about 10 %. The
backward compatibility also causes an increase of porosity in the most utilized
link from 13 % to about 23 %, and the porosity keeps in the range even in further
incremental scheduling iterations.

5.2 Fulfillment of the Goals

The thesis aimed to solve the stated goals. Let us list them and check if they were
accomplished successfully.

1. Examine literature, papers, and specifications related to the time-triggered
communication systems and find open challenges and possible improvements
in the scheduling area. Focus on the problems that obstruct introducing time-
triggered communication in the industrial sector.

The study of the literature revealed that the commonly used time-triggered
communication protocols are FlexRay and TTEthernet. Aside from these,
there are also other protocols as TTP or TT CAN. However, they are not used
in practice so frequently. Currently, there is also an extension for Ethernet
introduced by TSN called Enhancements for Scheduled Traffic (802.1Qbv) that
allows exchanging time-triggered communication over the Ethernet network.
This standard, similar to TTEthernet, seems to be a common choice for the
future. However, this standard is not examined in this thesis as the thesis
started before the standard was stated. Thus, it is considered as future work
here. The literature also revealed the lack of work that would be focused on
scheduling in the multi-variant product development process that is often
also iterative and needs to preserve the backward compatibility. Thus, this

90

Fulfillment of the Goals

theme affects almost the whole thesis. The literature and papers related to
the individual open points that were chosen to be solved are present in the
Related works section of the particular chapter. Specifically, the important
information from specifications are presented in Sec. and Sec. and

the related papers are briefly described in Sec. Sec. and Sec. [£.2.2]

. Deduce a formal description of the discovered problems. Formulate the problem

constraints and objectives while considering the safety-relevant and time-
deterministic behavior.

The problem statements were deduced from the protocol specifications and
related papers. Each chapter of the thesis presents one problem statement that
the chapter aims to solve. The FlexRay static segment scheduling problem with
independent communication channels is examined in Sec. while the multi-
variant scheduling problem that preserves backward compatibility is described
in Sec. Sec. states formally the problem of creation of backward
compatibility compliant schedules for the time-triggered communication in
TTEthernet network.

. Develop exact or heuristic algorithms that can solve the scheduling problems for

industrial-sized instances. The schedules have to be obtained in a reasonable
time for the product development process.

Section describes the heuristic method for solving problem from Sec.
- FlexRay static segment scheduling with two independent channels. The
method is based on a two-step iterative algorithm where, in the first step
(described into detail in Sec. [2.3.1)), ECUs to channel assignment is decided.
The assignment also determines in which channel or channels will be each
message transmitted and if the message needs to transit the gateway ECU.
In the second step (described in Sec , schedules for both channels are
created. The balanced assignment from the first step does not ensure the ideal
starting point for scheduling. Thus, both steps are called iteratively while the
parameter setting of ECU to channel assignment algorithm is adapted with
respect to the results from the scheduling step and the best-found schedule is
provided at the end.

The problem from Sec. - creating time-triggered communication schedules
for multiple variants of FlexRay powered system while considering the back-
ward compatibility with original schedules - is solved by the heuristic method
described in Sec.[3:3] The method reads the original schedules first and checks
if these schedules are feasible even for a new set of variants. If some scheduling
conflicts are found (i.e., backward compatibility has to be violated to obtain a
feasible schedule), these conflicts are solved by removing conflicting messages
from the schedule. Conflict solving algorithm aims to remove the smallest
possible number of messages to limit backward compatibility violation as
much as possible. Removed messages are merged with the set of new messages
and introduced to the schedule in the next step. Consequently, the created
schedules are optimized for future scheduling iterations. Finally, the resulting
schedule is made up from separated schedules for individual ECUs by graph
coloring like method.

CONCLUSIONS AND FUTURE WORK 91

The problem of creating schedules for the time-triggered communication on
TTEthernet described in Sec. is solved by three-stage heuristic algorithm
provided in Sec.[£:4] The routing for each message through the TTEthernet
network is found by ILP model, presented in Sec. in the first stage.
The second stage of the algorithm (Sec. decides in which integration
cycle will be the message scheduled. This stage significantly reduces the
time complexity of the third stage. Section presents the CP model
for the third stage of the algorithm, which finally finds the time-triggered
communication schedules for each link of the TTEthernet network.

4. Verify the developed algorithms by experiments. Discuss the obtained results
from the quality point of view as well as from the time complezity and scalability
point of view. Investigate the uncommon properties of the stated problems and
the proposed algorithms.

Each topic of the work was experimentally tested, and the results of the tests
are presented and discussed in sections and The experiments
that aim to determine the quality of the created schedules can be found in
Table[2.2] and sections and On the other hand, the time complexity
of the described algorithms for creating FlexRay static segment schedules is
presented in Table 23] and Section [3:4.5] In the case of scheduling algorithm
for time-trigged communication on TTEthernet, the time complexity is studied
more into detail because it is significantly more time demanding operation
than scheduling communication on FlexRay. Thus, the scalability of the
algorithm were tested from different aspects: message lengths (Sec. ,

message periods (Sec. [4.5.4) and the number of messages (Sec. [4.5.4)). The
evolution of the schedule quality in time is consequently presented in Sec. [£.5.5]

Moreover, each topic of the thesis presents the experiments that are closely
related to the topic itself. Figure 2.6 shows how the portion of fault-tolerant
signals and portion of commons ECUs influences the number of the FlexRay
static slots allocated by our scheduling algorithm for FlexRay system with two
independent channels. A question of how the portion of the specific signals
and portion of the common signals influences the multi-variant scheduling was
answered in Sec. [3:4.2 and Sec. [3.4:3] for FlexRay static segment scheduling.
The influence of incremental scheduling and introduced backward compatibility
was studied and discussed in Sec. and Sec. for FlexRay scheduling
and in Sec. [£.5.2]for TTEthernet scheduling. Moreover, the porosity introduced
into the schedule by the incremental scheduling was examined in Sec.
Finally, the Sec. evaluates the suitability of used routing algorithm for
TTEthernet scheduling, and Sec. [3:4.4] shows how extensibility optimization
for FlexRay scheduling can improve the schedules in upcoming scheduling
iterations if the backward compatibility is used.

92

Fulfillment of the Goals

Bibliography

[1]

[7]

8]

[13]

H. Arabnejad and J. Barbosa. List scheduling algorithm for heterogeneous
systems by an optimistic cost table. Parallel and Distributed Systems, IEEE
Transactions on, 25(3):682-694, March 2014.

ARINC (Aeronautical Radio, Inc.). ARINC 664P7: Aircraft Data Network,
Part 7, Avionics Full-Duplex Switched Ethernet Network. Technical report,
ARINC (Aeronautical Radio, Inc.), 2009.

Association for Standardisation of Automation and Measuring Systems. ASAM
MCD-2 NET standard (FIBEX), 2014.

AUTOSAR Development Partnership. AUTOSAR requirements on FlexRay
v4.0.1, Oct 2013.

AUTOSAR Development Partnership. AUTOSAR specification of FlexRay
interface v3.5.0, Oct 2013.

L. L. Bello. Novel trends in automotive networks: A perspective on Ethernet
and the IEEE Audio Video Bridging. In Proceedings of the 2014 IEEE Emerging
Technology and Factory Automation (ETFA), pages 1-8, Sept 2014.

H. Bley and C. Zenner. Variant-oriented assembly planning. CIRP Ann.
Manufacturing Technology, 55(1):23 — 28, 2006.

R. Bouhouch, H. Jaouani, W. Najjar, and S. Hasnaoui. FlexRay static section
scheduling using full model. In 2nd International Conference on Advanced
Communications and Computation, pages 74-80, Oct 2012.

M. Boyer, H. Daigmorte, N. Navet, and J. Migge. Performance impact of
the interactions between time-triggered and rate-constrained transmissions in
ttethernet. In 8th European Congress on Embedded Real Time Software and
Syst., pages 159-168, Toulouse, France, 2016.

C. Braun, L. Havet, and N. Navet. Netcarbench: A benchmark for techniques
and tools used in the design of automotive communication systems. In 7th IFAC
International Conference on Fieldbuses & Networks in Industrial € Embedded
Systems (FeT), Toulouse, France, Nov 2007.

A. Buiga. Investigating the role of MQB platform in Volkswagen Group’s
strategy and automobile industry. Int. J. Academic Research in Business and
Social Sciences, 2(9):391-399, September 2012.

R. Carvajal, J. Aguero, B. Godoy, and G. Goodwin. EM-based maximum-
likelihood channel estimation in multicarrier systems with phase distortion.
Vehicular Technology, IEEE Transactions on, 62(1):152-160, Jan 2013.

Y. Chen, S. Sanghavi, and H. Xu. Improved graph clustering. Information
Theory, IEEE Transactions on, 60(10):6440-6455, Oct 2014.

93

94

BIBLIOGRAPHY

[14]

[17]

S. S. Craciunas and R. S. Oliver. Combined task- and network-level scheduling
for distributed time-triggered systems. Real-Time Syst., 52(2):161-200, Mar
2016.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner. Scheduling real-time
communication in IEEE 802.1Qbv Time Sensitive Networks. In Proc. 24th Int.
Conf. Real-Time Networks and Systems, pages 183-192, Brest, France, 2016.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner. Scheduling real-time
communication in IEEE 802.1Qbv time sensitive networks. In Proc. 24th Int.
Conf. on Real-Time Networks and Syst. (RTNS), pages 183-192, Brest, France,
2016.

S. S. Craciunas, R. S. Oliver, and V. Ecker. Optimal static scheduling of real-
time tasks on distributed time-triggered networked systems. In Proc. IEEFE
Emerging Technology and Factory Automation (ETFA), pages 1-8, Barcelona,
Spain, 2014.

P. F. d. Souto, P. Portugal, and F. Vasques. Reliability evaluation of broadcast
protocols for FlexRay. IEEE Trans. on Veh. Technol., 65(2):525-541, Feb
2016.

J. Dvordk and Z. Hanzalek. Multi-variant time constrained FlexRay static
segment scheduling. In 10th IEEE Workshop on Factory Communication
Systems (WFCS), pages 1-8, Toulouse, France, 2014.

J. Dvorak and Z. Hanzalek. Incremental Multi-Variant Flexray Static Segment
Scheduler, 2018.

J. Dvorak, M. Heller, and Z. Hanzalek. Makespan minimization of Time-
Triggered traffic on a TTEthernet network. In Proc. 13th IEEE Int. Workshop
on Factory Commun. Sys. (WFCS), pages 1-10, Trondheim, Norway, 2017.

A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Zomaya, S. Foufou,
and A. Bouras. A survey of clustering algorithms for big data: Taxonomy and
empirical analysis. Emerging Topics in Computing, IEEE Transactions on,
2(3):267-279, Sept 2014.

W. Fenske, S. Schulze, D. Meyer, and G. Saake. When code smells twice
as much: Metric-based detection of variability-aware code smells. In IEEE
15th Int. Work. Conf. Source Code Analysis and Manipulation (SCAM), pages
171-180, Bremen, Germany, 2015.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and
spectral methods for clustering. Pattern Recognition, 41(1):176 — 190, 2008.

G. Gutin, T. Jensen, and A. Yeo. Batched bin packing. Discrete Optimization,
2(1):71 — 82, 2005.

Z. Hanzalek, D. Benes, and D. Waraus. Time constrained FlexRay static
segment scheduling. In 10th International Workshop on Real-Time Networks
(RTN), In conjunction with Euromicro Conference on Real-Time Systems
(ECRTS), Porto, Portugal, July 2011.

BIBLIOGRAPHY 95

[27]

[28]

Z. Hanzalek and T. Pacha. Use of the fieldbus systems in academic setting. In
Proceedings on real-time systems education III, pages 93-97, 1999.

Y. Hua, X. Liu, W. He, and D. Feng. Design and implementation of holistic
scheduling and efficient storage for FlexRay. Parallel and Distributed Systems,
IEEFE Transactions on, 25(10):2529-2539, Oct 2014.

International Organization for Standardization. ISO 17458 - FlexRay commu-
nications system, 2015.

Z. Ivkovi¢ and E. L. Lloyd. Fully Dynamic Bin Packing. Netherlands, Springer,
20009.

Ixia. Automotive ethernet: An overview, White paper, 2014.

M. Kang, K. Park, and M.-K. Jeong. Frame packing for minimizing the
bandwidth consumption of the FlexRay static segment. Industrial Electronics,
IEEF Transactions on, 60(9):4001-4008, Sept 2013.

J. H. Kim, S. H. Seo, N. T. Hai, B. M. Cheon, Y. S. Lee, and J. W. Jeon.
Gateway framework for in-vehicle networks based on CAN, FlexRay, and
Ethernet. IEEE Trans. on Veh. Technol., 64(10):4472-4486, Oct 2015.

H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered
ethernet (TTE) design. In 8h IEEE Int. Symp. Object-Oriented Real-Time
Distributed Computing (ISORC), pages 22-33. IEEE, 2005.

P. Laborie. A (not so short) introduction to ¢p optimizer for scheduling. In
27th Int. Conf. Automated Planning and Scheduling (ICAPS), 2017.

R. Lange, F. Vasques, R. S. de Oliveira, and P. Portugal. A scheme for slot
allocation of the FlexRay static segment based on response time analysis.
Computer Communications, 63(C):65-76, June 2015.

Y. Lee, J. Kim, and J. Jeon. FlexRay and Ethernet AVB synchronization for
high QoS automotive gateway. IEEE Trans. on Veh. Technol., in preprint,
2016.

Z. Li, H. Wan, Z. Pang, Q. Chen, Y. Deng, X. Zhao, Y. Gao, X. Song, and
M. Gu. An enhanced reconfiguration for deterministic transmission in time-
triggered networks. IEEE/ACM Transactions on Networking, 27(3):1124-1137,
2019.

M. Lukasiewycz, M. Glaf}, J. Teich, and P. Milbredt. FlexRay schedule optimiza-
tion of the static segment. In IEEE/ACM 7th Int. Conf. Hardware/Software
Codesign and System Synthesis, pages 363-372, Grenoble, France, 2009.

Nissan Motor Corporation, Ltd. Direct Adaptive Steering ™, 2016.

A. Novak, P. Sucha, and Z. Hanzalek. Efficient algorithm for jitter minimization
in time-triggered periodic mixed-criticality message scheduling problem. In
Proc. 24th Int. Conf. on Real-Time Networks and Syst. (RTNS), pages 23-31,
Brest, France, 2016.

96

BIBLIOGRAPHY

[42]

[50]

[51]

[52]

[53]

[54]

[55]

L. Ouedraogo and R. Kumar. Computation of the precise worst-case response
time of FlexRay dynamic messages. Automation Science and Engineering,
IEEE Transactions on, 11(2):537-548, April 2014.

J. P. Pedroso and M. Kubo. Heuristics and exact methods for number parti-
tioning. Furopean Journal of Operational Research, 202(1):73 — 81, 2010.

P. Pop, P. Eles, Z. Peng, and T. Pop. Scheduling and mapping in an incremental
design methodology for distributed real-time embedded systems. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 12(8):793-811, Aug 2004.

F. Pozo, G. Rodriguez-Navas, and H. Hansson. Methods for large-scale time-
triggered network scheduling. Electronics, 8(7), 2019.

O. Rottenstreich, M. Di Francesco, and Y. Revah. Perfectly periodic scheduling
of collective data streams. IEFE/ACM Transactions on Networking, 25(3):1332—
1346, 2017.

SAE International. AS6802: Time-Triggered Ethernet. Technical report, SAE
International, 2011.

Saelig Company, Inc. EMC Pre-compliance, Testing on budget, 2016.

F. Sagstetter, P. Waszecki, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty.
Multischedule synthesis for variant management in automotive time-triggered
systems. IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 35(4):637-650, 2016.

E. G. Schmidt and K. Schmidt. Message scheduling for the FlexRay protocol:
The dynamic segment. IEEE Trans. Veh. Technol., 58(5):2160-2169, Jun 2009.

K. Schmidt and E. G. Schmidt. Message scheduling for the FlexRay protocol:
The static segment. IEEE Trans. Veh. Technol., 58(5):2170-2179, Jun 20009.

A. Sharifnassab and S. J. Golestani. On the possibility of network scheduling
with polynomial complexity and delay. IEEE/ACM Transactions on Network-
ing, 25(6):3850-3862, 2017.

Y. H. Sheu and C. M. Ku. The intelligent FlexRay safety monitoring platform
based on the automotive hybrid topology network. In 8th International Con-
ference on Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP), pages 289-292, July 2012.

D. Singh, M. Singh, and T. Singh. A hybrid heuristic algorithm for the eu-
clidean traveling salesman problem. In International Conference on Computing,
Communication Automation (ICCCA), pages 773-778, May 2015.

M. Sojka, P. Pisa, D. Faggioli, T. Cucinotta, F. Checconi, Z. Hanzalek, and
G. Lipari. Modular software architecture for flexible reservation mechanisms
on heterogeneous resources. Journal of Systems Architecture, 57(4):366 — 382,
2011.

BIBLIOGRAPHY 97

[56]

[60]

[61]

[62]

[65]

[66]

[67]

[68]

T. Steinbach, F. Korf, and T. C. Schmidt. Comparing time-triggered Ethernet
with FlexRay: An evaluation of competing approaches to real-time for in-
vehicle networks. In Proc. 8th IEEE Int. Workshop on Factory Commun. Syst.,
pages 199-202, Nancy, France, 2010.

W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks. In 31st IEEE Real-Time Syst. Symp. (RTSS),
pages 375-384, San Diego, CA, USA, 2010.

W. Steiner. Synthesis of static communication schedules for mixed-criticality
systems. In 14th IEEE Int. Symp. Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW), pages 11-18, Newport
Beach, CA, USA, 2011.

W. Steiner, M. Gutiérrez, Z. Matyas, F. Pozo, and G. Rodriguez-Navas. Current
techniques, trends and new horizons in avionics networks configuration. In
34th IEEE/ATAA Digital Avionics Syst. Conf. (DASC), pages 1-26, Prague,
Czech Republic, 2015.

D. Tamas-Selicean, P. Pop, and W. Steiner. Design optimization of TTEthernet-
based distributed real-time systems. Real-Time Syst., 51(1):1-35, 2015.

D. Tamas-Selicean, P. Pop, and W. Steiner. Design optimization of TTEthernet-
based distributed real-time systems. Real-Time Syst., 51(1):1-35, Jan 2015.

D. Tamas-Selicean, P. Pop, and W. Steiner. Timing Analysis of Rate Con-
strained Traffic for the TTEthernet Communication Protocol. In 18th IEEFE
Int. Symp. on Real-Time Distributed Computing, pages 119-126, Auckland,
New Zealand, 2015.

B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. Scheduling for fault-tolerant
communication on the static segment of FlexRay. In 31st IEEE Real-Time
Systems Symp. (RTSS), pages 385-394, 2010.

S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin. Intra-
vehicle networks: A review. IEEE Transactions on Intelligent Transportation
Systems, 16(2):534-545, 2015.

Vector Informatik GmbH. ECU Development & Test with CANoe, 2016.

Volkswagen Group. New group strategy adopted: Volkswagen Group to become
a world-leading provider of sustainable mobility, 2016.

R. Wallis, J. Stjepandic, S. Rulhoff, F. Stromberger, and J. Deuse. Intelligent
utilization of digital manufacturing data in modern product emergence processes.
I0OS Press - Advances in Transdisciplinary Eng., 1(1):261-270, 2014.

J. Wang, P. Ding, Y. Wang, and G. Yan. Back-to-Back Optimization of
Schedules for Time-Triggered Ethernet. In 37th Chinese Control Conference
(CCC), pages 6398-6403, Wuhan, China, July 2018.

98 BIBLIOGRAPHY

[69] B. Westfechtel. Realizing a conceptual framework to integrate model-driven
engineering, software product line engineering, and software configuration
management. In 3rd Int. Conf. Model-Driven Eng. and Software Development
(MODELSWARD), pages 21 — 44, Angers, France, 2015.

[70] J. Whyte, A. Stasis, and C. Lindkvist. Managing change in the delivery of
complex projects: Configuration management, asset information and ‘big data’.
Int. J. Project Management, 34(2):339 — 351, 2016.

[71] L. Zhao, P. Pop, and S. S. Craciunas. Worst-case latency analysis for ieee
802.1gbv time sensitive networks using network calculus. IEEE Access, 6:41803—
41815, 2018.

[72] R. Zhao, G. Qin, Y. Lyu, and J. Yan. Security-aware scheduling for ttethernet-
based real-time automotive systems. IEEE Access, 7:85971-85984, 2019.

Nomenclature

Abbreviations

AUTOSAR AUTomotive Open System ARchitecture
BE Best-Effort

CAH ECU-to-Channel Assignment Heuristic

CAN Controller Area Network

CLP Constraint Logic Programming

CPp Constraint Programming

ECU Electronic Control Unit

EEM ECU Mutual Exclusion Matrix

ET Event-Triggered

ILP Integer Linear Programming

ISO International Organization for Standardization
MILP Mixed Integer Linear Programming

MIS Maximal Independent Set

MS Multischedule

MWIS Maximal Weighted Independent Set problem
NP Nondeterministic Polynomial time

RC Rate-Constrained

SEM Signal Mutual Exclusion Matrix

SMT Satisfiability Modulo Theories

SPT Shortest Path Tree

TDMA Time Division Multiple Access

TT Time-Triggered

Symbols
a; ; Decision variable for the integration cycle assignemnt problem
a; ; Predicate denoting if message m; was scheduled to integration cycle ic; in

the original schedule

99

100 NOMENCLATURE
o Gateway throughput penalization medifier
B Channel balancing modifier
i Channel of signal transmission
b; b; for image of signal 7
cc Cluster cycle
cG Conflict graph
Ci Payload length of signal or message i
cé’m Transmission time of message m; in link k; .,
D Set of dummy signals
d; Deadline of signal or message i
E Set of ECUs
E¢ Communication endpoints
FEcg Edges from conflict graph
€; Node 1
EFR Redistribution nodes
fi Fault-tolerance of signal ¢
G Load of the most bussy link
gi,m Load of the link k; ,,

Gsror Graph for Slot scheduling

H
h;

Number of cycles in the hyperperiod
Index of ECU transmitting slot [;
Set of integration cycles

Index

Integration cycle

Index

Set of links

Link between nodes e; and e;
Duration of one communication cycle

Slot with index 7

NOMENCLATURE 101

M Set of messages
m; Message
MI Set of message instances

M If’m Set of message instances which appear in integration cycle ic; and link k; .,

Lm

m;

Instance of message m; on link k; .,

MI Set of message instances present in the original schedule
MSFCY Unit multischedule

MS; ; Multiframe in cycle ¢ and slot j

MS© Original multischedule

N Set of ECUs

N Set of one port ECUs

Neca Nodes from conflict graph

NComm Get of common ECUs

NSW Gateway ECU

NL Ordered list of nodes

0; Offset in the frame of signal s;

0; o; from original assignment

o} o; for image of signal i

i Period of signal/message i

Q; Set of receivers signal or message i

i Transmitter of signal/message 4

R; Routing tree of message m;

T Release date of signal or message ¢

R Routing path of message m; to receiver e,
S Set of signals

SA Schedule for channel A
SAB Schedule common to both channels
SB Schedule for channel B

Si Signal ¢

NOMENCLATURE

Smrs

U

Wy
Ti,lm
Yi

Yi

Numerical label of node e; for message m;

Image of signal 4

Ordered list of signals

Set of new signals

Set of signals from the Maximal Independent Set
Subset of signals used in the original multischedule
Set of signal images

Hop delay

Slot in which signal i is transmitted

t; from original assignment

t; for image of signal i

Number of free bits in slot

Binary matrix of the signal-to-variant assignment
Maximal frame payload length

Weight of node ¢ in MWIS

Decision variable for the routing

Cycle in which signal i is transmitted

y; from original assignment

y; for image of signal 4

Maximal bandwidth utilization among the integration cycles

Chapter

Curriculum Vitae A

Jan Dvotdk was born in Mladd Boleslav, Czech Republic, in 1989. He received his
bachelor degree in electrical engineering and informatics in Faculty of Electrical
Engineering (FEE) in Czech Technical Univerzity in Prague (CTU) in 2011 with
bachelor thesis focused on recognition of Parkinson disease from speech records
(based on digital signal processing methods). Next, he received the master of science
degree in open informatics in FEE in CTU in 2013, when he had defended his
thesis focused on development of massively parallel algorithm on GPU for Nurse
Rerostering Problem. In the same year, Jan started his Ph.D. studies on Scheduling
algorithms for time-triggered communication protocols in Department of Control
engineering, FEE, CTU.

The results of his study were published in two impacted international journals -
IEEE Transactions on Industrial Informatics and IEEE Transactions on Vehicular
Technology. The third journal paper is currently under review in IEEE/ACM
Transactions on Networking. Moreover, the results from his diploma theses were
publised in Computers & Operational Research journal. His current research
interests includes combinatorial optimization, scheduling, communication systems
and automotive embedded systems.

Jan Dvorak
Prague, June 2020

103

104 CURRICULUM VITAE

Chapter

List of Author’s Publications B

List of publications related to the thesis is included in this appendix.

Publications in Journals with Impact Factor

Jan Dvordk and Zdenék Hanzéalek. Using Two Independent Channels With Gateway
for FlexRay Static Segment Scheduling. TEEE Transactions on Industrial Infor-
matics, 12: 1887-1895, 2016. ISSN 1941-0050. Coauthorship 50%, indexed in
Web of Science, 15 citations in Google Scholar.

Jan Dvotak and Zdenék Hanzalek. Multi-Variant Scheduling of Critical Time-
Triggered Communication in Incremental Development Process: Application to
FlexRay. IEEE Transactions on Vehicular Technology, 68: 155-169, 2019. ISSN
1939-9359. Coauthorship 50%, indexed in Web of Science, 1 citation in
Google Scholar.

Jan Dvordk and Zdenék Hanzalek. Incremental scheduling of the Time-Triggered
traffic on TTEthernet network. IEEE/ACM Transactions on Networking, In review
process. Coauthorship 50%.

International Conferences and Workshops

Jan Dvorédk and Zdenék Hanzdlek. Multi-variant time constrained FlexRay static
segment scheduling. 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014), pages: 8, May 2014. Coauthorship 50%, indexed in Web of
Science, 9 citations in Google Scholar.

Jan Dvordk and Zdenék Hanzalek. FlexRay static segment scheduling on two
independent channels with gateway. 2015 11th IEEE World Conference on Factory
Communication Systems (WFCS 2015), pages: 4, May 2015. Coauthorship 50%,
indexed in Web of Science, 2 citations in Google Scholar.

Jan Dvordk, Martin Heller and Zdenék Hanzalek. Makespan minimization of
Time-Triggered traffic on a TTEthernet network. 2017 IEEE 13th International
Workshop on Factory Communication Systems (WFCS 2017), pages: 10, May 2017.
Coauthorship 50%, indexed in Web of Science, 7 citations in Google
Scholar.

Publications not Related to this Thesis

Zdenék Baumelt, Jan Dvoidk, Piemysl Stcha and Zdenék Hanzélek. A novel
approach for nurse rerostering based on a parallel algorithm. European Journal of
Operational Research, 251: 624 — 639, 2016. ISSN 0377-2217. Coauthorship 25%,
indexed in Web of Science, 17 citations in Google Scholar.

105

106 LiST oF AUTHOR’S PUBLICATIONS

Zdenék Biumelt, Jan Dvordk, Premysl Stcha and Zdenék Hanzélek. An acceleration
of the algorithm for the nurse rerostering problem on a graphics processing unit.
Lecture Notes in Management Science - 5th International Conference on Applied
Operational Research (ICAOR 2013), pages: 10, 2013. Coauthorship 25%,
indexed in Web of Science, 3 citations in Google Scholar.

Jan Dvorak
Prague, June 2020

Contributions of the thesis

The thesis in hand is focused on scheduling TT communication in two communication Systems - the
FlexRay bus and the TTEthernet network while considering industry-relgvant constraints. For both of
them, the work proposes heuristic scheduling algorithms that find feasible and close to optimal
schedules within a reasonable time.

The main contributions of the thesis in the field of scheduling TT communication on FlexRay bus are:
-We provided an idea of utilizing both independent FlexRay communication channels
- We provided an idea of considering the practical product development process consisting of
multi-variant management and incremental development
-We proved that the scheduling problem is NP-Hard
- We designed heuristic scheduling algorithms that Solve the problems
- We examined and discussed the impact of multi-variant and incremental essence on scheduling
- W evaluated the proposed algorithms on the sets of both synthetic and real-case inspired instances
- W verified the resulting schedules on the FlexRay powered system

The main contributions in the field of scheduling TT communication on TTEthernet netwark are:
-We provided an idea of considering backward compatibility in the TTEthernet scheduling process
- W aimed to make part used for TT communication the most compact
- We formulated the incremental TT communication scheduling problem on TTEthernet formally
- W designed the three-stage heuristic seheduling algorithm to solve the problem
- We examined and discussed the impact of incremental essence on the TTEthernet scheduling
- We evaluation of the proposed algorithm from the quality and the scalability point of view

. [|CTU
s

UNIVERSITY

IN PRAGUE

