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Introduction

The first to observe synchronization was reportedly Christiaan Huygens who noticed the
tendency of two pendulum clocks to adjust to anti-phase oscillations when mounted on a
common support bar, and described the discovery in his letters as early as in February
1665 [1]. Since then, synchronization has been thoroughly explored in a great variety of
classical systems [2], yet it was not until very recently that the study of this ubiquitous
phenomenon entered the quantum realm.
In both classical and quantum domain, synchronization is a very broad term. Various
viewpoints and hence definitions and measures have been introduced [3], [4], [5], [6], [7],
and systems investigated are numerous. The first works on the subject were typically
concerned with the case of a forced synchronization induced by an external field, or en-
trainment, examples include a driven oscillator [8], an oscillator coupled to a qubit [9] or
systems of van der Pol oscillators [10]. Another noteworthy field of research is represented
by synchronization protocols, proposals of how to exploit system properties such as entan-
glement to achieve clock synchronization between two parties [11]. Finally, the main focus
in current literature is on spontaneous synchronization, the situation when two or more
individual subsystems tune their local dynamics to a common pace due to the presence of
coupling. Prevalent is the study of so called transient synchronization, the emergence of
synchronous behaviour in dissipative systems as a result of time-scale separation of decay
rates of single modes [12]. In such a case the system goes through a long-lasting yet tempo-
ral phase of sychronized evolution, eventually approaching relaxation in the asymptotics.
Among the examples of examined systems are oscillator networks [13], [14], spin systems
[15], atomic lattices [16], qubits in bosonic environment [17], collision models [18] or sim-
ple few-body systems in dissipative environments [19]. It was nonetheless demonstrated
that synchronization can arise temporarily as well as asymptotically, and that such an
asymptotic behaviour can be associated with the presence of synchronous modes in the
decoherence-free subspaces of the state space [15], [20]. Very recently, a different under-
standing of non-vanishing synchronized evolution was presented in the form of an analogue
of the classical phase space limit cycles for a spin system of purely quantum nature [21].
The same authors also discuss the minimal quantum system which can exhibit this type of
synchronization [7], providing a promising baseline for studying limit cycles synchroniza-
tion in more complex spin networks. Synchronization can even occur as a concomitant of
other phenomena. In one particular instance it was shown to be an accompanying effect
of super- and subradiance [17].
There have been various atempts to establish a link between spontaneous synchronization
and several possible local or global indicators such as entanglement [13], discord [14] or
classical and quantum correlations in general [15]. To give an example, in [21] a syn-
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chronization of two spins solely through their, conveniently chosen, mutual interaction was
demonstrated to always come with a creation of entanglement, the converse not necessarily
true. While the results might be promissing in some specific cases, so far no general con-
nection between the emergence of spontaneous synchronization and any other phenomena
has been found and the plausible mechanisms of quantum synchronization and as well as
its very nature remain to great extend unknown.
An endeavour to better understand the phenomenon of synchronization on the quantum
level motivates this work. The main idea is based on Huygens’ original observation of two
clocks. We investigate the emergence of spontaneous synchronization between two or more
individual identical systems with their own inner dynamics that are coupled together, with
the aim of understanding the underlying synchronizing mechanism. Identical systems have
identical inner dynamics and natural frequencies, hence when it comes to synchronization
we talk about phase synchronization. We are not concerned with temporal transient phases
of synchronous behaviour preceeding dissipation and relaxation, as it is often the case in
the current literature, see the brief overview above, rather we look into systems exhibiting
sychronized dynamics in the asymptotics.
For the process of synchronization it is necessary to consider not only the possible mutual
interaction of the individual constituents of the composite system in question but also the
effects of the environment. Apart from the contact with the environment being practically
inevitable, a closed system alone is not enough for the study of the phenomenon since
unitary evolution in finite dimensions is always at least quasiperiodic [22]. A thrid party is
essential for non-trivial occurence of synchronization. To account for possible environments
and their interactions with the system it is best to view it as an open quantum system. One
of the simplest and most convenient approaches used to describe the open dynamics and to
study asymptotic behaviour is Markovian approximation. Within the approximation the
framework of quantum Markov dynamical semigroups and Lindblad dynamics represents
a suitable tool, and is employed in this work.

We begin with an introduction to the formalism and several key elements of the theory.
Quantum Markov dynamical semigroups are described and their generators are cast into
the well-known Lindblad form. The notion of an attractor space is introduced and a vital
theorem is stated, revealing how the attractors of the evolution map and the structure of
its generator are intertwined. Discussion of the concept of synchronization follows together
with suitable definitions for our setup. Alongside synchronization we also propound the
idea of phase-locking as its direct generalization to later show that the two can be explored
simultaneously.
The main part of the work is contained in the following chapters. In chapter 3 we investi-
gate in depth a system of two coupled non-interacting qubits, and explore and classify all
synchronizing maps in the studied model. We make use of a theorem presented in the the-
oretical part in chapter 1 which links generators of the evolution map in the Lindblad form
and the attractor space via commutation relations. Firstly, we assume all possible attrac-
tors corresponding to non-trivial synchronized asymptotic evolution and find generators of
the evolution map which permit the existence of such attractors. From the resulting set of
generators we then pick those that enforce synchronization on the entire attractor space
and hence lead to synchronous asymptotic behaviour irrespective of initial conditions. We
further study the obtained evolution maps and describe their attractor spaces. Chapter
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4 is devoted to extending all the concepts and results from two qubits to qubit networks.
We show how the synchronizing mechanisms identified in the case of two parties can be
applied to systems of many, achieving the same effects for the entire qubit networks in
some cases and destroying the single-qubit dynamics in other ones. Last but not least, we
study some relevant properties of synchronizing Lindblad operators. The text is concluded
with obtained results.
Supplementary material consisting of a derivation of normal matrix parameterization uti-
lized in the work, numerical simulations illustrating the studied phenomenon and setup,
and an overview of discovered synchronizing normal Lindblad operators and attractor
spaces of their respective associated evolution maps can be found in appendices A, B and
C in this order.



Chapter 1

Theoretical background

The evolution of an open quantum system is in general described by an irreversible linear
completely positive trace non-increasing map acting on the space of linear operators on
a Hilbert space. The open dynamics is often too complex for analytical solutions and
certain additional simplifying assumptions need to be applied. A common approach is the
use of Markovian approximation to describe dynamics of the system. Two main classes of
quantum Markovian processes are commonly studied, namely discrete quantum Markov
chains and continuous quantum Markov dynamical semigroups. With the latter being
utilized throughout the rest of the work, this section gives a brief introduction to the
necessary theory.

1.1 Preliminary

Assume a quantum system represented by a finite-dimensional Hilbert space H , let B (H )
be the associated space of all bounded linear operators on H . For A,B ∈ B (H ), (A,B) =
Tr
{
A†B

}
stands for the corresponding scalar product and ‖A‖ the induced norm thereof,

with A† being the adjoint operator of A defined via the scalar product 〈 , 〉 on H . A state
of such a system is described by a density operator ρ ∈ B (H ), a (generally not stricly)
positive self-adjoint operator with a unit trace.

1.2 Quantum dynamical semigroups

Among all possible evolutions of a state of an open quantum system special attention is paid
to the so called quantum Markovian dynamical semigroups. By the Markov property it is
meant that the evolution depends only on the present state and is completely independent
of its past. Further, we assume that the process is homogenous, that is the evolution from
t1 to t2 depends solely on the time difference ∆t = t2 − t1 and not on the actual points in
time themselves. With these properties combined we arrive at the following definition.

Definiton 1.2.1. A one-parameter family of completely positive (CP) trace non-increasing
maps Tt : B (H )→ B (H ), parameterized by t ∈ R+

0 , satisfying

TtTs = Tt+s, (1.1)

T0 = I, (1.2)

10



CHAPTER 1. THEORETICAL BACKGROUND 11

is called a quantum Markovian dynamical semigroup (QDMS).

1.3 Generators of QMDS and Lindblad operators

In this work we consider exclusively semigroups which are norm continuous. Such semi-
groups are known to be akin to exponential maps, namely they are of the form Tt = exp(Lt)
for some superoperator L ∈ B(B (H )). To describe continuous QMDS we make use of the
results of [23], further discussed in [24], [25].

Theorem 1.3.1. Let Tt be a continuous quantum dynamical semigroup (continuous in the
parameter t above). Then the superoperator Tt ≡ T is differentiable in t and is of the form

Tt = exp(Lt), (1.3)

where L : B (H ) → B (H ) is a linear map called the generator. The generator L can be
split into

L(ρ) = φ(ρ)−Kρ− ρK†, (1.4)

where φ is completely positive and K ∈ B (H ).

The master equation governing the evolution of an arbitrary state ρ in this model reads

dρ(t)

dt
= L(ρ(t)). (1.5)

A CP map φ admits a decomposition into Kraus operators [26], denoted here as {Lj} and
satisfying

∑
j L
†
jLj ≤ I. Furthermore, the operator K can be split into its hermitian and

antihermitian parts

K =
1

2
(K −K†)︸ ︷︷ ︸

iH

+
1

2
(K +K†)︸ ︷︷ ︸
1
2
φ†(I)+B

, (1.6)

hereby defining a self-adjoint operator H ∈ B (H ) and a positive operator B ∈ B (H ),
known as the optical potential. The introduction of B is motivated by the trace non-
increasing property of T . From

Tr T (ρ) = Tr {IT (ρ)} = Tr{T †(I)ρ} ≤ Tr {Iρ} = Tr ρ, (1.7)

for all states ρ ∈ B (H ), it follows

T †(I) ≤ I, (1.8)

which translates to the generator L† of T † as

L†(I) = φ†(I)−K† −K ≤ 0. (1.9)

Rewriting φ†(I) =
∑

j L
†
jLj using the Kraus operators, it can be seen that B is well defined

and (not necessarily strictly) positive. Put together we arrive at the final expression of the
generator of a continuous QMDS
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L(ρ) = −i[H, ρ] +
∑
j

LjρL
†
j −

1

2

{
L†jLj , ρ

}
−Bρ− ρB†. (1.10)

Here the operator H can be identified with the hamiltonian. Indeed, in the case of
Lj = B = 0 equations (1.10) and (1.5) reduce to dρ

dt = −i[H, ρ], standard expression for
the unitary evolution of a closed system.
It is worth mentioning that an arbitrary choice of a self-adjoint operator H, positive oper-
ator B and operators {Lj} satisfying

∑
j L
†
jLj ≤ I gives a valid generator L leading to a

CP trace non-increasing map Tt at any time t and as such describes a physically admissible
evolution of an open system.

The relation (1.10) simplifies in case of trace-preserving QMDS. The condition (1.8) reduces
to the adjoint map being unital, T †(I) = I, which in turn directly implies 0 = L†(I) =
φ†(I)−K† −K as a special case of (1.9). Subsequently B = 0. The resulting equation is
known as the Lindblad equation and reads

L(ρ) = −i[H, ρ] +
∑
j

LjρL
†
j −

1

2

{
L†jLj , ρ

}
. (1.11)

In this context, Kraus operators {Lj} are usually reffered to as Lindblad operators. In the
following chapters we only deal with trace-preserving quantum operations.

Note: So far we have only been working with time-evolving states in Schrödinger pic-
ture; the evolution of observables in Heisenberg picture can be described in a similar way
[23], [24], [25]. Namely it is given by the semigroup T † of adjoint maps T †t , referred to as
the adjoint semigroup, in the case of trace-preserving QMDS with a generator L† of the
form

L†(A) = i[H,A] +
∑
j

L†jALj −
1

2

{
L†jLj , A

}
, (1.12)

for an observable A ∈ B (H ).

1.4 Attractor space and asymptotic dynamics

The dynamics of an open system is typically highly involved and thus complicated to ana-
lyze compared to that of a closed system as the non-unitary generator of the evolution may
generally not be diagonalizable. However, should we only be concerned with the asymp-
totic dynamics of the system, there is an algebraic method for an anylytical treatment
developed in [27], [28] at hand. For details the reader is advised to study the original
papers, for the purpose of this work we only state the important related results.

The asymptotic spectrum σas(L) of a generator L of a continuous QMDS (1.3) is the set
of all purely imaginary points of its spectrum σ(L) and eventually zero, i.e.

σas(L) = {λ ∈ σ(L),Reλ = 0}. (1.13)
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The attractor space Att(T ) of a QMDS T = exp(Lt) is the subspace spanned by the
eigenvectors of its generator corresponding to purely imaginary eigenvalues,

Att(T ) =
⊕

λ∈σas(L)

Ker(L − λI). (1.14)

We commonly refer to an element X ∈ Att(T ) as attractor. An eigenvector Xλ of L asso-
ciated with eigenvalue λ is also an eigenvector of Tt = exp(Lt) associated with eigenvalue
exp(λt). It holds |exp(λt)| = 1, ∀λ ∈ σas,∀t ∈ R+

0 . It has been shown in [27] that it
is always possible to diagonalize the part of generator L responsible for the asymptotic
dynamics of quantum Markov process and therefore we can decompose (as a direct sum)
the Hilbert space B (H ), which represents a superset of the set of all possible states, into
two subspaces Att(T ) and Y . The former accounts for the asymptotic dynamics and the
latter represents the part dying out during the evolution, i. e.

B (H ) = Att(T )⊕ Y. (1.15)

Assume {Xλ,i} to be a basis of the attractor space Att(T ), {Xk} to be a basis of B (H )

containing {Xλ,i} and {Xk} to be the basis of B∗(H ) dual to {Xk}, i.e. Tr
{
X†kX

k′
}

=

δkk′ . Denoting Xλ,i the elements of {Xk} which constitute the dual basis to {Xλ,i},
Tr
{
X†λ,iX

λ′,j
}

= δλλ′δij , we can express the asymptotic dynamics of an initial state ρ(0)
as

ρas(t) =
∑

λ∈σas(L),i

exp(λt) Tr

{(
Xλ,i

)†
ρ(0)

}
Xλ,i (1.16)

and it holds

lim
t→∞
‖ρ(t)− ρas(t)‖ = 0. (1.17)

In general the construction of a suitable basis and its dual remains a challenging task.
The subspaces Ker(L − λI), λ ∈ σas(L), corresponding to different eigenvalues need not
be orthogonal, nor is the attractor space Att(T ) necessarily orthogonal to the comple-
mentary subspace Y of vanishing states. Compared to the unitary evolution of a closed
system, the existence of a simple relation between eigenvectors of the evolution map and
its generator and those of their adjoint maps is not guaranteed. Provided the presence
of a state preserved under evolution, a so-called faithful T -state defined below, ones can
easily be constructed from the others. If on the other hand no such state is found, there
is no generally applicable approach to the problem. It is therefore complicated to link the
asymptotic evolution of states and observables. For the purpose of this work, however, we
only need to work in the Schrödinger picture.

To state the final structure theorem revealing a possible way of how to find the attractor
space of a given continuous QMDS one more definition is needed.

Definiton 1.4.1. A state σ satisfying σ > 0 is called a faithful T -state if

Tt(σ) ≤ σ, ∀t > 0. (1.18)
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For a semigroup of trace-preserving superoperators of the form (1.3) the condition reduces
to Tt(σ) = σ, or L(σ) = 0 respectively.
Finally, due to [28] the following holds.

Theorem 1.4.2. Let Tt : B (H )→ B (H ) be a QMDS with generator L of the form (1.10)
equipped with a faithful T -state σ and let X ∈ B (H ) be an attractor of Tt in Schrödinger
picture associated with eigenvalue λ. Then the following set of equations holds[

Lj , Xσ
−1
]

=
[
Lj , σ

−1X
]

=
[
L†j , Xσ

−1
]

=
[
L†j , σ

−1X
]

= 0, (1.19)[
B,Xσ−1

]
=
[
B, σ−1X

]
= 0, (1.20)[

H,σ−1X
]

= iλσ−1X,
[
H,Xσ−1

]
= iλXσ−1. (1.21)

If Tt is either trace-preserving or the faithful T -state σ is stationary the reverse statement
applies.

The theorem 1.4.2 reveals how the internal structure of the generator L determines the
asymptotic spectrum and the corresponding attractor space of a given QMDS. It plays a
pivotal role in our work.

1.5 Special case of normal Lindblad operators

In further application we use a simplifying assumption that all the Lindblad operators Lj in
(1.11) are normal operators. The idea behind is that we want the identity, proportional to
the maximally mixed state, to be preserved under evolution. The identity clearly satisfies
I > 0 and as such is the faithful T -state in the case T (I) = I. The existence of a faithful
state is essential for our work. It is a necessary condition for the structure theorem 1.4.2 to
hold and thus something our approach to the topic is reliant on. Additionaly, it provides us
with the ability to construct a dual basis to that of the attractor space, enabling us to make
use of the expression for asymptotic evolution of states (1.16) or describe the evolution of
observables in the Heisenberg picture if desired. The identity operator is merely the most
convenient choice in regard to the persuit of simplicity1, while also being quite a natural
choice. The assumption is for an open system dynamics to preserve the maximally mixed
state which could be reasonably expected from a great variety of systems.
In the absence of a faithful T -state the analysis of asymptotic dynamics becomes notice-
ably more involved. A more general approach to the construction of attractors, not relying
on the existence of a faithful state, is presented in [29]. However, it is considerably com-
plicated and to the best of author’s knowledge it has not been successfully applied to any
problem of this scope yet.

Written in terms of the generator the requirement to preserve identity reads
1Technically, we could assume only that there exists a faithful T -state without further specification,

dropping the assumption of it being proprotional to identity. The theory would still apply the same,
however, later in the work we would have to deal with significantly more intricate sets of commutation
relations which would need to be solved not only for the Lindblad operators Lj or attractors X respectively,
but also for the faithful T -state σ concurrently. If we were to do so, we would mostly be unable to obtain
general solutions, introducing unnecessary complexity to our method without obtaining any new results.
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L(I) =
∑
j

LjL
†
j − L

†
jLj = 0, (1.22)

which is satisfied for an arbitrary number and combination of Lindblad operators, in par-
ticular for a single Lindblad operator, if and only if

[
Lj , L

†
j

]
= 0, i. e. if the operators Lj

are normal.

In this particular case, the choice of a suitable basis and construction of its dual becomes a
significantly simpler task. The eigenspaces Ker(L− λI), λ ∈ σas(L), forming the attractor
space Att(T ) are mutually orthogonal and the same holds for Att(T ) and Y , see [27], [28].

Ker(L − λiI) ⊥ Ker(L − λjI) for λi, λj ∈ σas(L), λi 6= λj , (1.23)

Att(T ) ⊥ Y. (1.24)

Furthermore, the theorem 1.4.2 reduces to

Theorem 1.5.1. Let Tt : B (H )→ B (H ) be a trace-preserving QMDS with generator L
of the form (1.11) where all Lindblad operators {Lj} are normal. An element X ∈ B (H )
is an attractor of Tt associated with eigenvalue λ if and only if it holds

[Lj , X] =
[
L†j , X

]
= 0, (1.25)

[H,X] = iλX. (1.26)

This theorem will be employed as a key tool to analyze attractors of QMDS and to design
desired synchronization mechanisms.



Chapter 2

Synchronization and phase-locking

Before we start to investigate synchronization of particular quantum system we should first
explain and clearly define what we mean by saying a quantum system is synchronized. In
this chapter we first present our viewpoint of synchronization and definitions suitable for
our work, an itroduction of the most common synchronization measures follows. Phase-
locking is introduced as a straightforward generalization of synchronization.

2.1 Synchronisation and phase-locking

The notion of synchronization is used in various contexts. Therefore, before we move to the
actual definitions of synchronization for the purpose of this work, we should motivate them
briefly by discussing in layman’s terms what it is we want to be synchronous and how to
choose a suitable criterion, as the choice needs to be done accordingly to the investigated
system. Let us begin with comparing the two main situations, namely the synchronization
of frequencies and the synchronization of phases. Regarding the former, imagine a case of
two detuned oscillators operating at two distinct frequencies. The intuitive understanding
of their synchronization is an evolution towards oscillations at a single common frequency,
possibly with a resulting constant phase shift bethween the two oscillators. However, this
understanding brings at least two difficulties. First, the resulting common frequency will
likely be set by and dependent on the outer synchronization mechanism. Second, once this
mechanism is turned off the inner dynamics of the oscillators will tend to desynchronize
their frequencies again. On the other hand, in the case of two identical pendulum clocks
which from the very beginning oscillate with the same frequency, the natural is synchro-
nization of their phases. When synchronized, they should move with an a priori determined
phase difference, typically in-phase or anti-phase, irrespective of the initial shift.
The idea behind this works originates from the Huygens’ clock experiment. As a result
we are interested in the case of two or more identical systems, each with their own inner
dynamics, which is the same for all of them. An example of such a system is a qubit
network. In the beginning, local phases of the subsystems are random or unknown. The
target is to achieve a predetermined known relation between them, in our case the synchro-
nization of phases. This is an analogue to the phase synchronization of classical clocks.
With identical inner dynamics, the systems will continue to evolve synchronously after
the synchronization process even if the coupling and mutual interactions are interrupted,

16



CHAPTER 2. SYNCHRONIZATION AND PHASE-LOCKING 17

resembling clocks taken apart. Such a synchronization mechanism will also necessarily
need to be in accordance with the inner dynamics of the systems. Furthermore, we are
primarily concerned with mechanisms that apply universally, independently of the given
initial state. In other words, we are interested in a spontaneous phase synchronization.
The reason for the last requirement is not unjustified. There is a key difference between
the classical and quantum world to consider when it comes to synchronization. The state
of a quantum system cannot be measured or otherwise determined without affecting it.
The synchronization process should therefore not need to be adjusted to the state of the
system since there are generally no means of extracting any information from it. Thus, a
generaly applicable mechanism is desirable.
Now that we have established to examine spontaneous phase synchronization, we want to
go more into datail about when two quantum systems are synchronized. That is not what
it is to synchronize about the systems, but when the synchronization of that particular
aspect occurs. Let us emphasize that quantum synchronization does not refer to any newly
discovered phenomenon of quantum nature, unwitnessed in the classisal domain. It refers
to the synchronization of quantum systems in the classical understanding, in any of but not
limited to the meanings suggested so far. Various concepts and measures of synchronization
applicable in the quantum realm appear in the current literature, see [3], [4], [5] for a brief
overview. In the classical domain, the notion and measures of synchronization are typically
built upon comparing systems trajectories in the phase space. In quantum systems, there
are two different main approaches to consider. The first one is to look at the dynamics of
local observables and their expectation values, the second is to directly compare the local
density matrices or other representations of the quantum states. We choose the second
approach based on the states themselves rather than observables, but will briefly comment
on both to explain ourselves.
Last but not least, for the most part we are interested in the asymptotic dynamics and
not in any transient effects. Consequently, we can make use of a more restrictive absolute
understanding of synchronization rather than using a synchronization measure that would
describe and quantify the process leading to a synchronized evolution. Hence our choice
of setup and following definitions.

2.1.1 Synchronization of states

Assume a single quantum system with an associated Hilbert space H . An n-component
composite system of identical subsystems, copies of our original quantum system, is then
associated with Hilbert space H ⊗n = H1 ⊗ · · · ⊗Hn, Hi = H , ∀i ∈ {1, . . . , n}. Let this
composite system be in a state ρ ∈ B(H ⊗n) and let us denote ρk the reduced state of the
kth component, obtained as a partial trace over all the remaining n-1 subsystems,

ρk = Tr⊗j 6=kHj
ρ. (2.1)

We then define synchronization and phase-locking as follows.

Definiton 2.1.1. Assume an n-component composite system in a state ρ(t) ∈ B(H ⊗n)
at time t. We say that the n individual systems in the reduced states ρ1(t), . . . , ρn(t) are
synchronized if for any pair of reduced states ρj(t) and ρk(t) there exists a stationary state
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ρcjk ,
∂ρcjk
∂t = 0, such that

ρj(t)− ρk(t) = ρcjk , ∀t. (2.2)

They achieve an asymptotic synchronization if they become synchronized in the limit
t→∞, that is if any ρj(t), ρk(t) evolve such that

lim
t→∞

∥∥ρj(t)− ρk(t)− ρcjk∥∥ = 0, (2.3)

We call a global state ρ(t) with all reduces states ρj synchronized a synchronized state, and
say that it achieves an asymptotic synchronization if all its subsystems do. We say that the
quantum dynamical semigroup T and its generating Lindblad operators {Lj} synchronize,
enforce synchronization or lead to synchronization if the asymptotic state limt→∞ ρ(t) of
the evolution is synchronized for an arbitrary initial state ρ(0). We call the operation T
itself and its generating operators synchronizing or synchronization-enforcing.

According to this definition, the subsystems are synchronized if their non-stationary parts
undergo the same evolution. We allow for a constant difference between the synchronized
states, imposing constraints only on the dynamical part. To be able to distinguish we
introduce a more restrictive second definition.

Definiton 2.1.2. We speak of complete synchronization if the reduced states ρ1(t), . . . , ρn(t)
of all subsystems in question are the same, i.e.

ρj(t)− ρk(t) = 0, ∀j, k, t, (2.4)

or respectively of asymptotic complete synchronization if

lim
t→∞
‖ρj(t)− ρk(t)‖ = 0, ∀j, k. (2.5)

The rest of the terminology is defined as in the case of synchronization in definition 2.1.1.

In comparison with synchronization, the definition of complete synchronization addition-
ally requires that all subsystems oscillate or otherwise evolve around the same stationary
state.

Note: To satisfy our definition of synchronization 2.1.1 or that of complete synchronization
2.1.2 the quantum subsystems need not be evolving in time in general. For example, the
reduced states of a maximally mixed state (proportional to the identity operator) cleary
satisfy (2.4) and simultaneously the state of the entire system is stationary in the studied
dynamics (1.5),(1.10). In this work, however, we focus on systems with non-trivial asymp-
totic evolution, i.e. on situations when the synchronization mechanism does not kill the
inner dynamics.

Assuming only two subsystems we label them with letters A and B and, again denoting
ρ(t) ∈ B(H ⊗2) the global state of the composite system, write the condition of complete
synchronization as
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TrA ρ(t) = TrB ρ(t). (2.6)

Another important concept is antisynchronization, a process where subsystems reach mu-
tually opposite phases. Both synchronization and antisynchronization are special cases of
a so-called phase-locking which stands for a process of establishing a given constant phase
shift. As this does not make sense for an arbitrary subset of subsystems and cannot be
achieved for an arbitrary pair of subsystems in general, we introduce the definition ex-
clusively for systems consisting of two subsystems. Analogously to the previous, we shall
distinguish two situations. The first one characterized by the the systems’ dynamical parts
being the same and evolving with a constant phase difference, the second one additionally
by the systems’ stationary parts coinciding.

Definiton 2.1.3. Let A and B be two subsystems of a two-component system. At any
time t the two systems A and B are in reduced states TrB ρ(t) = ρA(t) and TrA ρ(t) = ρB(t)
of a global state ρ(t). We denote the stationary part of the state of system X ∈ {A,B} as
ρX,st and the dynamical (time-evolving) part as ρX,dyn,

ρA(t) = ρA,st + ρA,dyn(t), (2.7)

ρB(t) = ρB,st + ρB,dyn(t), (2.8)

∂ρA,st
∂t

=
∂ρB,st
∂t

= 0. (2.9)

We say that the subsystems A and B, in this order, are phase-locked with a phase shift
ϕ ∈ [0, 2π) if their dynamical parts satisfy

ρA,dyn(t) = eiϕρB,dyn(t), (2.10)

i.e. if the dynamical parts of the subsystems differ only by a phase factor eiϕ. Asymptotic
phase-locking is achieved if

lim
t→∞

∥∥ρA,dyn(t)− eiϕρB,dyn(t)
∥∥ = 0. (2.11)

Phase-locking is a straightforward generalization of phase synchronization. Therefore, as
an equivalent to the expression phase-locking we hereby introduce and hereafter parallelly
use the term generalized synchronization.

We speak of phase-locking with a phase shift ϕ ∈ [0, 2π) and simultaneous synchronization
of the stationary parts, if in addition to (2.10) it holds

ρA,st = ρB,st. (2.12)

We aternatively call such situation a generalized complete synchronization. The remaining
terminology is defined in a similar fashion.
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Note: i) For a trivial phase shift ϕ = 0 phase-locking reduces to synchronization, hence
the term generalized synchronization.1

ii) In the case of a phase shift ϕ = π we commonly speak of (complete) antisynchronization.
iii) For all but these two cases, synchronization and antisynchronization, the order of the
two subsystems A and B does matter.

The concept of phase-locking naturally extends to more than just two subsystems. There
are, however, some limitations as the structure of the system as a whole needs to be taken
into account. More on the topic in chapter 4.

2.1.2 Synchronization of observables

A different approach is to characterize and define synchronization and phase-locking purely
via the observables of the systems. The dynamics of two or more subsystems are charac-
terized by the expectation values of chosen local observables and their time evolutions are
compared by a classical criterion. The advantage is that this provides not only a defini-
tion of synchronization, but also a measure thereof. It is also well suited for the study of
imperfect transient synchronization and for the study of synchronization of nonidentical
subsystems.
On the other hand, the drawback of such an approach is that it only takes some of the
observables into account, typically just a single one. This way it only makes use of partial
information about the systems in question. Synchronization of one observable does not
imply synchronization of other ones, nor does it guarantee that the systems are not in
substantially different states.

The two concepts are, nonetheless, intertwined. Assume an n-component composite system
of identical subsystems in a state ρ ∈ B(H ⊗n). Synchronization with respect to a local
observable A ∈ B (H ) can be understood as a situation when the expectation value of A
is the same on all of the individual subsystems

Tr (Aρ1) = · · · = Tr (Aρn) , (2.13)

or if we denote A(l) = I⊗(l−1) ⊗ A ⊗ I⊗(n−l) the local operator corresponding to the lth

component 〈
A(1)

〉
= · · · =

〈
A(n)

〉
. (2.14)

It is straightforward to show that complete synchronization in the sense of definition 2.1.2
implies synchronization of any local observable A ∈ B (H ). The converse is not true,
unless we extend the requirement on all possible observables A ∈ B (H ) simultaneously.
Formally, if a system in a state ρ ∈ B(H ⊗n) has equal expectation values Tr

(
A(i)ρ

)
on all

its components i for all observables A ∈ B (H ), then the reduced states ρi of individual
component subsystems are the same. This follows immediatly from the fact that the trace
is a scalar product on B (H ).

1Another connection will be revealed in chapter 3 where it is shown that the (two-qubit) synchronization
and the (two-qubit) phase-locking mechanisms with a given phase shift ϕ are in fact in a one-to-one
correspondence and can smoothly be deformed ones into the others.
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Therefore, when not restricting ourselves to some small subset of predetermined observables
we actually require synchronization of states when requiring synchronization of observables,
and vice versa.

By introducing a delay linked to the intrinsic frequency of the subsystems between the
time-evolving expectation values of an appropriately chosen local observable the concept
of synchronization naturally extends to phase-locking.

2.2 Synchronization measures

Synchronization measures provide a way of quantifying synchronization and describing
the efficiency of a synchronization process. They can also account for possible errors in
synchronization of the established states. Typically, one observable is chosen and a suitable
criterion is applied to its expectation values on the subsystems.
Such a criterion is the Pearson’s correlation coefficient defined for two real-valued time-
dependent functions f, g via

Cf,g(t,∆t) =
(f − f̄)(g − ḡ)√
(f − f̄)2(g − ḡ)2

, (2.15)

where t ∈ R is used to denote time and f̄ = 1
∆t

∫ t+∆t
t f(t′)dt′ is the mean value of f over a

time window (t, t+ ∆t), similarly for g, [4], [2]. The coefficient ranges from −1 to 1 with
1 corresponding to synchronization of f and g and −1 to antisynchronization of the two,
irrespective of a possible constant difference between them. Incorporating a phase shift
into the definitions of f, g one can easily modify the criterion to quantify the degree to
which a desired phase-locking is achieved.
The criterion is commonly used in the current literature and it was successfully applied
for example to position and momentum operator expectation values for two dissipating
oscillators [14], in oscillator networks [13] or to spin operators in various spin systems [15],
atomic lattices [16] or collision models [18].
Pearson’s correlation coefficient is our synchronization measure of choice employed in the
numerical simulations later in this work.

Another useful criterion is the so called synchronization error typically used for the study
of chaotic systems [4]. It is defined for two systems as

Sc(t) =
〈
(q2
−(t) + p2

−(t)
〉−1

, (2.16)

where q− = 1√
2
(q1−q2) is the difference in position, the same for momentum p, trajectiories

in the classical case and operators in the quantum realm. This measure is bounded in the
quantum domain by the uncertainity relations. It was employed for example in [3] to
quantify synchronization of a pair of coupled optomechanical oscillators.



Chapter 3

Two-qubit system

In this chapter we examine in detail a system of two identical two-level subsystems, a
system of two identical qubits, with the evolution of its state ρ described by a quantum
Markov dynamical semigroup whereof the generator takes the form (1.11) and all Lindblad
operators {Lj} are normal. In particular, we investigate all possible mechanisms of gen-
eralized synchronization realized by a QMDS with just a single normal Lindblad operator
L1 ≡ L, i.e.

L(ρ) = −i[H, ρ] + LρL† − 1

2

{
L†L, ρ

}
. (3.1)

This assumption will be dropped later. Once we have a complete solution to the problem
of synchronization mechanisms with a single Lindblad operator, the generalization to an
arbitrary number of normal Lindblad operators is straightforward.
Our motivation for the choice involves several aspects. Firstly, despite the fact that two
qubits constitute the simplest composite quantum system possible, two-qubit synchroniza-
tion mechanisms are not well understood yet. Previous works on the subject are mostly
restricted to both particular systems and specific mechanisms. Secondly, QMDS with nor-
mal Lindblad operators are significant because of a known faithful state, see chapter 1,
section 1.5, and constitute a sufficiently broad family of quantum Markov processes for our
work to be fitruitful. Thirdly, we are eventually concerned with synchronization mechanism
capable of synchronizing a set of qubits connected in a qubit network. Such mechanisms
should be aplicable to a network of an arbitrary size, hence also to the smallest one possible
consisting of only two parties. Additionally, we hope that our analysis will contribute to
the understanding of how an interplay between internal dynamics of quantum subsystems
and their mediated mutual interaction result in synchronization. One of our aims is to
uncover the mathematical structure of such synchronization mechanisms. In order to ac-
complish that we must keep the setup as simple as possible.

Let H0 be the Hilbert space corresponding to a single qubit and

H0 =

(
E0 0
0 E1

)
, (3.2)

E0, E0 ∈ R, be the Hamiltonian in the basis of its eigenvectors |0〉 and |1〉. For a closed
system of a single free qubit the evolution of an initial state |ψ〉 ∈H0,
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|ψ〉 = a |0〉+ b |1〉 , (3.3)

a, b ∈ C, is generated by the Hamiltonian H0 and given by

|ψ(t)〉 = e−iE1t
(
e−i(E0−E1)ta |0〉+ b |1〉

)
. (3.4)

The factor e−iE1t represents an overall phase prefactor and it is irrelevant as far as the
qubit alone is concerned. The intrinsic frequency of the system dynamics is ω = E0 −E1,
given as the difference of eigenvalues. Indeed, the prefactor e−iE1t vanishes when expressed
in the formalism of density matrices,

ρ(t) = |ψ(t)〉〈ψ(t)| =

(
|a|2 e−i(E0−E1)t ab̄

ei(E0−E1)t āb |b|2

)
, (3.5)

revealing the frequency of the inner dynamics.

A system of two qubits is associated with the Hilbert space H = H0⊗H0 and Hamiltonian
H = HA +HB ≡ H1 ⊗ I + I ⊗H1. Let B = (|00〉 , |01〉 , |10〉 , |11〉) be a basis of H , using
the standard notation |ij〉 = |i〉 ⊗ |j〉. In this basis the Hamiltonian H reads

H =


2E0 0 0 0

0 E0 + E1 0 0
0 0 E0 + E1 0
0 0 0 2E1

 . (3.6)

We stick to B as our standard computational basis throughout the entire chapter.

3.1 Two-qubit synchronization and phase-locking

The goal is to find all possible two-qubit couplings that can be represented by a single
normal operator L in the Lindblad equation (3.1) such that the time evolution described
by the corresponding QMDS leads to synchronization, respectively phase-locking of the
two qubits.
Let us begin with a seemingly reverse problem, a description of the attractor space of a
given QMDS and discussion of its role in synchronization of states. For this purpose we
apply theorem 1.5.1. To find all elements of the attractor space the commutation relations
(1.26) can be used to separate the space B (H ), superset of the space of all states, into
five subspaces Xiλ based on the corresponding associated eigenvalue λ,

X0 = span{|00〉〈00| , |01〉〈01| , |01〉〈10| , |10〉〈01| , |10〉〈10| |11〉〈11|}, (3.7)

X2E0−2E1 = span{|00〉〈11|}, (3.8)

X2E1−2E0 = span{|11〉〈00|}, (3.9)

XE0−E1 = span{|00〉〈01| , |00〉〈10| , |01〉〈11| , |10〉〈11|}, (3.10)

XE1−E0 = span{|01〉〈00| |10〉〈00| , |11〉〈01| , |11〉〈10|}. (3.11)
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The first one, X0, corresponds to the stationary part of a possible asymptotic state that
does not evolve in time and as such automatically satisfies our condition of synchronization
(2.2). It is irrelevant for the synchronization of the dynamical part, however, it plays an
important role in the question of complete synchronization discusssed in the next section.

The following two subspaces, namely X2E0−2E1 and X2E1−2E0 , are trivial from the point of
view of synchronization in the sense that any vectors X1 ∈ X2E0−2E1 and X2 ∈ X2E1−2E0

satisfy TrAX1 = TrBX1 = 0 and TrAX2 = TrBX2 = 0 respectively. As such they do not
affect the reduced single-qubit states but contribute only to the asymptotic evolution of
the composite system.

Finally, the last two subspaces XE1−E0 and XE0−E1 correspond to the non-trivial evolution
of the reduced one-qubit states. The two subspaces are connected by the operation of
complex conjugation. Consequently, solving the commutation relations (1.25) and (1.26)
for one of the subspaces provides the solution for the other one.
Indeed, X is an eigenvector of a linear map φ with eigenvalue λ iff X† is an eigenvector of
φ with eigenvalue λ̄,

φ(X) = λX ⇐⇒ φ(X†) = λ̄X†. (3.12)

It holds in general, and in this particular case it can also be seen from the fact that for the
commutation relations it holds

[X,L] =
[
X,L†

]
= 0 ⇐⇒

[
X†, L

]
=
[
X†, L†

]
= 0, (3.13)

[H,X] = iλX ⇐⇒
[
H,X†

]
= iλ̄X†, (3.14)

for any matrices X,L, H, where H is self-adjoint, λ ∈ C, and for which the expressions
make sense.

Thus, we restrict ourselves to work only with the space XE0−E1 and choose to parameterize
an element X ∈ XE0−E1 as

X = α |00〉〈01|+ β |00〉〈10|+ γ |01〉〈11|+ δ |10〉〈11| , (3.15)

or written in the matrix form

X =


0 α β 0
0 0 0 γ
0 0 0 δ
0 0 0 0

 , (3.16)

where α, β, γ, δ ∈ C. Due to the restriction on XE0−E1 the partial trace condition (2.2) of
synchronization reduces to simple

TrAX = TrBX, (3.17)

which in the chosen parameterization translates to
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α+ δ = β + γ. (3.18)

Strictly speaking, in definition 2.1.1 we defined synchronization via the condition (2.2) only
for states, not arbitrary elements of an attractor space. However, our definition extends
naturally. Since the asymptotic evolution is given by (1.16), any state evolving in the
asymptotics can be written as a sum of projections of an initial state onto the elements
of the attractor space, each of the projections evolving with its own frequency determined
by the corresponding eigenvalue. Hence, the condition of synchronization applied to a
general asymptotic state immediately yields the same condition for attractors from the
individual subspaces. The asymptotic state will be synchronized, irrespective of the initial
state, if and only if the attractor space is formed by attractors satisfying the condition of
synchronization on each of the subspaces. And it follows from the discussion above that
this requirement is non-trivial only for the subspace XE0−E1 , or XE1−E0 respectively.

In light of theorem 1.5.1, elements of the attractor space of a given QMDS are determined
by the commutation relations (1.25), which in the case of a generator (3.1) read

[L,X] =
[
L†, X

]
= 0. (3.19)

Therefore, our goal is to find all possible normal operators L such that the solution to the
commutation relations (3.19) for X ∈ XE0−E1 is non-trivial and satisfies the condition of
synchronization (3.17).

To achieve that we will go through all such possible solutions X and find the Lindblad
operators L that permit them, in order to subsequently pick out the ones that permit
exclusively such solutions and no other. We will work in the parameterization given by
(3.15) and discuss separatelly all possible attractors X ∈ XE1−E2 satisfying the synchro-
nization condition (3.18), sorted by the number of non-zero coefficients (denoted α, β, γ, δ)
in the parametrization. The commutation relations (3.19) will give us a set of operators
L for each possible attractor X and from these sets we will extract those operators that
not only commute with the synchronized attractor X, but also enforce the synchronization
condition on the entire associated attractor space.
Since by our definition the synchronization condition is also necessary for the complete
synchronization, we will make use of the results in the next section where we further ex-
tract those operators L that even enforce the complete synchronization.

The same reasoning can be followed for phase-locking. In the above the definition of
synchronization 2.1.1 is replaced by that of phase-locking 2.1.3, effectively changing (3.17)
and (3.18) into

TrAX = eiϕ TrBX, (3.20)

and

α+ δ = eiϕ (β + γ) , (3.21)

where ϕ ∈ [0, 2π) denotes the phase shift. As both cases are closely related and can be
solved simultaneously, we will proceed with this generalized condition of synchronization
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(3.20), (3.21). Synchronization in the sense of definition 2.1.1 can be obtained at any point
simply by setting the phase shift ϕ = 0. This way we avoid repeating the same procedure
twice and additionaly reveal the connection between synchronizing and phase-locking maps.

Lastly, note that any two Lindblad operators that differ only by an overall phase factor lead
to the same evolution map due to the form of the generator (1.11), and any two Lindblad
operators proportional one to the other result in the same asymptotic dynamics due to it
being determined by the commutation relations (1.19). We will therefore sometimes omit
the possible prefactors in the expressions below for simplicity.
Now for the actual analysis of possible attractors of synchronizing and phase-locking
QMDS.

I. One non-zero coefficient:

This situation cannot occur as the generalized synchronization condition (3.21) requires at
least two non-zero coefficients for non-trivial solutions.

II. Two non-zero coefficients:

a) α = −δ 6= 0 ∧ β = γ = 0 or β = −γ 6= 0 ∧ α = δ = 0

This corresponds to stationary asymptotic reduced states of individual qubits. Indeed, it
can be seen from the parameterization (3.15) that both reduced operators of such attractor
X are trivial. Consequently, it can only contribute to the evolution of mutual correlations.

b) δ = β = 0 and α = eiϕγ 6= 0

The attractor X now reads

X =


0 α 0 0
0 0 0 e−iϕα
0 0 0 0
0 0 0 0

 ∝


0 eiϕ 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 (3.22)

Denoting lij the matrix elements of L we can explicitly evaluate the commutation relations
(3.19) in the form XL = LX and XL† = L†X, resulting straightforwardly into a set of
equations

lij = 0 for i 6= j, (3.23)

l11 = l22 = l44, (3.24)

giving L of the form

L =


1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 1

 , (3.25)

where a ∈ C and we factor out and drop an arbitrary complex prefactor.
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We have found our first candidate for a Lindblad operator generating a synchronizing,
respectively phase-locking QMDS, yet so far we have only shown that if the attractor X
is suppposed to have a certain form satisfying the generalized synchronization condition
(3.21) and the commutation relations (3.19) hold, then L has to have the form (3.25). How-
ever, for L to enforce synchronization or phase-locking, the existence of a synchronized or
phase-locked attractor X is only a necessary condition, not a sufficient one. There might
be other elements of the corresponding attractor space that do not satisfy the generalized
synchronization condition. To show that an operator L generates a synchronizing, respec-
tively phase-locking map, we need to prove the opposite relation, that is given an operator
L, here by equation (3.25), and a general attractor X ′ ∈ XE0−E1 satisfying commutation
relations [L,X ′] =

[
L†, X ′

]
= 0, then X ′ necessarily satisfies the generalized synchroniza-

tion condition TrAX
′ = eiϕ TrBX

′.

Given the diagonal form of L close to identity, it is no surprise that this converse state-
ment does not hold and that our candidate does not lead to a synchronizing, respectively
phase-locking map. It can be seen from the fact that L does not depend on the set phase
shift, hence it commutes with all attractors X of the form (3.22), irrespective of the value
of ϕ, and cannot enforce synchronization or a particular phase shift.

c) α = γ = 0 and δ = eiϕβ 6= 0

Analogously to the previous case we arrive at

lij = 0 for i 6= j, (3.26)

l11 = l33 = l44, (3.27)

giving L of the form

L =


1 0 0 0
0 b 0 0
0 0 1 0
0 0 0 1

 (3.28)

for b ∈ C, an arbitrary prefactor omitted.

Similarly to the previous case, this candidate for L does not lead to synchronization or
phase-locking.

d) δ = γ = 0 and α = eiϕβ 6= 0

The attractor X reads

X =


0 α e−iϕα 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∝


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.29)

Noticing that
X = α |00〉

(
〈01|+ e−iϕ 〈10|

)
, (3.30)
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we introduce a new orthonormal basis (e1, e2, e3, e4) where

e1 = |00〉 , (3.31)

e2 =
1√
2

(|01〉+ eiϕ |10〉), (3.32)

e3 =
1√
2

(|10〉 − e−iϕ |01〉), (3.33)

e4 = |11〉 , (3.34)

so that the transition matrix

T =


1 0 0 0

0 1√
2

−e−iϕ 1√
2

0

0 eiϕ 1√
2

1√
2

0

0 0 0 1

 (3.35)

is unitary and the attractor X in the new basis reads

X̃ =


0 α 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∝


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.36)

Using the fact that the commutation relations (3.19) are invariant with respect to the
change of basis we evaluate them directly to obtain L̃, the operator L in the new basis,
which can then be transformed back into the original computational basis as L = T L̃T †.
(3.19) implies

l̃11 = l̃22, (3.37)

l̃12 = l̃13 = l̃14 = l̃21 = l̃23 = l̃24 = l̃31 = l̃32 = l̃41 = l̃42 = 0, (3.38)

leaving the lower right 2x2 submatrix arbitrary. That gives

L̃ =

(
c I2×2 0

0 M

)
, (3.39)

where c ∈ C and M ∈ C2x2. It is possible to factor out a phase factor and choose c ∈ R
instead. The normality condition

[
L̃, L̃†

]
= 0, unaffected in form by the change of basis,

can be written in blocks implying that L is normal if and only if the submatrix M is
normal. We make use of the parameterization of a general 2x2 normal matrix (A.14),
whereof derivation is available in the appendix A.

M =

(
a b

ei2kb a+meik

)
= aI +

(
0 b

ei2kb meik

)
, (3.40)

where a, b ∈ C, k,m ∈ R. Put together, we arrive at a candidate for synchronising,
respectively phase-locking Lindblad operator L given by
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L =


1 0 0 0

0 1√
2
− e−iϕ√

2
0

0 eiϕ√
2

1√
2

0

0 0 0 1



c 0 0 0

0 c 0 0

0 0 a b

0 0 ei2k b̄ a+meik




1 0 0 0

0 1√
2

e−iϕ√
2

0

0 − eiϕ√
2

1√
2

0

0 0 0 1

 , (3.41)

where a, b ∈ C, c, k,m ∈ R and ϕ ∈ [0, 2π) is the desired phase shift.

To see if our candidate L leads to a synchronizing map, assume a general attractor X ′ ∈
XE0−E1 parameterized by α′, β′, γ′, δ′ ∈ C as follows

X ′ = α′ |00〉〈01|+ β′ |00〉〈10|+ γ′ |01〉〈11|+ δ′ |10〉〈11| . (3.42)

In our new basis it can be expressed as X̃ ′ = T †X ′T , resulting in

X̃ ′ =
1√
2


0 α′ + eiϕβ′ β′ − e−iϕα′ 0

0 0 0 γ′ + e−iϕδ′

0 0 0 δ′ − eiϕγ′

0 0 0 0

 . (3.43)

As X̃ ′ is assumed to be an attractor,
[
L̃, X̃ ′

]
=
[
L̃†, X̃ ′

]
= 0 holds. Written explicitly in

the chosen parameterization and comparing matrix elements, this yields the following set
of equations

(c− a)(β′ − e−iϕα′) = 0, (3.44)

b(β′ − e−iϕα′) = 0, (3.45)

ei2k b̄(γ′ + e−iϕδ′) = 0, (3.46)

[c− (a+meik)](γ′ + e−iϕδ′) = 0, (3.47)

ei2k b̄(δ′ − eiϕγ′) = 0, (3.48)

meik(δ′ − eiϕγ′) = 0. (3.49)
(3.50)

The first two constitute constraints on α′ and β′. It follows from (3.44) and (3.45) that
both b 6= 0 and c 6= a implies α′ = eiϕβ′. And since the parameters α′, β′ do not appear in
the remaining equations, the requirement

b 6= 0 ∨ a 6= c (3.51)

is necessary for L to be synchronizing in the generalized sense. However, of the two
conditions in (3.51), only the former is also sufficient. Indeed, for b 6= 0 it follows from
(3.46) and (3.48) that γ′ = δ′ = 0. It is enough to multiply (3.46) by a factor eiϕ and sum,
respectively substract the two. Consequently, the generalized synchronization condition
(3.21) holds.
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On the other hand, for b = 0 the equations (3.46) and (3.48) vanish and the parameters
γ′, δ′ are constrained solely by (3.47) and (3.49). In the case of m = 0, (3.49) is trivial and
(3.47) implies δ′ = −eiϕγ′, contradicting the generalized synchronization condition. Thus,
m 6= 0 is needed, in which case the equation (3.49) yields δ′ = eiϕγ′. Depending on the
value of c − a −meik, (3.47) may additionaly compel γ′ = δ′ = 0. In either case, the re-
quirement m 6= 0 together with a 6= c is sufficient to enforce synchronization, respectivelly
phase-locking.

To sum up, an operator L given by (3.41) is synchronizing in the generalized sense if and
only if at least one of the conditions

b 6= 0, (3.52)

a 6= c ∧ m 6= 0, (3.53)

is satisfied. Note that excluded from (3.41) are only operators which are diagonal in the
new basis and such that L̃11 = L̃22, L̃33 = L̃44 or L̃11 = L̃22 = L̃33, an insignificant set of
measure zero.

We denote this first class of synchronization-, respectively phase-locking-enforcing Lindblad
operators L1, an operator in it L1 and write explicitly

L1 =


1 0 0 0

0 1√
2
− e−iϕ√

2
0

0 eiϕ√
2

1√
2

0

0 0 0 1



c 0 0 0

0 c 0 0

0 0 a b

0 0 ei2k b̄ a+meik




1 0 0 0

0 1√
2

e−iϕ√
2

0

0 − eiϕ√
2

1√
2

0

0 0 0 1

 , (3.54)

where a, b ∈ C, c, k,m ∈ R, b 6= 0 or (a 6= c ∧ m 6= 0) holds, and ϕ ∈ [0, 2π) is the achieved
phase shift.

e) α = β = 0 and δ = eiϕγ 6= 0

This case can be solved similarly to the previous one and also the result bears a close
resemblance to the above. Since the attractor can be written as

X = δ
(
e−iϕ |01〉+ |10〉

)
〈11| , (3.55)

we choose a new basis (e1, e2, e3, e4) accordingly

e1 = |00〉 , (3.56)

e2 =
1√
2

(
|01〉 − eiϕ |10〉

)
, (3.57)

e3 =
1√
2

(
e−iϕ |01〉+ |10〉

)
, (3.58)

e4 = |11〉 . (3.59)
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Again, the new basis is orthonormal and the transition matrix T is unitary. Following the
same steps as in the previous case we arrive at a class of synchronizing, respectively phase-
locking Lindblad operators, denoted L2 ∈ L2. The result in a familiar form L = T L̃T †

reads

L2 =


1 0 0 0

0 1√
2

e−iϕ√
2

0

0 − eiϕ√
2

1√
2

0

0 0 0 1




a b 0 0

ei2k b̄ a+meik 0 0

0 0 c 0

0 0 0 c




1 0 0 0

0 1√
2
− e−iϕ√

2
0

0 eiϕ√
2

1√
2

0

0 0 0 1

 , (3.60)

where a, b ∈ C, c, k,m ∈ R, b 6= 0 or (a+meik 6= c ∧ m 6= 0) holds, and ϕ ∈ [0, 2π) is the
achieved phase shift.

III. Three non-zero coefficients:

Remarkably, choosing any three of the coefficients non-zero and one equal to zero, the
commutation relations (3.19) directly lead to

lij = 0 for i 6= j, (3.61)

l11 = l22 = l33 = l44, (3.62)

so that the only operators L such that both L and L† commute with X are multiples of
identity,

L ∝ I. (3.63)

The explicit calculation is omitted here due to its length and simplicity. Since the identity
operator commutes with any other operator, the commutation relation [X ′, I] = 0 trivially
holds for any X ′ ∈ XE1−E2 and there are no constraints on X ′. This case provides us with
no synchronising operators L.

IV. Four non-zero coefficients:

The attractor X takes the form

X =


0 α β 0
0 0 0 γ
0 0 0 δ
0 0 0 0

 (3.64)

with α, β, γ, δ 6= 0, satisfying α + δ = eiϕ(β + γ). Looking for submatrices with nonzero
determinant in the upper right corner of X we see immediately that rankX = 2. Thus, to
simplify evaluation of the commutation relations we introduce a new basis (e1, e2, e3, e4)
such that e1, e2 ∈ KerX, spanning the two-dimensional kernel, and e3, e4 ∈ (e1, e2)⊥. Let

e1 = |11〉 , (3.65)
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e2 = β |12〉 − α |21〉 , (3.66)

e3 = ᾱ |12〉+ β̄ |21〉 , (3.67)

e4 = |22〉 , (3.68)

and without loss of generality the parameters α, β are supposed to satisfy a normalization
condition

|α|2 + |β|2 = 1. (3.69)

This only impacts rescalling of the attractor X and is thus irrelevant for the result. The
reason behind is that at the same time the normalization ensures that the new basis is
orthonormal, the transition matrix

T =


1 0 0 0
0 β ᾱ 0
0 −α β̄ 0
0 0 0 1

 (3.70)

is unitary and it holds Xe3 = e1, with no additional numerical prefactor, which further
simplifies the form of X in the new basis. For the remaining basis element e4 = |22〉,
which comes from the original computational basis in order not to unnecessarily make the
transition matrix T more complicated, we have Xe4 = γ |12〉 + δ |21〉. Clearly Xe4 ∈
span(e2, e3), a fact that can be used to define two new parameters s, r ∈ C via

Xe4 = se2 + re3, (3.71)

to take over the role of the parameters δ = −sα+ rβ̄ and γ = sβ + rᾱ. This reparameter-
ization merely helps structurize the disscusion below in simpler terms. The attractor X in
the new basis reads

X̃ =


0 0 1 0
0 0 0 s
0 0 0 r
0 0 0 0

 (3.72)

and the partial trace condition of generalized synchronisation (3.21) takes the form

(1− s)α+ rβ̄ = eiϕ [(1 + s)β + rᾱ] . (3.73)

This way we only need to examine the dependence on two parameters s and r while the
other two, α and β, keep their role of defining a unitary change of basis (3.70). Again, the
result will be of the form L = T L̃T †. In the folllowing we explore all possible situations
one can meet.

Rewriting both matrices X̃ and L̃ in a block form

X̃ =

(
0 S
0 R

)
, L̃ =

(
A B
C D

)
, (3.74)
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where

S =

(
1 0
0 s

)
, R =

(
0 r
0 0

)
, (3.75)

introducing 2x2 matrices A,B,C,D, S,R ∈ C2x2, the commutation relations (3.19) imply,
among other things, that

0 = SC = SB†, (3.76)

0 = RC = RB†. (3.77)

Hence, since at least one of the parameters r, s is nonzero it follows

B = C = 0, (3.78)

and the now block-diagonal form of L̃ further simplifies the commutaion relations into

SD = AS, (3.79)

RD = DR. (3.80)

The same constraints hold for A†, D† in place of A,D as well. Let us analyze the possible
cases for the parameters s and r.

a) s 6= 0

Comparing matrix elements in (3.79), denoting A = (aij), D = (dij), we obtain

a11 = d11, (3.81)

a22 = d22, (3.82)

d12 = sa12, (3.83)

d21 =
1

s
a21, (3.84)

and by doing the same for A†, D†, taking complex conjugation and comparing with the
above we arrive at

s̄ =
1

s
=⇒ |s| = 1. (3.85)

If furthermore r 6= 0, the relation (3.80) implies

d12 = d21 = 0 =⇒ a12 = a21 = 0, (3.86)

d11 = d22, (3.87)

and thus the only solutions for L̃ and consequently for L are multiplies of identity, which
cannot enforce any form of synchronization. Therefore, we set r = 0. Since the matrices
A and D are normal due to the block-diagonal shape of L̃ we parameterize A, and thus
also D, using (A.14).
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From the equations (3.73) and (3.85) it follows that

ᾱ

β̄
= −e−2iϕα

β
, (3.88)

respectively

β =
1− s
1 + s

e−iϕα, (3.89)

consequence of which is that regarding phase the difference between α and β can be ex-
pressed by a factor ±ie−iϕ. For the value of the parameter s the relation (3.73) implies

s =
α− eiϕβ
α+ eiϕβ

. (3.90)

Note that the seemingly problematic cases α = eiϕβ, implying s = 0, and α = −eiϕγ, for
which neither the equation (3.90) is defined nor the generalized synchronization condition
(3.73) is satisfied unless s = 0, are excluded as a consequence of (3.88). This reflects the
fact that setting s = r = 0 is equivalent to e4 ∈ KerX and δ = γ = 0, the situation
discussed in II.d).

Together with the normalization condition |α|2 + |β|2 = 1, (3.88) and (3.90) show that the
choice of the parameter α determines two pairs (β, s), the two possibilities stemming from
the two possible phase differences between α and γ. Importantly, they are non-equivalent
in the sense that they correspond each to a different attractor X and Lindblad operator
L.

There exist two families of distinct classes of operators L taking the form

L =


1 0 0 0
0 β ᾱ 0
0 −α β̄ 0
0 0 0 1




a b 0 0
ei2k b̄ a+meik 0 0

0 0 a sb
0 0 s̄ei2k b̄ a+meik




1 0 0 0
0 β̄ −ᾱ 0
0 α β 0
0 0 0 1

 , (3.91)

where a, b,∈ C, k,m ∈ R, α ∈ C, 0 < |α| < 1,

β = ±ie−iϕα

√
1− |α|2

|α|
, (3.92)

s =
1∓ i

√
1−|α|2
|α|

1± i
√

1−|α|2
|α|

, (3.93)

that commute each with the corresponding non-trivial attractor X of the form

X =


0 α β 0
0 0 0 sβ
0 0 0 −sα
0 0 0 0

 . (3.94)
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Not apparent at first sight, the parameter s runs around the entire unit circle except for
the points ±1, the upper circle corresponding to the upper one of the possible signs in
(3.92) and (3.93), the lower circle to the lower sign. Note also that s is independent of the
phase shift ϕ, the information about the achieved phase difference between the two qubits
is entirely encoded in the transition matrix T .

One can multiply the matrices in (3.91) to see that the phase of α can be included in the
parameter b, whether b 6= 0 or not, without affecting the attractor X, as can be seen e.
g. from the fact that the attractor X itself is proportional to the phase of α. We can
therefore choose α ∈ R, α ∈ (0, 1), removing a small redundancy in the description.

With α real we can further simplify the expressions (3.92), (3.93) for β and s by setting

α = cos t, (3.95)

t ∈
(
−π

2 , 0
)
∪
(
0, π2

)
. Then

β = ie−iϕ sin t, (3.96)

s = e2it, (3.97)

the two families of classes of Lindblad operators represented by the ± sign accounted for
by the two intervals for t.

In order to determine whether the operators L of the form (3.91) truly enforce synchro-
nization or phase-locking we once again parameterize X ′ ∈ XE0−E1 as in (3.42). In the
new basis X̃ ′ reads

X̃ ′ =


0 βα′ − αβ′ ᾱα′ + β̄β′ 0
0 0 0 β̄γ′ − ᾱδ′
0 0 0 αγ′ + βδ′

0 0 0 0

 . (3.98)

The commutation relations (3.19), which now take the form
[
L̃, X̃ ′

]
=
[
L̃†, X̃ ′

]
= 0, yield

the following set of equations

0 = ei2k b̄(βα′ − αβ′), (3.99)

0 = meik(βα′ − αβ′), (3.100)
b(β̄γ′ − ᾱδ′) = sb(ᾱα′ + β̄β′), (3.101)

ei2k b̄(ᾱα′ + β̄β′) = s̄ei2k b̄(β̄γ − ᾱδ′), (3.102)

0 = s̄ei2k b̄(αγ′ + βδ′), (3.103)

0 = meik(αγ′ + βδ′), (3.104)

and analogously for L̃†, resulting in the same set of constraints. Let us first assume the
case b 6= 0. It follows from (3.99) that
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β′ =
β

α
α′ (3.105)

and from (3.103) that

γ′ = −β
α
δ′. (3.106)

Inserting these results into either (3.101) or (3.47), multiplying by α and utilizing the
imposed normalization (3.69) yields

δ′ = −sα′. (3.107)

The fact that the generalized synchronization condition α′+δ′ = eiϕ(β′+γ′) holds follows,
using the relation (3.89),

eiϕ(β′ + γ′)
(3.105)(3.106)

= eiϕ
β

α

(
α′ − δ′

) (3.107)
= eiϕ

β

α
α′(1 + s)

(3.89)
= α′(1− s) (3.107)

= α′ + δ′
(3.108)

This shows that

b 6= 0 (3.109)

is a sufficient condition for L to be synchronising.

On the other hand, consider the case b = 0. The equations (3.99),(3.101),(3.102) and
(3.103) become trivial. If additionally m = 0, the conditions (3.100) and (3.104) vanish as
well, the operator L is a multiple of identity and as such does not enforce any synchronisa-
tion or phase-locking. Assume therefore m 6= 0. The equations (3.100) and (3.104) are the
only non-trivial remaining constraints on the attractor X ′ stemming from the commuta-
tion relations and they retrieve the results (3.105) and (3.106). The relation (3.107) is not
enforced in this case and the claim is that consequently the generalized synchronization
condition does not hold. As a counterexample, let α′ = δ′ = α

ββ
′ = −α

β γ
′ 6= 0. This is

an attractor X ′ commuting with L and yet not satisfying the generalized synchronisation
condition as

α′ + δ′ = 2α′ 6= 0 (3.110)

does not equal

eiϕ(β′ + γ′) = eiϕ
β

α
(α′ − δ′) = 0. (3.111)

This proves that the condition b 6= 0 is also necessary.

Before we state the final result, note that the attractor X (3.94) associated with L is en-
tirely determined by a single parameter α and a choice of ± in (3.92), (3.93). That is why
we now select the parameter α and the binary choice of ± to parameterize two families of
classes of Lindblad operators, as opposed to the rest of parameters which will again specify
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single operators within these classes. This way we always have a single class of operators
corresponding to a particular attractor.

There are two families of classes of synchronizing, respectively phase-locking Lindblad
operators Lα+,Lα−

1, with the class parameter α ∈ (0, 1), consisting of operators Lα+, Lα−
(shortened to Lα±) which take the form

Lα± =


1 0 0 0
0 β α 0
0 −α β̄ 0
0 0 0 1




a b 0 0
ei2k b̄ a+meik 0 0

0 0 a sb
0 0 s̄ei2k b̄ a+meik




1 0 0 0
0 β̄ −α 0
0 α β 0
0 0 0 1

 ,

(3.112)
where a, b ∈ C, k,m, α ∈ R, 0 < α < 1, b 6= 0,

β = ±ie−iϕ
√

1− α2, (3.113)

s =
α∓ i

√
1− α2

α± i
√

1− α2
, (3.114)

and ϕ ∈ [0, 2π) is the achieved phase shift. Respectively,

Lcos t sgnt =

(
1 0 0 0
0 ie−iϕ sin t cos t 0
0 − cos t −ieiϕ sin t 0
0 0 0 1

)(
a b 0 0

ei2k b̄ a+meik 0 0
0 0 a e2itb
0 0 e−2itei2k b̄ a+meik

)(
1 0 0 0
0 −ieiϕ sin t − cos t 0
0 cos t ie−iϕ sin t 0
0 0 0 1

)
,

(3.115)

where a, b ∈ C, k,m, α ∈ R, b 6= 0, t ∈
(
−π

2 , 0
)
∪
(
0, π2

)
, cos t = α, and ϕ ∈ [0, 2π) is the

achieved phase shift.

b) r 6= 0

We have already demonstrated that if both s and r are non-zero, the only operators
commuting with such attractors X are multiples of identity. Therefore, we assume s = 0
further on. The relations SD = AS and RD = DR imply

α11 = d11 = d22, (3.116)

a12 = a21 = d12 = d21 = 0. (3.117)

Hence, L simplifies into
1We use the same symbols to denote both the individual classes and the encompassing families in the

belief that this slight abuse of notation will not be an obstacle to the reader’s understanding and that a
strict distinction would on the contrary only cause confusion.
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L =


1 0 0 0
0 β ᾱ 0
0 −α β̄ 0
0 0 0 1



a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 a




1 0 0 0
0 β̄ −ᾱ 0
0 α β 0
0 0 0 1

 (3.118)

where a, b, α, β ∈ C, |α|2 + |β|2 = 1. The parameter r is given

r =
α− eiϕβ
eiϕᾱ− β̄

, (3.119)

for α 6= eiϕβ, and r can be arbitrary for α = eiϕβ. Note that δ = rβ̄ and γ = rᾱ due to
(3.71), so that

X =


0 α β 0
0 0 0 rᾱ
0 0 0 rβ̄
0 0 0 0

 . (3.120)

In the case α = eiϕβ, r arbitrary, the parameter r does not affect the operator L nor the
transition matrix T . It merely parameterizes attractors X (3.120) which are given by the
parameters α and r. We use the plural here as different values of parameter r correspond
to different attractors X. In the case α 6= eiϕβ, the assumed attractor (3.120) is fully
determined by the parameters α, β.

The operator L of the form (3.118), however, does not lead to a synchronizing or phase-
locking map for α 6= eiϕβ as it is not constraining the phase shift ϕ in any way, and it
reduces to a special case of (3.60) for α = eiϕβ.

c) s = r = 0

By the definition of s and r, see equation (3.71), this is equivalent to e4 ∈ KerX and
δ = γ = 0. The case was already discussed, see II. d).

3.2 Two-qubit complete synchronization

In this part we investigate continuous quantum Markovian dynamical semigroups with
generator of the form (3.1) which enforce asymptotic generalized complete synchronization
in the sense of definition 2.1.3 for an arbitrary initial state of two qubits.
As the requirement of complete synchronization is stronger than that of synchronization, it
is sufficient to inspect the Lindblad operators L found in section 3.1 to pick out those that
additionaly enforce identical stationary parts of the asymptotic reduced individual-qubit
states. To proceed we assume a general stationary attractor Xst ∈ X0 given by

Xst = A |00〉〈00|+B |01〉〈01|+ C |01〉〈10|+D |10〉〈01|+ E |10〉〈10|+ F |11〉〈11| , (3.121)

parameterized by six variables A,B,C,D,E, F ∈ C. In terms of these parameters the
condition of complete synchronization (2.12) reduces to
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B = E. (3.122)

We now require that for a given operator L the commutation relations (3.19) impose the
condition of complete synchronization (3.122) on Xst. As we only consider operators syn-
chronizing the dynamical parts of asymptotic reduced qubit evolutions, the result will
be a complete synchronization of the entire system. In the following we discuss the two
classes and the two families of classes of synchronizing Lindblad operators from section 3.1.

The analysis of operators L1, L2 representing the first two classes L1,L2 can be performed
in a similar fashion and therefore only the case of the former is presented in detail. To
begin with, consider an operator L1 of the form (3.54). Using the same change of basis as
introduced in the respective part of section 3.1, given by the transition matrix (3.35), the
attractor Xst in the new basis reads

X̃st =
1

2


2A 0 0 0
0 B + eiϕC + e−iϕD + E −e−iϕB + C − e−2iϕD + e−iϕE 0
0 −eiϕB − e2iϕC +D + eiϕE B − eiϕC − e−iϕD + E 0
0 0 0 2F

 .

(3.123)
The commutation relations (3.19) written explicitly in the new basis give rise to a set of
equations

e−iϕ(c− a)(−B + eiϕC − e−iϕD + E) = 0, (3.124)

e−iϕb (−B + eiϕC − e−iϕD + E) = 0, (3.125)

eiϕ(c− a)(−B − eiϕC + e−iϕD + E) = 0, (3.126)

b (B − eiϕC − e−iϕD + E) = b 2F, (3.127)

eiϕei2k b̄ (−B − eiϕC + e−iϕD + E) = 0, (3.128)

ei2k b̄ (B − eiϕC − e−iϕD + E) = ei2k b̄ 2F. (3.129)

Since at least one of the conditions b 6= 0 and c 6= a holds, equations (3.124),(3.125) and
(3.126), (3.128) simplify into

B − eiϕC + e−iϕD − E = 0, (3.130)

B + eiϕC − e−iϕD − E = 0, (3.131)

which combined together gives B − E = 0, so that the condition (3.122) is always satis-
fied. We have found out that the whole class L1 of operators L1, originally designed to
synchronize the two subsystems, actually enforces complete synchronization.

The same holds for the operators L2 given by (3.60). The proof is analogous to the one
above and as such is not presented here.

To discuss the remaining two continua of classes Lα+,Lα− we consider operators Lα+, Lα−
of the form (3.112). The attractor Xst in the respective basis reads
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X̃st =


A 0 0 0

0 |β|2B + α2E − αβ̄C − αβD αβ̄B − αβ̄E + β̄2C − α2D 0

0 αβB − αβE − α2C + β2D α2B + |β|2E + αβ̄C + αβD 0
0 0 0 F

 , (3.132)

and, using the fact that b 6= 0 in (3.112), the commutation relations (3.19) yield the
following set of equations

|β|2B + α2E − αβ̄C − αβD = A, (3.133)

αβ̄B − αβ̄E + β̄2C − α2D = 0, (3.134)

αβB − αβE − α2C + β2D = 0, (3.135)

α2B + |β|2E + αβ̄C + αβD = F. (3.136)

Dividing (3.134) and (3.135) by ᾱβ̄ and αβ respectively, we can express the difference
B − E to obtain

B − E =
β̄

ᾱ
C − ᾱ

β̄
D, (3.137)

B − E =
β

α
D − α

β
C. (3.138)

These expressions admit various non-trivial solutions (two linear equations for four vari-
ables). Nonetheless, summed together and plugged in (3.113) for β,

B − E =
1

2

[(
α

β
− β̄

α

)
C +

(
α

β̄
− β

α

)
F

]
= ±i 1− 2α2

2α
√

1− α2

(
eiϕC − e−iϕD

)
,

(3.139)

they provide us with the desired constraint. Consequently, for

α =
1√
2

(3.140)

implying

β =
±ie−iϕ√

2
, (3.141)

s = ∓i, (3.142)

the condition (3.122) is satisfied and the Lindblad operators Lα+, Lα− enforce generalized
complete synchronization.

To show that this condition (3.140) is not only sufficient but also necessary, a simple
counterexample can be given. Let α 6= 1√

2
and D = −e2iϕC. The equations (3.137),

(3.138) merge into
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B − E = ±ieiϕ 1− 2α2

α
√

1− α2
C, (3.143)

a non-zero expression for C 6= 0. Moreover, (3.133) and (3.136) can be viewed as only
introducing new variables A and F respectively. A nontrivial attractor Xst violating the
condition (3.122) exists.

The operators Lα± lead to complete synchronization in the generalized sense if and only
if α = 1√

2
, in which case

L 1√
2
± =


1 0 0 0

0 ±ie
−iϕ
√

2
1√
2

0

0 − 1√
2
∓ieiϕ√

2
0

0 0 0 1




a b 0 0
ei2k b̄ a+meik 0 0

0 0 a ∓ib
0 0 ±iei2k b̄ a+meik




1 0 0 0

0 ∓e
iϕ
√

2
− 1√

2
0

0 1√
2
±e−iϕ√

2
0

0 0 0 1

 ,

(3.144)
where a, b ∈ C, k,m ∈ R and b 6= 0.

Note: Reparameterizing (α, β)→ (±ieiϕα, ±ieiϕβ), which is equivalent to b→ ±ieiϕb, we
are able to cast the operators L 1√

2
+, L 1√

2
− into an even more familiar shape

L 1√
2
± =


1 0 0 0

0 1√
2
∓ie−iϕ√

2
0

0 ∓ie
iϕ
√

2
1√
2

0

0 0 0 1




a b 0 0
ei2k b̄ a+meik 0 0

0 0 a ∓ib
0 0 ±iei2k b̄ a+meik




1 0 0 0

0 1√
2
±e−iϕ√

2
0

0 ±e
iϕ
√

2
1√
2

0

0 0 0 1

 ,

(3.145)
where a, b ∈ C, k,m ∈ R and b 6= 0.

3.3 Attractor spaces of synchronizing maps on two qubits

3.3.1 Attractor spaces of synchronizing maps

Previously, we established two classes and two families of classes of normal Lindblad op-
erators L that induce (complete) synchronization or phase-locking of two qubits. We did,
however, only partially discussed the corresponding attractors, whereof role is essential in
determining the asymptotic dynamics of the system in question. Having a basis of the
attractor space of an associated QMDS we can write the asymptotic evolution of an arbi-
trary initial state via (1.16). Revealing the entire structure of the attractor spaces of the
respective maps is the subject of this section.

We will go through all the synchronizing and phase-locking maps we found and will describe
all their possible attractors, consecutively considering elements of the subspaces XE0−E1 ,
XE1−E0 , X0, X2E0−2E1 and X2E1−2E0 . Since attractors corresponding to different eigen-
values are mutually orthogonal, see (1.23), these subspaces are to be dealt with separately.
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Let us begin with the operators L1, given by (3.54). There are already some partial results
found in the section 3.1. The attractor corresponding to the first dynamical part of reduced
qubit dynamics Xd1 ∈ XE0−E1 , formerly denoted simply X or X ′ which we now reserve
for a general attractor X ∈ Att(T ), is subject to the constraints (3.44) to (3.49)

(c− a)(β − e−iϕα) = 0, (3.44)

b(β − e−iϕα) = 0, (3.45)

ei2k b̄(γ + e−iϕδ) = 0, (3.46)

[c− (a+meik)](γ + e−iϕδ) = 0, (3.47)

ei2k b̄(δ − eiϕγ) = 0, (3.48)

meik(δ − eiϕγ) = 0, (3.49)

whereof solution splits into several cases depending on the value of parameters a, b, c, k,m.
For b 6= 0 ∨ c− a−meik 6= 0,2 the attractor Xd1 reads

Xd1 =


0 α e−iϕα 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (3.146)

α ∈ C. Consequently, the attractor Xd2 ∈ XE1−E0 representing the second dynamical
part, related to the previous one by the operation of complex conjugation, has the form

Xd2 =


0 0 0 0
ζ 0 0 0
eiϕζ 0 0 0

0 0 0 0

 , (3.147)

ζ ∈ C. The parameters α and ζ are uncorrelated, the complex conjugation is merely a
connection between the two subspaces XE0−E1 and XE1−E0 .

Deliberately, we postpone the discussion of the excluded special case b = 0, m = e−ik(c−
a) 6= 0 until later. Instead, let us proceed with the stationary part. The corresponding
attractor Xst ∈ X0 was already shown to satisfy (3.124) to (3.131). In particular, recall

B − eiϕC + e−iϕD − E = 0, (3.130)

B + eiϕC − e−iϕD − E = 0, (3.131)

and

b (B − eiϕC − e−iϕD + E) = b 2F, (3.127)

ei2k b̄ (B − eiϕC − e−iϕD + E) = ei2k b̄ 2F. (3.129)

2Recall that in the case b = 0 it holds c 6= a ∧ m 6= 0. The requirement c− a−meik 6= 0 is additional
to that of enforcing synchronization.
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By summing (3.130) and (3.131) we obtained

E = B, (3.148)

and by substracting them we further get

D = e2iϕC. (3.149)

If b = 0, there are no additional constraints and it holds

Xst =


A 0 0 0
0 B e−iϕC 0
0 eiϕC B 0
0 0 0 F

 , (3.150)

where A,B,C, F ∈ C. In the case b 6= 0, F is no longer a free parameter as both (3.127)
and (3.129) imply

F = B − eiϕC, (3.151)

so that

Xst =


A 0 0 0
0 B e−iϕC 0
0 eiϕC B 0
0 0 0 B − eiϕC

 , (3.152)

where A,B,C ∈ C.

Lastly, assume possible attractors Xc1 ∈ X2E0−2E1 and Xc2 ∈ X2E1−2E0 , associated purely
with correlations within the system, and parameterize the former

Xc1 = σ |11〉 〈22| , (3.153)

σ ∈ C. The commutation relations yield

[c− (a+meik)]σ = 0, (3.154)

ei2k b̄ σ = 0, (3.155)

which results in

σ = 0, (3.156)

for all values of the parameters a, b, c,m, k but the excluded case b = 0, m = e−ik(c−a) 6= 0.
It follows that both Xc1 and Xc2 are trivial.

Put together, we obtain parameterization of a general attractor associated with an op-
erator L1 given by (3.54), excluding the case b = 0, m = e−ik(c − a) 6= 0. Denoting a
corresponding QMDS TL1 the attractor space Att(TL1) thereof reads
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Att(TL1) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,

1√
3


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
1√
3


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 −eiϕ


 ,

(3.157)

in the case b 6= 0, and for b = 0, m 6= e−ik(c− a) then

Att(TL1) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,

1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ,

(3.158)

where ϕ ∈ [0, 2π) is the enforced phase shift.

Note that an attractor X ∈ Att(TL1) is not necessarily a state and that its different parts
evolve with different frequencies. For convenience, we write the attractor space Att(TL1)
as a linear span of orthonormal generators associated each with a single eigenvalue of TL1 .
The same for QMDS generated by other classes of Lindblad operators.

The attractor space associated with the second class L2 of synchronizing Lindblad oper-
ators L2 would be discussed analogously, we only state the results. Namely, the attrac-
tor space Att(TL2) of a QMDS TL2 generated by L2 given by (3.60), excluding the case
b = 0, a = c, reads

Att(TL2) = span


1√
3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
3


−eiϕ 0 0 0

0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,

1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ,

(3.159)
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in the case b 6= 0, and for b = 0, a 6= c then

Att(TL2) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,

1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

(3.160)

where ϕ ∈ [0, 2π) is the enforced phase shift.

To address the aforementioned special case, assume an operator L1 given by (3.54) where
b = 0, m = e−ik(c − a) and note that it in fact coincides with an operator L2 given by
(3.60) where b = 0, a = c,3 as well as with the operator L given by (3.118) where α = eiϕβ,
the case excluded from otherwise not synchronising operators (3.118) and noted to reduce
to L2.
This can be best seen multiplying the matrices T L̃T † in the expressions mentioned. Such
an operator L, from here on denoted Ls, reads

Ls =
1

2


2c 0 0 0
0 c+ a e−iϕ(c− a) 0
0 eiϕ(c− a) c+ a 0
0 0 0 2c

 , (3.161)

where c ∈ R, a ∈ C, a 6= c and ϕ ∈ [0, 2π) is the desired phase shift. It marks the overlap of
the two otherwise distinct classes L1 and L2 of synchronizing Lindblad operators L1 and
L2. It is worth mentioning that for c = −a = 1 the operator Ls given by (3.161) reduces
to

SWAPϕ =


1 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 1

 , (3.162)

which is a generalization of the well-known and studied SWAP operator, often appearing in
the context of quantum synchronization [6]. Traditionally, the SWAP operator acts simply
as an exchange of states on two qubits, i. e. |i〉 ⊗ |j〉 SWAP←−−−→ |j〉 ⊗ |i〉, corresponding here
to setting ϕ = 0. The generalization lies in adding a phase factor eiϕ which additionaly
introduces a phase shift between the swapped parties.
In fact, to reveal and point out the connection to the SWAPϕ operator we can rewrite Ls
as

3In the case of L1 we are left with parameters c ∈ R and a ∈ C, in the case of L2 the remaining
parameters are c,m, k ∈ R. Reparameterizing the latter by introducing a parameter a = meik − c ∈ C to
substitute for m and k, we obtain the former.
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Ls = x I + y SWAPϕ, (3.163)

where we introduced two new parameters x, y ∈ C such that x = c+ a, y = c− a 6= 0. One
of them can be chosen real by factoring out a global phase prefactor. Special cases of this
operator Ls, without the added phase shift ϕ, are sometimes referred to as partial swap
operators in the literature [18].
From the point of view of asymptotic dynamics, the operators Ls given by (3.161) or
(3.163) constitues a certain generalization of the SWAP, respectively SWAPϕ operator
as they represent the maximal set of normal Lindblad operators that result in the same
asymptotic behaviour as the SWAP, respectively SWAPϕ operator in the studied type of
evolution. Thus the subscript s for swap in Ls.
Note that while neither adding a multiple of identity to the Lindblad operator nor mul-
tiplying it by a prefactor changes the solution to the commutation relations (3.19), both
actions result in a change in the generator (3.1) and thus in a different evolution map. Yet,
although the transient dynamics of such modified QMDS may differ, both their asymptotic
spectra and their attractor spaces remain unchanged. These two possibilities of modifying
the Lindblad operators are included in the parameterizations of the other classes of syn-
chronizing and phase-locking operators L1, L2 and Lα± as well. The ability to alter the
Lindblad operators in this way is a trivial consequence of the theorem 1.4.2. Bearing that
in mind, the class of operators Ls given by (3.161) or (3.163) respectively can effectively be
reduced to the SWAPϕ operator (3.162). The result thus translates to following. Apart
from the trivial modifications, there is no other normal Lindblad operator that would ex-
hibit the same behaviour with respect to the asymptotic dynamics, namely that it would
be associated with the same attractor space, as the SWAP operator, respectively its gen-
eralization the SWAPϕ operator.

Regarding the corresponding attractor space, alone the fact that the two operator classes
do not form disjoint sets already points towards the existence of richer, more complex
structures of the attractor spaces of maps generated by the Lindblad operators from the
overlap. That is due to our procedure where we first assumed a particular attractor for
which we subsequently found the whole class of commuting and especially synchronization-
enforcing Lindblad operators. As the two classes L1 and L2 originate from different
assumed attractors, the attractor space of a QMDS generated by an operator Ls (3.161)
from their overlap contains at least the two attractor spaces of maps generated by L1 and
L2 as its subspaces, with the possibility of their union being only a proper subset of the
encompassing attractor space of the map generated by Ls. This holds since by excluding
the operators from the overlap when discussing the attractor spaces corresponding to L1

and L2 we kept some of the constraints stemming from the commutation relations which
now disappear. Hence, those solutions must apply here as well.
This statement is confirmed by evaluating the constraints again for this case. Vanishing of
(3.46) and (3.47) which allows the parameters γ, δ to be nonzero corresponds to including
the attractor associated with the eigenvalue E0 − E1 of the second class. The attractors
accounting for the stationary part of asymptotic evolution match as (3.127) and (3.129)
are also trivial. And when it comes to Xc1, Xc2, the constraints (3.154) and (3.155), again,
vanish.
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Thus, the attractor space Att(TLs) of a QMDS TLs generated by operator Ls given by
(3.161) reads

Att(TLs) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,

1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 ,

(3.164)

where ϕ ∈ [0, 2π) is the enforced phase shift.

Once we finish the discussion below regarding the attractor spaces of QMDS generated
by Lα+ and Lα− it will have been demonstrated that among all synchronizing and phase-
locking normal Lindblad operators the operators Ls of the form (3.161) generate maps
equipped with the richest attractor structure, namely with an attractor space of the high-
est and exclusively achieved dimension. Moreover, they turn out to be the only ones
additionally preserving the subspaces X2E0−2E1 and X2E1−2E0 . In a sense the Lindblad
operators Ls generate evolution maps which preserve the greatest piece of information
about the initial state. Recall that in terms of attractors of a given QMDS the resulting
asymptotic state is given by (1.16). Furthermore, to each linearly independent attractor
one can associate one linearly independent constant of motion, whereof expectation value
remains unchanged along all trajectories.

Last but not least, we take a look at the remaining two families of classes Lα+, Lα− of
synchronizing, respectively phase-locking Lindblad operators and examinate in detail the
attractor spaces of QMDS generated by operators Lα+ and Lα− given by (3.112).
The attractor Xd1 standing for the dynamical part of the reduced single-qubit asymptotic
evolution was already found and is given by (3.94), (3.113) and (3.114). The attractor
Xst representing the stationary part, assuming the parameterisation (3.121), is subject to
constraints (3.133) to (3.136)



CHAPTER 3. TWO-QUBIT SYSTEM 48

(1− α2)B + α2E ± ieiϕα
√

1− α2C ∓ ie−iϕα
√

1− α2D = A, (3.133)

B − E ∓ ieiϕ
√

1− α2

α
C ∓ ie−iϕ α√

1− α2
D = 0, (3.134)

B − E ± ieiϕ α√
1− α2

C ± ie−iϕ
√

1− α2

α
D = 0, (3.135)

α2B + (1− a2)E ∓ ieiϕα
√

1− α2C ± ie−iϕα
√

1− α2D = F, (3.136)

where we already divided (3.134) and (3.135) by αβ̄ and αβ respectively and plugged in
for β from (3.113). Substracting (3.134) and (3.135) yields

D = −e2iϕC, (3.165)

and inserting this result back into either of the same equations gives

E = B ± ieiϕ 2α2 − 1

α
√

1− α2
C. (3.166)

Consequently, (3.133) and (3.136) simplify to

A = B ± ieiϕ 2α4 − (2α2 − 1)2

α
√

1− α2
C, (3.167)

F = B ∓ ieiϕ 2α4 − (2α2 − 1)2

α
√

1− α2
C. (3.168)

For Xc1 ∈ X2E0−2E1 in the parameterization (3.153) the commutation relations (3.19)
impose the following constraints

s̄ei2k b̄ σ = 0, (3.169)

meik σ = 0, (3.170)

ei2kb σ = 0, (3.171)

resulting in simple

σ = 0, (3.172)

since b 6= 0 was required for Lα+, Lα− to enforce synchronization or phase-locking.

Put together, the attractor space Att(TLα±) of a QMDS TLα± generated by Lα± of the
form (3.112) reads
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Att(TLα±) = span


1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , 1√
(2α2−1)2+ 2

α2


0 1 ±ie−iϕ

√
1−α2
α

0

0 0 0
e−iϕ2(1−α2)±

ie−iϕ
√

1−α2
α

(2α2−1)

0 0 0
1−2α2±
i2α
√

1−α2

0 0 0 0

,

1√
(2α2−1)2+ 2

α2


0 0 0 0
1 0 0 0

∓ieiϕ
√

1−α2
α

0 0 0

0
eiϕ2(1−α2)∓

ieiϕ
√

1−α2
α

(2α2−1)

1−2α2∓
i2α
√

1−α2
0

,

α
√

1−α2√
8α8−32α6+42α4−18α2+3


±i 2α

4−(2α2−1)2

α
√

1−α2
0 0 0

0 0 e−iϕ 0

0 −eiϕ ±i 2α2−1

α
√

1−α2
0

0 0 0 ∓i 2α
4−(2α2−1)2

α
√

1−α2


 .

(3.173)

In the special case of Lindblad operators L 1√
2
± given by (3.144) which enforce even

generalized complete synchronization, obtainable by setting α = 1√
2
, the attractor space

Att(TL 1√
2
±

) of a QMDS TL 1√
2
±
reduces to a simpler form

Att(TL 1√
2
±

) = span


1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
1

2


0 1 ±ie−iϕ 0
0 0 0 e−iϕ

0 0 0 ±i
0 0 0 0

 ,

1

2


0 0 0 0
1 0 0 0
∓ieiϕ 0 0 0

0 eiϕ ∓i 0

 ,
1

2


±i 0 0 0
0 0 e−iϕ 0
0 −eiϕ 0 0
0 0 0 ∓i


 .

(3.174)

To sum up, we observe that the attractor spaces of synchronization- or phase-locking-
enforcing maps generated by normal Lindblad operators L given by (3.54), (3.60), (3.161)
or (3.112) are in general four- to ten-dimensional, subject to several additional conditions,
with these conditions and precise structures of the attractor spaces discussed and explicitly
presented above.
A comprehensive overview of the results is found in appendix C. It consists of a list of
all two-qubit generalized (complete) synchronization mechanisms and attractor spaces of
their respective associated QMDS.

3.3.2 Combining several Lindblad operators

In the entire chapter so far we have restricted ourselves to work with just a single Lindblad
operator in the generator of the dynamics (3.1). Having found all synchronizing and
phase-locking operators in this setup and having fully described the attractor spaces of the
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corresponding evolution maps, we can now discuss the situation of an arbitrary number of
normal Lindblad operators combined in the generator.
The structure theorem 1.5.1 states that an attractor X of a QMDS must satisfy the com-
mutation relations (1.25) with each of the Lindblad operators Lj present in the generator
L separately, i. e. it must commute with all of them. It also shows that the attractor
space is completely determined by the solution to the commutation relations. Hence, in
the case of several operators Lj simultaneously appearing in the generator the attractor
space of such evolution map is given by the intersection of the attractor spaces of maps
with generators containing the individual operators Lj one at a time.
We discovered several classes of normal Linbdlad operators leading to synchronization,
respectively phase-locking, and described the corresponding attractor spaces. We found
that the attractor spaces and consequently the asymptotic dynamics is preserved within
each class, up to minor changes subject to additional conditions in the part associated
with stationary states in the case of classes L1,L2 of operators L1 and L2, and up to
the overlap of these two classes consisting of the Ls operators. We furthermore showed
that the attractor space, in particular the part responsible for the non-trivial asymptotic
evolution of the reduced states, is unique to each class. From these facts two conclusions
can be immediately drawn.
Firstly, if any number of synchronization-, respectively phase-locking-enforcing normal
Lindblad operators from two or more distinct classes4 are combined in the generator then
the evolution given by the resulting QMDS will always result in a stationary state, irre-
spective of initial conditions. This follows from the observation that in intersection with
the subspace XE0−E1 ⊂ B (H ) the intersection of the attractor spaces corresponding to
Lindblad operators from different classes is trivial.
Secondly, the Lindblad operators from one class can be combined arbitrarily withnout
affecting the asymptotic evolution, again up to possible minor changes in the stationary
part in the case of classes L1,L2 of operators L1, L2, mentioned above and described in
detail in the relevant subsection 3.3.1 of this section and chapter. In the construction we
always began with the attractor and found all commuting normal operators to subsequently
pick out the ones that enforce synchronization or phase-locking. That implies that with
each class we can even include any number of those operators of the same type discovered
and later discarded during the process as they still commute with the relevant attractors,
even though they do not have the ability to enforce synchronization or phase-locking on
their own. The resulting generator will still lead to a synchronization- or phase-locking-
enforcing evolution map. In other words, the operators L1 given by (3.54) can be combined
with operators L given by (3.41) and so on. From the construction, these are the only such
normal Linblad operators. It is worth noting that the synchronization- or phase-locking-
non-enforcing normal operators form a set of meassure zero within the set of all normal
operators commuting with the relevant attractors. Therefore, interestingly, almost all
normal Lindblad operators compatible with synchronization or phase-locking also enforce
it.
Everything stated so far applies to combining Lindblad operators with a set identical phase
shift ϕ ∈ [0, 2π). Naturally, operators inducing two or more different phase shifts appearing
concurrently in the generator will result in a stationary asymptotic state. The reasoning

4With an "exception" of the operators from the overlap, which technicallly both are from the same class
and are from two distinct classes simultaneously. Those are no equivalence classes, just a slack analogy.
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behind is the same as above in the case of Lindblad operators from different classes. The
relevant attractor is unique to each class and every phase shift.



Chapter 4

Qubit networks

In this chapter we address the synchronization and phase-locking phenomena in so called
qubit networks, n-qubit systems with bipartite interactions. Having thoroughly analyzed
the smallest qubit network consisting of two qubits, we now show how the previously found
synchronization mechanisms represented by normal Lindblad operators can by applied to a
general system of n qubits. Our main aim is to answer the question which of the two-qubit
synchronization mechanisms are able to synchronize an arbitrary quantum network.
The chapter is divided into several parts. In the beginning, we present the necessary ter-
minology and notation together with a detailed construction of the network Lindbladian.
Next, we meticulously discuss a particular synchronization mechanism as an example of
qubit network synchronization, addressing especially two points. First, that the synchro-
nizing Lindblad operators originally designed for two-qubit synchronization truly pairwise
synchronize the qubits they are applied to also in a network, as it is to be expected by
their design. Second, that the reduced single-qubit dynamics are not destroyed by the
particular mechanism when applied to a network where the qubits mutually interact each
with more than one other in general. Subsequently, we perform a similar analysis for a
general two-qubit synchronization mechanism and consecutively address these two aspects
for all classes of synchronizing Lindblad operators from chapter 3.
Throughout the discussion of synchronization in qubit networks we purposedly avoid its
generalization to phase-locking. The investigation into phase-locking in qubit networks
represents a complex problem, closely related to the study of network topologies and graph
theory, and is beyond the scope of this work.

4.1 Preliminary

This section it devoted mainly to introducing the terminology and notation, and to the
construction of Lindbladians for qubit networks.
Let us start with the associated Hilbert space and Hamiltonian. A single qubit is associated
with Hilbert space H0 and Hamiltonian H0 given by (3.2). The Hilbert space of a n-qubit
system is then H = H ⊗n

0 and its free Hamiltonian H equals

H =
n∑
j=1

I⊗(j−1) ⊗H0 ⊗ I⊗(n−j). (4.1)

52
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Let B = (|0 . . . 0〉 , |0 . . . 01〉 , |0 . . . 010〉 , |0 . . . 011〉 , . . . , |1 . . . 1〉) be a basis of its eigenvec-
tors, using again the standard notation |i1 . . . in〉 = |i1〉 ⊗ · · · ⊗ |in〉. We will use this basis
throughout the entire chapter unless explicitly stated otherwise. The Hamiltonian H reads

H =



nE0 0 · · · · · · 0

0 (n− 1)E0 + E1
. . .

...

...
. . . . . . . . .

...

...
. . . . . . 0

0 · · · · · · 0 nE1



. (4.2)

A local observable A ∈ B(H0) on the ith compoment of the composite system corresponds
to a global operator A(i) ∈ B (H ) defined by

A(i) = I⊗(i−1) ⊗A⊗ I⊗(n−i). (4.3)

For a two-qubit operation L ∈ B(H ⊗2
0 ), such as one of the two-qubit synchronizing Lind-

blad operators from chapter 3, we introduce a similar concept and notation. First, let
Πkl ∈ B (H ) be a permutation operator swapping the kth and lth qubit, i.e. Πkl :
|i1, . . . , ik, . . . , il, . . . , in〉 7→ |i1, . . . , il, . . . , ik, . . . , in〉. In the formalism of density opera-
tors ρ ∈ B (H ), the qubit-swapping operator Πkl naturally acts by conjugation,

Πkl |i1, . . . , ik, . . . , il, . . . , in〉 〈j1, . . . , jk, . . . , jl . . . , jn|Πkl =

= |i1, . . . , il, . . . , ik, . . . , in〉 〈j1, . . . , jl, . . . , jk . . . , jn| ,
(4.4)

and in a basis decomposition it can be expressed as

Πkl =
∑

ia∈{0,1},
a∈{1,...,n}

|i1, . . . , il, . . . , ik, . . . , in〉〈i1, . . . , ik, . . . , il, . . . , in| . (4.5)

It holds Πkl = Πlk = Π†kl = Π−1
kl and Πkk = I. For an operator L ∈ B(H ⊗2

0 ) we can
now introduce a corresponding global operator L(kl) ∈ B (H ) representing the action of
the two-qubit operator L on qubits k and l in this order. Since two-qubit operations are
in general asymmetric in the sense that they are not invariant with respect to swapping of
the two qubits, which is true in particular for the vast majority of phase-locking two-qubit
Lindblad operators and, as it turns out, also for many of the purely synchronizing ones,
see chapter 5, section 5.3 for details, we need to distinguish between two situations. If
1 ≤ k < l ≤ n we define the global operator L(kl) ∈ B (H ) to be
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L(kl) = Πk+1,l (I
⊗(k−1) ⊗ L⊗ I⊗(n−k−1)) Πk+1,l. (4.6)

The operator L(kl) first orders the qubits k and l one after the other, then locally applies
the operator L, and finally puts the qubits back into the original order. By the same
reasoning, if 1 ≤ l < k ≤ n we set

L(kl) = Πkl Πl+1,k (I⊗(l−1) ⊗ L⊗ I⊗(n−l−1)) Πl+1,k︸ ︷︷ ︸
L(lk),where l<k

Πkl, (4.7)

that is we simply swap the qubits k and l and apply the previous definition, effectively
substituting ΠklL

(lk)Πkl for L(kl). Note that the construction of a global operator L(kl) via
(4.6) and (4.7) preserves properties, in particular normality of the operator L.

This enables us to construct the Lindbladian (1.11) using the two-qubit generalized syn-
chronization mechanisms. For example, for a single Lindblad operator L(kl), i.e. for an
operator L ∈ B(H ⊗2

0 ) acting on the kth and the lth qubit in this order, k < l for simplicity,
the generator (1.11) reads

L(ρ) = −i[H, ρ] + L(kl)ρ(L(kl))† − 1

2

{
(L(kl))†L(kl), ρ

}
=− i[H, ρ] + Πk+1,l(I

⊗(k−1) ⊗ L⊗ I⊗(n−k−1))Πk+1,l ρΠk+1,l(I
⊗(k−1) ⊗ L† ⊗ I⊗(n−k−1))Πk+1,l

− 1

2

{
Πk+1,l(I

⊗(k−1) ⊗ L† ⊗ I⊗(n−k−1))Πk+1,l Πk+1,l(I
⊗(k−1) ⊗ L⊗ I⊗(n−k−1))Πk+1,l, ρ

}
=− i[H, ρ] + Πk+1,l(I

⊗(k−1) ⊗ L⊗ I⊗(n−k−1))(Πk+1,lρΠk+1,l)(I
⊗(k−1) ⊗ L† ⊗ I⊗(n−k−1))Πk+1,l

− 1

2
Πk+1,l

{
I⊗(k−1) ⊗ L†L⊗ I⊗(n−k−1),Πk+1,lρΠk+1,l

}
Πk+1,l.

(4.8)

Indeed, the action of qubit-swapping, localy applying the operator L, and swapping back
can be clearly seen also in the generator form.
In the beginning, we restrict ourselves to work with a single synchronization mechanism
given by a single two-qubit Lindblad operator L. Using the above construction of operators
L(kl), we will apply this mechanism onto individual pairs of qubits. We do not consider
any direct interactions of more than two qubits.

To describe which pairs of qubits of an n-party system are connected and interacting we
employ the notion of a directed graph G = {N , E}, where N is the set of vertices or nodes,
representing the n qubits and labeled 1, . . . , n, and E is the set of directed edges which
stand for the mutual two-qubit interactions. Namely, the Lindblad operator L is applied
to each pair of adjacent qubits, taking the orientation of the connecting edge into account.
We call such a graph G an interaction graph and denote its adjacency matrix G. The entire
system is referred to as a qubit network.
The evolution of a qubit network is given by a QMDS T whereof generator L of the form
(1.11) can be written as
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L(ρ) = −i[H, ρ] +
∑

i,j∈{1,...,n},
Gij 6=0

L(ij)ρ(L(ij))† − 1

2

{
(L(ij))†L(ij), ρ

}
, (4.9)

where H is the free n-qubit Hamiltonian (4.1), G ∈ Rn×n is the adjacency matrix of an
interaction graph, and L(ij) are the Lindblad operators given by (4.6),(4.7) constructed
from a fixed single two-qubit normal operator L.

Having a well-defined concept of a qubit network and a suitable construction of its Lindbla-
dian, we can proceed with the main task which is the analysis of its asymptotic dynamics.
By the theorem 1.5.1, an attractor X ∈ Att(T ) associated with the eigenvalue λ is given
by the solution to the commutation relations (1.25), (1.26), i.e.[

L(ij), X
]

=
[
(L(ij))†, X

]
= 0, ∀i, j ∈ {1, . . . , n} such thatGij 6= 0, (4.10)

[H,X] = iλX. (4.11)

Note: Using a weighted graph and/or a set of graphs, this description can naturally be
extended to account for weighted interactions and/or any number of distinct two-qubit
operators L acting on individual qubit pairs. The weights do not have any influence on
the asymptotics of the system, they merely scale the Lindblad operators and by that alter
the transient dynamics and convergence rate towards an asymptotic state.

In order for us to be able to analyze the asymptotic dynamics of a qubit network via
solving commutation relations in the light of theorem 1.5.1, a suitable parameterization of
attractors is needed. Let X ∈ B (H ). It can be written as

X =
∑

ia,ja∈{0,1},
a∈{1,...,n}

Xi1...in
j1...jn

|i1, . . . , in〉〈j1, . . . , jn| , (4.12)

where Xi1...in
j1...jn

∈ C are the hereby introduced basis coefficients. To shorten the notation,
let us denote~i,~j ∈ {0, 1}n the multiindices i1 . . . in and j1 . . . jn. The equation (4.12) reads

X =
∑

~i,~j∈{0,1}n
X
~i
~j

∣∣∣~i〉〈~j ∣∣∣ . (4.13)

Two multiindices~i ∈ {0, 1}k and ~j ∈ {0, 1}l written one following the other, unseparated by
a comma, should be understood as a multiindex ~m ∈ {0, 1}k+l, ~m =~i~j = i1 . . . ik j1 . . . jl.
Additionally, for a multiindex ~j ∈ {0, 1}n we call the n ∈ N its length and define

∣∣∣~j ∣∣∣ to be∣∣∣~j ∣∣∣ =
n∑
a=1

ja. (4.14)

We write ~i > ~j if
∣∣∣~i ∣∣∣ > ∣∣∣~j ∣∣∣ for two multiindices of the same length and for a multiin-

dex ~j ∈ {0, 1}n and k ∈ Z denote ~j + k ∈ {0, 1}n an unspecified multiindex such that∣∣∣~j + k
∣∣∣ =

∣∣∣~j ∣∣∣+ k.
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As was the case with a two qubit system, we can separate the space of operators B (H )
into several subspaces using the commutation relation (1.26) with the HamiltonianH (4.2).
Denoted again Xiλ, where λ is the associated eigenvalue, those 2n+ 1 subspaces read

X0 = span

{
|i1 . . . in〉〈j1 . . . jn| ,

n∑
a=1

ia =
n∑
a=1

ja

}
, (4.15)

XE1−E0 = span

{
|i1 . . . in〉〈j1 . . . jn| ,

n∑
a=1

ia =
n∑
a=1

ja + 1

}
, (4.16)

XE0−E1 = span

{
|i1 . . . in〉〈j1 . . . jn| ,

n∑
a=1

ia =

n∑
a=1

ja − 1

}
, (4.17)

X2E1−2E0 = span

{
|i1 . . . in〉〈j1 . . . jn| ,

n∑
a=1

ia =
n∑
a=1

ja + 2

}
, (4.18)

...

XnE1−nE0 = span {|1 . . . 1〉〈0 . . . 0|} , (4.19)

XnE0−nE1 = span {|0 . . . 0〉〈1 . . . 1|} , (4.20)

or shortly

Xk(E1−E0) = span
{∣∣∣~i〉〈~j ∣∣∣ , ∣∣∣~i ∣∣∣− ∣∣∣~j ∣∣∣ = k

}
, (4.21)

where ~i,~j ∈ {0, 1}n, k ∈ {−n, . . . , n}.

For the reduced one-qubit dynamics, only three of them are relevant, namely the subspaces
X0, XE1−E0 and XE0−E1 . Two more contribute to the two-qubit reduced dynamics and so
on. Only elements of the subspaces Xk(E1−E0) in (4.21) with the absolute value of k less
than or equal to the number of concerned qubits survive when tracing out the remaining
subsystems. The other ones contribute exclusively to higher order correlations.
Except for X0, the subspaces are pairwise related by the operation of complex conjugation,
which takes Xk(E1−E0) to X−k(E1−E0) and vice versa. It is therefore enough to consider
only one of the pair when solving the commutation relations (1.25).

4.2 Two-qubit synchronization mechanisms in qubit networks

4.2.1 A simple synchronization mechanism - an illustrating example

Let us begin with one of the simplest synchronizing normal Lindblad operators, namely
with the operator L2 given by (3.60) where a = c = k = m = ϕ = 0, throughout this
subsection denoted simply L, i.e.

L =


0 b −b 0
b̄ 0 0 0
−b̄ 0 0 0
0 0 0 0

 , (4.22)
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where b ∈ C, b 6= 0. The parameter b is kept unspecified to better illustrate the action of
the operator L in the upcoming analysis.
Next, we apply it to a single pair of qubits, without loss of generality to the qubits 1 and
2 in this order1, via an operator L(12) constructed using (4.6). That is we assume the
generator L of a QMDS T given by (4.9) where L is given by (4.22) and the adjacency
matrix G of the interaction graph satisfies G12 = 1. The operarator L(12) acts on the
elements of the computational basis from the left as

|00 i3 . . . in〉〈j1 . . . jn| 7→ b̄ |01 i3 . . . in〉〈j1 . . . jn| − b̄ |10 i3 . . . in〉〈j1 . . . jn| , (4.23)
|01 i3 . . . in〉〈j1 . . . jn| 7→ b |00 i3 . . . in〉〈j1 . . . jn| , (4.24)
|10 i3 . . . in〉〈j1 . . . jn| 7→ −b |00 i3 . . . in〉〈j1 . . . jn| , (4.25)
|11 i3 . . . in〉〈j1 . . . jn| 7→ 0, (4.26)

where~i ∈ {0, 1}n−2, labeled from 3 to n to match the qubit labeling, ~j ∈ {0, 1}n; and from
the right as

|k1 . . . kn〉〈00 l3 . . . ln| 7→ b |k1 . . . kn〉〈01 l3 . . . ln| − b |k1 . . . kn〉〈10 l3 . . . ln| , (4.27)
|k1 . . . kn〉〈01 l3 . . . ln| 7→ b̄ |k1 . . . kn〉〈00 l3 . . . ln| , (4.28)
|k1 . . . kn〉〈10 l3 . . . ln| 7→ −b̄ |k1 . . . kn〉〈00 l3 . . . ln| , (4.29)
|k1 . . . kn〉〈11 l3 . . . ln| 7→ 0, (4.30)

where ~k ∈ {0, 1}n, ~l ∈ {0, 1}n−2, labeled again from 3 to n.

Let X ∈ XE1−E0 be an attractor of the QMDS from one of the two subspaces relevant for
the asymptotic time evolution of reduced single-qubit states. Using the parameterization
(4.12), the commutation relations (4.10), i.e.[

L(12), X
]

=
[
(L(12))†, X

]
= 0, (4.31)

yield the following sets of equations

bX01~i
00~i
− bX10~i

00~i
= 0, (4.32)

−b̄X11~i
01~i

+ b̄X11~i
10~i

= 0, (4.33)

−bX01~i
00~i

= 0, (4.34)

bX10~i
00~i

= 0, (4.35)

∀~i ∈ {0, 1}n−2,
1Alhough, in this particular case the order is not important as the operator L (4.22) acts symmetrically

on the two qubits. Changing L(12) to L(21) is here equivalent to changing L to −L, which leaves the
generator and consequently the QMDS unchanged.
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b̄X00 ~j+1

00~j
− b̄X01 ~j+1

01~j
+ b̄X01 ~j+1

10~j
= 0, (4.36)

−b̄X00 ~j+1

00~j
− b̄X10 ~j+1

01~j
+ b̄X10 ~j+1

10~j
= 0, (4.37)

bX01 ~j+1

01~j
− bX10 ~j+1

01~j
− bX00 ~j+1

00~j
= 0, (4.38)

bX01 ~j+1

10~j
− bX10 ~j+1

10~j
+ bX00 ~j+1

00~j
= 0, (4.39)

∀~j,~j + 1 ∈ {0, 1}n−2,

−b̄X00 ~k+2

01~k
+ b̄X00 ~k+2

10~k
= 0, (4.40)

b̄X00 ~k+2

01~k
= 0, (4.41)

b̄X00 ~k+2

10~k
= 0, (4.42)

bX01 ~k+2

11~k
− bX10 ~k+2

11~k
= 0, (4.43)

∀~k,~k + 2 ∈ {0, 1}n−2,

b̄X00~l+3

11~l
= 0, (4.44)

∀~l,~l + 3 ∈ {0, 1}n−2,

bX11 ~m−1
00 ~m = 0, (4.45)

∀~m, ~m− 1 ∈ {0, 1}n−2.

The equations are purposedly sorted by the difference in the number of zeros and ones in
the unspecified multitindices in the lower and upper indices of the coefficients X~i~j .
For the reduced dynamics of qubits 1 and 2 only the first set, comprising equations (4.32) to
(4.35), is relevant. This can be best seen if we calculate the partial trace of the attractor
X over the remaining n − 2 subsystems. Denoting Tri1...ik the trace TrH ⊗k

0
over the k

Hilbert spaces standing for qubits i1, . . . , ik, the reduced attractor reads

Tr3...nX = Tr3...n

{ ∑
~i,~j∈{0,1}n,
|~i |=|~j |+1

Xi1...in
j1...jn

|i1, . . . , in〉〈j1, . . . , jn|

}
=

=
∑

~i∈{0,1}n−2

X01~i
00~i
|01〉〈00|+X10~i

00~i
|10〉〈00|+ |11〉〈01|X11~i

01~i
+X11~i

10~i
|11〉〈10| .

(4.46)

Therefore, only elements with matching indices in the positions 3 to n in the decempo-
sition (4.12) of X affect the reduced attractor. Due to the restriction onto XE1−E0 the
synchronization condition (2.2) for the reduced bipartite system of qubits 1 and 2 reduces
to Tr13...nX = Tr2...nX which gives
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∑
~i∈{0,1}n−2

X01~i
00~i

+X11~i
10~i

=
∑

~i∈{0,1}n−2

X10~i
00~i

+X11~i
01~i
. (4.47)

The equations (4.34) and (4.35) imply

X01~i
00~i

= X10~i
00~i

= 0, (4.48)

∀~i ∈ {0, 1}n−2. Consequently, (4.32) is always satisfied. Lastly, (4.33) implies

X11~i
10~i

= X11~i
01~i
, (4.49)

∀~i ∈ {0, 1}n−2. These two results (4.48) and (4.49) together show that the synchronization
condition (4.47) for qubits 1 and 2 is satisfied since it is satisfied for every element of the
sum.

The second set of equations, (4.36) to (4.39), comprises constraints on a part of the at-
tractor X which does not affect the reduced dynamics of qubits 1 and 2, yet can still be
relevant for other qubit pairs. Because in the case of multiindices ~j,~j+1 that are matching
up to a single position, say the kth one, the reduced attractor Tr1...(k−1)(k+1)...nX contains
elements with coefficients appearing in (4.36) to (4.39). That makes this set of equations
especially important as it represents a type of constraints on X non-existing in the case of
only two qubits which could, theoretically, together with similar constraints produced by
other Lindblad operators L(ij) enforce trivial asymptotic dynamics of some or all individual
qubits in the network.
To continue, let us consider the quadruples of equations (4.36) to (4.39) with the same
multiindices ~j,~j+1 in all four equations. Divided by b or b̄ respectively, (4.36) substracted
from (4.39) implies

X01~j+1

01~j
= X10~j+1

10~j
. (4.50)

That makes (4.39) a multiple of (4.36) and (4.38) a multiple of (4.37). The summation of
(4.36) and (4.37) further yields

X10~j+1

01~j
= X01~j+1

10~j
, (4.51)

The whole set thus reduces to (4.50), (4.51) and

X00~j+1

00~j
−X01~j+1

01~j
+X01~j+1

10~j
= 0, (4.52)

∀~j,~j + 1 ∈ {0, 1}n−2. Naturally, these constraints alone are not enough for the QMDS to
enforce synchronization on any additional qubit pair. They do, nevertheless, show to what
extend and how the synchronizing operator L (4.22) applied to qubits 1 and 2 affects the
asymptotic time evolution of the remaining parties, and constitute a part of its effect on
mutual correlations.

Finally, the remaining two sets, i.e. equations (4.40) to (4.45), concern exclusively higher
order correlations and no reduced single-qubit dynamics.
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Analogous analysis can be performed for a stationary attractor Xst ∈ X0. The commuta-
tion relations (4.31) yield

Xst
00~i
00~i
−Xst

01~i
01~i

+Xst
01~i
10~i

= 0, (4.53)

−Xst
00~i
00~i
−Xst

10~i
01~i

+Xst
10~i
10~i

= 0, (4.54)

Xst
01~i
01~i
−Xst

10~i
01~i
−Xst

00~i
00~i

= 0, (4.55)

Xst
01~i
10~i
−Xst

10~i
10~i

+Xst
00~i
00~i

= 0, (4.56)

∀~i ∈ {0, 1}n, i.e. the already solved set of equations (4.36) to (4.39) for X with a substitute
~i for both ~j and ~j+ 1, and four more sets of equations which are irrelevant for the reduced
attractor Tr3...nXst. Hence

Xst
01~i
01~i

= Xst
10~i
10~i
, (4.57)

Xst
10~i
01~i

= Xst
01~i
10~i
, (4.58)

Xst
00~i
00~i

= Xst
01~i
01~i

+Xst
01~i
10~i
, (4.59)

∀~i ∈ {0, 1}n, the consequence of which is that the condition of complete synchronization
(2.4) for qubits 1 and 2, reduced here to Tr2...nXst = Tr13...nXst or explicitly∑

~i∈{0,1}n−2

Xst
01~i
01~i

=
∑

~i∈{0,1}n−2

Xst
10~i
10~i
, (4.60)

is satisfied because it is satisfied for every element of the sum due to (4.57). The QMDS
completely synchronizes qubits 1 and 2, as was to be expected.

So far we have described the constraints on attractors relevant for the asymptotic reduced
states of qubits 1 and 2 induced by the Lindblad operator L(12), showing that their com-
plete synchronization is enforced also in the case of an otherwise arbitrary qubit network.
Furthermore, we obtained some additional information about how the parts of the attrac-
tor space relevant in regard to the asymptotics of the remaining qubits and to some of the
system correlations are affected.
Let us complete the picture by discussing the reduced two-qubit attractors for qubits 1
and 2. Attractors lying in the subspaces X0 and XE1−E0 were already analyzed, so only
the subspace X2E1−2E0 is left. Assume Xc ∈ X2E1−2E0 . From the constraints given by the
commutation relations (4.31), a single one is non-trivial for Tr3...nXc, namely

Xc
11~i
00~i

= 0. (4.61)

Summarizing briefly, while still having only partial information about the attractor space
Att(T ), we have uncovered the form of a general reduced two-qubit attractor of qubits 1
and 2, i.e. Tr3...nX, X ∈ Att(T ), and showed that it corresponds to an element of the
attractor space of a QMDS on two qubits generated by the same Lindblad operator L.
Indeed, with a slight abuse of notation, if X ∈ Att(T ) then Tr3...nX ∈ Att(TL2) given by
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(C.7).

The effect of L(12) discussed, we proceed with applying the synchronizing operator L (4.22)
to all pairs of nodes in the qubit network. Formally speaking, we assume the interaction
graph to be the complete directed graph. That is the evolution is described by a QMDS
whereof generator takes the form

L(ρ) = −i[H, ρ] +
∑

i,j∈{1,...,n}

L(ij)ρ(L(ij))† − 1

2

{
(L(ij))†L(ij), ρ

}
, (4.62)

where H is the free Hamiltonian (4.1) and L(ij) is given by (4.6) and (4.7) respectively
with L given by (4.22). Later we will refine the assumption to a general weakly connected2

interaction graph.

In the above the qubits 1 and 2 together with the Lindblad operator L(12) can easily
be replaced by an arbitrary pair p, q ∈ {1, . . . , n}, implying immediatelly that complete
synchronization is enforced for any pair of adjacent qubits, in this case for all qubits in
the network. This can also be demonstrated directly. Let X ∈ XE1−E0 . The attractor
is determined by the commutation relations (4.10), i.e. for each pair of qubits p and q it
holds [

L(pq), X
]

=
[
(L(pq))†, X

]
= 0. (4.63)

The commutation relations (4.63) thus recreate the equations (4.32) to (4.45) and further
yield their analogues for every qubit pair. For the reduced single-qubit dynamics we are
primarily concerned with a subset of these equations, namely with the constraints

−X~i 1~j 1~k
~i 0~j 1~k

+X
~i 1~j 1~k
~i 1~j 0~k

= 0, (4.64)

X
~i 0~j 1~k
~i 0~j 0~k

= 0, (4.65)

X
~i 1~j 0~k
~i 0~j 0~k

= 0, (4.66)

∀~i ∈ {0, 1}p−1,~j ∈ {0, 1}q−p−1,~k ∈ {0, 1}n−q, all for every pair of distinct indices p, q ∈
{1, . . . , n}. These are the equations (4.48) and (4.49) for all individual qubit pairss. We
can rewrite them using simplified notation

−X ...1...1...
...0...1... +X ...1...1...

...1...0... = 0, (4.67)

X ...0...1...
...0...0... = 0, (4.68)

X ...1...0...
...0...0... = 0, (4.69)

bearing in mind that the dots stand for respective appropriate multiindices. The synchro-
nization condition (2.2) for an arbitrary pair of qubits p and q reads

2A graph is weakly connected if replacing all its edges with undirected edges results in a connected
graph. A weakly connected interaction graph means that every qubit in the network interacts with at least
one other qubit, one way or another.
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Tr1...(q−1)(q+1)...nX = Tr1...(p−1)(p+1)...nX, (4.70)

or explicitly∑
~i∈{0,1}p−1,
~j∈{0,1}q−p−1,
~k∈{0,1}n−q

X
~i 0~j 1~k
~i 0~j 0~k

+X
~i 1~j 1~k
~i 1~j 0~k

=
∑

~i∈{0,1}p−1,
~j∈{0,1}q−p−1,
~k∈{0,1}n−q

X
~i 1~j 0~k
~i 0~j 0~k

+X
~i 1~j 1~k
~i 0~j 1~k

, (4.71)

and it is always satisfied since it is satisfied for every element of the sum due to (4.64),
(4.65) and (4.66). This can be best seen rewriting (4.71) as∑

X ...0...1...
...0...0...︸ ︷︷ ︸

=0

−X ...1...0...
...0...0...︸ ︷︷ ︸

=0

+X ...1...1...
...1...0... −X ...1...1...

...0...1...︸ ︷︷ ︸
=0

= 0. (4.72)

Similarly, for Xst ∈ X0 the commutation relations (4.10) yield, among other things, equa-
tions (4.53) to (4.56) and their other-qubit-pair analogues, which give after manipulation

Xst
~i 0~j 1~k
~i 0~j 1~k

= Xst
~i 1~j 0~k
~i 1~j 0~k

, (4.73)

Xst
~i 1~j 0~k
~i 0~j 1~k

= Xst
~i 0~j 1~k
~i 1~j 0~k

, (4.74)

Xst
~i 0~j 0~k
~i 0~j 0~k

= Xst
~i 0~j 1~k
~i 0~j 1~k

+Xst
~i 0~j 1~k
~i 1~j 0~k

, (4.75)

∀~i ∈ {0, 1}p−1,~j ∈ {0, 1}q−p−1,~k ∈ {0, 1}n−q, all for every pair of distinct indices p, q ∈
{1, . . . , n}. In the simplified notation then

Xst
...0...1...
...0...1... = Xst

...1...0...

...1...0..., (4.76)

Xst
...1...0...
...0...1... = Xst

...0...1...

...1...0..., (4.77)

Xst
...0...0...
...0...0... = Xst

...0...1...

...0...1... +Xst
...0...1...
...1...0.... (4.78)

Consequently, the condition of complete synchronization (2.4), reduced here to

Tr1...(p−1)(p+1)...nXst = Tr1...(q−1)(q+1)...nXst, (4.79)

is satisfied for an arbitrary pair of qubits p and q since∑
Xst

...0...1...

...0...1... −Xst
...1...0...
...1...0...︸ ︷︷ ︸

=0

= 0, (4.80)

due to (4.73).

To sum up, a QMDS with generator L given by (4.62), i.e. a QMDS generated by a
two-qubit Lindblad operator L (4.22) and a complete interaction graph, corresponding to
pairwise application of the operator L to all nodes, enforces complete synchronization of
all qubits within the system.
What we have not shown so far is that the evolution given by such a QMDS does not kill
the reduced single-qubit dynamics entirely. After all, we ignored a significant portion of all
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the constraints on the attractor space stemming from the commutation relations (4.10). In
particular, we did not consider the analogues of the equations (4.36) to (4.39), respectively
(4.50) to (4.52) after manipulation, which describe the effects of Lindblad operators L(ij)

on the reduced dynamics of the other-than-applied-to qubits. Those read

X ...0...1...
...0...1... = X ...1...0...

...1...0... , (4.81)

X ...1...0...
...0...1... = X ...0...1...

...1...0... , (4.82)

X ...0...0...
...0...0... = X ...0...1...

...0...1... +X ...0...1...
...1...0... , (4.83)

for every pair of positions of the dislayed indices and all possible multiindices in places of
dots such that the coefficients X~i~j satisfy ~|i| = ~|j| + 1. We will not solve these equations.
Instead, to prove that the QMDS preserves the reduced single-qubit dynamics, except for
a very specific choice of initial conditions, we construct an attractor from XE1−E0 whose
contribution to the partial trace onto each single-qubit subsystem is, in general, nonzero.
Consider X ∈ XE1−E0 of the form

X = |11 . . . 1〉〈01 . . . 1|+ · · ·+ |1 . . . 11〉〈1 . . . 10| , (4.84)

a sum of all basis elements with just a single zero appearing in them. As an attractor,
X is constrained exclusively by the equations (4.64), which it satisfies, and hence truly
X ∈ Att(T ). The fact that such an attractor exists guarantees that the asymptotic evo-
lution of individual qubits given by our QMDS is non-trival for almost all initial conditions.

Let us finish this part with pointing out that the assumption of the interaction graph being
a complete directed graph is unnecessarily strong for the complete synchronization of the
entire network to be achieved. Instead, it is enough to assume any weakly connected graph.
Indeed, what is needed is that no two qubits are dynamically separated, i.e. for any pair
of qubits there exists a chain of two-qubit interactions connecting them which effectively
results in a non-direct interaction between them. Consequently, the enforced constraints
(4.64) to (4.66) and (4.73) cover and link every single pair of qubits in the network. Since
they imply simple equalities, the transitivity does the rest of the work. This requirement
stated formally is that replacing all edges with undirected ones there exists a path between
each pair of vertices, which means precisely that the interaction graph is weakly connected.
The non-triviality of the asymtotic single-qubit dynamics certainly remains ensured as the
step from the complete to a weakly connected graph results at the most in some of the
constraints on attractors being removed.

4.2.2 Two qubit synchronization mechanisms in qubit networks

In the previous subsection it was demonstrated how a simple synchronizing two-qubit
Lindblad operator can be applied to a qubit network, and that it is capable of enforcing
synchronization of any pair of adjacent qubits, in particular of all qubits in the entire
network in the case of a weakly connected interaction graph. Moreover, the particular
investigated mechanism does so without destroying the reduced single-qubit dynamics. In
the following we generalize these results. On the one hand, we show that all two-qubit
synchronization-enforcing Lindblad operators from chapter 3 enforce the corresponding
type of synchronization also on qubit networks, on the other hand we demonstrate that
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some of them simultaneously render the single-qubit dynamics trivial.

Let L ∈ B(H ⊗2
0 ) be a two-qubit synchronizing Lindblad operator, G ∈ Rn×n be the

adjacency matrix of an interaction graph and T be the QMDS with generator L given by
(4.9). Let us denote Labcd, where a, b, c, d ∈ {0, 1}, the matrix elements of L given by the
decomposition

L =
∑

a,b,c,d∈{0,1}

Labcd |ab〉〈cd| , (4.85)

similarly to the ceofficients X~i~j . Then, for an attractor X ∈ Att(T ) the commutation
relations (4.10) yield for every pair of indices p, q ∈ {1, . . . , n}, p < q, such that Gpq 6= 0
the following set of equations∑

r,s∈{0,1}

LabrsX
~i r~j s~k
~l c ~md~n

− LrscdX
~i a~j b~k
~l r ~ms~n

= 0, (4.86)

∀~i,~l ∈ {0, 1}p−1, ∀~j, ~m ∈ {0, 1}q−p−1, ∀~k, ~n ∈ {0, 1}n−q, and ∀a, b, c, d ∈ {0, 1}. Analo-
gously for p > q. Using again the simplified notation for improved intelligibility, (4.86)
reads

∑
r,s∈{0,1}

LabrsX
...r...s...
...c...d... − LrscdX ...a...b...

...r...s... = 0, (4.87)

∀a, b, c, d ∈ {0, 1}. Here the indices a and b, r and s, and c and d are on the pth and qth

position respectively.
From these constraints we are particularly interested in those where ~i = ~l,~j = ~m,~k = ~n so
that we can analyze the parts of the attractor X which do not vanish when tracing out the
n-2 or n-1 subsystems and thus are relevant for the reduced attractors Tr1...(p−1)(p+1)...(q−1)(q+1)...nX,
Tr1...(p−1)(p+1)...nX and Tr1...(q−1)(q+1)...nX. Furthermore, we are primarily concerned with
the restrictions onto some of the subspaces Xk(E1−E0), namely XE1−E0 to discuss synchro-
nization, X0 to further explore complete synchronization and optionally X2E1−2E0 to get
the full reduced attractor space of adjacent qubit pairs.

The main reason for the general form (4.86) and discussion of the commutation relations
(4.10) is to demonostrate that their most relevant subsets, described in the previous para-
graph, were already thoroughly analyzed and solved in chapter 3.
Indeed, since the Lindblad operator L(pq) acts locally on qubits p and q, n − 2 elements
of each multiindex appearing in the terms X~i~j

~|i〉 ~〈j| of the attractor decomposition (4.12)
are unaffected by its action. The commutation relations thus yield up to 22(n−2) sets
of equations of the form (4.86) identical in shape except for the change in multiindices
~i to ~n. Not only can all those sets of equations be solved simultaneously, by crossing
out the multiindices ~i to ~n we obtain the previously investigated commutation relations
for a system of two qubits, as leaving the multiindices out is equivalent to assuming
n = 2. Restricting ourselves to a subset of the attractor space such that the partial
trace Tr1...(p−1)(p+1)...(q−1)(q+1)...nX is non-trivial for every element X from this subset,
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the number of the sets of equations stemming from the commutation relations for each
operator L(pq) further reduces to 2(n−2). They also simplify slightly to∑

r,s∈{0,1}

LabrsX
~i r~j s~k
~i c~j d~k

− LrscdX
~i a~j b~k
~i r~j s~k

= 0, (4.88)

∀~i ∈ {0, 1}p−1,∀~j ∈ {0, 1}q−p−1,∀~k,∈ {0, 1}n−q, and ∀a, b, c, d ∈ {0, 1}.

More importantly, an attractor X ∈ Xk(E1−E0) is associated with the same eigenvalue
k(E1−E0) as its two-qubit counterpart or reduced attractor Tr1...(p−1)(p+1)...(q−1)(q+1)...nX,
and this restriction ensures that no additional terms appear in the equations (4.88) com-
pared to the two-qubit case when assuming X from a particular subset Xk(E1−E0). This
is because the associated eigenvalue k(E1 − E0) is fully determined by the two indices on
the pth and the two indices on qth positions in the attractor deceompositon (4.12).
Consequently, we already have partial solutions for X ∈ X0, X ∈ XE1−E0 and X ∈
X2E1−2E0 of the just described subset (4.88) of constraints (4.86) for every two-qubit syn-
chronizing normal Lindblad operator L. We write partial for we have complete solutions
for every fixed pair of indices p and q, i.e. for every Lindblad operator L(pq), separately,
but not the intersection of these solutions which together with other constraints determine
the attractor space.

It is worth emphasizing that the restriction to (4.88) does not cover all constraints imposed
on an attractor X ∈ X0, X ∈ XE1−E0 or X ∈ X2E1−2E0 by the commutation relations
(4.86). It is a valuable tool to straightforwardly demontrate that all QMDS constructed
using any two-qubit synchronizing Lindblad operator L and an arbitrary weakly connected
interaction graph enforce synchronization of the entire network, yet it does not address the
fact that some of those QMDS actually kill the reduced single-qubit dynamics completely.
Therefore, we will go through several classes of synchronizing normal Lindblad operators
L from chapter 3 and individually discuss their properties with respect to qubit networks.
Let X ∈ XE1−E0 and Xst ∈ X0, both in the parameterization (4.12), and assume the
interaction graph to be weakly connected.

First, consider the case L = L1 given by (3.54). The commutation relations (4.88) follow
the pattern of equations (3.44) to (3.49) for X and the pattern of (3.124) to (3.129) for
Xst, implying particularly

X ...0...1...
...0...0... = X ...1...0...

...0...0... , (4.89)

X ...1...1...
...0...1... = X ...1...1...

...1...0... , (4.90)

Xst
...0...1...
...0...1... = Xst

...1...0...

...1...0..., (4.91)

for all adjacent pairs of qubits. Due to the weak connectivity of the interaction graph
and transitivity of equality, (4.89), (4.90) and (4.91) hold for every pair of qubits in the
network, i.e. for every pair of displayed indices. The condition of complete synchronization
(2.4), here

Tr2...nX = · · · = Tr1...(n−1)X, (4.92)
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Tr2...nXst = · · · = Tr1...(n−1)Xst, (4.93)

written equivalently for an arbitrary pair of qubits reads after rearanging∑
X ...0...1...
...0...0... −X ...1...0...

...0...0...︸ ︷︷ ︸
=0

+X ...1...1...
...1...0... −X ...1...1...

...0...1...︸ ︷︷ ︸
=0

= 0, (4.94)

∑
Xst

...0...1...

...0...1... −Xst
...1...0...
...1...0...︸ ︷︷ ︸

=0

= 0, (4.95)

and is satisfied due to (4.89), (4.90) and (4.91). The corresponding QMDS enforces com-
plete synchronization. To show that it does not concurrently kill the reduced single-qubit
dynamics except for a very specific choice of initial conditions, we present an example of an
attractor X ∈ XE1−E0 ∩Att(T ) subject exclusively to constraints (4.89) which it satisfies,
namely

X = |10 . . . 0〉〈00 . . . 0|+ · · ·+ |0 . . . 01〉〈0 . . . 00| , (4.96)

that has a non-trivial partial trace onto each single-qubit subsystem. Similarly to the
illustrating example discussed in subsection 4.2.1.
Such an attractor can, in fact, be found systematically. The constraints (4.86) for X ∈
XE1−E0 can be sorted by the value of ~|i|+ ~|j|+ ~|k| − ~|l| − ~|m| − ~|n|, as was done for (4.32)
to (4.45), to demonstrate which of the equations (4.86) not contained in (4.88) can affect
the part of attractor X with non-trivial partial trace onto at least one of the single-qubit
subsystems. These are the equations with ~|i|+ ~|j|+ ~|k|− ~|l|− ~|m|− ~|n| = 1, which necessarily
follow the pattern of (4.88) for Xst ∈ X0, with one of the upper multiindices replaced by
itself +1. That is because the elements Xi1...in

j1...jn
|i1 . . . in〉〈j1 . . . jn| constituting such a part

of the attractor X need to have all but a single pair of indices ia, ja pairwise matching,
including especially the indices on the positions affected by the action of the Lindblad
operator.

Unsurprisingly, the same can be shown also in the case L = L2 given by (3.60). A QMDS
given by (4.9) where L = L2 enforces complete synchronization of all qubits in the network
for every weakly connected interaction graph and almost all initial conditions. Since the
reasoning behind is practically identical to the case L = L1, we skip the proof.

Next, we discuss the remaining cases L = Lα±. We present in detail only the instance
L = L 1√

2
±, both derivation and results are analogous for a general α ∈ (0, 1). In the same

way as for L1 and L2, the commutation relations (4.88) for X ∈ XE1−E0 immediately imply
pairwise synchronization of reduced single-qubit dynamics, hence also the synchronization
of all qubits in the network for every weakly connected interaction graph. The key question
is whether the resulting single-qubit evolution will be non-trivial.
The operator L 1√

2
± differs from L1, L2 in one key aspect. The attractor space of its as-

sociated QMDS is not permutation invariant, neither by itself nor in the intersection with
XE1−E0 , see 5.2 for details. This fact limits the possible interaction graphs which may re-
sult in non-trivial asymptotic evolution. For any two adjacent qubits p and q connected by
directed edges in both directions the attractorX needs to satisfy the commutation relations
for both L(pq) and L(qp) and, consequently, the reduced attractor Tr1...(p−1)(p+1)...(q−1)(q+1)...nX
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necessarily lies in some permutation invariant subspace of the attractor space of the corre-
sponding two-qubit QMDS (3.174). Since such a subspace is trivial in the intersection with
XE1−E0 due to the form of (3.174), the reduced attractor is always stationary. Because
of the enforced synchronization with other qubits, the asymptotic dynamics of all reduced
single-qubit states throughout the entire network are trivial.
Interestingly, the same can be shown for any weakly connected interaction graph containing
at least one vertex of a degree bigger than or equal to two, i.e. for any network where there
exists a qubit interacting with at least two other qubits (or a pair of qubits interacting
in a way just described). And that is bassicaly any non-trivial network of more than two
qubits. Indeed, assume a weakly connected interaction graph such that its adjacency matrix
G satisfies Gpq = Gqr = 1, i.e. the qubit p is adjacent to q and q is adjacent to r, without
loss of generality p < q < r, and the synchronizing operator L is applied in this order. In
other words, the Lindbladian (4.9) contains L(pq) and L(qr). The commutation relations
(4.86) for X ∈ XE1−E0 yield several sets of equations out of which we are particularly
interested in

X ...0...1...
...0...0... = X ...1...1...

...0...1... , (4.97)

X ...1...0...
...0...0... = X ...1...1...

...1...0... , (4.98)

X ...0...1...
...0...1... = X ...1...0...

...1...0... , (4.99)

X ...1...0...
...0...0... = ∓iX ...0...1...

...0...0... , (4.100)

X ...0...0...
...0...0... = X ...0...1...

...0...1... ± iX ...0...1...
...1...0... , (4.101)

X ...1...1...
...1...1... = X ...0...1...

...0...1... ∓ iX ...0...1...
...0...0... , (4.102)

where the dots stand for every possible combination of multiindices such that the coef-
ficients X~i~j are coefficients of the basis decomposition (4.12) of the attractor X, and the
explicitly displayed indices are on the positions of adjacent qubit pairs, especially on the
positions p,q and r. The asymptotic dynamics of the qubit q is determined by the reduced
attractor Tr1...(q−1)(q+1)...nX which, written with emphasis on the interaction with qubits
p and r, reads

Tr1...(q−1)(q+1)...nX =
(∑

X ...0...1...0...
...0...0...0... +X ...0...1...1...

...0...0...1... +X ...1...1...0...
...1...0...0... +X ...1...1...1...

...1...0...1...

)
|1〉〈0| .
(4.103)

For the coefficients it follows from (4.97),(4.98) and (4.99) that

X ...0...1...0...
...0...0...0... = X ...1...1...1...

...1...0...1... , (4.104)

from (4.97), (4.98), (4.101) and (4.102) that

X ...0...1...1...
...0...0...1... +X ...1...1...0...

...1...0...0... = 2X ...1...1...1...
...1...0...1... , (4.105)

and from (4.97), (4.98) and (4.100) that

X ...0...1...1...
...0...0...1... +X ...1...1...0...

...1...0...0... = 0. (4.106)

Put together, (4.104),(4.105),(4.106) imply
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∑
X ...0...1...0...
...0...0...0... +X ...0...1...1...

...0...0...1... +X ...1...1...0...
...1...0...0... +X ...1...1...1...

...1...0...1... = 0, (4.107)

which in turn gives

Tr1...(q−1)(q+1)...nX = 0. (4.108)

The reduced dynamics of the qubit q necessarily vanishes in the asymptotics. Consequently,
so does the reduced dynamics of every qubit in the network due to mutual synchronization.
The same result is achieved when assuming different orientations of the edges between p
and q, and q and r, realizable by substituting L(pq), L(rq) or L(qp), L(qr) for L(pq), L(qr),
that is for both two incoming and two outcoming edges instead of one incoming to and
one outcoming from the vertex q. Changing orientation merely flips the sign of ± and ∓
in (4.100), (4.101), (4.102) for the particular interaction, the derivation of (4.108) in these
cases is analogous.

To sum up, the Lindblad operators L 1√
2
± (3.145), and similarly Lα± (3.112), are unsuitable

for the synchronization of qubit networks since they kill the asymptotic reduced dynamics
of all single qubits for any non-trivial network of more than two parties. Conversely, the
operators L1 (3.54) and L2 (3.60), including the operators Ls (3.161), enforce non-trivial
complete synchronization of all qubits in any network with an interaction graph that is at
least weakly connected.



Chapter 5

Properties of two-qubit synchronizing
and phase-locking maps

In chapter 3 we found and described the generators of all possible QMDS with normal
Lindblad operators that enforce synchronization or phase-locking of two qubits. We further
found their respective attractor spaces and provided their full parameterization. In chapter
4 we showed how the two-qubit generalized synchronization mechanisms can be applied to
qubit networks. This chapter is devoted to the study of their various other properties. We
once again restric ourselves to the case of two qubits, as our aim si to better understand
the very nature of generalized synchronization mechanisms on the basic level.

5.1 Visibility of asymptotic reduced states

Synchronization and phase-locking are mediated by the interaction of subsystems with
their common environment. Such irreversible processes are typically accompanied by de-
coherence and dephasing, i. e. by information leak into the environment. In open quantum
systems, synchronization processes are inevitably accompanied with gradual loss of infor-
mation about the initial state and possible destruction of internal dynamics of the subsys-
tems. While in the transient synchronization such processes lead to complete relaxation
of the whole system, in the asymptotic synchronization and phase-locking the internal dy-
namics at least partly survive. Thus, in this part we address the following question. Once
an initial state of two qubits is synchronized or phase-locked by one of the mechanisms
described in chapter 3, how visible and detectable will the resulting non-trivial time evo-
lution of the individual qubit states be? To what extend does the internal dynamics of
qubits survive the process of generalized synchronization?

For a global two-qubit state ρ(t) ≡ (ρij)(t) ∈ B(H ⊗2
1 ) the reduced states ρA(t), ρB(t) ∈

B(H1) read

ρA =

(
ρ11(t) + ρ22(t) ρ13(t) + ρ24(t)
ρ31(t) + ρ42(t) ρ33(t) + ρ44(t)

)
, (5.1)

ρB =

(
ρ11(t) + ρ33(t) ρ12(t) + ρ34(t)
ρ21(t) + ρ43(t) ρ22(t) + ρ44(t)

)
. (5.2)

69
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A general density matrix ρ(t) ∈ B(H1) describing a state of a qubit has the form

ρ(t) =

(
x yeiEt

ȳe−iEt 1− x

)
, (5.3)

where y ∈ C, x,E ∈ R, and from the positivity of ρ(t) it holds |y| ≤
√
x− x2. In our

case E = E0 − E1 as given by the Hamiltonian (3.2). In the asymptotics, the evolution
is driven by (1.16) and hence the coefficents x, y are determined by the elements of dual
basis of the attractor space acting on the initial state.

Remark: The asymptotic state is strongly dependent on initial conditions. Seemingly, for
a given synchronizing map we could choose such an initial state that when projected onto
the attractor space, the part responsible for non-trivial time evolution in the asymptotics
vanishes. In such a case the synchronization mechanism kills the internal dynamics in spite
of the presence of an attractor associated with a non-zero eigenvalue in the attractor space.
This is inevitable since quantum evolution always has a fixed point. However, this would
require a very specific choice of the initial state as it would have to lie in the orthogonal
complement of the mentioned attractor in the space of all operators on the system Hilbert
space. This orthogonal complement is a set of codimension at least one (there might exist
more independent such attractors) and will consequently constitute a set of measure zero
in the space of all states. We can conclude that a synchronizing, respectively phase-locking
map enforces generaliezd synchronization with non-trivial asymptotic evolution for almost
every initial condition.

The question remains how perceptible this asymptotic evolution will be. To extract the
information about the time evolution we can calculate the expectation value 〈σ1〉 (t) =
Tr
{
ρ†(t)σ

}
of the observable

σ =

(
0 1
1 0

)
. (5.4)

For a general qubit state (5.3) this results, after manipulation, into

〈σ〉 (t) = |y| cos(Et+ φ), (5.5)

where φ ∈ R accounts for the phase of y. Equivalently, we could express the probabilities
p1 = Tr{ρ(t)M1}, p2 = Tr{ρ(t)M2} of the corresponding projective measurements M1 =
0
1(|0〉+ |1〉)(〈0|+ 〈1|) and M2 = 0

1(|0〉 − |1〉)(〈0| − 〈1|). It holds

p1(t) =
1

2
{1 + 2|y| cos(Et+ φ)} , (5.6)

p2(t) =
1

2
{1− 2|y| cos(Et+ φ)} , (5.7)

(p1 − p2) (t) = 2|y| cos(Et+ φ). (5.8)

Therefore, the visibility of the time evolution in the asymptotics scales with |y|, the abso-
lute value of the off-diagonal parameter y. The greater the |y|, the bigger the amplitude in
(5.5) and the easier it is to observe the non-trivial evolution of a qubit in the state (5.3).
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We will now compare the attractor spaces of synchronizing and phase-locking maps de-
scribed in section 3.3, chapter 3, as they limit the possible asymptotic states, to see if the
choice of the generalized synchronization mechanisms in general affects how well the inter-
nal dynamics is preserved. The aim is to study visibility independently of initial conditions,
despite the fact that they play a crucial role in determining the asymptotic state and hence
a very few conclusions may be drawn without specifying them. It will be shown that in
some cases the evolution map may actually limit or suppress the visibility of the time evo-
lution of the resulting synchronised asymptotic states, irrespective of the initial conditions.

Any asymptotic state of a QMDS lies in its attractor space. Therefore, assume an element
X of the attractor space of a QMDS, which is also a state. Using parameterizations (3.15)
and (3.121) for its dynamical and stationary parts, the reduced one-qubit states XA, XB

read

XA =

(
A+B β + γ
β̄ + γ̄ E + F

)
, (5.9)

XB =

(
A+ E α+ δ
ᾱ+ δ̄ B + F

)
. (5.10)

In the parameterization (5.3) of a general qubit state, the time t set to zero, these two
reduced states correspond to

x = A+B, (5.11)

y = β + γ, (5.12)

for qubit A and

x = A+ E, (5.13)

y = α+ δ, (5.14)

for qubit B. Let the assumed QMDS be one of the synchronizing, respectively phase-locking
maps discovered in chapter 3. The two qubits being synchronized in the generalized sense,
(3.21) holds and thus the deciding factor |y| is the same for both of them. It is also
independent of the phase shift ϕ. Depending on the synchronization mechanism, additional
constraints on A,B,E, α, β, γ, δ may apply.
Let us first address the stationary part. Regardless of the particular synchronizing map,
the corresponding attractor space yields effectively no limitations on the possible values
of parameter x for either of the qubits. It varies with the initial conditions over its en-
tire range for each generalized synchronization mechanism. Thus, it is only the part of
the attractor space associated with the non-trivial time evolution that can pose initial-
condition-independent restrictions on the visibility of asymptotic sates. We are concerned
solely with the value of |y|, which in turn is given by (5.12). For all completely synchro-
nizing maps, described in section 3.2, chapter 3, the parameters β and γ determining y
are either independent, as it is the case for Lindblad operators L1 and L2 given by (3.54),
(3.60), or linearly dependent for the operators L 1√

2±
given by (3.145). If so, γ = ∓iβ.
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In either case, the visibility parameter |y| is in general not limited by the particular syn-
chronizing mechanism and can reach any value between 0 and 1

2 , depending on the initial
conditions.
We conclude that all completely synchronizing maps exhibit the same visibility of the
asymptotic evolution.

On the other hand, for the synchronizing maps generated by Lindblad operators Lα± given
by (3.112), the form of a general attractor (3.173) results in the value of y depending not
only on the initial conditions, but also on a parameter α of Lα± itself. In particular, the
attractor X given by (3.94), which is a generator of the attractor space corresponding to
the non-trivial asymptotic dynamics, reads after normalisation

X =
1√
2


0 α ±ie−iϕ

√
1− α2 0

0 0 0 ±ie−iϕs
√

1− α2

0 0 0 −sα
0 0 0 0

 , (5.15)

where s is given by (3.114). It is the projection of an initial state onto this attractor X
that determines the value of the visibility parameter |y|. It holds

y ∝ α
√

1− α2. (5.16)

Varying α accounts for the choice of a particular class of synchronizing Lindblad opera-
tors and does not change the norm of attractor X in (5.15), making it a suitable tool for
comparing the synchronizing mechanisms with respect to the visibility of asymptotic states.

We can plot the factor above as a function of α.
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Figure 5.1: Plot of the proportional factor α
√

1− α2 of the visibility parameter |y| for
synchronizing maps generated by Lindblad operators Lα± given by (3.112).
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We can see that in the case of Lindblad operators Lα± with the value of α close to 0 or
1 the asymptotic dynamics is strongly suppressed. The asymptotic reduced states will
resemble stationary ones, independently of the initial conditions. Interestingly, the plot-
ted function reaches its maximum for α = 1√

2
when the class of Lindblad operators Lα±

becomes completely synchronizing. From this point of view the generalized complete syn-
chronization results in, perhaps counterintuitively, better visibility than the less restrictive
synchronization or phase-locking.

Remark: Note that the enforced phase shift ϕ between the two qubits plays no role what-
soever in respect of visibility.

5.2 Global symmetry of synchronized states

By their very nature, the complete synchronization mechanisms make two qubits locally
indistinguishable. This section addresses a question whether the two qubits also become
indistinguishable from a global point of view. It turns out to depend on the particular
synchronizing mechanism.

Indistinguishability of a bipartite quantum state means that at any time of its evolution it
is described by a permutationally invariant state. By permutation invariance we mean that
the global state is invariant with respect to the exchange of the two qubits. Consequently,
no measurement can discern the order of the subsystems.
For a map to enforce asymptotic permutation invariance for arbitrary initial conditions,
any state lying in its attractor space need be permutation invariant. Formally, an attractor
X ∈ B(H ⊗2

1 ) is permutation invariant if it is invariant with respect to conjugation by the
SWAP operator, denoted here as Π = |00〉 〈00| + |01〉 〈10| + |10〉 〈01| + |11〉 〈11|, a special
case of Πkl, namely Π12, given by (4.4), (4.5). It holds Π = Π† = Π−1, and the condition
can be written as

X = ΠX Π−1. (5.17)

Denoting Xij the matrix elements of X, this condition simplifies into

X12 = X21, (5.18)
X34 = X24, (5.19)
X22 = X33, (5.20)
X23 = X32, (5.21)

(5.22)

or equivalently, in the parameterization (3.15) and (3.121) previously used, into
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α = β, (5.23)
γ = δ, (5.24)
B = E, (5.25)
C = D. (5.26)

We do not explicitly state the condition of permutation invariance (5.17) for the projection
of the attractor X onto the subspace XE1−E0 , related to the subspace XE0−E1 by complex
conjugation, as it is satisfied if and only if the conditions (5.18), (5.19), or equivalently
(5.23), (5.24), are.
Having fully described the attractor spaces of all synchronizing QMDS with normal Lind-
blad operators in section 3.3, chapter 3, we can directly conjugate a general element X of
the attractor space by Π for each of them to see whether (5.17) holds.

Firstly, let us state the obvious. Only purely synchronizing and no phase-locking maps
with a phase shift ϕ 6= 0 qualify. Clearly, in the case of a phase-locked non-sycnhronized
asymptotic state the exchange of qubits would affect the state and result in a violation
of (5.17). Written nearly unduly formally, the equations (5.23), (5.24) together yield
the synchronization condition (3.18) which contradicts the generalized synchronization
condition (3.21), unless the phase shift ϕ is zero or the reduced states of the attractor X
in question are stationary. Consequently, no phase-locking map but a synchronizing one is
compatible with permutation invariance of the asymptotic state, as is to be expected.
Among the purely synchronizing maps, naturally, only the completely synchronizing ones
need to be taken into account. Indeed, the condition (5.25) is the condition of complete
synchronization (3.122).

And now for the actual relevant cases. Consider Lindblad operators L1 and L2 given by
(3.54), (3.60), ϕ = 0 including the overlap of this two classes represented by the partial swap
operator (3.161). An arbitrary element X of the attractor space of a corresponding QMDS
has the form (3.158), (3.160) or (3.164) respectively, with ϕ = 0, which always satisfies
(5.17). Consequently, the permutation invariance of the asymptotic state is enforced for
all initial conditions.
On the other hand, consider QMDS with Lindblad operators L 1√

2
± given by (3.144), ϕ = 0.

An element X of the attractor space of such QMDS has the form (3.174) which violates
(5.17), specifically it violates the conditions (5.23), (5.24) and (5.26), unless all coefficients
involved are zero. That is a case of X stationary with additional restrictions and it would
require very specific initial conditions. In general, any non-stationary asymptotic state
of a QMDS with Lindblad operators L 1√

2
± of the form (3.144) is guaranteed not to be

permutation invariant.

We can sumarize these observations. A non-stationary asymptotic two-qubit state of a
QMDS with normal Lindblad operators is permutation invariant if and only if the QMDS
is generated by the completely synchronizing operators L1 or L2 of the form (3.54), (3.60),
ϕ = 0, including the case of partial swap operators (3.163). The Lindblad operators
L 1√

2
±, on the other hand, simultaneously enforce complete synchronization and prevent
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permutation invariance. Reduced states of a permutation invariant state are completely
synchronized, nonetheless, a global state of completely synchronized one-qubit reduced
states does not need to be permutation invariant.

5.3 Symmetry of synchronizing mechanisms

In the previous section we have shown that not all completely synchronizing mechanisms,
which make two qubits localy indistinguishable, also make them indistinguishable globally.
In the following text we explore the symmetry with respect to the exchange of qubits for
the synchronizing mechanisms themselves.

Permutation invariance of a two-qubit state X ∈ B(H ⊗2
1 ) is formally expressed as an

invariance with respect to conjugation by the SWAP operator (5.17). A particular syn-
chronizing mechanism represented by a Lindblad operator L acts on a state X via the
generator (3.1) of a QMDS governing the evolution. Since the Hamiltonian is permutation
invariant, the action of the Lindbladian on the state X with the two qubits exchanged can
be written using the conjugation of the state X by the SWAP operator both before and
after applying L.

ΠL(ΠXΠ)Π = −i[H,X] + Π(L(ΠXΠ)L†)Π− 1

2
Π
{
L†L,ΠXΠ

}
Π =

= −i[H,X] + (ΠLΠ)X(ΠLΠ)† − 1

2

{
(ΠLΠ)†(ΠLΠ), X

}
.

(5.27)

Therefore, to have a Lindblad operator L act on the two qubits in the opposite order
it needs to be replaced by ΠLΠ. This is a special case of operators L(kl), here L(21),
introduced via (4.7) in chapter 4 on networks. A synchronizing mechanism given by a
Lindblad operator L acts symmetrically on two qubits, namely it is invariant with respect
to the exchange of qubits, if

L = ΠLΠ (5.28)

holds. This is not entirely precise. Due to the form of generator (1.11) of a QMDS, two
Lindblad operator that differ only by a phase prefactor constitute identical Lindbladians
and generate the same evolution map. And we should account for this ambiguity. Hence,
we hone the statement above as follows. A synchronizing mechanism given by a Lindblad
operator L acts symmetrically on two qubits, namely it is invariant with respect to the
exchange of qubits, if there exists ψ ∈ R such that

L = eiψΠLΠ. (5.29)

Multiplying the matrices in defining expression (3.54),(3.60) and (3.112) of the synchroniz-
ing Lindblad operators L1, L2 and Lα±, see appendix C, equations (C.1), (C.6) and (C.9)
for the resulting single-matrix forms, and applying the conjugation by the SWAP operator,
we can directly see which of the mechanisms act symmetrically and which do not.
Clearly, we can immediatelly exclude all phase-locking-enforcing operators L with a phase
shift ϕ 6∈ {0, π} and incompletely synchronizing permutation-noninvariant-stationary-part-
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enforcing operators Lα± for α 6= 1√
2
. Hence, only the completely synchronizing and anti-

synchronizing operators L1, L2 and L 1√
2
± need to be discussed.

To begin with L 1√
2
±, these operators are permutation invariant for neither ϕ = 0 nor

ϕ = π. Interestingly, for both values of ϕ the conjugation by the SWAP operator changes
the operator class from one to the other, i.e. it takes an operator L 1√

2
+ to an operator

L 1√
2
− and vice versa. Moving to L1, L2 and starting with the case of synchronization,

ϕ = 0, it can be easily verified that both operators are permutation invariant if and only if
b = 0 in the parameterization (3.54)/(C.1) and (3.60)/(C.6) respectively. This includes but
is not limited to the overlapping class of operators Ls of the form (3.163)/(C.4), containing
the SWAP operator. Nevertheless, in the case b 6= 0 a synchronizing Lindblad operator
L1 or L2 subject to the symmetry transformation of conjugation by the SWAP operator
remains to be a synchronizing Lindblad operator of the same class. The transformation
merely changes b to −b. This gives us another set of symmetrically acting synchronization
mechanisms, namely the operators L1 and L2 where b 6= 0 and a = c = m = 0. Such
operators are not permutation invariant since ΠL1(2)Π = −L1(2), yet for the same reason
the generated QMDS remain unchanged by this transformation. It is the case of (5.29)
where ψ = π.
Finally, the antisynchronizing operators L1, L2, ϕ = π, are permutation invariant.

To sum up, only a small part of the synchronizing mechanisms uncovered in chapter 3 is
invariant with respect to the exchange of qubits. A vast majority of them does not treat the
qubits equally. There even exist Lindblad operators whereof corresponding QMDS result in
a permutation invariant asymptotic state for all initial conditions in spite of the Lindblad
operators not being permutation invariant themselves. However, for each such an operator
a permutation invariant Lindblad operator can be found within the same class. That is
the case of the synchronizing operators L1, L2. On the other hand, there are Lindblad
operators, namely the antisynchronizing operators L1, L2, which are permutation invariant
yet their corresponding QMDS enforce permutation non-invariant asymptotic states.

5.4 Mutual relation of synchronizing and phase-locking mech-
anisms

When defining different degrees of synchronization and phase-locking for the purpose of this
work we introduced the definitions of generalized synchronization and generalized complete
synchronization 2.1.3 to concurrently account for both synchronization and phase-locking
with a non-zero phase shift. Using these terms throughtout chapter 3 we managed to
simultaneously describe various two-qubit synchronization and phase-locking mechanisms
in the form of normal Lindblad operators and their respective attractor spaces. Notably,
we did so without ever specifying or otherwise limiting the possible phase shift between
the concerned parties. Indeed, notice that in the parameterizations 3.54, 3.60, 3.112 of
synchronizing, respectively phase-locking Lindblad operators L1, L2, Lα± the phase shift
ϕ appears as a free parameter which affects nothing but the achieved phase difference
between the two qubits. The relevant attractor is also the only part of the attractor space
of an associated QMDS that is subject to change when varying the parameter ϕ.
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From the particular expressions 3.54, 3.60, 3.112 for L1, L2, Lα±, covering all synchronizing
and phase-locking normal Lindblad operators on two qubits, the following is evident. The
set of all phase-locking operators with an arbitrary but fixed phase shift ϕ1 and the set
of all phase-locking operators with an arbitrary but fixed phase shift ϕ2 can be smoothly
deformed one into the other, and a simple mapping from the former to the latter changing
ϕ1 7→ ϕ2 is a homeomorphism in the subspace topology, induced by the standard topology
on R4×4. This holds also for ϕ1 = 0, i.e. for synchronizing Lindblad operators. Restriction
of such a map to any of the individual classes L1,L2, Lα± or to any other subset retains
this property.
From this point of view, the two-qubit synchronizing normal Lindblad operators do not
take up any distinctive place among phase-locking mechanisms, they merely represent their
particular subset. Morover, the smooth dependence of the achieved phase shift on the
chosen Lindblad operator is a very desirable property. It is a good starting point, perhaps
even a necessity for a possible future experimental realization of the studied system.

5.5 Entanglement generation and destruction

Synchronization and phase-locking are certain forms of correlation between the involved
parties. It is natural to ask whether during the evolution towards a synchronized or phase-
locked state any other form of correlation, such as entanglement, arises. In the following
we briefly address the relation between two-qubit generalized synchronization mechanisms
discovered in chapter 3 and entanglement of the asymptotic states.
The connection between synchronization and entanglement formation has been tackled in
the literature without much success so far. It is an open question and, unfortunately, it will
remain so throughout this section as well. Equipped with a broad class of synchronizing
and phase-locking QMDS, we can, theoretically, judge whether some of them inevitably en-
force generation, destruction or preservation of entanglement between the qubits and when.
Practically, it turns out to be a real hassle. If anything, we obtained evidence suggesting
that synchronization and entanglement formation or destruction are not directly correlated.

For a quantification of entanglement of two-qubit states we use concurrence, an explicitly
calculable entanglement monotone, monotonously related to the entanglement of formation
[30], [31]. The two concepts are defined as follows.

Given a pure state ρ = |ψ〉 〈ψ|, the entropy of entanglement E is defined as the entropy of
either subsystem

E(ρ) = −Tr(ρA log ρA) = −Tr(ρB log ρB). (5.30)

For a mixed state ρ the entanglement of formation is defined to be the average entropy of
entanglement of the pure states in a pure state decomposition, minimized over all possible
decompositions

E(ρ) = inf
∑
i

piE(ρi), (5.31)
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where ρ =
∑

i piρi =
∑

i pi |ψi〉 〈ψi| stands for a pure state decomposition. It turns out
that for two-qubit states this quantity can be explicitly expressed and calculated.

For a pure state |ψ〉 the concurrence C is defined as

C(|ψ〉) =
∣∣∣〈ψ| ˜|ψ〉

∣∣∣, (5.32)

where ˜|ψ〉 stands for the result of applying a spin-flip operation onto |ψ〉, i. e. ˜|ψ〉 =
(σy ⊗ σy)

∣∣ψ̄〉 with ∣∣ψ̄〉 being the complex conjugation of |ψ〉 in the standard basis and

σy =

(
0 −i
i 0

)
. (5.33)

The concurrence of a mixed state ρ is defined to be the average concurrence of the pure
states in a pure state decomposition, minimized over all possible decompositions

C(ρ) = inf
∑
i

piC(ρi), (5.34)

where ρ =
∑

i piρi =
∑

i pi |ψi〉 〈ψi| is a pure state decomposition of ρ. Remarkably, there
exists an explicit formula for the concurrence C [30], [31]. Denote ρ̃ the spin-fliped operator
ρ

ρ̃ = (σy ⊗ σy)ρ̄(σy ⊗ σy), (5.35)

where ρ̄ stands for the complex conjugation of ρ in the standard basis. Then

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (5.36)

where λi are the square roots of eigenvalues of ρρ̃ in descending order1 .

Concurrence is related to the entanglement of formation via

E(C) = f

(
1 +
√

1− C2

2

)
, (5.37)

f(x) = −x log x− (1− x)log(1− x). (5.38)

The entanglement of formation E as a function of concurrence C is monotonous. Hence,
concurrence is a suitable measure of entanglement and quantifying of entanglement of two
qubits reduces to the problem of finding the eigenvalues of ρρ̃. We used this tool to study
the mechanisms of generalized synchronization.

1All the eigenvalues are real and non-negative as ρρ̃ is a product of two positive-semidefinite matrices.
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Basically, one of the following options can occur during time evolution

a) An initially separable state remains separable throughout the evolution and in the
asymptotics.
b) A separable state temporarily becomes entangled during the evolution yet results in a
separable state again.
c) A separable state becomes entangled.
d) An initially entangled state evolves towards a separable asymptotic state.
e) An entangled state remains entangled with the entanglement remaining the same ac-
cording to the chosen measure.
f) An entangled state remains entangled and the entanglement increases or decreases,
possibly nonmonotonously, according to the chosen measure.

Analytically, we were unable to obtain any conclusive results regarding for what kind of
initial conditions does any of the synchronizing or phase-locking mechanisms enforce one
of the cases described above. The concurrence of the asymptotic state is strongly depen-
dent on initial conditions, in a manner too complex to draw any conclusions. In numerical
simulations, we witnessed all above listed possible scenarios for each of the classes of
synchronizing and phase-locking Lindblad operators, based on the initial conditions. See
appendix B for examples.

Every mechanism of generalized synchronization described in this work is capable of cre-
ating, destroying, preserving and both increasing and decreasing entanglement of a pair
of qubits. No studied form of synchronization is in a simple relation to entanglement and
neither is entanglement a suitable indicator of synchronization. The generality of our ap-
proach to the search of synchronization mechanisms within QMDS is an advantage here as
this basically shows that entanglement formation or destruction is not directly connected
to synchronization for a large class of possible evolutions of a two-qubit system.



Conclusion

This thesis addressed the phenomenon of synchronization in open quantum systems with
Markovian evolution. An introduction to the formalism and theory of quantum Markov
dynamical semigroups, with emphasis on the asymptotics, was given. The concept of
synchronization of quantum systems in the current literature was discussed and suitable
definitions of two different degrees of synchronization for composite systems of identical
subsystems with internal dynamics were provided, together with the generalization of syn-
chronization to phase-locking. Within the framework of Lindbladian dynamics with normal
Lindblad operators we then investigated systems of n qubits.
We begun with an in-depth study of a system of two. Using a theorem that links the
Lindblad operators, i.e. the structure of the generator of the evolution map, and the
attractor space of the generated map via commutation relations, we found all normal
Lindblad operators that enforce synchronization or phase-locking of the reduced states of
a pair of qubits. From the synchronizing and phase-locking mechanisms we subsequently
picked those which not only synchronize or phase-lock the dynamical time-evolving parts
of the asymptotic single-qubit states, but also enforce synchronization of their stationary
parts, resulting in the case of synchronization in identical reduced states of the individual
qubits. The synchronization- and phase-locking-enforcing normal Lindblad operators were
separated into several classes based on a part of the attractor space of the corresponding
generated QMDS relevant for the asymptotic time evolution of the reduced qubit states. We
further found the entire attractor spaces and showed them to be preserved within each class
or its particular subset, further classifying the synchronization, respectively phase-locking
mechanisms. With these results for a single normal Lindblad operator in the generator we
generalized the studied dynamics to an arbitrary number and any combination of normal
Lindblad operators.
Next, we applied the synchronization mechanisms to qubit networks, n-partite systems
with bipartite interactions. It was presented how a corresponding Lindbladian can be
constructed from the two-qubit synchronizing normal Lindblad operators and how the
relevant parts of the attractor spaces of generated QMDS can be analyzed. We found that
while all discovered synchronizing mechanisms enforce pairwise synchronization of adjacent
qubits also in an arbitrary network, only two of the classes of synchronizing operators are
actually applicable to a general network of more than two qubits. For those we were
able to demonstrate that they synchronize all qubits in every network whereof interaction
graph is weakly connected. The remaining synchronization mechanisms, on the contrary,
were shown to destroy the asymptotic dynamics of individual qubits for every non-trivial
network of more that two parties.
Last but not least, we studied some properties of the two-qubit synchronizing mechanisms
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and asymptotic states they lead to. Regarding visibility of the asymptotic time evolution
of the reduced single-qubit states, it turned out that it depends mostly merely on the ini-
tial conditions, with an exception of two families of classes of synchronizing, respectively
phase-locking Lindblad operators for which it it suppressed by a factor depending solely on
the operator class. We also investigated the invariance of the synchronization mechanism
and of the attractor spaces of corresponding QMDS with respect to the exchange of qubits.
We showed that not all of the synchronization processes enforce a permutation invariant
global two-qubit state, in fact, many do the exact opposite. Furthermore, we found that for
the majority of synchronizing Lindblad operators, whether associated with a permutation
invariant attractor space or not, the action of qubit-swapping changes the Lindbladian and,
hence, their action on the two qubits is asymmetrical. Besides, we tackled the question
of a possible connection between synchronization and entanglement, using concurrence as
an entanglement measure of choice in two-qubit systems and numerical simulations as a
supplementary tool, albeit without any worthy conclusive results. Additionally, an obser-
vation was made that the synchronizing and the phase-locking two-qubit normal Lindblad
operators with an arbitrary, but fixed achieved phase shift are in one-to-one correspon-
dence, share various properties including their classification into classes, and can smoothly
be deformed ones into the others.
This thesis represents an extensive study of synchronization and phase-locking processes
on qubit networks, realizable by quantum Markov dynamical semigroups with normal
Lindblad operators. The greater part of the work comprises original and previously un-
published results. Besides, it opens various possibilities for future investigation, such as
into phase-locking on qubit networks with regard to their topology, generalization to non-
normal Lindblad operators or even beyond continuous Markovian evolution, consideration
of systems more complex than qubits and networks made thereof or even combination of
different subsystems. The author believes that this thesis builds a solid foundation for
further research on the topic and will contribute to the endeavour to understand the very
nature of the phenomenon of synchronization on the quantum level.



Appendix A

Parameterization of normal matrices

Here we derive a possible parameterization for 2x2 normal matrices, which is used in the
main body of the work. From the general case suitable parametrizations of unitary, hermi-
tian and antihermitian matrices are obtained. The parameterization of normal matrices is
essential to the work, the added part serves as a tool to extraxt unitary, hermitian or anti-
hermitian generalized-synchronization-enforcing Lindblad operators from the more general
case of normal ones when needed.

A.1 Normal matrices

Assume a matrix M ∈ C2x2 parameterized by a, b, c, d ∈ C,

M =

(
a b
c d

)
, (A.1)

satisfying [
M,M †

]
= 0. (A.2)

Evaluating this commutation relation element-wise yields the following set of equations

|b|2 = |c|2, (A.3)

ac̄+ bd̄ = āb+ c̄d. (A.4)

It follows from (A.3) that we can rewrite c as

c = eikb, (A.5)

where k ∈ R. Inserting that into (A.4) and rearranging the terms gives

(d− a)︸ ︷︷ ︸
meil

e−ik b̄ = (d̄− ā)︸ ︷︷ ︸
me−il

b, (A.6)

denoting d−a = meil with m, l ∈ R. This equation is trivially satisfied for b = 0, implying
c = 0 and leaving a, d arbitrary, or for a = d, leaving b, k arbitrary. In other cases we can
divide (A.6) by its right-hand side. The result reads

82



APPENDIX A. PARAMETERIZATION OF NORMAL MATRICES 83

ei2le−ike−i2 arg(b) = 1, (A.7)

implying l = k
2 +arg(b). We can drop the other solutions l+nπ, n ∈ Z, which only account

for the change of sign of m and introduce unnecessary redundance. Hence

d = a+mei(
k
2

+arg(b)). (A.8)

Put together, an arbitrary normal matrix M ∈ C2×2 can be parameterized as

M =

(
a b

eikb a+mei(
k
2

+arg(b))

)
, (A.9)

where a, b ∈ C, k,m ∈ R, and we additionaly set arg(0) = 0 so that the parameterization
(A.14) covers also the previously discussed case b = 0.

An alternative parameterization can be obtained by the transformation

k → 2k − 2 arg(b), (A.10)

which corresponds to choosing

c = ei2k b̄, (A.11)

instead of (A.5). The equation (A.7) simplifies into

ei2le−i2k = 1, (A.12)

implying l = k, again dropping the solutions l = k + nπ, n ∈ Z. Then, instead of the
relation (A.8), we get

d = a+meik. (A.13)

Finally, the parameterization of an arbitrary normal matrix M ∈ C2×2 reads

M =

(
a b

ei2k b̄ a+meik

)
, (A.14)

where a, b ∈ C, k,m ∈ R.

A.2 Unitary matrices

Assume a unitary matrix U ∈ C2×2. Using the parameterization (A.14) to evaluate the
unitarity condition UU † = U †U = I yields

|a|2 + |b|2 = 1 (A.15)

|a|2 + |b|2 + ame−ik + āmeik +m2 = 1, (A.16)

abe−i2k + āb+ bme−ik = 0. (A.17)

Inserting (A.15) into (A.16) the latter can be rewritten as
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m [m+ 2|a| cos (k − arg(a))] = 0. (A.18)

Assuming m = 0, (A.17) implies k = π
2 + arg(a) and we can write U as

U =

(
a b

−b̄ei2 arg(a) a

)
, (A.19)

a, b ∈ C, |a|2 + |b|2 = 1.

For m = −2|a| cos (k − arg(a)), the equation (A.17) is satisfied for arbitrary k ∈ R. De-
composing the cosine into two exponentials again, we get

d = a+meik = a− |a|ei arg(a) − |a|ei(2k−arg(a)) = āei(π+2k). (A.20)

Let us denote ω = π + 2k, replacing the parameter k. We arrive at a parameterization of
U of the form

U =

(
a b

−b̄eiω āeiω

)
, (A.21)

where a, b ∈ C, |a|2 + |b|2 = 1, ω ∈ R.

Note that the previous solutions (A.19) are contained here as well, obtainable by simply
setting ω = 2 arg(a) for a given a. Consequently, (A.21) is a parameterization describing
all possible 2x2 unitary matrices and the one used in the work. Since it holds detU = eiω,
a parameterization of all special unitary matrices is obtained by fixing ω = 0.

A.3 Hermitian matrices

Assume a hermitian matrix H ∈ C2×2 in the parameterization (A.14). It follows immedi-
ately from the hermicity, H† = H, that a ∈ R and

k = 0. (A.22)

Subsequently, reintroducing d = a + m to replace the parameter m, all hermitian 2x2
matrices can be parameterized as

H =

(
a b
b̄ d

)
, (A.23)

where a, d ∈ R, b ∈ C.

A.4 Skew-hermitian matrices

Assume a skew-hermitian matrix A ∈ C2×2 in the parameterization (A.14). Similarly to
the previous case, the condition A† = −A implies a ∈ iR and

k =
π

2
. (A.24)
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It follows that eik = i, ei2k = −1 and we can reintroduce d = a + im ∈ iR. Together, all
skew-hermitian 2x2 matrices can be parameterized as

A =

(
a b
−b̄ d

)
, (A.25)

where a, d ∈ iR, b ∈ C, or in a slightly different form

A =

(
ia b
−b̄ id

)
, (A.26)

where a, d ∈ R, b ∈ C.



Appendix B

Numerical simulation

The vast majority of this work does not rely on any numerical simulation to obtain the
outcome. However, in order to get a better idea about the evolution towards asymptotics,
to test the analytical results and to illustrate the studied systems and setups, a simple
MATLAB script was written. Some examples are provided on the following pages, the
script itself is available from the author upon request1.

The QMDS governing the evolution is generated by the Lindbladian (1.11). The script
reads the user-provided adjacency matrix of an interaction graph of a qubit network, gen-
eralized synchronization mechanism class and required phase shift. Within the classes of
synchronizing, respectively phase-locking normal Lindblad operators the particular opera-
tors are chosen randomly, unless otherwise specified. The initial conditions are randomly
generated as well, either from separable states or from entangled ones, as indicated.
In each evolution step the reduced states ρ1(t), ρ2(t), ..., ρn(t) are calculated from the global
state ρ(t) and the distances of these reduced states from a fixed randomly generated qubit
test state ρtest, i.e. ‖ρ1(t)− ρtest‖, ‖ρ2(t)− ρtest‖, ..., ‖ρn(t)− ρtest‖, are plotted. For a
two-qubit state the norm of their difference ‖ρ1(t)− ρ2(t)‖ is plotted as well. The second
plot displays the expectation values

〈
σ(1)(t)

〉
,
〈
σ(2)(t)

〉
, ...,

〈
σ(n)(t)

〉
of a local observable

σ (5.4) for the individual reduced states. The third one shows the values of Pearson’s
correlation coefficient (2.15) C〈σ(1)〉,〈σ(j)〉(t,∆t) for the expectation values of σ, one for
each qubit being compared with qubit 1, taken over a time window ∆t of 30 time units and
modified by the asymptotic phase shift between them. For a two-qubit state, additionally,
the concurrence C (5.36) is displayed. The time axes are aligned and equally scaled and
the interaction graph is depicted or otherwise described.

1Availability is only guaranteed until the day of this thesis defence.
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Figure B.1: Complete synchronization of a four-qubit network with an interaction graph
whereof adjacency matrix reads G12 = G23 = G42 = 1 and Gij = 0 otherwise, enforced
by Lindblad operator L2 given by (3.60). Both the particular operator L2 and initial
conditions were generated randomly. The first plot shows the time evolution of the reduced
single-qubit states ρi(t) compaired against a stationary test state ρtest. The second one
displays the expectation values

〈
σ(i)
〉

(t) of the observable σ (5.4) for individual qubits. In
the third one we can see the values of Pearson’s correlation coefficients C〈σ(1)〉,〈σ(j)〉(t,∆t)
(2.15) of the expectation values of σ for individual qubit pairs. The interaction graph is
depicted at the bottom.
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Figure B.2: The destruction of single-qubit dynamics in a four-qubit network with an
interaction graph whereof adjacency matrix reads G12 = G23 = G34 = G41 = 1 and Gij =
0 otherwise, enforced by Lindblad operator Lα+ given by (3.112). Both the particular
operator Lα+ and initial conditions were generated randomly. The first plot shows the
time evolution of the reduced single-qubit states ρi(t) compaired against a stationary test
state ρtest. The second one dipslays the expectation values

〈
σ(i)
〉

(t) of the observable σ
(5.4) for individual qubits. In the third one we can see the values of Pearson’s correlation
coefficients C〈σ(1)〉,〈σ(j)〉(t,∆t) (2.15) of the expectation values of σ for individual qubit
pairs. The interaction graph is depicted at the bottom.
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Figure B.3: Phase-locking with a phase shift ϕ = π
2 enforced by a Lindblad operator

Lα−(3.112) on two qubits. Destruction of entanglement during the process. Both the par-
ticular operator Lα− and initial conditions were generated randomly. The first plot shows
the time evolution of the reduced single-qubit states ρi(t) compaired against a stationary
test state ρtest, and the norm of their difference. The second one displays the expectation
values

〈
σ(i)
〉

(t) of the observable σ (5.4) for individual qubits. In the third one we can see
the value of Pearson’s correlation coefficientsC〈σ(1)〉,〈σ(j)〉(t,∆t) (2.15) of the expectation
values of σ for individual qubit pairs, modified by the phase shift ϕ. The last plot shows
the time evolution of concurrence.



Appendix C

Overview of synchronizing and
phase-locking normal Lindblad
operators

In this appendix the reader finds an overview of all two-qubit generalized (complete) syn-
chronization mechanisms given by normal Lindblad operators and the attractor spaces
of their respective corresponding QMDS with generators (3.1), written as linear spans of
orthonormal bases of generators associated each with a single eigenvalue for convenience.
The division into two classes and two separate families of classes from the work is kept,
with special attention devoted to several particular cases.

L1 =


1 0 0 0

0 1√
2
− e−iϕ√

2
0

0 eiϕ√
2

1√
2

0

0 0 0 1



c 0 0 0

0 c 0 0

0 0 a b

0 0 ei2k b̄ a+meik




1 0 0 0

0 1√
2

e−iϕ√
2

0

0 − eiϕ√
2

1√
2

0

0 0 0 1

 =

=
1

2


2c 0 0 0

0 c+ a e−iϕ(c− a) −
√

2e−iϕb

0 eiϕ(c− a) c+ a
√

2b

0 −
√

2eiϕe2ik b̄
√

2e2ik b̄ 2(a+meik)

 ,

(C.1)

where a, b ∈ C, c, k,m ∈ R, b 6= 0 or a 6= c ∧ m 6= 0 holds, and ϕ ∈ [0, 2π) is the achieved
phase shift. Denoting a corresponding QMDS TL1 the attractor space Att(TL1) thereof
reads
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Att(TL1) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,

1√
3


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
1√
3


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 −eiϕ


 ,

(C.2)

in the case b 6= 0. For b = 0, m 6= e−ik(c− a) then

Att(TL1) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,

1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

(C.3)

In the remaining case, i.e. b = 0, m = e−ik(c− a), the operator L1 reduces to

Ls =
1

2


2c 0 0 0
0 c+ a e−iϕ(c− a) 0
0 eiϕ(c− a) c+ a 0
0 0 0 2c

 =

= (c+ a)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I4×4

+ (c− a)


1 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 1


︸ ︷︷ ︸

SWAPϕ

,

(C.4)

where a, c ∈ C, c 6= a, ϕ ∈ [0, 2π) is the phase shift, and the attractor space Att(TLs) of a
corresponding QMDS TLs reads
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Att(TLs) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,
1√
2


0 1 e−iϕ 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,

1√
2


0 0 0 0
1 0 0 0
eiϕ 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 .

(C.5)

L2 =


1 0 0 0

0 1√
2

e−iϕ√
2

0

0 − eiϕ√
2

1√
2

0

0 0 0 1




a b 0 0

ei2k b̄ a+meik 0 0

0 0 c 0

0 0 0 c




1 0 0 0

0 1√
2
− e−iϕ√

2
0

0 eiϕ√
2

1√
2

0

0 0 0 1

 =

=
1

2


2a

√
2b −

√
2e−iϕb 0√

2e2ik b̄ c+ a+meik e−iϕ(c− a−meik) 0

−
√

2eiϕe2ik b̄ eiϕ(c− a−meik) c+ a+meik 0

0 0 0 2c

 ,

(C.6)

where a, b ∈ C, c, k,m ∈ R, b 6= 0 or a + meik 6= c ∧ m 6= 0 holds, and ϕ ∈ [0, 2π) is the
achieved phase shift. The attractor space Att(TL2) of a corresponding QMDS TL2 reads

Att(TL2) = span


1√
3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
3


−eiϕ 0 0 0

0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,

1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ,

(C.7)

in the case b 6= 0. For b = 0, a 6= c then
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Att(TL2) = span




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
1√
2


0 0 0 0
0 0 e−iϕ 0
0 eiϕ 0 0
0 0 0 0

 ,

1√
2


0 0 0 0
0 0 0 1
0 0 0 eiϕ

0 0 0 0

 ,
1√
2


0 0 0 0
0 0 0 0
0 0 0 0
0 1 e−iϕ 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

(C.8)

In the remaining case, i.e. b = 0, c = a, the operator L2 reduces to Ls (C.4) and the
attractor space of a corresponding QMDS is given by (C.5).

Lα± =


1 0 0 0

0 β α 0

0 −α β̄ 0

0 0 0 1




a b 0 0

ei2k b̄ a+meik 0 0

0 0 a sb

0 0 s̄ei2k b̄ a+meik




1 0 0 0

0 β̄ −α 0

0 α β 0

0 0 0 1

 =

=


a ∓ieiϕ

√
1− α2b −αb 0

±ie−iϕe2ik b̄ a+ (1− a2)meik ∓ie−iϕα
√

1− α2meik αsb

−αe2ik b̄ ±ieiϕα
√

1− α2meik a+ α2meik ∓ieiϕ
√

1− α2sb

0 αs̄e2ik b̄ ±ie−iϕ
√

1− α2s̄e2ik b̄ a+meik

 ,

(C.9)

where a, b ∈ C, k,m, α ∈ R, 0 < α < 1, b 6= 0,

s =
α∓ i

√
1− α2

α± i
√

1− α2
, (C.10)

β = ±ie−iϕ
√

1− α2, (C.11)

and ϕ ∈ [0, 2π) is the achieved phase shift. The attractor space Att(TLα±) of a correspond-
ing QMDS TLα± reads
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Att(TLα±) = span


1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , 1√
(2α2−1)2+ 2

α2


0 1 ±ie−iϕ

√
1−α2
α

0

0 0 0
e−iϕ2(1−α2)±

ie−iϕ
√

1−α2
α

(2α2−1)

0 0 0
1−2α2±
i2α
√

1−α2

0 0 0 0

,

1√
(2α2−1)2+ 2

α2


0 0 0 0
1 0 0 0

∓ieiϕ
√

1−α2
α

0 0 0

0
eiϕ2(1−α2)∓

ieiϕ
√

1−α2
α

(2α2−1)

1−2α2∓
i2α
√

1−α2
0

,

α
√

1−α2√
8α8−32α6+42α4−18α2+3


±i 2α

4−(2α2−1)2

α
√

1−α2
0 0 0

0 0 e−iϕ 0

0 −eiϕ ±i 2α2−1

α
√

1−α2
0

0 0 0 ∓i 2α
4−(2α2−1)2

α
√

1−α2


 .

(C.12)

For α = 1√
2
the operators Lα± become the completely synchronizing operators L 1√

2
±,

L 1√
2
± =


1 0 0 0

0 1√
2
∓ie−iϕ√

2
0

0 ∓ie
iϕ
√
2

1√
2

0

0 0 0 1




a b 0 0

e2ik b̄ a+meik 0 0

0 0 a ∓ib
0 0 ±ie2ik b̄ a+meik




1 0 0 0

0 1√
2
±ie−iϕ√

2
0

0 ±ie
iϕ
√
2

1√
2

0

0 0 0 1

 =

=
1

2


2a ∓

√
2ieiϕb −

√
2b 0

±
√

2ie−iϕe2ik b̄ 2a+meik ∓ie−iϕmeik ∓i
√

2b

−
√

2e2ik b̄ ±ieiϕmeik 2a+meik −
√

2eiϕb

0 ±
√

2ie2ik b̄ −
√

2e−iϕe2ik b̄ a+meik

 ,

(C.13)

wherof corresponding QMDS TL 1√
2
±
have the attractor spaces Att(TL 1√

2
±

),

Att(TL 1√
2
±

) = span


1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
1

2


0 1 ±ie−iϕ 0
0 0 0 e−iϕ

0 0 0 ±i
0 0 0 0

 ,

1

2


0 0 0 0
1 0 0 0
∓ieiϕ 0 0 0

0 eiϕ ∓i 0

 ,
1

2


±i 0 0 0
0 0 e−iϕ 0
0 −eiϕ 0 0
0 0 0 ∓i


 .

(C.14)
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