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Abstrakt 

Pruty namáhané kombinací tlaku a ohybu jsou jedním z nejčastěji používaných konstrukčních 

prvků. Chování takovýchto prutů vyrobených z uhlíkové oceli bylo již dříve zkoumáno a na 

základě získaných dat byly odvozeny návrhové postupy. V případě užití korozivzdorné oceli, v 

důsledku výrazně odlišných materiálových vlastností obou druhů oceli, však tyto návrhové 

postupy neplatí. V posledních letech byla provedena řada experimentů a numerických studií 

poskytujících podklady, ze kterých následně byly odvozeny řady vztahů vystihující chování prutů 

z korozivzdorné oceli namáhaných kombinací tlaku a ohybu. Bohužel každý z nově odvozených 

vztahů vykazoval určité nepřesnosti, z tohoto důvodu se tato práce zabývá právě problematikou 

prutů z korozivzdorné oceli zatížených kombinací tlaku a ohybu se zaměřením na uzavřené 

čtvercové a obdélníkové průřezy, které jsou pravděpodobně nejpoužívanějšími profily pro nosné 

konstrukce z korozivzdorné oceli. 

Zde uvedený výzkum zahrnuje experimentální studii čítající celkem 20 zhotovených experimentů 

sestávajících se z prutů o čtvercových a obdélníkových průřezech ze dvou tříd austenitické oceli, 

jmenovitě třídy 1.4301 a 1.4404. Kvůli získání většího množství dat byl vytvořen numerický 

model v softwaru Abaqus, který byl validován na základě dat získaných ze zhotovených 

experimentů, na jehož základě byla zhotovena rozsáhlá numerická parametrická studie, 

poskytující dostatečné množství dat k následné analytické části práce. 

Primárním cílem práce bylo stanovit zjednodušený analytický vztah pro návrh prutů 

z korozivzdorné oceli o čtvercovém a obdélníkovém průřezu zatížených kombinací tlaku a ohybu. 

K tomu byla využita data získaná z numerické parametrické studie. Závěry této práce mohou 

pomoci k rozšíření znalostí o zmíněné problematice a přispět k nejnovější normě pro 

korozivzdornou ocel. 

 

Klíčová slova: korozivzdorná ocel, kombinace tlaku a ohybu, štíhlost prutu, štíhlost průřezu. 

  



 



Abstract 

Members loaded by the combination of compression and bending are very common structural 

elements. Behaviour of the carbon steel beam-columns was investigated in the past and based on 

the obtained data design procedures were derived. In the case of stainless steel beam-columns, 

the design procedures for carbon steel are not suitable due to significant material behaviour 

differences of both kinds of steel. In the last years many experimental and numerical studies were 

carried out to provide data from which some new approach describing stainless steel beam-

column behaviour were derived. Unfortunately, each of the derived approaches exhibited some 

inaccuracies or limitations. Therefore, this thesis investigates the issue of stainless steel beam-

columns with focus on the square and rectangular hollow cross-sections which are probably the 

most widely used cross-sections for stainless steel load-bearing structures. 

Presented research includes experimental study consisting of 20 conducted experiments of both 

square and rectangular hollow section members of two austenitic stainless steel grades, namely 

1.4301 and 1.4404. In order to obtain greater amount of data, a numerical model was created in 

software Abaqus and validated on the experiments. It was used for a comprehensive numerical 

parametric study providing sufficient amount of data for an analytical part of the research. 

The aim of the research was to derive analytical approach for the stainless steel square and 

rectangular hollow section beam-column design. Data obtained from the numerical parametric 

study were used for this purpose. The conclusions of this research can broaden the knowledge of 

the investigated issue and contribute to the recent stainless steel design code. 

 

Key words: stainless steel, combined loading, non-dimensional slenderness, cross-section 

slenderness, beam-column. 
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Chapter 1  

 

Introduction 

1.1 What is stainless steel? 

Stainless steel is a special family of highly alloyed steels containing at least 10.5 % of chromium 

with great corrosion resistance and resistance at elevated temperatures. There are many stainless 

steel grades with various levels of yield strength, ultimate strength, corrosion resistance, ductility, 

weldability and toughness. The mentioned material properties are influenced by content of the 

alloying elements which leads to many stainless steel grades with different material properties. 

Therefore, it is very important to choose the appropriate stainless steel grade for the application 

in corresponding corrosion environment and required strength. The inappropriate choice of 

stainless steel grade can leads to an unnecessarily expensive structure or worse, to not satisfactory 

corrosion resistance.
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The corrosion resistance of stainless steel members is ensured by a very thin, about 5 x 10-6 mm, 

transparent and adherent passive layer on the surface of stainless steel. Passive layer arises if the 

material contains above 10.5 % of chromium, has a clean surface and if it is exposed to the air or 

any other environment containing oxygen. In the case of surface damage, the passive layer is able 

to recover by the chemical reaction of chromium contained in the material and oxygen contained 

in the air, see Figure 1.1. 

 

Figure 1.1 Passive layer recovery. 

1.2 Stainless steel in Constructions 

Stainless steel was firstly used as a construction material more than one hundred years ago. It was 

presented as a corrosion resistant material with great aesthetic properties. However, it was 

considered as over-expensive in the comparison with the well-known carbon steel. Furthermore, 

not much information about stainless steel members behaviour existed.  

The utilization of stainless steel alloys for structural elements has been significantly increased in 

the last two decades. Especially in coastal areas where structures are exposed to an aggressive 

environment stainless steel becoming very popular both for onshore and offshore structures. 

Architects design this material because of its aesthetic appearance and engineers then for its 

corrosion resistance, large durability, easy maintenance and appropriate mechanical properties 

(toughness, ductility, impact resistance, elevated temperature resistance). 

Despite the fact that the utilization of stainless steels increased, its use in the comparison with 

well-known carbon steel is still low. The primary reason for this low use in structural applications 

is usually the actual cost of stainless steel as a material. High cost of the stainless steel structure 

may be partially caused by inaccurate, usually conservative, design approaches in standard for 

stainless steel EN 1993-1-4 [1]. The inaccuracies stems mostly from the fact that EN 1993-1-4 [1] 

draws from EN 1993-1-1 [2] for carbon steel, because stainless steel data were limited in 2005. 

However, the high initial cost of stainless steel structure could be compensated by a lower 

maintenance cost during the lifecycle of structure in some cases. Carbon steel structures need 
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coatings to protect the material against corrosion that should be checked and sometimes re-painted 

in predefined periods. Stainless steel is a corrosive resistant material, therefore, there is a cost 

save due to corrosion resistant coating elimination. 

There are many grades of stainless steel traditionally used in civil engineering. They are divided 

into several groups regarding to their microstructure, namely austenitic, ferritic, duplex 

(austenitic-ferritic), martensitic and precipitation hardening, see Figure 1.2. Due to the different 

microstructure, every stainless steel group has a different material properties. The most commonly 

used in load-bearing structures are the first three ones. All of mentioned stainless steel groups are 

described in detail in following chapters. 

 

Figure 1.2 Stainless steel groups according to content of nickel and chromium [3]. 

1.2.2 Austenitic stainless steels 

Austenitic stainless steel is the most widely used stainless steel group for building applications. 

Compared to carbon steel, which have body-centred cubic atomic structure, austenitic stainless 

steel group has a face-centred cubic atomic structure. It is considered that austenitic stainless 

steels are more corrosion resistant than ferritic stainless steels. To retain austenitic structure at 

room temperature, some common austenitisers such as nickel, manganese and nitrogen are added. 

Austenite is formed in carbon steel at 900 °C to 1400 °C as well. Austenitic stainless steel with 

molybdenum is resistant to a sea water and chloride-bearing solutions; this type of stainless steel 

is therefore used extensively in aggressive marine and industrial environments. Though austenitic 
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stainless steels cannot undergo heat treatment, they have tensile strengths up to 1000 MPa and 

can be also used as reinforcing bars in a concrete. Austenitic grades are non-magnetic in general, 

however, heavy cold-working can increase magnetic permeability. 

1.2.3 Ferritic stainless steels 

Ferritic stainless steel group has a body-centred atomic structure. This group of stainless steel is 

magnetic unless it is heated to above 750 °C. Ferritic stainless steels should contain more than 

12 % of chromium and very low content of nickel. Though sometimes small amount of other 

elements such as aluminium, titanium and molybdenum are added, ferritic steels are considered 

as binary alloys. Therefore, ferritic stainless steels have a reduced corrosion resistance and its 

price is usually lower than the price of austenitic stainless steels. The application of ferritic 

stainless steels in buildings is limited mostly to the interior where corrosion resistance is not so 

much of a factor. Ferritic steels do not respond to heat treatment and are more difficult to weld 

and shape than austenitic stainless steels. 

1.2.4 Duplex stainless steels 

Steels with content of chromium typically from 20 to 26 % and nickel from 1 to 6 % and 

containing both austenite and ferrite are called duplex stainless steels (or austenitic-ferritic 

stainless steels). This type of steel has both beneficial and disadvantageous characteristics of the 

two phases. By adding other austenite and ferrite stabilizers, the composition of the two phases 

can be varied. A lot of effort has been put into developing the properties of this relatively new 

stainless steel group which exhibits good ductility and higher strength compared to austenitic one. 

Duplex stainless steels are normally used when corrosion resistance and strength are equally 

important. It is a suitable alternative to carbon steel, other types of stainless steel and nickel based 

alloys. 

1.2.5 Martensitic stainless steels 

Martensitic stainless steel group contains higher amount of carbon than ferritic steels which leads 

to a higher strength and hardness but lower ductility. It is usually used in hardened and tempered 

condition ensuring mentioned material properties enhancement. The utilization of martensitic 

stainless steel group is tightly connected with its great hardness and abrasion resistance, like 

bearings for instance. Despite very low ductility, even lower than ferritic steels, martensitic steels 

can be welded, however, preheating and post-weld heat treatment could be required. 
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1.2.6 Precipitation hardening stainless steels 

These are steels that can dispone by very high strengths due to heat treatment. Material properties 

of precipitation hardening stainless steels are combination of martensitic and austenitic stainless 

steel material properties. This stainless steel group is usually not used for welding. It is widely 

used in aerospace industry, than for bolts, shafts, tension bars and others where combination of 

high strength and moderate corrosion resistance is required. 

Because martensitic and precipitation hardening stainless steels are not widely used as a structural 

elements only austenitic, ferritic and duplex stainless steel groups are considered and investigated 

in this thesis. 

1.3 Fabrication of stainless steel products 

There are many forms of stainless steel members including sheets, plates, coils, strips, bars, square 

hollow sections (SHS), rectangular hollow sections (RHS), circular hollow sections (CHS), I, H, 

U and C open sections or angles. Fabrication of the cross-sections is made by cold-forming, hot 

rolling, extrusion and laser or arc welding. 

The most widely used production procedure for hollow cross-sections is a combination of cold 

rolling and welding, see Figure 1.3. 

 

Figure 1.3 Hollow cross-section forming [4]. 

It is necessary to mention that cold-forming changing material properties in the influenced 

regions. Regarding the cold forming these areas exhibit higher strengths, especially yield strength, 

but lower ductility. 
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1.4 Designation and composition of stainless steel grades 

European designation system is described in the Eurocode EN 10027-2 [6]. Chemical 

composition and some basic material properties are given in the Eurocode EN 10088-1 [7]. 

Technical properties and chemical compositions data for the appropriate materials are provided 

by EN 10088-4 [8] and EN 10088-5 [9]. 

European designation of stainless steels is demonstrated in Table 1.1 for the austenitic 1.4307 

stainless steel grade. There is a different denotation of stainless steel grades in the American 

standards AISI, correlation between the European and US denotation is given by Table 1.2. 

Table 1.1 Designation of stainless steels. 

1. 43 07  

Denotes steel Denotes one group 

of stainless steels 

Individual grade 

identification 

 

The groups of stainless steel are denoted as:  

 1.40XX 

1.41XX 

1.43XX 

1.44XX 

1.45XX 

1.46XX 

Stainless steel with Ni < 2.5 % without Mo, Nb and Ti 

Stainless steel with Ni < 2.5 % and Mo but without Nb and Ti 

Stainless steel with Ni ≥ 2.5 % without Mo, Nb and Ti 

Stainless steel with Ni ≥ 2.5 % and Mo but without Nb and Ti 

Stainless steels with special additions 

Chemical resistant and high temperature Ni grades 

The steel name providing some information about chemical steel composition. The name of 

stainless steel 1.4307 is X2CrNi18-9, which means: 

X 2 CrNi 18-9 

Denotes high alloy 

steel 

100 x % of carbon Chemical symbols of 

main alloying 

elements 

% of main alloying 

elements 
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Table 1.2 The correlation between European and US designation of stainless 

steels [5]. 

Steel grade to EN 10088 US 

No. Name ASTM Type UNS 

Austenitic 

1.4301 X5CrNi18-10 304 S30400 

1.4306 X2CrNi19-11 304L S30403 

1.4307 X2CrNi18-9 304L S30403 

1.4311 X2CrNin18-10 304LN S30453 

1.4318 X2CrNiN18-7 301LN  S30153 

1.4401 X5CrNi Mo17-12-2 316 S31600 

1.4404 X2CrNiMo17-12-2 316L S31603 

1.4406 X2CrNiMoN17-11-2 316LN S31653 

1.4429 X2CrNiMoN17-13-3 316LN S31653 

1.4432 X2CrNiMo17-12-3 316L S31603 

1.4435 X2CrNiMo18-14-3 316L - 

1.4439 X2CrNiMoN17-13-5 317LMN S31726 

1.4529 X1NiCrMoCuN25-20-7 - N08926 

1.4539 X1NiCrMoCu25-20-5 904 L N08904 

1.4541 X6CrNiTi18-10 321 S32100 

1.4547 X1CrNiMoCuN20-18-7 - S31254 

1.4565 X2CrNiMnMoN25-18-6-5 - S34565 

1.4567 * X3CrNiCu18–9-4  S30430 

1.4571 X6CrNiMoTi17-12-2 316Ti S31635 

1.4578 * X3CrNiCuMo17–11–3-2 - - 

Duplex 

1.4062 * X2CrNiN22-2--  S32202 

1.4162 X2CrMnNiN21-5-1  S32101 

1.4362 X2CrNiN23-4 2304# S32304 

1.4410 X2CrNiMoN25-7-4 2507# S32750 

1.4462 X2CrNiMoN22-5-3 2205# S32205 

1.4482 * X2CrMnNiMoN21–5-3  - 

1.4501 * X2CrNiMoCuWN25–7-4  S32760 

1.4507 * X2CrNiMoCuWN25–7-4  S32520 

1.4662 * X2CrNiMnMoCuN24–4-3–2  S82441 

Ferritic 

1.4003 X2CrNi12 - S41003 

1.4016 X6Cr17 430 S43000 

1.4509 X2CrTiNb18 441+ S43940 

1.4512 X2CrTi12 409 S40900 

1.4521 X2CrMoTi18-2 444 S44400 

1.4621 * X2CrNbCu21 - S44500 

All the above steels are in EN 10088-4/5 except for those marked with *, which are 

currently only in EN 10088-2/3. 

# Commonly used trade names. 

+ 441 is a common trade name for this grade but not an ASTM type. 
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Chapter 2  

 

Research objectives 

Stainless steel square and hollow cross-section members loaded by combination of compressive 

force and bending moment are one of the most commonly used structural elements. However, the 

design of these members is still concern. On one hand, there is a significant progress in the 

stainless steel beam-column investigation during last decades with many design improvements 

developed. On the other hand, all of them exhibit some drawbacks. Therefore, the objectives of 

the thesis are to broaden the stainless steel square and rectangular hollow cross-section beam-

column behaviour knowledge, to evaluate some existing design procedures and to develop both 

safe and accurate analytical description of these structural elements.
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2.1 Thesis outline 

A brief introduction of stainless steel is given in the first chapter, containing utilization of stainless 

steel in structural engineering, description of stainless steel groups, fabrication of stainless steel 

and stainless steel chemical content. Then, research objectives and outline of the thesis are given 

in this chapter as well. 

Chapter 3 provides a comprehensive state of the art relevant for the thesis. In the first part, the 

general information of stainless steel is given, namely mechanical properties, stress-strain 

diagram, cross-section classification (which is slightly different compared to common carbon 

steel), imperfections, residual stresses and stainless steel partial factors. Then, design procedures 

are given. Firstly, flexural buckling and bending load-bearing capacity establishment is described, 

later, a comprehensive description of stainless steel beam-column procedures follows. 

Chapter 4 presents experimental study consisting of both material tensile tests and square and 

rectangular hollow cross-section members loaded by eccentric compression. Furthermore, 

measurement of the real dimensions of cross-sections, member lengths and both local and global 

imperfection amplitude values are given. 

Chapter 5 provides numerical part of the research. A numerical model created in software Abaqus 

is described in detail. Furthermore, its validation based on the experimental data is given. Then, 

the comprehensive numerical parametric study is presented. 

Chapter 6 consists of comparison of the most recent stainless steel beam-column design 

procedures with numerical results and derivation of a new proposal for the interaction factor 

calculation. Furthermore, evaluation of the proposed interaction factor for the combination of 

compressive force and uniform bending moment along the member length is given considering 

various compressive and bending load-bearing capacity approaches. A brief study of stainless 

steel beam-columns under moment gradient is given as well, with focus on the evaluation of the 

mentioned new interaction factor formulae. Complex reliability analysis of the new proposal is 

given, as well. Additionally, a very brief investigation of the General Method containing current 

state evaluation and a modification proposal is given. 

Chapter 7 provides summary of the conducted work and proposal of topics and aims for future 

research. 

Chapter 8 contains annex with charts for numerical model validation
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Chapter 3  

 

Literature review 

3.1 Material characteristics 

Stainless steel unlike to carbon steel, which displays a linear elastic region and clearly visible 

yield point followed by a yield plateau and strain hardening, exhibits a rounded stress-strain 

response without clearly defined yield point but a high degree of strain hardening and ductility. 

Due to different chemical composition every group of stainless steel (austenitic, ferritic and 

duplex) exhibits different yield stress level, ductility and curvature of stress-strain diagram curve. 

Ductility of austenitic stainless steels is around 40 to 60 % which is approximately twice higher 

than for carbon steels. Ferritic and duplex stainless steels ductility is about 15 to 30 % and 30 to 

50 %, respectively. The comparison of representative stress-strain diagrams for all three stainless 

steel groups together with S355 carbon steel is shown in Figure 3.1 and Figure 3.2, where clear 

difference in the yield strength and ductility is shown
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Cold-worked stainless steel exhibits non-symmetry in strass-strain behaviour which means 

different material behaviour in tension and compression.  Furthermore, there is an anisotropy 

phenomenon regarding the rolling direction, see Figure 3.3. However, the influence of both 

phenomena can be neglected if: material model for the appropriate loading direction is considered; 

material is subsequently annealed; cold-working is not significant. 

The yield strength of stainless steel is defined by the proof strength at 0.2 % of plastic strain 

meaning 0.2 % offset permanent strain. Therefore, the stainless steel proof yield strength is 

specified as 𝜎0.2. A definition of 0.2 % proof strength is shown in Figure 3.4. 

As was mentioned before, SHS and RHS contain enhanced material properties in corner regions 

due to cold-forming. It was investigated, both experimentally [10], [11] and numerically [12], 

[13], that the enhanced corner material properties exceed the pure corner area into the flat parts 

of the cross-section. The extension was defined as two times the wall thickness. However, a recent 

study of Mařík and Jandera [14], [15] found that assumption of the enhanced material properties 

only in the corner is more accurate. 

 

Figure 3.1 Stress-strain curves for stainless steel and carbon steel from 0 to 0.75 

% strain [5]. 
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Figure 3.2  Full range stress-strain curves for stainless steel and carbon steel [5]. 

 

Figure 3.3 Stress-strain diagram of cold-worked hardened stainless steel 1.4318 

grade [16]. 
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Figure 3.4 Definition of the 0.2 % proof strength [5]. 

3.2 Material response description 

In 1943 Ramberg and Osgood [17] developed a very first formula, see Equation (3.1), describing 

stainless steel material response. It is called Ramberg-Osgood formula. 

 𝜀 =
𝜎

𝐸0
+ 𝐾 (

𝜎

𝐸0
)
𝑛

 (3.1) 

where K and n are the model constants, ε is the strain, E0 is the initial Young’s modulus of 

elasticity and σ is the stress. 

The formula represents both elastic and plastic response of stainless steel material which are 

calculated separately. One year later the Ramberg-Osgood formula was modified by Hill [18], see 

Equation (3.2). Since in the case of stainless steel the yield strength is defined as a stress 

corresponding to the 0.2 % of offset plastic strain, Equation (3.2) was slightly changed into the 

well-known form, Equation (3.3). 
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 𝜀 =
𝜎

𝐸0
+ 𝑐 (

𝜎

𝑅p
)

𝑛

 (3.2) 

 𝜀 =
𝜎

𝐸0
+ 0.002(

𝜎

𝜎0.2
)
𝑛

 (3.3) 

where  Rp is a general proof stress, c is the corresponding plastic strain, σ0.2 is the yield stress 

corresponding to 0.2 % plastic strain. 

The strain hardening exponent n defines degree of roundness of the stress-strain diagram curve 

and its value can be established according to Equation (3.4). The lower value of the strain 

hardening exponent the higher the roundness (non-linearity) of the stress-strain diagram curve. 

 𝑛 =
ln(𝜀p2 𝜀p1⁄ )

ln(𝜎2 𝜎1⁄ )
 (3.4) 

where σ1 and σ2 are stresses of two stress-strain diagram points (with σ2 > σ1), εp1 and εp2 are the 

corresponding plastic strains. 

According to Ramberg and Osgood [17] and current standards, the εp1 value should be considered 

as 0.01 % plastic strain and σ1 is equal to corresponding stress level σ0.01 while σ2 is the proof 

yield stress σ0.2 corresponding to 0.2 % of plastic strain εp2. Then, the formula could be simplified 

to Equation (3.5). Rasmussen and Hancock [19] recommended to consider 0.05 % proof strain 

instead of 0.01 % which leads to the Equation (3.6). Results are almost the same for both. 

However, it is expected that in the next revision of stainless steel Eurocode 1993-1-4 [1], this 

procedure will be implemented. 

 𝑛 =
ln(20)

ln(𝜎0.2 𝜎0.01⁄ )
 (3.5) 

 𝑛 =
ln(4)

ln(𝜎0.2 𝜎0.05⁄ )
 (3.6) 

Typical n values are about 5 to 15 for stainless steels, 6 to 40 for aluminium alloys and 14 for 

high strength carbon steels. Recommended values of strain hardening exponent regarding the 

rolling direction are provided by EN 1993-1-4 [1].  However, Arrayago et al. [20] made a study 

of strain hardening exponent values depending on stainless steel group and it was shown that 

values provided by EN 1993-1-4 [1] for duplex stainless steels are developed based on very 

limited data and are too low. Therefore, it is expected that in the next revision will be replaced by 
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the values developed by Arrayago et al. [20], involved in Design Manual of Structural Stainless 

Steel (DMSSS) [5].  The summary of strain hardening exponent values is shown in Table 3.1. 

Table 3.1 Strain hardening parameter values. 

Stainless steel 

group 

Stainless steel 

grade 

EN 1993-1-4 Arrayago et al. 

[20] 

DMSSS [5] 

Longitudinal 

direction 

Transverse 

direction 

Austenitic 

1.4301, 1.4306, 

1.4307, 1.4318, 

1.4541 

6 8 

7 
1.4401, 1.4401, 

1.4432, 1.4435, 

1.4539, 1.4571 

7 9 

Ferritic 

1.4003 7 11 

14 1.4016 6 14 

1.4512 9 16 

Duplex 1.4462, 1.4362 5 5 8 

Note to EN 1993-1-4 values: If the orientation of the member is not known, or cannot be 

ensured, then it is conservative to use the value for the longitudinal direction. 

 

The whole model exhibits a good agreement with the real behaviour of stainless steel material in 

the low stress levels, however, with increasing level of stress it becomes inaccurate. In 2000 

Mirambel and Real [21] developed a new two-stage model. The first stage considers stress level 

up to the 0.2 % proof strength (σ ≤ σ0.2) calculated according to Equation (3.3). While the second 

stage, for stress levels higher than the 0.2 % proof strength (σ > σ0.2) is calculated according to 

Equation (3.7). 

 𝜀 =
𝜎 − 𝜎0.2
𝐸0.2

+ 𝜀pu (
𝜎 − 𝜎0.2
𝜎u − 𝜎0.2

)
𝑛0.2,u
,

+ 𝜀0.2 (3.7) 

with 𝐸0.2 =
𝜎0.2𝐸0

𝜎0.2 + 0.002𝑛𝐸0
 (3.8) 

 𝑛0.2,u
, = 1 + 3.5

𝜎0.2
𝜎

 (3.9) 

where E0.2 is the tangent modulus at the 0.2 % proof stress level, εpu is the ultimate plastic strain 

component at the ultimate stress, ε0.2 is the plastic strain at the 0.2 % proof stress level, σu 

is the ultimate stress and n´0.2,u is the strain hardening exponent for the second stage of 

stress-strain curve (σ > σ0.2). 
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This modification significantly improves stainless steel response description. It is very 

appropriate for numerical modelling in Finite Element software. However, there is a slight 

shortcoming. If the stress level is equal to the ultimate stress then the calculated total strain slightly 

differs from the εpu ultimate plastic strain. Therefore, Gardner and Nethercot [22] suggested an 

improvement of this method considering total ultimate strain εu instead of the ultimate plastic 

strain εpu, see Equation (3.10). 

 𝜀 =
𝜎 − 𝜎0.2
𝐸0.2

+ (𝜀𝑢 −
𝜎𝑢 − 𝜎0.2
𝐸0.2

− 𝜀0.2)(
𝜎 − 𝜎0.2
𝜎u − 𝜎0.2

)
𝑛0.2,u
,

+ 𝜀0.2 (3.10) 

The shortcoming of the different ultimate strains was fixed, nonetheless, the procedure exhibits 

little inaccuracies beyond the 0.2 % proof stress. Gardner and Nethercot [22] proposed another 

formula that was recently confirmed by Arrayago et al. [20], see Equation (3.11). It considers 

stress σ1.0, corresponding to 1.0 % of plastic strain ε1.0, against ultimate values which leads to a 

higher accuracy beyond the 0.2 % proof stress at the expense of lower accuracy near the ultimate 

strength values. 

 𝜀 =
𝜎 − 𝜎0.2
𝐸0.2

+ (0.008 −
𝜎1.0 − 𝜎0.2
𝐸0.2

)(
𝜎 − 𝜎0.2
𝜎1.0 − 𝜎0.2

)
𝑛0.2,1.0
,

+ 𝜀0.2 (3.11) 

Combination of Equation (3.3) with both Equation (3.10) and (3.11) provides very accurate 

description of stainless steel stress-strain diagram. However, there are still recommendations for 

the both combinations use. Combination with Equation (3.10) exhibits very good accuracy near 

the ultimate strain, therefore, it is appropriate to use if large strain values are expected (e.g. 

connections). On the contrary, combination with Equation (3.11) exhibits great accuracy beyond 

the 0.2 % strain and lower near the ultimate strain, therefore, it is appropriate to be used if large 

strains are not expected (up to 10 %), which is the case for the most stainless steel members. 

3.3 Geometric imperfections 

Imperfections are an inevitable property of each steel member affecting compressive cross-

section respectively member stability and resistance. For members in compression, there are two 

types of geometric imperfections, local imperfections and global imperfections. 
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3.3.1 Local imperfections 

Research in local imperfections of stainless steel square and rectangular hollow cross-section 

members was made by Gardner and Nethercot [12]. In their research, previous existing procedures 

were verified firstly. Dawson and Walker [23] developed the initial local imperfection amplitude 

ω0 prediction which is given by Equation (3.12). 

 𝜔0 = 𝐾𝑡 (3.12) 

where ω0 is the initial local imperfection amplitude, K is the constant and t is the thickness of 

the structural element. 

It was shown that determining of initial local imperfection based on the thickness of the structural 

element and some constant only is quite inappropriate. Therefore, another formula was proposed, 

see Equation (3.13) [23]. 

 𝜔0 = 𝛼 (
𝜎0.2
𝜎cr

)
0.5

𝑡 (3.13) 

where σcr is the structural element critical buckling stress and α is the constant (for stainless steel 

square and rectangular hollow cross-sections is equal to 7.3 ∙ 10-6). 

However, it was shown that even this formula is not suitable too. Therefore, Dawson and Walker 

[23] developed the last expression given by Equation (3.14), with the consideration of constant γ 

value equal to 0.2. However, Gardner and Nethercot [12] found that 0.023 value is much more 

suitable for stainless steel that was confirmed by Cruise [4] later. 

 𝜔0 = 𝛾 (
𝜎0.2
𝜎cr

) 𝑡 (3.14) 

where γ is the constant (for stainless steels equal to 0.023). 

Furthermore, Cruise [4] described an imperfection shape along the member length by Fourier 

series. The imperfection frequency is defined in reference to a multiple ζ of the cross-section 

width. Two values of ζ were considered: ζ = 1 represents a half wavelength equal to the cross-

section width and ζ = 10 represents a half wavelength of ten times the cross-section width. These 

two values represent lower and upper boundary values of γ with regard to the manufacturing. 

Summary of the proposed γ values for the prediction of initial local imperfection amplitudes 

according to Cruise [4] is given in Table 3.2. 
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Table 3.2 Upper and lower limits for γ values according to Cruise [4]. 

Cross-section type γ (ζ = 1) γ (ζ = 10) 

Press-braked equal angles 0.008 0.052 

Cold-rolled box sections 0.012 0.111 

Hot-rolled equal angles 0.044 0.415 

 

Gardner and Nethercot [12] then verified two more procedures developed by Schafer and Peköz 

in 1998 [24] but both of these formulae were shown as unsuitable. Both procedures are shown 

below by Equations (3.15) and (3.16). 

 𝜔0 = 0.006𝑏 (3.15) 

 𝜔0 = 6𝑡𝑒
−2𝑡 (3.16) 

where b is the width of the plate and e is the Euler´s constant. 

Currently, there are some approaches to calculate initial local imperfection amplitude but most of 

them are inaccurate or developed on small number of specimens. The prediction formula for the 

local imperfection amplitude of square and rectangular hollow cross-sections, Equation (3.14), 

has been confirmed again by Zhao et al. in 2015 [25], [26]. For the circular hollow cross-sections 

the amplitude could be taken as 0.2t according to Gardner´s and Nethercot´s research [12]. 

3.3.2 Global imperfections 

The effect of initial global imperfection amplitude on the flexural buckling was also investigated 

by Gardner and Nethercot [12]. Three imperfection amplitudes were considered: L / 1000; 

L / 2000 and L / 5000, where L is the member length. It was found that the global imperfection 

amplitude L / 2000 is the most accurate one on average, but generally the amplitude is in the range 

of L / 1000 to L / 5000. In the parametric studies carried out by Rasmussen and Rondal [27], 

Rasmussen and Hancock [28], Young [29], Ellobody and Young [30] is the global imperfection 

for the pin-ended members considered as L / 1500. 

Another study of the global imperfection regarding to manufacturing was conducted by 

Cruise [4], as well in the case of local imperfections. Based on this research, three formulae for 

determination of global imperfections were established depending on the member length and they 

are shown in Table 3.3. 
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Table 3.3 Global imperfection amplitudes according to Cruise [4]. 

Manufacturing Global imperfection amplitude 

Press-braked cross-sections 0.00084L 

Cold-rolled cross-sections 0.00035L 

Hot-rolled cross-sections 0.0012L 

 

It could be noted, that although value L / 1500 was considered in many studies as the initial global 

imperfection amplitude, value L / 1000 would be very appropriate too as was shown in [4]. 

Furthermore, it is even more conservative due to higher value of the initial global imperfection. 

Generally, both L / 1500 and L / 1000 are suitable for stainless steel members. Furthermore, EN 

1993-1-5 [31] recommends to consider 80 % of fabrication tolerance that is, according to EN 

1090-2 [32], equal to L / 750. Again, a very similar value to the previous ones, L / 938. 

3.4 Residual stresses 

Stresses that exist in the structural cross-sections in the unloaded state are named residual stresses. 

These stresses in the structural elements are created during production. There are four main 

methods of producing described: welding; hot rolling; press breaking and cold rolling. Due to 

different properties of the material, it cannot be simply assumed that the residual stresses in 

stainless steel cross-sections are of the same magnitude or distribution as those in carbon steel 

cross-sections. 

Welding causes a steep temperature gradient. A temperature peak is situated at the welding site. 

Cooling of the heat material leads to tension stress in vicinity of the weld that is compensated by 

compressive stress in farther cross-section parts. 

Residual stresses in hot-rolled cross-sections are caused by different cooling rates due to variation 

of surface to volume ratio. The faster cooling structural elements, such as flanges and webs, are 

left in residual compression and slower cooling regions, such as plate intersections, are left in 

residual tension.  

Residual stresses in cold-formed cross-sections (press-braked and cold-rolled) are caused due to 

plastic deformation which occurs during forming of sheet material into a final cross-section.  

There are two types of residual stresses in cross-sections: membrane residual stresses (uniform 

through thickness) and bending residual stresses (variable through thickness). Membrane residual 
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stresses generally dominate in hot-rolled cross-sections while bending residual stresses are 

generally dominant in cold-formed (press-braked and cold-rolled) cross-sections. 

A comprehensive study of residual stresses influence on the stainless steel member resistance was 

made by Cruise and Gardner [33] for both hot-rolled and cold-formed cross-sections. For hot-

rolled cross-sections the results showed that membrane and bending residual stresses are typically 

below 10 % and 20 %, respectively, of the material 0.2 % proof stress. For press-braked cross-

sections, the membrane and bending residual stresses in the flat regions are generally low, 

typically below 10 % of the material 0.2 % proof stress, as well. However, higher bending residual 

stresses are observed in the corner regions, where large plastic deformation occurs that typically 

reach about 30 % of the material 0.2 % proof stress. In the case of cold-rolled box cross-sections, 

the results indicate similar membrane residual stresses as those observed in hot-rolled and press-

braked cross-sections and considerably greater bending residual stresses which are typically 

ranged from 30 % to 70 % of the material 0.2 % proof stress. 

Further study was made by Jandera et al. [34] for cold-rolled box cross-sections only. Researchers 

investigated the influence of bending and membrane residual stresses on global and local 

buckling. Paradoxically, it was found that inclusion of residual stresses to the calculation 

generally leads to increase of load-bearing capacity. This was attributed mainly to the influence 

of bending residual stresses on the material stress-strain curve.  

Research conducted by Cruise and Gardner [33] indicates that residual stresses caused by hot 

rolling and press braking are almost negligible and those caused by cold rolling are considerably 

greater. Jandera et al. [34] proved that these residual stresses may have positive influence on the 

load-bearing capacity. However, the influence of membrane residual stresses are almost 

negligible in cold-rolled square and rectangular hollow cross-sections and the bending residual 

stresses are present in the stress-strain diagram behaviour. Based on these results, it could be 

concluded, that residual stresses may not be considered in the numerical models for cold-formed 

box cross-sections because their main effect is inherently present in a stress-strain diagram. 

3.5 Partial safety factors 

There are different values of partial safety factors for stainless steel provided by stainless steel 

Eurocode EN 1993-1-4 [1] than for carbon steel according to EN 1993-1-1 [2]. Comparison of 

these values is shown in Table 3.4. 
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Table 3.4 Partial safety factor values. 

γi Carbon steel Stainless steel 

γM0 1.0 1.1 

γM1 1.0 1.1 

γM2 1.25 1.25 

3.6 Cross-section classification 

Current codified cross-section classification of hollow cross-sections is based on a bi-linear 

elastic-perfectly plastic stress-strain material behaviour with not considering of strain hardening 

phenomenon. That divides the considered stainless steel cross-sections into four classes based on 

the most slender cross-section element. Due to different loading conditions and maximal stress of 

the cross-section, there are two kinds of cross-section classification, namely for the compressive 

resistance and bending resistance. The initial elastic Young’s modulus, the yield strength and 

cross-section dimensions (width to thickness ratio) determines the cross-section Class. Based on 

the cross-section class, an appropriate cross-section characteristics should be used for calculation 

of the cross-section resistance. Summary is given in Table 3.5. 

Table 3.5 Cross-section characteristics with respect to the cross-section Class. 

Cross-section Class 
Compressive resistance 

cross-section area 

Bending resistance 

cross-section modulus 

Class 1 gross plastic 

Class 2 gross plastic 

Class 3 gross elastic 

Class 4 effective effective 

 

The effective cross-section characteristics of Class 4 stainless steel cross-sections both for 

compressive and bending resistance is based on the effective width method developed by Johnson 

and Winter [35] in 1966. It was modified for stainless steel and implemented to the stainless steel 

standard. With following Eurocode revision, the slenderness limits for the cross-section 

classification were slightly changed. The slenderness limits for hollow cross-sections have been 

revised in the last decade, namely by Gardner and Theofanous in 2008 [36] and Gardner et al. in 

2014 [37]. Current reduction factor for local buckling formulae for slender stainless steel cross-
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sections have been developed by Gardner and Theofanous [36], however, little modification for 

square and rectangular hollow cross-sections was suggested by Bock and Real [38]. 

3.7 Flexural buckling 

A very first description of column resistance was developed by Euler in 1744 [39] which provides 

the critical buckling load of an idealized and perfect-elastic column, see Equation (3.17). 

 𝑁cr =
𝜋2𝐸𝐼

𝐿2
 (3.17) 

where Ncr is the critical buckling load, E is the initial Young’s modulus of elasticity, I is the 

gross cross-section second moment of area and L is the member length. 

However, due to material, geometrical and residual stresses is the real column behaviour 

description more complex. Many investigations of carbon steel columns have been made in order 

to develop an accurate procedure of column response which led to the development of codified 

buckling curves considering well-known Ayrton-Perry formula [40]. The same buckling curve 

formulation was adopted into the EN 1993-1-4 [1] but considering different imperfection factors 

α and plateau length 𝜆̅0 values, see Table 3.6. 

Table 3.6 Current codified values of α and 𝜆̅0 according to EN 1993-1-4 [1]. 

Buckling mode Member type α 𝜆̅0 

Flexural 

Cold-formed open sections 0.49 0.4 

Hollow sections (welded and 

seamless) 
0.49 0.4 

Welded open sections (major axis) 0.49 0.2 

Welded open sections (minor axis) 0.76 0.2 

The values for α and 𝜆̅0 do not apply to hollow sections if they are annealed after 

fabrication (which is rarely the case). 

 

Current verification condition for stainless steel members is taken from the EN 1993-1-1 [2] for 

carbon steel and it is given by Equation (3.18). The flexural buckling resistance is given by 

Equation (3.19). 
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𝑁Ed
𝑁b,Rd

≤ 1.0 (3.18) 

 𝑁b,Rd = 𝜒𝐴
𝑓y

𝛾M1
 (3.19) 

where NEd is the loading compressive force, Nb,Rd is the flexural buckling resistance, χ is the 

flexural buckling reduction factor, A is the gross cross-section area for Class 1 to Class 3 

of the cross-section and for Class 4 of the cross-section it is replaced by effective cross-

section area Aeff, fy is the yield strength and γM1 is the partial safety factor. 

The buckling factor χ takes into account flexural buckling phenomena via non-dimensional 

slenderness 𝜆̅, imperfection factor α and plateau length 𝜆̅0 and it is given by Equation (3.20). 

 𝜒 =
1

𝜙 + √𝜙2 − 𝜆̅2
 ≤ 1.0 (3.20) 

with 𝜙 = 0.5[1 + 𝛼(𝜆̅ − 𝜆̅0) + 𝜆̅
2] (3.21) 

 𝜆̅ = √
𝐴𝑓y

𝑁cr
 (3.22) 

where α is the imperfection factor, 𝜆̅ is the non-dimensional slenderness, 𝜆̅0 is the plateau length 

and Ncr is the critical buckling load. 

The adopted buckling curves have been re-evaluated for stainless steel columns by Afshan et al. 

[41]. It was found that the buckling curves according to EN 1993-1-4 [1] are, especially in the 

case of cold-formed open cross-sections and cold-formed hollow cross-sections, too optimistic. 

Furthermore, difference between buckling curves of ferritic stainless steel columns and austenitic 

and duplex stainless steel columns was found. New imperfection factors α and plateau lengths 𝜆̅0 

were proposed (see Table 3.7), evaluated and it is expected that these new values will be 

implemented into the new stainless steel standard revision. Currently, they are published in 

DMSSS [5]. 
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Table 3.7 New values of α and 𝜆̅0 given by DMSSS [5]. 

Member type 
Buckling 

axis 

Austenitic and duplex 

groups 

Ferritic group 

α 𝜆̅0 α 𝜆̅0 

Cold-formed angles and U-sections Any 0.76 0.2 0.76 0.2 

Cold-formed C-sections Any 0.49 0.2 0.49 0.2 

Cold-formed SHS and RHS Any 0.49 0.3 0.49 0.2 

Cold-formed CHS and EHS Any 0.49 0.2 0.49 0.2 

Hot-finished SHS and RHS Any 0.49 0.2 0.34 0.2 

Hot-finished CHS and EHS Any 0.49 0.2 0.34 0.2 

Welded open sections 
Major 0.49 0.2 0.49 0.2 

Minor 0.76 0.2 0.76 0.2 

3.8 Bending 

Bending is one of the most common loading case in steel structures. It is typical for horizontal 

members loaded by vertical loading but it can be a product of eccentric axial loading or end 

moments. Current codified design approach for stainless steel cross-sections loaded by bending 

moment provided by Eurocode 1993-1-4 [1] is adopted from EN 1993-1-1 [2] for carbon steel. 

The verification condition is given by Equation (3.23) for the case of pure bending. Then the 

cross-section bending moment capacity is calculated by Equation (3.24). 

 
𝑀Ed
𝑀Rd

≤ 1.0 (3.23) 

 𝑀Rd = 𝑊
𝑓y

𝛾M1
 (3.24) 

where MEd is the bending moment, MRd is the cross-section bending resistance and W is the 

plastic cross-section modulus (Wpl) for Class 1 and 2 of the cross-section, elastic cross-

section modulus (Wel) for Class 3 of the cross-section and effective cross-section modulus 

(Weff) for Class 4 of the cross-section for the axis of bending. 

As could be seen, the design procedure for pure bending is very simple. For slender members, 

lateral torsional buckling phenomenon may occur. This phenomenon occurs mainly in the case of 
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open cross-section (hollow cross-sections are mostly not susceptible to lateral torsional buckling) 

major axis bending if the compressed cross-section elements are not laterally or torsionally 

restrained along their length. Therefore, Equation (3.25) includes reduction factor χLT covering 

the lateral torsional buckling phenomenon. 

 𝑀b,Rd = 𝜒LT𝑊
𝑓y

𝛾M1
 (3.25) 

where Mb,Rd is the beam resistance and χLT is the reduction factor for lateral torsional buckling 

calculated according to EN 1993-1-4 [1] by Equation (3.26). 

 
𝜒LT =

1

𝜙LT +√𝜙LT
2 − 𝜆̅LT

2

 ≤ 1.0 
(3.26) 

with 𝜙LT = 0.5[1 + 𝛼LT(𝜆̅LT − 0.4) + 𝜆̅LT
2 ] (3.27) 

 𝜆̅LT = √
𝑊𝑓y

𝑀cr
 (3.28) 

where 𝜆̅LT is the lateral non-dimensional slenderness, αLT is the imperfection factor for lateral 

torsional buckling and Mcr is the elastic critical moment for lateral torsional buckling, see 

[1]. 

Determination of χLT is very similar to the procedure for column buckling (χ). The plateau length 

is always 0.4 for all members and imperfection factor αLT is considered as 0.34 for cold-formed 

cross-sections and hollow cross-sections and as 0.76 for welded open cross-sections and other 

cross-sections where no test data are available. 

3.9 Cross-section capacity 

3.9.1 Continuous Strength Method 

The Continuous Strength Method (CSM) is a new approach for calculation of the cross-section 

axial compressive and bending resistance proposed by Gardner [42] and Gardner and Nethercot 

[43], later developed by Gardner and Ashraf [44], Ashraf et al. [45], [46], Gardner [47] and 

Afshan and Gardner [48] and finally by Zhao et al. [49] (furthermore, it was published in the 
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Design Manual for Structural Stainless Steel [5]). It is a deformation-based procedure which takes 

into account benefits of strain hardening. CSM consists of two main components: 

 material model for the stress-strain response calculation allowing strain hardening; 

 base curve defining strain capacity of the cross-section. 

 

The benefits of strain hardening response of stainless steel are introduced by considering an 

elastic, linear hardening model which is shown in Figure 3.5, where Ci are coefficients given by 

Table 3.8 and Esh is the strain hardening modulus given by Equation (3.29). 

 

Figure 3.5 CSM elastic, linear hardening material model [5]. 

 

Table 3.8 CSM material model coefficients. 

Stainless steel group C1 C2 C3 

Austenitic 0.10 0.16 1.00 

Ferritic 0.40 0.45 0.60 

Duplex 0.10 0.16 1.00 

 

 𝐸sh =
𝑓u − 𝑓y

𝐶2𝜀u − 𝜀y
 (3.29) 
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The normalised cross-section deformation capacity εcsm / εy which is used for the base curve 

definition for the plated cross-sections is given by Equation (3.30) [49]. 

 
𝜀csm
𝜀y

=

{
 
 

 
 
0.25

𝜆̅p
3.6 ≤ min(15; 

𝐶1𝜀u
𝜀y

)                   for 𝜆̅p ≤ 0.68

(1 −
0.222

𝜆̅p
1.050)

1

𝜆̅p
1.050

                           for 𝜆̅p > 0.68

 (3.30) 

where 𝜆̅p is the full cross-section slenderness taking into account beneficial effect of element 

interaction if possible. 

It should be noted that Equation (3.30) was published very recently, in 2017. Before that, there 

was no special formula for the cross-sections with 𝜆̅p > 0.68. 

The cross-section compressive resistance according to the new CSM for plated cross-sections 

with  𝜆̅p ≤ 0.68 is given by Equation (3.31) and with 𝜆̅p > 0.68 by Equation (3.32). 

 𝑁c,Rd = 𝑁csm,Rd =
𝐴𝑓csm
𝛾M0

 (3.31) 

 𝑁c,Rd = 𝑁csm,Rd =
𝜀csm
𝜀y

𝐴𝑓y

𝛾M0
 (3.32) 

with 𝑓csm = 𝑓y + 𝐸sh𝜀y (
𝜀csm
𝜀y

− 1) (3.33) 

where Nc,Rd is the cross-section compressive resistance, A is the gross cross-section area, fcsm is 

the limiting stress determined from the strain hardening model, Esh is the strain hardening 

slope. 

The cross-section bending resistance according to the new CSM for doubly symmetric and mono 

symmetric cross-sections in bending about an symmetry axis with εcsm / εy  ≥ 1.0 is given by 

Equation (3.34)  and with εcsm / εy  < 1.0 by Equation (3.35). 

 𝑀c,Rd = 𝑀csm,Rd =
𝑊pl𝑓y

𝛾M0
[
 
 
 

1 +
𝐸sh
𝐸

𝑊el

𝑊pl
(
𝜀csm
𝜀y

− 1) −

(1 −
𝑊el
𝑊pl

)

(
𝜀csm
𝜀y

)
𝛼

]
 
 
 

 (3.34) 
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 𝑀c,Rd = 𝑀csm,Rd =
𝜀csm
𝜀y

𝑊el𝑓y

𝛾M0
 (3.35) 

where α is for SHS and RHS equal to 2.0. 

The interaction formulae for cross-sections loaded by combination of axial compression and 

bending is according to the new CSM for the RHS with 𝜆̅p ≤ 0.60 given by Equations (3.36) to 

(3.38) for major axis, minor axis and biaxial bending plus axial compressive force, respectively, 

and with 𝜆̅p > 0.60 by Equation (3.39) [5]. 

 𝑀y,Ed ≤ 𝑀R,csm,y,Rd = 𝑀csm,y,Rd
(1 − 𝑛csm)

(1 − 0.5𝑎w)
≤ 𝑀csm,y,Rd (3.36) 

 𝑀z,Ed ≤ 𝑀R,csm,z,Rd = 𝑀csm,z,Rd
(1 − 𝑛csm)

(1 − 0.5𝑎f)
≤ 𝑀csm,z,Rd (3.37) 

 [
𝑀y,Ed

𝑀csm,y,Rd
]

𝛼csm

+ [
𝑀z,Ed

𝑀csm,z,Rd
]

𝛽csm

≤ 1.0 (3.38) 

 
𝑁Ed

𝑁csm,Rd
+

𝑀y,Ed

𝑀csm,y,Rd
+

𝑀z,Ed
𝑀csm,z,Rd

≤ 1.0 (3.39) 

where MR,csm,y,Rd and MR,csm,z,Rd are the reduced CSM bending moment resistances, ncsm is the 

ratio of loading compressive force NEd to CSM cross-section resistance Ncsm,Rd, aw is the 

ratio of the web area to the gross cross-section area, af is the ratio of the flange area to the 

gross cross-section area and αcsm and βcsm are the interaction coefficient for biaxial 

bending calculated according to Equation (3.40). 

 𝛼csm = 𝛽csm =
1.66

1 − 1.13𝑛csm
2  (3.40) 

Comparison of the design approach for cross-sections loaded by combined loading is described 

herein only, evaluation of the pure compression and pure bending can be found in mentioned 

literature. Firstly, the Class 1 and 2 cross-section stub-columns were evaluated in Zhao et al. [50], 

[51]. Information about the stainless steel investigated cross-sections are summarized in Table 

3.9. The comparison of the CSM with Eurocode [1] and American SEI/ASCE 8-02 [52] was made 

in [51]. Furthermore, the same comparison was made for Class 4 cross-sections in [49], with the 

extension by Australian/New Zealand standard [53], where the data were gathered from the 

literature. Furthermore, austenitic, ferritic and duplex stainless steel groups were considered. 



Chapter 3: Literature review 

- 30 - 

 

Table 3.9 Stub-column information used in Zhao et al. [50], [51]. 

Stainless steel group Austenitic, duplex 

Cross-section Cold-formed RHS and SHS 

Cross-section Class Class 1, 2 

Non-dimensional slenderness range Stub-columns 

End-moment ratio 𝜓 = 1, 0, -1 

 

The results of EN 1993-1-4 [1] are rather conservative which is probably caused by neglection of 

strain hardening. Design approach given by American standard SEI/ASCE 8-02 [52] is even more 

conservative for both stainless steel groups of stocky cross-sections. In the case of Class 4 cross-

sections both American [52] and Australian/New Zealand [53] codes provides good results on 

average, however with larger scatter. In all cases, the CSM provides more accurate results with 

lower scatter than the current design standards for SHS and RHS stainless steel cross-section load-

bearing capacity predictions. 

3.9.2 Direct Strength Method 

Direct Strength Method (DSM) is a method for cross-section load-bearing capacity calculation 

considering effect of local buckling by gross cross-section resistance reduction instead of 

reduction of widths of separate elements. It was developed by Schafer and Peköz [54]. Later, it 

was implemented into the North American Specification AISI-S100-12 [55] for carbon steel 

structures. Even though the procedure describes carbon steel local buckling behaviour, Arrayago 

et al. [56] assessed that it provides good predictions for stainless steel as well. DSM local buckling 

curve for carbon steel is given by Equation (3.41). 

 
𝜀csm
𝜀y

= {

1.0                                    for 𝜆̅p ≤ 0.776

1

𝜆̅p
0.8 −

0.15

𝜆̅p
1.6                      for 𝜆̅p > 0.776

 (3.41) 

3.10 Beam-column 

Beam-column is a structural member loaded by combination of compression and bending. As 

bending may be caused a compressive force eccentricity, end moments or transverse load, it is a 
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very common member in a construction. A simple analytical background of a beam-column 

design is given in this chapter. 

For simply supported slender beam-column with initial global geometric imperfection e0 loaded 

by axial compressive force NEd and end moments MEd, causing uniform bending, the internal 

forces diagrams are given by Figure 3.6. As can be seen, besides the first order internal forces 

(blue), additional bending due to second order effect occurred. Consequently, the elastic second 

order verification formula for the critical cross-section is given by Equation (3.42). 

 

Figure 3.6 Diagrams of internal forces. 

 
𝑁Ed
𝑁Rd

+
1

1 −
𝑁Ed
𝑁cr

𝑁Ed𝑒0
𝑀Rd

+
𝑀Ed
II

𝑀Rd
≤ 1.0 (3.42) 

where 1 / (1 - NEd / Ncr) is the amplification term due to second order effect and 𝑀Ed
II  is the second 

order bending moment. 

Presented example has obvious critical cross-section position due to a uniform bending moment 

along the member length. However, various bending moment diagrams may occur which makes 

difficult to determine critical cross-section position and the second order effect to that cross-

section internal force. Therefore, a coefficient Cm [57] considering the moment distribution along 

the member length is introduced. The second order effect of compression is taken into account 

again by the mentioned amplification term. See Equation (3.43). 

 

𝑁Ed
𝑁Rd

+
1

1 −
𝑁Ed
𝑁cr

𝑁Ed𝑒0
𝑀Rd

+
1

1 −
𝑁Ed
𝑁cr

𝐶m𝑀Ed
MRd

≤ 1.0 
(3.43) 
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Previous considerations are based on the elastic second order theory. However, there is also 

significant influence of inelastic material behaviour affecting cross-section resistance interaction 

of Class 1 and 2 cross-sections as well as the member second order effect. If the member is only 

compressed, the flexural buckling resistance Nb,Rd = χNpl,Rd  can be determined from Equation 

(3.43). Subsequently, the initial equivalent geometric imperfection e0 is given by Equation (3.44) 

and then, Equation (3.43) can be rearranged into Equation (3.45). 

 𝑒0 =
(1 − 𝜒) (1 −

𝜒𝑁pl,Rd
𝑁cr

)

𝜒

𝑀el,Rd
𝑁pl,Rd

 
(3.44) 

 

𝑁Ed
𝜒𝑁pl,Rd

+ 𝜇
𝐶m𝑀Ed

(1 −
𝑁Ed
𝑁cr

) 𝑘𝑀pl,Rd

≤ 1.0 
(3.45) 

with 𝜇 =
1 −

𝑁Ed
𝑁cr

1 −
𝜒𝑁Ed
𝑁cr

 (3.46) 

where k is the coefficient covering in-plane elastic-plastic interaction between bending and 

compression. 

3.11 Current beam-column design procedures 

This chapter describes individual procedures for stainless steel beam-column design that are 

currently available. Firstly, the procedures given by European, American and Australian/New 

Zealand standards are described, procedures and comprehensive studies developed by 

researchers, containing both evaluation of the European standard procedures and new 

improvements of the beam-column design, follows. 

3.11.1 EN 1993-1-4 

3.11.2 ENV 1993-1-1 

3.11.3 EN 1993-1-1 Method 1 

3.11.4 EN 1993-1-1 Method 2 

3.11.5 EN 1993-1-1 General Method 

3.11.6 EN 1999-1-1 

3.11.7 SEI/ASCE 8-02 

3.11.8 AS/NZS 4673 

3.11.9 Technical Research Centre of Finland VTT – Finland 
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3.11.10 Universities of Aveiro and Coimbra – Portugal 

3.11.11 TU Graz – Austria 

3.11.12 CTU in Prague – Czech Republic 

3.11.13 Imperial College London – United Kingdom 

3.11.14 University of Politècnica de Catalunya – Spain 

3.11.1 EN 1993-1-4 

Currently, the design procedure for stainless steel members loaded by compression and bending 

moment is given in EN 1993-1-4 [1]. The design standard adopts the general format of the 

interaction formulae used in ENV 1993-1-1 [58] for carbon steel. It is given by condition (3.47) 

and for members susceptible to lateral torsional buckling by condition (3.48) in addition to the 

previous one. 

 
𝑁Ed

(𝑁b,Rd)min
+ 𝑘y(

𝑀y,Ed +𝑁Ed𝑒Ny

𝛽W,y

𝑊pl,y𝑓y
𝛾M1

)+ 𝑘z(
𝑀z,Ed +𝑁Ed𝑒Nz

𝛽W,z

𝑊pl,z𝑓y
𝛾M1

) ≤ 1.0 (3.47) 

 
𝑁Ed

(𝑁b,Rd)min,1
+ 𝑘LT (

𝑀y,Ed +𝑁Ed𝑒Ny

𝑀b,Rd
) + 𝑘z(

𝑀z,Ed +𝑁Ed𝑒Nz

𝛽W,z

𝑊pl,z𝑓y
𝛾M1

) ≤ 1.0 (3.48) 

where eNy and eNz are the shifts of the neutral axes of the effective cross-section in compression. 

βw,i = 1 for Class 1 and 2 cross-sections, βw,i = Wel,i / Wpl,i for Class 3 cross-sections and 

Weff,i / Wpl,i for Class 4 cross-sections. (Nb,Rd)min is the lowest value of Nb,Rd for the 

following four buckling modes: flexural buckling about the y axis; flexural buckling 

about the z axis; torsional buckling and torsional-flexural buckling. (Nb,Rd)min,1 is the 

smallest value of Nb,Rd for the following three buckling modes: flexural buckling about 

the z axis; torsional buckling and torsional-flexural buckling. Mb,Rd is the lateral torsional 

buckling resistance and ky, kz and kLT are the interaction factors. 

Determination of the interaction factors ky, kz and kLT according to EN 1993-1-4 [1] is given by 

Equations (3.49), (3.50) and (3.51). 

𝑘y = 1.0 + 2(𝜆̅y − 0.5)
𝑁𝐸𝑑
𝑁b,Rd,y

 but 1.2 ≤ 𝑘y ≤ 1.2 + 2
𝑁𝐸𝑑
𝑁b,Rd,y

 (3.49) 
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𝑘z = 1.0 + 2(𝜆̅z − 0.5)
𝑁𝐸𝑑

(𝑁b,Rd,y)min,1

 but 1.2 ≤ 𝑘y ≤ 1.2 + 2
𝑁𝐸𝑑

(𝑁b,Rd,y)min,1

 (3.50) 

𝑘LT = 1.0 (3.51) 

These interaction factor formulae have several simplifications. Firstly, the lower value of 

boundary conditions (ky and kz  ≥ 1.2) makes the design approach conservative for many members 

with low second order effect. In the case of negligible compressive force and dominant bending 

moment, the designed member will be used at 80 % of its bending capacity. 

Secondly, there is no consideration of the moment distribution along the member length and 

uniform bending moment distribution is considered only. It is clear that the interaction of 

compressive force and non-uniform bending moment is more favourable than the interaction of 

the same compressive force and bending moment with the uniform moment diagram. This results 

in additional conservativeness of the design procedure in cases of non-uniform moment diagram. 

Finally, the design procedure does not consider the strain hardening effect in bending and 

compression resistance. 

3.11.2 ENV 1993-1-1 

A proposal for combination of compressive force and bending moment of steel members was 

given in ENV 1993-1-1 [58] but this standard has been replaced by final Eurocodes. As was 

already mentioned, the procedure for stainless steel structures is based on this standard, although 

it was developed for carbon steel beam-columns design. So the verification conditions (3.52) and 

(3.53) are similar. 

 

𝑁Ed

𝜒min𝐴
𝑓y
𝛾M1

+
𝑘y(𝑀y,Ed +𝑁Ed𝑒Ny)

𝑊y
𝑓y
𝛾M1

+
𝑘z(𝑀z,Ed +𝑁Ed𝑒Nz)

𝑊z
𝑓y
𝛾M1

≤ 1.0 (3.52) 

 

𝑁Ed

𝜒z𝐴
𝑓y
𝛾M1

+
𝑘LT(𝑀y,Ed +𝑁Ed𝑒Ny)

𝜒LT𝑊y
𝑓y
𝛾M1

+
𝑘z(𝑀z,Ed +𝑁Ed𝑒Nz)

𝑊z
𝑓y
𝛾M1

≤ 1.0 (3.53) 

In this case, the interaction factors are given by Equations (3.54) to (3.56). 

 𝑘y = 1 −
𝜇y𝑁Ed

𝜒y𝐴𝑓y
 but 𝑘y ≤ 1.5 (3.54) 
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 𝑘z = 1 −
𝜇z𝑁Ed
𝜒z𝐴𝑓y

 but 𝑘z ≤ 1.5 (3.55) 

 𝑘LT = 1 −
𝜇LT𝑁Ed
𝜒z𝐴𝑓y

 but 𝑘LT ≤ 1.5 (3.56) 

with μy, μz and μLT given by Equations (3.57) to (3.59). 

 𝜇y = 𝜆̅y(2𝛽My − 4) + [
𝑊pl,y −𝑊el,y

𝑊el,y
] but 𝜇y ≤ 0.9 (3.57) 

 𝜇z = 𝜆̅z(2𝛽Mz − 4) + [
𝑊pl,z −𝑊el,z

𝑊el,z
] but 𝜇z ≤ 0.9 (3.58) 

 𝜇LT = 0.15𝜆̅z𝛽M,LT − 0.15 but 𝜇LT ≤ 0.9 (3.59) 

where βMy and βMz are the equivalent flexural buckling factors for uniform bending moment and 

βM,LT is the equivalent linear moment factor for the lateral torsional buckling. All of these 

factors are determined by Equation (3.60) in the cases of uniform and linear moment 

diagram. 

 𝛽M,i = 1.8 − 0.7𝜓i (3.60) 

Determination of the interaction factors is quite different in comparison with the EN 1993-1-4 [1]. 

In this method, lower bound of the interaction factors is not introduced and moment distribution 

along the member length is covered, so less conservative results may be expected in terms of 

bending moment distribution. Suitability of the procedure for stainless steel was not verified, 

therefore, it may leads to unsafe predictions. 

3.11.3 EN 1993-1-1 Method 1 

There are two other procedures given by current standard for carbon steel EN 1993-1-1 [2], 

Method 1 and Method 2 (resp. Annex A and Annex B of EN 1993-1-1). This chapter deals with 

Method 1. Method 1 was developed by Boissonnade et al. [59] in 2004. The resistance verification 

according to Method 1 is given by Equations (3.61) and (3.62). 

 

𝑁Ed
𝜒y𝑁Rk
𝛾M1

+ 𝑘yy
𝑀y,Ed + 𝛥𝑀y,Ed
𝜒LT𝑀y,Rk
𝛾M1

+ 𝑘yz
𝑀z,Ed + 𝛥𝑀z,Ed

𝑀z,Rk
𝛾M1

≤ 1.0 
(3.61) 
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𝑁Ed
𝜒z𝑁Rk
𝛾M1

+ 𝑘zy
𝑀y,Ed + 𝛥𝑀y,Ed
𝜒LT𝑀y,Rk
𝛾M1

+ 𝑘zz
𝑀z,Ed + 𝛥𝑀z,Ed

𝑀z,Rk
𝛾M1

≤ 1.0 
(3.62) 

where kij are the interaction factors. 

Researchers [59] were focused on a more accurate determination of the interaction factors based 

mainly on analytical expressions. Because the determination of these factors is quite complex and 

interaction factor equations are divided into two groups depending on the cross-section Class 

(Classes 1, 2 and Classes 3, 4), determination for compressive force and uniaxial major axis 

bending for Classes 1 and 2 is shown in this section only. The interaction factors are given by 

Equations (3.63) and (3.64). 

 
𝑘yy = 𝐶my𝐶mLT

𝜇y

1 −
𝑁Ed
𝑁cr,y

1

𝐶yy
 

(3.63) 

 𝑘zy = 𝐶my𝐶mLT
𝜇z

1 −
𝑁Ed
𝑁cr,y

1

𝐶zy
0.6√

𝑤y

𝑤z
 (3.64) 

with 𝜇i =
1 −

𝑁Ed
𝑁cr,i

1 − 𝜒i
𝑁Ed
𝑁cr,i

 (3.65) 

 𝐶my = 𝐶my,0 + (1 − 𝐶my,0)
√𝜀y𝛼LT

1 + √𝜀y𝛼LT
 (3.66) 

 
𝐶mLT = 𝐶my

2
𝛼LT

√(1 −
𝑁Ed
𝑁cr,z

) (1 −
𝑁Ed
𝑁cr,T

)

≥ 1.0 
(3.67) 

where 𝑤i =
𝑊pl,i

𝑊el,i
≤ 1.5 (3.68) 

 𝜀y =
𝑀y,Ed

𝑁Ed

𝐴

𝑊el,y
 (3.69) 

 𝐶my,0 = 0.79 + 0.21𝜓y + 0.36(𝜓y − 0.33)
𝑁Ed
𝑁cr,y

 (3.70) 
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The other coefficients not described here can be found in Annex A of EN 1993-1-1 [2]. Equation 

(3.70) for the calculation of Cmy,0 contains NEd / Ncr,y ratio in order to include the second order 

effect of compressive force influence on bending moment. That makes this procedure rare, 

because other procedures neglect it. 

As could be seen, determination of the interaction factors according to EN 1993-1-1 Method 1 [2] 

is complex and lengthy. There is also no limitation in respect to the cross-section type. On the 

other hand, due to many coefficients and factors, the proposal is susceptible to mistakes in 

calculation. 

3.11.4 EN 1993-1-1 Method 2 

As mentioned above, there are two procedures for the design of steel members loaded by 

compressive force and bending moment provided by EN 1993-1-1 [2]. Method 2 was developed 

by Greiner and Lindner [60] in 2006 and the researchers were focused on more accurate 

determination of the interaction factors too. Method 2 is given by Annex B of EN 1993-1-1 [2], 

so the resistance verification conditions are the same as for Method 1. 

The interaction factors are divided into several groups and limited to open I cross-sections and 

rectangular hollow cross-sections. They depends on the cross-section Class (Classes 1, 2 and 

Classes 3, 4) and whether the members are susceptible to torsion or not. Herein, only the case of 

compressive force and uniaxial bending moment interaction of Class 1 and 2 cross-section 

members is described. Interaction factor for members not susceptible to torsional deformations 

(presence of lateral torsional buckling) kyy is given by equation (3.71) and kzy is equal to 0.6kyy, 

for members susceptible to torsional deformations are both interaction factors given by equations 

(3.71) to (3.73) with equivalent bending moment Cmy according to [57], see Equation (3.74). 

𝑘yy = 𝐶my [1 + (𝜆̅𝑦 − 0.2)
𝑁Ed
𝜒y𝑁Rk
𝛾M1

] but 𝑘yy ≤ 𝐶my [1 + 0.8
𝑁Ed
𝜒y𝑁𝑅𝑘
𝛾M1

] (3.71) 

then for 𝜆̅𝑧 ≥ 0.4: 

𝑘zy = [1 −
0.1𝜆̅𝑧

(𝐶mLT − 0.25)

𝑁Ed
𝜒z𝑁Rk
𝛾M1

] but 𝑘zy ≥ 𝐶my [1 −
0.1

(𝐶mLT − 0.25)

𝑁Ed
𝜒z𝑁Rk
𝛾M1

] (3.72) 
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and for 𝜆̅𝑧 < 0.4: 

 𝑘zy = 0.6 + 𝜆̅𝑧 but 𝑘zy ≤ 𝐶my [1 −
0.1

(𝐶mLT − 0.25)

𝑁Ed
𝜒z𝑁Rk
𝛾M1

] (3.73) 

with 𝐶my = 0.6 + 0.4𝜓y ≥ 0.4 (3.74) 

where 𝜆̅i is the non-dimensional slenderness with regard to each axis. 

These are all the equations necessary for the design of stainless steel beam-columns. In the 

comparison with Method 1, this proposal is much more simple. Consideration of the non-uniform 

bending moment distribution is included in Method 2 too and it is given by coefficient Cmy. 

Equation (3.74) shows the case of linearly distributed bending moment along the member length. 

3.11.5 EN 1993-1-1 General Method 

EN 1993-1-1 [2] provides another, alternative design approach for steel members loaded by 

combination of compressive force and bending moment, which enables complex solutions of steel 

structures stability. This method could be also used when the other EN 1993-1-1 procedures, 

described above, do not apply. It allows also verification of the resistance for members subjected 

to lateral and lateral torsional buckling for following structural components: 

 single members, built-up or not, uniform or not, with complex support conditions or not, or 

 plane frames or sub-frames composed of such members, 

which are subjected to compression and/or uniaxial bending in the plane, but which do not contain 

plastic hinges. The General Method is based on GNIA, geometrically non-linear analysis with 

both sway and bow imperfections (Figure 3.7). It is designed primarily to cover flexural buckling 

(P – δ) and sway (P – Δ) effect in plane of a structure. 
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Figure 3.7 Initial bow imperfection [2]. 

The initial bow imperfection e0 can be generally obtained from Table 3.10 provided by EN 1993-

1-1 [2], depending on the buckling curve and type of analysis. 

Table 3.10 Design values of the initial bow imperfection e0 / L [2]. 

Buckling curve 
e0 / L 

Elastic analysis Plastic analysis 

a0 1 / 350 1 / 300 

a 1 / 300 1 / 250 

b 1 / 250 1 / 200 

c 1 / 200 1 / 150 

d 1 / 150 1 / 100 

 

Nevertheless, the values provided by EN 1993-1-1 [2] could be conservative for some members, 

so the e0 value can be calculated for each member separately by Equation (3.75). 

 
𝑒0 = 𝛼(𝜆̅ − 𝜆̅0)

𝑀Rk
𝑁Rk

1 −
𝜒𝜆̅2

𝛾M1
1 − 𝜒𝜆̅2

 
(3.75) 
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However, new revision of carbon steel design standard prEN 1993-1-1 [61] distinguishes initial 

bow imperfection for flexural buckling and for lateral torsional buckling. Initial bow imperfection 

for the case of flexural buckling e0,new should be calculated according to Equation (3.76), whereas 

for second order analysis taking into account lateral torsional buckling e0,LT,new according to 

Equation (3.77). 

 𝑒0,new =
𝛼

𝜀
𝛽𝐿 (3.76) 

 𝑒0,LT,new = 𝛽LT
𝐿

𝜀
 (3.77) 

where β is the reference relative bow imperfection according to Table 3.11 and βLT is the 

reference relative bow imperfection for lateral torsional buckling according to Table 3.12. 

Table 3.11 Reference relative bow imperfection β [61]. 

Buckling 

about axis 

Elastic cross-section 

verification 

Plastic cross-section 

verification 

y - y 1 / 110 1 / 75 

z - z 1 / 200 1 / 68 

 

Table 3.12 Reference relative bow imperfection βLT for lateral torsional buckling 

[61]. 

Cross-section Condition 
Elastic cross-section 

verification 

Plastic cross-section 

verification 

rolled 
h / b ≤ 2.0 1 / 110 1 / 75 

h / b > 2.0 1 / 200 1 / 68 

welded 
h / b ≤ 2.0 1 / 200 1 / 150 

h / b > 2.0 1 / 150 1 / 100 

 

According to General Method, out-of-plane buckling condition for any structural component is 

given by Equation (3.78). 
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𝜒op𝛼ult,k

𝛾M1
≥ 1.0 (3.78) 

where χop is the reduction factor for the non-dimensional slenderness 𝜆̅op, to take account of 

lateral and lateral torsional buckling, αult,k is the minimum load amplifier of the design 

loads to reach the characteristic resistance of the most critical cross-section of the 

structural component considering its in-plane behaviour without taking lateral or lateral 

torsional buckling into account, however, accounting for all effects due to in-plane 

geometrical deformation and imperfections, global and local, where relevant. 

The global non-dimensional slenderness 𝜆̅op for the structural component should be determined 

by Equation (3.79). 

 𝜆̅op = √
𝛼ult,k
𝛼cr,op

 (3.79) 

where αcr,op is the minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance of the structural component with regards to lateral or lateral torsional buckling 

without accounting for in-plane flexural buckling. 

The reduction factor χop can be determined from either of the following methods: 

 the minimum value of χ (out of plane flexural buckling χz; torsional buckling χT and torsional 

flexural buckling χTF) or χLT using the global non-dimensional slenderness 𝜆̅op which leads to 

Equation (3.80); 

 the value interpolated between the values χ or χLT as determined in the previous method, by 

using the formula for αult,k corresponding to the critical cross-section which leads to Equation 

(3.81). 

 

𝑁Ed
𝑁Rk
𝛾M1

+
𝑀Ed
II

𝑀y,Rk
𝛾M1

≤ 𝜒op (3.80) 

 

𝑁Ed

𝜒
𝑁Rk
𝛾M1

+
𝑀Ed
II

𝜒LT
𝑀y,Rk
𝛾M1

≤ 1.0 (3.81) 

where 𝑀Ed
II  is the bending moment calculated by GNIA considering the second-order effect on 

a structure with imperfections. 
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Because this method is based on GNIA, which is suitable only for materials with linear stress-

strain diagram, some shortcomings could be expected in the case of stainless steel due to its non-

linear stress-strain diagram. 

3.11.6 EN 1999-1-1 

EN 1999-1-1 [62] is the design standard for aluminium alloys but the design approach for the case 

of compressive force and bending moment combination, described by Höglund and Tindall [63], 

may be suitable for stainless steel too. Design procedure given by EN 1999-1-1 [62] for 

aluminium alloys has a very different approach. The verification conditions are shown below, 

Equation (3.82) for the case of compressive force and uniaxial major axis bending moment and 

Equation (3.83) for the case of compressive force and minor axis or bi-axial bending moment. 

 (
𝑁Ed

𝜔x𝑁y,b,Rd
)

𝜉yc

+
𝑀y,Ed

𝑀y,Rd
≤ 1.0 (3.82) 

 (
𝑁Ed

𝜔x𝑁z,b,Rd
)

𝜂c

+ (
𝑀y,Ed

𝜔x,LT𝑀y,b,Rd
)

𝛾c

+ (
𝑀z,Ed
𝑀z,Rd

)

𝜉zc

≤ 1.0 (3.83) 

with 𝜂c = 0.8 
or may alternatively be 

taken as 
𝜂c = 𝜂0𝜒𝑧 but 𝜂c ≥ 0.8 (3.84) 

 𝜉yc = 0.8 or may alternatively be 

taken as 

𝜉yc = 𝜉0𝜒𝑦 but 𝜉yc ≥ 0.8 (3.85) 

 𝜉zc = 0.8 or may alternatively be 

taken as 

𝜉zc = 𝜉0𝜒𝑧 but 𝜉zc ≥ 0.8 (3.86) 

 

being 𝜂0 = 1.0 
or may alternatively be 

taken as 
𝜂0 = 𝛼z

2 but 1 ≤ 𝜂0 ≤ 2 (3.87) 

 𝛾0 = 1.0 or may alternatively be 

taken as 

𝛾0 = 𝛼z
2 but 1 ≤ 𝛾0 ≤ 1.56 (3.88) 

 𝜉0 = 1.0 or may alternatively be 

taken as 

𝜉0 = 𝛼y
2 but 1 ≤ 𝜉0 ≤ 1.56 (3.89) 
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and 
𝛼i =

𝑀i,Rd

𝑊i,el

𝑓y
𝛾M0

 
(3.90) 

Then, there are two more factors that are very important in this proposal, these are ωx and ωx,LT in 

Equations (3.82) and (3.83), respectively. There are no interaction factors as in the procedures 

before, but factors ωx and ωx,LT are used instead. They are calculated by following formulae. 

 𝜔x =
1

𝜒 + (1 − 𝜒) sin
𝜋𝑥s
𝑙cr

 (3.91) 

 𝜔x,LT =
1

𝜒LT + (1 − 𝜒LT) sin
𝜋𝑥s
𝑙cr

 (3.92) 

where lcr is the buckling member length, xs is the distance from the critical cross-section to a 

pin-ended support or a flexure point of the deflection curve for elastic flexural buckling. 

The distance is calculated by Equation (3.93) where MEd,1 and MEd,2 are end moments. 

 cos
𝜋𝑥s
𝑙cr
 =

(𝑀Ed,1 −𝑀Ed,2)

𝑀Rd

𝑁Rd
𝑁Ed

1

1
𝜒 − 1

 but 𝑥s ≥ 0 (3.93) 

In the proposal it is not considered use of the member by compressive force and bending moment 

separately but position of the most critical cross-section considering compressive force and 

bending moment is calculated firstly. Then, the cross-section is verified using coefficients ωx and 

ωx,LT. 

However, there are also factors ηc, ξyc, ξzc and γc in Equations (3.82) and (3.83) and related 

coefficients η0, ξ0 and γ0. With regards to Eurocode, these factors are given by Equations (3.84) 

to (3.89) but as could be seen, there are two values for each coefficient, except γc, that could be 

consider. One is a more accurate calculation by a formula and the second is a fixed conservative 

number. 

The procedure has an interesting idea with investigating of the critical cross-section where the 

combination of compressive force and bending moment leads to the highest use of the cross-

section. Nevertheless, the procedure contains several coefficients and the way of calculation 

differs significantly from the rules for steel members. Every moment distribution is covered by 

ωx factor and exponents in the interaction factor formulae account for the influence of plasticity 

and local buckling. 
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There has been no solid background published [63] for the formulae and the development is 

therefore not clear. However, based on the investigation of Höglund [64] the procedure is in draft 

for a next revision of EN 1993-1-3 [65] for cold-formed steel. 

3.11.7 SEI/ASCE 8-02 

Except the European standards, there are other codified procedures for stainless steel beam-

column design. One of them is the American specification SEI/ASCE 8-02 [52]. It was derived 

based on the second order theory of elasticity and the interaction formula is given by Equation 

(3.94). 

 
𝑁Ed
𝑁b,n

+
𝐶m𝑀Ed
𝑀n𝛼n

≤ 1 (3.94) 

where Nb,n is the column buckling resistance calculated according to Clause 3.4 of SEI/ASCE 8-

02 [52], Mn is the bending resistance calculated according to Clause 3.3.1.1 of SEI/ASCE 

[52], Cm is the equivalent moment factor and αn is the amplification factor calculated as 

(1 − 𝑁Ed 𝑁cr⁄ ). 

Non-linear material behaviour of stainless steel is introduced to the Nb,n column buckling 

resistance by the utilisation of the tangent modulus approach. SEI/ASCE 8-02 [52] neglects 

plasticity in the cross-section bending capacity Mn determination which is given by elastic 

moment capacity for stocky cross-sections and reduced elastic moment capacity for slender cross-

sections. 

For more information about the stainless steel beam-column design according to American 

specification see SEI/ASCE 8-02 [52]. 

3.11.8 AS/NZS 4673 

Another procedure for stainless steel beam-column design is given by Australian/New Zealand 

standard AS/NZS 4673 [53]. The interaction formula is very similar to the American SEI/ASCE 

8-02 [52], see Equation (3.95). 

 
𝑁Ed
𝑁b,a

+
𝐶m𝑀Ed
𝑀𝑎𝛼n

≤ 1 (3.95) 

where Nb,a is the column buckling resistance and Ma is the bending moment resistance. 
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However, both column buckling and final resistances are calculated differently. Column buckling 

resistance Nb,a is calculated according to alternative explicit method developed by Rasmussen and 

Rondal [27], [66] based on the Perry-Robertson buckling formulation considering different 

imperfection parameters regarding to stainless steel grade. Bending moment resistance 

calculation considers the same in-elastic reserve capacity but the use of full plastic moment 

capacity is allowed. 

To get more information about the stainless steel beam-column design according to 

Australian/New Zealand see AS/NZS 4673 [53]. 

3.11.9 Technical Research Centre of Finland VTT – Finland 

The very first research of stainless steel beam-columns was (at least as the Author is aware) made 

at the Technical Research Centre in Finland VTT in 90s. Researchers Talja and Salmi [67] 

investigated accuracy of the design procedures of the only existing design procedure 

ENV 1993-1-1 [58] for carbon steel at that time. Information about the used specimens is shown 

in Table 3.13. 

Table 3.13 Member information used in Talja and Salmi´s research [67]. 

Stainless steel group Austenitic 

Cross-section Cold-formed RHS 

Cross-section Class 1 and 2 

End-moment ratio 1 

 

ENV 1993-1-1 [58] showed generally inaccurate and unsafe predictions in comparison with the 

experiment results. Therefore, Talja and Salmi proposed a small modification of 

ENV 1993 1-1 [58] using the same interaction formulae (Equations (3.52) and (3.53)) just without 

the upper bound of the interaction factor. Then the interaction factors adjusted for stainless steel 

are given by Equations (3.96) and (3.97). Values of μi are calculated as described in 

Chapter 3.11.2. 

 𝑘y = 1 −
𝜇y𝑁Ed

𝜒y𝐴𝑓y
 (3.96) 

 𝑘z = 1 −
𝜇z𝑁Ed
𝜒z𝐴𝑓y

 (3.97) 
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Based on the results of Talja and Salmi´s research [67], this modification should leads to more 

accurate and safe results, mainly in the case of slender members loaded mostly by compression. 

3.11.10  Universities of Aveiro and Coimbra – Portugal 

In Portugal, two universities cooperated in the stainless steel beam-columns investigation, namely 

University of Aveiro and University of Coimbra. Researchers Lopes et al. [68] made a numerical 

study and developed a new proposal. There are two main parts of the research:  

 stainless steel members are laterally and torsionally restrained along their length - lateral 

torsional buckling cannot occur; 

 stainless steel members are not restrained along their length - lateral torsional buckling can 

occur. 

The numerical study considered all three stainless steel groups (austenitic, ferritic and duplex) but 

in [68] only results for austenitic stainless steel beam-columns are shown. Some information 

about considered members and loading states are summarised in Table 3.14. The weak part of the 

numerical research is that the stress-strain diagram was used as defined in EN 1993-1-2 [69] for 

the case of fire. Despite the temperature of 20 °C was assumed, the stress-strain relationship 

differs significantly from the more accurate Ramberg-Osgood definition. 

Table 3.14 Member information used in Lopes et al. research [68]. 

Stainless steel group Austenitic, ferritic, duplex 

Cross-section Welded HEA and HEB 

Cross-section Class 1 and 2 

Non-dimensional slenderness range From 0.37 to 1.45 

End-moment ratio 1, 0, -1 

 

 

Beam-columns without lateral torsional buckling 

For members without lateral torsional buckling, there was considered a case of compressive force 

with flexural buckling and bending moment around the major axis (the member was restrained to 

the minor axis) and a case of compressive force with flexural buckling and bending around the 

minor axis (the element was restrained to the major axis). 
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As was mentioned before, Lopes et al. [68] developed a new proposal for stainless steel beam-

column design. In the proposal, the verification condition is given by Equation (3.47) but the 

formulae for the interaction factors were modified and they are given by Equations (3.98) and 

(3.99). 

 
𝑘y = 1 −

𝜇y𝑁Ed

𝜒y𝐴
𝑓y
𝛾M1

 
with 𝑘y ≤ 1.5 and 𝑘y ≥ 𝜇y − 0.7 (3.98) 

 
𝑘z = 1 −

𝜇z𝑁Ed

𝜒z𝐴
𝑓y
𝛾M1

 
with 𝑘y ≤ 1.5 and 𝑘z ≥ 𝜇z − 0.7 (3.99) 

being 

 𝜇y = (0.97𝛽M,y − 2.11)𝜆̅y + 0.44𝛽𝑀,𝑦 + 0.09 (3.100) 

 𝜇z = (1.09𝛽M,z − 2.32)𝜆̅z + 0.29𝛽𝑀,𝑧 + 0.48 (3.101) 

with 

 𝜇i ≤ 1.0     if     𝜆̅i ≤ 0.3 (3.102) 

 𝜇i ≤ 0.9     if     𝜆̅i > 0.3 (3.103) 

where βM,i is the equivalent uniform bending moment factor as defined in ENV 1993-1-1 [58], 

see Equation (3.60). 

 

Beam-columns with lateral torsional buckling 

For members where lateral torsional buckling may occur, the formula is the same as in EN 1993-

1-4 [1] again, see Equation (3.48). Only the interaction factor kLT is modified and it is given by 

Equation (3.104). 

 
𝑘LT = 1 −

𝜇LT𝑁Ed

𝜒z𝐴
𝑓y
𝛾M1

 
with 𝑘LT ≤ 1.5 and 𝑘LT ≥ 𝜇LT − 0.7 (3.104) 

being 

 𝜇LT = (−0.07𝛽M,z − 0.07)𝜆̅z + 0.6𝛽M,LT − 0.1 (3.105) 
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with 

 𝜇y ≤ 1.0     if     𝜆̅y ≤ 0.3 (3.106) 

 𝜇y ≤ 0.9     if     𝜆̅y > 0.3 (3.107) 

where βM,LT is calculated by Equation (3.60). 

 

Summary 

Lopes, Real and da Silva made the numerical study and developed the new proposal [68]. The 

procedure provides better results in comparison with the proposals given by EN 1993-1-1 [2] 

(Method 1 and Method 2). However, the study and verification was made for Class 1 and 2 I 

cross-sections only. Therefore the verification for the other cross-section geometries and cross-

section Classes is necessary. Also, the used material model derived primarily for steel in fire is 

not accurate enough for description of stainless steel at the room temperature. 

3.11.11  TU Graz – Austria  

Other research was carried out at the University in Graz, Austria. Greiner and Kettler [70] made 

a study of stainless steel beam-columns and tried to improve the interaction factors for stainless 

steel members. The verification conditions were considered the same as for Method 2 given by 

EN 1993-1-1 [2] for carbon steel (Equations (3.61) and (3.62)), so only the interaction factors 

were changed. Stainless steel grades, cross-sections, load conditions and other information about 

the used members in research are summarized in Table 3.15. 

Table 3.15 Member information used in Greiner and Kettler´s research [70]. 

Stainless steel group Austenitic, duplex 

Cross-section 
Welded IPE 

Cold-formed RHS and SHS 

Cross-section Class 1 and 2 

End-moment ratio 1 

 

Greiner and Kettler [70] derived interaction curves firstly, the axial force was applied for certain 

value of NEd, then the additional bending moment was applied and increased up to MEd value given 

by Equation (3.109). 
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 𝑁Ed = 𝑛̅i𝜒i𝐴𝑓y (3.108) 

 𝑀Ed,i = 𝑅ult,i𝜒LT𝑊pl,i𝑓y (3.109) 

where Rult is the load proportionality factor at the ultimate limit point. 

 𝑛̅i =
𝑁𝐸𝑑

𝜒𝑁pl,Rd,i
=
𝑁𝐸𝑑
𝜒𝐴𝑓y

 (3.110) 

 𝑚̅i =
𝑀𝐸𝑑,𝑖

𝜒LT𝑀pl,Rd,i
=

𝑀𝐸𝑑,𝑖
𝜒LT𝑊pl,i𝑓y

 (3.111) 

 

Then, the interaction factor ki was calculated from the Equation (3.112) which is related to 𝑛̅i. 

 𝑘i =
1 − 𝑛̅i
𝑅ult,i

 (3.112) 

 𝑅ult,i = 𝑘i𝑚̅i (3.113) 

Proposed interaction factors formulae are linear or bilinear approximations of the calculated 

interaction curves. Four types of interaction factors formulae were developed for different 

mechanical behaviour and cross-sections. The developed equations for determination of 

interaction factors for flexural and lateral torsional buckling are given by Equations (3.114) to 

(3.118). 

𝑘y I cross-sections 𝑘y = 0.9 + 2.2𝑛̅y(𝜆̅y − 0.4) ≤ 0.9 + 2.42𝑛̅y (3.114) 

𝑘y, 𝑘z CHS, welded RHS 𝑘i = 0.9 + 2.2𝑛̅i(𝜆̅i − 0.4) ≤ 0.9 + 2.42𝑛̅i (3.115) 

𝑘y, 𝑘z Cold-formed RHS 𝑘i = 0.9 + 3.5(𝑛̅i)
1.8(𝜆̅i − 0.5) ≤ 0.9 + 1.75(𝑛̅i)

1.8 (3.116) 

𝑘z I cross-sections 𝑘z = 1.2 + 1.5𝑛̅z(𝜆̅z − 0.7) ≤ 1.2 + 1.95𝑛̅z (3.117) 

𝑘LT I cross-sections 𝑘LT = 1 − 0.4(𝑛̅z)
1.3 (3.118) 

The numerical study and the new formulae for interaction factors for beam-columns proposed by 

Greiner and Kettler [70] was described. The study covered wide range of practical cross-section 

types, but many parameters were not investigated. For example, only cross-sections of Class 1 

and Class 2 were considered (beam elements were used in the FE models), so the suitability of 



Chapter 3: Literature review 

- 50 - 

 

proposed approach for both Class 3 and Class 4 is not verified. Further, the load conditions of 

biaxial and non-uniform bending moment diagrams were not verified. It can be noted, that the 

new interaction factors formulae provide good results but only for a small scope of members and 

cross-sections, so a verification of other cross-sections and loading conditions is necessary. 

3.11.12  CTU in Prague – Czech Republic 

Jandera and Syamsuddin [71] made a comparison of existing interaction formulae. In addition, a 

small modification of procedure developed by Lopes, Real and Silva [68] (Chapter 3.11.10) was 

proposed. Information of considered members is given in Table 3.16. 

Table 3.16 Member information used in Jandera and Syamsuddin´s research 

[71]. 

Stainless steel group Austenitic, ferritic, duplex 

Cross-section 
Welded I 

Cold-formed RHS and SHS 

Cross-section Class 1, 2 and 4 

Non-dimensional slenderness range From 0.31 to 1.67 

End-moment ratio 1, 0, -1 

 

Herein, the accuracy is evaluated by the ratio k / kFEM where k is the interaction factor calculated 

according to corresponding design procedure and kFEM is the interaction factor derived from a 

FEM resistance. The value greater than unity indicates safe result and lower than unity unsafe 

result. Then the standard deviation is also given. The comparison is summarized in Table 3.17. 

Table 3.17 Comparison of beam-column design methods [71]. 

 

EC3 1-4 

[1] 

EC3 1-1 

Method 1 

[2] 

EC3 1-1 

Method 2 

[2] 

ENV 

1993-1-1 

[58] 

Talja and 

Salmi 

[67] 

Lopes et 

al. [68] 

Greiner 

and 

Kettler 

[70] 

EC9 1-1 

[62] 

k / kFEM 1.235 0.969 0.925 0.997 1.129 0.828 1.053 0.966 

St. dev. 1.012 0.472 0.315 0.215 0.282 0.140 0.937 0.524 
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As could be seen, the design standard EN 1993-1-4 [1] for stainless steel showed reasonably good 

and mostly conservative results but with large scatter. This scatter is caused mainly by the over-

conservativeness of the procedure for non-uniform bending moment diagram cases. Both EN 

1993-1-1 methods [2] showed lower scatter but most of the results were on the unsafe side, similar 

conclusion was found for the ENV 1993-1-1 [58]. Talja and Salmi´s procedure [67] using the 

same equations as ENV 1993-1-1 [58] but without upper bound of interaction factors was found 

perhaps as the most suitable one due to the good agreement on average and reasonable standard 

deviation. Then, there are methods used in EN 1999-1-1 [62] for aluminium alloys and the 

proposal published by Greiner and Kettler [70]. Both of these methods showed good predictions 

on average, but results were very scattered for cases of non-uniform bending moment diagram 

which led to large standard deviation. Finally, the method presented by Lopes et al. [68] has the 

lowest scatter but results are very unsafe on average. 

Jandera and Syamsuddin [71] proposed a small modification of the method developed by Lopes 

et al. [68]. The interaction factor formulae could be multiplied by 1.2 and the upper and lower 

bounds omitted, with the other factors left without change. See Equations (3.119) and (3.120). 

 
𝑘y = 1.2 −

1.2𝜇y𝑁Ed

𝜒y𝐴
𝑓y
𝛾M1

 
(3.119) 

 
𝑘z = 1.2 −

1.2𝜇z𝑁Ed

𝜒z𝐴
𝑓y
𝛾M1

 
(3.120) 

The modified formulae giving better agreement but still some results may be unsafe. The unsafe 

results are especially in the cases of non-uniform bending moment diagram of members loaded 

by small bending and therefore not very important cases. However, the disadvantage of EN 1994-

1-4 [1] with possible value of ky = 1.2 for cases with low axial load remains here. The average 

value and the standard deviation are shown in Table 14. 

Table 3.18 Comparison of modified Lopes et al. procedure [71]. 

 Modified Lopes 

et al. 

k / kFEM 1.00 

Standard deviation 0.166 
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The results were very similar for all considered stainless steel groups and it can be noted, that 

although many procedures were developed, none of them is accurate and suitable enough for 

stainless steel structures. 

3.11.13  Imperial College London – United Kingdom 

At the Imperial College London in the United Kingdom a new method for calculation of cross-

section compressive and bending resistance has been developed. The new approach is called CSM 

(Continuous Strength Method) and it was described in Chapter 3.9. 

Development of the CSM led also to an improvement of the beam-column design procedure given 

by EN 1993-1-4 [1]. A new interaction factor formula was derived and the consideration of the 

bending resistance according to CSM [49] and flexural buckling resistance according to the new 

buckling curves [41] was suggested.  

Investigation was focused on SHS, RHS and CHS stainless steel beam-column behaviour, 

respectively. 

 

SHS and RHS beam-columns 

Zhao et al. [72] made research of stainless steel SHS and RHS members loaded by combination 

of compressive force and bending moment. The information about the investigated members is 

given in Table 3.19. 

Table 3.19 Member information used in Zhao et al. [72]. 

Stainless steel group Austenitic, ferritic, duplex 

Cross-section Cold-formed SHS and RHS 

Cross-section Class 1, 2, and 3 

Non-dimensional slenderness range From 0.2 to 3.0 

 

It was proposed a new procedure to design stainless steel beam-columns. This procedure 

considers a similar interaction formula to the one given by EN 1993-1-4 [1], see Equation (3.121). 

There is a new interaction factor kcsm being calculated according to Equation (3.122), where MRd 

was replaced by Mcsm,Rd calculated according to CSM and Nb,Rd was calculated considering the 

buckling curves developed by Afshan et al. [41]. 
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𝑁Ed
𝑁b,Rd

+ 𝑘csm
𝑀Ed

𝑀csm,Rd
≤ 1.0 (3.121) 

 𝑘csm = 1 + 𝐷1(𝜆̅ − 𝐷2)
𝑁Ed
𝑁b,Rd

 ≤  1 + 𝐷1(𝐷3 − 𝐷2)
𝑁Ed
𝑁b,Rd

 (3.122) 

where D1 and D2 are the coefficients defining the linear relationship between kcsm and 𝜆̅ in the 

lower non-dimensional slenderness range, while D3 is a limit value beyond which the 

interaction factor kcsm remains constant. The coefficients values are shown in Table 3.20 

depending on stainless steel group. 

Table 3.20 Coefficient Di values [72]. 

Stainless 

steel group 
D1 D2 D3 

Austenitic 2.0 0.30 1.3 

Ferritic 1.3 0.45 1.6 

Duplex 1.5 0.40 1.4 

 

By comparison was found that procedure given by EN 1993-1-4 [1] provides conservative results 

in all cases again. The SEI/ASCE [52] and AS/NZS [53] proposals lead to more accurate results 

on average with less scattered results, nonetheless some predictions are still on the unsafe side, 

especially in cases with significantly non-uniform moment distribution. The proposed method 

[72] is generally found accurate with safe strength predictions for all considered moment 

distributions and stainless steel grades.  

It should be noted, that the procedure was developed on a limited number of results [73]. Only 

two cross-sections were considered, namely RHS 200x100x8 mm and RHS 200x100x8 mm. 

Austenitic, ferritic and duplex stainless steel groups were considered, however, only one grade of 

each which not cover a wide range of stainless steel material properties. Cross-section slenderness 

values were in a range from 0.21 to 0.62, consequently, only stocky cross-sections were 

considered. Analytical approximations of load-bearing capacities predictions were used [41], [48] 

instead numerical or experimental ones. Furthermore, when the procedure was developed, the last 

modification of the CSM [49] considering improvement for slender cross-sections did not exist. 
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CHS beam-columns 

Following research conducted at Imperial College in London was focused on circular hollow 

cross-sections (CHS). Zhao et al. [74] made another research dealing with CHS stainless steel 

members loaded by compressive force and bending moment combination. Information about 

specimens and loading cases are summarized in Table 3.21. 

Table 3.21 Member information used in Zhao et al. research [74].  

Stainless steel group Austenitic 

Cross-section Cold-formed CHS 

Cross-section Class 1, 2 and 3 

Non-dimensional slenderness range From 0.43 to 3.03 

 

In this research [74], only the existing approaches for the stainless steel beam-column design are 

evaluated, namely codified procedures given by EN 1993-1-4 [1], American SEI/ASCE 8-02 [52] 

and Australian/New Zealand AS/NZS [53] for Classes 1 to 3 of the cross-section and approach 

developed by Greiner and Kettler [70] for Classes 1 and 2 of the cross-section (it is not suitable 

for Classes of 3 and 4 of the cross-section as was mentioned above). Furthermore, AS/NZS [53] 

is evaluated in two modifications regarding the column buckling resistance calculation: tangent 

modulus approach (named as AS/NZS-T), as used in SEI/ASCE 8-02 [52], and the explicit 

method (named as AS/NZS-E) developed by Rasmussen and Rondal [27], [66]. 

Comparison shown [74] that EN 1993-1-4 [1] provides relatively accurate strength prediction for 

stainless steel beam-columns of Class 1 and 2 of the cross-section, but shows quite conservative 

for Class 3 cross-sections. Design procedure given by American specification [52] indicates safe 

results on the average but in the loading cases of dominant compressive force, the results are 

slightly unsafe. Vice versa, in the cases of dominant bending moment it is over-conservative due 

to assignment of the elastic moment resistance to all three cross-section classes. Both AS/NZS-T 

and AS/NZS-E procedures based on the AS/NZS [53] lead to underestimation of the interaction 

effect between compression and bending, thus the results are in many predictions on the unsafe 

side, especially for Class 1 and 2 cross-sections. Greiner and Kettler´s [70] procedure is accurate 

on average, however, it also leads to many unsafe predictions. 

Generally, all methods have some limitations. These are usually caused by inaccurate cross-

section and member load-bearing capacity predictions and interaction factor predictions of 
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loading cases, where the loading compressive force or bending moment is dominant. Later, 

stainless steel CHS beam-column behaviour was investigated by Buchanan et al. [75]. 

3.11.14  University of Politècnica de Catalunya – Spain 

At the University of Politècnica de Catalunya in Barcelona, Spain, comprehensive experimental 

and numerical studies of stainless steel beam-columns were conducted, mostly focused on the 

square and rectangular hollow cross-sections and ferritic stainless steel group. 

Modification of the proposal developed by Lopes et al. [68] provided by Jandera and Syamsuddin 

[71] was made. Comparison of this modification for beam-columns of ferritic stainless steel group 

was conducted by Arrayago et al. [76] and Arrayago et al. [77] for different loading conditions. 

Firstly (Arrayago et al. [76]) design approaches provided by EN 1993-1-4 [1] and Jandera and 

Syamsuddin´s modification [71] were evaluated only. Available information about specimens and 

loading conditions are summarized in Table 3.22. It is necessary to note, that in this research, 

compared to other, only minor axis bending was considered in the case of RHS. 

Table 3.22 Member information used in Arrayago et al. [76]. 

Stainless steel group Ferritic 

Cross-section Cold-formed SHS and RHS 

Non-dimensional slenderness range From 0.65 to 1.72 

End-moment ratio 1 

 

Corresponding design procedures given by EN 1993-1-4 [1] and Jandera and Syamsuddin´s 

modification [71] of the proposal developed by Lopes et al. [68] were described in the chapters 

before. Evaluation shown [76] that both methods provide safe results, however, mostly over-

conservative. 

The second research conducted by Arrayago et al. [77] covers SHS and RHS but bending was 

considered around both major and minor axis and as in most cases, members were restrained 

along their length against the lateral buckling. More information of considered members and 

loading conditions are shown in Table 3.23. 
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Table 3.23 Member information used in Arrayago et al. [77]. 

Stainless steel group Ferritic 

Cross-section Cold-formed SHS and RHS 

End-moment ratio 1, 0, -1 

 

Except the procedure provided by EN 1993-1-4 [1] and the one developed by Jandera and 

Syamsuddin [71], the original proposal developed by Lopes et al. [68] and formulae provided by 

Greiner and Kettler [70] were also evaluated. Additionally, new formula for the interaction factor 

determination was proposed and evaluated then. The formula was developed based on the flexural 

buckling and bending resistances given by experiments and numerical models, then Equations 

(3.96) and (3.97) were modified. The proposed formula is given by Equation (3.123). Boundary 

conditions and all coefficients in this formula are the same as in the Lopes et al. [68], only the 

constant is changed. 

 𝑘i = 1 − 0.92
𝜇i𝑁Ed
𝑁b,Rd,i

 (3.123) 

Again, EN 1993-1-4 [1] and Greiner and Kettler´s [70] procedures provide quite conservative 

results but there are some unsafe predictions of the member ultimate capacities. Design approach 

developed by Lopes et al. [68] for austenitic I cross-sections seems to be the one providing more 

accurate and less scattered results, but there are several unsafe predictions too. Modification of 

this proposal developed by Jandera and Syamsuddin [71] eliminates most of the mentioned unsafe 

predictions but results are more conservative and more scattered. New interaction formula 

provides the best agreement and the lowest standard deviation, nevertheless, because interaction 

factor formula was developed based on few experimental results only, further research would be 

useful. 

Other, very similar research was carried out by Arrayago et al. [78] for ferritic cold-formed SHS 

and RHS beam-columns. There was no new formula developed in the publication, only 

comparison of existing design approaches was provided. These are procedures of: EN 1993-1-4 

[1], Lopes et al. [68], Jandera and Syamsuddin´s modification [71], Arrayago et al. modification 

[77], Greiner and Kettler [70], American specification SEI/ASCE [52] and Australian/New 

Zealand standard AS/NZS [53].  

Generally, all the design approaches provide safe and quite accurate results for the tested members 

on average, but all of these methods have some unsafe predictions as explained before. 
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In 2015, Arrayago and Real [79] published their study of stainless steel stub-columns loaded by 

combination of compression and bending, where the accuracy of the proposals given by 

EN 1993-1-4 [1] and CSM [42] - [49] developed at Imperial College in London were evaluated. 

As mentioned before, experiments were conducted only for hollow cross-sections of ferritic 

stainless steel group, more information about the tested specimens are in Table 3.24. 

Table 3.24 Member information used in Arrayago and Real´s research [79]. 

Stainless steel group Ferritic 

Cross-section Cold-formed SHS and RHS 

Cross-section Class 1 - 4 

End-moment ratio 1 

 

EN 1993-1-4 [1] with the current cross-sectional classification provides quite accurate and safe 

results with some conservativeness in few cases. Nevertheless, in the case of revised cross-

sectional classification [36], the average ultimate capacity prediction is slightly better, although 

the classification of several cross-sections was found too optimistic. Comparison of the CSM 

indicates very low standard deviation, especially in the case of simplified CSM which provides 

the most accurate results on average with very low scatter, so it could be noted that the CSM was 

found to be the most accurate one. 

3.12 Concluding remarks 

Current stainless steel beam-column design procedures given by the European standards together 

with proposals developed by many researchers were presented in this chapter. Furthermore, many 

evaluations of these procedures made in the literature were presented too. 

It was shown that all procedures provided by the European standards have some shortcomings, 

usually because they are adopted from the standard for carbon steel and due to neglection of the 

strain hardening of stainless steel. Generally, the results provided by the European standard 

procedures are mostly over-conservative. 

Design procedure provided by American specification indicates good results on average, 

however, if loading by compression or bending is dominant it exhibits some unsafe and over-

conservative results. 
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Australian/New Zealand standard procedure exhibits underestimation of the interaction 

phenomenon between compressive force and bending moment. That leads to unsafe results in 

many cases. 

Developments of the stainless steel beam-column design carried out by researchers in recent 

decades were presented together with their evaluations. Most of them considered very similar 

interaction formula as the one provided by EN 1993-1-4 [1] and were focused on a more accurate 

interaction factor formulae development. 

As was described, most of presented procedures contain some drawbacks. The procedure 

developed by Zhao et al. [72] provides the best results. Predictions are both accurate and safe. 

Consequently, it is expected including of the procedure into next edition of stainless steel design 

standard. However, the procedure is dependent on material properties. It is necessary consider 

specific constants for the appropriate stainless steel group. Furthermore, it was developed based 

on limited data. Therefore, there is still possibility of some improvement.
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Chapter 4  

 

Experimental study 

4.1 Introduction 

Experimental study was conducted in laboratory of the Czech Technical University in Prague 

with the aim of investigating stainless steel slender beam-column behaviour. Six cold-formed 

hollow cross-sections were tested, namely SHS 40x2, SHS 60x2, SHS 80x3, SHS 80x5, RHS 

80x60x2 and RHS 100x40x4. All members were fabric from austenitic stainless steel group, SHS 

80x3 and SHS 80x5 from 1.4404 grade whereas the others from 1.4301 grade. In total, 20 

members loaded by the combination of compressive force and uniform bending moment were 

tested. Specimens were numbered from 1 to 20. Experimental test setup and obtained 

experimental data are described in this chapter including material properties and imperfections.
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4.2 Geometry measurement 

Width and depth of the cross-sections were measured three times on both sides and thickness of 

the wall was measured three times on each wall. Member length was measured three times on 

each side as well. Average values of the measured data are summarized in Table 4.1, where h and 

b are the cross-section dimensions, t is the thickness of the wall, Lnom is the nominal member 

length and L is the length of the specimen considering additional experimental support equipment 

(nominal member length extended by 90 mm on both ends). Detail information of supports is 

given in Chapter 4.5. 
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Table 4.1 Measured cross-section and member dimensions. 

Specimen Cross-section 
h b t Lnom L 

[mm] [mm] [mm] [mm] [mm] 

1 SHS 80x3 79.74 79.74 2.8 2430 2610 

2 SHS 80x3 79.74 79.74 2.8 2440 2620 

3 SHS 80x5 80.00 80.00 4.76 2445 2625 

4 SHS 80x5 80.00 80.00 4.76 2395 2575 

5 SHS 40x2 39.90 39.90 1.91 1000 1180 

6 SHS 40x2 39.90 39.90 1.91 1000 1180 

7 SHS 40x2 39.90 39.90 1.91 1500 1680 

8 SHS 40x2 39.90 39.90 1.91 1495 1675 

9 SHS 60x2 60.02 60.02 1.87 1000 1180 

10 SHS 60x2 60.02 60.02 1.87 1000 1180 

11 SHS 60x2 60.02 60.02 1.87 2000 2180 

12 SHS 60x2 60.02 60.02 1.87 1990 2170 

13 RHS 80x60x2 80.12 59.96 1.95 1005 1185 

14 RHS 80x60x2 80.12 59.96 1.95 1005 1185 

15 RHS 80x60x2 80.12 59.96 1.95 2005 2185 

16 RHS 80x60x2 80.12 59.96 1.95 1990 2170 

17 RHS 100x40x4 100.32 40.54 4.04 990 1170 

18 RHS 100x40x4 100.32 40.54 4.04 990 1170 

19 RHS 100x40x4 100.32 40.54 4.04 2005 2185 

20 RHS 100x40x4 100.32 40.54 4.04 2000 2185 

 

4.3 Material testing 

Four coupons were cut from each cross-section in longitudinal direction of the member. Location 

of the coupons is both for SHS and RHS given by Figure 4.1. Dimensions of the flat coupons 

were in accordance with the EN ISO 6892-1 [80]. Corner coupons length were the same as for 

the flat ones with a constant width along the whole length. Tensile test coupons geometry is shown 

in Figure 4.2. 
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Figure 4.1 Tensile test coupons location of the SHS (left) and RHS (right) cross-

sections. 

 

 

Figure 4.2 Tensile test coupons geometry. 

Material tests of 1.4404 grade cross-sections were conducted by Mařík [14] recently. Therefore, 

only 1.4301 grade cross-sections material testing is presented herein. Tensile tests were carried 

out using Shimadzu 300 kN and MTS Qtest 100 kN electromechanical testing machines for flat 
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and corner coupons, respectively. The rate of displacement was established based on the coupon 

length. Distance between the jaws edges multiplied by the strain displacement ε = 7x10-5 mm/s 

and 2.5x10-3 mm/s was used for stroke value up to 5 mm and beyond 5 mm, respectively. The 

lower strain rate (up to 5 mm stroke) always covered σ0.2 proof stress used for the stress-strain 

diagram description safely. For the measurement, flat coupons were attached by strain gauges at 

the mid-length on both sides, see Figure 4.3. Furthermore, additional optical extensometer was 

used, as shown in Figure 4.4. Corner coupons were equipped by mechanical extensometer only, 

see Figure 4.5. 

For the material properties description, the two-stage models developed by Gardner and Nethercot 

[22] were used. Model considering 1.0 % proof stress, see Equation (3.11), was used for all flat 

coupons and most of corner coupons. However, in two cases of corner coupons the 1.0 % proof 

stress was not reached, therefore, material model considering σu instead of σ1.0 was used, see 

Equation (3.10). Average values of the flat and corner coupon material properties of the 

appropriate cross-section are summarized in Table 4.2 and Table 4.3, respectively. It should be 

noted, that the initial Young’s modulus of corner coupons was measured by additional mechanical 

extensometer that is not as accurate as the strain gauges. This caused that the Young’s modulus 

of SHS 40x2 is higher than expected, whereas of RHS 100x40x4 is slightly lower. 

Figure 4.6 shows stress-strain diagram of SHS 80x3 which represents typical material response. 

As could be seen, flat part of the cross-section exhibits great ductility but lower stress level, when 

compared to a corner part, significantly influenced by cold-working. 

 

Figure 4.3 Tensile coupon with strain gauges. 
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Figure 4.4 Flat coupons material testing setup. 

 

 

Figure 4.5 Corner coupons material testing setup. 
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Table 4.2 Average values of measured flat material properties. 

Cross-section 
E0 E0.2 σ0.2 σ1.0 σu n n0.2,1.0 εu 

[GPa] [GPa] [MPa] [MPa] [MPa] [-] [-] [-] 

SHS 80x3 183.3 29.9 397.1 465.3 627.6 3.1 4.3 0.47 

SHS 80x5 190.5 29.3 448.1 516.2 627.4 3.4 4.5 0.54 

SHS 40x2 185.4 17.0 469.7 498.5 641.9 5.3 2.3 0.38 

SHS 60x2 188.4 15.4 436.2 465.1 706.5 5.2 1.9 0.44 

RHS 80x60x2 183.7 17.6 409.5 449.2 598.2 5.4 2.6 0.32 

RHS 100x40x4 190.4 21.8 574.1 592.9 696.0 4.6 2.0 0.29 

 

Table 4.3 Average values of measured corner material properties. 

Cross-section 
E0 E0.2 σ0.2 σ1.0 σu n n0.2,1.0 εu 

[GPa] [GPa] [MPa] [MPa] [MPa] [-] [-] [-] 

SHS 80x3 210.8 16.8 681.6 714.1 741.9 14.4 4.2 0.11 

SHS 80x5 215.3 17.5 726.3 764.5 771.8 15.4 6.2 0.07 

SHS 40x2 287.5 62.5 763.7 941.5 959.6 3.8 3.2 0.015 

SHS 60x2 192.6 40.0 650.7 - 732.9 6.0 4.5* 0.01 

SHS 80x60x2 202.4 58.8 662.8 819.1 842.0 3.8 5.2 0.08 

RHS 100x40x4 164.2 37.0 782.8 - 837.4 5.5 5.0* 0.013 

* Material did not reach 1.0 % proof stress, therefore the value represents n0.2,u instead of 

n0.2,1.0. 
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Figure 4.6 Stress-strain diagram of flat and corner part of SHS 80x3. 

Based on the material characteristics given by Table 4.2 and Table 4.3, the cross-sections were 

classified according to Gardner and Theofanous [36] cross-section limits. Firstly, the weighted 

average of the flat and corner coupons 0.2 % proof stress and Young’s modulus regarding flat and 

corner area of the cross-section was calculated. As mentioned before, according to [10] - [13] the 

corner area should be extended by two times the wall thickness due to enhanced material 

properties caused by cold-forming, whereas according to [14], [15] consideration of no extensions 

is more accurate. Therefore, the weighted average of material characteristics and cross-section 

classification were calculated for both cases, see Table 4.4, where 0t represents enhanced material 

properties in the corner area only and 2t represents the area extended by two times of the wall 

thickness into flat parts of the cross-section. 



Chapter 4: Experimental study 

- 67 - 

 

Table 4.4 Weighted average of material characteristics (initial Young’s modulus 

of elasticity and 0.2 % proof stress) and the cross-section classification. 

Cross-section 

0t  2t 

E0 σ0.2 Class  E0 σ0.2 Class 

[GPa] [MPa] [-]  [GPa] [MPa] [-] 

SHS 80x3 186.5 430.7 3  190.7 473.4 4 

SHS 80x5 195.7 506.6 1  202.4 581.0 1 

SHS 40x2 202.3 518.2 1  223.7 580.0 1 

SHS 60x2 188.8 458.5 4  189.4 486.9 4 

RHS 80x60x2 185.4 432.9 4  187.6 462.6 4 

RHS 100x40x4 185.1 616.2 4  178.4 669.8 4 

 

As could be expected, σ0.2 is higher if higher corner area is considered. Despite the difference in 

material characteristics, the cross-section Class is the same for all cross-sections, with exception 

of SHS 80x3 which due to enhancement of the 0.2 % proof stress value felt into Class 4 of the 

cross-section. 

Based on the measured cross-section and member dimensions, given by Table 4.1, and weighted 

average of the material properties obtained from the tensile tests given by Table 4.4, the non-

dimensional slenderness 𝜆̅ values are given by Table 4.5. Both considerations of the enhanced 

material properties areas were used, again. 
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Table 4.5 Non-dimensional slenderness values of the tested members. 

Specimen Cross-section 

 0t  2t 

 𝜆̅y 𝜆̅z  𝜆̅y 𝜆̅z 

 [-] [-]  [-] [-] 

1 SHS 80x3  1.28 1.28  1.32 1.32 

2 SHS 80x3  1.29 1.29  1.32 1.32 

3 SHS 80x5  1.41 1.41  1.48 1.48 

4 SHS 80x5  1.38 1.38  1.45 1.45 

5 SHS 40x2  1.24 1.24  1.25 1.25 

6 SHS 40x2  1.24 1.24  1.25 1.25 

7 SHS 40x2  1.77 1.77  1.78 1.78 

8 SHS 40x2  1.76 1.76  1.77 1.77 

9 SHS 60x2  0.74 0.74  0.75 0.75 

10 SHS 60x2  0.74 0.74  0.75 0.75 

11 SHS 60x2  1.37 1.37  1.39 1.39 

12 SHS 60x2  1.36 1.36  1.39 1.39 

13 RHS 80x60x2  0.54 0.67  0.55 0.68 

14 RHS 80x60x2  0.54 0.67  0.55 0.68 

15 RHS 80x60x2  0.99 1.24  1.01 1.26 

16 RHS 80x60x2  0.99 1.23  1.00 1.25 

17 RHS 100x40x4  0.64 1.31  0.66 1.36 

18 RHS 100x40x4  0.64 1.31  0.66 1.36 

19 RHS 100x40x4  1.19 2.44  1.24 2.55 

20 RHS 100x40x4  1.19 2.44  1.24 2.55 
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4.4 Geometric imperfection measurement 

For the global imperfection measurement a tensioned string next to the member wall was used. 

Distance between the string and the member surface was measured at the mid-span by depth gauge 

of caliper, see Figure 4.7. Three points along the cross-section width were measured. The 

accuracy is not great (± 0.5 mm), but it is sufficient. 

For the local imperfection amplitude it was necessary to measure longitudinal profile of the 

member surface in the middle of the web. Which was measured by centesimal dial at appropriate 

points, see Figure 4.8 and Figure 4.9. Points of measurement were established based on the cross-

section dimensions so that distance between the points was equal to 25 % of the measured web 

width. 

Average values of both global and local initial geometric imperfection amplitudes are given in 

Table 4.6, where ωGI,0 is the global imperfection amplitude and ωLI,0 is the local imperfection 

amplitude. 

 

Figure 4.7 Global imperfection measurement. 
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Figure 4.8 Device for local imperfection measurement. 

 

 

Figure 4.9 Local imperfection measurement. 
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Table 4.6 Global and local initial imperfection amplitude values. 

Specimen Cross-section 
 ωGI,0  ωLI,0 

 [mm] [-]  [mm] [-] 

1 SHS 80x3  0.833 Lnom / 2916  0.01 b / 7974 

2 SHS 80x3  0.767 Lnom / 3183  0.0125 b / 6379 

3 SHS 80x5  1.3 Lnom / 1881  0.0125 b / 6400 

4 SHS 80x5  1.233 Lnom / 1942  0.01 b / 8000 

5 SHS 40x2  0.5 Lnom / 2000  0.0075 b / 5320 

6 SHS 40x2  0.5 Lnom / 2000  0.01 b / 3990 

7 SHS 40x2  0.667 Lnom / 2250  0.01 b / 3990 

8 SHS 40x2  0.567 Lnom / 2242  0.01 b / 3990 

9 SHS 60x2  0.5 Lnom / 2000  0.01 b / 6020 

10 SHS 60x2  0.5 Lnom / 2000  0.01 b / 6020 

11 SHS 60x2  0.667 Lnom / 2999  0.01 b / 6020 

12 SHS 60x2  0.567 Lnom / 3510  0.0075 b / 8027 

13 RHS 80x60x2  0.5 Lnom / 2010  0.01 h / 8012 

14 RHS 80x60x2  0.5 Lnom / 2010  0.01 h / 8012 

15 RHS 80x60x2  0.667 Lnom / 3006  0.0075 h / 10683 

16 RHS 80x60x2  0.667 Lnom / 2984  0.01 h / 8012 

17 RHS 100x40x4  0.617 Lnom / 1605  0.02 h / 5016 

18 RHS 100x40x4  0.5 Lnom / 1980  0.02 h / 5016 

19 RHS 100x40x4  1.3 Lnom / 1542  0.015 h / 6688 

20 RHS 100x40x4  1.07 Lnom / 1869  0.015 h / 6688 
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4.5 Beam-column tests 

Together, 20 tests under compression and uniaxial bending were conducted in order to obtain 

SHS and RHS stainless steel slender beam-column behaviour. In the cases of RHS specimens, 

only the major axis bending was performed. Nominal eccentricity value e was given by cross-

section dimensions. The axis of the acting loading force was situated at the cross-section wall, 

with exception of specimens 1, 3, 19 and 20 where the eccentricity was equal to 20 mm. The 

eccentricities for all specimens are given in Table 4.7. 

Both top and bottom supports were considered as pin-ended to major axis and fixed to minor axis 

of the specimen cross-section. Both supports were formed by a wedge plate with two oval holes 

for appropriate eccentricity setup, and a plate containing a V-shaped groove. The top plate was 

bolted to hydraulic jack, whereas the bottom plate was situated on the floor with horizontal 

displacement restricted. Every specimen was equipped with a 10 mm thick end-plate on each end 

which were bolted to the wedge plates. End-plate bolt holes were of oval shape as well, to allow 

specimen rectification in both directions. Geometry of pin-ended supports is shown in Figure 

4.10. Figure 4.11 and Figure 4.12 show a bottom and a top pin-ended supports, respectively, set 

with a specimen. 

During the beam-column tests, specimens were loaded by compression induced by a hydraulic 

loading jack. Both loading force and axial shortening of the specimen were measured. Four 

displacement potentiometers were situated at the specimen mid-span, located at the cross-section 

corners where local buckling influence is not present. The recording was for two specimen walls 

perpendicular to each other in order to measure the mid-span displacement in both directions, see 

Figure 4.13. 

The tests were controlled by displacement. In order to obtain appropriate displacement rate, 

preliminary numerical model (see Chapter 5) considering measured material properties and both 

cross-section and member geometry was made. Based on the specimen shortening at the ultimate 

load, the displacement rate was calculated so the minimal test duration was 15 min. Such rate is 

safely below the strain rate used for material tests and allows full development of all instabilities. 

The whole test setup scheme and picture of a tested member are shown in Figure 4.14 and Figure 

4.15, respectively. 
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Figure 4.10 Geometry of pin-ended supports. 

 

 

Figure 4.11 Bottom pin-ended support. 
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Figure 4.12 Top pin-ended support. 

 

 

Figure 4.13 Displacement potentiometers location. 
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Figure 4.14 Test setup scheme. 

 

  

Figure 4.15 Specimen photo. 
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As expected, two main failure modes occurred: local buckling failure (occurred in the cases of 

slender cross-sections and low non-dimensional slenderness values) and flexural buckling failure 

(occurred in the cases of stocky cross-sections and slender members). Figure 4.16 and Figure 4.17 

show typical local buckling and flexural buckling failure, respectively. 

        

Figure 4.16 Local buckling failure. 

        

Figure 4.17 Flexural buckling failure. 
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Experimental test results are summarised in Table 4.7, where e is the initial load eccentricity, 

Nu,exp is the ultimate load, δMj is the major axis mid-span deflection at the ultimate load, δMi is the 

minor axis mid-span deflection at the ultimate load, FB – Mj is the major axis flexural buckling, 

FB – Mi is the minor axis flexural buckling and LB – Mj is the major axis local buckling. 

Measured mid-span deflection curves are given in Figure 4.18 to Figure 4.27. 

As mentioned before, all members were loaded by eccentric compressive force leading to major 

axis bending with Lcr,z ≈ 0.5 Lcr,y. Therefore, dominant mid-span deflection was to major cross-

section axis in most cases (δMj). However, there are some members of rectangular cross-section 

(17, 19 and 20) with significant minor axis mid-span deflection (δMi). That is attributed to 

inaccuracies of test setup, such as imperfectly welded end-plates. Furthermore, the supports were 

not absolutely restrained in minor axis direction, some rotation could occurred. Due to the 

tolerances and inaccuracies of the support, small minor axis deflections were measured in other 

samples as well. These are given in Table 4.7 as well as in the Figure 4.18 to Figure 4.27. 
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Table 4.7 Member test results. 

Specimen Cross-section 
e Nu,exp δMj δMi Failure 

mode [mm] [kN] [mm] [mm] 

1 SHS 80x3 20 97.79 52.32 11.61 FB - Mj 

2 SHS 80x3 40 84.14 60.33 1.56 FB - Mj 

3 SHS 80x5 20 182.54 63.59 -2.27 FB - Mj 

4 SHS 80x5 40 143.62 67.97 9.07 FB - Mj 

5 SHS 40x2 20 35.66 31.22 3.37 FB - Mj 

6 SHS 40x2 20 32.28 33.10 7.48 FB - Mj 

7 SHS 40x2 20 23.11 50.87 5.68 FB - Mj 

8 SHS 40x2 20 22.79 51.78 3.10 FB - Mj 

9 SHS 60x2 30 71.04 25.09 7.20 LB - Mj 

10 SHS 60x2 30 72.01 22.17 7.76 LB - Mj 

11 SHS 60x2 30 42.91 56.49 8.83 FB - Mj 

12 SHS 60x2 30 43.78 56.62 6.79 FB - Mj 

13 RHS 80x60x2 40 87.70 22.55 2.14 LB – Mj 

14 RHS 80x60x2 40 84.39 17.70 8.35 LB - Mj 

15 RHS 80x60x2 40 59.09 46.58 9.69 LB - Mj 

16 RHS 80x60x2 40 59.05 48.06 6.95 LB - Mj 

17 RHS 100x40x4 50 240.40 29.74 18.12 FB - Mi 

18 RHS 100x40x4 50 226.44 23.57 7.65 FB - Mj 

19 RHS 100x40x4 20 176.52 22.29 27.80 FB - Mi 

20 RHS 100x40x4 20 191.31 24.66 19.73 FB - Mi 
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Figure 4.18 Test results of specimens 1 and 2. 

 

 

Figure 4.19 Test results of specimens 3 and 4. 
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Figure 4.20 Test results of specimens 5 and 6. 

 

 

Figure 4.21 Test results of specimens 7 and 8. 
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Figure 4.22 Test results of specimens 9 and 10. 

 

 

Figure 4.23 Test results of specimens 11 and 12. 
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Figure 4.24 Test results of specimens 13 and 14. 

 

 

Figure 4.25 Test results of specimens 15 and 16. 
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Figure 4.26 Test results of specimens 17 and 18. 

 

 

Figure 4.27 Test results of specimens 19 and 20. 
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Chapter 5  

 

Numerical study 

5.1 Introduction 

Experimental programme consisting of 20 tests was described in the previous chapter. However, 

it was necessary to obtain comprehensive amount of data covering variables such as material 

properties, both member and cross-section slenderness and loading state. Therefore, numerical 

study was conducted. Numerical model was created in software Abaqus using finite element 

method. The numerical model, its validation and comprehensive numerical parametric study is 

described in this chapter.
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5.2 Numerical modelling 

As was mentioned before, the numerical model was made in software Abaqus using finite element 

method. As an element type a four-node doubly curved general shell element with reduced 

integration and finite membrane strain, S4R, which is commonly used for SHS and RHS stainless 

steel members modelling, was used. See Figure 5.1. 

 

Figure 5.1 4-node reduced integration element (S4R). 

In order to represent the real behaviour of stainless steel beam-columns geometrically and 

materially non-linear analysis with imperfections (GMNIA) was used for the calculation with 

RIKS (arc-length) method which is able to describe the post-ultimate behaviour. 

Material was considered as multi linear elastic-plastic defined by the initial Young’s modulus of 

elasticity E0, Poisson’s ratio ν, which is for stainless steel equal to 0.3. 

Boundary conditions were introduced through reference points situated at the cross-section 

centroid on both member ends which were rigidly coupled with the member edges (Figure 5.2 

left). Pin-ended boundary conditions were considered. One reference point was set by support 

restraining all degrees of freedom with exception of major axis bending rotation, whereas the 

other reference point allowed displacement in the direction of the member axis in addition (Figure 

5.2 middle). Both compressive force and bending moment were introduced through reference 

points as well (Figure 5.2 right). 
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Figure 5.2 Reference point coupling (left); Boundary conditions (middle); Load 

(right). 

The cross-section contains residual stresses due to cold-forming, however, both membrane and 

bending residual stresses were neglected, as was explained in Chapter 3.4. 

All structural members contain initial geometric imperfections that have a significant influence 

on both cross-section and member load-bearing capacity, especially in the cases of thin-walled 

members. There are two main initial geometric imperfections, namely global and local geometric 

imperfections. Global geometric imperfection has influence on member stability (flexural 

buckling). Local imperfection has influence on cross-section stability (local buckling) and it is 

significant mainly for slender cross-sections. For the introduction of global and local initial 

geometric imperfections into the numerical model, elastic buckling eigen-modes obtained from 

linear elastic analysis were used. The imperfection shape was assigned by the corresponding 

eigen-mode, see Figure 5.3. The considered amplitudes for both initial geometric imperfections 

are specified later. 

 

Figure 5.3 Eigen-mode for global (left) and local (right) initial geometric 

imperfections. 
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5.2.2 Element size 

Element size (mesh) was established based on the mesh sensitivity study. On one hand a fine 

mesh leads to accurate results, on the other hand the finer mesh the more time consuming 

calculation. Therefore, element size study was made in order to find the element size providing 

accurate results in reasonable time. 

For the element size study the ferritic SHS 80x3 member with non-dimensional slenderness 

𝜆̅ = 1.05 was used. Three types of loading were considered, namely pure compression (flexural 

buckling), pure bending and combination of compression and bending. The element size was 

considered regarding the number of nodes situated on the cross-section flat part from 3 to 30 

nodes. As a reference value for the accuracy comparison, mesh of 5 nodes across the flat part was 

used, see Figure 5.4. Results of the sensitivity study are given in Table 5.1. 

 

Figure 5.4 Nodes consideration. 
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Table 5.1 Element size sensitivity study results. 

Number of 

nodes 

Accuracy Time 

N  

[%] 

M 

[%] 

N+M 

[%] 

N 

[min] 

M 

[min] 

N+M 

[min] 

3 -3.38 1.19 1.56 1.3 0.22 0.12 

4 0.82 0.27 0.40 1.38 0.47 0.2 

5 - - - 1.95 0.65 0.37 

6 0.66 -0.19 -0.35 3.4 0.93 0.45 

8 0.31 -0.33 -0.66 7.17 1.4 0.88 

10 0.83 -0.45 -0.41 9.75 2.72 1.5 

15 0.65 -0.39 -0.52 25.67 6.57 6.08 

30 0.35 -0.76 -0.96 198.08 36.53 56.53 

 

With exception of the case with 3 nodes across the web, there is almost no difference (lower than 

1.0 %) between the results of the investigated mesh. However, the calculation time differs 

significantly. Considering the fact that the number of nodes greater than 4 provides almost the 

same results, the main parameter for the mesh selection was the calculation time. 

Finally, 5 nodes on the cross-section flat part were chosen for numerical modelling. It was proved 

that 5 nodes provide accurate results in reasonable time. In the case of RHS cross-section, 5 nodes 

are considered across the narrow web of the cross-section. Wide web of the cross-section respect 

the mesh of the narrow web, see Figure 5.5. 

 

Figure 5.5 Mesh of RHS 100x40x2. 
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5.2.3 Numerical model validation 

For the numerical model validation, it was necessary to model the very same members as tested. 

Therefore, both cross-section and member geometry were adopted from measured values as well 

as the global and local initial imperfection amplitude values, see Table 4.1 and Table 4.6. 

Material properties were adopted from the material tensile tests for both flat and corner part of 

the cross-section, see Table 4.2 and Table 4.3. However, only engineering stress and strain values 

were given, therefore it was necessary to calculate true stress and strain values using Equations 

(5.1) and (5.2). 

 𝜎True = 𝜎Nom(1 + 𝜀Nom) (5.1) 

 𝜀True = ln(1 + 𝜀Nom) (5.2) 

where σNom and εNom are the nominal (engineering) stress and strain values and σTrue and εTrue are 

the true stress and strain values. 

Investigated members were fabricated by cold-rolling, therefore, there is a significant strength 

enhancement in corner regions of the cross-sections due to induced plastic deformation. As 

discussed, according to [10] - [13] the area of the enhanced material properties exceeds the corner 

area which should be extended into the flat parts of the cross-section. The extension was defined 

as two times of the cross-section wall thickness. However, according to [14], [15] consideration 

of the enhanced material properties in the corner area only is more accurate. Therefore, during 

the numerical model validation, the area of enhanced material properties was considered again 

both with and without the extension. 

Numerical model validation was made by the comparison of relationship between loading force 

and mid-span deflection obtained from experiments and numerical simulations. Typical 

validation results are given by Figure 5.6, Figure 5.7 and Figure 5.8 representing members with 

major axis flexural buckling failure, local buckling failure and minor axis flexural buckling 

failure, respectively, where FEM – 0t means numerical results with enhanced material properties 

considered in the corner area and FEM – 2t means consideration with corner extensions into flat 

parts of the cross-section. 

Validation results for all members are given by Chapter 8. 
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Figure 5.6 Numerical model validation on specimen 12 (major axis flexural 

buckling failure). 

 

 

Figure 5.7 Numerical model validation on specimen 9 (local buckling failure). 
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a) Major axis deflection 

 

b) Minor axis deflection 

Figure 5.8 Numerical model validation on specimen 17 regarding major axis 

deflection (a) and minor axis deflection (b) (minor axis flexural 

buckling failure). 

As could be seen in Figure 5.6, there is a very good agreement between the experimental and 

numerical results. Experimental resistance is slightly higher than the numerical one without the 

corner area extension and slightly lower than the one with the extension consideration. In the case 

of local buckling failure, see Figure 5.7, there is a good agreement as well, however, with little 

difference in mid-span deflection at failure. That is most probably caused by the fact, that the 
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local imperfections were introduced to the numerical model by the most unfavourable eigen-mode 

that could be slightly different compared to the tested member wall profile. Figure 5.8 shows 

minor axis flexural buckling failure. As was mentioned in Chapter 4.5, the initial minor axis 

deflection was probably caused by some inaccuracies in test setup, therefore, a very small minor 

axis rotation equal to 1.5° was allowed at boundary conditions of the numerical model which 

initiated the minor axis deflection. As could be seen, major axis deflection is in good agreement 

again, whereas minor axis deflection exhibits little difference in the initial deflection (up to 40 

MPa of the stress). 

The ultimate loads obtained from the tests were compared to the numerical predictions, 

considering enhanced material properties only in the corner region and with the extensions as 

well. The comparison is given in Table 5.2, where Fu,test, Fu,FEM,0t and Fu,FEM,2t are the ultimate 

compressive forces obtained from tests and numerical simulations without and with the corner 

region extension, respectively. 
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Table 5.2 Comparison of test results with numerical predictions. 

Specimen 
Fu,test Fu,FEM,0t Fu,FEM,2t  Fu,test / Fu,FEM,0t Fu,test / Fu,FEM,2t 

[kN] [kN] [kN]  [-] [-] 

1 97.8 95.4 106.0  1.025 0.923 

2 84.1 79.8 88.8  1.054 0.948 

3 182.5 171.8 196.3  1.062 0.930 

4 143.6 140.9 161.9  1.019 0.887 

5 35.7 34.1 38.2  1.045 0.933 

6 32.3 34.1 38.2  0.946 0.845 

7 23.1 23.3 25.9  0.993 0.892 

8 22.8 23.3 26.0  0.978 0.878 

9 71.0 64.2 68.0  1.107 1.045 

10 72.0 64.2 68.0  1.122 1.060 

11 42.9 39.1 40.7  1.098 1.055 

12 43.8 39.2 40.9  1.116 1.070 

13 87.7 85.6 92.7  1.025 0.946 

14 84.4 85.6 92.7  0.986 0.910 

15 59.1 57.9 61.1  1.020 0.967 

16 59.0 58.3 61.7  1.013 0.957 

17 240.4 215.5 236.1  1.116 1.018 

18 226.4 218.5 240.6  1.036 0.941 

19 176.5 194.5 204.0  0.907 0.865 

20 191.3 198.4 206.2  0.964 0.928 

Average value    1.032 0.950 

Standard deviation    0.059 0.065 
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Based on the Figure 5.6 to Figure 5.8 could be said that consideration of the corner area extensions 

provides more accurate predictions, however, data given by Table 5.2 show that in some cases 

consideration of the pure corner area gives better agreement with the test results. In general, both 

considerations provide accurate predictions on average with low standard deviation. However, 

results of the numerical model with no extensions of the corner area exhibit slightly safer and 

more consistent predictions. 

Furthermore, the comparison of local buckling, major and minor axis flexural buckling failure 

modes of experimental and numerical results are given by Figure 5.9, Figure 5.10 and Figure 5.11, 

respectively. It should be noted that due to very similar results, numerical results are shown only 

for model considering the corner area extensions. 

The numerical predictions are in very good agreement with data obtained from the conducted 

tests, therefore, numerical model is accurate and suitable for the following numerical parametric 

study. 

    

Figure 5.9 Test and numerical local buckling failure of specimen 13. 
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Figure 5.10 Test and numerical major axis flexural buckling failure of specimen 5. 
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Figure 5.11 Test and numerical minor axis flexural buckling failure of specimen 17. 
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5.2.4 Numerical parametric study 

The numerical parametric study was made based on the validated numerical model in order to 

extend the amount of results for stainless steel SHS and RHS beam-column resistance. It considers 

various cross-section dimensions, cross-section and non-dimensional slendernesses, material 

properties and loading states (nb). In total, 738 simulations of beam-column and 324 of flexural 

buckling and bending were carried out. 

Material properties considering three main stainless steel groups, namely austenitic, ferritic and 

duplex, were used. One grade of each stainless steel group was investigated, however, with 

consideration of two values of strain hardening exponent n, representing upper and lower bound 

for material non-linearity. The chosen stainless steel grades represent materials with low yield 

strength fy and low ultimate strength fu (ferritic grade), high fy and high fu (duplex grade) and the 

greatest ratio between fu and fy (austenitic grade). Young’s modulus E0 = 200 GPa, as given by 

[5], was considered for all investigated materials. In the numerical parametric study, material 

properties were considered the same among the whole cross-section, as is used in practice, and 

they are summarized in Table 5.3. Furthermore, Figure 5.12 shows initial part of stress-strain 

diagrams. 

As a stress-strain diagram, two-stage Ramberg-Osgood model described by Equation (3.3) for the 

first stage and Equation (3.10) for the second stage was used. Tangent modulus E0.2 and strain 

hardening exponent n0.2,u were calculated according to Equation (3.8) and Equation (3.9), 

respectively. Ultimate strain εu was calculated according to [1] as 1 – (fy / fu). 

Both SHS and RHS members were investigated. Cross-section dimensions were considered as 

80 mm for SHS and 100x40 mm for RHS, representing typical SHS and RHS with highest h / b 

ratio commonly used. Cross-section centreline was modelled with corner radii equal to two times 

of the wall thickness. Wall thickness t was set as a variable parameter and calculated regarding 

the appropriate material to cover the cross-section Classes 1 and 4 for SHS and Classes 1, 3 and 

4 for RHS. The cross-section classification limits developed by Gardner and Theofanous [36] 

were used. Wall thickness was considered in a range from 1.5 mm to 8 mm. Consequently, cross-

section slenderness 𝜆̅p was given by the most slender cross-section element. It was calculated 

according to DMSSS Annex D [5] and was in a range from 0.06 to 1.30. 

Non-dimensional slenderness 𝜆̅ values were considered in a range from 0.2 to 3.0 in order to cover 

both stocky and slender members. Investigated non-dimensional slenderness 𝜆̅ values are given 

by Table 5.4, where 𝜆̅ = √𝐴eff𝜎0.2 𝑁cr⁄  is the non-dimensional slenderness according to [5], with 

Ncr considered as the Euler buckling load. 
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Ratio between compressive force and bending moment was investigated based on parameter nb, 

which represents ratio between compressive force NEd and flexural buckling resistance Nb,Rd. 

Investigated nb ratios are given by Table 5.4. 

Local and global initial geometric imperfections were considered in the numerical parametric 

study as well. The global imperfection amplitude was considered as L / 1000, where L is the 

member length, whereas local imperfection amplitude was calculated according to Dawson and 

Walker formula [23], see Equation (3.14), with modification for stainless steel [12]. 

Data obtained from the comprehensive numerical parametric study were used as a background 

for the beam-column design procedures evaluation and derivation of new interaction factor 

formulae. 

Table 5.3 Material properties considered in the numerical parametric study. 

Stainless steel 

group 

E0 fy fu n n0.2,u εu 

[GPa] [MPa] [MPa] [-] [-] [-] 

Austenitic 200 220 520 4.5 2.5 0.58 

Austenitic 200 220 520 14 2.5 0.58 

Ferritic 200 210 380 4.5 2.9 0.44 

Ferritic 200 210 380 14 2.9 0.44 

Duplex 200 480 660 4.5 3.5 0.27 

Duplex 200 480 660 14 3.5 0.27 
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a) Austenitic stainless steel 

 

b) Ferritic stainless steel 

 

c) Duplex stainless steel 

Figure 5.12 Material stress-strain diagrams considered in the numerical 

parametric study from 0 to 0.01 of strain (ε). 
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Table 5.4 Non-dimensional slenderness 𝜆̅ and loading state nb values considered 

in the numerical parametric study. 

SHS members  RHS members 

λ̅ nb  λ̅ nb 

0.2 0.05  0.5 0.05 

0.3 0.3  0.8 0.1 

1.0 0.5  1.0 0.2 

1.5 0.7  1.5 0.5 

2.0 0.8  2.0 0.8 

3.0     
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Chapter 6  

 

Proposal for stainless steel beam-

column design 

Currently, there is a design procedure for stainless steel members loaded by compression and 

bending given in EN 1993-1-4 [1]. Many improvements of the design approach or developments 

of absolutely new procedures were made in order to derive both accurate and safe design 

procedure (see Chapter 3.11). The most recent procedure was developed by Zhao et al. [72], which 

is also considered for the next edition of EN 1993-1-4, and it is compared below. Finally, a new 

design formula for SHS and RHS stainless steel beam-columns is proposed in this section. 

Design procedure comparison was commonly made based on the comparison of the interaction 

factor k. Recently, comparison of the ultimate loading force Nu acting on eccentricity against the 

cross-section centroid causing bending, was used. In this work, comparison of the whole 

interaction formula result governing the beam-column design is used.
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Consequently, the interaction factor may not be absolutely accurate in dominant compression 

cases due to its low influence. In comparison, a compressive NFEM and bending moment MFEM 

load values obtained from the numerical model were considered. Flexural buckling resistance 

Nb,Rd,i and bending resistance MRd,i were calculated according to the appropriate analytical 

procedure, see chapters below. Comparison was made according to Equation (6.1). Results greater 

than unity indicate safe results, whereas results lower than unity indicate unsafe results. Results 

were compared as variable on two criteria, namely nb ratio and non-dimensional slenderness 𝜆̅. 

The reliability conditions are given by Figure 6.1. Procedure given by EN 1993-1-4 [1] is not 

compared herein, because it is not accurate, as was presented above, and will not be involved in 

following standard editions. 

 
𝑁FEM
𝑁b,Rd,i

+ 𝑘
𝑀FEM
𝑀Rd,i

≤ 1.0 (6.1) 

 

Figure 6.1 Definition of the design procedure comparison as dependent on nb ratio 

(left) and non-dimensional slenderness 𝜆̅ (right). 

6.2 Comparison of proposal of Zhao et al. [72] 

Design procedure developed by Zhao et al. [72] is a most developed procedure for stainless steel 

SHS and RHS beam-column design. As mentioned before, the procedure is suitable for the main 

three stainless steel groups, namely austenitic, ferritic and duplex and provides separate constants 

for each. 

For the procedure evaluation, the numerical parametric study results were used. Flexural buckling 

resistance was calculated according to EN 1993-1-4 [1] considering revised buckling curves [41]. 

The cross-section bending resistance was calculated according to CSM, as was considered during 

its development. However, with modification for slender cross-sections [49]. 
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Comparison of the procedure is given by Figure 6.2 and Figure 6.3 as dependent on non-

dimensional slenderness 𝜆̅ and nb ratio, respectively. 

 

a) Austenitic stainless steel 

 

 

b) Ferritic stainless steel 
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c) Duplex stainless steel 

Figure 6.2 Comparison of the Zhao et al. procedure [72] as dependent on non-

dimensional slenderness 𝜆̅. 

 

 

a) Austenitic stainless steel 
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b) Ferritic stainless steel 

 

 

c) Duplex stainless steel 

Figure 6.3 Comparison of the Zhao et al. procedure [72] as dependent on nb ratio. 
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Due to the fact that the analytically calculated resistances (flexural buckling and bending) were 

combined with the ultimate loads obtained from the numerical model, some conservativeness was 

expected. As could be seen, results provided by design approach developed by Zhao et al. [72] 

provides good predictions in general. However, results for Class 4 cross-sections are slightly 

scattered and conservative in some cases of all stainless steel groups. That could be caused by the 

fact that during the procedure development the improvement of CSM for slender cross-sections 

[49] did not exist. On the other hand, for all three stainless steel groups some results for Class 1 

cross-sections are slightly unsafe with increasing non-dimensional slenderness. Class 3 cross-

section results are very good in the case of duplex stainless steel group, however, for austenitic 

and ferritic steels exhibit slightly unsafe predictions in dominant bending moment cases. 

6.3 New proposal for the design of SHS and RHS beam-

columns under uniform bending moment 

The procedure developed by Zhao et al. [72] was found accurate on average, however, with some 

conservative and unsafe predictions in a few specific cases as it was developed on a limited 

number of results. Therefore, a new proposal for the design of stainless steel SHS and RHS 

members loaded by compressive force and bending moment combination is presented in this 

chapter. The procedure was developed based on the data obtained from the numerical parametric 

study. For the new proposal development, the ultimate compressive force NFEM and bending 

moment MFEM were obtained from the numerical model, as well as column resistance Nb,Rd,FEM 

and cross-section bending resistance MRd,FEM. 

6.3.1 New proposal development 

The same interaction formulae as given by EN 1993-1-4 [1] was considered, see Equations (3.47) 

and (3.48). Their simplifications for the combination of compressive force and uniaxial major or 

minor axis bending moment are given by Equations (6.2) to (6.4). Cross-section load-bearing 

capacity conditions were considered as well, see Equations (6.5) and (6.6). However, they were 

never governing. 

 
𝑁Ed
𝑁b,Rd,y

+ 𝑘yy
𝑀Ed,y

𝑀Rd,y
≤ 1.0 (6.2) 
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𝑁Ed
𝑁b,Rd,z

+ 𝑘zy
𝑀Ed,y

𝑀Rd,y
≤ 1.0 (6.3) 

 
𝑁Ed
𝑁b,Rd,z

+ 𝑘zz
𝑀Ed,z
𝑀Rd,z

≤ 1.0 (6.4) 

 
𝑁Ed
𝑁Rd

+
𝑀Ed,y

𝑀Rd,y
≤ 1.0 (6.5) 

 
𝑁Ed
𝑁Rd

+
𝑀Ed,z

𝑀Rd,z
≤ 1.0 (6.6) 

For the new proposal development both ultimate applied loads and load-bearing capacities were 

obtained from the numerical model. Therefore, Equations (6.2) to (6.6) can be modified and 

written as Equations (6.7) to (6.11). 

 
𝑁FEM

𝑁b,Rd,FEM,y
+ 𝑘new,yy

𝑀FEM,y

𝑀Rd,FEM,y
≤ 1.0 (6.7) 

 
𝑁FEM

𝑁b,Rd,FEM,z
+ 𝑘new,zy

𝑀FEM,y

𝑀Rd,FEM,y
≤ 1.0 (6.8) 

 
𝑁FEM

𝑁b,Rd,FEM,z
+ 𝑘new,zz

𝑀FEM,z
𝑀Rd,FEM,z

≤ 1.0 (6.9) 

 
𝑁FEM
𝑁Rd,FEM

+
𝑀FEM,y

𝑀Rd,FEM,y
≤ 1.0 (6.10) 

 
𝑁FEM
𝑁Rd,FEM

+
𝑀FEM,z
𝑀Rd,FEM,z

≤ 1.0 (6.11) 

where knew,y and knew,z are the new interaction factors regarding appropriate axis. 

Equations (6.7) to (6.9) were used for the new interaction factor knew,yy, knew,zy and knew,zz formulae 

development. There was the aim to develop a safe and accurate stainless steel SHS and RHS 

beam-column design procedure general enough, to be used for any material properties, loading 

state and both member and cross-section slenderness. Therefore, data obtained from the numerical 

parametric study were used. 

A new interaction factor is proposed by Equations (6.12) and (6.13) for combination of 

compression and major axis bending with Equation (6.14) for uniaxial and biaxial symmetric 
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cross-sections and by Equations (6.15) and (6.16) for compression and minor axis bending 

combination. 

 𝑘new,yy = 1 + 1.5𝜆̅y𝑛b,y
𝛽y

 for 𝜆̅y ≤ 1.0 (6.12) 

 
𝑘new,yy = 1 + 1.5𝜆̅y𝑛b,y

𝛽y 0.8

√𝜆̅y − 0.36

 
for 𝜆̅y > 1.0 (6.13) 

 𝑘new,zy = 0.5𝑘yy (6.14) 

 𝑘new,zz = 1 + 1.5𝜆̅z𝑛b,z
𝛽z  for  𝜆̅z ≤ 1.0 (6.15) 

 𝑘new,zz = 1 + 1.5𝜆̅z𝑛b,z
𝛽z

0.8

√𝜆̅z − 0.36
 for 𝜆̅z > 1.0 (6.16) 

with 𝑛b,y =
𝑁Ed
𝑁b,Rd,y

 (6.17) 

 𝑛b,z =
𝑁Ed
𝑁b,Rd,z

 (6.18) 

 𝛽y = (
𝑀el,y

𝑀Rd,y
)

2

 (6.19) 

 𝛽z = (
𝑀el,z
𝑀Rd,z

)

2

 (6.20) 

where Mel,y and Mel,z are the elastic bending moment capacity for the appropriate axis calculated 

as the appropriate elastic cross-section modulus Wel,i times 0.2 % proof stress σ0.2. 

In the proposal, non-dimensional slenderness 𝜆̅ as well as loading state (nb) are considered. For 

the consideration of cross-section slenderness (Class) factor βi was introduced. Usually, 

interaction factor is defined by a bi-linear curve with a plateau beyond specific non-dimensional 

slenderness value. However, it was found there is still increasing trend of the interaction factor 

value with increasing slenderness. Therefore, the second stage of the interaction factor (𝜆̅ > 1.0) 

is increasing with non-dimensional slenderness, but the slope is reduced by introduction of an 

additional factor. Numerator constant was derived based on numerical study data, whereas 

denominator considers non-dimensional slenderness influence. Square root constant ensures 

interaction factor curve continuity, because if 𝜆̅ = 1.0 the whole fraction is equal to unity as well. 
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Figure 6.4 shows interaction factor k in relation with non-dimensional slenderness 𝜆̅ for two nb 

ratio values and β factor equal to unity. There is a steep increase up to 𝜆̅ = 1.0 beyond which the 

increase is lower. The more compression the steeper slope. Figure 6.5 provides very similar 

curves, however, for two values of factor β with nb = 0.5. 

Figure 6.6 and Figure 6.7 provide a comparison of the interaction factor knew curve calculated 

according to the new proposal with the interaction factor values kFEM obtained from the numerical 

model. Comparison is made for nb = 0.2 and 0.7 with β ≥ 0.195 and ≥ 0.318, respectively. As can 

be seen, knew is mostly safe and cover the trend of kFEM accurately. 
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Figure 6.4 New interaction factor curve with β = 1.0 as dependent on non-

dimensional slenderness 𝜆̅. 

 

 

Figure 6.5 New interaction factor curve with nb = 0.5 as dependent on non-

dimensional slenderness 𝜆̅. 
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Figure 6.6 Comparison of the interaction factors knew and kFEM for nb = 0.2 with 

β ≥ 0.195 as dependent on non-dimensional slenderness 𝜆̅. 

 

 

Figure 6.7 Comparison of the interaction factors knew and kFEM for nb = 0.7 with 

β ≥ 0.318 as dependent on non-dimensional slenderness 𝜆̅. 

6.3.2 New proposal comparison 

The procedure was developed based on the numerically calculated load-bearing capacities. 

Comparison considering load-bearing capacities and both compressive and bending load from the 

numerical study with the new interaction factor was made.  Figure 6.8 provides comparison results 

as dependent on non-dimensional slenderness 𝜆̅, whereas Figure 6.9 as dependent on nb ratio. 
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a) Austenitic stainless steel 

 

 

b) Ferritic stainless steel 
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c) Duplex stainless steel 

Figure 6.8 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering numerical load-bearing capacities (Nb,Rd,FEM 

and MRd,FEM). 

 

 

a) Austenitic stainless steel 
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b) Ferritic stainless steel 

 

 

c) Duplex stainless steel 

Figure 6.9 Comparison of the new proposal as dependent on nb ratio, considering 

numerical load-bearing capacities (Nb,Rd,FEM and MRd,FEM). 
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As could be seen in Figure 6.8 and Figure 6.9, the new proposal provides both safe, accurate and 

consistent predictions for SHS and RHS stainless steel beam-columns. It is a general proposal for 

stainless steel SHS and RHS beam-column design. 

It was assessed that the new proposal is in very good agreement with the real behaviour of SHS 

and RHS stainless steel beam-columns but only with the consideration of the real load-bearing 

capacities. Due to the fact that analytically calculated approximations of the real flexural buckling 

and bending resistances are being used in design practice, comparison with these is necessary. 

6.3.3 Load-bearing capacities according to EN 1993-1-4 with revised 

flexural buckling curves. 

Evaluation of the new proposal was also done considering flexural buckling resistance according 

to EN 1993-1-4 [1] with revised stainless steel flexural buckling curves developed by Afshan et 

al. [41] and cross-section bending resistance according to EN 1993-1-4 [1]. As only simple 

approximations of the real column and cross-section resistances are considered, more scattered 

results could be expected. Figure 6.10 shows evaluation of the new proposal as dependent on the 

non-dimensional slenderness 𝜆̅, while Figure 6.11 as dependent on nb ratio. Furthermore, 

evaluation of the new proposal based on the experimental data is given by Figure 6.12, where 0t 

and 2t mean consideration of the cross-section without and with the corner region extension, 

respectively. 
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a) Austenitic stainless steel 

 

 

b) Ferritic stainless steel 
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c) Duplex stainless steel 

Figure 6.10 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and EN 1993-1-4, respectively. 

 

 

a) Austenitic stainless steel 
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b) Ferritic stainless steel 

 

 

c) Duplex stainless steel 

Figure 6.11 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

EN 1993-1-4, respectively. 
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a) Non-dimensional slenderness 𝜆̅ 

 

 

b) nb ratio 

Figure 6.12 Comparison of the new proposal considering experimental data with 

flexural buckling and bending resistance according to Afshan et al. and 

EN 1993-1-4, respectively. 
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Figure 6.10 and Figure 6.11 show the results are slightly more scattered than in comparison where 

column and bending resistance were obtained from the numerical study. However, the results are 

more conservative in general. There are only few slightly unsafe results of austenitic and ferritic 

stocky cross-section members with non-dimensional slenderness value around unity and 

predominant loading by compressive force caused by significant plasticity. The new proposal 

provides safe and consistent predictions for duplex stainless steel members in all cases. 

Comparison of the new proposal considering experimental data provides very good results for 

both stocky (Class 1) and slender (Class 4) cross-sections. However, for lower non-dimensional 

slenderness it becomes slightly over-conservative. That is caused by increasing influence of the 

cross-section resistance which was calculated approximately and conservatively. Results with the 

consideration of the corner extensions for the material strength enhancement are slightly lower 

than with the pure corner area, as the cross-section load-bearing capacities are higher. 

In general, the new proposal predictions of stainless steel beam-columns resistance considering 

flexural buckling resistance according to EN 1993-1-4 [1] with modification made by Afshan et 

al. [41] and bending resistance according to EN 1993-1-4 [1] are low scattered, safe and 

consistent. Reliability analysis of the new proposal considering mentioned load-bearing capacities 

is given by Chapter 6.3.6. 

6.3.4 Load-bearing capacities according to EN 1993-1-4 with revised 

flexural buckling curves and CSM. 

Comparison of the new proposal considering flexural buckling resistance calculated according to 

EN 1993-1-4 [1] with modification developed by Afshan et al. [41] and bending resistance 

according to CSM [49] is shown in this chapter. The comparison is shown below, where Figure 

6.13 shows results as dependent on non-dimensional slenderness 𝜆̅, whereas Figure 6.14 provides 

comparison as dependent on nb ratio. Comparison based on the experimental data is given by 

Figure 6.15. 
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a) Austenitic stainless steel 

 

 

b) Ferritic stainless steel 
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c) Duplex stainless steel 

Figure 6.13 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and CSM, respectively. 

 

 

a) Austenitic stainless steel 
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b) Ferritic stainless steel 

 

 

c) Duplex stainless steel 

Figure 6.14 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

CSM, respectively. 
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a) Non-dimensional slenderness 𝜆̅ 

 

 

b) nb ratio 

Figure 6.15 Comparison of the new proposal considering experimental data with 

flexural buckling and bending resistance according to Afshan et al. and 

CSM, respectively. 
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The comparison shows that the predictions of the new proposal are similar to those with bending 

moment capacity calculated according to EN 1993-1-4 [1]. However, there is some improvement 

in cases of dominant bending moment where results exhibit lower scatter for all stainless steel 

groups and cross-section classes. On the other hand, there are few unsafe predictions for stocky 

cross-sections (Class 1) of non-dimensional slenderness λ̅ ≈ 1.0 and predominant compressive 

force influence. In these cases, the lower value of strain hardening exponent n = 4.5 was 

considered in material model. On the other hand, for n = 14 the results are conservative. 

The comparison of the new proposal with the experimental data consideration provides very 

similar results to the ones in the previous chapter, with a little improvement in the slender 

(Class 4) cross-section cases. 

Assuming bending moment resistance according to CSM [49] leads to improvement of 

predictions for all three stainless steel groups and all investigated cross-sections when bending 

moment is dominant (nb ≤ 0.3). However, with increasing influence of compressive force, results 

became slightly more scattered. Chapter 6.3.6 provides reliability analysis of the procedure. 

6.3.5 Load-bearing capacities according to EN 1993-1-4 with revised 

flexural buckling curves and DSM. 

As was mentioned, Arrayago et al. [56] investigated that DSM provides good predictions for 

stainless steel. Therefore, comparison considering flexural buckling resistance according to EN 

1993-1-4 [1] with revised flexural buckling curves [41] and bending resistance calculated 

according to CSM [49] with DSM local buckling curve for carbon steel [56] was made. The CSM 

local buckling curve [49] given by Equation (3.30) was replaced by the DSM carbon steel local 

buckling curve [56] given by Equation (3.41). Subsequent cross-section bending moment capacity 

calculation remained the same as for CSM. 

The evaluation is shown below, where Figure 6.16 provides predictions as dependent on non-

dimensional slenderness 𝜆̅ and Figure 6.17 as dependent on nb ratio. Comparison considering data 

obtained from the conducted experiments is given by Figure 6.18. 



Chapter 6: Proposal for stainless steel beam-column design 

- 128 - 

 

 

a) Austenitic stainless steel 

 

 

b) Ferritic stainless steel 
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c) Duplex stainless steel 

Figure 6.16 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and DSM, respectively. 

 

 

a) Austenitic stainless steel 
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b) Ferritic stainless steel 

 

 

c) Duplex stainless steel 

Figure 6.17 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

DSM, respectively. 
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a) Non-dimensional slenderness 𝜆̅ 

 

 

b) nb ratio 

Figure 6.18 Comparison of the new proposal considering experimental data with 

flexural buckling and bending resistance according to Afshan et al. and 

DSM, respectively. 
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As could be seen in Figure 6.16 and Figure 6.17 results for stocky (Class 1) cross-sections, as 

well as Class 3 cross-section predictions, became conservative. The DSM [56] unlike CSM [49] 

does not consider strain hardening phenomenon. As DSM local buckling curve [56] is lower than 

CSM local buckling curve [49], the results are slightly safer for slender (Class 4) cross-section 

predictions. 

Very similar change of results could be seen in Figure 6.18 for the experimental data. Neglection 

of strain hardening and lower local buckling curve results in more conservative predictions. 

As CSM [49] provides accurate cross-section predictions for stocky cross-sections, DSM local 

buckling curve [56] made the procedure very conservative in general. However, with some 

improvement for slender (Class 4) cross-sections. Reliability analysis of the procedure is given in 

Chapter 6.3.6. 

6.3.6 Reliability analysis 

Stainless steel SHS and RHS beam-column design procedures were presented in previous 

chapters with their comparisons. The reliability analysis of the procedures are made in this chapter 

according to EN 1990 [81] provisions, namely Annex D. The target partial safety factor is 

γM1 = 1.1, as recommended by EN 1993-1-4 [1]. Determination of the 𝛾M
∗  partial safety factor for 

the proposed procedure is shown below. 

The main idea of the reliability is that resistance must be greater than effect of actions, see 

Equation (6.21). 

 R > E (6.21) 

where R is the resistance and E is the effect of actions. 

The interaction formula represents utilization of the member which is compared to unity, 

representing 100 % utilization. Therefore, unity was considered as the effect of actions E and 

inverse value of the member utilization as the resistance R. Subsequently, the mean value of the 

correction factor b was calculated as: 

 b =∑𝑟e,i𝑟t,i

n

i=1

∑𝑟t,i
2

n

i=1

⁄  (6.22) 

where rt,i is a theoretical resistance function calculated considering nominal values of variables, 

set as cross-section area A and 0.2 % proof stress σ0.2 for each specimen (inverse values 
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of the left side of the interaction formula) and re,i is the partial experimental resistance for 

each specimen, considered as unity for all cases (right side of the interaction formula). 

As the next step, the coefficient of variation Vδ of the error terms δi of the resistance function was 

calculated according to Equations (6.23) to (6.26). 

 𝑉δ = √exp
𝑠Δ
2
− 1 (6.23) 

with 𝑠Δ
2 =

1

𝑛 − 1
∑(𝛥i − 𝛥̅)

2

n

i=1

 (6.24) 

being 𝛥̅ =
1

𝑛
∑𝛥i

n

i=1

 (6.25) 

 𝛥i = ln (
𝑟e,i
𝑏𝑟t,i

) = ln(𝛿i) (6.26) 

where 𝛥𝑖 is the logarithm of the error term δi, 𝛥̅ is the estimated value for E(Δ,i) (mean value of 

𝛥𝑖), n is the number of samples and 𝑠Δ
2 is the estimated value for 𝜎Δ

2 (variance of the term 

𝛥𝑖). 

Influence of the basic inputs variations on the resistance function is accounted by the error 

propagation term Vrt,i for each sample. The calculation procedure of the error propagation term 

Vrt,i is quite complex, however, simplification used in Tankova et al. [82] was used herein, see 

Equation (6.27). It should be noted that the simplification often leads to conservative results. As 

was mentioned above, the input variables were set as cross-section area A and 0.2 % proof stress 

σ0.2. For the reliability analysis the coefficient of variation of the inputs is necessary. They were 

adopted as suggested by Afshan et al. [83], see Table 6.1, where Vmat and Vgeom represent material 

and geometrical coefficients of variation, respectively and Vrt,i is the calculated value of the error 

propagation term. Then, the log-normal variation coefficients were calculated by Equations (6.28) 

to (6.31). 

 𝑉rt,i ≈ √[max(𝑉mat,i)]
2
+ [max(𝑉geom,i)]

2
 (6.27) 
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Table 6.1 Material and geometrical coefficient of variation values according to 

Afshan et al. [83] and calculated error propagation term Vrt,i. 

Stainless steel group Vmat,i Vgeom,i Vrt,i 

Austenitic 0.060 0.05 0.078 

Ferritic 0.045 0.05 0.067 

Duplex 0.030 0.05 0.058 

 

 𝑄rt,i = √ln(𝑉rt,i
2 + 1) (6.28) 

 𝑄δ = √ln(𝑉δ
2 + 1) (6.29) 

 Qi = √ln(𝑉r,i
2 + 1) (6.30) 

with 𝑉r,i = √𝑉rt,i
2 + 𝑉δ

2 (6.31) 

where Qrt,i, Qδ and Qi are the log-normal variation coefficients and the Vr,i is the coefficient of 

variation considering error propagation term and deviation. 

Design value of the resistance rd was calculated, subsequently. There are two equations for the 

resistance calculation depending on the number of samples. If the number of samples does not 

exceed 100, Equation (6.32) should be used, otherwise Equation (6.33) should be used. 

 𝑟d,i = 𝑏𝑔rt,i(𝑋m)exp(−𝑘d,∞
𝑄rt,i
2

𝑄i
− 𝑘d,n

𝑄δ
2

𝑄i
− 0.5𝑄i

2) (6.32) 

 𝑟d,i = 𝑏𝑔rt,i(𝑋m)exp(−𝑘d,∞
𝑄rt,i
2

𝑄i
− 0.5𝑄i

2) (6.33) 

where 𝑔rt,i(𝑋m) is the value of a design function (the new design proposal in this case) 

calculated using the mean values (given below), kd,n is the design fractile factor given by 

table D2 of the EN 1990 [81] and kd,∞ is the value of kd,n for the volume of samples n 

tending to infinity and is equal to 3.04. 
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Design function calculated with consideration of the mean values of basic variables is, in other 

words, inverse value of the interaction formula where the nominal values of the basic variables 

are replaced by the mean values. As basic variables, the geometry represented by the cross-section 

area A and material properties represented by the 0.2 % proof stress σ0.2 were considered. There 

is no difference in the nominal and mean value of the geometry, therefore, the cross-section area 

remains the same. In the case of material properties some difference in the 0.2 % proof stress σ0.2 

of nominal and mean values exists. Afshan et al. [83] defined criteria for the relationships between 

nominal and mean values of the 0.2 % proof stress description. The mean 0.2 % proof stress 

σ0.2,mean to nominal 0.2 % proof stress σ0.2,nom ratio is equal to 1.3, 1.2 and 1.1 for austenitic, ferritic 

and duplex stainless steel group, respectively. In other words, the nominal 0.2 % proof stress 

σ0.2,nom multiplied by the appropriate constant results in the mean 0.2 % proof stress σ0.2,mean. 

Eventually, the required partial safety factor 𝛾M
∗  applicable for the new beam-column design 

proposal based on the nominal input data was calculated by Equation (6.34). 

 𝛾M
∗ =

1

𝑛
∑

𝑟t,nom,i
𝑟d,i

n

i=1

 (6.34) 

where rt,nom,i is the design function for each individual sample based on the nominal values. 

The reliability analysis was made by the comparison of the partial safety factor 𝛾M
∗  obtained from 

the Equation (6.34) and partial safety factor recommended by EN 1993-1-4 [1] for beam-column 

design γM1 which is equal to 1.1. For the safe prediction the 𝛾M
∗  value should be lower than γM1 

value. However, if the 𝛾M
∗  value exceed γM1 very slightly, then acceptance limits can be used [84]. 

The acceptance limits representing some tolerances derived based on the past practice were 

developed by Taras et al. [84]. Slightly modified condition of the acceptance criterion is given by 

Equation (6.35). The recommended values of the acceptance limits fa are given by Table 6.2 

regarding Vr value. 

 𝛾M
∗ ≤ 𝑓a𝛾M1 (6.35) 

where fa is the acceptance limit. 
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Table 6.2 Recommended values of fa according to [84]. 

Range of Vr fa 

0.00 < Vr < 0.04 1.03 

0.00 ≤ Vr < 0.20 1.03 + 0.75 (Vr - 0.04) 

Vr > 0.20 1.15 

 

Statistical evaluations of the stainless steel beam-column design procedures for SHS and RHS 

members described in Chapter 6.3 are shown herein. For the reliability analysis, the approach 

presented above was used. Table 6.3, Table 6.4 and Table 6.5 provide reliability analysis of the 

new proposal considering analytical flexural buckling capacity according to EN 1993-1-4 [1] 

considering the revised flexural buckling curves [41] with bending moment resistance according 

to EN 1993-1-4 [1], CSM [49] and CSM with DSM local buckling curve [56], respectively. n is 

the sample volume, b is the correction factor, kd,n is the design fractile factor, Vδ is the variation 

coefficient of the error term, Vr is the variation coefficient considering error propagation term and 

deviation, 𝛾M
∗  is the partial safety factor obtained from the reliability analysis and  faγM1 is the limit 

for the 𝛾M
∗  value considering tolerances. For the total results, faγM1 was calculated as a weighted 

average of faγM1 values of the three stainless steel groups. It should be noted, that the results 

obtained from the comprehensive numerical parametric study were considered. 

Table 6.3 Reliability analysis of the new proposal considering analytical load-

bearing capacities according to EN 1993-1-4 with revised flexural 

buckling curves. 

Group n b kd,n Vδ Vr 𝛾M
∗  faγM1 

Austenitic 231 1.132 3.133 0.110 0.124 1.122 1.202 

Ferritic 276 1.187 3.126 0.091 0.118 1.053 1.197 

Duplex 231 1.198 3.133 0.081 0.113 1.060 1.193 

Total 738 1.172 3.103 0.096 - 1.086 1.197 
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Table 6.4 Reliability analysis of the new proposal considering analytical 

flexural buckling resistance according to EN 1993-1-4 with revised 

flexural buckling curves and bending resistance according to CSM. 

Group n b kd,n Vδ Vr 𝛾M
∗  faγM1 

Austenitic 231 1.092 3.133 0.099 0.121 1.146 1.200 

Ferritic 276 1.153 3.126 0.081 0.114 1.064 1.194 

Duplex 231 1.179 3.133 0.084 0.109 1.101 1.190 

Total 738 1.140 3.103 0.092 - 1.117 1.194 

 

Table 6.5 Reliability analysis of the new proposal considering analytical 

flexural buckling resistance according to EN 1993-1-4 with revised 

flexural buckling curves and bending resistance according to DSM. 

Group n b kd,n Vδ Vr 𝛾M
∗  faγM1 

Austenitic 231 1.155 3.133 0.130 0.152 1.162 1.225 

Ferritic 276 1.214 3.126 0.105 0.125 1.067 1.203 

Duplex 231 1.232 3.133 0.098 0.114 1.081 1.194 

Total 738 1.120 3.103 0.114 - 1.111 1.207 

 

Generally, the procedures are different only in the cross-section bending resistance calculation 

method. If the current codified procedure for the cross-section bending resistance calculation was 

used [1], the results are safe for the ferritic and duplex stainless steel groups. In the case of 

austenitic stainless steel group, results are slightly unsafe, however, within the tolerance. 

Furthermore, results are safe in total. Consideration of the CSM [49] for the bending moment 

resistance calculation leads to safe results for the ferritic and duplex stainless steel groups and 

slightly unsafe predictions for the austenitic group, as well. However, within tolerances safely. In 

total, results are slightly unsafe, nevertheless, very close to γM1 = 1.1 limit. If the CSM [49] with 

DSM carbon steel local buckling curve [56] is considered, calculated values of 𝛾M
∗  are little bit 

more unsafe for austenitic stainless steel group, however, more accurate for duplex group. In the 

case of ferritic group and results in total, there is only negligible change compared to CSM [49]. 

In the summary, predictions of the ferritic and duplex stainless steel groups are safe in all three 

design approaches. On the other hand, austenitic stainless steel group exhibits little unsafeness 

which is maybe caused by consideration of very different strain hardening exponent n values 
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having more significant influence on stress-strain diagram compared to ferritic and duplex groups 

(austenitic grade considered has a great ratio of ultimate strength to yield strength). Results in 

total are safe if EN 1993-1-4 [1] is used, however, in the other two cases are very close to γM1 = 

1.1 as well. Even with some slight unsafeness all results are safely within tolerances. Furthermore, 

as was mentioned above, the simplification used during the reliability analysis according to 

Tankova et al. [82] often leads to conservative results. 

6.4 Beam-columns under bending moment gradient 

The new proposal was developed for stainless steel beam-columns loaded by uniform bending 

moment. However, uniform bending moment along the member length occurs in practice rarely, 

therefore, a brief comparison for compressive force and non-uniform bending moment is shown 

herein.  

The same design procedure with the new interaction factor formulae as developed for the uniform 

bending moment was used, see Chapter 6.3.1. However, with the equivalent bending moment 

factor developed by Austin [57] included. Its general form is given by Equation (6.37). The 

general interaction formula considering linear bending moment gradient is given by 

Equation (6.36). 

 
𝑁Ed
𝑁b,Rd

+ 𝐶m𝑘new
𝑀𝐸𝑑

𝑀𝑅𝑑
≤ 1.0 (6.36) 

 𝐶m = 0.6 + 0.4𝜓 ≥ 0.4 (6.37) 

where ψ is the ratio of end moments. 

It was necessary to extend the numerical parametric study by members loaded by compressive 

force and bending moment with gradient along the member length. The models for the most 

unsafe comparison results made in Chapter 6.3 were chosen for the investigation. Finally, two 

cross-sections of austenitic stainless steel group were considered. The material properties are 

given in Table 6.6 and other variables (cross-section, non-dimensional slenderness 𝜆̅, ratio of 

compressive force to flexural buckling resistance nb and end-moment ratio 𝜓)  in Table 6.7. It 

should be noted that the RHS cross-section members were loaded by minor axis bending. 
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Table 6.6 Material properties considered for bending moment gradient 

investigation. 

Stainless steel 

group 

E0 fy fu n 

[GPa] [MPa] [MPa] [-] 

Austenitic 200 220 520 4.5 

 

Table 6.7 Investigated variables for combination of compressive force and non-

uniform bending. 

Cross-section SHS 80x8; RHS 100x40x6 

Cross-section class 1 

Non-dimensional slenderness 0.2, 1.0, 1.5, 2.0       

𝑛b = 𝑁Ed 𝑁b,Rd⁄  0.05, 0.5, 0.8 

End-moment ratio 0, -1 

 

Comparison was made in the same way as for uniform bending moment. Firstly, the procedure 

was compared with the consideration of both flexural buckling and bending resistance obtained 

from the numerical model that represents the real member behaviour or its closest prediction 

(Figure 6.19 and Figure 6.20). Then, analytically calculated load-bearing capacities, that are 

commonly used in design practice, were considered, namely flexural buckling resistance 

according to EN 1993-1-4 [1] procedure considering revised buckling curves [41] and bending 

moment resistance according to EN 1993-1-4 [1] (Figure 6.21 and Figure 6.22), CSM [49] (Figure 

6.23 and Figure 6.24) and CSM [49] with the consideration of DSM carbon steel local buckling 

curve [56] (Figure 6.25 and Figure 6.26). 
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Figure 6.19 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering numerical load-bearing capacities (Nb,Rd,FEM 

and MRd,FEM) for non-uniform bending moment. 

 

Figure 6.20 Comparison of the new proposal as dependent on nb ratio, considering 

numerical load-bearing capacities (Nb,Rd,FEM and MRd,FEM) for non-

uniform bending moment. 
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Figure 6.21 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and EN 1993-1-4, respectively, for non-

uniform bending moment. 

 

Figure 6.22 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

EN 1993-1-4, respectively, for non-uniform bending moment. 
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Figure 6.23 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and CSM, respectively, for non-uniform 

bending moment. 

 

 

Figure 6.24 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

CSM, respectively, for non-uniform bending moment. 
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Figure 6.25 Comparison of the new proposal as dependent on non-dimensional 

slenderness 𝜆̅, considering flexural buckling and bending resistance 

according to Afshan et al. and DSM, respectively, for non-uniform 

bending moment. 

 

 

Figure 6.26 Comparison of the new proposal as dependent on nb ratio, considering 

flexural buckling and bending resistance according to Afshan et al. and 

DSM, respectively, for non-uniform bending moment. 
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As could be seen in Figure 6.19 and Figure 6.20, consideration of the numerical load-bearing 

capacities, representing the real behaviour, provides safe results in all cases. Mostly over-

conservative, especially for the end-moment ratio ψ = -1. Therefore, the new interaction factor 

formulae is safe for members loaded by compressive force and non-uniform bending moment 

combination, however, with some conservativeness which is attributed to the simplification of the 

non-uniform bending moment distribution effect given by Cm Equation (6.37). 

Figure 6.21 to Figure 6.26 provides evaluation for the consideration of analytically calculated 

flexural buckling resistance according to EN 1993-1-4 [1] with revised buckling curves [41] and 

bending resistance according to appropriate procedure. Consideration of the bending moment 

resistance according to EN 1993-1-4 [1] provides, in general, slightly more scattered results with 

greater conservativeness due to the fact that the analytical calculations of the load-bearing 

capacities are only conservative approximations of the real ones. The CSM [49] includes strain 

hardening of stocky cross-sections which should improve the bending resistance accuracy. As 

could be seen in Figure 6.23 and Figure 6.24 there is noticeable improvement of results that are 

less scattered and more accurate compared to the consideration of bending resistance according 

to EN 1993-1-4 [1]. The use of DSM [56] carbon steel local buckling curve for CSM [49] leads, 

as was expected, to significantly over-conservative results due to the neglection of the strain 

hardening phenomenon of the stocky (Class 1) cross-sections, see Figure 6.25 and Figure 6.26. 

6.5 General Method of EN 1993-1-1 

The General Method is an alternative design approach provided by EN 1993-1-1 [2]. It was 

described in Chapter 3.11.5 in detail. In this section, a very brief investigation of the General 

Method suitability for stainless steel beam-column design is given.  

The numerical model described in Chapter 5.2 was used to obtain Euler’s buckling load Ncr,FEM, 

cross-section compressive and bending capacities NRd,FEM and MRd,FEM, flexural buckling 

resistance Nb,Rd,FEM and ultimate compressive and bending load, NEd,FEM and MEd,FEM. Based on the 

numerical results, the non-dimensional slenderness 𝜆̅FEM and flexural buckling coefficient χFEM 

were calculated. Then, the initial bow imperfection e0 was established according to Equation 

(3.75), where 𝜂 = 𝛼(𝜆̅ − 𝜆̅0) was obtained from Equation (3.21) with FEM calculated from 

Equation (3.20) considering mentioned values given by numerical model (𝜆̅FEM and χ FEM). 

Only two cross-sections were considered, namely SHS 80x3 and 80x5. Material properties were 

considered the same in the whole cross-section (1.4404 austenitic grade) and they were adopted 

from the flat coupon tensile tests, see Table 4.2. Together 12 member lengths (1000 mm to 
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7000 mm) and four loading states (nb = NEd / Nb,Rd) for both cross-sections were used, see Table 

6.8. 

Table 6.8 Investigated non-dimensional slenderness 𝜆̅𝐹𝐸𝑀 and nb ratio values. 

SHS 80x3  SHS 80x5 

𝜆̅FEM nb  𝜆̅FEM nb 

0.64 0.3  0.58 0.3 

0.76 0.5  0.87 0.5 

1.01 0.7  1.15 0.7 

1.16 0.8  1.32 0.8 

1.26   1.44  

1.51   1.73  

1.77   2.01  

2.02   2.30  

2.27   2.58  

2.52   2.87  

3.02   3.44  

3.53   4.02  

 

Due to the fact, that the General Method uses elastic material model with GNIA analysis 

(geometrically non-linear analysis with imperfections), a simplified 2D numerical model using 

2-node in a plane linear beam element B21 was created in software Abaqus. A uniform mesh of 

size 10 mm was considered. Numerical model structural scheme is given in Figure 6.27.  A cross-

section shape was simplified into a box cross-section with modified wall thickness in order to 

keeping the same value of the second moment of area. Consequently, very little difference in the 

cross-section area occurred, however, the influence was negligible, therefore it was not 

considered. The member lengths were the same as for the 3D complex models. Material properties 

were represented only by the Young’s modulus E0 and Poisson’s ratio ν. The initial imperfection 

e0 was introduced by the first elastic buckling eigen-mode. The value of e0 was calculated 

according to Equation (3.75) using the cross-section resistances calculated by 3D model. 
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Figure 6.27 Numerical model structural scheme for the General Method. 

The comparison was made based on the ratio of the ultimate loading compressive force obtained 

from the 3D complex model NEd,FEM to simplified 2D model ultimate loading compressive force 

NEd,FEM,GM representing the General Method. In other words, results above unity indicate safe 

predictions, whereas below unity unsafe predictions. Evaluation is given by Figure 6.28 both for 

SHS 80x3 and 80x5 due to very similar results. 

 

Figure 6.28 Comparison of the General Method. 

As could be seen, the results are accurate in the cases of low non-dimensional slenderness values, 

however, with increasing non-dimensional slenderness became unsafe. That is attributed to 
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member stiffness overestimation. According to loading state, the lower the influence of the 

compressive force the more unsafe prediction but the trend is the same for all investigated loading 

states. In general, it could be said that the General Method, as given by EN 1993-1-1 [2], is not 

suitable for stainless steel beam-column design. 

Improvement of the General Method is proposed in this paragraph. Based on results given by 

Figure 6.28 was mentioned that the procedure overestimate member stiffness, represented mainly 

by Young’s modulus of elasticity E0. Therefore, the Young’s modulus of elasticity E0 was 

replaced by the secant elasticity modulus Es,0.2 for the stress level equal to the 0.2 % proof stress 

σ0.2. The value of the secant elasticity modulus Es,0.2 was calculated according to Equation (6.38). 

Evaluation of the General Method considering proposed modification is given by Figure 6.29. 

 
𝐸s,0.2 =

𝜎0.2
𝜎0.2
𝐸0

+ 0.002
 

(6.38) 

 

Figure 6.29 Comparison of the modified General Method. 

Results of the modified General Method indicate very different results regarding the loading state, 

especially in higher values of the non-dimensional slenderness 𝜆̅FEM. In the case of dominant 

compressive force the results are over-conservative, whereas if bending moment is dominant 

become much lower. The over-conservatism of the primarily compressed members is caused by 

the fact that the flexural buckling resistance is significantly influenced by the modified elastic 
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modulus, whereas in the cases of dominant bending, the cross-section bending resistance has the 

main influence on the results. 

In general could be said that the current state of the General Method provided by EN 1993-1-4 

[2] is not suitable for the stainless steel beam-columns design, mainly due to neglection of the 

material non-linearity and over-estimating of the member stiffness. The modification given by 

consideration of the secant Elasticity modulus Es,0.2 for the stress level equal to the 0.2 % proof 

stress σ0.2 leads to over-conservative results in general. Therefore, further investigation of the 

General Method use for non-linear materials is needed. 
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Chapter 7  

 

Conclusions 

7.1 Research summary 

The presented thesis can be divided into four main parts. The first part describes the use of 

stainless steel in civil engineering, material properties of stainless steel, stainless steel groups and 

provides the introduction of stainless steel in general. Then, resistance in both flexural buckling 

and bending is described. Comprehensive state of the art of the stainless steel SHS and RHS 

members loaded by compression and bending combination is given. 

In the second part, the experimental programme conducted at the Czech Technical University in 

Prague is presented. In total, 20 cold-formed SHS and RHS members loaded by compressive force 

and uniform major axis bending moment were tested. Both slender and stocky cross-sections were 

used. Pin-ended boundary conditions were considered.
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The material selected was austenitic stainless steel, grades 1.4301 and 1.4404. Material properties 

were obtained from tensile coupon tests for both flat and corner part of cross-section. 

The third part is aimed on the numerical study of stainless steel SHS and RHS members loaded 

by combination of compressive force and bending moment. A 3D numerical model created in 

software Abaqus was described in detail and validated on experimental data. Subsequently, it was 

used to create a comprehensive numerical parametric study covering wide range of investigated 

variables, namely cross-section slenderness (cross-section Class), non-dimensional slenderness, 

material properties and loading state (nb ratio).  

The fourth part of the thesis is focused on a design procedure development and its comparison 

with the numerical results. Based on the results, the most recent procedure for stainless steel SHS 

and RHS beam-columns developed by Zhao et al. [72] was also compared. It was found that the 

procedure provides good results in general, however with some conservativeness in the case of 

slender (Class 4) cross-sections and little unsafe predictions in the cases of stocky (Class 1) cross-

sections with increasing non-dimensional slenderness and bending moment influence. It should 

be noted that the procedure was developed based on the analytically established load-bearing 

capacities (flexural buckling according to EN 1993-1-4 [1] with revised flexural buckling curves 

[41] and bending resistance according to CSM [48]). 

The new interaction factor formulae were proposed and evaluated. It was shown that the new 

proposal provides very good results if the numerically estimated load-bearing capacities, 

representing the real stainless steel beam-column behaviour, are considered. As the analytically 

established resistances are used in practice, comparison was made for three more cases. The 

flexural buckling was considered according to EN 1993-1-4 [1] with revised flexural buckling 

curves [41] in all cases combined with bending moment resistance calculated according to EN 

1993-1-4 [1], CSM [49] and CSM with consideration of the DSM carbon steel local buckling 

curve [56]. In the first combination, the results are slightly scattered but mostly conservative, 

especially in the cases of slender (Class 4) cross-sections with dominant bending. If the CSM [49] 

is considered, the results are similar, however, with improvement in dominant bending moment 

cases, mainly for stocky (Class 1) cross-section predictions. That is caused by the consideration 

of strain hardening in the CSM [49]. The use of DSM carbon steel local buckling curve [56] 

indicates slightly more accurate results for slender (Class 4) cross-sections, due to lower buckling 

curve. However, stocky (Class 1) cross-section predictions are over-conservative due to strain 

hardening neglection. Furthermore, there are few slightly unsafe results of austenitic stocky 

(Class 1) cross-section predictions in cases of dominant compressive force for all bending 

moment resistance calculations. That is attributed to the great strain hardening effect of the 
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austenitic stainless steel group. It should be noted that the interaction factor has a very low 

influence on the beam-column design in the cases of dominant compression. 

A reliability analysis of the new proposal considering the three mentioned combinations of the 

load-bearing capacities (described in the previous paragraph) was made. Based on the reliability 

analysis, it was found that the results are safe (within tolerance) in all cases. 

Subsequently, a brief study of stainless steel SHS and RHS members loaded by combination of 

compressive force and non-uniform bending moment was described. Design approach containing 

the new interaction factor formulae was compared and showed safe and mostly conservative 

results due to rough (and over-conservative) consideration of the bending moment gradient factor 

Cm. 

Main benefit of the new proposal is that there is only one procedure for all stainless steel SHS 

and RHS beam-columns. The procedure is the same for all stainless steel groups, cross-section 

slendernesses (Classes), non-dimensional slendernesses and loading states (compressive force to 

flexural buckling resistance ratio). It makes the procedure very general. 

Furthermore, a brief study of the General Method given by EN 1993-1-1 [2] was made. It was 

found that the General Method is not suitable for the stainless steel beam-column design in its 

current state, because it overestimates member stiffness. Therefore, modification by replacing the 

initial Young’s modulus of elasticity by elastic secant modulus for the stress level equal to the 

0.2 % proof stress was used. However, the results are mostly over-conservative, especially for 

mostly compressed members due to great influence of the lower modulus of elasticity value on 

flexural buckling resistance. 

7.2 Future research 

There are some suggestions for the future research resulting from the presented work.  

The new proposal was evaluated for stainless steel SHS and RHS beam-columns. However, there 

are many other cross-sections, whether with respect to cross-sectional shape (hollow and open) 

or fabrication process (welded, cold- and hot-rolled). Assessment of the new proposal suitability 

for mentioned cross-sections should be made with the aim to have a general procedure for all 

cross-sections. Furthermore, open cross-section members may be susceptible to lateral torsional 

buckling. Therefore, there is still need for investigation of stainless steel open-section beam-

columns.  
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Based on the results of the analytical part of the study, some differences between numerically and 

analytically established load-bearing capacities were found, that mostly stems from the great 

strain hardening of significantly non-linear material. Even though the CSM [49] considers strain 

hardening phenomenon there is some conservativeness of slender (Class 4) cross-sections. The 

DSM carbon steel local buckling curve [56] provides slightly more accurate results for slender 

(Class 4) cross-sections, however, strain hardening phenomenon is not taken into account which 

leads to over-conservative predictions of stocky (Class 1) cross-sections. It could be said, that the 

combination of the two mentioned methods should provide very accurate bending moment 

resistance predictions. 

The General Method is an alternative beam-column design approach given by the Eurocode. A 

brief investigation found that it is not suitable for stainless steel structures in its current state. The 

General Method is quite unexplored field regarding non-linear material members design. 

Therefore, further research would be worthy.
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Chapter 8  

 

Annexes 

8.1 Numerical model validation 

Validation of the numerical model based on the experimental data regarding the relationship 

between compressive force and mid-span deflection is given in this Annex for all tested members. 

Furthermore, figures for both major and minor axis mid-span deflection of RHS 100x40x4 cross-

section members are shown (for the other members is the minor-axis deflection negligible). See 

Figure 8.1 to Figure 8.20, where Mj and Mi are the major axis and minor axis mid-span deflection 

and FEM – 0t and FEM – 2t are the numerical model results considering enhanced material 

properties in the corner area and extended corner area, respectively.
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Figure 8.1 Numerical model validation on test 1. 

 

 

Figure 8.2 Numerical model validation on test 2. 
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Figure 8.3 Numerical model validation on test 3. 

 

 

Figure 8.4 Numerical model validation on test 4. 
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Figure 8.5 Numerical model validation on test 5. 

 

 

Figure 8.6 Numerical model validation on test 6. 
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Figure 8.7 Numerical model validation on test 7. 

 

 

Figure 8.8 Numerical model validation on test 8. 
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Figure 8.9 Numerical model validation on test 9. 

 

 

Figure 8.10 Numerical model validation on test 10. 
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Figure 8.11 Numerical model validation on test 11. 

 

 

Figure 8.12 Numerical model validation on test 12. 
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Figure 8.13 Numerical model validation on test 13. 

 

 

Figure 8.14 Numerical model validation on test 14. 
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Figure 8.15 Numerical model validation on test 15. 

 

 

Figure 8.16 Numerical model validation on test 16. 
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a) Major axis deflection 

 

 

b) Minor axis deflection 

Figure 8.17 Numerical model validation on test 17 regarding major axis (a) and 

minor axis (b) mid-span deflection. 
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a) Major axis deflection 

 

 

b) Minor axis deflection 

Figure 8.18 Numerical model validation on test 18 regarding major axis (a) and 

minor axis (b) mid-span deflection. 
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a) Major axis deflection 

 

 

b) Minor axis deflection 

Figure 8.19 Numerical model validation on test 19 regarding major axis (a) and 

minor axis (b) mid-span deflection. 
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a) Major axis deflection 

 

 

b) Minor axis deflection 

Figure 8.20 Numerical model validation on test 20 regarding major axis (a) and 

minor axis (b) mid-span deflection. 


