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metodou násobitel̊u

Master’s Thesis

Author: Vojtěch Šmı́d
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Chapter 1

Introduction

Let HV be a Schrödinger operator in the Hilbert space L2(Ω) where Ω is a domain in Rd. We
consider that the potential V is complex thus the operator HV is non-self-adjoint. We study
the spectrum of such operator and discuss how it can be affected by imposing various boundary
conditions. Namely, we will find suitable conditions on the potential V under which the point
spectrum is empty. In order to do so, we study the equation for eigenvalues

∆u+ λu = V u in Ω ⊂ Rd, (1.1)

where we assume that its solution u satisfies one of the following boundary conditions:

C1 Dirichlet: u = 0 on ∂Ω,

C2 Neumann: ∂u
∂n = 0 on ∂Ω,

C3 Robin: αu+ ∂u
∂n = 0 on ∂Ω,

where α : ∂Ω → [0,+∞) satisfies ∇′α · x′ ≤ 0 for x′ := (x2, · · · , xd) and ∇′α := ( ∂α∂x2
, · · · , ∂α∂xd ).

We will denote the operator Hι
V = −∆ + V , where ι represents the boundary conditions which

functions from its domain satisfy. We set ι as D for Dirichlet, N for Neumann and R for Robin
boundary conditions.

More specifically, we are interested in the solutions in the half-space Rd+ which we define as

Rd+ := {x = (x1, x2, · · · , xd) ∈ Rd|x1 ≥ 0}.

This is an example of very simple domain. In fact, its boundary is ∂Rd = Rd−1. It is the first step
towards our main goal which are waveguides in Rd.

The inspiration for this thesis comes from the paper [4]. Here the the whole three-dimensional
space Ω = R3 was considered and the following condition on the potential V was derived

∃a < 1, ∀ψ ∈ H1(Rd),
∫
Rd

|V ||ψ|2≤ a
∫
Rd

|∇ψ|2. (1.2)

Apart from guaranteeing the emptiness of the point spectrum it also implies that the spectrum of
an Schrödinger operator with such potential coincides with that of the free Hamiltonian H0 = −∆
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which is σ(H0) = σc(H0) = [0,+∞). The free Hamiltonian can be associated with the quadratic
form

h0[ψ] :=

∫
Rd

|∇ψ|2, D(h0) := H1(Rd). (1.3)

Analogously, the potential V can be associated with the form

v[ψ] =

∫
Rd
V |ψ|2, D(v) =

{
ψ ∈ L2(Rd) :

∫
Rd
|V ||ψ|2<∞

}
In another words, the condition (1.1) means that the potential V is form-subordinated to H0

with the subordination bound less than one. This feature allows us to define the corresponding
Schrödinger operator as an m-sectorial operator by associating it with the form hV = h0 + v via
the First Representation Theorem which can be found in [5].

However, the proof of this result is based on Birman-Schwinger principle and it fails in higher
dimensions. In order to generalize this result to dimensions higher than three, the authors had to
utilize a different approach which was the method of multipliers. This technique was developed by
Morawetz in [6] to study the non-linear Klein Gordon equation. Over the course of time, this method
was used in various contexts as in dispersive equations, kinetic equations, Helmholtz equatoin, etc.
We refer to papers [2,7,8]. In the setting corresponding to our problem this technique was used apart
from our main inspiration [4] also in [1] where electromagnetic potential in exteriors of domains
were studied. Another recent paper [3] uses this method to prove the absence of eigenvalues for
magnetic Schrödinger operator in two dimensions. Our main interest lies in the following result
from the article [4].

Theorem 1. Let d ≥ 3 and suppose

∀ψ ∈ H1(Rd),
∫
Rd

|x|2|V (x)|2|ψ(x)|2dx ≤ Λ

∫
Rd

|∇ψ(x)|2dx,

where Λ satisfies
2(2d− 3)

d− 2
Λ +

√
2√

d− 2
Λ

3
2 < 1.

Then σp(HV ) = ∅.

It can be shown that the condition in this theorem also implies the form-subordination (1.2).
However, the article also contains a generalization of this result for which the form-subordination
does not hold. To this extent, we define the functions f± as

f±(x) := max{±f(x), 0}. (1.4)

Using this formalism, we can rewrite the form hV as

hV = h
(1)
V + h

(2)
V ,

where h
(1)
V [ψ] :=

∫
Rd |∇ψ|

2+
∫
Rd(<V )+|ψ|2 and H

(2)
V [ψ] := −

∫
Rd(<V )−|ψ|2+

∫
Rd =V |ψ|

2. Now, we
assume that only (<V )− and =V are form-subordinated to H0 with the subordination bound less
than one. Again, the form hV gives rise to an m-sectorial operator HV . For this case the authors
derive the following result
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Theorem 2. Let d ≥ 3 and assume that there exist non-negative numbers b1, b2 and b3 satisfying

b21 < 1− 2b3
d− 2

, b22 + 2b3 + b
1
2
3

(
2

d− 2

) 3
2

< 1

such that for all ψ ∈ D(hV ) ∫
Rd

(V1)− |ψ|
2 ≤ b21

∫
Rd

|∇ψ|2,

∫
Rd+

[∂r (|x|V1)]+ |ψ|
2 ≤ b22

∫
Rd

|∇ψ|2,

∫
Rd

|x|2|V2|2|ψ|2 ≤ b23
∫
Rd

|∇ψ|2,

where ∂rf(x) := x
|x| · ∇f(x). Then σp(HV ) = ∅.

Our main goal is to generalize the Theorems 1 and 2 to the half-space. In fact, we will use
the same technique and the main difference is appearance of integrals over the boundary. We also
derive results for real potentials and thus self-adjoint operators HV which can be obtained by more
straightforward method. For the moment, we give only formal results. This thesis gives only formal
results therefore we merely denote the space of test functions as D(Rd+) and abuse the notation and
use it for all the cases.

Our first result is an analogue to the Theorem 1 and leaves the conditions unchanged for the
boundary conditions C1 to C3.

Theorem 3. Let d ≥ 3 and assume that

∀ψ ∈ D
(
Rd+
) ∫

Rd+

|x|2|V (x)|2|ψ(x)|2dx ≤ Λ

∫
Rd+

|∇ψ(x)|2dx, (1.5)

where Λ satisfies (2.31). Then σp (Hι
V ) = ∅, where ι represents the boundary conditions C1 to C3.

The analogue to the Theorem 2 also leaves the conditions unchanged and we obtain

Theorem 4. Let d ≥ 3 and assume that there exist non-negative numbers b1, b2 and b3 satisfying

b21 < 1− 2b3
d− 2

, b22 + 2b3 + b
1
2
3

(
2

d− 2

) 3
2

< 1 (1.6)
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such that for all ψ ∈ D(Rd+) ∫
Rd+

(V1)− |ψ|
2 ≤ b21

∫
Rd+

|∇ψ|2, (1.7)

∫
Rd+

[∂r (|x|V1)]+ |ψ|
2 ≤ b22

∫
Rd+

|∇ψ|2, (1.8)

∫
Rd+

|x|2|V2|2|ψ|2 ≤ b23
∫
Rd+

|∇ψ|2, (1.9)

(1.10)

where ∂rf(x) := x
|x| · ∇f(x). Then σp(H

ι
V ) = ∅, where ι represents the boundary conditions C1 to

C3.

An example of potential satisfying these conditions for =V = 0 is the large class of repulsive
potentials of Coulomb-type interaction V (x) = c|x|−1 with c > 0. However, these potential do not
fulfil the form-subordination. We say that u is a solution of (1.1) if u ∈ H1(Ω) and

The second part of this thesis generalizes [4] by introducing a new operator. Let a : Rd → Cd,d
be a measurable function whose real part satisfies the uniform elliptic condition

Re a =
a+ a∗

2
≥ cI > 0. (1.11)

Note that this inequality compares hermitian matrices so in fact it means

∀ξ ∈ C∞0 (Rd,Cd) 0 < c|ξ|2≤ ξ̄ a+ a∗

2
ξ.

This condition ensures that the following operator is elliptic

Hψ = −∇(a∇ψ) (1.12)

We assume no potential and as can be seen in Theorem 9 the necessary condition is imposed on
the function a.
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Chapter 2

Half-space

In this chapter, we prove the Theorems 3 and 4 using the method of multipliers. We also derive
analogous results for real potentials. In this case the operator HV is self-adjoint and the proofs are
therefore easier. These results are described in Theorems 5 and 6.

The structure of this chapter is as follows. In the first section we establish lemmas which are
essential for the proofs of the main theorems. We give separate lemmas for self-adjoint and non-self-
adjoint cases. In the sections 2.2 and 2.3 we prove the main results for real and complex potentials
respectively. Finally, in the last section of this chapter we discuss the results for complex Robin
boundary conditions.

2.1 Fundamental Lemmas

In this section we establish the essential lemmas for the proofs of the main results. We consider
a general domain Ω ⊂ Rd. The method of multipliers is based on the equation (1.1) which we
multiply by a suitable test function v and integrate over the domain to obtain

∀v ∈ D(Ω),

∫
Ω

∇u · ∇v̄ + λ

∫
Ω

uv̄ +

∫
∂Ω

∂u

∂n
v̄ =

∫
Ω

V uv̄. (2.1)

This equation can be regarded as a weak formulation of the problem (1.1). We proceed by choosing
suitable test functions v and generate elementary identities which are described in the first lemma.

Lemma 1. Let u be a solution of (1.1) and let G1, G2, G3 : Rd → R be three smooth functions.
Then the following identities hold:

λ1

∫
Ω

G1|u|2−
∫
Ω

G1|∇u|2+
1

2

∫
Ω

∆G1|u|2+<
∫
∂Ω

G1
∂u

∂n
ū− 1

2

∫
∂Ω

|u|2 ∂G1

∂n
= <

∫
Ω

G1V |u|2, (2.2)

λ2

∫
Ω

G2|u|2−=
∫
Ω

∇G2 · ū∇u+ =
∫
∂Ω

G2
∂u

∂n
ū = =

∫
Ω

G2V |u|2, (2.3)
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∫
Ω

∇u · ∇2G3 · ∇ū−
1

4

∫
Ω

∆2G3|u|2+λ2=
∫
Ω

∇G3 · u∇ū−<
∫
∂Ω

∇G3 · ∇ū
∂u

∂n

−1

2
<
∫
∂Ω

∆G3ū
∂u

∂n
+

1

2

∫
∂Ω

|∇u|2 ∂G3

∂n
+

1

4

∫
∂Ω

|u|2 ∂(∆G3)

∂n
− λ1

2

∫
∂Ω

|u|2 ∂G3

∂n

= −<
∫
Ω

V∇G3 · u∇ū−
1

2
<
∫
Ω

∆G3V |u|2,

(2.4)

where n is the outward unit normal vector, ∇2 is the Hessian matrix and ∆2 := ∆∆ denotes
the bi-Laplacian.

Proof. In order to prove the first identity, we choose v = G1u in (2.1) which leads us to

−
∫
Ω

G1|∇u|2−
∫
Ω

∇G1 · ū∇u+ λ

∫
Ω

G1|u|2+

∫
∂Ω

G1ū
∂u

∂n
=

∫
Ω

G1V |u|2.

The real part of the second term can rewritten using the useful formula

2<(ū∇u) = ∇|u|2. (2.5)

Then, we can use the first Green’s identity on the real part of the second integral to obtain

−1

2

∫
Ω

∇G1 · ∇|u|2=
1

2

∫
Ω

∆G1|u|2−
1

2

∫
∂Ω

|u|2 ∂G1

∂n
.

Thus, we get

−
∫
Ω

G1|∇u|2−i=
∫
Ω

∇G1 · ū∇u+
1

2

∫
Ω

∆G1|u|2−
1

2

∫
∂Ω

|u|2 ∂G1

∂n
+ λ

∫
Ω

G1|u|2+

∫
∂Ω

G1ū
∂u

∂n

=

∫
Ω

G1V |u|2. (2.6)

The identity (2.2) is then the real part of (2.6).
Analogously, choosing v = G2u in (2.1) and taking the imaginary part of the resulting identity,

we obtain (2.3).
Finally, the choice v = 2∇G3 · ∇u+ ∆G3u in (2.1) leads us to

− 2

∫
Ω

∇u · ∇2G3 · ∇ū− 2

∫
Ω

∇G3 · ∇2ū · ∇u−
∫
Ω

∇(∆G3) · ∇uū−
∫
Ω

∆G3|∇u|2

+ 2λ

∫
Ω

∇G3 · ∇ūu+ λ

∫
Ω

∆G3|u|2+

∫
∂Ω

(2∇G3 · ∇ū+ ∆G3ū)
∂u

∂n

= 2

∫
Ω

V∇G3 · ∇ūu+

∫
Ω

V∆G3|u|2.
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Now, we use the identity (2.5) and the same identity for ∇u, which then reads ∇|∇u|2= 2<∇2u·∇ū,
to get

− 2

∫
Ω

∇u · ∇2G3 · ∇ū−
∫
Ω

∇G3 · ∇|∇u|2−2i=
∫
Ω

∇G3 · ∇2ū · ∇u− 1

2

∫
Ω

∇(∆G3) · ∇|u|2

− i=
∫
Ω

∇(∆G3) · ∇uū−
∫
Ω

∆G3|∇u|2+λ

∫
Ω

∇G3 · ∇|u|2+2iλ=
∫
Ω

∇G3 · ∇ūu+ λ

∫
Ω

∆G3|u|2

+

∫
∂Ω

(2∇G3 · ∇ū+ ∆G3ū)
∂u

∂n

= 2

∫
Ω

V∇G3 · ∇ūu+

∫
Ω

V∆G3|u|2.

Using the first Green’s formula and dividing the whole identity by −2, we arrive at∫
Ω

∇u · ∇2G3 · ∇ū+ i=
∫
Ω

∇G3 · ∇2ū · ∇u− 1

4

∫
Ω

∆2G3|u|2+
i

2
=
∫
Ω

∇(∆G3) · ∇uū

− iλ=
∫
Ω

∇G3 · ∇ūu−
∫
∂Ω

∇G3 · ∇ū
∂u

∂n
− 1

2

∫
∂Ω

∆G3ū
∂u

∂n
+

1

2

∫
∂Ω

|∇u|2 ∂G3

∂n

+
1

4

∫
∂Ω

|u|2 ∂(∆G3)

∂n
− λ

2

∫
∂Ω

|u|2 ∂G3

∂n

= −
∫
Ω

V∇G3 · ∇ūu−
1

2

∫
Ω

V∆G3|u|2.

The equation (2.4) is then the real part of this identity.

In what follows, we will assume that the functions G1, G2, G3 are radial, i.e. there exist smooth
functions g1, g2, g3 : (0,∞) → R such that Gi(x) = gi (|x|) for all x ∈ Rd and i ∈ {1, 2, 3}. In this
case, we have

∇Gi(x) = g′i(|x|)
x

|x|
, ∆Gi(x) = g′′i (|x|) + g′i(|x|)

d− 1

|x|
,

∇2Gi(x) = g′′i (|x|) xx
|x|2

+
g′i(|x|)
|x|

(
I − xx

|x|2

)
,

where xx denotes the dyadic product of x and x. In the following, for any g : Rd → C we denote
by

∂rg(x) :=
x

|x|
· ∇g(x), ∇τg(x) :=

(
I − xx

|x|2

)
· ∇g(x)

the radial derivative and the angular gradient of g, respectively. Therefore, we can write

|∇g|2= |∂rg|2+|∇τg|2. (2.7)
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Naturally, if the identities (2.2), (2.3) and (2.4) hold then any combination of their multiples
holds as well. We will use this property together with the radiality of the functions G1, G2 and
G3 to prove the essential identities in the following two lemmas. In the self-adjoint case it will be
sufficient to combine only the identities (2.2) and (2.3) which will be described in the lemma 2.
Including also the identity (2.4), we obtain a result which enables us to treat m-sectorial operators
with complex potentials. This result is described in the Lemma 3.

Lemma 2. Let u be the solution of (1.1). Then the following identity holds:

λ1

∫
Ω

|u|2+

∫
Ω

|∇u|2+2λ2=
∫
Ω

|x|u∂rū

+ <
∫
∂Ω

(1− d)
∂u

∂n
ū− 2<

∫
∂Ω

|x|∂rū
∂u

∂n
+

∫
∂Ω

|∇u|2x · n− λ1

∫
∂Ω

|u|2x · n

=

∫
Ω

(1− d)V1|u|2−2<
∫
Ω

V |x|u∂rū.

(2.8)

Proof. The desired identity follows immediately from the combination of (2.2) with G1 = 1 and
(2.4) with G3 = |x|2.

In the next lemma we use u to define a new function u−(x) := u(x)e−i sgn(λ2)λ
1
2
1 |x|. The con-

venience of this formalism is that u− has the same norm as u but considering that |a − ib|2=
|a|2+|b|2−2=a · b̄, we derive the identity for norm of its derivative which reads

|∇u−|2=

∣∣∣∣∇u− i sgn(λ2)λ
1
2
1 |2

x

|x|
u

∣∣∣∣2
=|∇u|2+λ1|u|2−2 sgn(λ2)λ

1
2
1 = (ū∂ru) .

(2.9)

In the proofs of the main results it is important to know which terms are positive. Using the
identity (2.9), we can include the term involving sgn(λ2), whose sign we are not able to determine,
in a non-negative term.

Lemma 3. Let u be a solution of (1.1). Then the following identity holds:∫
Ω

|∇u−|2+
|λ2|

λ
1
2
1

∫
Ω

|x||∇u−|2−d− 1

2

|λ2|

λ
1
2
1

∫
Ω

|u|2

|x|
+ 2λ

1
2
1 sgn(λ2)=

∫
∂Ω

|x|∂u
∂n

ū− 2<
∫
∂Ω

|x|∂rū
∂u

∂n

−<
∫
∂Ω

(d− 1)ū
∂u

∂n
− |λ2|

λ
1
2
1

<
∫
∂Ω

|x|∂u
∂n

ū+

∫
∂Ω

|∇u|2x · n− λ1

∫
∂Ω

|u|2x · n+
|λ2|

2λ
1
2
1

∫
∂Ω

|u|2x · n
|x|

= 2=
∫
Ω

|x|V2u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
+

∫
Ω

∂r (|x|V1) |u|2−|λ2|

λ
1
2
1

∫
Ω

V1|x||u|2−
∫
∂Ω

V1|u|2x · n.

(2.10)

Proof. Since u is a solution of (1.1), the identities in Lemma 1 hold. We take the sum (2.2) +

λ
1
2
1 (2.3) + (2.4) and assume that the functions G1, G2, G3 are radial to get
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∫
Ω

(g′′3 − g1) |∂ru|2+

∫
Ω

(
g′3
|x|
− g1

)
|∇τu|2+

∫
Ω

(
λ1g1 + λ

1
2
1 λ2

)
|u|2

+

∫
Ω

(
1

2
∆G1 −

1

4
∆2G3

)
|u|2−λ

1
2
1 =
∫
Ω

g′2ū∂ru+ λ2=
∫
Ω

g′3u∂rū−
1

2

∫
∂Ω

g′1|u|2
x · n
|x|

<
∫
∂Ω

g1
∂u

∂n
ū+ λ

1
2
1 =
∫
∂Ω

g2
∂u

∂n
ū−<

∫
∂Ω

g′3∂rū
∂u

∂n
− 1

2
<
∫
∂Ω

g′′3 ū
∂u

∂n
− 1

2
<
∫
∂Ω

g′3
d− 1

|x|
ū
∂u

∂n

+
1

2

∫
∂Ω

g′3|∇u|2
x · n
|x|

+
1

4

∫
∂Ω

|u|2 ∂(∆G3)

∂n
− λ1

2

∫
∂Ω

g′3|u|2
x · n
|x|

=

∫
Ω

g1V1|u|2+λ
1
2
1

∫
Ω

g2V2|u|2−<
∫
Ω

g′3V u∂rū−
1

2

∫
Ω

g′′3V1|u|2−
1

2

∫
Ω

g′3V1
d− 1

|x|
|u|2.

Choosing g1 = 1
2g
′′
3 and g2 = sgn(λ2)g′3, we obtain

1

2

∫
Ω

g′′3
(
|∂ru|2+λ1|u|2

)
− sgn(λ2)λ

1
2
1

∫
Ω

g′′3 ū∂ru+

∫
Ω

|∇τu|2
(
g′3
|x|
− g′′3

2

)
+

1

4

∫
Ω

(
∆G′′3 −∆2G3

)
|u|2

+ |λ2|λ
1
2
1

∫
Ω

g′3|u|2+λ2=
∫
Ω

g′3u∂rū+ λ
1
2
1 sgn(λ2)=

∫
∂Ω

g′3
∂u

∂n
ū−<

∫
∂Ω

g′3∂rū
∂u

∂n
− 1

2
<
∫
∂Ω

g′3
d− 1

|x|
ū
∂u

∂n

− 1

4

∫
∂Ω

g′′′3 |u|2
x · n
|x|

+
1

2

∫
∂Ω

g′3|∇u|2
x · n
|x|

+
1

4

∫
∂Ω

|u|2 ∂(∆G3)

∂n
− λ1

2

∫
∂Ω

g′3|u|2
x · n
|x|

= λ
1
2
1 sgn(λ2)

∫
Ω

g′3V2|u|2−<
∫
Ω

V g′3u∂rū−
1

2

∫
Ω

V1g
′
3

d− 1

|x|
|u|2,

where G′′3(x) := g′′3 (|x|). Choosing G3(|x|) = |x|2 and using (2.7), we obtain

∫
Ω

(
|∇u|2+λ1|u|2

)
− 2 sgn(λ2)λ

1
2
1

∫
Ω

ū∂ru+ 2|λ2|λ
1
2
1

∫
Ω

|x||u|2+2λ2=
∫
Ω

|x|u∂rū

+ 2λ
1
2
1 sgn(λ2)=

∫
∂Ω

|x|∂u
∂n

ū− 2<
∫
∂Ω

|x|∂rū
∂u

∂n
−<

∫
∂Ω

(d− 1)ū
∂u

∂n
+

∫
∂Ω

|∇u|2x · n− λ1

∫
∂Ω

|u|2x · n

= 2λ
1
2
1 sgn(λ2)

∫
Ω

|x|V2|u|2−2<
∫
Ω

V |x|u∂rū−
∫
Ω

V1(d− 1)|u|2,

where V1 := <V and V2 := =V . Using the identity (2.9), we get
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∫
Ω

|∇u−|2+2|λ2|λ
1
2
1

∫
Ω

|x||u|2+2=λ2

∫
Ω

|x|u∂rū+ 2λ
1
2
1 sgn(λ2)=

∫
∂Ω

|x|∂u
∂n

ū− 2<
∫
∂Ω

|x|∂rū
∂u

∂n

−<
∫
∂Ω

(d− 1)ū
∂u

∂n
+

∫
∂Ω

|∇u|2x · n− λ1

∫
∂Ω

|u|2x · n

= 2λ
1
2
1 sgn(λ2)

∫
Ω

|x|V2|u|2−2<
∫
Ω

V |x|u∂rū−
∫
Ω

V1(d− 1)|u|2.

(2.11)

We will use the identity (2.2) once again, but this time with the choice G1 = λ
− 1

2
1 |λ2||x| so that

it reads

λ
1
2
1 |λ2|

∫
Ω

|x||u|2−λ−
1
2

1 |λ2|
∫
Ω

|x||∇u|2+
1

2
λ
− 1

2
1 |λ2|

∫
Ω

d− 1

|x|
|u|2+λ

− 1
2

1 |λ2|<
∫
∂Ω

|x|∂u
∂n

ū− λ
− 1

2
1 |λ2|

2

∫
∂Ω

|u|2x · n
|x|

= λ
− 1

2
1 |λ2|

∫
Ω

V1|x||u|2.

Subtracting it from (2.11), we obtain

∫
Ω

|∇u−|2−λ
1
2
1 |λ2|

∫
Ω

|x||u|2+λ
− 1

2
1 |λ2|

∫
Ω

|x||∇u|2+2λ2=
∫
Ω

|x|u∂rū−
d− 1

2
λ
− 1

2
1 |λ2|

∫
Ω

|u|2

|x|

+ 2λ
1
2
1 sgn(λ2)=

∫
∂Ω

|x|∂u
∂n

ū− 2<
∫
∂Ω

|x|∂rū
∂u

∂n
−<

∫
∂Ω

(d− 1)ū
∂u

∂n
− λ−

1
2

1 |λ2|<
∫
∂Ω

|x|∂u
∂n

ū

+

∫
∂Ω

|∇u|2x · n− λ1

∫
∂Ω

|u|2x · n+
λ
− 1

2
1 |λ2|

2

∫
∂Ω

|u|2x · n
|x|

= 2λ
1
2
1 sgn(λ2)

∫
Ω

|x|V2|u|2−2<
∫
Ω

V |x|u∂rū+

∫
Ω

V1(1− d)|u|2−λ−
1
2

1 |λ2|
∫
Ω

V1|x||u|2.

(2.12)

Using the divergence theorem and (2.5), we can rewrite the third term on the right hand side as
follows:∫

Ω

V1(1− d)|u|2=

∫
Ω

V1(1−∇x)|u|2=

∫
Ω

V1|u|2+2<
∫
Ω

V1|x|u∂rū+

∫
Ω

|x|∂rV1|u|2−
∫
∂Ω

V1|u|2x · n.

(2.13)
The right hand side of (2.12) can then be rewritten as
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2=
∫
Ω

|x|V2u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
+

∫
Ω

(V1 + |x|∂rV1) |u|2−λ−
1
2

1 |λ2|
∫
Ω

V1|x||u|2−
∫
∂Ω

V1|u|2x · n

= 2=
∫
Ω

|x|V2u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
+

∫
Ω

∂r (|x|V1) |u|2−λ−
1
2

1 |λ2|
∫
Ω

V1|x||u|2−
∫
∂Ω

V1|u|2x · n.

Finally, using the identity (2.9) on (2.12), we get the desired result.

2.2 Real potential

In this section we use the method of multipliers to derive results for real potentials. In this case the
operator HV with conditions C1 to C3 is self-adjoint and the proofs are therefore more straight-
forward than in the case of complex potentials. The results from section 2.3 are a generalization of
the theorems which we present here. The purpose of this section is to demonstrate the method of
multipliers on a simpler problem.

We start with the following lemma which under certain condition enables us to eliminate positive
eigenvalues.

Lemma 4. Let d ≥ 3. Let u be a solution of (1.1) with λ1 > 0 on the half-space Rd+. Assume that
u satisfies one of the boundary conditions C1 to C3. Let the potential V be real and satisfy

‖xV u‖ ≤ Λ‖∇u‖, (2.14)

where Λ is determined by
2(2d− 3)

d− 2
Λ ≤ 1. (2.15)

Then u = 0.

Proof. The proof is based on the identity (2.8) which under the assumptions of this theorem reads

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2+<
∫
∂Rd+

(1− d)
∂u

∂n
ū− 2<

∫
∂Rd+

|x|∂rū
∂u

∂n
+

∫
∂Rd+

|∇u|2x · n− λ1

∫
∂Rd+

|u|2x · n

=

∫
Rd+

(1− d)V |u|2−2<
∫
Rd+

V |x|u∂rū.

Since the boundary of the half-space is ∂Rd+ = {(x1, · · · , xd) ∈ Rd | x1 = 0}, the vector x is the
tangent vector multiplied by |x|. Hence, the dot product x · n is equal to zero and all the terms
involving such product vanish and we are left with

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2+<
∫
∂Rd+

(1− d)
∂u

∂n
ū− 2<

∫
∂Rd+

|x|∂rū
∂u

∂n
(2.16)

=

∫
Rd+

(1− d)V |u|2−2<
∫
Rd+

V |x|u∂rū. (2.17)
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We now proceed by estimating the right-hand side from above. Recall the classical Hardy
inequality

∀d ≥ 3, ∀ψ ∈ H1(Rd),
∫
Rd

|∇ψ(x)|2dx ≥
(
d− 2

2

)2 ∫
Rd

|ψ(x)|2

|x|2
dx. (2.18)

Using this inequality together with the Schwarz inequality and (2.14), we estimate the first term as

∫
Rd+

(1− d)V |u|2≤ (d− 1)

∣∣∣∣∣∣∣
∫
Rd+

V |u|2

∣∣∣∣∣∣∣ ≤ (d− 1) ‖xV u‖
∥∥∥∥ u|x|

∥∥∥∥ ≤ 2(d− 1)

d− 2
‖∇u‖2. (2.19)

The other integral can be estimated as

− 2<
∫
Rd+

V |x|u∂rū ≤ 2

∣∣∣∣∣∣∣
∫
Rd+

V |x|u∂rū

∣∣∣∣∣∣∣ ≤ ‖xV u‖‖∂ru‖ ≤ 2‖xV u‖‖∇u‖ ≤ 2Λ‖∇u‖, (2.20)

where we use the Schwarz inequality, (2.7) and (2.14). Combining the inequalities (2.19) and (2.20)
together with the assumption that λ1 > 0, we can estimate (2.16) as(

1− 2(2d− 3)

d− 2
Λ

) ∫
Rd+

|∇u|2+<
∫
∂Rd+

(1− d)
∂u

∂n
ū− 2<

∫
∂Rd+

|x|∂rū
∂u

∂n
≤ 0. (2.21)

Applying the Robin boundary conditions, we may rewrite this inequality as(
1− 2(2d− 3)

d− 2
Λ

) ∫
Rd+

|∇u|2+

∫
∂Rd+

(d− 1)α|u|2+2<
∫
∂Rd+

|x|αu∂rū ≤ 0.

Integrating by parts, we can rewrite the second integral over the boundary as

2<
∫
∂Rd+

α|x|u∂rū = 2<
∫
∂Rd+

αu

d∑
i=2

∂ū

∂xi
xi =

∫
∂Rd+

α

d∑
i=2

∂|u|2

∂xi
xi = −

∫
∂Rd+

((d− 1)α+ x′ · ∇′α) |u|2.

(2.22)
Since we assume x′ · ∇′α ≤ 0, we obtain(

1− 2(2d− 3)

d− 2
Λ

) ∫
Rd+

|∇u|2≤ 0. (2.23)

We get the same result for Dirichlet and Neumann boundary conditions since both the integrals over
the boundary in (2.21) disappear. Indeed, since u = 0 along the whole boundary in the Dirichlet
case, the radial derivative of u is also equal to zero. The remaining terms vanish immediately by
applying the relevant condition.

The condition (2.15) implies that the bracket in front of the integral in (2.23) is strictly positive,
thus the only case in which this inequality holds is ∇u = 0. Being unbounded, the half-space Rd+
restricts u to be equal to zero.
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We are now in position to prove the first main theorem of this section.

Theorem 5. Let d ≥ 3 and assume that the potential V is real. Suppose

∀ψ ∈ H1
(
Rd+
) ∫

Rd+

|x|2|V (x)|2|ψ(x)|2dx ≤ Λ

∫
Rd+

|∇ψ(x)|2dx, (2.24)

where Λ satisfies (2.15). Then σp (HV ) = ∅ for one of the boundary conditions C1 to C3.

Proof. The Lemma 4 implies that HV has no positive eigenvalues. However, (2.24) together with
(2.15) implies (1.2), which, as we will see, yields that HV can only have positive eigenvalues. Taking
(2.2) with G1 = 1, we get

λ1

∫
Rd+

|u|2=

∫
Rd+

V |u|2+

∫
Rd+

|∇u|2−<
∫
∂Rd+

∂u

∂n
ū ≥

∫
Rd+

|∇u|2−
∫
Rd+

|V ||u|2≥ (1− a)

∫
Rd+

|∇u|2,

where the last inequality follows from (1.2). The integral over the boundary vanishes immediately
in the Dirichlet and Neumann case. Applying the Robin boundary conditions, we can rewrite the
integral as

∫
∂Rd+

α|u|2 and estimate it from below by zero, since we assume that α is non-negative. By

(1.2), the bracket on the right-hand side is strictly positive, thus this inequality hold for a non-zero
u only if λ > 0, i.e. only positive eigenvalues are permitted.

We proceed by proving an analogous result to the Theorem 4 where alternative conditions on
the potential are imposed. But first, we prove the following lemma which similarly as Lemma 4
eliminates positive eigenvalues.

Lemma 5. Let u be a solution of (1.1) where λ1 > 0 and Rd+ is the half-space Rd+ with a real
potential V . Assume that there exist non-negative numbers b1 < 1, b2 < 1 such that∫

Rd+

V−|ψ|2 ≤ b21
∫
Rd+

|∇ψ|2, (2.25)

∫
Rd+

[∂r (rV )]+ |ψ|
2 ≤ b22

∫
Rd+

|∇ψ|2, (2.26)

where ∂r = ∇ · x|x| . Let u satisfy one of the boundary conditions C1 to C3. Then u = 0.

Proof. The proof is based on the identity (2.8) from the Lemma 2 but many terms will drop out
under the assumptions of this theorem. The operator HV with a real potential V and one of
assumed boundary conditions on Rd+ is self-adjoint, thus its spectrum is real and the term involving
λ2 will vanish. The identity then reads

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2+<
∫
∂Rd+

(1− d)
∂u

∂n
ū− 2<

∫
∂Rd+

|x|∂rū
∂u

∂n
+

∫
∂Rd+

|∇u|2x · n− λ1

∫
∂Rd+

|u|2x · n

=

∫
Rd+

(1− d)V1|u|2−2<
∫
Rd+

V |x|u∂rū.
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The first integral on the right hand side can be rewritten as in (2.13) so that we obtain

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2+<
∫
∂Rd+

(1− d)
∂u

∂n
ū− 2<

∫
∂Rd+

|x|∂rū
∂u

∂n
+

∫
∂Rd+

|∇u|2x · n− λ1

∫
∂Rd+

|u|2x · n

=

∫
Rd+

∂r (|x|V1) |u|2.

(2.27)

Let us start with Dirichlet and Neumann boundary conditions. As we will see, all the integrals over
the boundary will disappear. Indeed, in the Dirichlet case, we can discard the term involving u.
Additionally, the term containing ∂ru will disappear as well, since u = 0 along the whole boundary
so its radial derivative is also equal to zero on the boundary. In the Neumann case, the first two
integrals over the boundary vanish immediately.

Since the boundary of the half-space is ∂Rd+ = {(x1, · · · , xd) ∈ Rd | x1 = 0}, the vector x is the
tangent vector multiplied by |x|. Hence, the dot product x · n is equal to zero and all the terms
involving such product vanish. After applying this reasoning we are left with

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2=

∫
Rd+

∂r (|x|V1) |u|2.

Using (2.26) and considering that λ1 is positive, we obtain

(
1− b22

) ∫
Rd+

|∇u|2≤ 0.

Since b2 < 1, the only case in which this inequality holds is ∇u = 0. The half-space Rd+ is an
unbounded domain thus u = 0.

Applying the Robin boundary conditions to (2.27) and using that x · n = 0 on ∂Rd+, we get

λ1

∫
Rd+

|u|2+

∫
Rd+

|∇u|2−
∫
∂Rd+

(1− d)α|u|2+2<
∫
∂Rd+

α|x|u∂rū =

∫
Rd+

∂r (|x|V1) |u|2. (2.28)

Repeating the procedure done in the Dirichlet and Neumann case, we use (2.26) and λ1 > 0 to
estimate (2.28) as (

1− b22
) ∫
Rd+

|∇u|2−
∫
∂Rd+

|u|2x′ · ∇′α ≤ 0.

This inequality gives rise to the condition ∇′α · x′ ≤ 0 under which u = 0 holds.

Finally, we are in position to prove the last theorem of this section.

Theorem 6. Let d ≥ 3 and assume that conditions (2.25) and (2.26) hold. Then σp (HV ) = ∅ for
one of the boundary conditions C1 to C3.
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Proof. As we have shown in Lemma 5, σp (HV ) ∩ {λ1 > 0} = ∅. In order to prove that there are
no eigenvalues λ1 ≤ 0, we take (2.2) with G1 = 1 to obtain

λ1

∫
Rd+

|u|2 =

∫
Rd+

|∇u|2+

∫
Rd+

V1|u|2−<
∫
∂Rd+

∂u

∂n
ū

≥
∫
Rd+

|∇u|2+

∫
Rd+

(V1)− |u|
2−<

∫
∂Rd+

∂u

∂n
ū

≥ (1− b1)

∫
Rd+

|∇u|2, (2.29)

where the last inequality arises from (2.25) and by applying the boundary conditions. In the Dirchlet
and Neumann case, the integral over the boundary vanishes immediately. In the Robin case, we
estimate the integral over the boundary as

−<
∫
∂Rd+

∂u

∂n
ū =

∫
∂Rd+

α|u|2≥ 0,

where we used the assumption that α is non-negative.
Since we assume that λ1 ≤ 0 and b1 < 1, the inequality (2.29) holds only for u = 0.

2.3 Complex potential

In contrast with the previous section, we are no longer dealing with a self-adjoint operator. Due
to the complex potential, the operator HV is now m-sectorial. The eigenvalues are no longer real
and additional terms involving imaginary parts of eigenvalues and potential appear. As a result, we
shift form Lemma 2 to Lemma 1 where we combined three identities instead of only two. We also

utilize the function u−(x) := ue−i sgn(λ2)λ
1
2
1 |x| which is useful for the estimates due to the identity

(2.9).
Let us start with the following lemma which under certain condition enables us to eliminate

eigenvalues with positive real part.

Lemma 6. Let d ≥ 3. Let u be a solution of (1.1) with λ1 > 0 on the half-space Rd+ and let it
satisfy one of the boundary conditions C1 to C3. Assume that the potential V satisfies

‖xV u‖ ≤ Λ‖∇u‖,
∥∥xV u−∥∥ ≤ Λ

∥∥∇u−∥∥, (2.30)

where Λ is determined by
2(2d− 3)

d− 2
Λ +

√
2√

d− 2
Λ

3
2 < 1. (2.31)

Then u = 0.

Proof. The proof of this theorem is analogous to that of the Lemma 4. The difference lies in allowing
complex potentials which leads to HV being a m-sectorial operator as opposed to the self-adjoint
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one in the case of a real potential. Hence, the eigenvalues are complex numbers and additional
terms involving λ2 will appear. Inspired by [4], we divide the proof into two cases: |λ2|≤ λ1 and
|λ2|> λ1.

• |λ2|≤ λ1

Let us start by taking the identity (2.12) which in the case of the half-space Rd+ reads

I :=

∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

∫
Rd+

|x||∇u−|2−d− 1

2

|λ2|

λ
1
2
1

∫
Rd+

|u|2

|x|

+ 2λ
1
2
1 sgn(λ2)=

∫
∂Rd+

|x|∂u
∂n

ū− 2<
∫
∂Rd+

|x|∂rū
∂u

∂n
−<

∫
∂Rd+

(d− 1)ū
∂u

∂n
− |λ2|

λ
1
2
1

<
∫
∂Rd+

|x|∂u
∂n

ū

= (1− d)

∫
Rd+

V1|u|2

︸ ︷︷ ︸
I1

−2<
∫
Rd+

|x|V u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
︸ ︷︷ ︸

I2

−|λ2|

λ
1
2
1

∫
Rd+

V1|x||u|2

︸ ︷︷ ︸
I3

,

(2.32)

where we used that x ·n = 0 since x on the boundary of the half-space Rd+ is simply tangential
vector multiplied by |x|. By the weighted Hardy inequality∫

Rd

|ψ|2

x
≤ 4

(d− 1)2

∫
Rd

|x||∇ψ|2

and the fact that |u|= |u−|, we can estimate the left-hand side of (2.32) from below as follows:

I ≥
∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2

+ 2λ
1
2
1 sgn(λ2)=

∫
∂Rd+

|x|∂u
∂n

ū− 2<
∫
∂Rd+

|x|∂rū
∂u

∂n
−<

∫
∂Rd+

(d− 1)ū
∂u

∂n
− |λ2|

λ
1
2
1

<
∫
∂Rd+

|x|∂u
∂n

ū.

The boundary integrals vanish immediately in the case of Neumann boundary conditions. In
order to get the same result for the Dirichlet case, we have to use additional reasoning that
u = 0 along the whole boundary, thus x

|x| · ∇u = |x|∂ru = 0. Finally, the Robin boundary

conditions C3 lead to the following estimate of the integrals over the boundary:

2<
∫
∂Rd+

α|x|u∂rū+(d−1)

∫
∂Rd+

α|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α|x||u|2= −
∫
∂Rd+

x′ ·∇′α|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α|x||u|2≥ 0,

where the equality follows from (2.22) and the estimate is the result of the assumptions in
C3. In conclusion, we can estimate the left-hand side of (2.32) with any of the boundary
conditions considered in this theorem as

I ≥
∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2. (2.33)
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The first term on the right-hand side can be estimated using the Hardy inequality (2.18),
Schwarz inequality and (2.30) as

|I1|≤ (d− 1)‖xV u‖
∥∥∥∥ u|x|

∥∥∥∥ ≤ 2(d− 1)

d− 2
Λ‖∇u‖2. (2.34)

The second term can be rewritten using iλ
1
2
1 sgn(λ2)ū + ∂rū = ∂ru− exp

(
−i sgn(λ2)λ

1
2
1 |x|

)
and then estimated by the Schwarz inequality and (2.30) as

|I2|≤ 2
∥∥xV u−∥∥∥∥∂ru−∥∥ ≤ 2

∥∥xV u−∥∥∥∥∇u−∥∥ ≤ 2Λ
∥∥∇u−∥∥2

. (2.35)

In order to estimate the last term, we return to the identity (2.3) and choose G2 = λ2

|λ2| so

that we obtain

‖u‖2 = |λ2|−1=
∫
Rd+

V |u|2≤ |λ2|−1

∫
Rd+

|V u||u|. (2.36)

Using this upper bound together with |λ2|≤ λ1 and (2.30), we get

|I3|≤
|λ2|

λ
1
2
1

‖xV u‖‖u‖ ≤
(
|λ2|
λ1

) 1
2

Λ
∥∥∇u−∥∥√√√√∫

Rd+

|V u||u|

≤Λ
∥∥∇u−∥∥‖xV u‖ 1

2

∥∥∥∥ u|x|
∥∥∥∥ 1

2

≤Λ
3
2

√
2√

d− 2

∥∥∇u−∥∥2
,

(2.37)

where the last inequality follows from the Hardy inequality (2.18). Now that we have treated
all the terms, we can estimate (2.32) using (2.33), (2.34), (2.35) and (2.37) as(

1− 2(2d− 3)

d− 2
Λ−

√
2√

d− 2
Λ

3
2

)∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2≤ 0. (2.38)

The bracket in front of the first integral is strictly positive due to (2.31), thus ‖∇u−‖ = 0.
This implies that u and therefore also u− are equal to zero, since any other constant would
lead to an infinite norm.

• |λ2|> λ1

Let us take the real part of (2.1) with v = u and the imaginary part of the same identity with
v = ±u. Combining the two results, we have

(λ1 ± λ2)

∫
Rd+

|u|2=

∫
Rd+

|∇u|2+

∫
Rd+

(V1 ± V2)|u|2. (2.39)

21



By the Schwarz inequality, Hardy inequality (2.18) and assumption (2.31), we estimate the
second term on the right-hand side as∫

Rd+

(V1 ± V2)|u|2≤ 2

∫
Rd+

|V u||u|≤ ‖xV u‖
∥∥∥∥ u|x|

∥∥∥∥ ≤ 4

d− 2
Λ

∫
Rd+

|∇u|2.

The identity (2.39) can then be estimated as

(λ1 ± λ2)

∫
Rd+

|u|2≥
(

1− 4

d− 2
Λ

) ∫
Rd+

|∇u|2. (2.40)

The assumption (2.31) implies that the bracket on the right-hand side is strictly positive.
Conversely, λ1 ± λ2 is necessarily strictly negative in one of the cases since |λ2|> λ1. In
conclusion, the inequality (2.40) holds only for u = 0.

Having eliminated the eigenvalues with positive real part, we are only one step from proving
the Theorem 3.

Proof of the Theorem 3. The Lemma 6 states that no eigenvalues of HV with λ1 > 0 are allowed.
We proceed by showing that the assumptions of this theorem restrict the eigenvalues to have a
positive real part thus the point spectrum is empty.

The identity (2.2) with the constant choice G1 = 1 reads

λ1

∫
Rd+

|u|2=

∫
Rd+

V |u|2+

∫
Rd+

|∇u|2−<
∫
∂Rd+

∂u

∂n
ū. (2.41)

Using the Hardy inequality (2.18), the Schwarz inequality and (1.5), we obtain the following in-
equality: ∫

Rd+

|V ||u|2≤ ‖xV u‖
∥∥∥∥ u|x|

∥∥∥∥ ≤ 2Λ

d− 2
‖∇u‖,

where Λ satisfies (2.31) which in turn implies Λ < d−2
2 . Hence, the potential V satisfies (1.2) and

we can estimate (2.41) as

λ1

∫
Rd+

|u|2=

∫
Rd+

V |u|2+

∫
Rd+

|∇u|2−<
∫
∂Rd+

∂u

∂n
ū ≥

∫
Rd+

|∇u|2−
∫
Rd+

|V ||u|2≥ (1− a)

∫
Rd+

|∇u|2.

By (1.2), the right-hand side is positive for a non-zero u thus λ1 > 0.

Let us now shift our attention to the Theorem 4 whose proof is analogous to that of Theorem
6. We start again with the lemma which eliminates eigenvalues with a positive real part.

Lemma 7. Let d ≥ 3. Let u ∈ D(Rd+) be a solution of (1.1) with λ1 > 0 on the half-space Rd+.
Assume that the potential V satisfies (1.7), (1.8), (1.9) and (1.6). Let u satisfy one of the boundary
conditions C1 to C3. Then u = 0.
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Proof. Analogously to the proof of the Lemma 6, we split the proof into the cases |λ2|≤ λ1 and
|λ2|> λ1.

• |λ2|≤ λ1

We take the identity (2.10) from the Lemma 3 which in the case of the half-space Rd+ reads

I :=

∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

∫
Rd+

|x||∇u−|2−d− 1

2

|λ2|

λ
1
2
1

∫
Rd+

|u|2

|x|

+ 2λ
1
2
1 sgn(λ2)=

∫
∂Rd+

|x|∂u
∂n

ū− 2<
∫
∂Rd+

|x|∂rū
∂u

∂n
−<

∫
∂Rd+

(d− 1)ū
∂u

∂n
− |λ2|

λ
1
2
1

<
∫
∂Rd+

|x|∂u
∂n

ū

= 2=
∫
Rd+

|x|V2u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
︸ ︷︷ ︸

I1

+

∫
Rd+

∂r (|x|V1) |u|2

︸ ︷︷ ︸
I2

−|λ2|

λ
1
2
1

∫
Rd+

V1|x||u|2

︸ ︷︷ ︸
I3

,

(2.42)

where we used that x ·n = 0 since x on the boundary of the half-space Rd+ is simply tangential
vector multiplied by |x|. We proceed by estimating the individual terms on the right-hand
side of this equation.

Notice that iλ
1
2
1 sgn(λ2)ū+ ∂rū = ∂ru−e

−i sgn(λ2)λ
1
2
|x|

1 . Hence, we get

|I1|≤ 2‖xV2u‖
∥∥∂ru−∥∥ ≤ 2

∥∥xV2u
−∥∥∥∥∇u−∥∥ ≤ 2b3

∥∥∇u−∥∥2
, (2.43)

where the last inequality follows from (1.9). By the assumption (1.8), we can estimate the
second term as

I2 =

∫
Rd+

∂r (|x|V1) |u−|≤
∫
Rd+

[∂r (|x|V1)]+ |u
−|≤

∫
Rd+

b22|∇u−|2. (2.44)

Finally, using (1.7), we estimate the last integral as

I3 ≤
|λ2|

λ
1
2
1

∫
Rd+

(V1)−

∣∣∣|x| 12u−∣∣∣2 ≤ b21 |λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2 . (2.45)

Additionally, the resulting integral can be rewritten as∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2 =

∫
Rd+

∣∣∣∣12 x

|x| 32
u− + |x| 12∇u−

∣∣∣∣2 =
1

4

∫
Rd+

|u−|2

|x|
+

∫
Rd+

|x||∇u−|2+<
∫
Rd+

u−∂ru
−.

Integrating by parts the last integral and using (2.5), we see that the second and third term
on the left-hand side of (2.42) can be rewritten as

|λ2|

λ
1
2
1

∫
Rd+

|x||∇u−|2−|λ2|

λ
1
2
1

d− 1

2

∫
Rd+

|u−|2

|x|
=
|λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2 − 1

4

|λ2|

λ
1
2
1

∫
Rd+

|u−|2

|x|
. (2.46)
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Taking the identity (2.3) with the constant choice G2 = λ2

|λ2| , we obtain∫
Rd+

|u|2= |λ2|−1

∫
Rd+

V2|u−|2≤ |λ2|−1
∥∥xV2u

−∥∥∥∥∥∥u−|x|
∥∥∥∥ ≤ |λ2|−1 2b3

d− 2

∥∥∇u−∥∥2
, (2.47)

where we used the Hardy inequality (2.18) and (1.9) in the last inequality. As a consequence,
the second term on the right-hand side of (2.46) can be estimated as

1

4

|λ2|

λ
1
2
1

∫
Rd+

|u−|2

|x|
≤ |λ2|

λ
1
2
1

∥∥∥∥u−|x|
∥∥∥∥∥∥u−∥∥ ≤ b 1

2
3

(
2

d− 2

) 3
2 ∥∥∇u−∥∥2

, (2.48)

where the last inequality follows from the Hardy inequality (2.18) and |λ2|≤ λ1.

Moreover, all the integrals over the boundary in (2.42) can be estimated from below by zero.
Indeed, in the Neumann case, all the boundary terms vanish immediately. To obtain the same
result in the Dirichlet case, we note that u = 0 along the whole boundary and x

|x| represents

the tangential vector on the bounary of the half-space Rd+, thus ∂ru = 0. In the Robin case
C3, the integrals over the boundary can be estimated as

2<
∫
∂Rd+

α|x|u∂rū+

∫
∂Rd+

(d−1)α|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α|x||u|2= −
∫
∂Rd+

x′ ·∇′α|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α|x||u|2≥ 0,

where the equality follows from (2.22) and the inequality is the result of the assumption in
C3.

In conclusion, using (2.46) and (2.48), we estimate the left-hand side of (2.42) as

I ≥

[
1− b

1
2
3

(
2

d− 2

) 3
2

] ∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2 .
Applying this result together with the estimates (2.43), (2.44) and (2.45) on (2.42), we obtain[

1− b22 − 2b3 − b
1
2
3

(
2

d− 2

) 3
2

] ∫
Rd+

|∇u−|2+
(
1− b21

) |λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2 ≤ 0. (2.49)

Both the brackets in front of the integrals are strictly positive due to the assumption (1.6)
therefore this inequality can only hold if ‖∇u−‖ = 0. This implies that u− = 0 and thus also
u = 0 since any other constant would lead to an infinite norm.

• |λ2|> λ1

The proof of this case is analogous to that of the Lemma 6. We take the identity (2.39) and
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make the estimate from below as follows:

(λ1 ± λ2)

∫
Rd+

|u|2=

∫
Rd+

|∇u|2+

∫
Rd+

V1|u|2±
∫
Rd+

V2|u|2≥
∫
Rd+

|∇u|2−
∫
Rd+

(V1)−|u|2−

∣∣∣∣∣∣∣
∫
Rd+

V2|u|2

∣∣∣∣∣∣∣
≥
∫
Rd+

|∇u|2−
∫
Rd+

(V1)−|u|2−‖xV2u‖
∥∥∥∥ u|x|

∥∥∥∥
≥
[
1− b21 −

2b3
d− 2

] ∫
Rd+

|∇u|2,

(2.50)

where the last inequality follows from the Hardy inequality and the assumptions (1.7) and
(1.9). The bracket on the right-hand side of (2.50) is strictly positive by (1.6). However,
since |λ2|> λ1, the sum λ1±λ2 is necessarily strictly negative in one of the cases. Hence, the
inequality (2.50) holds only for u = 0.

We are now in position to prove the last main result of this chapter.

Proof of the Theorem 4. By the Lemma 7, we have σp(HV ) ∩ {λ1 > 0} = ∅. If we now consider
that λ1 ≤ 0, then choosing v := u in (2.1) and taking the resulting real part, we obtain

λ1

∫
Rd+

|u|2=

∫
Rd+

|∇u|2+

∫
Rd+

V1|u|2−<
∫
∂Rd+

∂u

∂n
ū ≥

∫
Rd+

|∇u|2−
∫
Rd+

(V1)−|u|2≥ (1− b21)

∫
Rd+

|∇u|2, (2.51)

where the last inequality follows from (1.7). The integral over the boundary vanishes in Dirichlet
and Neumann case and it can be estimated from below by zero in the Robin case due to the
assumption in C3. The assumption (1.6) implies that 1− b21 > 0, but λ1 ≤ 0, therefore only u = 0
satisfies the inequality (2.51), i.e. σp(HV ) ∩ {λ1 ≤ 0} = ∅.

We conclude this section by comparing the results for real and complex potentials. The The-
orems 5 and 3 differ in the conditions on Λ (2.15) and (2.31). There appears an additional non-
negative term in the non-self-adjoint case thus (2.31) is a stronger version of (2.15).

If we consider the Theorem 4 with V2 = 0 we can put b3 = 0 and the conditions (1.6) to (1.9)
match those of the Theorem 6.s

2.4 Complex Robin boundary conditions

In this section we discuss the result for the complex counterpart of the Robin boundary conditions
C3 on the half-space Rd+, i.e.

αu+
∂u

∂n
= 0 on ∂Rd+,

where α : ∂Rd+ → C. We will impose additional conditions on α as we proceed. Our aim is to
obtain similar results as Lemma 6 and Lemma 7.
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We start with an analogue to the Lemma 6 and the case |λ2|≤ λ1. The identity (2.32) in our
case reads

I :=

∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

∫
Rd+

|x||∇u−|2−d− 1

2

|λ2|

λ
1
2
1

∫
Rd+

|u|2

|x|

− 2λ
1
2
1 sgn(λ2)

∫
∂Rd+

α2|x||u|2+2<
∫
∂Rd+

α|x|u∂rū+ (d− 1)

∫
∂Rd+

α1|u|2+
|λ2|

λ
1
2
1

<
∫
∂Rd+

α1|x||u|2

= (1− d)

∫
Rd+

V1|u|2

︸ ︷︷ ︸
I1

−2<
∫
Rd+

|x|V u
(
iλ

1
2
1 sgn(λ2)ū+ ∂rū

)
︸ ︷︷ ︸

I2

−|λ2|

λ
1
2
1

∫
Rd+

V1|x||u|2

︸ ︷︷ ︸
I3

.

(2.52)

Now, we proceed in the same fashion as we did in the real case but we will keep all the boundary
terms. However, additional boundary term involving α2 will arise. Namely, the bound (2.36) will
read

‖u‖ = |λ2|−
1
2

= ∫
Rd+

V |u|2+

∫
∂Rd+

α2|u|2


1
2

≤ |λ2|−
1
2

∫
Rd+

|V u||u|


1
2

+ |λ2|−
1
2

 ∫
∂Rd+

|α2||u|2


1
2

.

(2.53)
Hence, repeating the estimates in (2.37), we obtain

|I3|≤ Λ
3
2

√
2√

d− 2

∫
Rd+

|∇u−|2+Λ

√√√√∫
Rd+

|∇u−|2
√√√√ ∫
∂Rd+

|α2||u|2 ≤

(
Λ

3
2

√
2√

d− 2
+

Λ

2

)∫
Rd+

|∇u−|2+
Λ

2

∫
∂Rd+

|α2||u|2,

where the last inequality follows from the Young inequality. Thus, the key inequality (2.38) in our
case reads(

1− 9d− 14

2(d− 2)
Λ−

√
2√

d− 2
Λ

3
2

)∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2

− 2λ
1
2
1 sgn(λ2)

∫
∂Rd+

α2|x||u|2+2<
∫
∂Rd+

α|x|u∂rū+ (d− 1)

∫
∂Rd+

α1|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2−
Λ

2

∫
∂Rd+

|α2||u|2

=

(
1− 9d− 14

2(d− 2)
Λ−

√
2√

d− 2
Λ

3
2

)∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2

− 2

∫
∂Rd+

α2|x|=(u−∂ru−)−
∫
∂Rd+

x′ · ∇′α1|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2−
Λ

2

∫
∂Rd+

|α2||u|2≤ 0,

(2.54)

where the equality follows form (2.22). The bracket in front of the first integral can be made strictly
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positive by imposing modified condition (2.31). It also implies Λ < d−2
4 thus we have

−
∫
∂Rd+

x′ · ∇′α1|u|2−
Λ

2

∫
∂Rd+

|α2||u|2≥ −
∫
∂Rd+

(
x′ · ∇′α1 +

d− 2

8
|α2|

)
|u|2.

This term can be made positive by imposing x′ · ∇′α1 ≤ 2−d
8 |α2|. The integral |λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2

can be estimated from below by zero if we assume that α1 is non-negative. However, the integral
−2

∫
∂Rd+

α2|x|=(u∂rū) remains a problem. There is no other integral to compare it with and there is

no suitable condition on α2 independent of u.
The case |λ2|> λ1 yields another condition on α. Indeed, the inequality (2.40) in our case reads

(λ1 ± λ2)

∫
Rd+

|u|2≥
(

1− 4

d− 2
Λ

) ∫
Rd+

|∇u|2+

∫
∂Rd+

(α1 ± α2)|u|2, (2.55)

where the integral over the boundary can be estimated from below by zero if we assume |α2|≤ α1.
In conclusion, notwithstanding the problematic term −2

∫
∂Rd+

α2|x|=(u∂rū), we would impose the

condition on α as follows:

|α2|≤ α1, x′ · ∇′α1 ≤
2− d

8
|α2|. (2.56)

If the function α is real, this result is consistent with C3.
Alternatively, we could assume that α2 is negative which would result in (2.53) being the same

as (2.36). The inequality (2.54) would then read(
1− 2(2d− 3)

d− 2
Λ−

√
2√

d− 2
Λ

3
2

)∫
Rd+

|∇u−|2+
|λ2|

λ
1
2
1

d− 3

d− 1

∫
Rd+

|x||∇u−|2

− 2

∫
∂Rd+

α2|x|=(u−∂ru−)−
∫
∂Rd+

x′ · ∇′α1|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2≤ 0.

In this case we could assume that α1 would satisfy the conditions C3 imposed on α. Nonetheless,
the term −2

∫
∂Rd+

α2|x|=(u−∂ru−) would still remain a problem.

The analogue to the Lemma 7 would also involve the problematic integral over the boundary.
Indeed, starting with the case |λ2|≤ λ1, we repeat the proof of Lemma 7 with complex Robin
boundary conditions. The identity (2.42) differs only in the integrals over the boundary which are
the same as in (2.52). We obtain additional boundary term involving α2 also from (2.47) which
reads

‖u‖ = |λ2|−
1
2

= ∫
Rd+

V |u|2+

∫
∂Rd+

α2|u|2


1
2

≤ |λ2|−
1
2

 2b3
d− 2

∫
Rd+

|∇u|2


1
2

+ |λ2|−
1
2

 ∫
∂Rd+

|α2||u|2


1
2

.

(2.57)
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Repeating the steps of the proof of Lemma 7, we obtain the following inequality:[
d− 3

d− 2
− b22 − 2b3 − b

1
2
3

(
2

d− 2

) 3
2

] ∫
Rd+

|∇u−|2+
(
1− b21

) |λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2

− 2

∫
∂Rd+

α2|x|=(u−∂ru−)−
∫
∂Rd+

x′ · ∇′α1|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2−
1

d− 2

∫
∂Rd+

|α2||u|2≤ 0.

This result is even worse than (2.54) since we are not able to make the bracket in front of the first
integral positive for d = 3. This problem could be solved by assuming that α2 is negative which
would imply that (2.57) is the same as (2.47) and we would obtain[

1− b22 − 2b3 − b
1
2
3

(
2

d− 2

) 3
2

] ∫
Rd+

|∇u−|2+
(
1− b21

) |λ2|

λ
1
2
1

∫
Rd+

∣∣∣∇(|x| 12u−)∣∣∣2

− 2

∫
∂Rd+

α2|x|=(u−∂ru−)−
∫
∂Rd+

x′ · ∇′α1|u|2+
|λ2|

λ
1
2
1

∫
∂Rd+

α1|x||u|2≤ 0,

which differs from (2.49) only in the boundary terms. The integrals involving α1 could be estimated
from below by zero if we assumed that α1 satisfies the conditions imposed on α in C3. However,
we would be still left with the problematic term −2

∫
∂Rd+

α2|x|=(u−∂ru−).
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Chapter 3

The operator −∇(a∇)

3.1 Definition of the operator

In this section we summarize the theory of sectorial forms and we use it to define the operator
(1.12) via the Friedrichs equation. Let us start with some elementary definitions.

Definition 3.1.1. A map t : D(t)×D(t)→ C is called a sesquilinear form in H if it is conjugate
linear in the first argument and linear in the second. The function t[u] := t(u, u) is called a quadratic
form.

Contrary to linear operators, it is not difficult to find the adjoint form which is defined by
t∗(ψ,ϕ) := t(ϕ,ψ), D(t∗) = D(t). We say that a form is symmetric if t(ψ,ϕ) = t∗(ψ,ϕ). Equipped
with the adjoint form, we can define its real and imaginary part as <t := t+t∗

2 and =t := t−t∗
2i . Note

that neither <t nor =t are real-valued, however, it holds that <t[ψ] = <(t[ψ]), =t[ψ] = =(t[ψ]) and
we can also write t = <t+ i=t. The following notion is important for the definition of the sectorial
form.

Definition 3.1.2. Let t be a sesquilinear form in H . Its numerical range is defined by

Θ(t) := {t[φ] | φ ∈ D(t), ‖φ‖= 1} .

The numerical range of an operator T in H is defined by

Θ(T ) := {(φ, Tφ) | φ ∈ D(t), ‖φ‖= 1} .

In general, a numerical range need not to be closed or open, nonetheless, it is always a convex
subset of the complex plane. Now we are in position to define the sectorial form.

Definition 3.1.3. A sesquilinear form t in H is called sectorial if its numerical range is a subset
of a sector, i.e.

Θ(h) ⊂ Sγ,θ := {λ ∈ C | |arg(λ− γ)|≤ θ} (3.1)

with a vertex γ ∈ R and a semi-angle θ such that 0 ≤ θ < π
2 .
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Note that the parameters γ and θ are not uniquely determined by the form t. Indeed, a reduction
of the semi-angle θ can be compensated by a reduction of the vertex γ. Every symmetric form is
real-valued and if it is also bounded from below, then it is sectorial with γ = 0. Hence, the sectorial
forms can be regarded as a generalization of symmetric forms bounded from below. We introduce
the notion of relative boundedness which specifies a relation between two forms.

Definition 3.1.4. Let t be a sectorial form in H . A form t′ in H is said to be relatively bounded
with respect to t (or t-bounded), if D(t′) ⊃ D(t) and

|t′[u]|≤ a‖u‖2+b|t[u]|, (3.2)

where u ∈ D(t) and a, b are nonnegative constants.

This property is useful for studying sums of a sectorial forms.

Theorem 7. ( [5, Theorem VI-1.33]) Let t be a sectorial form and let t′ be t-bounded with b < 1
in (3.2). Then t+ t′ is sectorial. The form t+ t′ is closed, if and only if t is closed.

The notion of sectoriality becomes more complicated for linear operators. Let us start with the
following definitions.

Definition 3.1.5. A linear operator T in H is said to be accretive if Re(ψ, Tψ) ≥ 0 for all
φ ∈ D(T ), and quasi-accretive if T + αI is accretive for some α > 0.

Definition 3.1.6. A closed linear operator T in H is said to be m-accretive if it satisfies

{λ ∈ C | <λ < 0} ⊂ ρ(T ),

‖(T − λI)−1‖≤ 1

|<λ|
for <λ < 0

If T + αI is m-accretive for some α > 0, then T is said to be quasi-m-accretive.

If an operator is m-accretive it means that it is maximal accretive in the sense that it is accretive
and there is no proper accretive extension.

Definition 3.1.7. A linear operator T in H is said to be sectorial if its numerical range lies in a
sector defined by (3.1). We say that T is m-sectorial if it is sectorial and quasi-m-accretive

An important property of m-sectorial operators is that they are closed and densely defined. If
a form t is bounded we can associate with it a bounded operator T so that t(ψ,ϕ) = (ψ, Tϕ). This
claim can be extended to densely defined, sectorial and closed form. In this case the associated
operator is m-sectorial.

Theorem 8. (The first representation theorem, [5, Theorem VI-2.1]) Let t be a densely defined,
closed, sectorial sesquilinear form in H . There exists an m-sectorial operator T such that

i) D(T ) ⊂ D(t) and
t(u, v) = (u, Tv)

for every u ∈ D(t) and v ∈ D(T );

ii) D(T ) is a core of t;
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iii) if v ∈ D(t), w ∈H and
t(u, v) = (w, v)

holds for every u belonging to a core of t, then v ∈ D(T ) and Tv = w.

The m-sectorial operator T is uniquely defined by the condition i

Furthermore, from the above theorem follows that there is a one-to-one correspondence between
the set of all m-sectorial operators and the set of all densely defined, closed and sectorial sesquilinear
forms.

Let us proceed with the definition of the operator (1.12). We start with the minimal operator

H̃ψ = −∇(a∇ψ)

D(H̃) = C∞0 (Rd),

where C∞0 (Rd) consists of smooth functions on Rd with compact support. The minimal operator
is associated with the quadratic form

h̃[ψ] :=(ψ, H̃ψ) =

∫
Rd

∇ψ̄a∇ψ =

∫
Rd

∇ψ̄Re a∇ψ +

∫
Rd

∇ψ̄Im a∇ψ

D(h̃) =C∞0 (Rd),

where Re a = a+a∗

2 , Im a = a−a∗
2i . Let us now concentrate on the real part of this form. We assume

Im a = 0 hence the operator H̃ is symmetric and bounded from below. By [5, Corollary VI-1.28],
the associated form h̃ is closable. Its closure is

Reh[ψ] =

∫
Rd

∇ψ̄Re a∇ψ

D(Reh) =C∞0 (Rd)
‖.‖Re h̃ ,

where ‖.‖Re h̃ is the norm induced by Re h̃. Assuming Re a < C together with (1.11), we see that

the norm ‖.‖Re h̃ is equivalent to the norm ‖f‖H1(Rd)=
(∑

|α|≤1‖Dαf‖2
) 1

2

corresponding to the

Sobolev space H1(Rd). Hence, the domain of the form h is by definition equal to H1
0 (Rd). In the

case of the wole space Rd we can write

D(Reh) = H1(Rd).

The form h is closed, symmetric and bounded from below, thus we can use the First representation
theorem to associate it with the operator

ReHψ =η

D(ReH) =
{
ψ ∈ H1(Rd) | ∃η ∈ L2(Rd) ∀ϕ ∈ H1(Rd) Reh(ϕ,ψ) = (ϕ, η)

}
.

The operator (1.12) with Im a 6= 0 can be defined using the perturbation theory. Let us assume
Im a < cI, where c is defined in (1.11). The form

∫
Rd
∇ψ̄Im a∇ψ now satisfies (3.2) and we can
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regard it as a perturbation of the real part of the form h. By the Theorem 7, the form h is closed
and sectorial. Using the First representation theorem, we associate this form with the operator

Hψ =η

D(H) =
{
ψ ∈ H1(Rd) | ∃η ∈ L2(Rd) ∀ϕ ∈ H1(Rd) h(ϕ,ψ) = (ϕ, η)

}
.

3.2 Toy model

Let us start by studying the point spectrum of a simple one-dimensional operator. Assume that
A 6= 1 and d are positive constants. We define real function

a(x) =

{
A x ∈ (−d, d)

1 otherwise.

This function models a potential well if A < 1 whereas in the case A > 1 it represents a potential
barrier. Let us consider the operator H := − d

dxa(x) d
dx . Our aim is to explicitly find its point

spectrum hence we are interested the eigenvalue equation

− d

dx
a(x)

d

dx
ψ − λψ = 0. (3.3)

Let us start with negative eigenvalues. We split the real axis into three intervals in which the above
equation reads

−ψ′′ − λψ = 0 in (−∞,−d)
−Aψ′′ − λψ = 0 in (−d, d)
−ψ′′ − λψ = 0 in (d,∞).

(3.4)

For each of the intervals we have the solution

ψI(x) = AIe
√
−λx +BIe

−
√
−λx in (−∞,−d)

ψII(x) = AIIe
√
−λd x +BIIe

−
√
−λd x in (−d, d)

ψIII(x) = AIIIe
√
−λx +BIIIe

−
√
−λx in (d,∞).

The solutions lie in L2(Rd) hence we impose the conditions

lim
x→−∞

ψI(x) = 0, lim
x→∞

ψIII(x) = 0 (3.5)

which in turn imply
BI = 0, AIII = 0.

We assume that the final solution ψ is continuous therefore we impose conditions ψI(−d) = ψII(−d)
and ψII(d) = ψIII(d) which read

AIe
−
√
−λd = AIIe

−
√
− λ
Ad +BIIe

√
− λ
Ad, (3.6)

BIIIe
√
−λd = AIIe

√
− λ
Ad +BIIe

−
√
− λ
Ad. (3.7)
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Additionally, we impose the conditions ψI(−d) = AψII(−d) and Aψ′II(d) = ψ′III(d) which yield

√
−λAIe

−
√
−λd = A

√
− λ
A
AIIe

−
√
− λ
Ad −A

√
− λ
A
BIIe
√
− λ
Ad, (3.8)

−
√
−λBIIIe

−
√
−λd = A

√
− λ
A
AIIe
√
− λ
Ad −A

√
− λ
A
BIIe

−
√
− λ
Ad. (3.9)

These conditions can be compactly rewritten as a matrix equation

M


AI

BIII

AII

BII

 =


0
0
0
0

 ,

where

M =


e−
√
−λd 0 −e−

√
− λ
Ad −e

√
− λ
Ad

0 e−
√
−λd −e

√
− λ
Ad −e−

√
− λ
Ad

√
−λe−

√
−λd 0 −A

√
− λ
Ae
−
√
− λ
Ad A

√
− λ
Ae
√
− λ
Ad

0 −
√
−λe−

√
−λd −A

√
− λ
Ae
√
− λ
Ad A

√
− λ
Ae
−
√
− λ
Ad

 .

Since this equation is homogeneous, there exists a non-trivial solution only for detM = 0 which
implies

−λe−2
√
−λd

{
(A+ 1)

(
e2
√
− λ
Ad − e−2

√
− λ
Ad
)

+ 2
√
Aλ
(
e2
√
− λ
Ad + e−2

√
− λ
Ad
)}

= 0.

Doing some basic algebraic operations, we can rewrite the equation above as(
1−
√
A+ e2

√
− λ
Ad
(

1 +
√
A
))(
−1 +

√
A+ e2

√
− λ
Ad
(

1 +
√
A
))

= 0.

This condition consequently implies that the only negative eigenvalue is

− A
4d

log2

(
|1−

√
A|

1 +
√
A

)
.

This result remains the same for the potential well A < 1 and for the potential barrier A > 1.
For λ = 0 the eigenvalue equations read

−ψ′′ = 0 in (−∞,−d)
−Aψ′′ = 0 in (−d, d)
−ψ′′ = 0 in (d,∞).

The results are linear functions and due to integrability condition we deduce that zero is not included
in the point spectrum.

Lastly, the equations (3.4) for positive eigenvalues yield

ψI(x) = AIe
i
√
λx +BIe

−i
√
λx in (−∞,−d)

ψII(x) = AIIe
i
√

λ
d x +BIIe

−i
√

λ
d x in (−d, d)

ψIII(x) = AIIIe
i
√
λx +BIIIe

−i
√
λx in (d,∞).
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These functions do not belong to L2 therefore

σp(H) = − A
4d

log2

(
|1−

√
A|

1 +
√
A

)
.

3.3 Self-adjoint operator

Let us assume that the matrix a is hermitian and the operator H is therefore self-adjoint. We will
introduce two multipliers and for both of them we will derive conditions under which the point
spectrum of H is empty, i.e there is no λ ∈ C satisfying the eigenvalue equation

−∇ · (a∇)u− λu = 0. (3.10)

We reformulate this equation in the weak sense so it reads

∀v ∈ H1(Rd) −
∫
Rd

∇v̄a∇u+ λ

∫
Rd

v̄u = 0. (3.11)

The following identity will render itself useful in the forthcoming proofs.

Lemma 8. Let u ∈ Cn and let a ∈ Cn,n be a hermitian matrix. Then

2Re ū,ijajku,k = (ū,jajku,k),i − ū,jajk,iu,k. (3.12)

Proof. Differentiating the first term on the right hand side, we get

(ū,jajku,k),i =ū,ijajku,k + ū,jajk,iu,k + ū,jajku,ki

=ū,ijajku,k + ū,jajk,iu,k + u,ikākj ū,j

=ū,ijajku,k + ū,ijajku,k + ū,jajk,iu,k

=2Re ū,ijajku,k + ū,jajk,iu,k.

The second equality follows from the fact that the matrix of second derivative is symmetric and a
is hermitian.

Let us now consider the multiplier

v =
1

2
[∆, φ]u = ∇φ · ∇u+

1

2
u∆φ, (3.13)

where φ = |x|2. Such choice of the multiplier in (3.11) yields the following result.

Theorem 9. Assume that there exists α < 1 satisfying

|x|(∂ra)+ ≤ 2αa, (3.14)

where (∂ra)ij = xk
|x|aij,k.Then σp(H) = ∅.
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Proof. Using the multiplier (3.13) in the eigenvalue equation (3.11) and taking the real part, we
obtain

− (d+ 2)

∫
Rd

∇ūa∇u− 2Re

∫
Rd

x∇2ūa∇u+ 2Reλ

∫
Rd

xu∇ū+ dReλ

∫
Rd

|u|2= 0. (3.15)

Using the identity (3.12) and integrating by parts, we can rewrite the second term as

−2Re

∫
Rd

x∇2ūa∇u = −
∫
Rd

x∇(∇ūa∇u)+

∫
Rd

∇ū|x|∂ra∇u = d

∫
Rd

∇ūa∇u+

∫
Rd

∇ū|x|∂ra∇u. (3.16)

The terms containing eigenvalues are treated in a similar way. We use the identity 2Re ū∇u = ∇|u|2
and integrate by parts to see that the terms cancel out and we are left with

− 2

∫
Rd

∇ūa∇u+

∫
Rd

∇ū|x|∂ra∇u = 0. (3.17)

Note that the first term is real and negative due to a being hermitian and 0 ≤ c < a. Our aim is to
compare these terms and in order to so we establish the condition (3.14). Applying this condition
and multiplying the equation (3.17) by − 1

2 , we obtain

(1− α)

∫
Rd

∇ūa∇u ≤ 0.

By α < 1 and the uniform ellipticity condition (1.11), the integral is non-negative therefore ∇u
needs to be equal to zero almost everywhere. Hence, the above inequality can be attained only for
constant u. However, the only acceptable constant is zero, since u would not be integrable on Rd
otherwise. In conclusion, there are no eigenvalues because there are no non-zero eigenvectors.

Let us now consider the following multiplier.

v = [∇ · (a∇), φ]u = ∇u(a+ ā)∇φ+ u∇ · (a∇φ), (3.18)

where φ = |x|2. The conditions resulting from using this multiplier are as follows.

Theorem 10. Assume that there exist constants α1, α2, α3, α4 satisfying

α1 + α2 + α3 + α4 < 1, (3.19)

such that for all x ∈ Rd and for all u ∈ H1(Rd)

xl(a+ ā)lk,iaij ≤ α1akiaij , (3.20)[
aā+ āa

2

]
−
≤ α2aa, (3.21)

[xl(a+ ā)kl,iaij + xl(a+ ā)lj,iaki]− ≤ α3akiaij , (3.22)∣∣∣∣∣∣Re

∫
Rd

(aklxl),kiaij ūu,j

∣∣∣∣∣∣ ≤ α4‖a∇u‖2. (3.23)

Then σp(H) = 0.
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Proof. Applying this multiplier to the eigenvalue equation (3.11) and taking the real part, we get

−Re

∫
Rd

[ū,ki(a+ ā)klxl + ū,k(a+ ā)kl,ixl + ū,k(a+ ā)ki] aiju,j − Re

∫
Rd

(aklxl),kū,iaiju,j

−Re

∫
Rd

(aklxl),kiaij ūu,j + λRe

∫
Rd

ū,k(a+ ā)klxlu+ λRe

∫
Rd

(aklxl),k|u|2= 0.

Firstly, let us concentrate on the terms containing the eigenvalue λ. Using the identity 2Re ū∇u =
∇|u|2 and integrating by parts, we can write

λRe

∫
Rd

ū,k(a+ ā)klxlu =
λ

2

∫
Rd

(a+ ā)klxl|u|2,k= −λ
2

∫
Rd

((a+ ā)klxl),k |u|
2.

Considering that Re akl =
(
a+ā

2

)
kl

, we see that the terms containing λ cancel out and we are left
with

−Re

∫
Rd

xl(a+ ā)lkū,kiaiju,j − Re

∫
Rd

ū,k(a+ ā)kl,ixlaiju,j − Re

∫
Rd

ū,k(a+ ā)kiaiju,j

−Re

∫
Rd

(aklxl),kū,iaiju,j − Re

∫
Rd

(aklxl),kiaij ūu,j = 0.

Using the identity (3.12) and integrating by parts, we can rewrite the first term as

−Re

∫
Rd

xl(a+ ā)lkū,kiaiju,j =− 1

2

∫
Rd

xl(a+ ā)lk(ū,iaiju,j),k +
1

2

∫
Rd

xl(a+ ā)lkū,iaij,ku,j

=
1

2

∫
Rd

((a+ ā)lkxl),kū,iaiju,j +
1

2

∫
Rd

xl(a+ ā)lkū,iaij,ku,j .

Hence, we obtain the main identity

‖a∇u‖2−1

2

∫
Rd

ū,ixl(a+ ā)lkaij,ku,j + Re

∫
Rd

ū,k(a+ ā)kl,ixlaiju,j

+Re

∫
Rd

ū,kākiaiju,j + Re

∫
Rd

(aklxl),kiaij ūu,j = 0.

Considering the conditions (3.20) to (3.23), we obtain the inequality

(1− α1 − α2 − α3 − α4)‖a∇u‖2≤ 0.

The condition (3.19) implies that the above inequality can be attained only for ‖a∇u‖= 0. This
statement holds for all a therefore we can choose it to be scalar, i.e. a = aI. In this case we have
0 = ‖a∇u‖≥ c‖∇u‖ hence u needs to be constant almost everywhere and due to integrability we
conclude u = 0.
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3.4 Non-selfadjoint operator

In this section we will discuss the results of using the method of multipliers in the non-selfadjoint
case. Since we did not obtain any reasonable conditions which could be summarized in a theorem,
this section will rather illustrate our endeavours.

We start by using the multiplier (3.13) in the eigenvalue equation (3.11) so that we receive the
same identity (3.15) as in the self-adjoint case. However, this time a is not hermitian so we divide
it into hermitian and skew-hermitian part, i.e. a = a1 + ia2, where

a1 :=
a+ a∗

2
, a2 :=

a− a∗

2i
. (3.24)

Using this formalism, we can rewrite the identity (3.15) as

−(d+ 2)

∫
Rd

∇ūa1∇u− 2Re

∫
Rd

x∇2ūa1∇u+ 2Im

∫
Rd

x∇2ūa2∇u+ 2Reλ

∫
Rd

xu∇ū+ dReλ

∫
Rd

|u|2= 0.

The second term is treated in the same way as in (3.16) and the terms containing the eigenvalue λ
are treated similarly as in the self-adjoint case. However, since we are dealing with a non-selfadjoint
operator, the eigenvalues λ are now not necessarily real and we are left with

− 2

∫
Rd

∇ūa1∇u+

∫
Rd

∇ū|x|∂ra1∇u+ 2Im

∫
Rd

x∇2ūa2∇u− 2λ2

∫
Rd

|x|Im (u∂rū) = 0, (3.25)

where we denote (∂ra)ij := xk
|x|aij,k and λ2 := Imλ. In this identity we only know the sign of the

first term and our aim is to compare the remaining terms with it. Analogously to the self-adjoint
case, we deal with the second term by imposing a condition |x|∂ra1 ≤ 2αa1. However, we are not
able to compare the two remaining integrals with the first term.

The idea is to include the problematic terms into a sum for which we are able to determine its
sign. For this purpose, we establish additional identities which we consequently sum up together
with (3.25) in order to receive a new main identity. Let G1, G2 : Rd → R be two smooth functions.
Choosing the multiplier v = G1u in (3.11) and taking the real part, we obtain

−
∫
Rd

G1∇ūa1∇u− Re

∫
Rd

u∇G1a∇u+ λ1

∫
Rd

G1|u|2= 0.

Similarly, choosing the multiplier v = G2u and taking the imaginary part leads to

−
∫
Rd

G2∇ūa2∇u− Im

∫
Rd

u∇G2a∇u+ λ2

∫
Rd

G2|u|2= 0.

Following [4], we choose G1 = 1 and G2 = 2λ
1
2
1 sgn(λ2)|x| so that we get

−
∫
Rd

∇ūa1∇u+ λ1

∫
Rd

|u|2= 0, (3.26)

−2λ
1
2
1 sgn(λ2)

∫
Rd

|x|∇ūa2∇u−−2λ
1
2
1 sgn(λ2)Im

∫
Rd

u
x

|x|
a∇u+ 2λ

1
2
1 |λ2|

∫
Rd

|x||u|2= 0. (3.27)
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Summing up (3.26) + (3.27)− (3.25), we obtain∫
Rd

∇ūa1∇u+ λ1

∫
Rd

|u|2−2λ
1
2
1 sgnλ2Im

∫
Rd

ū
x

|x|
a∇u− 2λ

1
2
1 sgnλ2

∫
Rd

|x|∇ūa2∇u

+2λ
1
2
1 |λ2|

∫
Rd

|x||u|2−
∫
Rd

∇ū|x|∂ra1∇u− 2Im

∫
Rd

x∇2ūa2∇u+ 2λ2

∫
Rd

|x|Im (u∂rū) = 0.

(3.28)

For a solution u of (3.11) we put

u−(x) := u(x)e−i sgn(λ2)λ
1
2
1 |x|. (3.29)

This definition is inspired by [4], where it was used to deal with terms containing Im (ū∂ru), since
it is included in

|∇u−|2= |∇u|2+λ1|u|2−2λ
1
2
1 sgn(λ2)Im (ū∂ru). (3.30)

However, the identity (3.28) contains ∇ūa1∇u instead of |∇u|2 therefore we expect that the identity
above should be generalized to

∇ū−a1∇u− = ∇ūa1∇u+ λ1
x

|x|
a1 x

|x|
|u|2−2λ

1
2
1 sgn(λ2)Im

(
ū
x

|x|
a1∇u

)
.

The above identity coincides with (3.30) for a1 = I but it does not contain the term containing
Im (ū∂ru) hence we are not able to use it to sum up the first three terms of (3.28) as we could have
in the case a1 = I using (3.30).

Similarly, we are not able to deal with the last term of (3.28) as in the case a1 = I. Choosing

G1 = λ
− 1

2
1 |λ2||x|, we obtain

−λ−
1
2

1 |λ2|Re

∫
Rd

x

|x|
aū∇u− λ−

1
2

1 |λ2|Re

∫
Rd

|x|∇ūa∇u+ λ
− 1

2
1 |λ2|

∫
Rd

|x||u|2= 0.

Subtracting this identity from (3.28), we arrive at∫
Rd

∇ūa1∇u+ λ1

∫
Rd

|u|2−2λ
1
2
1 sgnλ2Im

∫
Rd

ū
x

|x|
a∇u− 2λ

1
2
1 sgnλ2

∫
Rd

|x|∇ūa2∇u

+λ
− 1

2
1 |λ2|

∫
Rd

|x|
[
∇ūa1∇u+ λ1|u|2+2λ

1
2
1 sgn(λ2)Im (u∂rū)

]
−
∫
Rd

∇ū|x|∂ra1∇u− 2Im

∫
Rd

x∇2ūa2∇u+ λ
− 1

2
1 |λ2|Re

∫
Rd

x

|x|
aū∇u = 0.
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Chapter 4

Conclusion

We used the method of multipliers to study the absence of point spectrum of the Schrödinger
operators. We generalized the result of Theorems 1 and 2 to the half-space. We proved that the
conditions stated there remain unchanged for the boundary conditions C1 to C3. Nevertheless, we
were unable to prove the same result for complex Robin boundary conditions which is described
in the section 2.4. Possible solution could be to try non-radial multipliers. Radial multipliers were
chosen in the case of the whole space due to the symmetry of the problem. However, in our situation
are not able to rely on the symmetry. This obstacle restrained us from studying the main goal which
we the waveguides.

We also generalized the result of Theorems 1 and 2 by introducing the new operator −∇(a∇).
We used two different multipliers in the self-adjoint case which resulted in Theorems 9 and 10. We
did not manage to find any results for the non-selfadjoint operator with non-hermitian a.

Results given in this research project are only formal. We did not specify the space of test
functions which should be followed by regularization of the functions we worked with.
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