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autorskom, o právach súvisiacich s právom autorským a o zmene niektorých zákonov.

I hereby declare that I carried out this work independently and using exclusively the cited sources.
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ská, České vysoké učení technické v Praze

Abstrakt: Predstavíme základné koncepty potrebné pre hlbšie štúdium javu difúziou poháňanej (Turin-
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Introduction

Ever since Alan Turing’s seminal paper [16] was released in the early 1950s, reaction-diffusion mod-
els have been the subject of a vast amount of research, both due to their attractive conceptual simplicity
and their broad applicability, ranging from mathematical models of processes and phenomena in devel-
opmental biology and chemistry all the way to ecological and environmental models for animal pop-
ulations and large-scale interactions. One of the flagship features of these models is the possibility of
the transition from homogeneity to heterogeneity and from stability to instability resulting from random
perturbations and spread via diffusion.

Whether in spite of all the research already undertaken and all the effort made, or due to it, the
challenges still lying ahead of scientists and researchers are numerous, both of theoretical and experi-
mental nature. The effect of domain growth, spatial heterogeneity translated into diffusion coefficients
or reaction kinetics, [14] every new bit of additional complexity seems to present a new opportunity for
adopting new approaches and achieving new results as well as for experimental confirmation or rejec-
tion. The fundamental questions about the underlying mechanisms and governing principles present yet
another separate area of research possibilities.

In this work we largely set our focus on an analysis of the theoretical aspects of reaction-diffusion
models as well as associated mathematical concepts useful for this analysis. The first two chapters
concentrate on investigating the features of a near-equilibrium settings. We introduce the basic concepts
of bifurcation, acquaint the reader with some basic results valid for hyperbolic fixed points, such as the
Hartman-Grobman theorem. Then we dip into the non-linear approaches necessary for tackling a loss of
hyperbolicity.

In the following section we introduce the terminology and basic properties and features of the
reaction-diffusion equations and the concept of diffusion-driven instability. We then go on to apply
these methods and approaches in the context of pattern selection, where the tools of linear analysis prove
insufficient. We carry out a detailed model calculation, analyzing the the succession of steps that lead to
the final result along with the underlying mathematical features.

In the last chapter we turn our focus to a different, asymptotic setting, considering the limit of large
growth rates. We prove the validity of this asymptotic approach for a multicomponent system, based on
the spectral properties of a typical reaction-diffusion system, yet with a restriction to the admissible types
of heterogeneity present in our system of equations. In Appendix A we summarize some basic results
related to spectral theory of the Lapalce operator, which provide an important theoretical background of
reaction-diffusion models.
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Chapter 1

Theoretical background

1.1 Bifurcation theory

1.1.1 Introduction

In this section we will examine the properties of solutions to dynamical systems in the neighbour-
hood of a critical (or bifurcation) point. Our natural motivation is that in a real physical setting we often
encounter situations when the dynamics of our system of interest depends on some outer parameter, for
instance pressure or temperature. These parameters are not variables (neither dependent nor indepen-
dent) of our system in the proper sense; although they might be affected by the evolution of the system,
given that their changes are smooth and sufficiently slow (or, in terms of thermodynamics, quasistatic)
we can still manipulate them from outside according to our needs and wishes. Yet it is a common ob-
servation that with certain (sets of) values of these parameters our system might display a more complex
or more interesting behaviour than with others. Furthermore, for certain values of these parameters, the
dynamical system might undergo changes that make consideration of these specific parameter values
more relevant and meaningful, e.g. a phase transition or a transition from stability to instability. We
will call these values critical. Given that the ”right-hand side” of the evolution equations is reasonably
smooth, for parameter values sufficiently close to the critical value, the change of the system will not be
too significant and we can thus expand its governing equations to a Taylor expansion. Linearization (ı.e.
considering only the first-order terms) is a common approach when we, for one reason or the other, wish
to obtain an analytic solution. Linearization, however, invariably leads to exponential dynamics, which
is usually a rather poor approximation of the long-term evolution of our system unless all the eigenvalues
are negative (and thus, our system is stable). On the other hand, in a reasonably small neighbourhood
of the stable state the dynamics of the system will be well approximated by the first few terms of this
expansion. Unfortunately, a shift of the parameters further beyond these critical values would make a
more complex approach necessary. We will give these ideas a more precise meaning later in this sec-
tion. But first, we want to present a well-known experimental example of this type of behaviour: the
Rayleigh-Bénard convection. Let us consider two horizontal plains (infinite plates) of high (infinite)
thermal conductivity separated by a layer of fluid of height d in a gravitational field with acceleration
g. A slight increase in temperature at the bottom plate will induce a stationary state with temperature
decreasing linearly along the z-axis (ı.e. with height). The temperature gradient also causes inhomo-
geneity in density as a consequence of thermal expansion of the lower, warmer layers of the fluid. As the
temperature difference ∆T of the two plates grows, the combination of uneven density (increasing from
bottom to top) and gravity becomes a potential source of instability. It turns out that the key parameter of
the system is the ratio of the buoyancy force and the dissipative (viscous) force, the so-called Rayleigh
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number,

R =
αg∆Td3

κν
,

where α represents the fluid’s linear expansion coefficient, κ its thermal diffusivity and ν its kinematic vis-
cosity. Theoretical analysis of the governing Oberbeck-Boussinesq equations concludes that instability
will occur at the critical value Rc = 1708. This result is in remarkable accordance with the experimental
value Rexp

c = 1700 ± 51 [4]. Since it is proportional to the temperature difference ∆T , the temperature
gradient pointing against the gravitational force can be viewed as the ”driving force” of the instability.

1.1.2 The Hartman-Grobman theorem

Let us now give the introductory ideas of this section a mathematical formulation. We will consider
a system of the form

ẋ = V(µ, x), x ∈ Rn, µ ∈ R, (1.1)

where, for simplicity, µ is a scalar (bifurcation) parameter, ı.e. the equations of motion for our system
depend solely on one real parameter. Let us first make a remark concerning the generality of equation
(1.1). Recall that this form also includes higher-order differential equations and systems, since any
system that takes on the form

dny

dtn = f
(
µ, y,

dy
dt
, · · ·

dn−1y

dtn−1

)
can be transformed into

d
dt


x1
...

xn

 =


x2
...

f (µ, x1, · · · , xn)


using the transformation x1 = y, x2 =

dy
dt , . . . , xn =

dn−1y

dtn−1 and is thus of the form (1.1). We assume that
there is a fixed point for V in Rn+1 which we shift to the origin using a linear transformation, obtaining

V(0, 0) = 0.

Hence, as suggested above, we can expand V in a Taylor series around x = 0. For a fixed value of µ, we
have

ẋ = V(µ, 0) + DV(µ, 0)x + O(x2), (1.2)

where DV denotes the Jacobi matrix of the map V with respect to x, ı.e. DV(µ, x)i j =
∂Vi
∂x j

(µ, x). The
constant term in (1.2) vanishes for µ = 0, so in a sufficiently small neighbourhood of the origin, upon
neglecting higher-order terms, we obtain the linear system of ordinary differential equations (ODEs)

ẋ = DV(0, 0)x. (1.3)

In order to make the following ideas more straightforward, we will assume the matrix DV(0, 0) diago-
nalizable. Then its eigenvectors form a basis of Rn in which the solution to equation (1.3) consists of
exponential modes whose stability, of course, depends on the spectrum of the matrix. Hence, one of the
pivotal points of bifurcation analysis is the study of the dependence of the spectrum of DV(µ, 0) on µ in
the neighbourhood of the point µ = 0. But before we attempt to further develop these ideas, we want to
justify this approach by a classical result that highlights the intrinsic connection between the solutions
to the linearized problem (1.3) and the generally non-linear original problem (1.1). To be able to state
this result - the so-called Hartman-Grobman theorem - we need to establish some of its basic notions.
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We will call a fixed point (µ0, x0) of V hyperbolic if and only if (iff) all the eigenvalues λi of DV(µ0, x0)
have Reλi , 0. An immediate consequence of this definition is that in a hyperbolic fixed point all the
modes either exponentially grow or exponentially decay with time. We further assume the continuity of
all partial derivatives ∂V

∂xi
so that there is a unique correspondence between initial conditions x(0) ∈ Rn

and solutions x(t) to equation (1.1) for any fixed value of µ (ı.e. for any initial condition, the solution to
(1.1) is unique). Let us now, for purely terminological reasons, view V as a vector field whose value in
any given x ∈ Rn is the tangent vector (the derivative) to the curve x(t). Thanks to the 1:1 correspondence
between initial conditions and integral curves we can properly define the flow of the vector field V as a
1-parameter family of maps φt : Rn → Rn that, given an initial point x(0), returns the (vector) value x(t)
of the corresponding integral curve at time t. Using this terminology, we can now proceed to formulating
the Hartman-Grobman theorem:

Theorem 1.1 (Hartman-Grobman). Let x = 0 be a hyperbolic fixed point of equation (1.1) for a fixed
value µ0. Let us further assume that Ω ⊂ Rn,V(µ0, ·) ∈ C1(Ω),U ⊂ Ω is a neighbourhood of 0 ∈ Rn

and I ⊂ R is an interval containing 0. Let us denote by φt the flow of ẋ = V(µ0, x) and by φ̃t the flow of
the corresponding linearized system ẋ = DV(µ0, 0)x. Then there exists a homeomorphism Ψ : Rn → Rn

such that for all initial conditions x0 ∈ U and all t ∈ I

φt(x0) = Ψ−1 ◦ φ̃t ◦ Ψ(x0). (1.4)

The homeomorphism Ψ can be viewed as a (continuous) change of coordinates. Hence, for a hyper-
bolic fixed point, the transition from the linearized system (1.3) to the non-linear equations of motion
(1.1) means simply a change of coordinates! Of course, this is only true locally, as we are restricted
by the neighbourhood U. In other words, the solutions to the two systems are (locally) topologically
equivalent. This means that any local qualitative change to the solution of the full system (1.1) will be
displayed in an analogous qualitative change to the solution of the much simpler problem (1.3). It is
worth mentioning that the flow of this linear problem can be expressed explicitly using the matrix expo-
nential map as φ̃t = eAt where A ≡ DV(µ0, 0). That again turns our attention to the spectrum of the matrix
DV(µ0, 0). By the Hartman-Grobman theorem, its spectrum can also be used to analyze the properties of
the ”non-linear” flow φt.

1.1.3 Invariant subspaces

Let us now consider a general (not necessarily hyperbolic) fixed point at the origin: V(0, 0) = 0. On
the other hand, let us preserve the assumption that the matrix A ≡ DV(0, 0) be diagonalizable, the reason
being that if we allowed for degenerate eigenvalues, the following ideas might be invalid. In (our) case
of A diagonalizable, a non-zero eigenspace Eλ is associated with every eigenvalue λ from its spectrum.
In the case λ ∈ R this eigenspace is generated by the associated eigenvectors:

λ ∈ R⇒ Eλ =
{
v ∈ Rn | (A − λI)v = 0

}
.

The case λ ∈ C is more subtle. Since A is a real matrix, its eigenvectors associated with a complex
eigenvalue are of the form v = v1 + iv2, v1, v2 ∈ R

n, v2 , 0. Vectors of this form, however, are not
elements of Rn. It is still reasonable to look for the ”eigenspace” Eλ. In order to find it, let us first note
that these eigenvectors satisfy 0 = (A − λI)v = (A− λ̄I)v̄, ı.e. v̄ = v1− iv2 is an eigenvector of A associated
with the eigenvalue λ̄. Hence, if v is an eigenvector associated with either λ or λ̄, by commutativity it
satisfies (A − λI)(A − λ̄I)v = 0. Furthermore, linearity implies that this relation also holds for its real
and imaginary parts v1 and v2, which are elements of Rn. Vectors of this kind span the (generalized)
eigenspace associated with λ, so we have

λ ∈ C \ R⇒ Eλ =
{
v ∈ Rn | (A − λI)(A − λ̄I)v = 0

}
.
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The diagonalizability assumption implies that the eigenvectors of A span the entire space Rn. Since
the solution to the linearized problem (1.3) has the form of exponential modes, we can distinguish the
subspaces Eλ based on the sign of the real part of the associated eigenvalue. Then the span of all the
eigenvectors in each category defines the stable, unstable and central subspaces, respectively, in the
following manner:

Es ≡ span {v ∈ Eλ | Re λ < 0} ,

Eu ≡ span {v ∈ Eλ | Re λ > 0} ,

Ec ≡ span {v ∈ Eλ | Re λ = 0} .

(1.5)

As already mentioned, these subspaces are non-overlapping and span the whole space, ı.e.
Es ⊕ Eu ⊕ Ec = Rn. The simple, exponential dynamics of the system (1.3) implies an important prop-

erty of each of these subspaces under this dynamics: invariance. To be more precise, for an initial
condition x0 ∈ Es/Eu/Ec, the whole trajectory will be contained in the corresponding subspace, ı.e.
x(t) ⊂ Es/Eu/Ec or, equivalently, φt(x0) ∈ Es/Eu/Ec,∀t ≥ 0. Segmenting the phase space into the
stable, unstable and central subspaces thus yields an elegant a priori answer to the linear stability of the
solution: the solution with initial condition x(0) ∈ Es is evidently linearly stable and converges to the
equilibrium (0, 0) as t → +∞. On the other hand, x(0) ∈ Eu implies linear instability and convergence
towards (0, 0) for t → −∞. Stability of the equilibrium x = 0 for the linear system (1.3) is guaranteed
given that no eigenvalue of A has a positive real part, ı.e. if

Es ⊕ Ec = Rn.

This equilibrium is asymptotically stable iff all eigenvalues λ of A satisfy Reλ < 0, ı.e. iff

Es = Rn. (1.6)

In fact, relation (1.6) tells us more about the system (1.1) than linear stability analysis can. It can be
shown that if (1.6) holds, the solution x = 0 is asymptotically stable not only for the linear dynamics
of (1.3), but also for the full, non-linear dynamics of (1.1) (see chapter 9 in [8]). There is, however, a
fundamental difference between these two cases. For the linear dynamics of (1.3), asymptotic stability
is clearly guaranteed given any initial condition x(0) whereas for problem (1.1) relation (1.6) ”only”
guarantees the existence of a neighbourhood U of 0 for which the equilibrium x = 0 is attractive (by
attractiveness we mean that all trajectories x(t) with initial conditions x(0) ∈ U converge to x = 0 as
t → +∞), but gives us no knowledge of the size of the neighbourhood. Let us conclude this section by
noting that for stability analysis of initial conditions from Ec, linear methods are insufficient and more
sophisticated approaches are required.

1.1.4 Invariant manifolds

There are several ways to define the notion of differentiable manifold, some of them more abstract
than others. Although the formal definition will not be crucial for the ideas we are about to present, for
the sake of notational completeness as well as to facilitate the possibility of further contemplation of the
concepts, we give here one of the less technical and hopefully more intuitive definitions:

Definition 1.2. Let m, n, q ∈ N,m < n. The non-empty set M ⊂ Rn is a differentiable manifold of class
Cq of dimension r ≡ n − m iff:

(i) (∀x0 ∈ M)(∃Hx0 ,Φ : Hx0 → R
m ∈ Cq)(M ∩ Hx0 = {x ∈ Hx0 | Φ(x) = 0}),

(ii) (∀x ∈ Hx0)(h(DΦ(x)) = m).
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We will hereinafter mostly omit the adjective differentiable, so by manifold we will mean differen-
tiable manifold. A special case of a manifold, according to the given definition, is the space Rn itself.
Hence, we can view the notion of manifold as a generalization the term vector space that also allows for
non-linear structures. Accordingly, the following ideas will generalize the previous section concerning
invariant subspaces. Let us now introduce the term invariant manifold:

Definition 1.3. Let M ⊂ Rn be a manifold in the phase space of problem (1.1). We call M an invariant
manifold for the dynamical system (1.1) iff for any m ∈ M the relation {φt(m) | t ∈ R} ⊂ M holds, ı.e. iff
the entire solution x(t) to (1.1) with initial condition x(0) = m (the trajectory through m) is contained in
M.

By definition, invariant manifolds define autonomous subsystems of the given system with ’closed’
dynamics. The simplest examples of invariant manifolds might include equilibria (fixed points) and
individual trajectories. Note that the invariant subspaces defined in (1.5) are invariant manifolds for the
linearized dynamics of problem (1.3).

For our further considerations it is crucial to note that although the non-linear terms in equation (or
the expansion of) (1.1) ’deform’ the linear structure of the invariant subspaces, their qualitative properties
with respect to the given dynamical system are preserved. More precisely, if V(µ, ·) ∈ Cr+1, r ≥ 1, then
there are Cr-manofolds W s,Wu,Wc such that dim Eα = dim Wα, Eα is tangent to Wα at 0 for α = u, s, c,
and for x ∈ W s(Wu) we have φt(x) → 0 for t → +∞ (t → −∞) (see chapter 27 in [1]). The defining
properties of W s and Wu are even sufficient to define them uniquely.

1.1.5 Basic bifurcations

Before we exploit the properties of invariant manifolds, let us introduce the theoretical frame of bi-
furcation analysis, the analysis of the dependence of our dynamical system on the parameter µ. On the
example of the Rayleigh-Bénard convection we demonstrated that instability and the ensuing establish-
ment of pattern in real systems is often incurred by exceeding a critical value of an outer parameter.
By the Hartman-Grobman theorem, this qualitative change in the dynamics in the neighbourhood of a
hyperbolic (e.g. asymptotically stable) equilibrium is reflected in the dynamics of the linearized prob-
lem as well. By the implicit function theorem, altering the parameter near a ’hyperbolic’ value µ0 (ı.e.
one that admits a hyperbolic fixed point) preserves the equilibrium. More precisely, the equilibrium is
shifted along a unique equilibrium ’branch’. However, its qualitative properties (under linear analysis of
its spectral properties) will often change dramatically.

First of all, let us now present the implicit function theorem in the formulation useful for our pur-
poses:

Theorem 1.4. Let Φ : Rr+m → Rm be a Cq-map and let q, r,m ∈ N. Suppose that there exists a point
(x0, y0) ∈ Dom Φ such that

(i) Φ(x0, y0) = 0,

(ii)
∣∣∣∣∂Φi
∂y j

(x0, y0)
∣∣∣∣ , 0.

Then there exists a neighbourhood Hx0 ⊂ R
r such that the equation Φ(x, y) = 0 defines a unique Cq-map

ϕ : Hx0 → R
m on Hx0 that satisfies

(1) ϕ(x0) = y0,

(2) Φ(x, ϕ(x)) = 0 for x ∈ Hx0 .
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Here we silently and shamelessly interchange the isomorphic spaces Rr+m and Rr ×Rm. For the pur-
poses of (1.1) we set r = 1,m = n,Φ = V, (x0, y0) = (0, 0). Hence, in a hyperbolic equilibrium, where 0
is not an eigenvalue of DV(0, 0) (which we still assume diagonalizable), the equilibrium does not vanish
when the parameter µ is varied around 0 but its precise position in phase space will evolve along a unique
curve X(µ) whose existence and uniqueness is guaranteed by the implicit function theorem.

The topological equivalence of the ’linear’ and ’non-linear’ flows in the neighbourhood of hyperbolic
equilibria described by the Hartman-Grobman theorem 1.1 means that the relatively simple linear meth-
ods are sufficient for studying the system’s dynamics as long as hyperbolicity is preserved. Therefore
we will now assume that there exists a critical value µc of the bifurcation parameter where hyperbolicity
is lost, ı.e. some eigenvalue λ(µ) of the matrix DV(µ, 0) has Re λ(µc) = 0. There are two qualitatively
different ways this can occur:

(a) λ = 0
In this case the implicit function theorem 1.4 is no longer applicable. That usually means loss of
uniqueness of the solution to equation (1.1). After passing the point (µc, X(µc)), the (previously
unique) equilibrium branch X(µ) bifurcates, ı.e. it splits into multiple branches which can differ not
only in their phase-space positions, but also in stability. Their shape and other properties depend
on the specific form of the map V; in the neighbourhood of the bifurcation point mostly on the
lowest non-linear term of its Taylor expansion.

(b) λ = ±iω
We usually refer to the case of a pair of complex conjugate eigenvalues with zero real part as Hopf
bifurcation. It typically exhibits a time-dependent, non-linear, often oscillatory behaviour.

To gain some intuition as well as to demonstrate the features of stability analysis, we will now give an
overview of several basic bifurcations. For simplicity, we will consider the case of a one-dimensional
real variable x, so (1.1) now has the form

ẋ = V(µ, x), µ, x ∈ R. (1.7)

In the following we will assume, without loss of generality, that criticality in our system occurs for
µc = 0, and we again shift the equilibrium to the point x = 0 which leaves us with

V(0, 0) = 0.

The criticality condition for a real-valued 0 eigenvalue then yields

∂V
∂x

(0, 0) = 0.

Expanding the right-hand side into a Taylor expansion, we obtain

ẋ =
∂V
∂µ

(0, 0)µ +
∂2V
∂x2 (0, 0)

x2

2
+
∂2V
∂x∂µ

(0, 0)xµ +
∂2V
∂µ2 (0, 0)

µ2

2
+
∂3V
∂x3 (0, 0)

x3

6
+ · · · . (1.8)

Depending on the coefficients of the first few terms in (1.8) we distinguish different bifurcation types. We
will now describe a few of these more specifically. In what follows, unless explicitly stated otherwise,
we assume the coefficients of interest to be non-zero.

(a) Saddle-node bifurcation
Neglecting the term ∂2V

∂x∂µ (0, 0)xµ, in a small enough neighbourhood of (0, 0), we have

ẋ = αµ + βx2, α =
∂V
∂µ

(0, 0), β =
1
2
∂2V
∂x2 (0, 0).



CHAPTER 1. THEORETICAL BACKGROUND 18

We can further simplify this expression using the rescaled variables x̃ = |β|x, µ̃ = |αβ|µ, which
leads to the system (we mean dynamical system; for x ∈ R it consists of a single equation)

˙̃x = sgn(α)µ̃ + sgn(β)x̃2 (1.9)

with two distinct equilibria x̃±(µ̃) = ±
√
− sgn(α) sgn(β)µ̃. These two branches merge in the critical

point µ = 0. We kept the signs of the coefficients α and β explicit so as to demonstrate that for
sgn(α) sgn(β) = 1(−1) the corresponding equilibria will only exist in the left (right) half-plane of
the (µ, x)-plane.
Let us now study the stability of these solutions. Since we want to consider the immediate neigh-
bourhood of the equilibrium, we will apply linear stability analysis. For this purpose, let us define
the perturbation y± to the equilibrium by introducing the shifted variable x̃ = x̃±(µ̃) + y±. Substi-
tuting this into (1.9) we obtain the evolution equation for y± in the form

ẏ± = 2 sgn(β)x̃±(µ̃) y± + O(y2
±),

where O(y2
±) this time only represents a single non-linear term sgn(β)y2

±. Hence, x+ (x−) is stable
for β < 0 (β > 0) and unstable for β > 0 (β < 0). The signs of α and β determine in which
half-plane of (µ, x) (ı.e. to which side of µ = 0) the equilibria will exist.
A characteristic feature of this type of bifurcation is that the two branches of equilibria - 1 stable
and 1 unstable - approach each other and eventually merge in the critical point µ = 0. Depending
on the signs of the coefficients α and β the equilibrium completely vanishes for super- or subcrit-
ical values of µ. Let us conclude this part by stating that in one dimension we sometimes talk
about tangential bifurcation rather than saddle-node bifurcation. The typical case of a saddle-node
bifurcation is in two dimensions, where one unstable (saddle) and one stable (node) fixed point
mutually annihilate in the critical point µc.

(b) Transcritical bifurcation
A qualitatively different situation occurs in case ∂V

∂µ (0, 0) = 0 = ∂2V
∂µ2 (0, 0). This is for instance true

if the existence of the equilibrium is preserved upon varying the value of µ. A perturbation of µ
can change both stability and position X(µ) of the equilibrium in phase space, but as long as it
’survives’, we can introduce a new variable x̄ = x − X(µ) which satisfies V(µ, x̄ = 0) = 0 for all µ
in an appropriate neighbourhood Uµ of µc = 0. Hence, the coefficients of the form ∂nV

∂µn (0, x̄ = 0)
vanish (within Uµ) for all n ∈ N, and from expansion (1.8) we obtain the system

ẋ = x(αµ + βx) ≡ Ṽ(µ, x), α =
∂2V
∂x∂µ

(0, 0), β =
1
2
∂2V
∂x2 (0, 0), (1.10)

which again has two stationary points x = 0 and x = −αβµ. For the solution x = 0 a change
in stability occurs as µ passes through 0. Let us, for instance, consider α > 0. Then for µ < 0
the system is stable, for µ > 0 it is unstable, and for the critical value µ = 0 the eigenvalue of
the linearized system αµ is 0. For the equilibrium x = −αβµ we set, analogously to the previous,
y = x + α

βµ. By linearization we obtain

ẏ = −αµy =
∂Ṽ
∂x

(µ,−
α

β
µ)y.

If we for certainty assume α > 0, then we have stability for positive values of µ and instability for
µ negative. For α negative it is, of course, the other way round. Note that in a neighbourhood of
the critical value µc = 0, the system (1.10) always has one stable and one unstable equilibrium,
regardless of the sign of µ. However, the stabilities of the equilibria swap as µ passes through 0.
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(c) Pitchfork bifurcation
Let us now assume that, in appropriately chosen coordinates, our system has reflection symmetry,
ı.e. V(µ,−x) = −V(µ, x). Then we necessarily have V(µ, 0) = 0 as well as ∂2V

∂x2 (0, 0) = 0. These are
exactly the conditions of pitchfork bifurcation whose normal form is

ẋ = x(αµ + βx2), α =
∂2V
∂x∂µ

(0, 0), β =
1
6
∂3V
∂x3 (0, 0).

In a sense, pitchfork bifurcation is a combination of saddle-node and transcritical bifurcations,
since we have three stationary points: x = 0, x± = ±

√
−αβµ. The equilibrium x = 0 will only

exist in one half-plane (either left or right) of the phase space (µ, x), depending on the signs of the
coefficients α, β. Let us remark that for the rescaled variables x̃ = |β|1/2x, µ̃ = |α|µ, we obtain the
normal form for the pitchfork bifurcation as

˙̃x = x̃(sgn(α)µ̃ + sgn(β)x̃2).

The stability of x = 0 is rather straightforward: the system is clearly stable (unstable) for
sgn(αµ) = −1(+1). For the other two equilibria we proceed analogously as before: we introduce
the perturbation y± = x − x± of the equilibrium x± = ±

√
−αβµ which is, to first order, governed

by the evolution equation ẏ± = 2αµy±. Hence, both x+ and x− are stable for sgn(αµ) = 1 and
unstable for sgn(αµ) = −1. Note that for (the signs of) α and β given, the stationary point x± only
exists for either µ < 0 or µ > 0. Unlike for saddle-node bifurcation, here both of the equilibria x±
are simultaneously either stable or unstable. There is a similarity to the saddle-node bifurcation,
however, in that at µ = 0 the two equilibria merge and annihilate.

(d) Hopf bifurcation
This kind of bifurcation only occurs for spatial dimension n ≥ 2. Its normal form usually uses a
complex variable z and has the form

ż = z(λ(µ) + a(µ)|z|2), a, λ ∈ C.

Setting z = z1 + iz2, a(µ) = a1(µ) + ia2(µ) and λ(µ) = γ(µ) + iω(µ), we obtain the system

ż1 = z1
(
γ + a1(z2

1 + z2
2)
)
− z2

(
ω + a2(z2

1 + z2
2)
)
,

ż2 = z2
(
γ + a1(z2

1 + z2
2)
)

+ z1
(
ω + a2(z2

1 + z2
2)
)
,

which, in the polar coordinates z1 = r cos θ, z2 = r sin θ, using the relations

ṙ = ż1(r, ṙ, θ, θ̇) cos θ + ż2(r, ṙ, θ, θ̇) sin θ,

θ̇r = ż2(r, ṙ, θ, θ̇) cos θ − ż1(r, ṙ, θ, θ̇) sin θ,

can be rewritten in the form
ṙ = γr + a1r3,

θ̇ = ω + a2r2.

As mentioned above, Hopf bifurcation assumes that criticality occurs via a pair of complex conju-
gate eigenvalues with zero real part. Let us denote the eigenvalue as γ(µ)+ iω(µ) and let us assume
that

γ(0) = 0, ω(0) , 0,
dγ
dµ

(0) > 0. (1.11)
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These assumptions are to say that criticality in the eigenvalue γ(µ) + iω(µ) occurs in a non-
degenerate way. Let us now analyze the evolution equation for r, which is independent of θ and
has two stationary points r0 = 0 and r+(µ) =

√
−γ/a1

1. The conditions (1.11) imply that in a
sufficiently small neighbourhood of 0 we have sgn(γ) = sgn(µ), so the equilibrium r = 0 is stable
for µ < 0 and unstable for µ > 0. Let us further assume that a depends on µ in a continuous man-
ner. Then for a1(0) < 0, the non-zero equilibrium r+ (within a certain neighbourhood of µ = 0)
only exists for positive values of µ. By linearization we obtain the corresponding eigenvalue as
−2γ < 0, so for any value of µ there is one stable stationary point. Hence, for r = r+ the system
stabilizes in a limit cycle with frequency ω+(µ) = ω(µ)+a2(µ)r2

+. Recovering the complex variable
z, we can rewrite this in a more compact form as

z(t) = r+eiω+t.

Since this limit cycle only exists for supercritical values µ > µc = 0, we often talk about supercrit-
ical Hopf bifurcation.
The situation is significantly different for a1(0) > 0. In that case the existence of the stationary
state r+ requires µ < 0, leaving the system with no stable equilibrium for µ > 0 (in which case
the state r = 0 is unstable). Unlike in the supercritical case, now the eigenvalue −2γ > 0 implies
instability of the state r = r+, making a non-trivial limit cycle impossible. In this case we talk
about subcritical Hopf bifurcation.

1.2 Reaction-Diffusion equations

1.2.1 The basic setup

Reaction diffusion (RD) equations and pattern formation are of special interest within this work.
Both the choice and the extent of different mathematical concepts under study, such as bifurcation theory
or others that will follow, are motivated by RD equations. Let us therefore present the general form of
a RD equation and make some basic observations. A reaction diffusion equation is a partial differential
equation of the form

∂c
∂t

= D∆c + f(c), (1.12)

where c : Ω × R → Rn
+, with Ω ⊂ Rm, is the concentration vector of the underlying n chemical sub-

stances2, f : Rn → Rn describes their reaction kinetics, ∆ is the Laplace operator representing diffusion
(applied componentwise), and D is the diagonal n × n matrix of (positive) diffusion coefficients. This
concept, where the diffusion flux is proportional to the (negatively taken) gradient of concentration, is
usually referred to as Fickian diffusion, the purely diffusive equation of motion ∂c

∂t = D∆c being known
as Fick’s second law. As already indicated, the admissible phase space for the vector of concentrations
is the positive quadrant of Rn. Note that we apply the differential operator ∆ before the diffusion matrix,
thus assuming no spatial dependence of the diffusion coefficients for now; otherwise, the diffusion term
would have to be replaced by ∇ · (D∇c), where ∇c is a tensor and both ∇ operators are again applied
accordingly (we can view ∇c as well as D∇c as n×m matrices, then the divergence operator acts on each
line of this matrix separately). More generalizations are possible; there could for instance be a temporal
dependence in f, indicating changes of the outer setting (e.g. manipulating the temperature of a chem-
ical system) resulting in changes of the reaction rates. A partial differential problem of the form (1.12)

1We obviously allow neither for imaginary nor for negative values of the radial variable r.
2In other contexts c can also represent other quantities, e.g. concentrations of animal species (ı.e. a continuous model of

occurrence) in ecological problems.
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obviously requires boundary conditions in order to be well-posed. In the context of embryogenesis or -
more generally - spontaneous pattern formation we usually consider the Neumann boundary conditions

(n · ∇)c(r, t) = 0 for r ∈ ∂Ω,

which arise naturally in Fickian diffusion as zero boundary flux. Here n represents the outward normal
to the boundary ∂Ω.

Let us now assume that there exists a homogeneous steady state c∗ satisfying

f(c∗) = 0. (1.13)

This is a very reasonable assumption since reaction kinetics of chemical systems is usually described
by polynomial or rational functions, thus providing us with equilibrium states given by the (constant)
solutions (roots) of equation (1.13). Probably the most fundamental observation, originally made by
Alan Turing in his well-known paper [16], is that given a ’favourable’ reaction kinetics f , reaction and
diffusion alone can account for the transition from the homogeneous equilibrium to an inhomogeneous
steady state as well as for a large variety of patterns and phenomena observed in nature such as spots,
stripes, wave-like phenomena etc. This observation is based on linear stability analysis, which provides
a sufficient description of (at least the qualitative features of) the system in states close to the equilibrium
c∗. Not only does this follow from intuition, it is also underlined by the Hartman-Grobman theorem 1.1
for hyperbolic equilibria.

Let us state the stability argument in a more precise manner. Since we wish to apply linear stability
analysis, we need to linearize equation (1.12) around a fixed point c∗. This procedure, upon introducing
the perturbation w ≡ c − c∗, yields

∂w
∂t

= D∆w + Df(w = 0)w + O
(
‖w‖2

)
.

We can see that after neglecting theO
(
‖w‖2

)
terms the linear stability of the solution to the linear equation

∂w
∂t
≡ ∂tw = D∆w + Df(0)w (1.14)

will depend on the spectrum of the Laplace operator as well as that of the Jacobi matrix Df(0). In order
to be able to address the issue of linear stability more clearly, we wish to exploit the fact that the Laplace
operator −∆ on a bounded domain Ω with the Neumann (or, more generally, Robin) boundary condi-
tion is self-adjoint, non-negative and if the boundary ∂Ω satisfies relatively mildly-restrictive regularity
conditions (e.g. ∂Ω of class C2 suffices), it has a purely discrete spectrum so its eigenfunctions form an
orthonormal basis of the Hilbert space L2 (Ω) (see Appendix A). Hence, we can discuss the stability of
the individual modes which are given as the solutions of

∆wk = −k2wk,

(n · ∇)wk = 0 on ∂Ω,

where we denoted the non-negative eigenvalue by k2; k is usually referred to as the wavenumber. Unless
stated otherwise, we will consider the case of Neumann boundary conditions for which k = 0 is always in
the spectrum. Recalling the completeness of the set of eigenfunctions of the Laplace operator in L2(Ω),
we know that at any given time t0 the solution w to (1.14) (more precisely, each of its components) lies
in the span of the functions {wk}

∞
k=0, with the uniquely given coefficients {ak}

∞
k=0 allowing for temporal

dependence. Thus, in general we have

w(r, t) =

∞∑
k=0

ak(t)wk(r), ak : R→ Rn.
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Inserting this separation of variables into (1.14), we obtain a (Fourier) expansion in the orthonormal basis
{wk}

∞
k=0 on both sides so requiring their equality yields the coefficient equation

ȧk = (A − k2D)ak, (1.15)

where we denoted A ≡ Df(0). This is a system of linear ODEs with constant coefficients whose solution
has the form

ak(t) = veλkt

for some v ∈ Rn determined by the initial conditions. Its linear stability clearly depends on the sign of
(the real part of) the eigenvalue λk.

1.2.2 Diffusion-driven instability

With this said, let us now present the idea of diffusion-driven (or Turing) instability, hereinafter
sometimes shortened to DDI. As the term reveals, Turing’s idea was that diffusion could become the
driving force of pattern formation in that it could cause instability of a homogeneous steady state if an
inhomogeneous perturbation kicked in. For this to occur (or at least be admissible), several requirements
must be fulfilled. Firstly, stability of the homogeneous steady state (1.13) is required. A homogeneous
state eliminates any effect of diffusion so that the linearized reaction diffusion equation (1.14) gives
∂tw = Aw and the equation of motion (1.15) becomes

ȧk = Aak.

Solving this linear system leads to the well-known problem

|λI − A| = 0.

The (asymptotic) stability of the homogeneous equilibrium, in accordance with the observations made in
section 1.1.3, requires that all eigenvalues of the matrix A be negative (have a negative real part). It is a
matter of elementary algebra to show that in the case of a two-component RD system, where A is a 2× 2
matrix, its eigenvalues are given as

λ1,2 =
1
2

[
Tr A ±

√
(Tr A)2 − 4|A|

]
,

so requiring their (real parts’) negativeness is equivalent to requiring both

Tr A < 0 and |A| > 0. (1.16)

We can use these conditions to gain some intuition for the concept of diffusion-driven instability. A good

mental setting for this is provided by predator-prey models. Let us in this case denote c − c∗ =

(
u − u∗
v − v∗

)
and f =

(
f (u, v)
g(u, v)

)
, where c∗ =

(
u∗
v∗

)
is the homogeneous equilibrium. Then the Jacobi matrix A =

Df(c∗) takes on the form

A =

(
fu fv
gu gv

)
(u∗,v∗)

,

where the indices u and v again represent the partial derivatives with respect to the corresponding variable.
The condition on its trace (hereinafter we always consider derivatives of the reaction kinetics to be
evaluated at the equilibrium unless stated otherwise) then becomes fu + gv < 0. In other words, at least
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one of the substances u, v needs to be self-inhibiting in the sense that its ’diagonal’ partial derivative be
negative; such a substance has a stabilizing effect on itself near the equilibrium. This is self-evident in
the predator-prey context.

Let us consider a region with an even distribution of two species, a predator and its prey, in an
equilibrium state. If we, for simplicity, consider food to be the only factor affecting the occurrence of
either species, then an equilibrium state means that the number of the prey is just sufficient to support
the predators whose number, on the other hand, is just right to prevent a growth in the prey numbers.
Imagine now that we do not allow for diffusion-like phenomena (a local increase in concentration in one
place at the cost of a decline in its vicinity or vice versa) due to migration, ı.e. we only admit uniform
distributions of the species. Then it seems intuitive that the equilibrium state would be unstable if a slight
(homogeneous) increase in the number of either of the species stimulated further growth. For instance, if
the food capacity of the region for the prey was (hypothetically) infinite, any increase in its number would
also enhance its reproduction; a greater number of the prey could in turn support more predators and this
spiral could continue forever, resulting in an ever-growing number of both species. That is certainly
not what stability looks like. Note that nature has taken care of this in its very principles since an
increase (decrease) in the occurrence of predators at an equilibrium state means more (less) competition,
so the predator count will usually (but not always) be self-inhibiting rather than self-activating in the
vicinity of an equilibrium state. But let us ignore this for a little while longer, for instance assuming that
the sudden increase in prey concentration was large enough to neutralise the effect of competition (for
food, at least). One could still be a little uneasy about the fact that we ignored the cross-dependence:
the effect of predation. It seems reasonable that if the predator reproduced faster than the prey, even
an infinite food capacity would not mean a boundless growth of the prey concentration: the predator-
to-prey ratio would sooner or later increase beyond some threshold value, causing a reduction of the
prey. Insufficient food supplies would then result in a drop in the predator numbers and one could
naively hope that the equilibrium state might be restored. This would, however, lead to a limit cycle
rather than stability given that the non-linear terms do admit cyclic behaviour. We can observe such
dynamics even if the predator is indeed self-inhibiting. An example of such dynamics is provided by
the Lotka-Volterra model (see chapter 3.1 in [13]). Cyclic behaviour will be discussed a little bit more
later in this section. Had we wished to avoid this discussion, instead of a predator-prey model we could
have considered a parasite-host interaction or a chemical reaction, where two self-activating reactants
intuitively seem more inclined to a chain reaction (e.g. nuclear fission) than towards stability. Based on
all these examples, it (hopefully) appears intuitively clear that the self-inhibiting effects need to prevail
for two substances/species to establish a stable equilibrium, in accordance with the first condition in
(1.16).

Assuming that the steady state is indeed stable, we wish to see how diffusion can be the cause of
instability and result in the onset of pattern formation. Let us therefore consider an inhomogeneous
perturbation of the equilibrium c∗. Then diffusion becomes a factor and we need to investigate the
stability of the solutions to (1.15). The problem is again linear and the corresponding eigenvalues are
given by the characteristic equation

|λI − A + k2D| = 0. (1.17)

For diffusion-driven instability to occur, it is necessary that for some k we have <λ
(
k2

)
> 0. An

immediate observation is that the substances must not diffuse at equal rates; if D was a (positive) multiple
of the identity matrix D = dI, we would just be looking for eigenvalues of A of the form λ̃ = λ + dk2.
Since all eigenvalues of A are negative, so will be λ and we would have stability. Hence, the substances
(e.g. chemicals or species) need to diffuse at different rates. For further intuition we again study the case
of a two-component system. In that case we usually non-dimensionalize the equations in such a way that
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the diffusion matrix has the form D =

(
1 0
0 d

)
, where d is the ratio of the diffusion coefficients. Then

the equation (1.17) becomes ∣∣∣∣∣∣λ − fu + k2 − fv
−gu λ − gv + dk2

∣∣∣∣∣∣ = 0

and the eigenvalues are thus given as the solutions of

λ2 + λ
[
k2(1 + d) − ( fu + gv)

]
+ ( fugv − fvgu) − k2(gv + d fu) + dk4 =

= λ2 + λ
[
k2(1 + d) − Tr A

]︸                ︷︷                ︸
≡l(k2)

+ |A| − k2(gv + d fu) + dk4︸                        ︷︷                        ︸
≡h(k2)

= 0.

As already mentioned, for diffusion-driven instability it is essential that this equation have negative so-
lutions for some k2 from the spectrum of the (negatively taken) Laplace operator. The eigenvalues are
clearly given as

λ(k2)1,2 =
1
2

[
−l(k2) ±

√(
l(k2)

)2
− 4h(k2)

]
. (1.18)

The relation λ(k2) is usually referred to as the dispersion relation. Let us first note that by (1.16) the
coefficient of the linear term l(k2) is always positive. Hence, if an eigenvalue of the form (1.18) is to have
a positive real part (and thus provide us with an unstable mode), it has to be real and the term h(k2) needs
to attain negativity. By (1.16) we have |A| > 0, so it is clear that the negativity of h necessarily requires
that (d fu + gv) be positive. This in turn requires d , 1 as fu + gv = Tr A < 0, which is hardly surprising;
we have already argued that diffusion coefficients cannot all be equal for DDI to occur. But it tells us
more: it tells us that fu and gv need to have opposite signs around equilibrium. It might seem intuitive
for some to think that two self-inhibiting chemicals or species would likely mean ’too much damping’
for any instability to take place. We leave such considerations, along with the algebraic ’hints’ that there
might be some substance in such view, up to the reader.

Let us now turn our focus back to the conditions for the occurrence of instability. As h is a quadratic
function in k2 with a positive ’quadratic’ coefficient d, a necessary and sufficient condition for its neg-
ativity (anywhere) is that its ’bottom’, attained at the point k2

min =
d fu+gv

2d , be in the negative half-plane.
Inserting this value into h, we obtain the requirement that

hmin ≡ h(k2
min) =

[
|A| −

(d fu + gv)2

4d

]
< 0⇔ |A| <

(d fu + gv)2

4d
. (1.19)

We have thus dissipated the blur surrounding the term ’favourable kinetics’ used at the start of this
section: for a two-component system it is one that admits a uniform equilibrium and whose derivatives
at equilibrium satisfy

fu + gv = Tr A < 0, d fu + gv > 0, 0 < fugv − fvgu = |A| <
(d fu + gv)2

4d
. (1.20)

More generally, favourable kinetics has to admit a uniform stable equilibrium which becomes un-
stable under inhomogeneous perturbations due to the effects of diffusion.

Let us now make a few more observations based on the foregoing analysis. We will focus on a
two-component system since the analysis there is most straightforward and so is our intuition. As we
know, fu and gv need to have opposite signs for the system to admit diffusion driven instability. The
positiveness of |A| then means that the same has to apply to the derivatives describing cross-dependence,
namely fv and gu. Again, it seems intuitive that any ’favourable’ kinetics must have two positive and
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two negative derivatives at equilibrium as the pro-growth and anti-growth factors need to be balanced
for the system to establish an inhomogeneous steady state. There are obviously two ways this can occur:
either fv > 0 and gu < 0 or fv < 0 and gu > 0. These two possibilities correspond to qualitatively
different situations. Let us, for certainty, assume that fu > 0 and gv < 0. That also means we have to
have d > 1. In the predator-prey context, as long as we still consider food to be the decisive element, the
latter scenario with gu > 0 means that u represents prey in a region sufficiently abundant in vegetation
( fu > 0) whereas v stands for a predator competing for food (and/or, quite commonly, territory; since
gv < 0). In this case an inhomogeneous steady state thus requires that the dispersion of the predator be
faster than that of the prey. A local (random) increase in prey density is autocatalytic but also stimulates
local growth of predator numbers. Due to faster dispersion, predators will then spread into neighbouring
areas (before the prey does) where increased predator density will cause a drop in both predator and
prey count ( fv, gv < 0) so the pattern we expect should display a correlation between high (and low)
densities of both the predator and its prey. Note that if it were the prey that dispersed faster, no such pat-
tern would be possible; instead we could expect to see a ’wave’ of increased prey density spreading from
our ’source’ area, stimulating a wave of predator abundance that would (possibly) restore the equilibrium.

On the other hand, the former case with fv > 0 makes v count the prey while u counts the preda-
tor. We can assume that an increase in the prey numbers results in food shortages as gv < 0, whereas
higher concentration of predators has a positive effect on their hunting and/or reproductive effectiveness
( fu > 0). This time the prey needs to disperse faster for anything ’interesting’ to happen. Now a locally
higher prey density will provoke a local rise in predator numbers as well ( fv > 0), but will eventually
drop naturally due to insufficient food supplies as well as predation (gv, gu < 0). Given that these ef-
fects are strong enough (note that the impact of cross-dependence has to ’prevail’ since | fvgu| > | fugv|
by (1.16)), it will drop well below the equilibrium level, inducing net influx of prey from the vicinity
of the ’outbreak’. If the flow of the prey is fast enough, it will provide the higher number of predators
with sufficient amount of food so that the latter can persist at their above-equilibrium concentration. On
the contrary, predator count will drop in the neighbouring areas due to the outflow of prey, which in
turn enables the prey to achieve higher density there. The flux of the prey from this high density areas
into low prey/high predator density territories takes care of the self-inhibiting effect of increased prey
numbers (e.g. local food shortages). Hence, we expect that high predator density should correlate with
low prey concentration and vice versa should a permanent pattern be established. Note that in both cases
the self-inhibiting species had to diffuse faster than the self-activating one. This is one of the well-known
features of DDI and is often referred to as short-range activation, long-range inhibition.

Another notable point is that, beside the necessary condition for instability given in (1.19), we can in
fact be quite precise about the frequency scope of the instability. Since h(k2) is a quadratic function with
positive highest-order coefficient d, the range of unstable wavenumbers k is simply the region between
the two roots of the equation h(k2) = 0, ı.e.

k2
min ≡

1
2d

[
d fu + gv −

√
(d fu + gv)2 − 4d|A|

]
< k2

<
1

2d

[
d fu + gv +

√
(d fu + gv)2 − 4d|A|

]
≡ k2

max.

(1.21)

This condition is equivalent to <λ(k2) > 0 so it earmarks exactly the modes that grow exponentially in
a first-order approximation, in contrast to modes with wavenumbers from outside the range determined
in (1.21), which are exponentially damped. The bad news is that if an inhomogeneous steady state is to
be established, an exponentially growing (and hence unbounded) solution is obviously not admissible,
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and additional analysis has to be employed in order to make sure that the full, non-linear dynamics
decelerates the initially exponential behaviour and restricts it to a bounded domain in the phase space
(for a two-component system the positive quadrant of the (u, v)-plane). More precisely, we wish to find
an invariant region, ı.e. a closed subset Σ of the phase space with the property that if all the initial and
boundary values lie in Σ, then so does the whole solution to the RD problem (1.12). The good news
is that, according to a result by J. Smoller (see chapter 14 in [15]), in our case of a diagonal diffusion
matrix, the same invariant region that contains the uniform (diffusionless) integral curves given as the
solutions to

dc
dt

= f(c) (1.22)

will also be an invariant region for the full RD system (1.12). The property that a subset of the phase
space should have to be an invariant region is quite intuitive: whenever a solution (an integral curve)
to the evolution equations (with given initial and boundary values) arrives at its boundary, it has to be
turned back inwards by the dynamics of the system. In more technical terms, ’inwards’ means a negative
projection on the outward normal n to the boundary ∂Σ. The question is what should have a negative
projection on n if we want to make sure our solution does not cross the boundaries of Σ. The obvious
answer is the tangent vector to our integral curve c(t). Using Smoller’s observation that (the absence
of) diffusion does not play any role here, we can think of it as being given by (1.22) as f(c). Thus, the
condition we need to verify in order to make sure that Σ is indeed an invariant region is

n · f(c) < 0 on ∂Σ.

As long as this is true, any integral curve that arrives at the boundary of Σ will be ’repelled’ back into
its interior. Perhaps we could have written n(c) to emphasize that both factors vary with phase space
position. It is conceivable that n may not even exist everywhere on the boundary since we did not require
that ∂Σ be smooth. In fact, probably the most natural choice of rectangular sets (with piecewise smooth
boundary) of the form Σ = ∩n

i=1{c | ai ≤ ci ≤ bi} is not at all uncommon. Note that in a two-dimensional
phase space (two-component RD system) in the absence of diffusion (ı.e. if no inhomogeneity is present),
by the Poincaré-Bendixson theorem our solution will either converge to a fixed point or, should this be
unstable (or in case there are no fixed points at all within Σ), it will end up in a limit cycle. Unfortunately,
we lose this strong a priori knowledge of the possible dynamics of the system once inhomogeneity kicks
in.

The transition from stability to instability can occur in different ways. In our analysis, experimental
as well as theoretical, we can therefore work with different bifurcation parameters. For instance, it is
clear from (1.17) that the diffusion matrix will always have an impact on stability/instability of a RD
system. Hence, in the two-component case, one of the possible bifurcation parameters is the (relative)
diffusion coefficient d. It is quite straightforward that the threshold (critical) value dc(> 1), at which a
transition towards instability should be expected, can be obtained by requiring equality in (1.19). It is
thus given as the (larger) root d+

c of

f 2
u d2

c + 2(2 fvgu − fugv)dc + g2
v = 0⇒

d±c =
1
f 2
u

[
( fugv − 2 fvgu) ± 2

√
f 2
v g

2
u − fu fvgugv

]
.

Note that by (1.16) both roots are always real and positive. However, using a Taylor expansion for
the square root in the variable fugv

fvgu
(< 1) and the conditions (1.20) it can be shown that d−c is not eligible.

Consequently, the critical value for d is indeed uniquely given by d+
c . The associated critical wavenumber
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will be given as

k2
c =

dc fu + gv
2dc

=

√
|A|
dc
.

Other possible bifurcation parameters could include the size of our domain Ω. For example, in the case of

a line of length L and a rectangle a×b, the spatial eigenvalues are given as kn = nπ
L and kl,n = π

√
l2
b2 + n2

a2 ,
respectively. [10] For L (max{a, b}) small enough, the second inequality in (1.21) could fail even for
the smallest integers, leaving the system with no unstable modes. Recall that the (uniform) modes corre-
sponding to the wavenumbers k0 = 0 = k0,0 are always stable by (1.16) (or simply by the observation that
k2

min > 0). The length L or max{a, b} could thus be viewed as a bifurcation parameter, with the critical
values corresponding to the case π

L = k1 = kmax on the line and π l
b = k1,0 = kmax (for a < b) on the

rectangle. For these values (or just beyond them) the first unstable modes, corresponding to these un-
stable wavenumbers, should appear in the system. If the dimensions of the domains are smaller, Turing
instability is impossible.

So far we have simplified our discussion by silently assuming that instability would occur in the
system whenever h(k2) < 0 was satisfied for some k or, equivalently, whenever (1.19) was true. Another
possible equivalent formulation is that the unstable region given by (1.21) be non-empty. There are
several reasons why that is a significant simplification. Firstly, as we argue in Appendix A, the spectrum
of the Laplace operator on a bounded domain is purely discrete. Thus the condition kmin < kmax may not
be sufficient. To provide the system with an unstable mode, at least one of the discrete eigenvalues must
lie in the ’region of instability’ between kmin and kmax. Secondly, the unstable mode needs to ’be present’
in the system. We mentioned already that from a conceptual point of view inhomogeneity is usually
thought of as appearing in the system via random perturbations, especially in biological/embryogenetical
context. From a mathematical point of view, these are inscribed in the system by means of non-uniform
initial conditions. In first-order approximation the solution to RD equations is given as a superposition
of spatial modes (eigenfunctions of the Laplace operator) with exponential dynamics. Thus at t = 0 this
superposition has to reduce to the decomposition of the initial condition in the Laplace eigenbasis. This
should very much remind us of the procedure applied when solving (the somehow closely related) wave
equation, e.g. on a string. The dynamics is known in advance (in that case it is harmonic) but to determine
whether a specific mode does appear in the solution one needs to investigate whether it was ’present’ in
the initial conditions using a Fourier decomposition. Hence, if the range of unstable eigenvalues does
not match the perturbation, any ’algebraic conformity’ of the system could be fruitless and we would
observe no instability, at least as far as first-order effects are concerned. This is also one of the possible
explanations for the specific patterns associated with specific species, should these indeed come into
being via a reaction diffusion mechanism. The mechanism could be the same, yet a different course
of the respective species’ developmental processes could mean a different ’starting point’, resulting in
different patterns. Let us note, however, that unlike in chemistry or other disciplines, there has only
been limited amount of experimental proof for the presence of reaction diffusion mechanisms in pattern
formation in developmental biology. On the theoretical level, on the other hand, the Turing model is
ready to take credit for a large variety of pattern formation, ubiquitous in biology and beyond.



Chapter 2

Weakly non-linear analysis. Pattern
selection

The term weakly non-linear analysis is usually used to refer to a set of methods and approaches that
largely use the assumptions and results of linear analysis on the one hand but go beyond it and take into
consideration the lowest-order non-linear effects to improve these results on the other hand. We would
like to use this chapter to introduce one of these methods and apply it in the biologically very relevant
context of pattern selection. As it turns out, immediately beyond criticality (as it was described in chapter
1.1), which is where instability enters the system, the selection of pattern is governed precisely by those
lowest-order non-linear effects that linear analysis fails to consider.

Conditions (1.16) guarantee stability of the system (1.12) with respect to homogeneous perturbations
of the steady state. The scope of unstable wavenumbers is given by the two inequalities in (1.21). As
long as the lowest wavenumber k1 satisfies k1 > kmax, all the modes are obviously stable. Criticality,
or loss of hyperbolicity, occurs once k1, due to a modification of the system’s parameters, reaches the
borderline of instability, k1 = kmax, or exceeds it slightly. Throughout this chapter, our focus will aim at
this very situation. In this case the temporal eigenvalue of the first mode, λ̃ ≡ λ(k1), becomes ’marginally’
positive, which is why we will denote it as λ̃ = δλ for a small positive parameter δ. On a sphere, where
the spatial eigenvalues are given as kl =

l(l+1)
R2 , this can result from increasing the radius R slightly above

a critical value Rc. As we have stated in the earlier chapters, as soon as hyperbolicity is lost, the methods
of linear analysis become insufficient. We therefore adopt here a weakly non-linear approach motivated
by the article by B. Ermentrout. [7]

Let us consider a system of the general form

Lu = λ̃Bu + Q(u, u) + C(u, u, u) + . . . (2.1)

for a linear operator L acting on a Hilbert space H and with B,Q, and C a linear, bilinear and trilinear
form acting on Rn, respectively, while the dots represent higher-order terms. By ’acting on Rn’ we mean
that if H is a function space, for instance H = Rn ⊗ L2(Ω) and ui ∈ H are of the form ui = ai fi(x) for
some ai ∈ R

n and fi ∈ L2(Ω), then B,Q, and C satisfy

(Bui)(x) = (Bai) fi(x), Q(ui, u j)(x) = Q(ai, a j) fi f j(x),

C(ui, u j, uk)(x) = C(ai, a j, ak) fi f j fk(x)
(2.2)

for some linear map (matrix) B : Rn → Rn, some bilinear map Q : Rn × Rn → Rn and some trilinear
map C : Rn × Rn × Rn → Rn. For our purposes, λ̃ in (2.1) represents the (exponential) growth rate of

28
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the eigenmodes of A − k1D and, since we consider a state near criticality, we set λ̃ = δλ. For reaction-
diffusion systems (1.12) we also have

L = −D1F(u∗, v∗) − D∆, Q = D2F(u∗, v∗), C = D3F(u∗v∗),

where the diagonal matrix of diffusion coefficients D is not to be confused with the expressions of the

form DmF, which symbolically represent corresponding terms of the Taylor expansion of F =

(
f
g

)
.

Multicomponent Turing systems could, of course, be rewritten in an analogous fashion. For any number
of components (greater than one) it is convenient to introduce a new set of variables u1 ≡ u−u∗, u2 ≡ v−v∗
and the ’tensor-like’ notation for the stability matrix A ≡ D1F(0, 0) = (∇F(0, 0))T (now A acts as a vector
in R2 ⊗ R2 and Ax can be rewritten as ∇F(0, 0) · x, with · the scalar product on R2) and for the Hessian
matrix D2F ≡ H of F whose components are elements of R2 (more generally, for n components they are
elements of Rn) of the form

Hi j =
∂2F
∂ui∂u j

(0, 0) ≡

 ∂2 f
∂ui∂u j

(0, 0)
∂2g
∂ui∂u j

(0, 0)


(here we avoided using different symbols for F(u, v) and F(u1, u2)). With this notation, H formally
lives in R2 ⊗ R2 ⊗ R2 and we can rewrite the second-order terms from the Taylor expansion of F as

Q(w, w) = wT Hw for w ≡
(
u1
u2

)
. Hence, the condition (2.2) for Q is manifestly satisfied. Let us also write

the explicit form of the cubic term

D3F =
1
3!

3∑
l=0

(
3
l

)
∂3F

∂lu1∂3−lu2
ul

1u3−l
2 ,

which is the highest-order term that we are going to use explicitly.
The criticality condition k1 = kmax implies that the matrix A − k1D has a zero eigenvalue, which

means det(A − k1D) = 0. 1 It also means that this matrix has a non-zero eigenvector associated with the
eigenvalue 0; we shall denote it e. For later purposes, we also note that by the invariance of determinant
under transposition, AT − k1D also has a non-zero eigenvector f ∈ ker

(
AT − k1D

)
, which we assume

can be chosen such that |e · f| = 1. 2 By the Fredholm alternative, this is equivalent to assuming that
(A − k1D) x = e has no solution in Rn. It follows from criticality that all the modes corresponding to
wavenumbers kn > k1, n , 1, are stable. Hence, any admissible pattern will be given as a combination
of the modes corresponding to k1; let us denote these as {w11, w12, . . . w1m}. Possible symmetries of the
pattern will thus depend on the coefficients of these modes in the solution. For instance, in a rectangle
a × b, where the lowest eigenmodes are given as cos

(
π
a x

)
, cos

(
π
by

)
, the pattern will be either striped, if

only one of these modes is represented non-trivially in the solution, or spotted, if both are. We would
therefore like to know how to investigate the properties and stability of either case with respect to outer
characteristics (parameters) of the system.

Let us consider a unit sphere. As mentioned before, the spectrum of the Laplace operator is given as
kl =

l(l+1)
R2 and the corresponding eigenfunctions are the spherical harmonics

Ỹlm(ϑ, ϕ) = (−1)m

√
2l + 1

4π
(l − |m|)!
(l + |m|)!

P|m|l (cosϑ)eimϕ,

1The opposing signs result from the fact that k1 > 0 is an eigenvalue of −∆.
2We are going to choose the sign of e · f later.
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where the associated Legendre functions are given as Pm
l (x) = (1 − x2)m/2 dmPl

dxm , with
Pl(x) =

∑bl/2c
k=0 (−1)k (2l−2k)!

2lk!(l−k)!(l−2k)! xl−2k being the Legendre polynomials (cf. [10]). For the rest of the
calculation we will prefer to work with the real basis

Ylm ≡ (−1)m
√

2<
(
Ỹlm

)
m > 0,

Yl0 ≡ Ỹl0,

Ylm ≡ (−1)m
√

2=
(
Ỹl|m|

)
m < 0.

We will usually omit the normalization constants and hence by Ylm we will mean the following: Y11 ≡

sin θ cosϕ,Y1−1 ≡ sin θ sinϕ,Y10 ≡ cos θ and analogously for l > 1. The near-critical pattern will thus be
given as a combination of these three eigenmodes corresponding to k1. Each of these functions clearly has
a rotational symmetry with respect to plains given (in Cartesian coordinates) as xi = const, i ∈ {1, 2, 3}.
It is easy to show that

s sin θ cosϕ + t sin θ sinϕ + r cos θ = sY11 + tY1−1 + rY10 ≡ Y1,

has a rotational symmetry with respect to rotations around an axis given in Cartesian coordinates by the
vector (s, t, r). We will provide the proof at the end of this chapter. Note that the norm of each of these

three functions is equal to
√

4π
3 , so neglecting it is equivalent to computing s̃ =

√
4π
3 s, r̃ =

√
4π
3 r, t̃ =√

4π
3 t instead of s, r, t. Before we proceed to the actual solution, we make one more assumption: for

simplicity we assume that the critical value is k1 = 1, which means k2 = 3, k3 = 6, . . . , kl =
l(l+1)

2 .
As mentioned before, we assume λ̃ ≡ δλ small and look for a solution to (2.1) in the form

w(θ, ϕ) = δαw1 + δ2αw2 + δ3αw3 + . . . . (2.3)

Substituting this expansion into (2.1), we obtain

L
(
δαw1 + δ2αw2 + δ3αw3 + . . .

)
= λB

(
δα+1w1 + δ2α+1w2 + δ3α+1w3 + . . .

)
+

+δ2αQ(w1, w1) + 2δ3αQ(w1, w2) + . . .+

+δ3αC(w1, w1, w1) + . . . ,

(2.4)

so for the lowest order δα we obtain Lw1 = 0. At this moment it is important to realize that if we
decompose w into the eigenbasis Ylm, L will act on each subspace corresponding to a fixed wavenumber
kl as just a matrix, namely as Ll ≡ −A + klD. Recalling that these matrices have non-zero determinant
for l , 1 (including L0 = −A, by (1.16)), we conclude that any non-trivial solution for w1 must lie in the
subspace corresponding to k1, so the most general solution is

w1 = e(sY11 + tY1−1 + rY10) = eY1.

We have not yet discussed the parameter α. Its value becomes relevant at the next order. More precisely,
it plays a decisive role when we ask what order is the second lowest in δ. The lowest order in the first
term on the right-hand side is δα+1, in the remainder of the equation (apart from the δα-term) it is δ2α.
Let us be naive for a while and try to combine all these terms by setting α = 1. That would lead to

Lw2 = λBw1 + Q(w1, w1). (2.5)

At first glance, this equation looks good. We already know what w1 is, so we just need to ’invert’ the op-
erator on the left-hand side and apply it to the explicitly given function on the right-hand side. This, as we
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will see, is not possible. For a solution for w2 to exist, the right-hand side must necessarily lie in RanL.
From the Fredholm alternative we have kerL∗ = (RanL)⊥. Hence, the solvability condition requires
that the right-hand side be orthogonal to kerL∗ = span{fY11, fY10, fY1−1}. Recalling that Ylm and Y jk are
orthogonal for (l,m) , ( j, k), we see that it would be useful to express the term Q(w1, w1) = eT He(Y1)2

in terms of the eigenfunctions Ylm. There are at least two ways of doing this: one can either apply all
sorts of trigonometric identities to express the underlying functions in the way they are represented in
the spherical harmonics Ylm (ı.e as constant multiples of P|m|l (cos θ) sin(mϕ) or P|m|l (cos θ) cos(mϕ)) or, if
one only needs to know the projections of a given function f (θ, ϕ) on Ylm for a specific set of values of
(l,m) (which is our case here), it is often easier to compute these projections via the scalar product3

〈 f ,Ylm〉 =

∫ 2π

0
dϕ

∫ π

0
dθ sin θYlm(θ, ϕ) f (θ, ϕ).

However, with the latter procedure one should remember to reintroduce the normalizing constants into
the calculation to obtain the correct results. After some tedious algebra we obtain

(Y1)2 =
[

s2+r2+t2
3 + s2−t2

2 sin2 θ cos 2ϕ +
(

r2

3 −
s2+t2

6

)
(3 cos2 θ − 1)+

+rs sin θ cos θ cosϕ + rt sin θ cos θ sinϕ + st
2 sin2 θ sin 2ϕ

]
≡

≡
[

s2+r2+t2
3 Y00 + s2−t2

2 Y22 +
(

r2

3 −
s2+t2

6

)
Y20 + rsY21 + rtY2−1 + st

2 Y2−2
]
.

While the second term on the right-hand side of (2.5) is thus clearly orthogonal to kerL∗, the first term
λBw1 is generally not unless we assume f ·Be = 0,4 so equation (2.5) is not guaranteed to have a solution.
The remedy is at hand, though: we conclude that α , 1, which leads to the correct (for now, at least,
solvable) equation

Lw2 = eT He
[ s2 + r2 + t2

3
Y00 +

s2 − t2

2
Y22 +

(
r2

3
−

s2 + t2

6

)
Y20 + rsY21 + rtY2−1 +

st
2

Y2−2
]
. (2.6)

A foresighted reader senses that we are going to need an explicit expression for w2 later, so we need to
invert this relation. This, however, is not that difficult now that we have expressed the right-hand side as
a combination of the eigenfunctions Ylm. Having done this bit of algebra, we recall that L acts on each
subspace of the form Wl ≡ span{Ylm}

l
m=−l as a (for l , 1 invertible!) matrix Ll, since we have

L(vYlm) = (−A − D∆)(vYlm) = (−Av)Ylm + kl(Dv)Ylm ≡ (Llv)Ylm.

All of these subspaces are clearly invariant under L. Using all these observations and introducing an
abridged notation Q(e, e) = eT He ≡ q, we can invert equation (2.6) into

w2 =
s2 + r2 + t2

3
L−1

0 q +

[
s2 − t2

2
Y22 +

(
r2

3
−

s2 + t2

6

)
Y20 + rsY21 + rtY2−1 +

st
2

Y2−2

]
L−1

2 q.

Now we can proceed to the next order in δ. Since we ruled out α = 1, the ’next best guess’ is to associate
the δα+1-term with the δ3α-terms, ı.e. to put α = 1/2. In fact, this is the best guess. Not only is this
choice algebraically admissible, as we will see in the following lines, it also makes sense physically.
The dispersion relation (1.18) gives an equation for the temporal eigenvalue λ that is quadratic in the
wavenumber k; it is therefore logical that if λ scales as δ, the spatial modes should scale as δ1/2. For

3Here we make use of the fact that for a Hilbert spaceH and an orthonormal basis {ui} ofH one can (uniquely) express any
x ∈ H as x =

∑
i〈x, ui〉ui.

4Such an assumption would be very restrictive, since for example B = −I is perfectly plausible for our cause.
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convenience we can (and often do) introduce a new parameter ε = δ1/2 instead of δ and write λ̃ = ε2λ.
Hence, to the next order we have

Lw3 = λBw1 + 2Q(w1, w2) + C(w1, w1, w1) ≡ wrhs.

To be able to obtain the sought-after equations for s, t and r, we need to apply the solvability condition
one more time. In order to make the long and tedious calculation easier to follow, we again demonstrate
how the quantities and coefficients that will appear in the scalar product came about. Again, we would
like to express wrhs in terms of Ylm, particularly for l = 1. The second, quadratic term in wrhs, contains
products of the form Y1Y2m. We demonstrate their decomposition for m = 0:

Y20Y1 = 3(s cos2 θ sin θ cosϕ + r cos3 θ + t cos2 θ sin θ sinϕ) − Y1

= −
2
5

sY11 +
4
5

rY10 −
2
5

tY1−1 +
∑
l,1

∑
|m|≤l

almYlm,

where we do not bother to write down (or even compute) explicitly the coefficients of Ylm for l , 1. This
way, upon again abbreviating our notation by introducing

pi ≡ Q
(
e, L−1

i Q(e, e)
)

= eT HL−1
i q,

we obtain

2Q(w1, w2) =p0
[2
3

(s2 + t2 + r2)
(
sY11 + tY1−1 + rY10

)]
+

+p2
[
(s2 − t2)

(2
5

sY11 −
2
5

tY1−1 + . . .
)
+

+
2r2 − s2 − t2

3

(
−

2
5

sY11 −
2
5

tY1−1 +
4
5

rY10 + . . .
)
+

+2sr
(1
5

rY11 +
1
5

sY10 + . . .
)

+ 2rt
(1
5

rY1−1 +
1
5

tY10 + . . .
)

+ st
(2
5

tY11 +
2
5

sY1−1 + . . .
)]
,

where the dots again stand for (constant) multiples of Ylm with l , 1. Once we have decomposed the
term C(w1, w1, w1) = C(e, e, e)(Y1)3 in an analogous fashion, we introduce the (scalar) quantities

α0 ≡ f · p0 = f · Q
(
e, L−1

0 Q(e, e)
)
,

α2 ≡ f · p2 = f · Q
(
e, L−1

2 Q(e, e)
)
,

β ≡ f · C(e, e, e),

µ ≡ f · Be,

and apply the solvability condition to be able to write

0 !
=〈fY11, wrhs〉 = α0

2
3

s(s2 + t2 + r2) + α2

[
2
5

s(s2 − t2) −
4
5

s
(
r2

3
−

s2 + t2

6

)
+

2
5

sr2 +
2
5

st2
]
+

+ β

[
3
4

s3 +
3
5

s(t2 + r2)
]

+ µλs =

=s
(
µλ +

[
2
3
α0 +

8
15
α2 +

3
4
β

]
s2 +

[
2
3
α0 +

2
15
α2 +

3
5
β

]
r2 +

[
2
3
α0 +

2
15
α2 +

3
5
β

]
t2
)
.

Expressing the scalar products 〈fY10, wrhs〉 and 〈fY1−1, wrhs〉 in a similar manner and finally setting

z1 ≡
2
3
α0 +

8
15
α2 +

3
5
β, z2 ≡

2
3
α0 +

2
15
α2 +

3
5
β,
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we find the coveted equations for s, t, r to be

s
(
µλ + z1s2 + z2

(
r2 + t2

))
= 0,

t
(
µλ + z1t2 + z2

(
r2 + s2

))
= 0,

r
(
µλ + z1r2 + z2

(
s2 + t2

))
= 0.

(2.7)

Since the functions Y11,Y1−1,Y10 correspond to the three Cartesian coordinates on the unit sphere, it
comes as no surprise that the equations are symmetric with respect to any permutation of {s, t, r}. As we
mentioned at the beginning of this chapter, we would like to investigate possible (stable) stationary states
and thus possible axes of symmetry of the solution to a given system, ı.e for fixed values of z1, z2. First
of all, we need evolution equations for s, t and r. It could seem that we replaced the temporal derivative
in (2.1) (if the system is to represent an evolution equation at all) by the term λ̃Bu, assuming exponential
dynamics of the form u = ũeλ̃τ. If that is true, we are left with no natural way of obtaining evolution
equations for (s, t, r). The second part of the statement is indeed true, but its first part is only partially
true. In fact, by setting λ̃ = δλ we effectively introduced a new time scale T = δτ to the problem. Hence,
the actual assumption we made was u(τ, x) = ũ(T (τ), x)eλ̃τ. For the ’fast’ time scale τ we assumed the
exponential dynamics that follows from linearization, while preserving the ’slow’ time scale T for the
amplitudes. Applying the chain rule, we then have

∂u
∂τ

= λ̃ũ(T (τ), x)eλ̃τ + δ
∂ũ
∂T

(T (τ), x)eλ̃τ.

The first term has been with us the whole time. The lowest order in δ in the second term, which is

δα+1 ∂w1

∂T
= δα+1e

(
ṡY11 + ṫY1−1 + ṙY10

)
,

with dot representing derivatives with respect to T , gives us precisely what we are looking for, namely
the evolution equations for the amplitudes s(T ), t(T ), r(T ) ṡ

ṫ
ṙ

 =


s
(
µλ + z1s2 + z2

(
r2 + t2

))
t
(
µλ + z1t2 + z2

(
r2 + s2

))
r
(
µλ + z1r2 + z2

(
s2 + t2

))
 ≡ V(r, t, s).

Note that there is nothing indecent about this: had we assumed the dependence on T in the amplitudes
from the very beginning, and more generally the expansion (2.3) as

w(T, θ, ϕ) = δαw1(T, θ, ϕ) + δ2αw2(T, θ, ϕ) + δ3αw3(T, θ, ϕ) + . . . ,

then instead of (2.7), the orthogonality condition would have presented us directly with the system

ṡ − s
(
µλ + z1s2 + z2

(
r2 + t2

))
= 0,

ṫ − t
(
µλ + z1t2 + z2

(
r2 + s2

))
= 0,

ṙ − r
(
µλ + z1r2 + z2

(
s2 + t2

))
= 0.

This way we just saved ourselves some unnecessary work with terms including derivatives with respect
to T . The stability analysis then proceeds completely in compliance with chapter 1.1: stability or insta-
bility of a stationary state is determined by the eigenvalues of its stability matrix. For instance, for the
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equilibrium

 s∗
t∗
r∗

 =


√
−µλ
z1

0
0

 ≡ s∗, we must have

sgn µ = − sgn z1 and the stability matrix

DV(s∗, t∗, r∗) =

 2z1s2
∗ 0 0

0 µλ + z2s2
∗ 0

0 0 µλ + z2s2
∗


∣∣∣∣∣∣∣∣∣
s∗

=


−2µλ 0 0

0 µλ
(
1 − z2

z1

)
0

0 0 µλ
(
1 − z2

z1

)


is diagonal so we can read the stability conditions directly as

µ > 0 ∧ z2 < z1 < 0.

This is the right moment to specify the sign of e · f (to choose the sign of f such that we indeed have
µ > 0.

Note that this calculation is more useful for problems with a weaker level of symmetry than we have.
In the case of a unit sphere no proper pattern selection is done since all possible patterns (ı.e. each of the
three modes and all their linear combinations) have the same (rotational) symmetry. It is just the axis of
this symmetry that varies for different stationary states. Let us prove this proposition properly. We want
to show that the function f (θ, ϕ) ≡ sY11 + tY1−1 + rY10 has rotational symmetry (here s, t, r ∈ R). Having
rotational symmetry is equivalent to being constant on an infinite set of circles (on the unit sphere) whose
plains are mutually parallel (e.g. all circles with a vertical axis). But the equation f = M = const can be
rewritten in Cartesian coordinates as sx + ty + rz = M, which clearly defines a plain

W ≡ {(x, y, z) ∈ R3 | sx + ty + rz = M}.

Moreover, these plains are obviously parallel for various values of M as they have empty intersections.
Since the intersection of a plain and a sphere is a circle (or a single point, as long as it is non-empty), this
proves rotational symmetry of f . If we want to determine the axis of these rotations, we just need to pick
one of these plains and find a line γ(z) ≡ (Az, Bz, z), parametrized for example by its z-coordinate, that is
perpendicular to two linearly independent vectors from that plain. Choosing the plain with M = 0 and
the vectors v1 ≡ (− t

s , 1, 0) and v2 = (− r
s , 0, 1) reveals that γ(t) = ( s

r z, t
r z, z) which proves that the vector

(s, t, r) is indeed the axis of the rotational symmetry of f as we stated earlier.



Chapter 3

The WKBJ approximation for a system of
ODEs

The WKBJ method, developed independently by the physicists Gregor Wentzel, Hendrik A. Kramers
and Léon N. Brillouin in 1926 as well as by the mathematician Harold Jeffreys specifically for second-
order equations three years earlier, is a powerful method for obtaining approximate solutions to linear
differential equations whose highest-order derivative is multiplied by a small parameter. Unlike with
some other methods, the product of a WKBJ approximation is an asymptotic series. The term is in a sense
a generalization of the notion of convergent series: every convergent power series, e.g. a convergent
Taylor series, is also an asymptotic series but the converse is not true. In fact, when we talk about
asymptotic series, we usually mean that the series in question is indeed divergent. The key step that
gives a meaning to such an approximation is truncation. As with expansions of any kind, we usually only
use a finite (and rather small) number of terms. However, in case of a Taylor series of a well-behaved
function, truncation occurs at the expense of precision; the more terms we take into consideration, the
better precision we obtain. This is obviously not true for a divergent asymptotic expansion. Here we not
only truncate for practical reasons, we also truncate it for the sake of precision. As we will argue later in
this chapter, that precision can be astounding.

3.1 Asymptotic series

Let us now formulate the idea of an asymptotic expansion more precisely. An asymptotic sequence
at x0 is a sequence of functions {ϕn}

∞
n=0 such that ϕn+1 � ϕn for x → x0 or, equivalently, a sequence

satisfying for all n ∈ N
(∀ε > 0)(∃Hx0)(∀x ∈ Hx0)(|ϕn+1(x)| ≤ ε|ϕn(x)|), (3.1)

where x0 need not be finite. The ’little-o notation’ ϕn+1(x) = o(ϕn(x)) is also common. Note that ϕn(x) =

(x − x0)n is an asymptotic sequence for x0 finite and ϕn(x) = x−n is one for x0 = ±∞. Once we have an
asymptotic sequence, an asymptotic series can be constructed as

∑
n anϕn(x) using any sequence {an}

∞
n=0.

Apart from ’pathological’ cases like ϕ2n+1(x) ≡ 0, ϕ2n(x) = fn(x), this definition of an asymptotic series
includes most convergent series and, as argued above, all convergent power series since all power series
satisfy condition (3.1). However, one of the generalizations that the notion of asymptotic series provides
us is the possibility of using expansions with non-integer powers of x. Series of the form

∑
n anxαn (ı.e.

35
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ϕn(x) = xαn) comply with the requirement on asymptotic series in (3.1) for x → 01 and α > 0, and the
same applies to

∑
n anx−αn for |x| → ∞, α > 0.

Having established the notion of an asymptotic series, let us now clarify what we mean by an asymp-
totic expansion of a function. We say that the series

∑∞
n=0 anϕn(x) is asymptotic to y(x) and write

y(x) ∼
∞∑

n=0

anϕn(x) (3.2)

iff

y(x) −
N∑

n=0

anϕn(x) � ϕN(x) for x→ x0 and any N. (3.3)

The validity of this statement for any N makes this equivalent to the statement that
y(x) −

∑N
n=0 anϕn(x) ∼ aN+1ϕN+1(x), given that aN+1 , 0, or, more generally, equivalent to

y(x) −
N∑

n=0

anϕn(x) ∼ aMϕM(x) for x→ x0, (3.4)

where M > N is the next integer with aM , 0.
It is convenient to define asymptotic sequence as an infinite sequence and asymptotic expansion as

an infinite sum. This concept is indeed sufficient for many purposes, for example in case we apply the
Frobenius method in order to solve a differential equation in the form of a series (in either integer and
non-integer powers of the independent variable). However, in asymptotic analysis we may sometimes
wish to use a finite set of functions to approximate a function that is given implicitly, most commonly as
a solution to a differential equation. One of the examples of situations when this occurs is if we use the
method of dominant balance to investigate the behaviour of a function to a certain order, very often the
leading order. We will study this method more thoroughly later in this chapter. What we wish to point
out at this moment is that in some cases we may require the validity of conditions (3.1) and (3.3) only
for a finite range n ∈ {1, 2, . . . ,N},N ∈ N.

Let us now study some basic properties of asymptotic expansions, starting with uniqueness. Based
on the given definitions, the natural suspicion is that, unlike a Taylor series, an asymptotic series of a
function is not determined uniquely. This is indeed the case since we have been given no guidelines for
the explicit choice of the asymptotic sequence {ϕn}

∞
n=0. Still a weaker uniqueness property is safeguarded

by this definition. It is not too difficult to see that given an asymptotic sequence {ϕn}
∞
n=0, its coefficients

{an}
∞
n=0 are uniquely given by the relations

a0 = lim
x→x0

y(x)
ϕ0(x)

, aN+1 = lim
x→x0

y(x) −
∑N

n=0 anϕn(x)
ϕN+1(x)

.

Another straightforward observation is that the converse relationship is not unique either, ı.e. a given
asymptotic expansion does not define a unique function. For instance, if ϕn(x) = xn and y(x) ∼∑∞

n=0 anxn, it suffices to modify y by a term that decreases faster than any power of x around 0 and the
asymptotic expansion will remain unchanged. It is thus clear that the function ỹ(x) ≡ y(x) + C exp(− 1

x2 )
provides an example of a function that shares the same asymptotic expansion with y around 0. Let us
also investigate the properties of the relation ∼ of asymptotic equality under integration and differentia-
tion. It follows directly from (3.1) that if φ(x) � ψ(x) around x0 and ψ is locally integrable on a (finite)

1Recall that for expansions around a finite x0 we can assume x0 = 0 without loss of generality and thus write
∑

n an xαn

instead of
∑

n an(x − x0)αn.
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neighbourhood of x0, then

Φ(x) ≡
∫ x

x0

φ(s)ds �
∫ x

x0

ψ(s)ds ≡ Ψ(x) for x→ x0.

As a consequence, the relation ’be asymptotically equal to’ is invariant under integration in the sense that

f (x) ∼ g(x) for x→ x0 ⇒

∫ x

x0

f (s)ds ∼
∫ x

x0

g(s)ds for x→ x0

since the integral of the correction f (x)− g(x) will remain much smaller than the integral of the approxi-
mation g(x) itself due to | f (x)−g(x)| � |g(x)|, x→ x0. This fact is often used for estimation/evaluation of
integrals of solutions to differential equations. Observe that (3.1) also provides an estimate of the relative
error of such asymptotic integration. If we choose a neighbourhood such that | f (x) − g(x)| ≤ ε0|g(x)|,
then within this neighbourhood we clearly have∣∣∣∣∣∣

∫ x

x0

f (s)ds −
∫ x

x0

g(s)ds

∣∣∣∣∣∣ ≤ ε0

∫ x

x0

|g(x)|.

However, this kind of invariance does not hold for differentiation since the relation ∼ may neglect
terms/corrections which are small in magnitude and vary on a small scale, ı.e quickly. Hence, for the sake
of differentiation it may be necessary to increase our ’resolution’, or, in other words, restrict ourselves to
a smaller portion of the interval in question.

We have not yet discussed the truncation procedure. For the sake of this discussion we are going to
need to qualify possible singularities of our problem of interest in the usual manner. Let us for now focus
on the one-dimensional case and consider the linear differential equation

Lu ≡ u(n) + pn−1(x)u(n−1) + . . . + p1(x)u′ + p0(x)u = 0. (3.5)

Definition 3.1. A point x0 ∈ R is called an ordinary point of the equation (3.5) iff all the coefficients pk,
considered as functions of the complex variable z = x + iy, are analytic in a neighbourhood of the point
z = x0. Otherwise it is called a singular point. These we divide further into two categories. A point x0 is
called a regular singular point iff the functions (x − x0)pn−1, (x − x0)2 pn−2, . . . , (x − x0)n p0 are analytic
at z = x0. Otherwise x0 is called an irregular singular point.

The crucial observation for our cause is that if x0 is a regular singular point, problem (3.5) always
has a solution of the form

y(x) = (x − x0)sA(x), (3.6)

where A(x) is analytic at x0 and s is given by the indicial equation (see chapter 4 in [17]). In case all the
roots of the indicial equation are non-negative, it follows that this solution is well-behaved at x0.

Now that we have established this classification, we can turn our focus back to the question of trun-
cation. It is important here to keep in mind that asymptotic methods are by definition methods of local
approximation. But for practical use it is usually preferable to approximate a function on an interval
rather than just in the infinitesimal neighbourhood of a single point x0. There might be points of extraor-
dinary importance, though, mostly points where boundary or initial conditions are specified. It is natural
to use these as starting points of the approximation. Whether we are using an infinite set of functions {ϕn}

(e.g. we are looking for a series expansion of the solution) or a finite one, we require the strict validity
of (3.1) around these points. But in order to attain maximal precision elsewhere we need to analyze the
validity of condition (3.1) for all points in the interval. The asymptotic estimate in (3.4) then provides a
straightforward suggestion on how to truncate the sum in (3.2) in the optimal manner: we simply need
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to minimize the magnitude of anϕn(x).2 Note that for any convergent expansion we necessarily have
anϕn(x) → 0 for n → ∞ within the entire domain of convergence, so this procedure will invariably in-
struct us to include as many terms as possible. This is one of the differences between convergent and
non-convergent asymptotic expansions as well as one of the reasons why we usually restrict our under-
standing of the term asymptotic series to non-convergent expansions. In that case the dependence on
x becomes much more relevant in the sense that it affects the number of terms we need to include to
optimize the precision of our approximation of y(x). This can be readily illustrated in case we are using
a method that yields a recurrence relation for {an}, e.g. the Frobenius method for ordinary differential
equations. Let us assume a simple first-order recurrence of the form an+1 = φ(n)an. The magnitude of
the terms in the expansion obviously decreases as long as the ratio of consecutive terms in the expansion
satisfies ∣∣∣∣∣an+1ϕn+1(x)

anϕn(x)

∣∣∣∣∣ =

∣∣∣∣∣φ(n)
ϕn+1(x)
ϕn(x)

∣∣∣∣∣ ≤ 1. (3.7)

This inequality can be used to find a relation, implicit or explicit, between n and x. It becomes very
easy in the case of a power series, ı.e. with ϕn(x) = xn, and the same applies to the more general case
ϕn(x) = xn+s. Then condition (3.7) simplifies to |φ(n)x| ≤ 1 which means we need to change the number
of terms (from n to either n + 1 or n − 1, depending on φ) in the expansion of y(x) at |x| =

∣∣∣∣ 1
φ(n)

∣∣∣∣. If our
interval of interest is unbounded, useful asymptotic relations between x and n (the optimal number of
terms in the expansion) for x → ∞ can be extracted easily. Analogous truncation rules can be obtained
for ϕn(x) = x−n (for approximations around x0 infinite), or more generally for ϕn(x) = xαn. Observe
that inequality (3.7) and the ensuing ’1/φ-rule’ has practical applications for convergent series as well.
There it reveals at which n the magnitude of the terms starts to decrease so in this sense it determines the
minimal number of terms necessary for a reasonable approximation of y(x).

The Frobenius method provides one of the common ways of acquiring an asymptotic expansion. It is
also instrumental for demonstrating the truncation procedure. Therefore we now give an example where
we apply this method and find an asymptotic expansion of a solution to a differential equation.

Example 3.1. Consider the differential equation y′′ + y′ −
y′

x +
y

x2 = 0 with the boundary condition
y(0) = 0. The point x = 0 is a regular singular point so a solution of the form (3.6) ought to exist.
Therefore we assume the form y(x) = xs ∑∞

n=0 anxn and substitute into the equation, obtaining for the
lowest power xs−2 the indicial equation

[s(s − 1) − s + 1] a0 = 0.

Applying the requirement of a non-trivial solution a0 , 0, the indicial equation has the solutions s1 =

1/2, s2 = 2. For a general power of x we have

[(n + s + 1)(n + s) − (n + s + 1) + 1] an+1 + (n + s)an = 0

which yields the recurrent relation an+1 = − 1
(n+s) an. As expected, the series

∑
n anxn is convergent around

x = 0, it even has an infinite radius of convergence. Since the difference s2 − s1 is non-integer, the 2
solutions for s in fact determine the two linearly independent solutions to the given equation. Both of
them clearly satisfy the boundary condition. As seen from analyzing the ratio an+1 xn+s+1

an xn+s , the magnitude of
the terms in the expansion continues to grow as long as n + s < x, so the number of terms required for
a decent approximation grows linearly with x. One might also notice that the solution corresponding to

2Recalling that the relation ’ f (x) ∼ g(x) for x → x0’ can be read as ’ f is equal to g up to terms much smaller/decreasing
much faster than g in the vicinity of x0’, we can see that the symbol ∼ in (3.4) does not induce any looseness into this argument.
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s2 = 2 can be easily re-expressed as

y2(x) = a0x
∞∑

n=0

(−1)n

(n + 1)!
xn+1 = −a0x(e−x − 1),

where a0 is to be determined from the initial conditions.

Let us now give an example of an asymptotic series around x = ∞.

Example 3.2. Find an asymptotic series for the solution to the equation y′ − y
(

1
x + 1√

x

)
= 0 with bound-

ary condition y(∞) = 1. Note that due to the y
√

x
-term, x = ∞ is an irregular singular point. This term

also means that we need to look for an expansion in half-integer powers of x, ı.e. y(x) = xs ∑∞
n=0 anx−

n
2 .

The boundary condition implies that the only admissible value of s for an asymptotic approximation
around infinity is 0 as well as that a0 = 1. Substituting now into the equation, we arrive at

−
n
2

an − an + an+1 = 0,

yielding, as expected, a divergent series with coefficients given by an+1 = n+2
2 . Looking for the error-

minimizing truncation relation we obtain the condition

n + 1
2
√

x
≤ 1⇔ x ≥

(n + 1)2

4
, (3.8)

so the optimal number of terms is proportionate to
√

x. For x < 4 we are instructed to keep only the
first two terms so we can expect the approximation to be poor for such small values of x. If we are,
however, interested in asymptotic behaviour of the solution around 0, we can assume the asymptotic
relation y ∼ xα for x → 0 and substitute into the equation, finding α = 1. The solution hence tends
towards 0 linearly in the vicinity of x = 0.

3.2 The WKBJ approximation in 1 dimension

The WKBJ approximation is a singular perturbation method for solving differential equations. As
mentioned above, it is usually used for solving equations whose highest-order derivative is assumed to
have an infinitesimal coefficient ε and its applicability is restricted to linear equations. Although this
is a significant restriction, the method still finds many applications in different fields, the most common
representatives being quantum mechanics and bifurcation problems of virtually any kind. The reason,
as we argued in chapter 1.1, is that in sufficiently small neighbourhoods of bifurcation points, first-order
expansions of the equation’s coefficients can offer a reasonable approximation to the actual equation.

The WKBJ approximation of a solution y(x) to a linear differential equation

εy(n) + pn−1(x)y(n−1) + . . . + p1(x)y′ + p0(x)y = 0

is an expansion of the form

y(x) ∼ exp

1
δ

∞∑
n=0

δnS n(x)

 , δ→ 0+. (3.9)

In practical calculations, first-order expansions with an explicit amplitude function of the form

y(x) ∼ A(x) exp
(
S (x)
δ

)
, δ→ 0+,



CHAPTER 3. THE WKBJ APPROXIMATION FOR A SYSTEM OF ODES 40

are a very common special case.
For now we will adhere to the more general expansion (3.9). The exponential form of this expan-

sion means that, in practice, we are looking for an asymptotic expansion to ln y. It also suggests that
WKBJ approximations are exceptionally well-suited for describing dissipative (exponentially damped)
and dispersive (’pseudoharmonic’) phenomena. The form is also convenient for describing the solution’s
behaviour near singular (or otherwise exceptional) points; the logarithmic scale can be very useful for
this purpose. For the sum in (3.9) to offer a proper asymptotic expansion (to ln y), we formally impose
the natural requirement that the former terms of the expansion dominate the latter terms, ı.e.

S 1(x) �
1
δ

S 0(x), δ→ 0+,

...

S n+1(x) �
1
δ

S n(x), δ→ 0+.

Note that the presence of the parameter δ substitutes for the necessity to specify the point around which
these asymptotic relations should hold. These enables us to acquire an expansion that is asymptotically
valid on the entirety of the interval in question, especially if it is bounded. However, the parameter δ
does not represent an additional ’degree of freedom’. It is intrinsically related to the ’original’ parameter
ε and its dependence on the latter needs to be determined using the techniques of dominant balance. This
approach will often reveal that δ is proportional to ε and the most common choice is thus δ = ε. Note,
however, that non-linear relations between δ and ε are also possible.

Let us now derive the governing equations for S in the case that is most relevant to quantum mechan-
ics as well as to our cause. For this purpose we first express the asymptotic forms of the first and second
derivatives of y:

y′(x) ∼

1
δ

∞∑
n=0

δnS ′n(x)

 exp

1
δ

∞∑
n=0

δnS n(x)

 , δ→ 0+,

y′′(x) ∼

1
δ

∞∑
n=0

δnS ′′n (x) +
1
δ2

 ∞∑
n=0

δnS ′n(x)

2 exp

1
δ

∞∑
n=0

δnS n(x)

 , δ→ 0+.

(3.10)

Now consider the second-order (Schrödinger) differential equation

ε2y′′ + Q(x)y = 0 (3.11)

with Q(x) , 0. Note that we chose to denote the infinitesimal coefficient of y′′ as ε2 rather than ε for
convenience. First, we determine the dependence δ(ε) using the method of dominant balance. Upon
substituting (3.10) into (3.11) and cancelling the non-zero exponential factor we have

ε2

δ2

(
S ′0

)2
+
ε2

δ

(
2S ′0S ′1 + S ′′0

)
+ . . . = −Q(x).

Since we want to consider δ infinitesimal, the largest term (in δ) on the left-hand side is obviously the
one of order δ−2, ı.e. ε2

δ2

(
S ′0

)2
. By dominant balance, this term must be of the same O(1)-order as the

largest (and only) term on the right-hand side. Hence, we have δ = kε and, as mentioned above, we
usually make the convenient choice δ = ε. Since there are no higher-order terms in δ on the right-hand
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side, all other orders of δ on the left-hand side must vanish, too, yielding

S ′20 = −Q(x),

2S ′0S ′1 + S ′′0 = 0,

S ′21 + 2S ′0S ′2 + S ′′1 = 0,
...

n∑
j=0

S ′jS
′
n− j + S ′′n−1 = 0.

(3.12)

Recurrently solving the first two equations, we obtain

S 0(x) = ±

∫ x

a

√
−Q(s)ds,

S 1(x) = −
1
4

ln |Q(x)| ,

which clarifies why we assumed Q(x) , 0. Note that this assumption, together with the continuous
differentiability (and hence continuity) of Q, also guarantees that taking the absolute value of Q in the
logarithm does not give rise to any singularities in S ′1(x). The exponential form of (3.9) allows us
to merge all the constants of integration of S 0 and S 1 (and all the other functions S i in higher-order
approximations) into one. Observing that the two possible signs of S 0 lead to two linearly independent
solutions, we arrive at the leading-order approximation of the solution to (3.11) in the form

y(x) ∼ c1Q(x)−1/4 exp
(
1
ε

∫ x

a

√
−Q(s)ds

)
+ c2Q(x)−1/4 exp

(
−

1
ε

∫ x

a

√
−Q(s)ds

)
. (3.13)

3.3 WKBJ approximation for a system of ODEs

We would now like to prove that the first-order WKBJ approximation of a form similar to (3.13) is
also valid for a system of several ordinary differential equations (ODEs). Most of the following consid-
erations will be valid for any finite number of equations. However, in order to be more specific as well as
to relate the general problem to a two-component reaction-diffusion system, we will often give explicit
forms of various relevant quantities valid specifically for a system of two equations. Let us reveal in ad-
vance that the proof given in this section is only valid for systems of ODEs whose matrix has a specific
form. The procedure that we will follow is inspired by a lecture given by P. Siegl of Queen’s University
Belfast at a student conference on pure and applied mathematics, where a similar proof was given for a
single equation, and motivated by the asymptotic approach by Klika et al. [11]

Let us again consider a second-order system of differential equations of the form

ε2y′′ + Q̃(x)y = 0. (3.14)

For a linearized reaction-diffusion system (1.14) in a single spatial dimension, e.g. for x ∈ [0, L], Q̃ takes
on the form

Q̃(x) = D−1(J(x) − λI), (3.15)

where λ again represents the growth rate. Note that, unlike in chapter 1.2, here we allow for explicit spa-
tial dependence of the reaction kinetics and thus of the stability matrix J. This adds substantial difficulty
to the problem, as now even the linearized equations cannot generally be solved exactly. The parameter
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ε2 =
D1T
L2 , which is given as the ratio of the characteristic temporal scales of the reaction kinetics and

diffusion, arises from the non-dimensionalization procedure. In the context of developmental biology,
specifically for the morphogen pair nodal and lefty, it is of the order 10−4. [11] It is given here explicitly
mainly in order to relate (3.14) to (3.11) as an asymptotic setting and we will soon have Q̃ absorb it as we
will be interested in asymptotic behaviour for the limit of large growth rates λ→ +∞ rather than ε→ 0,
although the effect of the latter limit would be similar. Let us therefore define the matrix Q(x) ≡ 1

ε2 Q̃(x),
which for reaction-diffusion equations is thus given as Q(x) = 1

ε2

[
D−1 (J(x) − λI)

]
, and rewrite (3.14) as

y′′ + Q(x)y = 0. (3.16)

The procedure will be as follows: we will find an exact solutions u, v for the specific case q(x) = xI,
rewrite them in terms of Q rather than x and find that for a general Q(x) they do not satisfy (3.16), but
instead obtain additional linear correction terms. We will then be able to use these terms to find an
implicit integral form of the solution and apply the limit λ → +∞ to show that the correction of the
solution vanishes in this limit.

Let us now define µ j(x) to be the eigenvalues of Q(x). For a two-component reaction-diffusion system
that means

µ±(x) =
1
2

[
Tr Q(x) ±

√
(Tr Q(x))2 − 4 det Q(x)

]
.

From the relations

Tr Q(x) = Tr(D−1J(x)) − λ
(
1 +

1
d

)
det Q(x) =

1
d

det(J(x) − λI) =
1

2d

[
λ2 − Tr J(x)λ + det J(x)

]
and the conditions (1.16) for J(x) we can conclude that det Q(x) > 0 for λ ≥ 0, and hence that µ±(x)→−∞
linearly with λ for λ→ +∞ in every x ∈ [0, L]. This is intuitively clear, since we can view λ as shifting
the spectrum of D−1J(x) to the left (although not ’uniformly’ due to the fact that we subtract λD−1 rather
than λI). For later use, we also note that

µ′±(x) =
1
2

Tr(D−1J(x))′ ±
Tr Q(x) Tr(D−1J(x))′ − λ 2

d (Tr J(x))′ + 2(det J(x))′√
(Tr Q(x))2 − 4 det Q(x)


is of order unity (which means bounded) for λ→ +∞, and so is µ′′±(x). We then go on to define

ξ±(x) ≡
∫ x

0

√
−µ±(s)ds,

which for λ large enough is real and positive, and becomes unbounded with growing λ for every x > 0.
Having made all these observations that will come in handy soon, we can define the two functions

u±(x) ≡

√
ξ±(x)
ξ′±(x)

K1/3 (ξ±(x)) ,

v±(x) ≡

√
ξ±(x)
ξ′±(x)

I1/3 (ξ±(x)) ,

(3.17)

with Kα(x), Iα(x) being the modified Bessel functions defined as the two linearly independent solutions
to x2y′′ + xy′ − (x2 + α2) = 0. As stated above, for Q(x) = xI we have two independent Airy equations
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and u, v are their exact solutions. Even more importantly, using the recurrent relations

K′n(x) =
n
x

Kn(x) − Kn+1(x),

I′n(x) =
n
x

In(x) + In+1(x),

= In−1(x) −
n
x

In(x),

(3.18)

along with the symmetric property K−n(x) = Kn(x) (cf. Theorems 4.15 and 4.16 in [3]), and after some
exhausting algebra we arrive at the following property that holds for both u and v:

ψ′′± =
[
(ξ′±)2 − T±

]
ψ± = 0, (3.19)

where

T±(x) =
1
4

5
9

(
ξ′±
ξ±

)2

+ 2
ξ′±ξ

′′′
±

ξ′2±
− 3

(
ξ′′±
ξ′±

)2 (x) =
1
4

5
9

(
ξ′±
ξ±

)2

+
(ξ′2± )′′

ξ′2±
−

5
4

(
(ξ′2± )′

)2

ξ′4±

 (x) =

=
1
4

[
−

5
9
µ±

ξ2
±

+
µ′′±
µ±
−

5
4
µ′2±

µ2
±

]
(x).

Since u and v are the two linearly independent solutions to (3.19), with K1/3(x) regular at x → +∞ and
I1/3(x) regular for x → 0, their Wronskian W[u, v](x) can be shown to be constant. In fact, u is the
exponentially decaying solution while v is the exponetially growing solution and W[u, v](x) is equal to
1. For a more detailed account of the properties of the modified Bessel functions and Airy functions,
we refer the reader to the aforementioned book by Bell or the well-known book of special functions by
Abramowitz and Stegun, especially chapters 9.6 and 10.4.[2] We can now proceed by defining another
function G(x, s) = u(x)v(s)− v(x)u(s).3 This function can now be used as part of the kernel of an integral
operator to find the exact solution to (3.16). More precisely, it is just a matter of direct differentiation
and applying the property (3.19) of u and v to show that the implicitly defined function

y± = u± +

∫ L

x
G±(x, s)T±(s)y±(s)ds (3.20)

4 satisfies
y′′±(x) =

[
−T± + ξ′2±

]
y±(x) + T (x)y±(x)W[u, v](x) = ξ′2± y±(x).

We would love to avail ourselves of this fact and use the eigenvectors p± of Q, which are defined by
Q(x)p± = µ±(x)p±, to diagonalize Q in order to obtain the solution to (3.16) in the form

y±(x) = p±y±(x). (3.21)

However, this is generally not possible, since p± might depend on x. Still there are spatially dependent
matrices whose eigenvectors do not have spatial dependence. The necessary and sufficient condition for
this to be true is that Q have the form

Q(x) = q(x)M, (3.22)

with q a scalar function and M a constant matrix. This is obviously a significant restriction. It is clearly
not necessary in order for this procedure to yield a correct solution. In fact, it can be used for any

3This is obviously not a proper Green’s function. However the property that we are about to show ’justifies’ this notation.
4We omit v from the non-integral part of y± since ξ is unbounded for any x > 0 when λ→ +∞ and v, in turn, is unbounded

for an unbounded argument.
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spatially dependent diagonal matrix (as long as ξ is well-defined), since then the system consists of
several mutually independent equations for which this form of solution works properly. But from now
on we are going to adhere to the restriction for Q given in (3.22).

A matrix Q of the form (3.15) cannot generally be written in the form (3.22). We are therefore going
to reproduce the properties of such Q in the assumptions on the scalar function qλ(x) and the matrix M.
Note that now µ± is given as

µ±(x) =
qλ(x)

2

[
Tr M ±

√
(Tr M)2 − 4 det M

]
.

We are thus going to assume det M > 0, Tr M < 0 and qλ(x) → +∞ as λ → +∞ for every x ∈ [0, L].
With these assumptions, the key property

µ±(x)→−∞ for λ→ +∞,∀x(0, L],

is preserved. We could also add various obscure sets of assumptions to secure that the function T±(x)
be bounded (in both x and λ). While we are going to assume q sufficiently smooth so as to allow for a
continuous second derivative (in x), we will simplify the rest by merely requiring that the boundedness
of T in both x and λ holds true as this is clearly the case for the case of reaction-diffusion equations with
Q given by (3.15).

Let us continue where we left off. Now (3.21) clearly satisfies (3.16) as we have

y′′± + Q(x)y± = ξ′2± y±(x)p± + µ±(x)y±(x)p± = 0.

We would like to show that the correction to u given by the integral becomes arbitrarily small for λ large.
However, this requires some subtle handling as it is not generally true for (3.20); but before we take care
of that, we take a small detour that will bring us closer to completing the proof. As things stand, the
integral in (3.20) features the unknown function y, which is very inconvenient but can be taken care of in
a rather elegant manner. Let us introduce the integral operator

(A± f )(x) ≡
∫ L

x
G±(x, s)T±(s) f (s)ds.

Then (3.20) can be rewritten (I− A)y = u. If we could prove that ‖A‖ < 1, we would be able to define the
inverse to the left-hand side via the Neumann series. Let us for now hope that this can be done. Then we
would have y = (I − A)−1u and the correction to u in y can thus be written as

y − u = (I − A)−1u − u =
[
(I − A)−1 − I

]
u =

 ∞∑
n=1

An

 u,

which implies

‖y − u‖L∞(Ω) ≤

∞∑
n=1

‖A‖n∞‖u‖L∞(Ω) =
‖A‖∞

1 − ‖A‖∞
‖u‖L∞(Ω). (3.23)

In this estimate we denoted by ‖ · ‖∞ the operator norm induce by ‖ · ‖L∞(Ω) and set Ω = (0, L). In this way
we eliminated the unknown function y from our estimate of the correction r(x) ≡ y(x) − u(x). Note that
both of the norms on the right-hand side depend on λ. That means that if we could prove the right-hand
side to approach 0 with increasing λ, the proof would be complete.

To show that, we need to take certain precautions with respect to the function G(x, s) = u(x)v(s) −
v(x)u(s). By the definition of A, we are only interested in the function for s ≥ x. We stated earlier that u is
the decaying and v the increasing solution, both exponentially. This fact can be expressed more precisely,
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namely in terms of the suitable weighing functions w1(x) ≡ (−µ(x))1/4 and w2(x) ≡ exp
(∫ x

0

√
−µ(s)ds

)
.

Note that the functions ν1(x) ≡ 1
w1(x)w2(x) and ν2(x) ≡ w2(x)

w1(x) correspond to the two modes in (3.13), either
both harmonic or one exponentially growing and the other one decaying. For these two functions we
have the estimates

|u(x)| ≤
M

w1(x)w2(x)
, |v(x)| ≤

Mw2(x)
w1(x)

, (3.24)

which implies |u(x)v(x)| ≤ M
w1(x)2 = M√

−µ(x)
. That way we see that since ξ is increasing in x, the second

term in G(x, s) can easily be shown to be bounded. Not so the first one, which is why we need to be
smart one last time. Instead of estimating ‖A f ‖, let us investigate ‖Ã f ‖, where f̃ ≡ w1w2 f . Then,

upon dropping the subscript ± and expanding the integrand by
w2

1(s)w2
2(s)

w2
1(s)w2

2(s)
we can rewrite the action of the

modified operator Ã as

Ã f (x) =

∫ L

x

ũ(x)ṽ(s) − ṽ(x)ũ(s)
w2

2(s)
·

T (s)
w2

1(s)
f̃ (s)ds. (3.25)

Since T was assumed bounded with respect to λ, the second fraction approaches 0 for λ large due to√
−µ(s) in the denominator. Since L is finite, all that is left is to show that the first fraction is bounded.

Since s ≥ x, for the second term we have∣∣∣∣∣∣∣ ṽ(x)ũ(s)
w2

2(s)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣u(x)v(x)

w1(s)w2(x)w1(x)
w2(s)

∣∣∣∣∣ ≤ M
∣∣∣∣∣w1(s)w2(x)
w1(x)w2(s)

∣∣∣∣∣ ≤ M
∣∣∣∣∣w1(s)
w1(x)

∣∣∣∣∣ ,
which is bounded by the boundedness of µwith respect to x. Using (3.24) and the fact that

∣∣∣∣ v(s)
w2(s)

∣∣∣∣ ≤ M
|w1(s)| ,

for the first term in (3.25) we obtain∣∣∣∣∣∣∣ ũ(x)ṽ(s)
w2

2(s)

∣∣∣∣∣∣∣ ≤ M
∣∣∣∣∣w2(x)w1(x)u(x)

w2(s)

∣∣∣∣∣ ≤ M2

w2(s)
, (3.26)

which vanishes for every s > 0 if λ grows boundlessly, which completes the proof. The result is thus what
we expected: the greater the growth, the better description is provided by the asymptotic methods. The
fact that the proof was to a big extent based on the spectral properties of the reaction diffusion problem
suggests that this asymptotic approach is justified in such settings. However, the significant restriction
(3.22) reduces the room for drawing fundamental conclusions with respect to such problems.



Conclusion

This work was intended to provide an overview of the basic concepts and frameworks for reaction-
diffusion equations and dynamical systems in general, as well as to further develop the methods of
theoretical analysis of these and related models in mathematical biology and beyond. First we present
a set of tools applicable to a large amount of evolution models, with a focus on those useful in near-
equilibrium states. We conclude this part by listing several basic types of bifurcations and compare their
properties.

After (re-)acquainting the reader with the most significant notions of reaction-diffusion models, their
main features and conditions, as well as attempting to offer an intuitive understanding of these features
and concepts, we dare a step ’beyond the linear’ and present and apply selected methods of weakly non-
linear analysis, such as separation of scales and solvability analysis, a term especially popular in Chapter
2.

In Chpater 3 we present the notion of asymptotic analysis, an approach fundamentally different from
those adopted in the earlier chapters. We analyse the key properties of reaction-diffusion models with
respect to such approaches, and successfully attempt to prove an approximation theorem for multicompo-
nent systems, although one that assumes a simplified form of spatial dependence in the reaction kinetics.
This result makes us hopeful that further (and less restrictive) generalizations might be possible.
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Appendix A

The spectrum of the Laplace operator

In this section we will briefly summarize a few useful results regarding the spectral properties of the
Laplace operator, which come in handy when setting up the theoretical framework of reaction-diffusion
equations. We will only refer the reader to external sources where we find it necessary, ı.e. in case we
feel we are well beyond the bounds of ’general knowledge’, which, for our purposes, is thus defined by
the (absence of) bibliographic references hereinafter.

First of all, we need to establish what we mean by the term spectrum. We will give the conventional,
commonly used definition. But before we do that, let us introduce some basic notation. In what follows,
by L(V,W) we will mean the vector space of linear (not necessarily bounded) maps from one vector
space V to another, W; if W = V , we will just write L(V) (the same for bounded operators, self-adjoint
operators etc.). In the case of Banach spaces X and Y over the field of complex numbers C, the subspace
of bounded operators will be denoted as B(X,Y). H will always denote a Hilbert space over C. Recall
that closedness and closability of an operator A ∈ L(X,Y) are defined using the graph Γ(A) ≡ {(x, Ax) |
x ∈ D(A)} and that the former is equivalent to completeness of the domain D(A) with respect to the graph
norm

‖x‖A ≡
√
‖x‖2X + ‖Ax‖2Y . (A.1)

An immediate observation is that for Ran(A) to be a closed subspace A must necessarily be closed.
Now we can proceed to defining the resolvent set for a closed1 operator A ∈ L(X) as

ρ(A) ≡ {z ∈ C | (A − zI) is injective and (A − zI)−1 ∈ B(X)}

and the spectrum as its complement
σ(A) ≡ C \ ρ(A).

Recall that in general spectrum consists of three disjoint subsets: point spectrum σp (eigenvalues, ı.e.
(A− λI) is not injective), continuous spectrum σc ((A− λI) -1 is defined densely but not everywhere) and
residual spectrum σr ((A − λI) -1 is not densely defined) and that for a densely defined self-adjoint (ı.e.
A coincides with A∗, including domains) operator (we denote the subspace of such operators L sa) on a
Hilbert space we have σr(A) = ∅, σ(A) ⊂ R and a different disjoint decomposition is possible, namely
σ(A) = σd(A) ∪ σess(A), where the discrete spectrum σd ⊂ σp consists solely of isolated eigenvalues of
finite multiplicity; its complement σess is called the essential spectrum.

1If A is not closed, then neither is (A − λI) or its range, which coincides with the domain of its inverse (if this exists).
However, the domain of a bounded operator is the whole space and thus always closed. Consequently, (A − λI)−1 cannot be a
bounded operator, meaning σ(A) = C.
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The procedure we will follow from now on is basically adopted from the lecture notes [12]. Our
first goal is to show that the (negatively taken) Laplace operator on an L2-space on a bounded domain2

Ω ⊂ Rm with Neumann boundary conditions is (or rather ’can be made’) self-adjoint and positive so that
we can then apply one of the spectral theorems applicable to such operators. To this end, let us note that
the action of the Laplace operator with respect to the scalar product on L2

(ϕ,−∆ψ) = −

∫
Ω

ϕ∆ψ = −

∫
∂Ω

ϕ (n · ∇)ψ︸   ︷︷   ︸
=0 on ∂Ω

+

∫
Ω

∇ϕ · ∇ψ =

∫
Ω

∇ϕ · ∇ψ,

in the special case ϕ = ψ : (ψ,−∆ψ) =

∫
Ω

|∇ψ|2 = ‖∇ψ‖2

is symmetric and positive (in the sense that (ψ,−∆ψ) ≥ 0; n again stands for the outward normal to
∂Ω). Observe as well that the right-hand side relaxes the smoothness assumptions on ψ required for the
left-hand side to make good sense, and that it can be used to define a positive quadratic3 form a′

[
ψ
]

=

(ψ,−∆ψ) = ‖∇ψ‖2; we will make good use of this fact later on. Due to the ’pleasurable’ properties
of the right-hand side we will restrict ourselves to this distributional (or weak) Laplace operator that
generalizes the ’classical’ action of the operator on (at least twice) continuously differentiable functions.
As the reader most probably expects, this leads us to the notion of weak derivatives and Sobolev spaces.

Definition A.1. Let α = (α1, . . . , αm) ∈ Nm
0 be a multiindex of order |α| = α1 + . . . + αm. We say that the

function ψ ∈ Lp(Ω)4 has a weak partial derivative

Dαψ ≡
∂|α|ψ

∂xα1
1 ∂xα2

2 · · · ∂xαm
m

iff there exists a function ϕ ∈ L1
loc(Ω) such that

∀ f ∈ C∞0 (Ω) :
∫

Ω

ϕ f = (−1)|α|
∫

Ω

ψDα f ,

where Dα f is understood in the classical sense. In the positive case we write ϕ = Dαψ.

It is a straightforward task to show that the weak derivative indeed has some of the properties that we
expect, namely that if the derivative exists in the classical sense, it will coincide with the weak derivative,
and that if a function has (all the) weak derivatives of a given order, say k, then it also has (all) weak
derivatives of orders l < k. Hence, we can define spaces of functions with a certain level of weak
smoothness in an intuitive fashion, just as we do in the classical case. Here the condition of continuity
of the derivatives of a certain order is naturally replaced by the condition of integrability. In this manner
we arrive at the well-known definition of Sobolev spaces Wk,p:

Definition A.2. Let k ∈ N, p ∈ [1,∞).5 The Sobolev space Wk,p(Ω) is the linear function space
{ψ ∈ Lp(Ω) | Dαψ ∈ Lp(Ω),∀α s.t. 0 < |α| ≤ k} equipped with the norm

‖ψ‖Wk,p(Ω) ≡

 ∑
0≤|α|≤k

‖Dαψ‖
p
Lp(Ω)

1/p

. (A.2)

2The case of Ω being a bounded domain is of interest but the following considerations are applicable to any bounded open
set.

3Recall the 1:1 correspondence between sesquilinear and quadratic forms following from the polarization identities.
4More generally, ψ ∈ L1

loc(Ω) can be used in the definition of weak derivatives. For our purposes, a definition for Lp-functions
is sufficient.

5The distinct case p = +∞ is usually included in the definition of Sobolev spaces but is not relevant to our considerations.
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The essential observation from a function-theoretical point of view is that Sobolev spaces are com-
plete (and thus Banach) with respect to the norm (A.2). A by-product of this observation is that for p = 2
they are Hilbert spaces (usually denoted Hk) with the inner product

(ϕ, ψ)Hk(Ω) =
∑

0≤|α|≤k

(Dαϕ,Dαψ)L2(Ω)

following from the polarization identities. For a more precise and general account of Sobolev spaces see
e.g. chapter V in [6].

The main obstacle on the way towards a self-adjoint Laplace operator, which we have avoided ad-
dressing so far, is its domain. Classically we require that functions in its domain be at least of class
C2(Ω) ∩ C1

(
Ω
)
. This is rather restrictive and results in the fact that, despite being densely defined

and symmetric, A ≡ −∆ (defined on such a subspace of L2(Ω)) does not coincide with A∗ but rather
A ⊂ A∗.6 The intuitive understanding might be that, since D(A) is not ’broad’ enough, the requirement
on an element φ ∈ H ≡ L2(Ω) to belong to D(A∗) is ’too weak/mild’, and consequently D(A∗) is too
’broad’ to coincide with D(A), instead yielding D(A) ⊂ D(A∗). The common approach then is to look
for a self-adjoint extension of A, intuitively meaning that we wish to extend D(A) (and hence confine
D(A∗)) so as to ’meet in the middle’ (while preserving the symmetry of A, of course). In a quantum
mechanical or function-theoretical setting this is a well-studied (which by no means implies easy-to-
solve) problem, and there are several (hopeful) ways to do this. One popular approach is to exploit the
correspondence between linear operators and sesquilinear forms; the reader is probably familiar with the
1:1 correspondence between bounded sesquilinear forms and bounded linear operators, which can serve
as a good example for the fact that there is indeed a close relationship between these two notions on a
Hilbert space. The idea is as follows: a densely defined, symmetric and bounded-from-below operator
A′ defines a form a′ of the same properties. This form may or may not be closed but is always closable;
let us denote its closure by a. This form in turn defines our coveted self-adjoint (which includes densely
defined) and bounded-from-below extension A of A′. The details and the representation theorems under-
lying this procedure, known as Friedrichs extension, can be found for instance in chapter IV.2 of [6] or
chapter VI.2 of [9].

The key outcome is that the search for a self-adjoint ’version’ of the Laplace operator leads to the
Sobolev space W1,2(Ω) as its ’natural habitat’. This is not too surprising: since we wished to extend
D(−∆), the generalizations provided by the notions of distributional Laplacian and weak derivatives
do seem a hopeful way to achieve this. In this context it might be interesting to notice that the norm

‖ψ‖W1,2 =
√
‖ψ‖2

L2 + ‖∇ψ‖2
L2 is exactly the ’graph norm’ (A.1) of the quadratic form a[ψ] = ‖∇ψ‖2

L2

associated with the generalized (distributional) Laplace operator (viewed as a map a : L2(Ω) → C).
Using all of this, one can show that the operator −∆Ω

N defined by

D(−∆Ω
N) ≡{ψ ∈ W1,2(Ω) | ∃η ∈ L2(Ω) s.t.∀φ ∈ W1,2(Ω) : (∇φ,∇ψ) = (φ, η)}

={ψ ∈ W1,2(Ω) | ∆ψ ∈ L2(Ω) ∧ (n · ∇)ψ = 0 on ∂Ω}

−∆Ω
Nψ ≡η,

where ∆ψ is understood in the distributional sense, is indeed self-adjoint and bounded from below. Note
that the boundary condition together with the requirement ∆ψ ∈ L2(Ω) define a closed subspace of
W1,2(Ω) due to the completeness of Lp-spaces.

We are now left with the task to argue that the eigenvectors of this operator form an orthonormal basis
of the space L2(Ω). This can be shown to be equivalent to the operator of interest having a purely discrete

6Recall that the domain of A∗ is given as D(A∗) ≡ {φ ∈ H | ∃η ∈ H s.t.∀ψ ∈ D(A) : (Aψ, φ) = (ψ, η)} and that in the positive
case we write A∗φ = η.
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spectrum, ı.e. σess = ∅, as well as to the operator having a compact resolvent (see Corollary 4.2.3 in
[5]). This is in turn equivalent to the domain D(A) (which in our case is a closed subspace of W1,2) being
compactly embedded in H = L2(Ω) by the proof of Theorem B.7 of [12]. It is therefore sufficient to
prove that the embedding W1,2(Ω) ↪→ L2(Ω) is compact. This will be done via a detour to rectangular
domains, where the eigenvalue problem −∆

Ωrec
N ψ = λψ 7 can be solved directly (and relatively easily)

using separation of variables (see e.g. [10]) and the explicitly expressed harmonic eigenfunctions are
well-known to form a complete set in the corresponding L2-space (as follows from the Stone-Weierstrass
theorem). This is equivalent to the embedding W1,2(Ωrec) ↪→ L2(Ωrec) being compact, which we wish to
avail ourselves of as the central element in the chain

W1,2(Ω) ↪→ W1,2(Ωrec) ↪→ L2(Ωrec) ↪→ L2(Ω), (A.3)

where Ω ⊂ Ωrec. However, before we triumphantly proclaim the composition of embeddings (A.3) to
be our coveted compact embedding, we need to resolve a subtle yet important technical issue. Since
compact operators form a two-sided ideal in bounded operators, we need to make sure that both the
first (the exttension to Ωrec) and the third (the restriction back to Ω are bounded). Whereas this is
straightforward to see with the latter, it is not so easy with the former. Note that this is no issue with
the Dirichlet Laplacian, whose ’natural domain’ is provided by W1,2

0 (Ω) ≡ C∞0 (Ω)
‖·‖W1,2(Ω) .[12] Since all

functions ψ ∈ W1,2
0 (Ω) vanish on the boundary ∂Ω, they can be easily extended (by 0) to Ωrec (or any

other open superset of Ω) ’in a bounded manner’. This is not the case for Neumann boundary conditions,
where some (although not much) regularity must be required of ∂Ω for this to be true. Let us first
formulate what we will mean by the extension property:

Definition A.3. Let Ω ⊂ Rm be an open subset. Then Ω has the extension property iff there exists a
bounded operator E ∈ B

(
W1,2(Ω),W1,2(Rm)

)
such that ∀ψ ∈ W1,2(Ω) : Eψ|Ω = ψ.

It is clear that if such a bounded extension operator exists, then via a composition with a restriction
(which is always bounded) to an open set Ω̃ ⊃ Ω we can obtain a bounded extension to any open superset
of Ω. We would therefore love to have a sufficient condition that would guarantee that Ω indeed has the
extension property. Fortunately, this is the case thanks to Theorem 4.12. of [6]. It states that if Ω has
a minimally smooth boundary, it always has the extension property. First of all, let us note that this
requirement does not just serve the cause of the proof; there are indeed examples of bounded domains
that do not admit a bounded extension operator (see e.g. Example 4.1 in [12]). Secondly, let us remark
that the notion of minimally smooth boundary has a rather technical definition and we will not provide it
in its full form as it is not instrumental for our cause. Instead, we will list several classes of open sets that
comply with the requirement to demonstrate its ’mildness’. As far as bounded, open sets are concerned,
all sets with boundary of class C0,1 (ı.e. 1-Hölder continuous)8 have the extension property. This includes
all (bounded, open) sets with a Lipschitz-continuous boundary (in the sense of the footnote), with a
boundary of class C1 (or higher) or, interestingly enough, all (bounded, open) convex subsets of Rm

(by Theorem 4.2. in [6]). For all these classes of open sets Ω the extension W1,2(Ω) ↪→ W1,2(Ωrec) is
bounded and hence the composition of embeddings (A.3) is compact. Thus, the spectrum of the Laplace
operator is purely discrete and its eigenvectors form an orthonormal basis of L2(Ω). This is true not only
for Neumann boundary conditions but even for the more general Robin boundary conditions given as

7The additional sub- and superscript on −∆ emphasize the choice of boundary conditions and of the domain Ω rather than
the use of the distributional Laplacian. Here the Laplace operator allows for a purely classical approach.

8α-Hölder continuous functions are real/complex-valued functions satisfying | f (x) − f (y)| ≤ C‖x − y‖α. Roughly speaking,
a boundary is of class C0,1 if it admits local coordinates (x1, . . . , xm) in which the boundary points are locally given by a map
xm = Φ(x1, . . . , xm−1), which is of class C0,1. For details consult chapter V.4.1 in [6].
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αψ + (n · ∇)ψ = 0 on ∂Ω,

with α ∈ L∞(∂Ω). [12]
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