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Abstrakt: Cílem této práce je hledání integrabilních a superintegrabilních systémů
cylindrického typu s magnetickým polem. Po zformulování kvantově mechanických
určujících rovnic pro integrály pohybu druhého řádu v cylindrických souřadnicích
jsou nalezeny všechny kvadraticky integrabilní systémy cylindrického typu. Mezi nimi
jsou hledány systémy, které připouštějí dodatečné integrály pohybu. Nejprve jsou
přímým řešením určujících rovnic nalezeny všechny systémy s dodatečným integrálem
prvního řádu v klasické i kvantové mechanice. Ukazuje se, že všechny tyto systémy
již byly známé a žádné další neexistují. Nalezeny jsou také všechny klasické systémy
s dodatečným integrálem typu L2 + . . ., respektive Lxpy −Lypx + . . ., z nichž většina
zatím nebyla publikována. Všechny nalezené superintegrabilní systémy připouštějí
integrál prvního řádu Lz a jejich Hamiltonovy-Jacobiho, respektive Schrödingerovy,
rovnice jsou vyřešeny separací proměnných v cylindrických souřadnicích, u systémů
prvního řádu i v kartézských.

Klíčová slova: integrabilita, superintegrabilita, kvantová korekce, magnetické
pole, cylindrické souřadnice

Title:
Integrable and superintegrable systems of cylindrical type in magnetic
fields
Author: Bc. Ondřej Kubů

Abstract: The goal of this thesis is the search for integrable and superintegrable
systems with magnetic field. We formulate the quantum mechanical determining
equations for second order integrals of motion in the cylindrical coordinates and we
find all quadratically integrable systems of the cylindrical type. Among them we
search for systems admitting additional integrals of motion. We find all systems with
an additional first order integral both in classical and quantum mechanics. It turns
out that all these systems have already been known and no other exist. We also find
all systems with an additional integral of type L2 + . . ., respectively Lypy−Lxpy + . . .,
of which the majority is new to the literature. All found superintegrable systems
admit the first order integral Lz and we solve their Hamilton-Jacobi and Schrödinger
equations by separation of variables in the cylindrical coordinates, for the first order
systems in the Cartesian coordinates as well.

Key words: integrability, superintegrability, quantum correction, magnetic
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Introduction

This thesis is a contribution to the study of integrable and superintegrable systems
with electric and magnetic fields. These are Hamiltonian systems distinguished by
the existence of as many independent integrals of motion in involution as degrees of
freedom (integrability) or even some additional not necessarily in involution with
the rest (superintegrability) which give them extraordinary properties: in classical
mechanics the equations of motion can be solved by quadratures (integrable) or
even algebraically in closed form (maximally superintegrable), in quantum mechanics
the energy levels are degenerate and it has been conjectured that all maximally
superintegrable systems are exactly solvable [26]. These properties make them in-
valuable as physical models which allow us to develop insight into the principles
governing physical laws. They are also the basis for constructing more complicated
models, often by the method of perturbations. The prime example in this regard is
the periodic table [23], which is obtained as a perturbation to the Coulomb model.

The most well-known superintegrable systems are the Kepler-Coulomb system and
the harmonic oscillator. As stated by Bertrand’s theorem [3], see also [13], these
are the only spherically symmetrical maximally superintegrable systems without
magnetic field. For analysis of these systems in quantum mechanics see e.g. [14].

Most of the work in the field of superintegrability was done for the systems with
so-called natural Hamiltonian

H =
1

2
(~p)2 +W (~x), (1)

mainly with the assumption that the integrals of motion are polynomial in momenta.
The best studied cases are those on the Euclidean spaces E2 and E3, for which
all second order superintegrable systems were found [28, 12, 10]. The subsequent
developments include studies in higher dimensional Euclidean spaces, more general
spaces, e.g. Riemannian or pseudo-Riemannian, and of course higher order integrals,
see the review article [23] and references therein.

Another natural generalization, which we consider in this thesis, is the Hamiltonian
for the electromagnetic field, that is with the vector potential ~A(~x) in addition to
the scalar potential W (~x), namely

H =
1

2

(
~p+ ~A(~x)

)2
+W (~x). (2)

(We consider an electron in electromagnetic field, so we choose the units of measure-
ment so that e = −1 and m = 1.) The earlier work, which focused mainly on the
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E2 case, see e.g. [5, 22, 8], was followed by the E3 case, see [30, 20, 17, 18, 4] and
references therein.

The case with the Hamiltonian (1) is related to the separation of Hamilton-Jacobi
equation in classical mechanics and Schrödinger equation in quantum mechanics. More
specifically, in [28] it was shown that in E3 there are 11 pairs of commuting integrals
corresponding to 11 coordinate systems in which Hamilton-Jacobi or Schrödinger
equations separate determined in [9]. Even though the correspondence between
second order integrals and separation no longer holds when magnetic field is present
[2, 20], we still talk about these 11 classes because the highest order terms have the
same structure, namely lie in the enveloping algebra of the Euclidean Lie algebra.

The focus of our thesis is one of the 11 coordinate systems, namely the cylindrical
with the defining transformations x = r cos(φ), y = r sin(φ), z = Z. If we have
vanishing magnetic field and scalar potential of the form

W (~x) = W1(r) +
1

r2
W2(φ) +W3(Z), (3)

the Hamilton-Jacobi equation separates in these coordinates. In the article [11] the
authors obtained all classical integrable cases with magnetic field in this class. In this
thesis we will continue this research program by studying the quantum integrable
cases and determine which of the integrable cases admit additional first order
independent integrals of motion, hence being superintegrable. We use Maple™ [16]
for the calculations and occasionally verify some results in Mathematica® [29].

The structure of the thesis is as follows: After reviewing definitions of integrability
and superintegrability in Section 1.1, the first chapter is focused on integrable systems
in quantum mechanics. In Section 1.2 we review classical determining equations for
integrals of second order and in Section 1.3 we extend them to quantum mechanics
by calculating the quantum correction in the cylindrical coordinates with the focus
on the first order and cylindrical integrals. In Section 1.4 we find all quadratic
cylindrical integrable systems in quantum mechanics and analyse those differing from
the classical case considered in [11].

In Chapter 2 we search for additional integrals of motion to make the integrable
systems superintegrable. In Section 2.1 we find all cylindrical systems with at least
one additional first order integral and in Section 2.2 we consider second order
integrals. Due to the computational complexity of the problem we were not able
to solve the second order case in general. After analysing one system we found by
chance in Subsection 2.2.1, we restrict to a physically motivated ansatz and find all
cylindrical systems admitting integrals of the form L2 + . . . in Subsection 2.2.2 and
Lxpy − Lypx + . . . in Subsection 2.2.3. We conclude by a summary of results.
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Chapter 1

Quantum integrable systems in
cylindrical coordinates

In this chapter, we consider quantum integrable systems in cylindrical coordinates. In
particular, we derive the determining equations in cylindrical coordinates (Section 1.3),
compare them with the classical ones from [11], which we include in Section 1.2 for
reference, and solve them for the so-called cylindrical case, i.e. integrals with the
highest order term L2

z or P 2
z (Section 1.4).

But first we review the key notions for our thesis: integrability and superintegrability.

1.1 Integrability and superintegrability

We will use the standard definitions in the field, see e.g. [20], which are, however,
slightly different from those in the review article [23].

We start in classical mechanics: A finite-dimensional classical Hamiltonian system in
a 2n-dimensional phase space is called integrable (or Liouville integrable) if it allows
n integrals of motion {X0 = H, ..., Xn−1} (including the Hamiltonian H), which are

1. well-defined analytic functions on the phase space (possibly with exceptions of
lower dimensional manifolds, such as the z-axis or xy-plane),

2. in involution, that is pairwise Poisson commute, {Xi, Xj}P.B. = 0, where the
Poisson bracket is defined in any canonical coordinates (qi, pi) as

{X1, X2}P.B. =
n∑
i=1

(
∂X1

∂qi

∂X2

∂pi
− ∂X2

∂qi

∂X1

∂pi

)
, (1.1)

3. and are functionally independent, i.e. their Jacobian matrix
(
∂Xi
∂qj
, ∂Xi
∂pk

)
has

the maximal possible rank (here n) on the region where the integrals are well
defined and locally analytic.
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A finite dimensional Hamiltonian system is superintegrable if it is integrable with
integrals {X0 = H,X1, ..., Xn−1} and admits additional integrals of motion Y1, . . . , Yk,
1 ≤ k ≤ n − 1 so that the set {X0 = H,X1, . . . , Xn−1, Y1, . . . , Yk} is functionally
independent. (Integrals Yi need not Poisson commute with any other integral except
the Hamiltonian.) We call the system minimally superintegrable if k = 1 and
maximally superintegrable if k = 2n − 1. (In our case we will have n = 3 and
maximal superintegrability means k = 2, so there is no other option.)

In quantum mechanics the notions in previous definitions must be slightly modified:

1. The integrals of motion must be well-defined operators in the enveloping
algebra of the Heisenberg Lie algebra, i.e. polynomials in phase space coordinate
operators Q̂i and P̂i, or convergent series in them. (Here we must work in the
Cartesian coordinates because there are some problems with quantizing the
momenta in other coordinate systems.)

2. The Poisson bracket is replaced by the commutator of operators. (We proceed
formally, ignoring complications arising from unbounded operators.)

3. Functional independence is replaced by the so-called algebraic (or polynomial)
independence which means that no non-trivial fully symmetrized (Jordan)
polynomial of the integrals vanishes.

1.2 Classical determining equations

We are working with magnetic fields so let us review a few basic notions: The magnetic
field B, which is defined in the Cartesian coordinates as

~B = ∇× ~A, i.e. Bj = εjkl
∂Al
∂xk

, (1.2)

where the Levi-Civita symbol εjkl is totally antisymmetric with ε123 = 1, is gauge
invariant, i.e. does not change under transformation of the potentials

~A′(~x) = ~A(~x) +∇χ(~x), V ′(~x) = V (~x) (1.3)

with an arbitrary choice of the scalar function χ(~x). (We consider the time independent
case only.) For the effect of gauge transformation in quantum mechanics see eq. (1.38).

Because the systems we consider are gauge invariant, it is useful to write their
integrals of motion in terms of the so-called covariant momenta (using units e = −1,
m = 1)

pAj = pj + Aj. (1.4)

Using these momenta, the commutation relations in the Cartesian coordinates read

{pAj , pAk }P.B. = εjklBl, {pAj , qk}P.B. = −δjk, (1.5)

where δjk is the Kronecker delta.
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To work with momenta and magnetic fields in the cylindrical coordinates (r, φ, Z)
defined by the transformation

x = r cos(φ), y = r sin(φ), z = Z, (1.6)

it is convenient to use the formalism of differential forms introduced in [21]: Given
the structure of the canonical 1-form

λ = pxdx+ pydy + pzdz = prdr + pφdφ+ pZdZ, (1.7)

we obtain the following transformation for the linear momenta

px = cos(φ)pr −
sin(φ)

r
pφ, py = sin(φ)pr +

cos(φ)

r
pφ, pz = pZ , (1.8)

and the components of the vector potential A transform the same way. (We directly
associate the Cartesian vector components to the 1-form components.) This enables
us to use the gauge invariant momenta from eq. (1.4) in the cylindrical coordinates
as well.

On the other hand, components of the magnetic field 2-form B = dA are

B = Bx(~x) dy ∧ dz +By(~x) dz ∧ dx+Bz(~x) dx ∧ dy

= Br(r, φ, Z) dφ ∧ dZ +Bφ(r, φ, Z) dZ ∧ dr +BZ(r, φ, Z) dr ∧ dφ.
(1.9)

This leads to the following transformation

Bx(~x) =
cos(φ)

r
Br(r, φ, Z)− sin(φ)Bφ(r, φ, Z),

By(~x) =
sin(φ)

r
Br(r, φ, Z) + cos(φ)Bφ(r, φ, Z), (1.10)

Bz(~x) =
1

r
BZ(r, φ, Z),

so that the components of the magnetic field are computed in the same way as in
the Cartesian coordinates, namely

Br =
∂AZ
∂φ
− ∂Aφ

∂Z
, Bφ =

∂Ar
∂Z
− ∂AZ

∂r
, BZ =

∂Aφ
∂r
− ∂Ar

∂φ
. (1.11)

Now we search for integrals of motion. In classical mechanics, we use the determining
equations from [11], which were obtained by setting the Poisson bracket {X,H}P.B. =
0 in the cylindrical coordinates (for definition see eq. (1.1)) with the Hamiltonian H
written in terms of the covariant momenta from eq. (1.4),

H =
1

2

((
pAr
)2

+

(
pAφ
)2

r2
+
(
pAZ
)2)

+W (r, φ, Z), (1.12)

and with a general integral of motion of the second order

X = hr (r, φ, Z)
(
pAr
)2

+ hφ (r, φ, Z)
(
pAφ
)2

+ hZ (r, φ, Z)
(
pAZ
)2

+

+ nr (r, φ, Z) pAφ p
A
Z + nφ (r, φ, Z) pAr p

A
Z + nZ (r, φ, Z) pAφ p

A
r + (1.13)

+ sr (r, φ, Z) pAr + sφ (r, φ, Z) pAφ + sZ (r, φ, Z) pAZ +m (r, φ, Z) ,
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where the functions h, n, s, m are to be determined. We separate the coefficients of
obtained powers of momenta pr, pφ, pZ . The determining equations obtained from
the third order terms are

∂rh
r = 0, ∂φh

r = −r2∂rnZ , ∂Zh
r = −∂rnφ,

∂rh
φ = − 1

r2
∂φn

Z − 2

r3
hr, ∂φh

φ = −1

r
nZ , ∂Zh

φ = − 1

r2
∂φn

r − 1

r3
nφ,

∂rh
Z = −∂Znφ, ∂φh

Z = −r2∂Znr, ∂Zh
Z = 0, (1.14)

∂φn
φ = −r2(∂ZnZ + ∂rn

r).

We simplify the second order term equations using the third order eq. (1.14) and
rewrite derivatives of ~A in terms of ~B using eq. (1.11) to obtain

∂rs
r = nφBφ − nZBZ ,

∂φs
r = r2(nrBφ − 2hφBZ − ∂rsφ)− nφBr + 2hrBZ ,

∂rs
Z = nZBr − ∂Zsr − nrBZ + 2hZBφ − 2hrBφ,

∂φs
φ = −nrBr + nZBZ − 1

r
sr, (1.15)

∂φs
Z = r2(2hφBr − nZBφ − ∂Zsφ)− 2hZBr + nφBZ ,

∂Zs
Z = nrBr − nφBφ.

After the same simplification the first and zeroth order terms imply

∂rm = sZBφ − sφBZ + nφ∂ZW + nZ∂φW + 2hr∂rW,

∂φm = srBZ − sZBr + r2(nr∂ZW + 2hφ∂φW + nZ∂rW ), (1.16)
∂Zm = sφBr − srBφ + 2hZ∂ZW + nr∂φW + nφ∂rW,

and
sr∂rW + sφ∂φW + sZ∂ZW = 0, (1.17)

respectively.

The third order equations (1.14) can be readily integrated, because they do not
depend on the magnetic field ~B nor the scalar potential W . The solution is therefore
the same as in the vanishing magnetic field: The highest order terms lie in the
enveloping algebra of the Euclidean Lie algebra [20] generated by px, py, pz, Lx, Ly,
Lz. For convenience we write it in terms of gauge covariant expressions and in the
Cartesian coordinates:

X =
∑

1≤a≤b≤6

αabY
A
a Y

A
b +

3∑
j=1

sj(~x)pAj +m(~x), (1.18)

where Y A = (pAx , p
A
y , p

A
z , L

A
x , L

A
y , L

A
z ). The coordinates of the gauge covariant angular

momentum vector ~LA = (LA1 , L
A
2 , L

A
3 ) ≡ (LAx , L

A
y , L

A
z ) are defined as

LAj =
∑
k,l

εjklxkp
A
l (1.19)
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with the covariant momenta from eq. (1.4).

Transforming the second order terms to the cylindrical coordinates using eq. (1.6)
and eq. (1.8) followed by collecting the momenta pr, pφ, pZ , we obtain

hr =
[
(α55 − α44)Z

2 + (α24 + α15)Z + α11 − α22

]
(cos(φ))2−

−
[
α45Z

2 + (α14 − α25)Z − α12

]
sin(φ) cos(φ) + α44Z

2 − α24Z + α22,
(1.20)

hφ =
[(α44 − α55)Z

2 − (α24 + α15)Z + α22 − α11] (cos(φ))2

r2
+

+
[(α45Z

2 + (α14 − α25)Z − α12) sin(φ)− (α46Z − α26) r] cos(φ)

r2
+

+
− (α56Z + α16) r sin(φ) + α55Z

2 + α66r
2 + α15Z + α11

r2
,

(1.21)

hZ = r2
[
α44 − α45 cos(φ) sin(φ)− (α44 − α55) (cos(φ))2

]
+

α34r sin(φ)− α35r cos(φ) + α33,
(1.22)

nr = (2α45Z − α25 + α14) (cos(φ))2 +

+ [2 (α55 − α44)Zr + α24 + α15] sin(φ) cos(φ)+

+
(−α56r

2 − α34Z + α23) cos(φ) + (α46r
2 − α35Z − α13) sin(φ)

r
−

− (α45Z + α14 − α36) ,

(1.23)

nφ = [2 (α44 − α55)Z − α24 − α15] r (cos(φ))2 +

+ (2α45Z − α25 + α14) r sin(φ) cos(φ)+

+ (α35Z + α13) cos(φ)− (α34Z − α23) r sin(φ)− (2α44Z − α24) ,

(1.24)

nZ = − 2 [α45Z
2 + (α14 − α25)Z − α12] (cos(φ))2

r
−

− 2 [(α55 − α44)Z
2 + (α24 + α15)Z − α22 + α11] sin(φ) cos(φ)

r
−

− (α46Z − α26) sin(φ)− (α56Z + α16) cos(φ)+

+
α45Z

2 + (α14 − α25)Z − α12

r
.

(1.25)

If we suppose that the integrals of motion are of the first order,

X = sr (r, φ, Z) pAr + sφ (r, φ, Z) pAφ + sZ (r, φ, Z) pAZ +m (r, φ, Z) , (1.26)

which corresponds to setting the functions h, n in eq. (1.13) to 0, the determining
equations simplify as follows: There are no equations of the third order (they are
satisfied identically). The second order equations read

∂rs
r = 0, ∂φs

r = −r2∂rsφ, ∂rs
Z = −∂Zsr,

∂φs
φ = −s

r

r
, ∂φs

Z = −r2∂Zsφ, ∂Zs
Z = 0.

(1.27)
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The first order equations read

∂rm = sZBφ − sφBZ ,

∂φm = srBZ − sZBr, (1.28)
∂Zm = sφBr − srBφ,

and the zeroth order equation is

sr∂rW + sφ∂φW + sZ∂ZW = 0. (1.29)

The first thing we note is that the second order equations (1.27) do not depend on
either the magnetic field or the scalar potential in the same way as the third order
equations in the previous case. We can therefore solve them for all the cases now.
The solution reads

sr = (k5Z + k1) cos(φ)− (k4Z − k2) sin(φ), (1.30)

sφ = −(k4Z − k2) cos(φ) + (k5Z + k1) sin(φ)− k6r
r

, (1.31)

sZ = −k5r cos(φ) + k4r sin(φ) + k3, (1.32)

which corresponds to the integral with the first order term in the Euclidean Lie
algebra (in the Cartesian coordinates and gauge covariant form)

Y = k1p
A
x + k2p

A
y + k3p

A
z + k4L

A
x + k5L

A
y + k6L

A
z +m(x, y, z). (1.33)

1.3 Determining equations in quantum mechanics

Let us start with some basic notions regarding the considered systems in quantum
mechanics.

We begin in the Cartesian coordinates. We work in the Schrödinger representation,
where the coordinates and linear momenta are

Q̂j = xj, P̂j = −i~∂j ≡ −i~∇j, (1.34)

respectively. (The operator Q̂ is a multiplication by the corresponding coordinate.)

The convention for operator ordering in the field of integrability is to symmetrize
properly [23], therefore the Hamiltonian for a system with magnetic field in the
Cartesian coordinates reads

Ĥ =
1

2

∑
j

(
P̂jP̂j + P̂jÂj(~x) + Âj(~x)P̂j + Âj(~x)Âj(~x)

)
+ V̂ (~x) =

= −~2

2
∆− i~ ~̂A · ~∇− i~

2
d̂iv ~A+

1

2
~̂A · ~̂A+ V̂ (~x), (1.35)

where Âj(~x), d̂iv ~A and V̂ (~x) are the operators of multiplication by the j-th coordinate
of the vector potential ~A(~x), the divergence of ~A(~x) and the scalar potential V (~x),
respectively.
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We follow the same convention for the integrals of motion as well, namely we write
the general second order integral as

X̂ =
3∑
j=1

{hj(~x), P̂A
j P̂

A
j }+

3∑
j,k,l=1

|εjkl|
2
{nj(~x), P̂A

k P̂
A
l }+

3∑
j=1

{sj(~x), P̂A
j }+m(~x), (1.36)

where {, } denotes the symmetrization

{â, b̂} =
1

2

(
âb̂+ b̂â

)
. (1.37)

All choices of symmetrization are equivalent up to redefinition of the lower order
terms [20], so the choice is without loss of generality.

In quantum mechanics the gauge transformation (1.3) demonstrates itself as a unitary
transformation Û of the underlying Hilbert space. Defining Û as

Ûψ(~x) = exp

(
i

~
χ(~x)

)
· ψ(~x), (1.38)

the states and observables describing the same physical system are

ψ → ψ′ = Ûψ, Ô → Ô′ = ÛÔÛ †. (1.39)

The potentials and momenta transform the following way

(P̂j + Âj)→ Û(P̂j + Âj)Û
† = P̂j + Â′j, V̂ = Û V̂ Û †. (1.40)

We can therefore use the gauge covariant momenta

P̂A
j = P̂j + Âj (1.41)

in quantum mechanics as well. Their commutation relations in the Cartesian coordi-
nates read

[P̂A
j , P̂

A
k ] = −i~εjklBl, [P̂A

j , Q̂k] = −i~δjk. (1.42)

Now let us turn to the cylindrical coordinates (r, φ, Z), see eq. (1.6). Quantization in
non-Cartesian coordinates poses a problem, because the Dirac quantization rule

{A,B}P.B →
1

i~
[Â, B̂] (1.43)

is not invariant under canonical transformations (not even coordinate transforma-
tions) in the sense that Schrödinger equations obtained from different canonical
coordinates are inequivalent [25, Exercise 7.4.10]. Experiments show that the correct
Schrödinger equation is obtained by quantization of the classical Hamiltonian in
the Cartesian coordinates and subsequent transformation into the other coordinate
systems. Succinctly, the rule is to quantize and transform (in that order).

Let us therefore transform the quantized Hamiltonian (1.35). The gradient operator
in the cylindrical coordinates reads

∇f =

(
∂f

∂r
,
1

r

∂f

∂φ
,
∂f

∂Z

)
(1.44)
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and the Laplace operator is

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2
+

∂2

∂Z2
. (1.45)

The divergence is
~∇ · ~A =

1

r

∂(rAr)

∂r
+
∂Aφ
∂φ

+
∂AZ
∂Z

, (1.46)

(the right hand side in term of 1-form components) so the final form of the Hamiltonian
in the cylindrical coordinates reads (Ai and V functions of r, φ, Z)

Ĥ = − ~2

2

(
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2
+

∂2

∂Z2

)
− i~

(
Âr

∂

∂r
+
Âφ
r2

∂

∂φ
+ ÂZ

∂

∂Z

)
−

− i~
2

(
1

r

∂(rAr)

∂r
+
∂Aφ
∂φ

+
∂AZ
∂Z

)
+

1

2

(
(Âr)

2 +
(Âφ)2

r2
+ (ÂZ)2

)
+ V̂ . (1.47)

The same procedure must be applied to the integrals of motion as well, we thus
quantize in the Cartesian coordinates, symmetrize and transform into the cylindrical
coordinates. For this we need the transformation rules for momenta form eq. (1.8),
which we readily invert to get

pr = cos(φ)px + sin(φ)py, pφ = −r sin(φ)px + r cos(φ)py, pZ = pz (1.48)

and the momentum operators P̂i in the cylindrical coordinates read

P̂x = −i~
(

cos(φ)∂r −
sin(φ)

r
∂φ

)
, P̂y = −i~

(
sin(φ)∂r +

cos(φ)

r
∂φ

)
, P̂z = −i~∂Z .

(1.49)

The correct way to obtain the determining equations in the cylindrical coordinates is
to transform the Cartesian equations from [20]. Let us list them for reference:

The third order equations read

∂xhx = 0, ∂yhx = −∂xnx, ∂zhx = −∂xny,
∂xhy = −∂ynz, ∂yhy = 0, ∂zhy = −∂ynx, (1.50)
∂xhz = −∂znz, ∂yhz = −∂znx, ∂zhz = 0,

∇ · ~n = 0.

The second order equations are

∂xsx = nyB
y − nzBz,

∂ysy = nzB
z − nxBx,

∂zsz = nxB
x − nyBy,

∂ysx + ∂xsy = nxB
y − nyBy + 2(hx − hy)Bz, (1.51)

∂zsx + ∂xsz = nzB
x − nxBz + 2(hz − hx)By,

∂ysz + ∂zsy = nyB
z − nzBy + 2(hy − hz)Bx
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with the following consequence
∇ · ~s = 0. (1.52)

The first order

∂xm = 2hx∂xW + nz∂yW + ny∂zW + szB
y − syBz,

∂ym = 2hy∂yW + nz∂xW + nx∂zW + sxB
z − szBx, (1.53)

∂zm = 2hz∂zW + ny∂xW + nx∂yW + syB
x − sxBy.

The zeroth order equation containing the ~2–proportional quantum correction reads

~s · ∇W +
~2

4
(∂znx∂zB

x − ∂ynx∂yBx + ∂xny∂xB
y − ∂zny∂zBy +

+ ∂ynz∂yB
z − ∂xnz∂xBz + ∂xnx∂yB

y − ∂yny∂xBx) = 0.
(1.54)

Although the last two terms suggest that the quantum correction is not invariant
under Euclidean transformations, which are symmetries the system possesses clearly,
it is not the case due to the identity [20]

∂xnx∂yB
y − ∂yny∂xBx = ∂yny∂zB

z − ∂znz∂yBy = ∂znz∂xB
x − ∂xnx∂zBz, (1.55)

which follows from
∇ · ~B = 0, ∇ · ~n = 0. (1.56)

The last missing piece needed to perform the transformation is

hx = hr(cos(φ))2 + hφr2(sin(φ))2 − nZr cos(φ) sin(φ),

hy = hr(sin(φ))2 + hφr2(cos(φ))2 + nZr cos(φ) sin(φ),

hz = hZ ,

nx = nrr cos(φ) + nφ sin(φ),

ny = −nrr sin(φ) + nφ cos(φ),

nz = 2hr sin(φ) cos(φ)− 2hφr2 sin(φ) cos(φ) + nZr[(cos(φ))2 − (sin(φ))2],

sx = sr cos(φ)− sφr sin(φ),

sx = sr sin(φ) + sφr cos(φ),

sz = sZ .

(1.57)

It is obtained (in classical mechanics) by transforming the linear momenta using
eq. (1.8) in the second order integral of motion X, see eq. (1.13), and the definition
of the functions n, h, s as the coefficients of the corresponding momenta (hx is
the coefficient of p2x, nx of pypz, sx of px etc. and analogously in the cylindrical
coordinates).

Due to the transformation rules (1.57), the third, second and first order equations
(1.50), (1.51) and (1.53), which do not have any quantum correction, get the same
form as in classical mechanics, namely the form of equations (1.14), (1.15) and (1.16),
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respectively. The transformed zeroth order equation with derivatives of the functions
h eliminated using the third order equations (1.14) reads

sr∂rW + sφ∂φW + sZ∂ZW+

+
~2

4

[
−∂Zn

ZBr

r
+

(
r∂φn

r + nφ
)
Bφ

r2
+

(
r∂rn

Z + nZ
)
BZ

r2
−

−
(
r∂φn

r + nφ
)
∂φB

r

r3
+

(
r∂Zn

Z + r∂rn
r + nr

)
∂rB

r

r
+ (∂Zn

r) ∂ZB
r−

−
(
∂Zn

φ
)
∂ZB

φ +
(r∂rn

r + nr) ∂φB
φ

r
+
(
∂rn

φ
)
∂rB

φ+

+

(
r∂φn

Z + 2hr − 2r2hφ
)
∂φB

Z

r3
−
(
r∂rn

Z + nZ
)
∂rB

Z

r

]
= 0.

(1.58)

If we use the identity eq. (1.55) to change the last 2 terms in the quantum correction
in eq. (1.54), we find that only the terms with diagonal derivatives such as ∂rBr

change. By taking 1
3
of each term in eq. (1.55) instead of the last 2 terms in eq. (1.54)

and using the identity
∂rB

r + ∂φB
φ + ∂ZB

Z = 0, (1.59)

which follows from exactness of the 2-form B = dA, we simplify the diagonal terms(
r∂Zn

Z + r∂rn
r + nr

)
∂rB

r

r
+

(r∂rn
r + nr) ∂φB

φ

r
= (∂Zn

Z)∂rB
r−(r∂rn

r + nr)∂ZB
Z

r
.

(1.60)
We note that brackets of the type

(
r∂rn

Z + nZ
)
vanish if nZ ∼ 1

r
. This means

vanishing quantum correction for the integrals of motion with the highest order term
PiPj, i, j ∈ {x, y, z}, taking into account eq. (1.57). (The result can be clearly seen
from eq. (1.54), so this merely checks the transformation.)

For comparison, we include the quantum correction with collected functions n and
their derivatives. We simplified it using the identities (1.59) and (1.60).

~2

4

[(
BZ − r∂rBZ

)
(nZ + r∂rnZ)

r2
+

(
rBφ − ∂φBr

)
(nφ + r∂φn

r)

r3
−

−
(
∂ZB

Z
)

(nr + r∂rn
r)

r
− (Br − r∂rBr) ∂Zn

Z

r
+

(
∂φB

Z
)
∂φn

Z

r2
−

− (∂ZB
φ)∂Zn

φ +
(
∂rB

φ
)
∂rn

φ + (∂ZB
r)∂Zn

r +
2∂φB

Z
(
hr − r2hφ

)
r3

]
.

(1.61)

Let us have a look at the effects of the correction (1.58) on the cylindrical integrable
systems. From eq. (1.54) follows that the determining equations for the first order
integrals are the same as in the classical case (ni = 0, i ∈ {x, y, z}). As we have
already mentioned, the correction vanishes for integrals of motion with the highest
order term P̂iP̂j, i, j ∈ {x, y, z}, whose functions ni are constant. This includes our
integral P̂ 2

Z + . . . On the other hand, the integral P̂ 2
φ + . . . with hφ = 1 corresponds

to
hx = y2, hy = x2, hz = 0, nz = −2xy, nx = 0, ny = 0 (1.62)
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and the quantum correction reads

−~2

2r
∂φB

Z . (1.63)

(It can be seen from eq. (1.58) directly.) The correction is non-zero for the general
form of BZ obtained from the highest order determining equations [11],

BZ = − 1

2r2
(ψ(φ) + ψ′′(φ)) + rµ(Z)− 1

2
ρ′(r), (1.64)

see eq. (1.88) below.

There could be another quantum correction arising from [X̂1, X̂2] = 0, which is the
quantum analogue of involutivity condition. Let us show that is not the case:

We first assume that both integrals of motion are of the first order, that is

X̂1 =
3∑
j=1

1

2

(
sj(x, y, z)P̂A

j + P̂A
j sj(x, y, z)

)
+m(x, y, z), (1.65)

X̂2 =
3∑

k=1

1

2

(
s̃k(x, y, z)P̂A

k + P̂A
k s̃k(x, y, z)

)
+ m̃(x, y, z). (1.66)

After some calculations using the commutation relations from eq. (1.42), we obtain

[X1, X2] =
∑
j,k

i~
(
s̃k∂ksjP̂

A
j − sj∂j s̃kP̂A

k − εjklsj s̃kBl − sj∂jm̃+ s̃k∂km
)

+

+
∑
j,k

~2

2
(s̃k∂jksj − sj∂jks̃k).

(1.67)

The first line corresponds to the Poisson bracket, the second line is an apparent
quantum correction. Collecting the coefficients of P̂A

j (renaming the dummy indices
in the second term), we obtain the first order equations

3∑
k=1

(s̃k∂ksj − sk∂ks̃j) = 0. (1.68)

The quantum correction can be rewritten as follows∑
j,k

~2

2
∂j(s̃k∂ksj − sk∂ks̃j), (1.69)

because the terms with the first order derivatives cancel if we rename the indices.
The bracket contains the first order equations; therefore, the quantum correction
vanishes.

Now let us turn to the cylindrical case, i.e. the integrals of motion of the form

X̂1 =
(
L̂Az

)2
+

3∑
j=1

1

2

(
sj(x, y, z)P̂A

j + P̂A
j sj(x, y, z)

)
+m(x, y, z), (1.70)

X̂2 =
(
P̂A
z

)2
+

3∑
k=1

1

2

(
s̃k(x, y, z)P̂A

k + P̂A
k s̃k(x, y, z)

)
+ m̃(x, y, z). (1.71)

23



We impose the relation [X̂1, X̂2] = 0 and separate the equation according to the
powers of P . The second order terms

P̂zP̂z : ∂zsz = 0,

P̂zP̂x : y(x∂y − y∂x)s̃z + 2y(yBx + yBy) + ∂zsx = 0,

P̂zP̂y : x(x∂y − y∂x)s̃z + 2x(yBx + yBy)− ∂zsy = 0, (1.72)

P̂xP̂x : ys̃y + y(x∂y − y∂x)s̃x = 0,

P̂yP̂y : xs̃x − y(x∂y − y∂x)s̃y = 0,

give the same equations as would be obtained in the classical case. (The equation for
P̂xP̂y vanishes as a consequence of those for P̂xP̂x and P̂yP̂y.)

The first order equations obtain some rather complicated apparent corrections, which
nevertheless vanish when we use the second order equations (1.72). The equations
(without the apparent corrections) read

2y[(x∂y − y∂x)m̃+ (xBx + yBy)s̃z − (xs̃x + ys̃y)Bz] +
3∑
j=1

(s̃j∂jsx − s̃j∂jsx) = 0,

2x[(x∂y − y∂x)m̃+ (xBx + yBy)s̃z − (xs̃x + ys̃y)Bz] +
3∑
j=1

(s̃j∂jsy − s̃j∂jsy) = 0,

(1.73)

2∂zm− 2(syBx − sxBy) +
3∑
j=1

(s̃j∂jsz − sj∂j s̃z) = 0.

The same happens in the zeroth order: All apparent corrections vanish when we use
the higher order conditions (1.72) and (1.73), so the equation has the classical form

s̃x(syBz−szBy)+s̃y(szBx−sxBz)+s̃z(syBx−sxBy)+
3∑
j=1

(s̃j∂jm−sj∂jm̃) = 0. (1.74)

To sum up: The apparent quantum corrections to the involutivity condition [X̂1, X̂2] =
0 vanish once we impose the higher order conditions from the same commutator for
both the first order and the cylindrical integrals. We note that we do not need to
use the determining equations for the integrals to prove the assertion.

In the cylindrical case there is, therefore, only one equation with quantum correction,
namely the zeroth order equation for X1, which now reads

sr1∂rW + sφ1∂φW + sZ1 ∂ZW −
~2

2r
∂φB

Z = 0. (1.75)

In order to consider the quantum correction for integrals containing angular momenta
in the second order term, we suggest using the Cartesian form of the correction
from eq. (1.54) or transforming it into more suitable coordinates because using the
correction from eq. (1.58) seems not tractable.
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1.4 Quantum integrable systems

Here we solve the quantum determining equations for the case of cylindrical integrals
in the cylindrical coordinates. As we have seen in the last section, the quantum
correction has arisen in one equation only, namely the zeroth order equation for the
integral X̂1 = (P̂A

φ )2 + . . ., see eq. (1.75). Because there are so little changes, we will
closely follow the analysis from [11] and focus mainly on the cases which are affected
by the correction.

We start with reducing the determining equations (1.14)–(1.17) to the case of cylin-
drical integrals, which in classical mechanics read

X1 = (pAφ )2 + sr1(r, φ, Z)pAr + sφ1(r, φ, Z)pAφ + sZ1 (r, φ, Z)pAZ +m1(r, φ, Z),

X2 = (pAZ)2 + sr2(r, φ, Z)pAr + sφ2(r, φ, Z)pAφ + sZ2 (r, φ, Z)pAZ +m2(r, φ, Z).
(1.76)

To obtain their quantum mechanical form, we would have to transform the integrals
into the Cartesian coordinates, quantize with proper symmetrization and transform
back into the cylindrical coordinates. Because we have transformed the determining
equations from the Cartesian form, we do not need the explicit form of the integrals
here.

The reduction is done by substituting the appropriate values for the functions h, n,
namely the only non-zero functions

hφ1 = 1, hZ2 = 1, (1.77)

into the general determining equations (1.14)–(1.17) and taking into account the
quantum correction (1.63) in the zeroth order equation. We obtain the following:

The third order equations (1.14) are trivially satisfied for both integrals. The second
order equations for the integrals X̂1 and X̂2 read

∂rs
r
1 = 0, ∂φs

φ
1 = −s

r
1

r
,

∂φs
r
1 = −r2(∂rsφ1 + 2BZ), ∂φs

Z
1 = −r2(∂Zsφ1 − 2Br),

∂rs
Z
1 = −∂Zsr1, ∂Zs

Z
1 = 0,

(1.78)

and

∂rs
r
2 = 0, ∂φs

φ
2 = −s

r
2

r
,

∂φs
r
2 = −r2∂rsφ2 , ∂φs

Z
2 = −r2∂Zsφ2 − 2Br,

∂rs
Z
2 = −∂Zsr2 + 2Bφ, ∂Zs

Z
2 = 0,

(1.79)

respectively.

The first order equations reduce to those for X̂1

∂rm1 = sZ1B
φ − sφ1BZ ,

∂φm1 = sr1B
Z − sZ1Br + 2r2∂φW, (1.80)

∂Zm1 = sφ1B
r − sr1Bφ,
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and those for X̂2

∂rm2 = sZ2B
φ − sφ2BZ ,

∂φm2 = sr2B
Z − sZ2Br, (1.81)

∂Zm2 = sφ2B
r − sr2Bφ + 2∂ZW.

One of the zeroth order equations is the only one to change with respect to the
classical case:

sr1∂rW + sφ1∂φW + sZ1 ∂ZW −
~2

2r
∂φB

Z = 0, (1.82)

sr2∂rW + sφ2∂φW + sZ2 ∂ZW = 0. (1.83)

In addition to the commutation with the Hamiltonian, i.e. the condition on integrals of
motion, we impose the commutation of the integrals [X̂1, X̂2] = 0, which corresponds
to the classical notion of involution. We obtain additional equations for each order
in momenta, namely those of the second order

∂φs
φ
2 = 0, ∂φs

r
2 = 0, ∂Zs

r
1 = 0, ∂φs

Z
2 = ∂Zs

φ
1 − 2Br, (1.84)

of the first order

sZ2 ∂Zs
r
1 + sφ2∂φs

r
1 = 0,

− sφ1(2Br + ∂φs
Z
2 ) + sZ2 ∂Zs

Z
1 − sZ1 ∂ZsZ2 +

+ sφ2∂φ2Z1 + sr1(2B
φ − ∂rsZ2 ) + 2∂Zm1 = 0, (1.85)

− sZ2 (2Br − ∂Zsφ1) + sφ2∂φs
φ
1−

− sZ1 ∂Zs
φ
2 − sr1∂rs

φ
2 − 2∂φm2 = 0,

and of the zeroth order

− sr1∂rm2 + sφ2∂φm1 − sφ1∂φm2 + sZ2 ∂Zm1 − sZ1 ∂Zm2+

+Br(sφ2s
Z
1 − s

φ
1s
Z
2 ) +Bφsr1s

Z
2 −BZsr1s

φ
2 = 0. (1.86)

None of them has any quantum correction, as was considered at the end of Section 1.3
(in the Cartesian coordinates).

The second order equations (1.78), (1.79) and (1.84) can be solved for the functions
sj and the magnetic field B in terms of 5 functions of one variable each, which we
call the auxiliary functions:

sr1 =
d

dφ
ψ(φ), sφ1 = −ψ(φ)

r
− r2µ(Z) + ρ(r), sZ1 = τ(φ),

sr2 = 0, sφ2 = µ(Z), sZ2 = −τ(φ)

r2
+ σ(r),

(1.87)

Br = −r
2

2

d

dZ
µ(Z) +

1

2r2
d

dφ
τ(φ), Bφ =

τ(φ)

r3
+

1

2

d

dr
σ(r),

BZ =
−ψ(φ)

2r2
+ rµ(Z)− 1

2

d

dr
ρ(r)− 1

2r2
d2

dφ2
ψ(φ).

(1.88)
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From now on we use primes for derivatives of functions of one variable, but we use
dot for derivatives with respect to time.

We substitute the result into the remaining determining equations to replace the
functions s and the magnetic field B by the auxiliary functions ρ(r), σ(r), τ(φ),
ψ(φ), µ(Z). The first order equations (1.80), (1.81) and (1.85) give us one direct
condition on the auxiliary functions ψ(φ) and µ(Z) and several conditions on the
derivatives of m1 and m2:(

rρ(r)− ψ(φ)− r3µ(Z)
) (
ψ′′(φ) + r2ρ′(r)

)
+

+
(
r3µ(Z) + rρ(r)

)
ψ(φ)− ψ(φ)2 + r3τ(φ)σ′(r)+

+ 2r6µ(Z)2 − 2r4ρ(r)µ(Z) + 2τ(φ)2 − 2r3∂rm1 = 0,

ψ′(φ)
(
2r3µ(Z)− r2ρ′(r)− ψ(φ)− ψ′′(φ)

)
+

+ τ(φ)
(
r4µ′(Z)− τ ′(φ)

)
+ 4r4Wφ − 2r2∂φm1 = 0,(

τ ′(φ)− r4µ′(Z)
) (
rρ(r)− ψ(φ)− r3µ(Z)

)
−

− ψ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− 2r3∂Zm1 = 0,

r3µ(Z)(ψ′′(φ) + ψ(φ)) + r3σ′(r)
(
r2σ(r)− τ(φ)

)
− 2r6µ(Z)2+ (1.89)

+ r5µ(Z)ρ′(r) + 2r2σ(r)τ(φ)− 2τ(φ)2 − 2r5∂rm2 = 0,(
r4µ′(Z)− τ ′(φ)

) (
r2σ(r)− τ(φ)

)
− 2r4∂φm2 = 0,

− r4µ(Z)µ′(Z) + µ(Z)τ ′(φ) + 4r2WZ − 2r2∂Zm2 = 0,

µ(Z)ψ′′(φ) = 0,(
r2ρ(r)− rψ(φ)− r4µ(Z)

)
µ′(Z) + µ(Z)τ ′(φ) + 2∂Zm1 = 0,

τ ′(φ)
(
r2σ(r)− τ(φ)

)
+ r4τ(φ)µ′(Z) + r3µ(Z)ψ′(φ) + 2r4∂φm2 = 0.

We see that we have two equations for each of the derivatives ∂Zm1 and ∂φm2,
so we obtain constraints for the auxiliary functions (the two values of ∂Zm1 and
∂φm2 must coincide). Assuming m1 and m2 to be sufficiently smooth, we impose
the Clairaut compatibility conditions ∂bami = ∂abmi on the second derivatives and
obtain equations for the mixed second derivatives of the scalar potential W , which
we list shortly, after we analyse the zeroth order equations.

Only one of the zeroth order equations (1.82) and (1.86) obtains the quantum
correction:(

r2σ(r)− τ(φ)
)
WZ + r2µ(Z)Wφ = 0,(

rρ(r)− ψ(φ)− r3µ(Z)
)
Wφ + r (ψ′(φ)Wr + τ(φ)WZ) +

+ ~2
ψ′′′(φ) + ψ′(φ)

4r2
= 0,

2r4
(
r3µ(Z)− rρ(r) + ψ(φ)

)
∂φm2 + 2r3

(
r2σ(r)− τ(φ)

)
∂Zm1+

+ r3µ(Z)ψ′(φ)ψ′′(φ) + 2r5µ(Z)∂φm1 − 2r5τ(φ)∂Zm2+

+
[
r3
(
r2σ(r)− τ(φ)

)
σ′(r)− 2r6µ(Z)2 + r5µ(Z)ρ′(r)+

+r3µ(Z)ψ(φ) + 2r2σ(r)τ(φ)− 2τ(φ)2 − 2r5∂rm2

]
ψ′(φ)−

−
[
r2
(
r3µ(Z)− rρ(r) + ψ(φ)

)
σ(r) +

+ τ(φ) (rρ(r)− ψ(φ))]
(
r4µ′(Z)− τ ′(φ)

)
= 0.

(1.90)
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Substituting for the derivatives of m from eq. (1.89) into eq. (1.90), we obtain a
system of linear inhomogeneous algebraic equations for the first derivatives of the
scalar potential W .

The final form of the reduced equations, which we analyse hereafter, is as follows.
(Indexes of W mean partial derivatives.)

ψ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− τ ′(φ) (rρ(r)− ψ(φ)) = 0, (1.91)

µ(Z)ψ′(φ) + r3σ(r)µ′(Z) = 0, (1.92)

Wrφ = − 2

r
Wφ +

1

4r5
[
ψ′(φ)

(
r3(ρ′′(r)− µ(Z))− r2ρ′(r) + rρ(r)− 3ψ′′(φ)− 4ψ(φ)

)
+

+ τ ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− 2r4τ(φ)µ′(Z)− ψ′′′(φ) (ψ(φ)− rρ(r))

]
,

WφZ = − 1

4r2
[
r2µ′′(Z)

(
τ(φ)− r2σ(r)

)
+ τ ′′(φ)µ(Z)

]
, (1.93)

WrZ =
1

4r3
[
rµ′(Z)

(
r2ρ′(r) + ψ(φ)− 2r3µ(Z)

)
+ 2µ(Z)τ ′(φ)

]
,

 0 r2µ(Z) r2σ(r)− τ(φ)

ψ′(φ) ρ(r)− r2µ(Z)− ψ(φ)
r

τ(φ)
0 4r7µ(Z) −4r5τ(φ)

 ·
Wr

Wφ

WZ

 =

 0

−~2(ψ′′′(φ)+ψ′(φ))
4r3

α(r, φ, Z)


(1.94)

with

α(r, φ, Z) = ψ′(φ)
[(
r5σ(r)− r3τ(φ)

)
σ′(r) + r5µ(Z)ρ′(r)− 2τ(φ)2 +

+2r2σ(r)τ(φ)− r3µ(Z)
(
r3µ(Z) + rρ(r)− 2ψ(φ)

)]
+

+ τ ′(φ)
[
(rρ(r)− ψ(φ)) τ(φ) + r2σ(r)

(
r3µ(Z)− rρ(r) + ψ(φ)

)]
−

− r4µ′(Z)τ(φ) (rρ(r)− ψ(φ)) . (1.95)

We denote the matrix in eq. (1.94) by M .

The only change with respect to the classical case from [11] is the non-zero RHS
in the system of linear inhomogeneous algebraic equations (1.94), corresponding to
eq. (39) in the original article.

We separate the analysis of the reduced system into several cases with respect to the
rank of the matrix M , following [11]. It can be either 3, 2 or 1. Rank 0 would mean
that all the auxiliary functions vanish and with them the magnetic field as well, see
eq. (1.88), so we rule this case out.

If the rank is 3, then the determinant of M ,

det(M) = 4r9ψ′(φ)µ(Z)σ(r), (1.96)

is not zero and it implies a unique solution for each first derivative of W . The
analysis of this case from [11] shows that this assumption leads to a contradiction
and the reduced system is inconsistent. The analysis remains valid because it uses
the matrix M and equations (1.91) and (1.92) only, which are unaffected by the
quantum correction.
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If the rank is either 2 or 1 instead, then det(M) = 0, and from eq. (1.96) we see that
there are a priori three possible cases:

a) ψ′(φ) = 0,

b) ψ′(φ) 6= 0 and µ(Z) = 0,

c) ψ′(φ) 6= 0, µ(Z) 6= 0 and σ(r) = 0. We rule this case out due to inconsistency
with eq. (1.92).

The assumption of case a) implies that the quantum correction vanishes; thus, we
obtain the classical systems from [11]. Therefore, we continue with the case b) only,
i.e. ψ′(φ) 6= 0 and µ(Z) = 0. (The key results for case a) are summarised in the
corresponding subsections of Section 2.1, where we search for additional integrals of
motion.)

Before we go to the specific subcases, we show that α = 0 for α from eq. (1.95). In the
considered case it follows from eq. (1.91) and eq. (1.92) only, so the considerations
are the same as in [11]:

Assuming ψ′(φ) 6= 0 and µ(Z) = 0, eq. (1.92) is satisfied trivially. By differentiating
eq. (1.91) with respect to r, we obtain(

r3σ′(r)
)′

=
τ ′(φ)

ψ′(φ)
(rρ(r))′ . (1.97)

This leads to 3 possibilities:

• (r3σ′(r))
′
= (rρ(r))′ = 0, i.e.

σ(r) =
Cσ
r2

+ C̃σ, ρ(r) =
Cρ
r
. (1.98)

Substituting eq. (1.98) into eq. (1.91) we find

2 (τ(φ)− Cσ)ψ′(φ) + (ψ(φ)− Cρ) τ ′(φ) = 0 (1.99)

which directly implies that α defined in eq. (1.95) vanishes.

• (r3σ′(r))
′
= τ ′(φ) = 0, i.e.

σ(r) =
Cσ
r2

+ C̃σ, τ(φ) = Cτ . (1.100)

Substituting eq. (1.100) into eq. (1.91) we find Cσ = Cτ and that together with
eq. (1.100) implies again that α = 0 in eq. (1.95).

• (r3σ′(r))
′

(rρ(r))′
= τ ′(φ)

ψ′(φ)
= λ 6= 0, implying that

ρ(r) =
1

λ
r2σ′(r) +

Cρ
r
, τ(φ) = λψ(φ) + Cτ . (1.101)

Substituting eq. (1.101) into eq. (1.91) and differentiating it with respect to φ
we arrive at a contradiction with our assumptions, namely λψ′(φ) = 0.
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1.4.1 Case b) rank (M) = 2: ψ′(φ) 6= 0 and µ(Z) = 0

Here the second and third equations in (1.93) reduce to

∂rZW = 0, ∂φZW = 0, (1.102)

implying separation of the Z coordinate from r and φ in the scalar potential W , i.e.

W (r, φ, Z) = W12(r, φ) +W3(Z). (1.103)

The reduced row echelon form of the extended matrix of the system of equations (1.94)
reads rψ′(φ) rρ(r)− ψ(φ) 0 −~2(ψ′′′(φ)+ψ′(φ))

4r2

0 0 σ(r) 0
0 0 τ(φ) 0

 (1.104)

Our assumption ψ′(φ) 6= 0 implies that we have two possibilities to have rank (M) = 2,
namely either σ(r) 6= 0 or τ(φ) 6= 0. Both of them imply W3(Z)′ = 0 and without
loss of generality we can absorb the constant into redefinition of W12, so we have
W (r, φ, Z) = W12(r, φ) ≡ W (r, φ).

1) σ(r) 6= 0: We follow the further splitting into the subcases from [11]. We use
our assumption ψ′(φ) 6= 0 to rewrite eq. (1.91) in the following way:

r3σ′(r) + 2τ(φ)− τ ′(φ)

ψ′(φ)
(rρ(r)− ψ(φ)) = 0. (1.105)

Differentiation with respect to φ leads to the equation:

3τ ′(φ) + ψ(φ)
τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)

ψ′(φ)2
= rρ(r)

τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)

ψ′(φ)2
.

(1.106)
If τ ′′(φ)ψ′(φ) − τ ′(φ)ψ′′(φ) 6= 0, we can separate the variables r and φ, else
the expression vanishes and we conclude from eq. (1.106) that τ ′(φ) = 0, thus
τ(φ) = τ0 is a constant. We treat the subcases separately.

1.1) τ ′′(φ)ψ′(φ) − τ ′(φ)ψ′′(φ) = 0, so τ(φ) = τ0: From eq. (1.91), which now
reads r3σ′(r) = −2τ0, follows

σ(r) =
τ0
r2

+ σ0. (1.107)

The yet unsolved equations from eq. (1.91)–(1.94) constraining the scalar
potential W read

rψ′(φ)Wr + (rρ(r)− ψ(φ))Wφ +
~2(ψ′′′(φ) + ψ′(φ))

4r2
= 0, (1.108)

ψ′(φ)
(
r3ρ′′(r)− r2ρ′(r) + rρ(r)− 3ψ′′(φ)− 4ψ(φ)

)
+

+ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0. (1.109)
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The magnetic field takes the form

Bφ = 0, Br = 0, BZ = −ρ
′(r)

2
− ψ′′(φ) + ψ(φ)

2r2
. (1.110)

Thus, we have a free motion in the z-direction (in the direction of the z-
axis) and motion in the xy-plane under the influence of the scalar potential
W (r, φ) constrained by eq. (1.108) and eq. (1.109) and the perpendicular
magnetic field BZ(r, φ). Such 2D problem was discussed by McSween and
Winternitz [22] in classical mechanics and by Bérubé and Winternitz [5]
in quantum mechanics.
For both motions we have one integral of motion in addition to the
separable Hamiltonian, namely the integral X1 for the motion in the
xy-plane, which we list shortly together with corresponding magnetic field
B and potential W , and X2 for the z-direction. The integral X2 reduces
to the first order one

X̃2 = pAZ +
σ0
2
, (1.111)

which in a suitably chosen gauge reads pZ .
In [5] it was shown that there are 2 solutions to equations (1.108) and
(1.109) for ψ′(φ) 6= 0, in both cases the magnetic field BZ does not depend
on Z. Omitting the lengthy details, we present the results only.

i. The magnetic field independent of φ and Z corresponds to

ψ(φ) = ψ0 + ψ1 cos(φ) + ψ2 sin(φ),

ρ(r) = 3ρ2r
4 − ρ1r2 + ρ0

(1.112)

which means that this quantum system is the same as the classical (the
correction vanishes). The resulting magnetic field BZ and potential
W are

BZ = −6ρ2r
3 + ρ1r,

W = −2ρ2r(ψ1 cos(φ) + ψ2 sin(φ))− ρ22r6 +
ρ2ρ1

2
r4 − ρ2W0r

2.

(1.113)

The corresponding integral of motion in the Cartesian coordinates is

X1 = (LAz )2 + (3ρ2r
4 − ρ1r2 +W0)L

A
z − ψ2p

A
x + ψ1p

A
y +

+ ψ1(2ρ2r
2 − ρ1)x+ ψ2(2ρ2r

2 − ρ1)y+

+
(3ρ2r

4 − ρ1r2 + 2W0)(3ρ2r
2 − ρ1)r2

4
,

(1.114)

where we write r =
√
x2 + y2 for brevity.

ii. The magnetic field depends on φ as well as r. We have

ρ(r) =
ρ0
r
. (1.115)

This leads to the special case of the following subcase 1.2) with τ1 = 0.
We therefore refer the reader there for details and list the results only.
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The magnetic field B together with the potential W read

Br = 0, Bφ = 0, BZ =
2β1β(φ)2 + β2

4r2β(φ)5
, (1.116)

W =
W0

r2β(φ)2
− β2

32β(φ)4r4
+ ~2

f1β(φ)4 − 12β1β(φ)2 − 5β2
32r2β(φ)6

,

(1.117)

where β1, β2 are constants and β(φ) = ψ(φ)− ρ0 must satisfy

4β(φ)4β′(φ)2 + 4β(φ)6 − 4β1β(φ)2 + f1β(φ)4 = β2. (1.118)

The corresponding integral X1 is defined by

sr1 =

√
4β1β(φ)2 + β2 − 4β(φ)6 − β(φ)4f1

2β(φ)2
,

sφ1 = − β(φ)

r
, sZ1 = 0, (1.119)

m1 =
2W0

β(φ)2
− 2β1β(φ)2 + β2

8β(φ)4r2
+ ~2

f1β(φ)4 − 12β1β(φ)2 − 5β2
16β(φ)6

.

1.2) τ ′′(φ)ψ′(φ)−τ ′(φ)ψ′′(φ) 6= 0. Separating the variables r and φ in eq. (1.106),

3τ ′(φ)ψ′(φ)2

τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)
+ ψ(φ) = ρ0 = rρ(r) (1.120)

with separation constant ρ0, we obtain

ρ(r) =
ρ0
r
, τ(φ) = τ0 +

τ1
(ψ(φ)− ρ0)2

. (1.121)

Using these results in eq. (1.91), we get σ(r) = τ0
r2

+ σ0.
There are two unsolved equations among eq. (1.93)–(1.94). Simplifying
them using the previous results, we get

rψ′(φ)Wr + (ρ0 − ψ(φ))Wφ + ~2
ψ′′′(φ) + ψ′(φ)

4r2
= 0,

3ψ′(φ)ψ′′(φ) + 4ψ′(φ) (ψ(φ)− ρ0) + ψ′′′(φ)(ψ(φ)− ρ0)+ (1.122)

+
4τ 21

(ψ(φ)− ρ0)5
ψ′(φ) + 4r5Wrφ + 8r4Wφ = 0.

We substitute β(φ) = ψ(φ)− ρ0 and integrate the second equation with
respect to φ to obtain

rβ′(φ)Wr − β(φ)Wφ + ~2
β′′′(φ) + β′(φ)

4r2
= 0, (1.123)

β(φ)β′′(φ) + β′(φ)2 + 2β(φ)2 − τ 21
β(φ)4

+

+4r5Wr + 8r4W (r, φ) + f(r) = 0, (1.124)
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where f(r) is an arbitrary function arising in the integration.
Substituting for Wr from eq. (1.124) into eq. (1.123) we find expressions
for both Wr and Wφ, where only the expression for Wφ has the correction,

∂φW = −2β′W

β
− β′(2β6 + β5β′′ + β4β′2 + β4f (r)− τ 21 )

4r4β5
+ ~2

β′′′ + β′

4r2β
.

(1.125)
Substituting them into eq. (1.122) we obtain the following equation

β′(φ)
(
12β(φ)2 + 7ββ′′(φ) + 4β′(φ)2 − f ′(r)r + 4f(r)

)
+ β(φ)2β′′′(φ) = 0,

(1.126)
which we differentiate by r and get

f(r) =
f1
4

+ f2r
4, (1.127)

where f1, f2 are integration constants. With the form of f(r) from
eq. (1.127), we can determine the dependence of the scalar potential
W on r from eq. (1.124), treating the yet unknown function β(φ) as a
parameter:

W = −f2
8

+
W̃ (φ)

r2
+
β(φ)β′′(φ) + β′(φ)2 + f1

4
− τ21

β(φ)4
+ 2β(φ)2

8r4
. (1.128)

We determine the function W̃ (φ) from an equation obtained by inserting
W from eq. (1.128) into eq. (1.125) and subtracting eq. (1.126) with f(r)
from eq. (1.127), i.e. we subtract

β′(φ)
(
7β(φ)β′′(φ) + 4β′(φ)2 + 12β(φ)2 + f1

)
+ β(φ)2β′′′(φ) = 0.

(1.129)

The resulting equation

~2β′′′(φ) + (~2 − 8W̃ (φ))β′(φ)− 4(W̃ ′(φ))β(φ)

4r2β(φ)
= 0 (1.130)

yields

W̃ (φ) =
W0

β(φ)2
+ ~2

2β(φ)β′′(φ) + β(φ)2 − β′(φ)2

8β(φ)2
, (1.131)

where W0 is an arbitrary constant. The final form of the scalar potential
after a constant shift eliminating −f1

8
is

W =
W0

r2β(φ)2
+
β(φ)β′′(φ) + β′(φ)2 + f1

4
− τ21

β(φ)4
+ 2β(φ)2

8r4
+

+ ~2
2β(φ)β′′(φ) + β(φ)2 − β′(φ)2

8r2β(φ)2
.

(1.132)
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We have therefore almost explicit form of the potential, the only unde-
termined function is β(φ), which must satisfy the only remaining equa-
tion (1.129). We reduce its order as follows [11]: we multiply by β(φ) and
integrate, then multiply by β′(φ)β(φ) and integrate again. The result is

4β(φ)4β′(φ)2 + 4β(φ)6 − 4β1β(φ)2 + f1β(φ)4 = β2 (1.133)

where β1, β2 are the constants of integration. According to [5], eq. (1.133)
can be written as a quadrature expressing the independent variable φ as a
function of β in terms of elliptic integrals but the authors analyse further
some special cases only. For more details see the cited article, we will later
consider only the special case β2 = 0.
We can use eq. (1.133) to further simplify the scalar potential (1.132)

W =
W0

r2β(φ)2
− (4τ 21 + β2)

32r4β(φ)4
+ ~2

f1β(φ)4 − 12β1β(φ)2 − 5β2
32r2β(φ)6

. (1.134)

The magnetic field is also expressed in terms of the function β(φ) and its
derivatives

Br = − τ1β
′(φ)

r2β(φ)3
, Bφ =

τ1
r3β(φ)2

, BZ = −β(φ) + β′′(φ)

2r2
, (1.135)

or substituting for the derivatives from eq. (1.129) and its integrated form
eq. (1.133)

Br = − τ1
√

4β1β(φ)2 + β2 − 4β(φ)6 − f1β(φ)4

2r2β(φ)5
,

Bφ =
τ1

r3β(φ)2
, BZ =

2β1β(φ)2 + β2
4r2β(φ)5

. (1.136)

(The square root appears due to substitution for β′(φ) from eq. (1.133),
so the sign depends on the choice of the branch in that equation.)
We note that eq. (1.133) is the same in classical and quantum cases. This
implies that the magnetic field is the same in both cases, only the scalar
potential W obtains an ~2-proportional correction depending on β.
The integrals from eq. (1.76) are determined by

sr1 =

√
4β1β(φ)2 + β2 − 4β(φ)6 − β(φ)4f1

2β(φ)2
,

sφ1 = − β(φ)

r
, sZ1 = τ0 +

τ1
β(φ)2

,

m1 =
2W0

β(φ)2
− 4β(φ)2τ0τ1 + 2β1β(φ)2 + 4τ 21 + β2

8β(φ)4r2
+

+ ~2
f1β(φ)4 − 12β1β(φ)2 − 5β2

16r2β(φ)6
, (1.137)

sr2 = 0, sφ2 = 0, sZ2 = σ0 −
τ1

r2β(φ)2
,

m2 =
τ1

β(φ)2r2

(
τ1

4β(φ)2r2
− σ0

2

)
.
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Writing the integral X2 in full, we get

X2 =

(
pAZ −

τ1
2r2β(φ)2

)2

+ σ0

(
pAZ −

τ1
2r2β(φ)2

)
. (1.138)

so this integral of motion reduces to the first order one

X̃2 = pAZ −
τ1

2r2β(φ)2
(1.139)

and is in suitable gauge X2 = pZ , as can be checked in eq. (1.135).
We can rewrite eq. (1.133) using a substitution γ(φ) = β(φ)2 to obtain

γ(φ)γ′(φ)2 + 4γ(φ)3 − 4β1γ(φ) + f1γ(φ)2 = β2. (1.140)

Let us analyse the special case β2 = 0. We obtain the following solution:

γ(φ) =

√
64β1 + f 2

1 sin (2(φ− φ0))− f1
8

. (1.141)

Under the assumptions that f1 < 0, −f21
64
< β1 < 0, the corresponding

β(φ) is well defined, bounded and positive,

β(φ) =

√√
64β1 + f 2

1 sin (2(φ− φ0))− f1
8

. (1.142)

The magnetic field now reads:

Br = − 8τ1
√

64β1 + f 2
1 cos (2(φ− φ0))

r2
(√

64β1 + f 2
1 sin (2(φ− φ0))− f1

)2 ,
Bφ =

8τ1

r3
(√

64β1 + f 2
1 sin (2(φ− φ0))− f1

) , (1.143)

BZ =
β1
2r2

(√
64β1 + f 2

1 sin (2(φ− φ0))− f1
8

)− 3
2

For solution from eq. (1.141) we find

W =
8W0

r2 (a sin (2(φ− φ0))− f1)
− 8τ 21
r4 (a sin (2(φ− φ0))− f1)2

+

+ ~2
a2f1(sin(2(φ− φ0))

2 + 1)− 2a3 sin(2(φ− φ0)) + 32β1f1 − 320β2

4r2 (a sin(2(φ− φ0))− f1)3
,

(1.144)

where a =
√
f 2
1 + 64β1.
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Choosing the coordinates so that φ0 = 0 and transforming the magnetic
field into the Cartesian coordinates using eq. (1.10), we get

Bx(~x) = −
8τ1

(√
f 2
1 + 64β1x− f1y

)
(
f1(x2 + y2)− 2

√
f 2
1 + 64β1xy

)2 , (1.145)

By(~x) =
8τ1

(√
f 2
1 + 64β1y − f1x

)
(
f1(x2 + y2)− 2

√
f 2
1 + 64β1xy

)2 , (1.146)

Bz(~x) = − 8
√

2β1(
f1(x2 + y2)− 2

√
f 2
1 + 64β1xy

) 3
2

, (1.147)

W (~x) = −
8W0

(
f1(x

2 + y2)− 2
√
f 2
1 + 64β1xy

)
+ 8τ 21(

f1(x2 + y2)− 2
√
f 2
1 + 64β1xy

)2 + (1.148)

+ ~2
(r4 + 4x2y2)f 3

1 − 4a3r2xy + β1f1(96r4 + 256y2x2)− 320r4β2
4(f1r2 − 2ayx)3

.

2) τ(φ) 6= 0: We can use considerations from the previous case as in the classical
case, because we have never divided by σ(r), which may now vanish, and
never assumed τ(φ) = 0. We only need some constraints on the constants to
assure τ(φ) 6= 0. We therefore obtain the system which splits into independent
motions in xy-plane and z-direction (the motion in 2D was considered in [5])
with magnetic field from eq. (1.113) and the system with the magnetic field
from eq. (1.136) and scalar potential from eq. (1.134). (If τ1 = 0 in the second
system, we get the separating system from eq. (1.116) in subcase i.)

1.4.2 Case b) rank (M) = 1: ψ′(φ) 6= 0 and µ(Z) = 0

From eq. (1.93) follows the separation of the scalar potential

W (r, φ, Z) = W12(r, φ) +W3(Z). (1.149)

Let us have a look at extended matrix eq. (1.104) for the system of equations (1.94).
For the (non-extended) matrix of the systemM to have rank 1, the auxiliary functions
τ(φ) and σ(r) must be zero, therefore W3(Z) remains unconstrained, which is in
contrast with respect to rank (M) = 2. The remaining equations of the system
(1.91)–(1.94) are the same as eq. (1.108) and eq. (1.109), which read

rψ′(φ)Wr + (rρ(r)− ψ(φ))Wφ + ~2
ψ′′′(φ) + ψ′(φ)

4r2
= 0,

ψ′(φ)
(
r3ρ′′(r)− r2ρ′(r) + rρ(r)− 3ψ′′(φ)− 4ψ(φ)

)
+ (1.150)

+ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.

The magnetic field reads

Br = 0, Bφ = 0, BZ = − 1

2r2
(
ρ′(r)r2 + ψ′′(φ) + ψ(φ)

)
. (1.151)
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We have therefore obtained a separable motion – motion in the xy-plane under
the influence of the scalar potential W (r, φ), which has a quantum correction, plus
the perpendicular magnetic field BZ(r, φ) and the motion in the direction of the
z-axis under the influence of the scalar potential W3(Z), which is not constrained,
in contrast with the case of rank (M) = 2. The xy-plane motion was analysed in
[5] and [22]. For both motions we have one integral of motion in addition to the
separable Hamiltonian, namely integral X1 for the motion in the xy-plane and X2

for the z-direction.

There are 2 systems in 2D that are interesting for us in this case [5]. They are
those in case 1.1), so namely with the potential W12(r, φ) and magnetic field B from
eq. (1.113) and eq. (1.116), the form of the integral X1 can be seen under the cited
equations. The Z component of the potential, W3(Z), remains unconstrained and
the corresponding integral of motion X2 will not reduce to a linear one,

X2 = (pAZ)2 + 2W3(Z), (1.152)

as can be seen from eq. (1.81), where all si vanish.

To sum up: In this section we obtained all quantum quadratically integrable systems
of cylindrical type by solving the corresponding determining equations. We followed
the analysis from the classical case [11] because only one of the equations differs
form the classical case, namely eq. (1.82). The determining equations were reduced
to equations (1.91)–(1.94) containing 5 auxiliary functions of one variable ρ(r), σ(r),
ψ(φ), τ(φ) and µ(Z) which determine the functions si and Bi, see eq. (1.87) and
(1.88).

Equation (1.94) contains a matrix which depends on the auxiliary functions only
and allows us to split the considerations according to its rank. In [11] it was shown
that rank 0 and 3 are either impossible (assuming a non-vanishing magnetic field)
or inconsistent and the arguments remain valid in quantum mechanics. Ranks 1
and 2 split further into subcases a) ψ′(φ) = 0 and b) ψ′(φ) 6= 0, µ(Z) = 0. Case a)
implies vanishing of the quantum correction and the obtained systems are therefore
the same as in classical mechanics. Those were not analysed further here, and we
refer the reader to [11]. (The key results are cited in the corresponding subsections
of Section 2.1, where we search for the first order superintegrable system among
them.) In case b) the quantum correction is a priori non-trivial, but vanishes due
to the consistency conditions on the scalar potential W in case 1.1) subcase i. and
the corresponding subcase in this subsection. The analysis shows that the remaining
subcases have the same magnetic field as their classical counterparts and only the
scalar potential W is modified by a ~2-proportional correction.

In all cases there is at least one free parameter, a constant or even a function. In the
next chapter we search for values of the constants and functions so that the system
admits additional integrals of motion, which makes the system superintegrable.
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Chapter 2

Found superintegrable systems

After the analysis of the cylindrical integrable systems both in classical mechanics
[11] and in quantum mechanics (Section 1.4) has been completed, we go one step
further, namely look for superintegrable systems among the integrable ones.

The goal is to find additional integrals of motion. We use the usual ansatz that the
integrals of motion are first or second order polynomials in momenta. We tried to
solve the second order case in general, but we encountered considerable computational
difficulties. Although the third order equations (1.14) do depend on neither magnetic
nor electric field and can be solved, see eq. (1.20)–(1.23) for the solution, we still
have to solve 10 differential equations (1.15)–(1.17) with 20 arbitrary constants αij
from eq. (1.20)–(1.23) and 4 unknown functions sr, sφ, sZ , m of 3 variables r, φ,
Z each in addition to the magnetic field B and scalar potential W (simplified by
assuming integrability).

Despite a lot of effort, we obtained a rather limited results by analysing the second
order case in general, which we present in Subsection 2.2.1. (We obtained some first
order systems here as well). Therefore, we have to be less ambitious and consider the
first order case (Section 2.1) and a physically motivated second order ansatz, namely
L2 + . . . in Subsection 2.2.2 and Lxpy − Lypx + . . . in Subsection 2.2.3. We solve
these in a systematic way, albeit the second order systems in classical mechanics
only because the quantum corrections for these integrals are non-trivial.

2.1 First order integrals

2.1.1 General considerations

Before we start analysing the cases, let us outline the general procedure and prove
that the first order integrals can contain neither Lx nor Ly.

The task is to solve equations (1.27)–(1.29), where we substitute the magnetic
field from eq. (1.88) with the form of the auxiliary functions corresponding to the
considered case.
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We start from the highest order equations (1.27), which do not depend on the
magnetic field nor the scalar potential and can be solved in general. As we have
already mentioned in Section 1.2, the solution (1.30) implies that the first order
terms are in the Euclidean Lie algebra generated by

px, py, pz, Lx, Ly, Lz, (2.1)

the solution therefore depends on 6 constants k1, . . . , k6. We associate the constants
with the gauge invariant form of generators of the Euclidean algebra, namely

Y = k1p
A
x + k2p

A
y + k3p

A
z + k4L

A
x + k5L

A
y + k6L

A
z +m(x, y, z). (2.2)

We next solve the first order equations (1.28) with the solution (1.30) substituted.
The best way to proceed is to assume that the function m is smooth enough and
impose the Clairaut compatibility conditions ∂abm = ∂bam on the second derivatives
of m(r, φ, Z). Taking into account the solution (1.30) to the second order equations
(1.27) and the form of magnetic field in terms of the auxiliary functions (1.88), the
compatibility equations read

[(k4Z − k2) cos(φ) + (k5Z + k1) sin(φ)− k6r](ψ′′′(φ) + ψ′(φ))+

+ 3[(k5Z + k1) cos(φ)− (k4Z − k2) sin(φ)]ψ′′(φ)+

+ [(k5Z + k1) cos(φ)− (k4Z − k2) sin(φ)]r2(ρ′(r)− rρ′′(r))+ (2.3)
+ [−3k5r cos(φ) + 3k4r sin(φ) + 2k3]r

4µ′(Z)+

+ r(k5 cos(φ)− k4 sin(φ))τ ′(φ)− r4(k4 cos(φ) + k5 sin(φ))σ′(r)+

+ 3[(k5Z + k1) cos(φ)− (k4Z − k2) sin(φ)]ψ(φ)−
− 2[k4 cos(φ) + k5 sin(φ)]rτ(φ) = 0,

[−(k5Z + k1) cos(φ) + (k4Z − k2) sin(φ)]r4σ′′(r)+

+ (k4 cos(φ) + k5 sin(φ))rψ′′(φ)+

+ [3(k4Z − k2) cos(φ) + 3(k5Z + k1) sin(φ)− 2k6r]τ
′(φ)−

− ((k4Z − k2) cos(φ) + sin(φ)(k5Z + k1))r
4µ′(Z)+ (2.4)

+ [k4 cos(φ) + k5 sin(φ)]r3ρ′(r)+

+ 6[(k5Z + k1) cos(φ)− (k4Z − k2) sin(φ)]τ(φ)−
− [k4 cos(φ) + k5 sin(φ)]r(2r3µ(Z)− ψ(φ)) = 0,

[(k4Z − k2) cos(φ) + (k5Z + k1) sin(φ)− k6r]τ ′′(φ)+

+ (−k5r cos(φ) + k4r sin(φ) + k3)r
5µ′′(Z)−

− (k5 cos(φ)− k4 sin(φ))rψ′′(φ)+

+ 3[(k5Z + k1) cos(φ)− sin(φ)(k4Z − k2)]τ ′(φ)−
− [(k4Z − k2) cos(φ) + (k5Z + k1) sin(φ)]r3σ′(r)+ (2.5)
+ [(k5Z + k1) cos(φ)− (k4Z − k2) sin(φ)]r4µ′(Z)−
− 4(k5 cos(φ)− k2 sin(φ))(r3ρ′(r))−
− 2[(k4Z + k2) cos(φ) + (k5Z + k1) sin(φ)]τ(φ)−
− [k4 sin(φ)− k5 cos(φ)]r(2r3µ(Z)− ψ(φ)) = 0.

(We have multiplied the equations by the power of r which was originally in the
denominator. Because the equations must be satisfied for all r, φ, Z, we implicitly
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assume r 6= 0 and we do these simplifications automatically, often without mentioning
them.)

Although the equations are long, they are manageable because they can be separated
by taking derivatives with respect to r and/or Z (and dividing/multiplying by r).

There is one thing that can be proved using the equations above only, i.e. for all
integrable cases: If we assume that the magnetic field is real and does not vanish,
these systems do not admit the first order integrals corresponding to the constants
k4, k5, namely Lx and Ly. We prove this fact by contradiction and at the same
time illustrate the procedure used in the following subsections, which consists in
repeated solving of equations with the highest powers of Z and r (µ(Z) reduces to a
polynomial) and substituting the results.

To prove the previous assertion, we assume that at least one of the constants k4 and
k5 does not vanish and we show it implies zero or complex magnetic field. Taking the
second derivative with respect to Z of equation (2.3), we obtain (dividing by r4)

[−3k5r cos(φ) + 3k4r sin(φ) + 2k3]µ
′′′(Z) = 0. (2.6)

Differentiating it with respect to r, our assumption together with the fact that the
equation must be satisfied for all r, φ, Z implies

µ(Z) = µ2Z
2 + µ1Z + µ0. (2.7)

Inserting it into eq. (2.4)–(2.5) and differentiating twice with respect to Z, we obtain

k5µ2 sin(φ) + k4µ2 cos(φ) = 0, k5µ2 sin(φ)− k4µ2 cos(φ) = 0, (2.8)

which imply linearity of µ(Z), µ2 = 0.

Using the result in eq. (2.3) differentiated with respect to Z and r, we obtain

k5(r
3ρ′′′(r) + 2r2ρ′′(r)−2rρ′(r)) cos(φ)−k4(r3ρ′′′(r) + 2r2ρ′′(r)−2rρ′(r)) sin(φ) = 0,

(2.9)
which has the following solution

ρ(r) = ρ0 +
ρ1
r

+ ρ2r
2. (2.10)

Differentiating eq. (2.4) with respect to Z and r, we get

(k5rσ
′′′(r) + 4k5σ

′′(r) + 12k4µ1) cos(φ)− (k4rσ
′′′(r) + 4k4σ

′′(r)− 12k5µ1) sin(φ) = 0.
(2.11)

Solving the brackets separately, the solutions are consistent only if µ1 = 0 and read

σ(r) =
σ2
r2

+ σ1r + σ0. (2.12)

Inserting σ(r) in into eq. (2.5), we get

σ1 (k4 cos(φ) + k5 sin(φ)) = 0, (2.13)

so we see that σ1 = 0.
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We now solve eq. (2.3)–(2.5) differentiated with respect to Z only to obtain ψ(φ)
and τ(φ) with the result

ψ(φ) = ρ1 +
c1 cos(2φ) + c2 sin(2φ) + c3

2(k4 cos(φ) + k5 sin(φ))
, (2.14)

τ(φ) = σ2 +
2c4 − (k24 + k25)

2(k4 cos(φ) + k5 sin(φ))2
. (2.15)

With this solution, the coefficient of Z in equations (2.3)–(2.5) vanishes, but the
equations are not satisfied yet. Differentiating eq. (2.4) with respect to r four times,
we obtain

(µ0 − ρ2)(k4 cos(φ) + k5 sin(φ)) = 0, (2.16)

therefore ρ2 = µ0.

Inserting this result, we differentiate eq. (2.3)–(2.5) once with respect to r, take the
numerators only and collect the coefficients of the polynomial in sines and cosines.
Thus, we obtain a system of 7 algebraic equations:

σ2k
4
4k5 + 3(c1 − c3)k34k6 + 2(σ2k

2
5 + 3c2k6 − c4)k24k5 − 3(c1 + c3)k4k

2
5k6 + σ2k

5
5 − 2c4k

3
5 = 0, (2.17)

σ2k
5
4 + 2(σ2k

2
5 − c4)k34 − 3(c1 − c3)k24k6k5 + [σ2k

4
5 − 2(3c2k6 − c4)k25]k4 + 3(c1 + c3)k

3
5k6 = 0, (2.18)

2σ2k
3
4k6 + (c3 − c1)k24k5 + 2[(σ2k6 − c2)k25 − 2c4k6]k4 + (c1 + c3)k

3
5 = 0, (2.19)

(c3 − c1)k34 − 2(σ2k6 + c2)k
2
4k5 + (c1 + c3)k4k

2
5 − 2σ2k

3
5k6 + 4c4k5k6 = 0, (2.20)

3σ2k
4
4k6 + (c3 − c1)k5k34 + 2[(2σ2k6 − c2)k25 − 3c4k6]k

2
4 + (c1 + c3)k4k

3
5 + k45k6σ2 − 2c4k

2
5k6 = 0, (2.21)

(c3 − c1)k44 − 2(2k6σ2 + c2)k5k
3
4 + 2c1k

2
4k

2
5 + 2[(c2 − 2σ2k6)k

3
5 + 4c4k5k6]k4 − (c1 + c3)k

4
5 = 0, (2.22)

(c1 − c3)k5k34 − σ2k44k6 + 2[2(c2k
2
5 + c4k6)k

2
4 − (c1 + c3)k

3
5k4 + σ2k

4
5k6 − 2c4k

2
5k6] = 0. (2.23)

It has 3 real solutions excluding k4 = k5 = 0, namely

1. c1 = c3, c4 = σ2
2
k24, k5 = 0,

2. c1 = −c3, c4 = σ2
2
k25, k4 = 0,

3. c4 = σ2
2

(k24 + k25), c2 =
(−c1+c3)k24+(c1+c3)k25

2k5k4
.

(The remaining constants are unconstrained in all three cases.) All of them, however,
lead to vanishing of the magnetic field. Therefore, we have proved that in order to
have real non-vanishing magnetic field we need

k4 = k5 = 0. (2.24)

The remaining part of equations (2.3)–(2.5) can be solved for each integrable system
of cylindrical type in the same manner. In each step we have to consider which of the
constants ki from solution (1.30) should be set to zero and which non-zero, because
any vanishing constant means that the corresponding integral is not allowed by the
system, but non-vanishing constants constrain auxiliary functions in such a way that
the corresponding systems have zero magnetic field.
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Having solved the compatibility conditions (2.3)–(2.5), we solve eq. (1.28) and
eq. (1.29) to obtain m(r, φ, Z) and W (r, φ, Z), respectively. We have to check com-
patibility of the obtained scalar potential W (r, φ, z) with the restrictions imposed by
the considered cylindrical system.

Let us now treat the specific cases from [11] and Section 1.4.

2.1.2 Case rank(M) = 2 subcase 2a)

The assumptions of this subcase read

ψ(φ) = 0, µ(Z) = µ0, τ(φ) = τ0, (2.25)

with the corresponding magnetic field and scalar potential

W = W (r), Br = 0, Bφ =
τ0
r3

+
1

2
σ′(r), BZ = µ0r −

1

2
ρ′(r). (2.26)

In this case we assume ψ(φ) = 0, so the quantum correction vanishes and therefore
the system is the same in classical and quantum mechanics.

From [11] we know, that this system admits the integrals

X̃1 = pAφ +
ρ(r)

2
− µ0r

2

2
, X̃2 = pAZ +

σ(r)

2
− τ0

2r2
, (2.27)

so we set k3 = k6 = 0.

The additional conditions which split the case into further subcases in [11] all imply
the scalar potential W and magnetic field B from eq. (2.26) with different constraints
on the functions and constants. However, we lose no generality by redefining σ(r)
and ρ(r) to set µ0 = τ0 = 0 and proceeding with the assumption σ(r)ρ(r) 6= 0. (We
can always choose the constant term which does not appear in the magnetic field
and can be eliminated by the choice of gauge in the integrals.) Therefore, we do not
need to split into subcases.

Recalling eq. (2.24), the compatibility conditions (2.3)–(2.5) can be solved at once
with the result

ρ(r) = ρ1r
2 + ρ0, σ(r) = σ0, (2.28)

where ρ1 6= 0 because otherwise the corresponding magnetic field

Br(r, φ, Z) = 0, Bφ(r, φ, Z) = 0, BZ(r, φ, Z) = −rρ1 (2.29)

vanishes. We write the magnetic field also in the Cartesian coordinates (transformed
using eq. (1.10))

Bx(x, y, z) = 0, By(x, y, z) = 0, Bz(x, y, z) = −ρ1. (2.30)

We can now solve eq. (1.28) to get

m = ρ1r(−k1 sin(φ) + k2 cos(φ))− k3
σ0
2
− k6

ρ0
2
. (2.31)
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(The last term is the integration constant, which we choose so that X̃1 and X̃2 do
not contain unnecessary constants.) The zeroth order equation (1.29) becomes

(k1 cos(φ) + k2 sin(φ))W ′(r) = 0, (2.32)

we thus see that in order to have additional integrals (one of the constants k1, k2
non-zero) we need W constant, without loss of generality

W = 0. (2.33)

This is a well-known system, considered e.g. in [15]. It was considered in [20, eq. (42)],
with different choice of the frame of reference. The integrals read (in the Cartesian
coordinates)

Y1 = pAx − ρ1y, Y2 = pAy + ρ1x, X̃1 = LAz +
ρ1(x

2 + y2)

2
, X̃2 = pAz , (2.34)

where LAz = xpAy − ypAx . The integrals are clearly mutually independent but the
Hamiltonian can be rewritten as

H =
1

2

(
Y 2
1 + Y 2

2 + X̃2
2

)
− ρ1X4 =

1

2

((
pAx
)2

+
(
pAy
)2

+
(
pAz
)2)

. (2.35)

The fifth independent integral, which makes the system maximally superintegrable,
is not polynomial in momenta [20], namely

X5 = (pAy + ρ1x) sin

(
ρ1z

pAz

)
− (pAx − ρ1y) cos

(
ρ1z

pAz

)
, (2.36)

where we assume that pAz . (Otherwise the system collapses to 2D.)

Let us follow [20] and solve the Hamiltonian equations of motion and the Schrödinger
equation. We choose the gauge so that two of the integrals Y1, Y2, X̃2 are simply
momenta

~A(~x) = (0,−ρ1x, 0) . (2.37)

The Hamiltonian equations of motion read

ẋ = px, ẏ = py + ρ1x, ż = pz, (2.38)
ṗx = −ρ1(py + ρ1x), ṗy = 0, ṗz = 0. (2.39)

The solution to these equations with the usual initial conditions x(0) = x0, px(0) = p0x
etc. is

x(t) =
p0x
ρ1

sin(ρ1t) +

(
x0 +

p0y
ρ1

)
cos(ρ1t)−

p0y
ρ1
,

y(t) =

(
x0 +

p0y
ρ1

)
sin(ρ1t)−

p0x
ρ1

cos(ρ1t) + y0 +
p0x
ρ1
,

z(t) = p0zt+ z0,

px(t) = −
(
ρ1x0 + p0y

)
sin(ρ1t) + p0x cos(ρ1t), py(t) = p0y, pz(t) = p0z.

(2.40)
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If p0z 6= 0, the trajectory is a helix with its axis parallel to the z-axis, otherwise it
collapses to a circle in the plane z = z0.

Let us now turn to the Schrödinger equation. Writing the Hamiltonian (2.35) in full

Ĥ = −~2

2
(∂xx + ∂yy + ∂zz)− i~ρ1x∂y +

ρ21
2
x2, (2.41)

we see that the stationary Schrödinger equation Ĥψ = Eψ separates in the Cartesian
coordinates

ψ(~x) = f(x) exp

(
i

~
λ2y

)
exp

(
i

~
λ3z

)
, (2.42)

~2f ′′(x) =
(
(ρ1x− λ2)2 + λ23 − 2E

)
f(x), (2.43)

Y2ψ(~x) = λ2ψ(~x), X̃2ψ(~x) = λ3ψ(~x). (2.44)

The reduced Schrödinger equation corresponds to the 1D harmonic oscillator with
energy E − λ23

2
, angular frequency ω = ρ1 with the centre of force located at x = λ2

ρ1
.

Therefore, the energy spectrum of the Hamiltonian (2.35)

E =
λ23
2

+ ~ρ1
(
n+

1

2

)
, (2.45)

is continuous due to the arbitrary momentum λ3 and the generalized eigenvectors
are

ψn,λ2,λ3(~x) = Kn exp

(
i

~
(λ2y + λ3z)

)
Hn

(√
ρ1
~

(
x− λ2

ρ1

))
exp

(
− ρ1

2~

(
x− λ2

ρ1

)2
)
,

(2.46)
where Hn are the Hermite polynomials and Kn is their normalization constant.

Let us see if the Schrödinger equation separates in the cylindrical coordinates as well.
Using the gauge (2.37), the Hamiltonian reads

Ĥ = − ~2

2

(
1

r
∂r(r∂r) +

1

r2
∂φφ + ∂ZZ

)
−

− i~ρ1r cos(φ)

(
sin(φ)∂r +

cos(φ)

r
∂φ

)
+
ρ1
2
r2(cos(φ))2.

(2.47)

It is clear that we can separate the Z coordinate from the r and φ. However, it is
not possible to separate r and φ: The equation to separate is (divided by f(r)g(φ))

−~2

2

(
g′′(φ)

g(φ)
− f ′′(r)

f(r)

)
− i~ρ1r sin(φ) cos(φ)

f ′(r)

f(r)
=

= i~ρ1 cos(φ)2
g′(φ)

g(φ)
− ρ21

2
r2 cos(φ)2 + E,

(2.48)

where the last term on the left-hand side and the second term on the right-hand side
will always depend both on r an φ.
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However, if we choose the gauge which makes X̃1 simply Lz [6], namely

~A(~x) =
(ρ1y

2
,−ρ1x

2
, 0
)
, Ar = 0, Aφ = −ρ1r

2

2
, AZ = 0, (2.49)

the Hamiltonian reads

Ĥ = − ~2

2

(
1

r
∂r(r∂r) +

1

r2
∂φφ + ∂ZZ

)
+ i~

ρ1
2
∂φ +

ρ21r
2

8
. (2.50)

This time Lz = −i~∂φ commutes with the Hamiltonian and therefore the wave-
function

ψ(r, φ, Z) = f(r) exp

(
i

~
η2φ

)
exp

(
i

~
η3Z

)
(2.51)

leads to a separation of variables, with the r coordinate equation reading

−~2
(
f ′′(r) +

1

r
f ′(r)

)
+

(
η22
r2

+ η23 − ρ1η2
)
f(r) +

ρ21r
2f(r)

4
= 2Ef(r). (2.52)

Its solution in terms of Whittaker functions Mµ,ν(z), Wµ,ν,(z) [1, Chapter 13], [7,
Section 13.14] reads

f(r) =
1

r

(
c1Mµ,ν

(
ρ1√
2~
r2
)

+ c2Mµ,ν

(
ρ1√
2~
r2
))

, (2.53)

where µ, ν are constants

µ =
(ρ1η2 − η23 + 2E)√

2~ρ1
, ν =

η2√
2~
. (2.54)

We solve the stationary Hamilton-Jacobi equation as well. Since we work with
time-independent Hamiltonians, we can separate the time coordinate t from the
Hamilton’s principal function S with separation constant −E and we use Hamilton’s
characteristic function U , namely S = U − Et. Using the Hamiltonian (2.35) and
the gauge (2.37) the equation reads

1

2

[(
∂U

∂x

)2

+

(
∂U

∂y
− ρ1x

)2

+

(
∂U

∂z

)2
]

= E. (2.55)

We have 2 cyclic coordinates y and z; thus, we have the separation

U(x, y, z) = u(x) + pyy + pzz, (2.56)

with u(x) satisfying

(u′(x))2 + (py − ρ1x)2 + p2z = 2E. (2.57)

For later use let us consider more generally an equation of type

(u′(x))2 + α1x
2 + α2x+ α3 = 0 (2.58)
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whose solution is

u(x) = ±

[(
α2
2

8α
3/2
1

− α3

2
√
α1

)
arctan

(
2α1x+ α2

2
√
α1

√
−α1x2 − α2x− α3

)
+

+

(
x

2
+

α2

4α1

)√
−α1x2 − α2x− α3

]
+ c1.

(2.59)

In particular, the Hamilton’s characteristic function reads in our case

U =
(p2z − 2E)

2ρ1
arctan

(
(−ρ1x+ py)√

−ρ21x2 + 2pyρ1x+ a

)
−

− (ρ1x− py)
2ρ1

√
−ρ21x2 + 2pyρ1x+ a+ pyy + pzz,

(2.60)

where a = 2E − p2y − p2z.

In the cylindrical coordinates we use the gauge (2.49), in which the Hamiltonian
does not depend on φ and Z, therefore Hamilton’s characteristic function

U(r, φ, Z) = u(r) + pφφ+ pZZ (2.61)

reduces the Hamilton-Jacobi equation to

1

2

[
u′(r)2 +

(2pφ − ρ1r2)2

4r2
+ p2Z

]
= E. (2.62)

Let us again consider more general form of the equation for later use, namely

(u′(r))2 =
ar4 + br2 + c

r2
. (2.63)

Assuming we take the square of a positive real number, the result to the last equation
is of the following type (v = r2)

u(v) =

∫ √
av2 + bv + c

v
dv =

√
av2 + bv + c+

b

2
√
a

ln

(
b+ 2av

2
√
a

+
√
av2 + bv + c

)
−
√
c arctan

(
bv + 2c

2
√
c
√
av2 + bv + c

)
+ C.

(2.64)

The integration constant can absorb the purely imaginary constants arising from
the possibly negative value of a in the second term, so we can use this form of the
solution in that case as well with a replaced by |a|. If c < 0, we must change the
third term to argtanh and c to |c|. The explicit expression for the solution of the
Hamilton-Jacobi equation becomes too complicated for practical use and we have
already calculated the trajectories. Thus, we do not present it here.
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2.1.3 Case rank(M) = 2 subcase 2b 1.1)

This case corresponds to

τ(φ) = τ0, σ(r) =
τ0
r2

+ σ0, µ(Z) = 0, ψ′(φ) 6= 0, (2.65)

which yields the following magnetic field

Bφ = 0, Br = 0, BZ = −ρ′(r)− ψ′′(φ) + ψ(φ)

2r2
(2.66)

and the separable scalar potential with vanishing Z component W (r, φ, Z) =
W12(r, φ) ≡ W (r, φ) satisfying eq. (1.108) and eq. (1.109).

Recalling eq. (2.24), we have only one non-trivial compatibility equation, namely
eq. (2.3). Differentiating it twice with respect to r to eliminate ψ(φ), we get an
equation for ρ(r)

(k1 cos(φ) + k2 sin(φ))[r3ρ(4)(r) + 5r2ρ′′′(r) + 2rρ′′(r)− 2ρ′(r)] = 0. (2.67)

Because the vanishing of the constants k1, k2 would mean no additional integrals of
motion (we would the second order cylindrical integrals or their reduced first order
form only), we need ρ(r) of the form

ρ(r) = ρ3 ln(r) + ρ2r
2 +

ρ1
r

+ ρ0. (2.68)

Using this in eq. (2.3) once differentiated with respect to r, we obtain

k6(ψ
′′′(φ) + ψ′(φ))− 2ρ3(k2 sin(φ) + k1 cos(φ)) = 0, (2.69)

which splits the considerations into two subcases: k6 6= 0 and k6 = 0.

I. k6 6= 0: In this subcase we solve eq. (2.69) for ψ(φ) and get

ψ(φ) = − 1

k6
[((k1φ+ k2)ρ3 + ψ2k6) cos(φ) + ((k2φ− k1)ρ3 − ψ1k6) sin(φ)] + ψ3.

(2.70)
Using this in eq. (2.3) (without differentiation), we get an algebraic equation
with only one solution (excluding k1 = k2 = 0): ψ3 = ρ1 and ρ3 = 0, i.e.

ψ(φ) = −ψ2 cos(φ) + ψ1 sin(φ) + ρ1, ρ(r) =
ρ2r

3 + ρ1
r

+ ρ0, (2.71)

so we obtained the constant magnetic field

Br = 0, Bφ = 0, BZ = −ρ2r. (2.72)

Translating this into the Cartesian coordinates using eq. (1.10), it reads

Bx = 0, By = 0, Bz = −ρ2. (2.73)
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We note that ψ(φ) from eq. (2.71) implies vanishing of the quantum correction,
so the quantum version of the system is identical to the classical version in this
subcase.

Having solved the compatibility conditions, we solve the original equations
(1.28) and (1.29) to obtain

W (r, φ) = W

(
k6r

2

2
+ k2r cos(φ)− k1r sin(φ)

)
, (2.74)

m(r, φ, Z) = ρ2

(
k2r cos(φ)− k1r sin(φ) +

k6r
2

2

)
. (2.75)

(We set the integration constant to 0 in m so that we get X̃1 = pAZ in accordance
with eq. (2.34) in Subsection 2.1.2.)

The potential must, however, satisfy eq. (1.108) and eq. (1.109), where the
quantum correction vanishes. Inserting the obtained form of the scalar potential
into the first of them, we get

W ′ · [(k2ρ2 sin(φ) + k1ρ2 cos(φ))r3 + ((k2ρ0 − k6ψ2) sin(φ)+

+ (k1ρ0 − k6ψ1) cos(φ))r + k1ψ2 − k2ψ1] = 0. (2.76)

If we assume that the scalar potential W is not constant, the terms in square
bracket must vanish separately for all powers of r. The r3 term in the bracket
implies either k1 = k2 = 0, which means only 2 reduced cylindrical integrals,
or ρ2 = 0 and vanishing magnetic field. Thus, the only interesting case for us
is the constant scalar potential

W (r, φ) = W0. (2.77)

Equation (1.109) is now also satisfied. Thus, we have arrived at the system
(2.34) and we refer the reader to Subsection 2.1.2.

II. k6 = 0: With this assumption eq. (2.68) implies ρ3 = 0 and together with
eq. (2.3) we get

ρ(r) =
ρ2r

3 + ρ1
r

+ ρ0, (2.78)

ψ(φ) =
c1 cos(2φ) + c2 sin(2φ) + c3

k2 cos(φ)− k1 sin(φ)
+ ρ1. (2.79)

The corresponding magnetic field B reads

Br = 0, Bφ = 0, BZ = −ρ2r +
ξ

r2(k1 sin(φ)− k2 cos(φ))3
, (2.80)

where ξ = −(c1 + c3)k
2
1 − 2c2k1k2 + k22(c1 − c3). Translating this into the

Cartesian coordinates using eq. (1.10), it reads

Bx = 0, By = 0, Bz = −ρ2 +
ξ

(k1y − k2x)3
. (2.81)
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In order to simplify the equations, we use the formula

k1 sin(φ)−k2 cos(φ) =
√
k21 + k22 cos(φ+φ0), cos(φ0) = − k2√

k21 + k22
, (2.82)

rotate the coordinate system so that φ0 = 0 and redefine the constants ci in
ψ(φ) to get

ψ(φ) =
c1 cos(2φ) + c2 sin(2φ) + c3

cos(φ)
+ ρ1. (2.83)

The corresponding magnetic field B reads in the cylindrical coordinates

Br = 0, Bφ = 0, BZ = −ρ2r +
c1 − c3

r2(cos(φ))3
(2.84)

and in the Cartesian coordinates

Bx = 0, By = 0, Bz = −ρ2 +
c1 − c3
x3

. (2.85)

Having solved the compatibility conditions, we solve the original equations
(1.28) and (1.29) to obtain

W = W (r cos(φ)) = W (x), (2.86)

m = ρ2r −
c1 − c3

2r2(cos(φ))2
= ρ2

√
x2 + y2 − c1 − c3

2x2
. (2.87)

(We omit the constant of integration, which is only added to the integral of
motion.)
We need to satisfy 2 more equations to ensure integrability, namely eq. (1.108)
and eq. (1.109). The first of them is

cos(φ)3r3
[
((ρ2r

3 + ρ0r) cos(φ) + 2(c1 − c3)) sin(φ)− 2c2 cos(φ)
]
W ′(r cos(φ))

+ 3
2
~2(c1 − c3) sin(φ) = 0. (2.88)

(We differentiate W with respect to its argument, i.e. r cos(φ).)
In the classical case, ~ → 0, the conditions for non-vanishing magnetic field
c1 6= c3 and ρ2 6= 0 imply constant scalar potential W .
In the quantum case, there is another possibility in addition to W = W0: If
c1 6= c3, we must have

ρ2 = 0, ρ0 = 0, c2 = 0, W = − 3~2

4(r cos(φ))2
= −3~2

4x2
. (2.89)

Inserting this potential W into eq. (1.109) with ρ(r) from eq. (2.78) and ψ
from eq. (2.83), the numerator becomes

(c1− c3)[(ρ2r3 + ρ0r) sin(φ) cos(φ) + 2(c1− c3) sin(φ)− 2c2 cos(φ)] = 0. (2.90)

Thus, we have a contradiction due to c1 6= c3 and the potential must be constant
in quantum mechanics as well.
If we insert constant potential W = W0 into eq. (1.109), it is satisfied if and
only if c1 = c3, because we obtain the same numerator as in eq. (2.90). The
result is, therefore, that both the magnetic field Bz and scalar potential W
must be constant. We have again the well-known maximally superintegrable
system from [15, 20], see Subsection 2.1.2.
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2.1.4 Case rank(M) = 2 subcase 2b 1.2)

This case means

ψ′(φ) 6= 0, µ(Z) = 0, ρ(r) =
ρ0
r
, τ(φ) = τ0 +

τ1
(ψ(φ)− ρ0)2

, σ(r) =
τ0
r2

+ σ0,

(2.91)
thus, the following magnetic field

Br(r, φ, Z) = − τ1β
′(φ)

r2β(φ)3
, BZ(r, φ, Z) = −β(φ) + β′′(φ)

2r3
, Bφ(r, φ, Z) =

τ1
r3β(φ)2

,

(2.92)
and the scalar potential (1.132)

W =
W0

r2β(φ)2
+
β(φ)β′′(φ) + β′(φ)2 + f1

4
− τ21

β(φ)4
+ 2β(φ)2

8r4
+

+
~2(2β(φ)β′′(φ) + β(φ)2 − β′(φ)2)

8r2β(φ)2
,

(2.93)

where β(φ) is the auxiliary function ψ(φ) after a shift

β(φ) = ψ(φ)− ρ0. (2.94)

The function β(φ) must satisfy eq. (1.129) or equivalently its reduced form (1.133).
Using this equation, we can simplify the potential from eq. (2.95) and obtain the
potential from eq. (1.134), namely

W =
W0

r2β(φ)2
− (4τ 21 + β2)

32r4β(φ)4
+ ~2

f1β(φ)4 − 12β1β(φ)2 − 5β2
32r2β(φ)6

. (2.95)

where β1 and β2 are integration constants in the reduced equation (1.133).

Let us continue solving equations (2.3)–(2.5), taking eq. (2.24) into account. Differ-
entiating eq. (2.4) with respect to r, we obtain (multiplied by β(φ)3, which must be
non-zero)

k6τ1β
′(φ) = 0. (2.96)

Thus, we split our considerations into 4 subcases.

I. τ1 = 0, k6 6= 0: Differentiating eq. (2.3) with respect to r, we obtain

k6(β
′(φ) + β′′′(φ)) = 0. (2.97)

Assumption k6 6= 0 leads to

β(φ) = c1 cos(φ) + c2 sin(φ) + c3, (2.98)

but the constant c3 must vanish to satisfy eq. (2.3), implying no magnetic field.
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II. τ1 = 0, k6 = 0: From the last remaining compatibility equation (2.3) we obtain
β(φ) of the form

β(φ) =
a1 + a2 sin(2φ) + a3 cos(2φ)

k1 sin(φ)− k2 cos(φ)
, (2.99)

leading to a system with non-vanishing magnetic field in the z-direction only

BZ(r, φ, Z) = −(a1 + a3)k
2
1 + 2a2k2k1 + k22(a1 − a3)

r2(k1 sin(φ)− k2 cos(φ))3
, (2.100)

where ai are constants. Transforming the magnetic field into the Cartesian
coordinates using eq. (1.10), we get a somewhat simpler expression

Bz(x, y, z) = −(a1 + a3)k
2
1 + 2a2k2k1 + k22(a1 − a3)

(k1y − k2x)3
. (2.101)

Without loss of generality, we can simplify the previous expressions by using
eq. (2.82), choosing our coordinate system and redefining the constants a1, a2
and a3 so that k1 = 1, k2 = 0, i.e.

β(φ) =
a1 + a2 sin(2φ) + a3 cos(2φ)

sin(φ)
. (2.102)

The magnetic field simplifies to

BZ(r, φ, Z) = − (a1 + a3)

r2(sin(φ))3
, Bz(x, y, z) = −(a1 + a3)

y3
, (2.103)

with all other components vanishing both in the cylindrical and Cartesian
coordinates.

We have to check if β(φ) of the form eq. (2.102) satisfies eq. (1.129). For that to
be the case the constants must satisfy (omitting the trivial a1 = a2 = a3 = 0)

a1 = −a3, f1 = −16(a22 + a23), (2.104)

which, however, implies vanishing of the magnetic field. This subcase, therefore,
does not admit any superintegrable system with additional first order integrals
and non-vanishing magnetic field.

III. τ1 6= 0, k6 6= 0: Here equation (2.96) implies β(φ) = γ = const, which satisfies
eq. (1.129) trivially. However, eq. (2.4) in this case reads

τ1(k1 cos(φ) + k2 sin(φ)) = 0, (2.105)

which (recall τ1 6= 0) implies no additional integral in this case.

IV. τ1 6= 0, k6 = 0: From eq. (2.3) we obtain

β(φ) = c1(k1 sin(φ)− k2 cos(φ)) (2.106)
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Substituting it into the differential equation (1.129), we obtain

c1
(
4(k21 + k22)c21 + f1

)
(k1 sin(φ) + k2 cos(φ)) = 0, (2.107)

so we need

c1 = ±

√
−f1

4(k21 + k22)
, f1 < 0, (2.108)

because vanishing β(φ) would imply division by 0.

We note that the quantum correction in eq. (2.95) vanishes for β(φ) of the
form (2.106). The system defined by the following magnetic field B and scalar
potential W is, therefore, the same in classical and quantum mechanics.

W = −

(
2τ 21 (k22 + k21)

2

(k2 cos(φ)− k1 sin(φ))4 f 2
1 r

4
+

4W0 (k22 + k21)

(k2 cos(φ)− k1 sin(φ))2 f1r2

)
,

(2.109)

Br = −4 (k2 sin(φ) + k1 cos(φ)) (k22 + k21) τ1

(k2 cos(φ)− k1 sin(φ))3 r2f1
, (2.110)

Bφ = − 4 (k22 + k21) τ1

r3 (k2 cos(φ)− k1 sin (φ))2 f1
, BZ = 0. (2.111)

We note that we can write

k2 cos(φ)− k1 sin(φ)√
k22 + k21

= cos(φ0) cos(φ)− sin(φ0) sin(φ) = cos(φ+ φ0), (2.112)

which corresponds to the rotational symmetry of the system. Without loss
of generality, we can rotate the coordinate system so that φ0 = 3π

2
, which

corresponds to k2 = 0, k1 = 1. The Cartesian form of the magnetic field and
the scalar potential with the adjusted coordinate axis reads

W = −4

(
τ 21

2f 2
1 y

4
+

W0

f1y2

)
, Bx =

4τ1
f1y3

, By = 0, Bz = 0 (2.113)

The corresponding first order integrals of motion are

X̃2 = pAz +
2τ1
f1y2

, Y1 = pAx . (2.114)

The other cylindrical integral X1 is of the second order and reads

X1 =
(
xpAy − ypAx

)2 − 4τ1 (x2 + y2)

f1y2

(
pAz +

2τ1
f1y2

)
− 8W0 (x2 + y2)

f1y2
, (2.115)

This case in the chosen coordinates corresponds to the Case Ib) or Ic) in [19]
with constants

a1 = a2 = 0, a3 =
2τ1
f1
, b1 = b2 = 0, b3 = −4W0

f1
. (2.116)
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There is, therefore, another second order integral of motion, namely

X3 =
(
xpAy − ypAx

)
pAy −

4τ1x

f1y2

(
pAz +

2τ1
f1y2

)
− 8W0x

f1y2
, (2.117)

which in the natural choice of gauge

Ax(x, y, z) = 0, Ay(x, y, z) = 0, Az(x, y, z) = − 2τ1
f1y2

(2.118)

simplifies to

X3 = (xpy − ypx) py −
4τ1x

f1y2
pz −

8W0x

f1y2
. (2.119)

There are, however, only 4 independent integrals of motion, because

(X̃2
2 + Y 2

1 − 2H)X1 +X2
3 = − 4

f1
(X̃2τ1 + 2W0)(2H − X̃2

2 ). (2.120)

The non-vanishing Poisson brackets read

{X3, X1}P.B. = 2pAx
(
xpAy − ypAx

)2 − 16W0 (x2 + y2) pAx
f1y2

− (2.121)

− 8τ1 (x2 + y2) pAx
f1y2

(
pAz +

2τ1
f1y2

)
= 2Y1X1,

{X3, Y1}P.B. =
(
pAy
)2 − 4τ1

f1y2

(
pAz +

2τ1
f1y2

)
− 8W0

f1y2
= 2H − X̃2

2 − Y 2
1 , (2.122)

{X1, Y1}P.B. = 2pAy
(
xpAy − ypAx

)
− 8τ1x

f1y2

(
pAz +

2τ1
f1y2

)
− 16W0x

f1y2
= 2X3,

(2.123)

so the Poisson algebra is already closed in the sense that the Poisson bracket of
any pair of integrals is a function (polynomial) in previously known integrals,
and thus generates no new independent integral. Therefore, the system is not
second order maximally superintegrable, as it was found in [19].

Let us now compute the trajectories and see if the bounded ones are closed,
which is typical for maximally superintegrable systems. The Hamilton’s equa-
tions corresponding to the gauge-fixed Hamiltonian

H =
1

2

(
(px)

2 + (py)
2 +

(
pz −

2τ1
f1y2

)2
)
− 4W0f1y

2 + 2τ 21
f 2
1 y

4
(2.124)

read

ẋ = px, ẏ = py, ż = pz −
2τ1
f1y2

, (2.125)

ṗx = 0, ṗy = −4τ1pz + 8W0

f1y3
, ṗz = 0. (2.126)
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The equations determining x and px correspond to the free motion of the
particle in the x-direction

x(t) = px0t+ x0. (2.127)

Because the momentum pz is conserved, we find that y(t) must satisfy the
following ODE

ÿ = −4τ1pz + 8W0

f1y3
. (2.128)

We note that the equation is not defined at y(t) = 0. If τ1pz + 2W0 = 0, we
have the free motion in this direction as well. We continue with the assumption
that it is not the case.

Equation (2.128) does not depend on the independent variable t, so it admits
ẏ as an integrating factor and (assuming it is non-zero) we obtain

ẏ(t) = ±
√
f1(−C1f1y2 + 4τ1pz + 8W0)

f1y
, (2.129)

where the integration constant C1 is real and we assume that the square root
is well defined. Solving the separable ODE (2.129), we get

y(t) = ±
√
C1f1 (C2

1f1(t− t0)2 − 4pzτ1 − 8W0)

C1f1
. (2.130)

We remind the reader that eq. (2.128) is not defined for y(t) = 0, so we must
restrict the independent variable t so that this does not occur. The integration
constant t0 translates the origin of time and C1 depends on the initial values
and constants of the system

C1 = −f1y
2
0 ±

√
f 2
1 y

4
0 + 16t20f1pzτ1 + 32W0t20f1

2t20f1
. (2.131)

The sign of the square root must be chosen so that the square root in eq. (2.130)
is well defined (positive argument) for t in a suitably chosen interval, which
also determines the possible values of t0.

The sign of C1 determines the motion of the particle in the y coordinate: If
C1 > 0, then the particle escapes to the infinity. If C1 < 0, then it falls on the
origin y = 0, where eq. (2.128) has a singularity.

To solve the case C1 = 0, we must return to the eq. (2.129), which leads to the
singular solution

y(t) =
2
√
f1(t− t0)

√
f1(pzτ1 + 2W0)

f1
. (2.132)

This case is unbounded or goes to y = 0 (where eq. (2.128) is ill defined) for
f1 > 0 and f1 < 0, respectively.
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We can now solve the remaining equation in eq. (2.125), namely

ż = pz −
2τ1
f1y2

. (2.133)

The solution using y(t) from eq. (2.130) is

z(t) = −
τ1C1argtanh

(
C2

1f1(t−t0)
2
√
C2

1f1(τ1pz+2W0)

)
√
C2

1f1 (τ1pz + 2W0)
+ pzt+ C2. (2.134)

The form of z(t) above assumes that the argument of argtanh is real, i.e.

f1 (τ1pz + 2W0) > 0, (2.135)

and not equal to ±1 (domain of argtanh). On the other hand, if

f1 (τ1pz + 2W0) < 0, (2.136)

we can rewrite the argtanh using the identity

argtanh(z) = i arctan(iz), ∀z ∈ C \ {±1,±i} (2.137)

and cancel the imaginary unit with the one from the denominator. Because

lim
x→±1

argtanh(x) = ±∞ (2.138)

and it is dominant with respect to pzt, z(t) is unbounded in the first case. In
the second case, arctan is bounded and z(t) is unbounded if and only if pz 6= 0.

Using the singular solution eq. (2.132) in eq. (2.133), we get

z(t) = − τ1 ln(t− t0)
2
√
f1(pzτ1 + 2W0)

+ pzt+ C2, (2.139)

which is clearly unbounded as t goes to ∞ or t0.

The last possibility, y(t) = p0yt+ y0, leads to

z(t) = pzt+
2τ1

f1p0y(p
0
yt+ y0)

+ C3, (2.140)

which is unbounded if pz 6= 0 and singular at t = 0 if py 6= 0. (If p0y = 0, the
second term of z(t) would be 2τ1t

f1y20
, i.e. free motion with a modified momentum.)

To sum up, the motion in the x-direction is free. The motion in the y-direction
can be free, unbounded, or bounded with the fall on the singular point y = 0.
The motion in the z-direction is always unbounded. Therefore, there are no
bounded trajectories and we have no hint of higher order maximal superinte-
grability.
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Let us now turn to the quantum version of the system and its stationary
Schrödinger equation. Looking again at the integrals (2.114) and the Hamilto-
nian (2.124) in the gauge (2.118), we see that we can write the Hamiltonian as

H =
1

2
(X2

3 +X2
4 ) +

1

2
X5, (2.141)

where

X5 = [X1, X4] =
(
pAy
)2 − 4τ1

f1y2

(
pAz +

τ1
f1y2

)
− 8W0

f1y2
, (2.142)

see eq. (2.122), which is, however, written in terms of the Poisson bracket. This
confirms the separation of the Hamiltonian (2.124) in the Cartesian coordinates
and the stationary Schrödinger equation reduces as follows.

ψ(~x) = exp

(
i

~
λ1x

)
exp

(
i

~
λ3z

)
g(y), (2.143)

−~2

2
g′′(y) =

(
4(τ1 + 2W0)

f1y2
+ E

)
g(y), (2.144)

where λ1 and λ3 are eigenvalues of the momentum operators px and pz, respec-
tively, i.e.

X3ψ(~x) = λ3ψ(~x), X4ψ(~x) = λ1ψ(~x). (2.145)

We substitute g(y) =
√
yk(y) and obtain (after simplifying)

y2k′′(y) + yk′(y) +

[
2Ey2

~2
−
(

1

4
− 8a

~2f1

)]
k(y) = 0, (2.146)

where a = τ1 +2W0, which is the Bessel equation [1, Chapter 9], [7, Chapter 10]
modulo a transformation of the independent variable. Equation (2.144) can,
therefore, be solved in terms of Bessel functions of the first and second kind
J(α;x), Y (α;x):

g (y) = c1
√
yJ

(
i
√

32a− ~2f1
2~
√
f1

;

√
2E

~2
y

)
+ c2
√
yY

(
i
√

32a− ~2f1
2~
√
f1

;

√
2E

~2
y

)
,

(2.147)

Let us also have a look at the Schrödinger equation in the cylindrical coordinates.
The corresponding Hamiltonian reads

Ĥ = −~2

2

(
1

r
∂r(r∂r) +

1

r2
∂φφ + ∂ZZ

)
+

2i~τ1
f1r2(sin(φ))2

∂Z −
4W0

f1r2(sin(φ))2
.

(2.148)
Because the Hamiltonian does not depend on Z, it commutes with PZ = −i~∂Z ,
so we can separate the Z coordinate. We show that we can separate r and φ
as well. For that we use the ansatz

ψ(r, φ, Z) = f(r)g(φ) exp

(
i

~
λ3z

)
. (2.149)
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Substituting it into the stationary Schrödinger equation with the Hamiltonian
(2.148), we get

~2

2

[(
f ′′(r) +

1

r
f ′(r)

)
g(φ) +

1

r2
f(r)g′′(φ)

]
+

+

[
2τ1λ3 + 4W0

f1r2(sin(φ))2
+

(
E − λ23

2

)]
f(r)g(φ) = 0.

(2.150)

Dividing by f(r)g(φ)
r2

, we can separate the terms to get the following equations

f ′′(r) =− f ′(r)

r
+
c+ 2r2(λ23 − 2E)

r2~2
f(r), (2.151)

g′′(φ) =− c

~2
+

4g(φ)(τ1λ3 − 2W0)

sin(φ)2f1~2
, (2.152)

where c is the separation constant.

Equation (2.151) multiplied by r2 is the Bessel equation [1, Chapter 9], [7,
Section 10.2] (modulo a transformation of independent variable), so the solution
in terms of Bessel functions is

f(r) = c1J

(√
c

~
,
√

2E − λ23~r
)

+ c2Y

(√
c

~
,
√

2E − λ23~r
)
. (2.153)

Equation (2.152) can be solved in terms of the hypergeometric function
2F1(a, b; c;Z) [1, Chapter 15], [7, Chapter 5], but the expression is too compli-
cated for any practical use. Either way, we know that the spectrum is continuous
due to the plane wave in Z-direction.

Let us consider the stationary case of Hamilton-Jacobi equation. Starting
in the Cartesian coordinates, we have px and pz as the integrals of motion
corresponding to cyclic coordinates in our gauge (2.118). Thus, the Hamilton’s
characteristic function reads

U(x, y, z) = pxx+ u(y) + pzz, (2.154)

where u(y) is determined by the following reduced equation.

1

2

[
p2x + (u′(y))2 +

(
pz −

2τ1
f1y2

)2
]
− 4

(
τ 21

2f 2
1 y

4
+

W0

f1y2

)
= E. (2.155)

The resulting quadrature

u(y) =

∫ √
f1((2E − p2x − p2z)f1y2 + 4pzτ1 + 8W0)

f1y
dy (2.156)

has the following solution

u(y) =

√
αf1y2 + 4β

f1
− 2β√

βf1
ln

(√
βf1
√
f1(αf1y2 + 4β) + 2βf1

y

)
+ C,

(2.157)
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where α = 2E − p2x − p2z and β = pzτ1 + 2W0.

In the cylindrical coordinates with the same gauge (2.118) we have only one
cyclic coordinate, namely Z, so we use the ansatz

U(r, φ, Z) = v(r) + w(φ) + pZZ. (2.158)

We separate the equation as follows.

[(v′(r))2 + p2Z ]r2

2
− Er2 = c = −(w′(φ))2

2
+

2pZτ1 + 4W0

f1(sin(φ))2
. (2.159)

Solution to the separated equations is

v(r) =
√
αr2 + 2c−

√
2c ln

(√
2cαr2 + 4c2 + 2c

r

)
+ c1, (2.160)

w(φ) =

√
2c ln

(√
2c2f 2

1 cos(2φ) + 2cf1β cos(φ)− cf1 cos(2φ)− 2γ
)

2
√
γ

+

+

√
γ ln

(
4 cos(φ)

√
γcf1 cos(2φ) + βγ + (6γ − β) cos(2φ) + β − γ

)
√
f1

−

−
2
√
γ ln(sin(φ))
√
f1

+ c2,

(2.161)

where α = 2E − p2Z , β = 4pZτ1 + 8W0 − cf1 and γ = pZτ1 + 2W0.

2.1.5 Case rank(M) = 1 subcase 3a 1a)

The assumptions of this case are

µ(Z) 6= 0, ψ(φ) = 0, ρ(r) = 0, σ(r) = 0, (2.162)

which means

Br(r, φ, Z) =
τ ′(φ)

2r2
− µ′(Z)r2

2
, Bφ(r, φ, Z) =

τ(φ)

r3
, BZ(r, φ, Z) = µ(Z)r. (2.163)

We note that ψ(φ) = 0 implies vanishing quantum correction, so the classical and
quantum systems coincide.

Recalling eq. (2.24), differentiating eq. (2.4) with respect to Z gives

(k2 cos(φ)− k1 sin(φ))µ′′(Z) = 0. (2.164)

Thus, in order to have additional integrals of motion, we need µ(Z) = µ1Z + µ0.
From eq. (2.4) twice differentiated with respect to r we immediately get µ1 = 0, so
we have

µ(Z) = µ0 6= 0. (2.165)
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Differentiating eq. (2.4) with respect to r once this time, we obtain the equation
which leads to splitting of further considerations:

k6τ
′(φ) = 0, (2.166)

i.e. we split into k6 = 0 and τ(φ) = τ0. It is convenient to further split the second
subcase into τ0 = 0 and τ0 6= 0.

I. τ(φ) = τ0 6= 0: Using these assumptions in eq. (2.4), which reads

τ0(k2 cos(φ) + k1 sin(φ)) = 0, (2.167)

implies k1 = k2 = 0, so the only first order integrals of the motion are

X̃1 = pAZ −
τ0
2r2

, X̃2 = pAφ −
µ0r

2

2
, (2.168)

i.e. the reduced cylindrical integrals, so this case is only integrable.

II. τ(φ) = 0: This leads to the constant magnetic field in the z-direction

Br = 0, Bφ = 0, BZ = µ0r, (2.169)

the scalar potential W of the form of eq. (111) from [11] with redefined W1(r)

W = W1(r) +W3(Z), (2.170)

which must satisfy an additional constraint, namely eq. (1.29)

(k1 cos(φ) + k2 sin(φ))W ′
1(r) + k3W

′
3(Z) = 0. (2.171)

The case k1 = k2 = 0 implies no additional integrals, we will therefore consider
only

W1(r) = W0. (2.172)

Subsequently we need k3 = 0 or W3(Z) = W3. We can set W3 = 0 by another
redefinition of W1(r). We have, therefore, 2 superintegrable subcases: The
constant magnetic field from eq. (2.169) with either constant potential

W = W0, without loss of generality W = 0, (2.173)

which has four first order integrals of motion and was already considered, see
eq. (2.34) (with ρ1 = −µ0), or the potential

W = W3(Z) ≡ W3(z) (2.174)

with the first order integrals

Y1 = pAx + µ0y, Y2 = pAy − µ0x, X̃1 = LAz −
µ0(x

2 + y2)

2
, (2.175)

complemented by the irreducible second order cylindrical integral

X2 =
(
pAz
)2

+ 2W3(z). (2.176)
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In both cases we have a relation connecting the integrals

H =
1

2

(
Y 2
1 + Y 2

2 +X2

)
+ µ0X̃1, (2.177)

where in the first case X2 = X̃2
2 , so these integrals ensure minimal superinte-

grability only.

The second system is Case B in [17], where it was shown that this system
is second order maximally superintegrable for 2 special forms of the scalar
potential W :

W3(Z) =
c

z2
+
µ2
0z

2

8
, W3(Z) =

µ2
0

2
z2, (2.178)

where c ≥ 0 is a constant. (The remaining values c < 0 would allow fall on the
z = 0 plane, where the potential is ill-defined.) In [19] it was found that the
system can be reduced to a 2D system with Hamiltonian of the form (with a
permutation of coordinates)

K( ~X, ~P ) =
1

2

(
P 2
1 + P 2

2

)
+
µ2
0

2
Y 2 +W (Y ). (2.179)

Seen as a 3D system, it has 2 cyclic coordinates Z, P3, and is therefore maximally
superintegrable if and only if the 2D system with Hamiltonian (2.179) is
superintegrable. Note that the Hamiltonian (2.179) corresponds to a system
without magnetic field, which is a well-studied problem. For superintegrable
cases of order at most 3 see [23]. The quadratic cases are the potentials from
eq. (2.178), where the second potential can be modified by a translation in z
and a constant shift of the potential (because µ0 6= 0) to become

W3(Z) =
µ2
0

2
z2 + cz. (2.180)

For some higher order systems see [19] and references therein.

Let us solve the Hamiltonian equations of motion and the stationary Schrödinger
equation for the cases in [17], i.e. with scalar potential W from eq. (2.178). For
that we choose the gauge

~A(~x) = (0, µ0x, 0). (2.181)

For the first potential in eq. (2.178) the following independent second order
integral of motion was found

X5 =
(
LAx
)2

+
(
LAy
)2 − µ0z

2LAz +
µ2
0

4
z2(x2 + y2) +

2c

z2
(x2 + y2). (2.182)

The equations of motion in the gauge (2.181) read [17]

ẋ = px, ẏ = py + µ0x, ż = pz, (2.183)

ṗx = −µ0(py + µ0x), ṗy = 0, ṗz = −1

4

(
µ2
0z −

8c

z3

)
. (2.184)
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The explicit trajectories are

x(t) =
p0x
µ0

sin(µ0t) +

(
p0y
µ0

+ x0

)
cos(µ0t)−

p0y
µ0

, (2.185)

y(t) =

(
p0y
µ0

+ x0

)
sin(µ0t)−

p0x
µ0

cos(µ0t) +
p0x
µ0

+ y0, (2.186)

z(t) =

√
µ2
0z

4
0(cos(µ0t) + 1) + 4µ0p0zz

3
0 sin(µ0t) + 4 ((p0Z)2z20 + 2c) (1− cos(µ0t))√

2µ0z0
(2.187)

for c > 0, otherwise (c = 0) the potential is the harmonic oscillator and we get
(x(t) and y(t) remain the same)

z(t) = 2

(
p0z
µ0

sin
(µ0

2
t
)

+
z0
2

cos
(µ0

2
t
))

. (2.188)

In both cases the trajectories are periodic and bounded (in the c > 0 case if
z0 6= 0, so that the solution is well defined).

For the second potential in eq. (2.178), the fifth independent integral reads [17]

X5 = pAxL
A
y − pAy LAx − µ0zL

A
z . (2.189)

The equations of motion in the gauge (2.181) read

ẋ = px, ẏ = py + µ0x, ż = p, (2.190)
ṗx = −µ0(py + µ0x), ṗy = 0, ṗz = −µ2

0z. (2.191)

The explicit trajectories are

x(t) =
p0y
µ0

sin(µ0t) +

(
p0y
µ0

+ x0

)
cos(µ0t)−

p0y
µ0

, (2.192)

y(t) =

(
p0y
µ0

+ x0

)
sin(µ0t)−

p0y
µ0

cos(µ0t) +
p0x
µ0

+ y0, (2.193)

z(t) =
p0z
µ0

sin (µ0t) + z0 cos (µ0t) . (2.194)

Concerning the Schrödinger equation, we first note that it is separable even in
the general minimally superintegrable case with W3(Z). For that we choose
the gauge (2.181), use the commutation of integrals Y2, X2 and consider the
wave function ψ(~x) to be their (generalized) eigenfunction

Y2ψ(~x) = λ2ψ(~x), X2ψ(~x) = λ3ψ(~x). (2.195)

We write ψ(~x) as

ψ(~x) = f(x) exp

(
i

~
λ2y

)
g(z), (2.196)

where g(z) is (generalized) eigenfunction of X2 satisfying

−~2g′′(z) + 2W3(z)g(z) = λ3g(z) (2.197)
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(to be determined for the specific W3(z)) and f(x) satisfies the reduced
Schrödinger equation

~2f ′′(x) =
[
(µ0x+ λ2)

2 + λ3 − 2E
]
f(x). (2.198)

The last equation is again the equation for 1D harmonic oscillator with energy
E − λ3

2
, angular frequency ω = µ0 with the centre of force x = −λ2

µ0
. The

corresponding eigenfunctions are

fn(x) = KnHn

(√
µ0

~

(
x+

λ2
µ0

))
exp

(
−µ0

~

(
x+

λ2
µ0

)2
)
, (2.199)

with Kn the normalization constant.

The spectrum of the Hamiltonian,

E = ~
µ0

2
(2n+ 1) +

λ3
2
, (2.200)

is continuous regardless of λ3, which must be determined from eq. (2.197),
because ψ(~x) from eq. (2.196) is in not normalizable.

The solution to eq. (2.197) with the first potential in eq. (2.178) obtained by
Maple™ is in terms of Whittaker functions Mµ,ν(z), Wµ,ν(z) [1, Chapter 13],
[7, Section 13.14]

g(z) =
1√
z

[
c1M λ3

µ0~
,

√
~2+8c
4~

(
µ0z

2

2~

)
+ c2W λ3

µ0~
,

√
h2+8c
4~

(
µ0z

2

2~

)]
(2.201)

and if the first arguments in them are not negative integers or 0, it can be
rewritten in terms of confluent hypergeometric function 1F1(a, b, z) (Kummer
M(a, b, z)) [1, Chapter 13], [7, Section 13.2] as follows

g(z) = c̃1 exp

(
−µ0z

2

4~

)
z1+

a
2~ 1F1

(
1

2
− 4λ− a

4µ0~
, 1 +

a

2~
,
µ0z

2

2~

)
+

+ c̃2 exp

(
−µ0z

2

4~

)
z1−

a
2~ 1F1

(
1

2
− 4λ+ a

4µ0~
, 1− a

2~
,
µ0z

2

2~

)
,

(2.202)

where a =
√
~2 + 8c. (For c = 0 reduces to harmonic oscillator with ω = µ0

2
.)

The solution of eq. (2.197) with the second potential in eq. (2.178) is again the
harmonic oscillator, this time without shift, whose solutions are

gn(z) = KnHn

(√
µ0

~
z

)
exp

(
−µ0

2~
z2
)
, (2.203)

whereKn is the normalization constant, so for the second potential in eq. (2.178)
the spectrum of the Hamiltonian is

E = ~µ0(2n+ 1). (2.204)

It is nevertheless continuous, because ψ(~x) from eq. (2.196) is not normalizable.
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Let us see if the systems separate in the cylindrical coordinates as well.

Ĥ = − ~2

2

(
1

r
∂r(r∂r) +

1

r2
∂φφ + ∂ZZ

)
−

− i~ρ1r cos(φ)

(
sin(φ)∂r +

cos(φ)

r
∂φ

)
+
ρ1
2
r2(cos(φ))2 +W (Z).

(2.205)

It is clear that we can separate the Z coordinate from the r and φ, the equation
for the z coordinate is (2.197). The remaining part of the separation is the
same as in the case with constant magnetic field, see eq. (2.48), where we have
shown that it is impossible to separate r and φ in this gauge. However, it can
be separated in another choice of gauge, see the text under eq. (2.49).

Stationary Hamilton-Jacobi equation in the Cartesian coordinates

1

2

[(
∂U

∂x

)2

+

(
∂U

∂y
+ µ0x

)2

+

(
∂U

∂z

)2
]

+W3(z) = E (2.206)

separates because the coordinate y is cyclic. After the z-dependence is solved,
∂zU = v′(z) =

√
2(λ3 −W3(z)), the x-dependence is a quadrature of the form

(2.60), and thus the result is

u(x) =
E − λ3
µ0

arctan

 µ0x+ py√
−µ2

0x
2 − 2µ0pyx− p2y + 2E − 2λ3

+

+
(µ0x+ py)

2µ0

√
−µ2

0x
2 − 2µ0pyx− p2y + 2E − 2λ3 + C1

(2.207)

The solution for the first potential in (2.178) is of the type in eq. (2.64) and
reads (assuming positive argument in the square root)

v(z) = −
√
−µ0z4 + 8λ3z2 − 8c

4
−
√

2c

2
arctan

( √
2λ3 +

√
8c

√
c
√
−µ0z4 + 8λ3z2 − 8c

)
−

− λ3√
−µ0

ln

(
4λ3 − µ0z

2

√
−µ0

+
√
−µ0z4 + 8λ3z2 − 8c

)
.

(2.208)

For the second potential in (2.178) it reads (with the same assumption)

v(z) =
z
√
−µ0z2 + 2λ3

2
+

λ3√
µ0

arctan

( √
µ0z√

−µ0z2 + 2λ3

)
. (2.209)

If µ0 < 0, we can write the second term in terms of argtanh and |c|.
We try the same thing in the cylindrical coordinates as well. We use the other
gauge (2.49) with µ0 = −ρ1, so the equation reads

1

2

[(
∂U

∂r

)2

+
1

r2

(
∂U

∂φ
+
µ0r

2

2

)2

+

(
∂U

∂Z

)2
]

+W3(Z) = E. (2.210)
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Because z ≡ Z, we can separate it as in the Cartesian coordinates with the same
results. Our choice of gauge ensures X̃1 = pφ (φ is cyclic), so the φ-dependent
part of U reads pφφ. The r dependence is determined form

w′(r)2

2
+

(µ0r
2 + 2pφ)2

8r2
+ λ3 = E. (2.211)

The solution is of the same type as in (2.208) with different constants.

III. k6 = 0, τ(φ) 6= 0. Assuming that k1, k2 do not both vanish, we obtain

τ(φ) =
τ1

(k2 cos(φ)− k1 sin(φ))2
. (2.212)

We will use the form of the scalar potential from [11]

W (r, φ, Z) = − 1

4r2
T ′′(φ)M(Z)− 1

4
T (φ)M ′′(Z)− r2

8
M ′(Z)2 − 1

8r4
T ′(φ)2+

+W1(r)−
1

r2

[
C1

8
(T (φ))2 − w0T (φ)

]
− C2

8
(M(Z))2 + w0M(Z),

(2.213)

where M ′(Z) = µ(Z) and T ′(φ) = τ(φ), which in our case means (assuming
k1 6= 0)

M(Z) = µ0Z +m0, T (φ) = − τ1
k1(k1 tan(φ)− k2)

+ t0. (2.214)

Inserting the scalar potential (2.213) into the constraint (1.29)
1

r
[(k1 cos(φ)+k2 sin(φ))r∂rW−(k2 cos(φ)−k1 sin(φ)−k6r)∂φW+k3r∂ZW ] = 0.

(2.215)
and differentiating with respect to Z, we obtain

µ0[C2k3r
3((k32 − 3k21k2) cos(φ)3 + k1(k

2
1 − 3k22) cos(φ)2 sin(φ)+

+3k2k
2
1 cos(φ)− k31 sin(φ)) + 2τ1(k

2
1 + k22)] = 0

(2.216)

To satisfy the equation for all φ, each term must vanish on its own. However,
that is not the case for the last term: the assumptions of our case are τ1 6= 0
and µ0 6= 0, and k1, k2 must be real, for otherwise we would have complex
magnetic field

Bφ(r, φ, Z) =
τ(φ)

r3
=

τ1
r3(k2 cos(φ)− k1 sin(φ))2

. (2.217)

If k1 = 0, the function T (φ) changes to

T (φ) = τ1
tan(φ)

k22
+ t0 (2.218)

and the differentiated eq. (2.215) reads

µ0(C2k2k3µ0r
3 cos(φ)3 + 2τ1) = 0, (2.219)

which has the same consequences. Because the potential from eq. (2.213) cannot
be (under our assumptions) constant, see the first and the last term on the
first line, we conclude that the considered subcase k6 = 0, τ(φ) 6= 0 does not
have consistent scalar potential W .
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2.1.6 Case rank(M) = 1 subcase 3a 1b)

The assumptions of this case are

µ(Z) 6= 0, ρ(r) 6= 0, ψ(φ) = 0, σ(r) = 0, τ(φ) = 0, (2.220)

which means

W = W1(r)−
r2

8
µ(Z)2 +

1

4
ρ(r)µ(Z) +W3(Z),

Br = −r
2

2
µ′(Z), Bφ = 0, BZ = rµ(Z)− 1

2
ρ′(r).

(2.221)

Recalling eq. (2.24), equation (2.4) implies µ(Z) = µ0 and subsequently from eq. (2.3)
follows ρ(r) = ρ1r

2 + ρ0 with ρ1 6= µ0 (otherwise the magnetic field vanishes). Due to
the last inequality and the form of BZ in eq. (2.221) we can set ρ1 = 0 by redefinition
of µ0, so we obtain the following two superintegrable systems with constant magnetic
field:

The magnetic field is the same in both cases, namely

Br(r, φ, Z) = 0, Bφ(r, φ, Z) = 0, BZ(r, φ, Z) = rµ0, (2.222)

which in the Cartesian coordinates reads

Bx(x, y, z) = 0, By(x, y, z) = 0, Bz(x, y, z) = µ0. (2.223)

The systems are distinguished by their scalar potentials, which are determined from
equation

(k2 sin(φ) + k1 cos(φ))∂rW + k3∂ZW = 0. (2.224)

Due to the form of the potential eq. (2.221) we have 2 possibilities with additional
integrals of motion: the constant scalar potential W = W0 with 4 first order integrals
from eq. (2.34) (with ρ1 = −µ0) and W = W3(Z) with k3 = 0, i.e. with the integrals
Y1, Y2, X̃1 from eq. (2.34) and the not-reduced integral

X2 =
(
pAZ
)2

+ 2W3(Z). (2.225)

(The other solutions of eq. (2.224) W = W (r) and W = W (r, Z) admit no additional
integrals, only one or both cylindrical integrals reduce to the first order integrals.)

The system with constant potential is well known, see e.g. [15], [20] and Subsec-
tion 2.1.2. It is in fact maximally superintegrable with the integral from eq. (2.36)
(with ρ1 = −µ0). The second system was considered in [17]. For more details see the
text around eq. (2.178), where the same system was considered (with ρ1 = −µ0).

2.1.7 Case rank(M) = 1 subcase 3a 2)

The assumptions of this system are

τ(φ) 6= 0, ψ(φ) = 0, µ(Z) = 0, ρ(r) = 0 (2.226)
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and lead to the following magnetic field B and scalar potential W

W = W1(r)−
1

8r4
τ(φ)2 +

1

4r2
τ(φ)σ(r) +

1

r2
W2(φ),

Br =
1

2r2
τ ′(φ), Bφ =

1

r3
τ(φ) +

1

2
σ′(r), BZ = 0.

(2.227)

First, we recall eq. (2.24), i.e. k4 = k5 = 0. We also assume that k1, k2 do not both
vanish, because otherwise we would have the two cylindrical integrals X1, X2 only.
Equations (2.4) and (2.5) differentiated twice with respect to r give us the form of
σ(r):

σ(r) =
σ1r + σ2

r2
+ σ0. (2.228)

Inserting this result, eq. (2.4) once differentiated with respect to r

σ1(k2 sin(φ) + k1 cos(φ)) + k6τ
′(φ) = 0 (2.229)

leads to splitting of our considerations into 2 cases, k6 = 0 and k6 6= 0.

I. k6 = 0: In this case eq. (2.229) implies σ1 = 0. Subsequent solving of eq. (2.4)
and eq. (2.5) for τ(φ) yields

τ(φ) = σ2 −
τ1

(k1 sin(φ)− k2 cos(φ))2
. (2.230)

The corresponding magnetic field reads

Br =
τ1(k1 cos(φ) + k2 sin(φ))

r2(k1 sin(φ)− k2 cos(φ))3
, Bφ =

−τ1
r3(k1 sin(φ)− k2 cos(φ))2

, BZ = 0.

(2.231)
Without loss on generality, we simplify the following analysis using the formula
k1 sin(φ) − k2 cos(φ) =

√
k21 + k22 cos(φ + φ0) and choosing the coordinates

(rotating the system) so that φ0 = 3
2
π, i.e. k1 = 0, and redefine τ1 so that

k2 = 1.

Writing the simplified magnetic field in the Cartesian coordinates, we get

Bx = 0, By = − τ1
x3
, Bz = 0. (2.232)

The compatibility equations are solved, and we continue with eq. (1.29) to
obtain the form of the scalar potential W . The solution in this case is

W (r, φ) = W (r cos(φ)). (2.233)

Comparing this result with the form of the scalar potential in eq. (2.227), the
final form of W in the cylindrical coordinates is

W =
W0 + σ0τ1

4r2(cos(φ))2
− τ 21

8r4(cos(φ))4
(2.234)
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and in the Cartesian coordinates reads

W =
W0 + σ0τ1

4x2
− τ 21

8x4
. (2.235)

The corresponding integrals of motion are (in the Cartesian coordinates)

X̃2 = pAz +
τ1
x2
, Y1 = pAy (2.236)

and the not-reduced cylindrical integral

X1 =
(
pAφ
)2

+ σ2 −
τ1

(cos(φ))2
= (LAz )2 + σ2 −

τ1
x2
. (2.237)

This system was already analysed in Subsection 2.1.4 subcase IV., where we
had different definitions of constants and a rotated coordinate system.

II. k6 6= 0. This time the eq. (2.229) can be solved for τ(φ):

τ(φ) = −σ1(k1 sin(φ)− k2 cos(φ))

k6
+ τ0. (2.238)

Inserting this into eq. (2.4), we get

18k1k2σ1 cos(φ)2 − [9σ1(k
2
1 − k22) sin(φ)− 6k1k6(τ0 − σ2)] cos(φ)+

+ k2[(6k6(τ0 − σ2) sin(φ))− 9k1σ1] = 0. (2.239)

This must be satisfied for all φ, which implies either k1 = k2 = 0, i.e. no
additional integrals, or τ0 = σ2 and σ1 = 0, which means zero magnetic field.
This subcase, therefore, does not contain anything interesting for us.

2.1.8 Case rank(M) = 1 subcase 3a 3)

The assumptions of the system

ρ(r) 6= 0, ψ(φ) = 0, µ(Z) = 0, τ(φ) = 0, σ(r) = 0 (2.240)

lead to the following magnetic field B and scalar potential W

W = W1(r) +W3(Z), Br = 0, Bφ = 0, BZ = −1

2
ρ′(r). (2.241)

Taking eq. (2.24) into account, the last remaining equation (2.3), namely

r2(ρ′(r)− rρ′′(r))(k2 sin(φ) + k1 cos(φ)) = 0, (2.242)

implies ρ(r) = ρ1r
2 + ρ0. (We exclude k1 = k2 = 0, which leads to no additional

integral to the 2 cylindrical ones.)

We have, therefore, again the system with constant magnetic field

Br = 0, Bφ = 0, BZ = −ρ1r, (2.243)
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which in the Cartesian coordinates reads

Bx = 0, By = 0, Bz = −ρ1. (2.244)

We next determine the scalar potential W . The zeroth order equation (1.29) with
the potential from eq. (2.241) reduces to

(k2 sin(φ) + k1 cos(φ))W ′
1(r) + k3W

′
3(Z) = 0. (2.245)

Assumption of additional integrals, i.e. at least one of the constants k1, k2 non-
vanishing, implies W1(r) = w0, which we can absorb into W3(Z) by redefinition.

Therefore, we have two possible subcases, both with the constant magnetic field
eq. (2.243): The first subcase has constant scalar potential,

W = W0, (2.246)

with 4 first order integrals from eq. (2.34), and the second subcase has the potential

W = W3(Z), (2.247)

the first order integrals Y1, Y2, X̃1 from eq. (2.34) and the not-reduced cylindrical
integral

X2 =
(
pAZ
)2

+ 2W3(Z). (2.248)

The first system was considered in [15], [20], see the text around eq. (2.34), and the
second in [17]. For more details on the latter system see the text around eq. (2.178).

2.1.9 Case rank(M) = 1 subcase 3a 4)

This system is defined by

µ(Z) = 0, τ(φ) = 0, ρ(r) = 0, σ(r) 6= 0, (2.249)

so the magnetic field B and scalar potential W read

W = W1(r) +
1

r2
W2(φ), Br = 0, Bφ =

1

2
σ′(r), BZ = 0. (2.250)

In this case eq. (2.5) reads

(−k2 cos(φ) + k1 sin(φ))r3σ′(r) = 0, (2.251)

which is solved either by σ(r) = σ0, which implies vanishing magnetic field B, or
both k1 and k2 must vanish, i.e. no additional integral to the cylindrical ones.
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2.1.10 Case rank(M) = 1 subcase 3b)

This case assumes

ψ′(φ) 6= 0, µ(Z) = 0, τ(φ) = 0, σ(r) = 0 (2.252)

leading to the magnetic field B and potential W of the form

W (r, φ, Z) = W12(r, φ) +W3(Z),

Br = 0, Bφ = 0, BZ = − 1

2r2
(
ρ′(r)r2 + ψ′′(φ) + ψ(φ)

) (2.253)

and additional equations constraining W

rψ′(φ)Wr + (rρ(r)− ψ(φ))Wφ +
~2(ψ′′′(φ) + ψ′(φ))

4r3
= 0,

ψ′(φ)
(
r3ρ′′(r)− r2ρ′(r) + rρ(r)− 3ψ′′(φ)− 4ψ(φ)

)
+ (2.254)

+ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.

This is very similar to the considerations in Subsection 2.1.3, the only important
difference being the form of the potential W, which admits dependence on Z. Let us
therefore continue in the same manner and focus on the differences.

Recalling eq. (2.24) and differentiating eq. (2.3) twice with respect to r, we get
eq. (2.67) for ρ(r) with solution

ρ(r) = ρ4r
2 + ρ2 ln(r) +

ρ3
r

+ ρ1. (2.255)

Inserting it into eq. (2.3) differentiated only once we get

k6(ψ
′′′(φ) + ψ′(φ)) + 2ρ2(k4 sin(φ) + k5 cos(φ)) = 0, (2.256)

which splits the considerations into 2 subcases: k6 6= 0 and k6 = 0.

I. k6 6= 0: Solving the compatibility equations in the same way as in Subsec-
tion 2.1.3 subcase I., we get

ψ(φ) = −ψ2 cos(φ) + ψ1 sin(φ) + ρ1, ρ(r) = ρ2r
2 +

ρ1
r

+ ρ0. (2.257)

So we obtained the constant magnetic field

Br = 0, Bφ = 0, BZ = −ρ2r. (2.258)

Translating this into the Cartesian coordinates using eq. (1.10), it reads

Bx = 0, By = 0, Bz = −ρ2. (2.259)

We note that ψ(φ) from eq. (2.257) implies vanishing of the quantum correction,
so the quantum version of the system is identical to the classical version.
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Having solved the compatibility conditions, we solve the original equations
(1.28) to obtain

m(r, φ, Z) = ρ2

(
k2r cos(φ)− k1r sin(φ)− k6r

2

2

)
. (2.260)

Equation (1.29) reads

(k1 cos(φ)+k2 sin(φ))r∂rW12−(k2 cos(φ)−k1 sin(φ)+k6r)∂φW12+k3r∂ZW3 = 0.
(2.261)

As in the previous case, we can differentiate the equation to get k3W ′′
3 (Z) = 0,

so we further split the considerations.

I.a) k3 = 0: In this subcase we have no constraint on W3(Z) and the remaining
equations determining W12 are the same as in Subsection 2.1.3 subcase I.,
implying W12(r, φ) = W0, therefore (absorbing the constant into W3(Z))

W (r, φ, Z) = W3(Z). (2.262)

The corresponding integrals of motion are the 3 first order integrals

Y1 = pAx − ρ2y, Y2 = pAy + ρ2x, X̃1 = LAz +
ρ2(x

2 + y2)

2
(2.263)

and the non-reduced cylindrical integral

X2 =
(
pAZ
)2

+ 2W3(Z). (2.264)

The system was considered in [17]. For more details see the text around
eq. (2.178), where the same system was considered (with ρ1 = ρ2).

I.b) k3 6= 0: Here we get
W3(Z) = aZ + b (2.265)

so eq. (2.261) reads

(k1 cos(φ)+k2 sin(φ))r∂rW12−(k2 cos(φ)−k1 sin(φ)−k6r)∂φW12+k3ar = 0.
(2.266)

The other equation which we shall solve is the first from eq. (2.254). We
assume a 6= 0, because if a = 0 we are back in Subsection 2.1.3 subcase I.
with constant scalar potential W = W0. Let us analyse the system of
equations from the point of view of linear algebra. The extended matrix
of the system reads(
r(ψ2 sin(φ) + ψ1 cos(φ)) r(ρ2r

2 + ρ0) + ψ2 cos(φ)− ψ1 sin(φ) 0
r(k1 cos(φ) + k2 sin(φ)) −(k2 cos(φ)− k1 sin(φ)− k6r) −k3ar

)
(2.267)

The left-hand side 2× 2 minor

−2(k1ψ2 + k2ψ1)(cos(φ))2 + k1ψ2 + k2ψ1 + 2(k1ψ1 − k2ψ2) sin(φ) cos(φ)−
−r[k1(ρ2r2 + ρ0)− k6ψ1] cos(φ)− r[k2(ρ2r2 + ρ0)− k6ψ2] sin(φ) =: detA

(2.268)

71



does not vanish for all r, φ due to our assumptions ρ2 6= 0 (non-zero
magnetic field), k3 6= 0, k6 6= 0 and at least one of k1, k2 non-zero.
Therefore, the system has the following unique solution(

∂rW12

∂φW12

)
= − k3a

detA

(
−[r(ρ2r

2 + ρ0) + ψ2 cos(φ)− ψ1 sin(φ)]
r(ψ2 sin(φ) + ψ1 cos(φ))

)
.

(2.269)
This solution, however, does not satisfy Clairaut compatibility condition
∂rφW12 = ∂φrW12 for all r, φ: Taking the r6 term in the numerator of
the fraction obtained by inserting the solution (2.269) in the condition,
namely

ak3ρ
2
2(k1 sin(φ)− k2 cos(φ)), (2.270)

we see that it does not vanish when we take our assumptions into account.
Therefore, this case does not allow any solutions with a 6= 0, so we are
left with the solution in 2b 1.1 subcase I.

W = W0 with a = 0. (2.271)

For more details about this system see Subsection 2.1.2 around eq. (2.36).

II. k6 = 0: With this assumption eq. (2.256) implies ρ3 = 0 and together with
eq. (2.3) we get

ρ(r) =
ρ2r

3 + ρ1
r

+ ρ0, (2.272)

ψ(φ) =
c1 cos(2φ) + c2 sin(2φ) + c3

k2 cos(φ)− k1 sin(φ)
+ ρ1. (2.273)

The corresponding magnetic field B reads

Br = 0, Bφ = 0, BZ = −ρ2r +
ξ

r2(k1 sin(φ)− k2 cos(φ))3
, (2.274)

where ξ = −(c1 + c3)k
2
1 − 2c2k1k2 + k22(c1 − c3). Translating this into the

Cartesian coordinates using eq. (1.10), it reads

Bx = 0, By = 0, Bz = −ρ2 +
ξ

(k1y − k2x)3
. (2.275)

In order to simplify the equations, we use eq. (2.82), choose the coordinate
system so that φ0 = 0 and redefine the constants ci in ψ(φ) to set k2 = 1, i.e.
from now on

ψ(φ) =
c1 cos(2φ) + c2 sin(2φ) + c3

cos(φ)
+ ρ1. (2.276)

The corresponding magnetic field B reads in the cylindrical coordinates

Br = 0, Bφ = 0, BZ = −ρ2r +
c1 − c3

r2(cos(φ))3
(2.277)
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and in the Cartesian coordinates

Bx = 0, By = 0, Bz = −ρ2 +
c1 − c3
x3

. (2.278)

Equation (1.28) is the same as in 2b 1.1 subcase II., so we have

m = ρ2r −
c1 − c3

2r2(cos(φ))2
+ C = ρ2

√
x2 + y2 − c1 − c3

2x2
+ C. (2.279)

However, eq. (1.29) is different, namely

r sin(φ)∂rW12 + cos(φ)∂φW12 + k3rW
′
3(Z) = 0, (2.280)

and the considerations split into 2 subcases, k3 = 0 and k3 6= 0.

II.a) k3 = 0: In this subcase W3(Z) drops out of eq. (2.280) and remains
unconstrained. The remaining equations are the same as in case 2b 1.1, we
thus have W12(r, φ) = W0 with c1 = c3, without loss of generality W0 = 0,
and

W = W3(Z), Br = 0, Bφ = 0, BZ = −ρ2. (2.281)

in both classical and quantum cases. We have, therefore, the same system
as in subcase I.a), so it in fact allows k6 6= 0, with the corresponding
integrals

Y1 = pAx − ρ2y, Y2 = pAy + ρ2x, X̃1 = LAz +
ρ2(x

2 + y2)

2
(2.282)

and the non-reduced cylindrical integral

X2 =
(
pAZ
)2

+ 2W3(Z). (2.283)

The system was considered in [17]. For more details see the text around
eq. (2.178), where the same system was considered (with ρ1 = ρ2).

II.b) k3 6= 0: Here we get
W3(Z) = aZ + b (2.284)

so eq. (2.261) reads

sin(φ)r∂rW12 − cos(φ)∂φW12 + k3ar = 0. (2.285)

Another equation we need to consider is the first from eq. (2.254). We
assume a 6= 0, because if a = 0 we are back in case 2b 1.1 subcase II. with
constant scalar potential W = W0.

Preforming the same linear-algebraic analysis as in case I.b), the following
must hold

ρ22 cos(φ) = 0. (2.286)

However, it is satisfied if and only if the magnetic field vanishes. Therefore,
this case does not allow any solutions with a 6= 0 and we have nothing
but the solution from 2b 1.1 subcase I.

W = W0, a = 0, c1 = c3. (2.287)

For more details about that system see Subsection 2.1.2 around eq. (2.36).
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To sum up, we have found 3 first order superintegrable systems with non-trivial
magnetic field.

1. The first system has constant magnetic field Bz = µ0 and vanishing scalar
potential W = 0. This is a well-known system with 4 first order integrals of
motion (2.34), analysed already in [15]. For more details see Subsection 2.1.2,
where we cite the non-polynomial fifth integral of motion from [20].

2. The second system is in fact a class of systems with constant magnetic field
Bz = µ0 and the unconstrained potential W = W (Z). It has 3 first order
integrals from (2.175) and the cylindrical integral X2 = (pAZ)2 + 2W (Z). The
system is reducible to a 2D system without magnetic field and is maximally
superintegrable if and only if the 2D system is superintegrable [19]. Two
second order maximally superintegrable versions of W (Z), see eq. (2.178), are
considered in 2.1.5 subcase II.

3. The last system is the only one with more interesting magnetic field

W = −4

(
τ 21

2f 2
1 y

4
+

W0

f1y2

)
, Bx =

4τ1
f1y3

, By = 0, Bz = 0. (2.288)

It was found in [19] and considered here in Subsection 2.1.3 subcase IV. It is only
minimally second order superintegrable and the trajectories are unbounded, so
we have no information about potential higher order integrals.

As shown in Subsection 2.1.1, the additional integrals must be pAx +m(~x) or pAy +m(~x)
(or their linear combination, but we can rotate the coordinate system). In all three
cases we can choose the gauge so that they are px or py. The same is true for the first
order reduced cylindrical integral X̃1, which in suitable gauge reads X̃1 = pφ. This
implies that the corresponding Hamilton-Jacobi and Schrödinger equations separate
in the cylindrical as well as Cartesian coordinates and the equations are solved in
the corresponding subsections. The spectrum is continuous in all three cases.

2.2 Second order integrals

In this section we will study second order superintegrable systems of the cylindrical
type. We consider the classical cases only because of the computational complexity
introduced by the non-trivial quantum correction (1.58).

The third order equations (1.14) can be solved regardless of the magnetic field with
the solution in eq. (1.20)–(1.23). So we have to solve the remaining equations (1.15)–
(1.17) where we substitute the solution of the third order equations and the magnetic
field B and scalar potential W from one of the integrable cases. Here we encounter
computational difficulties, because we have to solve 10 differential equations with 20
arbitrary constants αij and 4 unknown functions sr, sφ, sZ and m in addition to the
magnetic field B and scalar potential W (simplified by assuming integrability).
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Due to the computational complexity we were not able to proceed systematically in
the general case. We calculated the Clairaut compatibility conditions for functions
sr, sφ, sZ , ∂absi = ∂bas

i, and tried to solve them by taking an ansatz on the
unknown functions and constants so that the remaining equation (1.15)–(1.17) can
be solved by Maple™. Despite a lot of effort, we were able to find just 3 systems
this way, one of them with an additional first order integral, namely the system in
Subsection 2.1.4 subcase IV. One of the second order systems had the additional
integral of the (Laplace)-Runge-Lenz type Rz = Lxpy − Lypx + . . ., so we include it
in Subsection 2.2.3.

Therefore, we have to make some simplifying assumptions. Based on physical consid-
erations, we assume the additional integrals to take the form L2

x + L2
y + L2

z + . . . and
Lxpy − Lypx + . . ., the latter being the z-component of (Laplace)-Runge-Lenz vector
(in vanishing magnetic field), which corresponds to choosing α11 = 1, α22 = 1, α33 = 1
and α24 = 1, α15 = −1 with all other vanishing in the solution (1.20)–(1.23) to the
third order equations (1.14), respectively. We were able to obtain all classical systems
of this type, leaving the quantum versions to a later work because the corrections
are complicated.

With these assumptions, which significantly decrease the number of auxiliary functions
appearing in the second order equations (1.15) after substituting the form of magnetic
field B and scalar potential W of the considered subcase, we were able to solve
equations. The next step was to consider the Clairaut compatibility conditions
∂abm(r, φ, Z) = ∂bam(r, φ, Z) arising from the first order equations (1.16), which
restrict values of the constants in solution to the second order equations (1.15) and
the form of scalar potential W . In this step, it is necessary to consider only those
cases, where vanishing of the constants does not imply vanishing of the magnetic
field. The last step was to solve the first and zeroth order equations, namely eq. (1.16)
and eq. (1.17), which can further restrict the potential.

In what follows, we will not present the detailed calculation for brevity, we only
list the found systems and solve the Hamilton’s and Hamilton-Jacobi equations for
new systems. We will start with the system which does not have the integral of the
above stated type (Subsection 2.2.1), following with the systems with L2 + . . . in
Subsection 2.2.2 and finally the systems with Lxpy − Lypx + . . . in Subsection 2.2.3.

2.2.1 System with bi-quadratic potential and non-zero Bφ

This system is defined by

Br = 0, Bφ = −2γr, BZ = 0, W (r) = −γ
2r4

2
+

1

2
δr2. (2.289)

The corresponding magnetic field in the Cartesian coordinates obtained using
eq. (1.10) is

Bx(~x) = 2γy, By(~x) = −2γx, Bz(~x) = 0. (2.290)

The first order integrals of motion read

X̃1 = pAφ , X̃2 = pAZ − γr2, (2.291)
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followed by the second order ones

X3 =

(
2γ(pAZ − γr2) + δ

)
r4 (cos(φ))2 +

(
pAr r cos(φ)− pAφ sin(φ)

)2
r2

, (2.292)

X4 =

(
2γ(pAZ − γr2) + δ

)
r4 (sin(φ))2 +

(
pAr r sin(φ) + pAφ cos(φ)

)2
r2

, (2.293)

X5 =

[(
2γ(pAZ − γr2) + δ

)
r4 +

(
pAr
)2
r2 −

(
pAφ
)2]

sin(2φ) + 2pAφ p
A
r r cos(2φ)

2r2
,

(2.294)

H =

(
2γ(pAZ − γr2) + δ

)
r4 +

(
(pAZ − γr2)2 +

(
pAr
)2)

r2 +
(
pAφ
)2

2r2
. (2.295)

We choose the gauge as follows

Ar (r, φ, Z) = 0, Aφ (r, φ, Z) = 0, AZ (r, φ, Z) = γr2 (2.296)

and the gauge fixed integrals of motion become

X̃1 = pφ, X̃2 = pZ , (2.297)

X3 =
(2γpZ + δ) r4 (cos(φ))2 + (prr cos(φ)− pφ sin(φ))2

r2
, (2.298)

X4 =
(2γpZ + δ) r4 (sin(φ))2 + (prr sin(φ) + pφ cos(φ))2

r2
, (2.299)

X5 =

[
(2γpZ + δ) r4 + p2rr

2 − p2φ
]

sin(2φ) + 2pφprr cos(2φ)

2r2
, (2.300)

H =
(2γpZ + δ) r4 + (p2Z + p2r) r

2 + p2φ
2r2

. (2.301)

Let us translate them into the Cartesian coordinates.

X̃1 = xpy − ypx, X̃2 = pz, (2.302)
X3 = p2x + (2γpz + δ)x2, (2.303)
X4 = p2y + (2γpz + δ)y2, (2.304)
X5 = pxpy + (2γpz + δ)xy, (2.305)

H =
1

2

[
p2x + p2y + p2z + (2γpz + δ)(x2 + y2)

]
. (2.306)

From this form of the integrals, we see that this system is Case I d) in [19] with
a1 = γ, b1 = δ

2
and all other constants vanishing. It was shown that this system is

second order minimally superintegrable. We confirm the result, because only 4 of
the integrals are functionally independent even for γ = 0 and/or δ = 0 due to the
relations

X3 +X4 + X̃2
2 = 2H, X3X4 = X2

5 + 2

(
γX̃2 +

δ

2

)
X̃2

1 . (2.307)

Let us note that X3 −X4 is X5 rotated by π
2
and multiplied by 2,

X3 −X4 =

[
(2γpZ + δ) r4 + p2rr

2 − p2φ
]

cos(2φ)− 2pφprr sin(2φ)

r2
, (2.308)
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The Poisson algebra is closed in the sense that the Poisson brackets of the integrals
are functions (polynomials) in previously known integrals, and thus generate no new
independent integrals, because the only non-vanishing Poisson brackets read

{X̃1, X3}P.B. = 2X5, {X̃1, X4}P.B. = −2X5, {X̃1, X5}P.B. = X4 −X3,

{X3, X5}P.B. = 4γX̃1X̃2 + 2δX̃1, {X4, X5}P.B. = −(4γX̃1X̃2 + 2δX̃1).
(2.309)

Hamilton’s equations of the system in the gauge (2.296) are

ṙ = pr, φ̇ =
pφ
r2
, Ż = γr2 + pZ , (2.310)

ṗr =
p2φ − (2γpZ + δ) r4

r3
, ṗφ = 0, ṗZ = 0. (2.311)

We see that pφ, pZ are constants, as we have already known from eq. (2.297). We
continue with the equation for r,

r̈ =
p2φ − (2γpZ + δ) r4

r3
, (2.312)

because it does not depend on the other variables. The equation does not explicitly
depend on t, so we reduce it using the integrating factor ṙ. Solving the resulting
separable ODE, we get

r(t) = ±

√
−βC1

(
−4β(C2

1C
2
2 + p2φ) + 4

√
−βC2

1C2e−2
√
−βt + C2

1e−4
√
−βt
)

2βC1e−
√
−βt . (2.313)

The sign must be chosen so that r(t) ≥ 0. The solution above is valid for β =
2γpZ + δ 6= 0. Although we consider γ 6= 0 only, the case β = 0 in eq. (2.312) cannot
be excluded and must be solved separately, see the paragraph around eq. (2.321)
below.

Let us see if all bounded trajectories are closed, which is typical for maximally
superintegrable systems [23].

We assume that physical quantities must be real functions on the phase space.
Because the constants γ, δ appear in the potential and pZ is a coordinate on phase
space, we conclude that β must be real, as well as pφ. The analysis splits into 2 cases,
β < 0 and β > 0.

1. If β < 0, the exponential functions in eq. (2.313) are real and positive. Factoring
e−2
√
−βt from the square root, the expression for r(t) simplifies√
−βC1

(
−4β(C2

1C
2
2 + p2φ)e2

√
−βt + 4

√
−βC2

1C2 + C2
1e−2

√
−βt
)

−2βC1

. (2.314)

It diverges for t→ −∞, because the constants in the last term must be non-zero.
Therefore, the trajectories are not bounded in this case.
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2. If β > 0, the exponentials are complex and can be rewritten in terms of sines
and cosines. Using the corresponding ansatz in eq. (2.313)

r(t) =

√
a sin

(
2
√
βt
)

+ b cos
(

2
√
βt
)

+ c, (2.315)

we obtain the following solution

r(t) =

√√√√
a sin

(
2
√
βt
)

+ b cos
(

2
√
βt
)

+

√
β(βa2 + βb2 + p2φ)

β
, (2.316)

where the constants a and b are determined from the initial conditions and
read

a =
pr0r0√
β
, b =

βr40 − r20(pr0)2 − p2φ
2βr20

. (2.317)

(This form of the solution works over complex numbers as well, which includes
the case β < 0.) Taking the positive roots, the solution satisfies r(t) ≥ 0 for all
t due to

a sin
(

2
√
βt
)

+ b cos
(

2
√
βt
)

=
√
a2 + b2 cos

(
2
√
βt+ t0

)
, (2.318)

where t0 satisfies cos(t0) = a√
a2+b2

, and the estimate√
β(βa2 + βb2 + p2φ)

β
≥
√
a2 + b2 (2.319)

valid for all pφ ∈ R, β > 0 and equal if and only if pφ = 0, from which follows

r(t)2 =
√
a2 + b2

(
1 + cos

(
2
√
βt+ φ0

))
≥ 0. (2.320)

Therefore, r(t) is bounded and finite in this case. The motion can be periodic
only if pφ 6= 0, for in the opposite case the particle falls on the singularity r = 0,
where eq. (2.313) is not defined.

The case β = 0 in eq. (2.312), i.e.

r̈ =
p2φ
r3
, (2.321)

is very similar to the general case. Using the integrating factor ṙ again, we get

r(t) = ±

√
C1

(
C2

1 (C2 + t)2 + p2φ
)

C1

, (2.322)

which is clearly unbounded in t. (The integration constant C1 cannot be negative.)
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So we continue with solving the remaining equations (2.310) for the only interesting
case β > 0, using the form of r(t) from eq. (2.316). They are only quadratures and
the solutions are

φ(t) = arctan


(
−bβ +

√
β
(
a2β + b2β + p2φ

))
tan
(√

βt
)

+ aβ

pφ
√
β

+ C1, (2.323)

Z(t) =

γ
√
a2β + b2β + p2φ
√
β

+ pZ

 t+
γb sin

(
2
√
βt
)
− γa cos

(
2
√
βt
)

2
√
β

+ C2,

(2.324)

where the constants a, b in terms of initial conditions are in eq. (2.317).

The relationship between the integration constants C1, C2 and the initial conditions
is

C1 = φ0 − arctan

(
r0p

0
r

p0φβ

)
, C2 = Z0 +

γr0p
0
r cos(2

√
β)

2β
. (2.325)

We see that Z(t) is bounded if and only if the first term vanishes. Writing it in full,
it reads

γr20
2

+ p0Z +
γ[(p0r)

2r20 + (p0φ)2]

(4γp0Z + 2δ)r20
= 0, (2.326)

so it is a complicated function of constants of the system γ, δ and the initial values.

This system has bounded trajectories only if the initial values and constants γ and δ
satisfy eq. (2.326). If we exclude this singular possibility, we must conclude that we
obtained no information regarding maximal superintegrability of the system from
this analysis.

Let us analyse stationary Hamilton-Jacobi equations. Starting in the Cartesian
coordinates and gauge (2.296), it reads

1

2

[(
∂U

∂x

)2

+

(
∂U

∂y

)2

+

(
∂U

∂z

)2

+

(
2γ
∂U

∂z
+ δ

)
(x2 + y2)

]
= E. (2.327)

The z-coordinate is cyclic and the other two can be separated into equivalent
equations, e.g. the one for x reads

1

2
(u′(x))

2
+

(
γpz +

δ

2

)
x2 = λ1. (2.328)

Its solution is

u(x) =
x

2

√
−(2γpz + δ)x2 + 2λ1 +

λ1√
2γpz + δ

arctan

( √
2γpz + δx√

−(2γpz + δ)x2 + 2λ1

)
.

(2.329)
The result for y is analogous and the separation constants satisfy E = λ1 + λ2 + p2z.
The value of E therefore determines the appropriate range for x and y through λ1
and λ2.
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The Hamilton-Jacobi equation in the cylindrical coordinates in the gauge (2.296)
clearly separates because both cylindrical integrals reduce to X̃1 = pφ and X̃2 = pZ .
The only remaining equation to solve is as follows

(u′(r))2 = 2E − p2Z −
(2γpZ + δ) r4 + p2φ

r2
. (2.330)

Assuming positivity of the right-hand side, the solution is

u(r) = −pφ
2

arctan

 (2E − p2Z)r2 − 2p2φ

2pφ
√

(−2γpZ − δ)r4 + (2E − p2Z)r2 − p2φ

−
− 2E − p2Z

4
√

2γpZ + δ
arctan

 −2(2γpZ + δ)r2 + 2E − p2Z
2
√

2γpZ + δ
√
−(2γpZ + δ)r4 + (p2Z − 2E)r2 − p2φ

+

+

√
−(2γpZ + δ)r4 + (2E − p2Z)r2 − p2φ

2
. (2.331)

If 2γpZ + δ < 0, the solution works for sufficiently small r and the second term will
be argtanh (−i arctan(ix) = argtanh(x)).

2.2.2 Systems with additional integral L2 + . . .

In this case, there are 2 superintegrable systems with L2+. . . as the additional integral
plus 2 first order systems already analysed. Both first order systems have constant
magnetic field, the first one has vanishing scalar potential (system in Subsection 2.1.2)
and the second one W = W (Z) (system in Subsection 2.1.5 subcase II.).

I. The first system has constant magnetic field

Br = 0, Bφ = 0, BZ = −κ1r, W = −κ
2
1r

2

8
− W0

2r2
, (2.332)

which can be written in the Cartesian coordinates as

Bx = 0, By = 0, Bz = −κ1. (2.333)

The commuting cylindrical integrals of motion reduce to first order

X̃1 = pAφ +
κ1r

2

2
= LAz +

κ1(x
2 + y2)

2
, X̃2 = pAZ = pAz . (2.334)

The additional integral reads (in the Cartesian coordinates)

X3 = (LA)2 + (x2 + y2 + z2)

[
κ1L

A
z +

κ21
4

(x2 + y2)

]
− W0z

2

x2 + y2
. (2.335)

We can choose the gauge so that X̃1 = pφ, namely

Ar = 0, Aφ = −κ1r
2

2
, AZ = 0, i.e. ~A(~x) =

(
−y

2
,
x

2
, 0
)
. (2.336)
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This system was found in [21], where it was shown that it admits another
second order integral of motion, namely (in the Cartesian coordinates)

X4 =
1

2
{X3, X̃2}P.B. = pAxL

A
y −pAy LAx +κ1zL

A
z +

κ2

4
(x2+y2)z− W0z

x2 + y2
. (2.337)

This (Laplace)-Runge-Lenz type integral (of the type considered in Subsec-
tion 2.2.3) is, however, dependent on the previously known integrals due to
relation

X2
4 = 2H(X3 − X̃2

1 +W0)− X̃2
2X3 − κ1(X̃3

1 − X̃1X3) + κ1W0X̃1. (2.338)

Integrals X̃1 and X3 Poisson commute. Thus, the system is only minimally
second order superintegrable.

We continue with analysing the trajectories. The Hamiltonian equations of
motion in the chosen gauge read

ṗr =
p2φ −W0

r3
, ṗφ = 0, ṗZ = 0,

ṙ = pr, φ̇ =
pφ
r2
− κ1

2
, Ż = pZ .

(2.339)

We have chosen the gauge so that pφ and pZ are constant, so 2 of the equations
are no surprise. The free motion in the z-direction,

Z(t) = p0Zt+ Z0, (2.340)

was also clear from the form of the magnetic and electric field. The motion can
be periodic only if p0Z = 0.

We combine the equations for pr and r to get

r̈ =
(p0φ)2 −W0

r3
, (2.341)

where p0φ is the initial value of pφ(t). We use the integrating factor ṙ ≡ pr
(assuming that it is non-zero) and obtain

ṙ = ±

√
W0 − (p0φ)2

r2
. (2.342)

If W0 ≥ (p0φ)2, the solutions to eq. (2.342) are

r(t) =

√
±2t

√
W0 − (p0φ)2 + r20. (2.343)

The plus or minus in the square root corresponds to the sign in eq. (2.342), the
integration constant r0 must ensure that the square root is well defined for the
chosen range of t, and only the plus sign of the whole expression is consistent
with the definition of r.
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There are, therefore, 3 possible trajectories: if W0 > (p0φ)2, the negative sign
inside the square root leads to the fall on singularity r = 0 and the positive
sign implies the escape to infinity. The last possibility, which corresponds to
W0 = (p0φ)2, is the singular solution r = r0.

This means that only the singular case is periodic because solving the remaining
equation in eq. (2.342) yields

φ(t) =

(
p0φ
r20
− κ1

2

)
t+ φ0. (2.344)

The trajectory is therefore a circle of radius r0 in the z = z0 plane.

We conclude that the analysis gave us little information about maximal su-
perintegrability, because for almost all initial values the trajectory is either
unbounded or ends in the singularity.

Let us solve the stationary Hamilton-Jacobi equation in the natural gauge
(2.336), where the cylindrical integrals are X̃1 = pφ and X̃2 = pZ (φ and Z are
cyclic), so we only need to solve the reduced equation

1

2

[
(u′(r))

2
+

1

r2

(
pφ −

κ1r
2

2

)2

+ (pZ)2
]
− κ21r

2

8
− W0

2r2
= E. (2.345)

The solution to the stationary Hamilton-Jacobi equation is therefore

U(r, φ, Z) = pφφ+ pZZ +
√
ar2 − b2 − b ln

(
b2 + b

√
ar2 − b2
r

)
, (2.346)

where a = (κ1pφ − p2Z + 2E) and b =
√
W0 − p2φ. Here we need W0 > p2φ, the

other condition a > 0 then follows from eq. (2.345).

II. The second system is defined by

Br =
κ1r

2

Z3
− κ2r2Z, Bφ = 0, BZ = r

( κ1
Z2

+ κ2(r
2 +R2) + κ3

)
,

W =
κ23
8
Z2 − κ22

8
r2R4 − κ21r

2

8Z4
− κ1κ2

4Z2
R4 − κ1κ3

4Z2
r2 − κ2κ3

4
r2R2+

+
W1

r2
+
W2

Z2
−W3R

2,

(2.347)

where R =
√
r2 + Z2 =

√
x2 + y2 + z2. The magnetic field in the Cartesian

coordinates reads

Bx =
κ1x

z3
−κ2xz, By =

κ1y

z3
−κ2yz, Bz =

κ1
z2

+κ2(r
2 +R2)+κ3. (2.348)

One of the cylindrical integrals reduces to the first order integral

X̃1 = pAφ −
1

2

(
κ1r

2

Z2
+ κ2r

2R2 + κ3r
2

)
. (2.349)
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The second order integrals of motion read

X2 =
(
pAZ
)2

+
( κ1
Z2

+ κ2Z
2
)
pAφ −

κ22
2
r2Z4 −

(
κ22r

4

2
+
κ2κ3r

2

2
− κ23

4
+ 2W3

)
Z2−

− κ1κ2r2 −
κ1κ2r

4

2Z2
− κ1κ3r

2

2Z2
+

κ21
4Z2

+
2W2

Z2
− κ21r

2

2Z4
,

(2.350)

X3 = (ZpAr − rpAZ)2 +
Z2 + r2

r2
(
pAφ
)2 − (κ2R2 + κ3

)
R2pAφ−

− κ21
4Z4

r4 +
κ22
4
r2R6 +

κ23
4
r2R2 +

κ2κ3
2

r2R4 +
2W1

r2
Z2 +

2W2

Z2
r2,

(2.351)

H =
1

2

((
pAr
)2

+

(
pAφ
)2

r2
+
(
pAZ
)2)

+
κ23
8
Z2 − κ22

8
r2R4 − κ21r

2

8Z4
−

− κ1κ2
4Z2

R4 − κ1κ3
4Z2

r2 − κ2κ3
4

r2R2 +
W1

r2
+
W2

Z2
−W3R

2.

(2.352)

We omit the Cartesian form of the integrals for brevity as it brings no new
insight, we only note that X3 = (LA)2 + . . . This system is new to the literature,
as far as we know.
There is only one non-vanishing Poisson bracket among the integrals, namely
X4 := {X2, X3}P.B., but its square can be related to previous integrals as
follows

X2
4 = 32HX3X2 − 32HX̃2

1X2 − 16X3X
2
2 − 16X̃1(−κ2X̃4

1 + 2κ2X3X̃
2
1+

+ κ3X̃
2
1X2 − 4κ1H

2 + 2κ1HX2 − κ2X2
3 − κ3X3X2)− 128W2H

2+

+ 64κ1κ3HX̃
2
1 + 128W2HX2 + 4(2κ1κ2 − κ23 + 8W3)X

2
3+

+ 8(κ23 + 2κ1κ2 − 8W3)X3X̃
2
1 + 4(10κ1κ2 + 8W3 − κ23)X̃4

1 − 16κ1κ3X̃
2
1X2−

− 32(W1 +W2)X
2
2 + 8X̃1(16κ3W2H + (κ23κ1 − 2κ21κ2 − 8κ1W3)X3+

+ (16κ2W2 − κ23κ1 − 4κ21κ2 − 8κ1W3)X̃
2
1 − 8κ3W2X2)+

+ 4(2κ31κ2 − κ23κ21 + 8κ21W3 + 32κ1κ2W1 − 16κ1κ2W2 − 64W2W3)X̃
2
1+

+ 32W1(κ
2
3κ1 − 2κ21κ2 − 8κ1W3 + 8κ2W2)X̃

2
1+

+ 64W1W2(κ
2
3 − 2κ1κ2 − 8W3). (2.353)

We choose the gauge so that X̃1 = pφ, namely

Ar = 0, Aφ =
1

2

(
κ2r

2R2 + κ3r
2 +

κ1r
2

Z2

)
, AZ = 0. (2.354)

The Hamilton’s equations are

ṙ = pr, ṗr =

(
κ1κ2

2
− κ23

4
− κ2pφ + 8W3

)
r +

p2φ + 2W1

r3
, (2.355)

φ̇ =
κ2r

2

2
+
κ2Z

2

2
+
κ3
2

+
κ1

2Z2
+
pφ
r2
, ṗφ = 0, (2.356)

Ż = pZ , ṗZ =

(
κ1κ2

2
− κ23

4
− κ2pφ + 2W3

)
Z +

pφκ1 + 2W2

Z3
. (2.357)
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The fourth equation shows that pφ is constant. Taking that into account and
combining the equations in the first and third row, respectively, the equations
for r̈ and Z̈ are the same modulo some constants, so we will solve only one of
them in detail.

The equation for r,

r̈ =

(
κ1κ2

2
− κ23

4
− κ2pφ + 8W3

)
r +

p2φ + 2W1

r3
, (2.358)

where pφ is constant (initial value), is reduced by the integrating factor ṙ and
the subsequent quadrature gives us the solution of the form

r(t) =

√
c1 sin(ω(t− t0)) +

√
c21 +

4C

ω2
, (2.359)

where C = p2φ + 2W1 and ω =
√

2κ1κ2 − 4κ2pφ − κ23 + 8W3. The overall sign
must be positive due to the definition of r. We can assume that c1 ≥ 0, for
otherwise we redefine t0. If C > 0, the result is a periodic function, otherwise
the particle ends in the singularity r = 0.

The analogous result in the z-direction is

Z(t) = ±

√
c2 sin(ω(t− t1)) +

√
c22 +

4D

ω2
, (2.360)

where D = pφκ1 + 2W2. This is periodic if and only if D > 0 because we need a
positive number in the square root and we have another singularity at Z = 0.

The last thing we need to solve is the equation for φ in (2.355) and the solution
reads

φ (t) = c5 + k1t+
κ2

2ω2
(sin(ωt+ c2)c1 + c3 sin(ωt+ c4)) +

+
pφ√
C

arctan

(
k2 tan

(
ωt+ c2

2

))
+

κ1

2
√
D

arctan

(
k3 tan

(
ωt+ c4

2

))
.

(2.361)

where the constant ki are some complicated functions of the constants in the
magnetic field and the scalar potential, and the initial values, which we omit
for readability, except for the important one

k1 =
κ3
2

+
κ2
2

√c21 +
4(p2φ + 2W1)

ω2
+

√
c21 +

4(pφκ1 + 2W2)

ω2

 . (2.362)

In order to have periodic trajectories, we need k1 to be commensurable with
ω =

√
2κ1κ2 − 4κ2pφ − κ23 + 8W3. We see that both of these constants depend

on the initial values, so this cannot be a maximally superintegrable system if
κ2 6= 0, it can be at most particularly superintegrable [27].
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Figure 2.1: Sample plot of the system in eq. (2.363) with the initial conditions
[x(0) = 1, y(0) = −1, z(0) = 1, px(0) = 1, py(0) = 0, pz(0) = 0] and the value of the
constants [W1 = 3,W2 = 1, κ1 = 1, κ3 = 7, n = 3,m = 2].

We now briefly consider the case with κ2 = 0 because than neither ω nor
k1 depends on the initial values. Numerical integration of the Hamilton’s
equations shows that the trajectories close if we add another constraint, namely
W3 =

κ23
8

(
1− n2

m2

)
, m,n ∈ N, see a sample trajectory in Figure 2.1, i.e. the

magnetic field and scalar potential read

Br =
κ1r

2

Z3
, Bφ = 0, BZ =

κ1r

Z2
+ κ3r,

W = −r
2

8

( κ1
Z2

+ κ3

)2
+
κ23n

2

8m2
(r2 + Z2) +

W2

Z2
+
W3

r2
,

(2.363)

which in the Cartesian coordinates becomes

Bx =
κ1x

z3
, By =

κ1y

z3
, Bz =

κ1z

z3
+ κ3. (2.364)

There is no additional first or second order integral of motion and the search
for higher order ones is out of the scope of this thesis.
Let us solve stationary Hamilton-Jacobi equation. In the gauge (2.354) the
coordinate φ is cyclic, so we can separate it out. The reduced equation separates
as follows

(u′(r))2 − ω2

4
r2 +

C

r2
= 2c = −(v′(Z))2 +

ω2

4
Z2 + 2E − pφκ3 −

D

Z2
. (2.365)

where c is the separation constant, b2 = p2φ + 2W2. The solutions are

u(r) =

√
C

2
arctan

(
2(cr2 − C)√

C
√
ω2r4 + 8cr2 − 4C

)
−
√
ω2r4 + 8cr2 − 4C

4
+

− c

ω
ln(ω2r2 + ω

√
ω2r4 + 8cr2 − 4C + 4c) + α1 (2.366)

v(Z) =

√
D

2
arctan

(
−(FZ2 + 2D)√

D
√
ω2Z4 − 4FZ2 − 4D

)
−
√
ω2Z4 − 4FZ2 − 4D

4
+

+
F

2ω
ln(ω2Z2 + ω

√
ω2Z4 − 4FZ2 − 4D − 2F ) + α2, (2.367)

where we have defined F = κ3pφ − 2E + 2c.
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To conclude, in both cases with additional integral of type (LA) + . . . we are able to
solve the stationary Hamilton-Jacobi equation by separation of variables because
we can choose the gauge so that X̃1 = pφ, i.e. we have at least one first order
integral. Neither of the systems is second order maximally superintegrable and the
Poisson algebra does not generate additional independent integrals. The trajectories
are unbounded for system I. for almost all initial values, so we have no hint of
additional integrals. The trajectories of system II. are in general bounded but not
closed, which depends on the initial values, so the system can be at most particularly
superintegrable [27]. Special values of the constants which lead to the magnetic field
in eq. (2.363) imply closed trajectories, so this subcase is a promising candidate for
higher order superintegrability.

2.2.3 Systems with additional integral Lxpy − Lypx + . . .

We have already considered two systems with (Laplace)-Runge-Lenz type integral,
namely system in Subsection 2.1.5 subcase II. with potential W (Z) = aZ2 + bZ and
system I. in Subsection 2.2.2. Both these systems were found in [4] (in the first case
with b = 0, which can be assured by a z-direction).

Here we analyse 3 additional systems. As far as we know, none of them appeared in
the literature in the most general form, although some special cases were already
found and they are mentioned in the respective cases.

I. The first system is defined by

Br = 0, Bφ = 0, BZ = κ1r −
2κ2
r
, W = −κ

2
1r

2

8
+ κ1κ2 ln(r)− W0

2r2
.

(2.368)
The Cartesian version of the magnetic field is

Bx = 0, By = 0, Bz = κ1 −
2κ2

x2 + y2
. (2.369)

The commuting cylindrical integrals reduce to first order integrals

X̃1 = pAφ−
κ1r

2

2
+2κ2 ln(r) = LAz −

κ1(x
2 + y2)

2
+κ2 ln

(
x2 + y2

)
, X̃2 = pAZ = pAz .

(2.370)
The second order integrals are the additional integral and the Hamiltonian

X3 = rpAr p
A
Z − Z

((
pAr
)2

+

(
pAZ
)2

r2

)
− 2κ2φp

A
Z + κ1Zp

A
φ−

− Z
(
κ21r

2

4
− κ1κ2 −

W0

r2

)
,

(2.371)

H =
1

2

((
pAr
)2

+

(
pAφ
)2

r2
+
(
pAZ
)2)− κ21r

2

8
+ κ1κ2 ln(r)− W0

2r2
, (2.372)
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which in the Cartesian coordinates become

X3 = LAx p
A
y − LAy pAx − 2κ2 arcsin

(
y√

x2 + y2

)
pAz + κ1zL

A
z −

− z
(
κ21(x

2 + y2)

4
− κ1κ2 −

W0

x2 + y2

)
,

H =
1

2

((
pAx
)2

+ (py)
2 +

(
pAz
)2)−

− κ21(x
2 + y2)

8
+ κ1κ2 ln

(√
x2 + y2

)
− W0

2(x2 + y2)
.

(2.373)

From the form of the magnetic field B and scalar potential W in eq. (2.368)
we can deduce that the motion separates into free motion in the z-direction
and motion in the xy-plane. Integral X3 is therefore a bit surprising because it
connects these independent directions.

As far as we know, the system with κ2 6= 0 is new to the literature. If κ2 = 0,
it is again the system I. from Subsection 2.2.2.

Considering the Poisson algebra, the non-trivial Poisson brackets are

{X̃1, X̃2}P.B. = X̃2
2 − 2H + κ1X̃1 + κ1W0, {X̃1, X3}P.B. = −2κ2X̃2, (2.374)

so we do not obtain additional independent integrals.

Let us analyse the Hamiltonian equations of motion. We choose the gauge so
that both X̃1 and X̃2 are simply momenta

Ar = 0, Aφ =
κ1r

2

2
− 2κ2 ln(r), AZ = 0. (2.375)

The equations of motion then read

ṗr = −(pφ − 1)κ21r

2
+

((pφ − 1)κ2 + pφ)κ1
r

+
(2κ2 ln r − pφ)2 − 4κ22 ln r −W0

r3
,

ṗφ = 0, ṗZ = 0, ṙ = pr, φ̇ =
2pφ + κ1r

2 − 4κ2 ln r

2r2
, Ż = pZ . (2.376)

We have free motion in the z-direction, that is

Z(t) = p0Zt+ Z0. (2.377)

Because pφ = p0φ, the equation for r

r̈ = −(pφ − 1)κ21r

2
+

((pφ − 1)κ2 + pφ)κ1
r

+
(2κ2 ln r − pφ)2 − 4κ22 ln r −W0

r3
(2.378)

is not coupled with φ. We reduce it to the first order ODE by using the
integrating factor ṙ and obtain the following quadrature

t =

∫ r(t)

r0

2ada√
4c1a2 − 16 ln(a)2κ22 + (αa2 + 16κ2pφ) ln(a)− 2κ21(pφ − 1)a4 + β

,

(2.379)
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(a) With px(0) = 0 (b) With px(0) = 2

Figure 2.2: The xy-plane plots of the system eq. (2.368) with the initial values [x(0) =
0, y(0) = 0, px(0) = 0, py(0) = 1] and the constants [κ1 = 1, κ2 = 6,W0 = −10], with
px(0) according to the subcaption.

where α = 8κ1((κ2 + 1)pφ− κ2) and β = −4p2φ + 8κ2pφ + 4W0. We do not know
how to solve the quadrature even in any special cases.

We have no strong hint on maximal superintegrability of the system from the
numerical plots of the trajectories in the xy-plane for pZ = 0 (otherwise the
motion is unbounded). Although the trajectory in Figure 2.2a seems to be
closed, if we add momentum px(0) = 2 (note that pφ ≡ Lz remains the same),
we obtain Figure 2.2b, where we can see that the trajectory is not closed and
with increasing time fills the annulus. Because all our plots showed similar
behaviour, we conclude that the system does not have bounded and closed
trajectories for most initial values and is therefore not higher order maximally
superintegrable.

Considering the stationary Hamilton-Jacobi equation, the choice of gauge
(2.375) leads to separation of cyclic coordinates φ and Z, thus the remaining
equation reads

(u′(r))2 = 2E − p2Z − κ1pφ −
(2κ2 ln(r)− pφ)2 −W0

r2
. (2.380)

However, the resulting quadrature

u(r) =

∫ r

r0

√
(2E − p2Z − κ1pφ)a2 − (2κ2 ln(r)− pφ)2 +W0

a
da (2.381)

cannot be solved in terms of known functions as far as we know unless κ1 = 0
and 2E = p2Z . In that case we need W0 < 0 to balance the remaining bracket
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(u(r) must be a real function) and the solution is

u(r) =
(ln(r)σ0 + pφ)

√
−2W0 − (σ0 ln(r) + pφ)2

2σ0
−

− W0

σ0
arctan

(
σ0 ln(r) + pφ√

−2W0 − (σ0 ln(r) + pφ)2

)
.

(2.382)

Hamilton’s characteristic function U = u(r) + pφφ+ pzZ allows us to calculate

r(φ) = exp

(
−pφ ±

√
−σ2

0(φ− φ0)2 − 2W0

σ0

)
. (2.383)

We must have W0 ≤ 0 and W0 = 0 is the turning point.

II. The second system has the following magnetic field B and scalar potential W

Br = 0, Bφ = 0, BZ = κ1r, W =
(4W1 + κ21)Z

2

2
+W3Z+

W1r
2

2
−W2

2r2
. (2.384)

Its magnetic field is constant, as we see from the Cartesian form

Bx = 0, By = 0, Bz = κ1. (2.385)

Only X1 reduces to the first order integral

X̃1 = pAφ −
κ1r

2

2
= LAz −

κ1(x
2 + y2)

2
. (2.386)

The second order integrals are

X2 = (pAZ)2 + (κ21 + 4W1)Z
2 + 2W3Z, (2.387)

X3 = rpAr p
A
Z − Z

((
pAZ
)2

r2
+
(
pAr
)2)

+

(
κ1Z +

W3

κ1

)
pAφ +

(
W1r

2 +
W2

r2

)
Z,

(2.388)

H =
1

2

((
pAr
)2

+

(
pAφ
)2

r2
+
(
pAZ
)2)

+
(4W1 + κ21)Z

2

2
+W3Z +

W1r
2

2
− W2

2r2
,

(2.389)

and in the Cartesian coordinates become

X2 = (pAz )2 + (κ21 + 4W1)z
2 + 2W3z, (2.390)

X3 = LAx p
A
y − LAy pAx +

(
κ1z +

W3

κ1

)
LAz +

(
W1(x

2 + y2) +
W2

x2 + y2

)
z,

(2.391)

H =
1

2

((
pAx
)2

+
(
pAy
)2

+
(
pAz
)2)

+
(4W1 + κ21)z

2

2
+

+W3z +
W1(x

2 + y2)

2
− W2

2(x2 + y2)
,

(2.392)
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As far as we know, this system is new to the literature if all the constants
are non-zero. If W1 = −κ21

4
and W3 = 0, we are back to the system I. from

Subsection 2.2.2 with pAz , which appeared in [21] and in [3]. If W1 = 0 and
W2 = 0, the system admits pAx +κ1y and pAy −κ1y and was therefore analysed in
Subsection 2.1.5 subcase II. and originally found in [17]. Setting the constants
Wi to zero in any other combination does not yield more independent second
order integrals.

This time there is only one non-vanishing Poisson bracket in the Poisson algebra

X4 := {X2, X3}P.B. = 2

(
(pAφ )2

r2
+ (pAr )2

)
pAZ − κ1pAφ pAZ−

−
(
W1r

2 +
W2

r2

)
pAZ + 2(κ21Z + 4W1Z +W3)rp

A
r .

(2.393)

This third order integral is not independent due to the following relation

1
4
X2

4 = 4X2H
2 −

(
4X2

2 + 4κ1X1X2 − 4W3X3 +
4W 2

3X1

κ1

)
H + 2κ9X1X

2
2+

+X2
2 +

(
W1κ

2
1 − 2W3X3 − 4W3X

2
1 +

2W 2
3

κ1
X1 +W2(κ

2
1 + 4W1)

)
X2−

− (κ1 + 4W1)X
2
3 +

8W1W3

κ1
X1X3 −

W1W
2
3

κ21
X2

1 +W1W
2
3 , (2.394)

so we do not get anything new.

We choose the natural gauge (2.336), which makes X̃1 = pφ. The Hamiltonian
equations of motion then read

ṗr = −
(
κ21
4

+W1

)
r +

p2φ −W2

r3
, ṗφ = 0, ṗZ = −

(
κ21 + 4W1

)
Z −W3,

(2.395)

ṙ = pr, φ̇ =
pφ
r2

+
κ1
2
, Ż = pZ (2.396)

We see that pφ is a constant, which corresponds to our choice of gauge. The
equations for the z-direction are independent from the others and can be easily
solved

Z(t) =
p0Z
ω

sin (ωt) +

(
Z0 +

W3

ω2

)
cos (ωt)− W3

ω2
, (2.397)

where ω =
√
κ21 + 4W1. We assume κ21 + 4W1 > 0, for otherwise we would write

the solution in terms of exponentials and the motion would be unbounded.

We continue with r. We reduce the combination of the corresponding equations
in eq. (2.395) to a first order ODE by the integrating factor ṙ (assuming it is
non-zero), with the result

ṙ2 = −ω
2r2

4
−
p2φ −W2

r2
+ c1. (2.398)
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Assuming we can take the square root, we solve the quadrature and invert the
implicit solution to get

r(t) =

√
2c1 + 2

√
c21 − ω2b2[sin(ω(t− t0))]

ω
, (2.399)

where b =
√
p2φ −W2. The constant c1 must be positive because the amplitude

of the second term is smaller and, without loss of generality, we have chosen
the plus sign due to freedom to redefine t0.

The last remaining equation from (2.395) gives us

φ(t) =
pφ
b

arctan

(
c1 tan

(
ω
2
(t− t0)

)
−
√
c21 − ω2b2

ωb

)
− κ1

2
(t− t0) + c2,

(2.400)

We see that the arctan in the first term is periodic with half the frequency
of r and Z. This implies that the trajectories can be periodic only if κ1
is commensurable with ω. It is, however, not sufficient because numerical
integration of the Hamilton’s equation suggests that they are not closed if pφ

b

is irrational, see Figure 2.3 where pφ
b

= 3√
6
. For a trajectory where the fraction

if rational see Figure 2.4. This unexpected result is probably because φ is
defined mod 2π. Assuming we can trust the numerical results, this system is
not maximally superintegrable because not all bounded trajectories are closed,
it can be only particularly maximally superintegrable [27].

The stationary Hamilton-Jacobi equation separates again. The choice of gauge
is clearly (2.336), so that φ is cyclic. We substitute the ansatz U = u(r) +
pφφ+ v(Z) and obtain

u′(r)2 + 4ω2r2 +
b2

r2
= c1 = −v′(Z)2 − ω2Z2 − 2W3Z − κ1pφ + 2E. (2.401)

The energy E and the separation constant c determine the values range of
values of r and Z because u′(r) and v′(Z) must be real. That implies that we
can take the square roots in the following solutions if −b2 = W2 − p2φ > 0:

u(r) =

√
−b2
2

ln

(
2c1r

2 − 2b2 + 2
√
−b2
√
−4ω2r4 + 2c1r2 − b2

r2

)
+ c3−

− c1
4ω

arctan

(
2ω
(
r2 − c1

4ω2

)
√
−4ω2r4 + 2c1r2 − b2

)
−
√
−4ω2r4 + 2c1r2 − b2

2
,

(2.402)

v(Z) =
(Zω2 +W3)

√
−ω2Z2 − 2W3Z + d

2ω2
+

+
dω2 +W3

2

2ω3
arctan

(
Zω2 +W3

ω
√
−ω2Z2 − 2W3Z + d

)
+ c4,

(2.403)

where d = 2E − κ1pφ − 2c1.
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Figure 2.3: A trajectory for system (2.384) with irrational fraction pφ
b

= 3√
6
. The

constants read W1 = 3
4
,W2 = 135

16
,W3 = 1, κ1 = 1 and the initial values are x(0) =

1, y(0) = 0, z(0) = 1, px(0) = 0, py(0) = 3, pz(0) = 1.

Figure 2.4: A trajectory for system (2.384) with rational fraction pφ
b

= 4
3
. The

constants read W1 = 3
4
,W2 = −5,W3 = 1, κ1 = 1 and the initial values are x(0) =

1, y(0) = 0, z(0) = 1, px(0) = 0, py(0) = 2, pz(0) = 1.
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III. The last system is defined by

Br = −
(
κ1Z +

κ2
2

)
r2, Bφ = 0, BZ = κ1rZ

2 +
κ1r

3

2
+ κ2rZ + κ3r,

W = − κ21r
2Z4

8
− κ1κ2r

2Z3

4
−
(
κ21r

4

16
+
κ1κ3r

2

4
+
κ22r

2

8
− κ23

2
− 2W1

)
Z2−

−
(
κ1κ2r

4

16
+
κ2κ3r

2

4
−W2

)
Z − κ21r

6

128
− κ1κ3r

4

16
+
W1r

2

2
− W3

2r2
,

(2.404)

which means that the magnetic field in the Cartesian coordinates reads

Bx = −
(
κ1z +

κ2
2

)
x, By = −

(
κ1z +

κ2
2

)
y, Bz = κ1z

2 + κ2z +
κ1r

2

2
+ κ3.

(2.405)
We simplify the following expressions by the shift in Z → Z − κ2

2κ1
and redefine

the constant κ3 so that we have the previous expressions with κ2 = 0. We
therefore have

Br = − κ1r2Z, Bφ = 0, BZ = κ1rZ
2 +

κ1r
3

2
+ κ3r,

W = − κ21r
2Z4

8
−
(
κ21r

4

16
+
κ1κ3r

2

4
− κ23

2
− 2W1

)
Z2+

+W2Z −
κ21r

6

128
− κ1κ3r

4

16
+
W1r

2

2
− W3

2r2
,

(2.406)

which means that the magnetic field in the Cartesian coordinates reads

Bx = −κ1xz, By = −κ1yz, Bz = κ1z
2 +

κ1r
2

2
+ κ3. (2.407)

We assume κ1 6= 0, for otherwise it reduces to the previous system.

The integrals of motion read

X̃1 = pAφ −
κ1r

2Z2

2
− κ1r

4

8
− κ3r

2

2
,

X2 =
(
pAZ
)2

+ κ1Z
2pAφ −

κ21r
2Z4

2
−
(
κ21r

4

8
+
κ1κ3r

2

2
− κ23 − 4W1

)
Z2 − 2W2Z,

(2.408)

X3 = rpAr p
A
Z − Z

(
pAr
)2 − Z (pAφ )2

r2
+ Z

(
κ1Z

2 +
κ1r

2

2
+ κ3

)
pAφ +

W2

2
r2−

− κ21
64
r2Z(3r2 + 4Z2)(r2 + 4Z2)− κ1κ3r2Z

(
r2

4
+
Z2

2

)
+

(
W1r

2 +
W3

r2

)
Z.

(2.409)

This system is again new to the literature, as far as we know. Setting κ2 = 0
does not yield additional integrals even with W1 = W2 = 0.
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The Poisson algebra has only one non-trivial Poisson bracket

X4 := {X2, X3}P.B. = −2

(
(pAr )2 +

(pAφ )2

r2

)
pAZ − 2κ1Zp

A
φ p

A
r +

+
(
κ1(2Z

2 + r2) + 2κ3
)
pAφ p

A
Z + r

[
κ21r

2Z3+

+

(
κ21r

4

4
+ κ1κ3r

2 − 2κ23 − 8W1

)
Z − 2W2

]
pAr −

−
[
κ21r

2Z4

2
+

(κ21r
4 + 2κ1κ3r

2)Z2

2
+

3κ21r
6

32
+
κ1κ3r

4

2
− 2W1r

−2W3

r2

]
pAZ .

(2.410)

Thus obtained integral of motion is, however, dependent on the previous
integrals due to the following relation

X2
4 = −16X2H

2 + 8(2X2
2 + 2κ3X1X2 + 2W2X3)H − 4X3

2 − 8κ3X1X
2
2+

+ 4[κ1X
3
1 − κ1W3X1 − κ23W3 + 4W1X

2
1 − 4W3W1 − 2W2X3]X2+

+ 4(κ1X1 + κ23 + 4W1)X
2
3 − 8κ3W2X1X3 + 4W 2

2X
2
1 − 4W3W

2
2 . (2.411)

To analyse trajectories we choose the natural gauge, which assures that X̃1 = pφ,
namely

Ar = 0, Aφ =
κ1r

2Z2

2
+
κ1r

4

8
+
κ3r

2

2
, AZ = 0. (2.412)

The Hamiltonian equations read

ṗr = −ω
2r

4
+

b

r3
, ṗφ = 0, ṗZ = −ω2Z −W2, (2.413)

ṙ = pr, φ̇ =
κ1r

2

8
+
κ1Z

2 + κ3
2

+
pφ
r2
, Ż = pZ , (2.414)

where ω =
√
κ1pφ + κ23 + 4W1 and b = p2φ −W3, which are constants due to

the second equation (pφ(t) = p0φ). The equations for r and Z do not depend on
other variables. The solution to the equation for Z reads

Z(t) =
p0Z
ω

sin(ωt) +
(Z0ω

2 +W2)

ω2
cos(ωt)− W2

ω2
, (2.415)

so we see that we need ω to be real, that is κ1pφ + κ23 + 4W1 > 0, to have
bounded trajectories in the z-direction. We continue with this assumption.

The equation for r,

r̈ = −ω
2r

4
+

b

r3
, (2.416)

is reduced by the integrating factor ṙ and its solution with standard initial
conditions r(0) = r0 > 0, ṙ(0) = ṙ0 ≡ p0r reads

r(t) =

√
2c1 + 2

√
(c21 − 16bω2r40) sin(ωt+ θ)

2r0ω
, (2.417)
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where

c1 = ω2r40 + 4ṙ20r
2
0 + 4b, θ = arctan

(
−ω2r40 + 4ṙ20r

2
0 + 4b

4ωṙ0r30

)
. (2.418)

(It includes the constant solution which we obtain if the inner square root
vanishes, i.e. c21 = 16bω2r40.) We have chosen the plus sign in front of the sine
because we could redefine θ (shift the time t). This solution is periodic if
b > 0, i.e.

(
p0φ
)2
> W3, otherwise the trajectory ends at the singularity r = 0.

This dependence on angular momenta is reminiscent of Newton’s cannonball
[24], where high enough velocity perpendicular to the gravity prevents the
cannonball from falling back on Earth.
The last unknown is φ, which can now be obtained by a quadrature. The result
is a sum of an arctan of a periodic argument with period 2π

ω
, a polynomial in

sines and cosine of ωt
2
and the term At, where the constant

A =
κ1Z

2
0 + 2κ3
4

+
κ1(2Z0W2 + p2Z)

4ω2
+

c21
32ω2r20

+
3κ1W

2
2

4ω4
(2.419)

depends on the initial values. We conclude that the trajectories can be periodic
only if A is commensurable with ω, which is not satisfied for all initial values,
the system therefore cannot be maximally superintegrable for general initial
conditions. However, it can be so called particularly superintegrable [27], which
means that there are integrals of motion on some common invariant subspace.
The stationary Hamilton-Jacobi equation is separable again. The azimuthal
coordinate φ is cyclic in our gauge (2.412) and the ansatz U = u(r)+pφφ+v(Z)
leads to the following separation

u′(r)2 + α2
1r

2 − α2
2

r2
= 2c1 = −v′(Z)2 − 4α2

1Z
2 − 8W2Z − κ3pφ + 2E, (2.420)

where we define the constants as follows

α1 =

√
κ1pφ

4
+
κ23
4

+W1, α2 =
√
W3 − p2φ, α3 = 2E − 2c1 − κ3pφ.

(2.421)

The results are

u(r) =
c1

2α1

arctan

(
α2
1r

2 − c1
α1

√
−α2

1r
4 + 2c1r2 + α2

2

)
+

√
−α2

1r
4 + 2c1r2 + α2

2

2
−

− α2

2
ln

(
α2

√
−α2

1r
4 + 2c1r2 + α2

2 + c1r
2 + α2

2

r2

)
+ c2, (2.422)

v(Z) =

(
α3α1

4
+
W 2

2

α3
1

)
arctan

(
2α2

1Z + 2W2

α1

√
−4α2

1Z
2 − 8W2Z + α3

)
+

+

(
Z

2
+
W 2

2

α2
1

)√
−4α2

1Z
2 − 8W0Z + α3 + c3.

(2.423)

As in the previous cases, the constants E and c1 must be such that the square
roots are well defined for the ranges of r and Z we choose (if possible).
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To sum up: In this subsection we analysed 4 cylindrical superintegrable systems with
additional integral of type Lxpy−Lypx+. . ., all of them only minimally superintegrable
with integrals of order at most 2. For system I., see (2.368), the Hamilton-Jacobi
equation separates, but we were not able to solve the resulting quadratures with
an exception of a very special case. Numerical integration showed that bounded
trajectories are not closed in general (for all initial values), thus this system is
not maximally superintegrable. System III. and its special case system II. are in
general only minimally superintegrable. We were able to calculate the trajectories
analytically, but the results for φ contain singular functions arctan(k1 tan(ωt) + k2).
In system III. the angular frequency of the trajectories ω depends on the initial
values, so this system is at most particularly maximally superintegrable [27]. Even
though ω does not depend on initial values for system II., the singular nature of
φ(t) in eq. (2.400) together with its definition mod 2π causes some problems with
interpretation of the results. Numerical integration of the Hamilton’s equations
showed us that the trajectories are not closed if pφ

b
6= n

m
, n,m ∈ N. (The fraction

pφ
b

is the coefficient in front of the arctan in eq. (2.400).) Assuming we can trust
the numerical results, this shows that the system is not maximally superintegrable
because the trajectories are closed for some initial values only, but can be particularly
maximally superintegrable [27].

96



Conclusions

This thesis is a contribution to the field of integrability and superintegrability focusing
on systems with magnetic field of the so called-cylindrical type, i.e. with integrals of
the type (pAφ )2 + . . . and (pAZ)2 + . . ., where pAi = pi +Ai are so-called gauge covariant
momenta, see (1.4).

In Chapter 1 we considered integrable systems. We extended the previously known
classical determining equation (1.14)–(1.17) to quantum mechanics (Section 1.3)
and found that the quantum correction does not modify equations for first order
integrals. For second order integrals it modifies the zeroth order equations only.
We also obtained the general form of the correction in cylindrical coordinates, see
eq. (1.58), but it is not very suitable for non-cylindrical integrals. Considering the
cylindrical integrals (1.76), only the zeroth order equation for X1 is modified, the
correction being (1.63). The apparent corrections from the involutivity [X̂1, X̂2] = 0
in the lower order equations vanish as a consequence of the equations of higher order.
(We do not need to use the determining equations coming from the commutator with
the Hamiltonian).

The main results of Chapter 1 are in Section 1.4, where we obtained all cylindrical
quantum integrable systems by solving the corresponding determining equations.
We followed the analysis from the classical case [11] because the only determining
equation differing from the classical case is the zeroth order equation (1.82). The
determining equations were reduced to equations (1.91)–(1.94) containing 5 auxiliary
functions of one variable ρ(r), σ(r), ψ(φ), τ(φ) and µ(Z) which determine the first
order terms of the cylindrical integrals (1.76) and the magnetic field ~B, see eq. (1.87)
and (1.88). Equation (1.94) contains a matrix M which depends on the auxiliary
functions only and allows us to split the considerations according to its rank. In [11] it
was shown that rank 0 and 3 are either impossible (assuming non-vanishing magnetic
field) or inconsistent with the other equations and the arguments remain valid in
quantum mechanics. Ranks 1 and 2 split further into subcases. In subcase a) the
quantum correction vanishes and the obtained systems are therefore the same as in
classical mechanics in [11]. (The key results are cited in the corresponding subsections
of Section 2.1.) In subcase b) the quantum correction is a priori non-trivial, but
vanishes in some cases due to the consistency conditions on the scalar potential W .
We have obtained 3 systems with non-vanishing correction:

1. The first system has the magnetic field ~B in the z-direction given in (1.116)
and scalar potential W not depending on Z in (1.117). The integral X1 is
determined from (1.119), the cylindrical integral X2 reduces to the first order
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integral which in suitable gauge reads X2 = pz. We therefore have an integrable
motion in 2D (studied in [5]) complemented by free motion in the Z-direction.

2. This is the previous system with the scalar potential modified to W =
W12(r, φ) +W3(Z) with W12(r, φ) from eq. (1.117) and W3(Z) unconstrained.
The 2D integrable motion is complemented by the motion in the Z-direction
ruled by W3(Z), which has the second order cylindrical integral X2 = (pAZ)2 +
2W3(Z).

3. The system with the magnetic field ~B from eq. (1.136) and the scalar potential
(1.134) not depending on Z. Both are expressed in terms of one function β(φ)
which satisfies the nonlinear ODE (1.129). We again have X2 = pz in suitably
chosen gauge.

All quantum cylindrical quadratic integrable systems have the same magnetic field
as their classical counterparts. The scalar potential W is in general modified by an
~2-dependent correction, although it sometimes vanishes due to other constraints.

In Chapter 2 we looked for superintegrable systems among the known cylindrical
integrable cases. Because the analysis of the second order determining equations (1.14)–
(1.17) was too computationally demanding even with restriction to the integrable
cases, we had to restrict to a less ambitious goal.

In Section 2.1 we found all first order superintegrable cylindrical systems, all of which
were already known to the literature, and excluded any further cases. The 3 found
systems are as follows: In Subsection 2.1.2 we have the maximally superintegrable
system with constant magnetic field and potential studied already in [15], see [20]
as well. In Subsection 2.1.5 there is a class of systems with constant magnetic field
and W (z) from [19], which reduces to a 2D systems without magnetic field and in
Subsection 2.1.4 subcase IV. we have another system separable in the Cartesian
as well as cylindrical coordinates from [19]. As was shown in Subsection 2.1.1, the
additional integrals must be pAx +m(~x) or pAy +m(~x) (in a suitably chosen reference
frame), where m is a function. In all three cases we can choose the gauge so that
they are px or py. The same is true for the first order reduced cylindrical integral
X̃1, which in suitable gauge reads X̃1 = pφ. The corresponding Hamilton-Jacobi and
Schrödinger equations separate in the cylindrical as well as Cartesian coordinates and
the equations are solved (sometimes in terms of special functions) in the corresponding
subsections. The spectrum of the Hamiltonian is continuous in all three cases. We
also solved the Hamilton’s equations of motion and analysed the trajectories.

In Section 2.2 we searched for second order superintegrable systems. In Subsec-
tion 2.2.1 we present the system which we found during our attempt to solve the
second order determining equations in general. It is a special case of Case I d) in
[19], is second order minimally superintegrable and separates both in the Cartesian
and cylindrical coordinates. The trajectories are unbounded with an exception of
some singular values of the constants, so we do not obtain any information on higher
order integrals.

In Subsections 2.2.2 and 2.2.3 we used the physically motivated ansätze L2 + . . .
and Lxpy − Lypx + . . ., respectively. We obtained all classical cylindrical systems
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with additional integrals of this type, see the list in the corresponding subsections.
(Quantum corrections for the considered type of integrals are non-trivial, so we
postpone the quantum cases to a later work.) Almost all the systems were new to the
literature. All found system were only minimally quadratically superintegrable but
had at least one first order integral, namely X̃1 = pφ in suitably chosen gauge. The
Hamilton-Jacobi equations were separable in the cylindrical coordinates. (They have
only one Cartesian integral X2 = (pAz )2 + . . ., which is not sufficient for separability
in the Cartesian coordinates.) Despite this fact we were not able to obtain the
trajectories analytically in all cases because they sometimes lead to quadratures not
solvable in terms of known functions (as far as we know). We analysed the systems
numerically and there is only one system, namely system II. in Subsection 2.2.2,
whose bounded trajectories are closed and is therefore a promising candidate for
search for higher order integrals, which we postponed to a later work. Systems II.
and III. in Subsection 2.2.3 had satisfied the condition for some initial values only,
and are not maximally superintegrable, but they could be so called particularly
maximally superintegrable [27], i.e. could have 5 independent integrals on some
common invariant subspace of the phase space.

There are a lot of aspects to investigate further. Those we plan to study in our
future work include the following: We will analyse the quantum version of the found
systems in order to study the classical-quantum correspondence and look for purely
quantum systems, find all second order superintegrable systems of the cylindrical
type and search for higher order integrals, and study solving of Hamilton-Jacobi
and Schrödinger equations for non-separable systems (quasi-separation or separation
though canonical transformations mixing coordinates and momenta).
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