
 

 

 

 

Czech Technical University in Prague 

Faculty of Mechanical Engineering 

Department of Instrumentation and Control Engineering 

 

 

 

Master’s Thesis 

 

 Automation of Adjustment of the Sparial Filter 

Gilberto Ramos Venegas 

 

Supervisor: doc. Ing. Jan Hošek, Ph.D. 

 

 

Study Programme: Instrumentation and Control 

Specialization: Optics 

Master’s degree 

 

August 20, 2020  



 

ii 

 

 

 

 

 

 

 



 

iii 

 

 



 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

Firstly, I would like to thank doc. Ing. Jan Hošek, Ph.D. for being my mentor during my 

work on this master thesis and for facilitating me access to the equipment needed for the 

realization of this project. 

I want to thank family who, despite the distance, they have always been there for me 

through spirit supporting me all my life and encouraging me to pursue my personal 

goals. 

My deepest gratitude to Consejo Nacional de Ciencia y Tecnología (CONACYT) for 

sponsoring my Master studies through the program ´Becas al Extranjero´ and to the 

administrators and team of the regional office COECYT in Torreón, México for all their 

help and guidance provided.  



 

v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration 

I declare that the present work was developed independently and that I have listed all 

sources of information used within it in accordance with the methodical instructions for 

observing the ethical principles in the preparation of university theses. 

 

In Prague on June 20, 2020  ……………………………  



 

vi 

 

 

 

 

 

 

Abstract 

 

The objective of this thesis is to provide a Graphical user interface (GUI) for the 

automation of Spatial filtering. The output beam is analyzed using Image processing 

tools from MATLAB, the analyzed image (live video input) is processed for generating 

the necessary commands for output voltages which manipulate the piezo actuators 

which modify the position of both, the pinhole and the objective in the system with the 

purpose of achieving the best possible alignment and position and therefore, get a clean 

beam output. This GUI is intended to be easily adjusted to perform this mentioned task 

for many different setups. 

 

Abstrakt 

 

Cílem této práce je poskytnout grafické uživatelské rozhraní (GUI) pro automatizaci 

prostorového filtrování. Výstupní paprsek je analyzován pomocí nástrojů pro 

zpracování obrazu z MATLABu, analyzovaný obraz (živý video vstup) je zpracován 

pro generování potřebných příkazů pro výstupní napětí, která manipulují s 

piezoelektrickými aktory, které mění polohu obou, dírky a objektivu v systému s cílem 

dosáhnout nejlepšího možného vyrovnání a polohy a získat tak čistý výstup paprsku. 

Účelem tohoto grafického uživatelského rozhraní je snadno upravit provádění tohoto 

úkolu pro mnoho různých nastavení. 

 

 

 

Key words: spatial filter, automation, piezo driver, image processing, Fourier optics. 
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1 Introduction 

 

 

The ultimate task of a Spatial filter is to process a coherent input beam of light (laser 

source) and deliver a cleaned-up output beam. Sometimes a laser system does not produce 

a beam with a smooth intensity profile, so in order to produce a clean Gaussian beam, a 

spatial filter is used to remove the unwanted multiple-order energy peaks and pass only 

the central maximum of the diffraction pattern. When a laser beam passes through a 

system, dust in the air or on optical components can disrupt the beam and create scattered 

light. This scattered light can leave unwanted ring patterns in the beam profile. The spatial 

filter removes also these additional spatial noises from the system.  

The spatial filter assembly consists of a focal lens/microscope objective, a pinhole 

aperture, and a positioning mechanism. The positioning mechanism has precision X-Y 

movements which center the pinhole at the focal point of the objective lens. 

Spatial filter systems are important for many applications where interferometry is applied, 

particularly in holography, where spatial intensity variations in the laser beam are 

undesirable, hence the creation of a uniform gaussian beam for such application is very 

crucial. 

The main task for this thesis project is to design an application capable to manipulate the 

pinhole’s location to a precise position where the produced output beam would reflect 

that of a clean Gaussian Beam. 
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2 Introduction to Fourier Transform 

 

This chapter will be mainly an introduction to the Fourier Transform (FT) and its 

mathematical equations used in optics. The FT, transforms a function in the time domain 

f(t) or in the spatial domain f(x), into the frequency domain f(ω) and f(k) where ω=2πf 

and k=2πfs. The spatial frequency fs is defined as the number of wavelengths in a unit of 

distance: fs = 1/λ [1/mm]. The FT also transforms its inverse as well. 

 𝐹(𝑘) =  ∫ 𝑓(𝑥)𝑒−𝑗2𝜋𝑘𝑥𝑑𝑥

∞

−∞

 (2.1.1) 

 𝑓(𝑥) =  ∫ 𝐹(𝑘)𝑒𝑗2𝜋𝑘𝑥𝑑𝑘

∞

−∞

 (2.1.2) 

 

The Eq. (2.0.1) shows the Fourier transform of a function in the spatial domain (one-

dimensional) and its inverse is shown in Eq. (2.0.2). 

The harmonics (sines and cosines) in these equations are then introduced by the Euler’s 

formula: 

 𝑒𝑗𝑥 = 𝑐𝑜𝑠𝑥 + 𝑗𝑠𝑖𝑛𝑥 (2.1.3) 

 𝑒−𝑗𝑥 = 𝑐𝑜𝑠𝑥 − 𝑗𝑠𝑖𝑛𝑥 (2.1.4) 

 

As an example of the utility of the FT, let us assume a square wave function (spatial 

domain) as shown in Figure 2.1.  

 

Figure 2.1 - Square wave function 

 

This square wave can then be approximated as a summation of multiple sine waves of 

different amplitudes and frequencies as shown below: 
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Figure 2.2 - Summation of multiple sinusoidal waves 

 

As seen above in Figure 2.2, when multiple sinusoidal waves of different amplitudes and 

frequencies are super-imposed their interference generates another resulting periodic 

function, a square wave signal in our example, for which the more sinusoidal waves are 

added to this summation then the approximation to the square signal gets closer.  

Any function can then be represented in terms of spatial frequencies. And this is important 

because any waveform or image can be expressed as the superposition of numerous 

harmonics. The more harmonics you are willing to have, the closer representation of the 

original waveform or image. 

 

 

Figure 2.3 - Joseph Fourier’s image [1] 
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As shown by Heikenfeld in Figure 2.3 [1]; it exhibits an example of how an image, spatial 

function f(x, y), can be represented with a summation on these harmonic waves. Now to 

have a real perception of what the Fourier transform of an image looks like let’s consider 

the single square wave signal from figure 2.1 this time as being ‘seen from above’ as 

presented by Huang in Figure 2.4(a) [2] and also lets consider Eq. (2.0.1) and (2.0.3) 

which in this case as the square signal propagates in the x-axis we get the following FT 

represented as a summation to get: 

 

 𝑓(𝑥) =  ∑𝐹(𝑘)sin (𝑥𝑘𝑥) (2.1.5) 

 

 

Figure 2.4  - Square wave signal (a) and its fourier transfom (b) [2], modified 

 

The position of each dot in the Fourier transform F(k) as shown above in Figure 2.4(b) 

[1] describe the spatial frequency, and the intensity of the dots is what describes the 

amplitude.  The further away the dot is located from the center the higher the frequency 

of the harmonic while the closer to the center point represents the lower frequencies. The 

intensity of these spots essentially describes the amplitude of the harmonics, with the 

higher amplitudes being showed as brighter dots, and dimmer dots for the lower 

amplitudes. 
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Figure 2.5  - Joseph Fourier image (a) [3], real space. and its 

fourier transfom (b), frequency space 

 

As reference from Figure 2.4 [2]; and portrait retrieved from the Wikipedia biography [3] 

of  the mathematician and physicist Jean-Baptiste Joseph Fourier it was produced this 

image’s Fourier transform which can be observed above in Figure 2.5(b), where the low 

frequencies are clearly shown at the centermost while the higher frequencies which make 

up this image are located outside of this center region. 

 

2.1. Two-dimensional Fourier Transform 

 

The 2-D Fourier transform equation of a spatial domain signal f(x, y), -∞ < x, y < ∞ is 

defined by: 

 𝐹(𝑘𝑥, 𝑘𝑦) =  ∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑥𝑘𝑥+𝑦𝑘𝑦)

∞

𝑦=−∞

∞

𝑥=−∞

 (2.1.1) 

 

Or by its integral solution as: 

 𝐹(𝑘𝑥, 𝑘𝑦) =  ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑥𝑘𝑥+𝑦𝑘𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞

 (2.1.2) 

                            = 𝐹𝑥𝑦{𝑓(𝑥, 𝑦)}  

 

where 𝑘𝑥 and 𝑘𝑦 are the spatial frequencies corresponding to the x- and y-directions, 

respectively. 

Its inverse transform is given by: 

y 

x 

ky 

kx 

High frequency 

Low frequency 
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 𝑓(𝑥, 𝑦) =  ∫ ∫ 𝐹(𝑘𝑥, 𝑘𝑦)

∞

−∞

∞

−∞

𝑒𝑗2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑘𝑥 𝑑𝑘𝑦 (2.1.3) 

                        = 𝐹𝑥𝑦
−1{𝐹(𝑘𝑥, 𝑘𝑦)}  

 

2.1.1 Properties of the 2-D Fourier Transform 

 

The properties of the 2-D Fourier transform are generalizations of the 1-D Fourier 

transform. We will need the definitions of even and odd signals in 2-D.  

A signal f(x, y) is even (symmetric) if: 

 𝑓(𝑥, 𝑦) = 𝑓(−𝑥,−𝑦) (2.1.4) 

 

f(x, y) is odd (antisymmetric) if: 

 𝑓(𝑥, 𝑦) =  −𝑓(−𝑥,−𝑦) (2.1.5) 

 

These definitions indicate two-fold symmetry and it is possible to extend them to four-

fold symmetry in 2-D. 

The main properties of the Two-dimension Fourier Transform are summarized in table 2-

1 below. 
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Table 2.1 - Properties of the Fourier transform (a, b, kx0 and ky0 are real nonzero constants; 

m and n are non-negative integers). 

 Property 𝑓(𝑥, 𝑦) 𝐹(𝑘𝑥, 𝑘𝑦) 

1. Linearity 𝑎𝑢1(𝑥, 𝑦) + 𝑏𝑢2(𝑥, 𝑦) 𝑎𝑈1(𝑘𝑥 , 𝑘𝑦) + 𝑏𝑈2(𝑘𝑥, 𝑘𝑦) 

2. Convolution 𝑢1(𝑥, 𝑦) ∗ 𝑢2(𝑥, 𝑦) 𝑈1(𝑘𝑥, 𝑘𝑦)𝑈2(𝑘𝑥, 𝑘𝑦) 

3. Correlation 𝑢1(𝑥, 𝑦) ∘ 𝑢2(𝑥, 𝑦) 𝑈1(𝑘𝑥, 𝑘𝑦)𝑈2
∗(𝑘𝑥, 𝑘𝑦) 

4. Modulation 𝑢1(𝑥, 𝑦)𝑢2(𝑥, 𝑦) 𝑈1(𝑘𝑥 , 𝑘𝑦) ∗ 𝑈2(𝑘𝑥 , 𝑘𝑦) 

5. Separable function 𝑢1(𝑥)𝑢2(𝑦) 𝑈1(𝑘𝑥)𝑈2(𝑘𝑦) 

6. Space shift 𝑢(𝑥 − 𝑥0, 𝑦 − 𝑦0) 𝑒−𝑗2𝜋(𝑘𝑥𝑥0+𝑘𝑦𝑦0)⦁𝑈(𝑘𝑥, 𝑘𝑦) 

7. Frequency shift 𝑒𝑗2𝜋(𝑘𝑥0𝑥+𝑘𝑦0𝑦)⦁𝑢(𝑥, 𝑦) 𝑈(𝑘𝑥 − 𝑘𝑥0, 𝑘𝑦 − 𝑘𝑦0) 

8. Differentiation in 

space domain 

𝜕𝑚

𝜕𝑥𝑚

𝜕𝑛

𝜕𝑦𝑛
𝑢(𝑥, 𝑦) (𝑗2𝜋𝑘𝑥)

𝑚(𝑗2𝜋𝑘𝑦)
𝑛𝑈(𝑘𝑥, 𝑘𝑦) 

9. Differentiation in 

Frequency domain 
(−𝑗2𝜋𝑥)𝑚(−𝑗2𝜋𝑦)𝑛𝑢(𝑥, 𝑦) 

𝜕𝑚

𝜕𝑘𝑥
𝑚

𝜕𝑛

𝜕𝑘𝑦
𝑛
𝑈(𝑘𝑥, 𝑘𝑦) 

10. Laplacian in the 

state space 
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑢(𝑥, 𝑦) −4𝜋2(𝑘𝑥

2 + 𝑘𝑦
2)𝑈(𝑘𝑥 , 𝑘𝑦) 

11. Laplacian in the 

frequency domain 
−4𝜋2(𝑥2 + 𝑦2)𝑢(𝑥, 𝑦) (

𝜕2

𝜕𝑘𝑥
2
+

𝜕2

𝜕𝑘𝑦
2
)𝑈(𝑘𝑥 , 𝑘𝑦) 

12. Square of signal |𝑢(𝑥, 𝑦)|2 𝑈(𝑘𝑥, 𝑘𝑦) ∗ 𝑈∗(𝑘𝑥 , 𝑘𝑦) 

13. Square of spectrum 𝑢(𝑥, 𝑦) ∗ 𝑢∗(𝑥, 𝑦) |𝑈(𝑘𝑥 , 𝑘𝑦)|
2
 

14. Rotation of axes 
𝑢(±𝑥,±𝑦) 𝑈(±𝑘𝑥, ±𝑘𝑦) 

15. Parseval’s theorem 
∫ ∫ 𝑢(𝑥, 𝑦)𝑔∗(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

= ∫ ∫ 𝑈(𝑘𝑥, 𝑘𝑦)𝐺
∗(𝑘𝑥 , 𝑘𝑦)

∞

−∞

∞

−∞

𝑑𝑘𝑥𝑑𝑘𝑦  

16. Real u(x, y) 𝑈(𝑘𝑥, 𝑘𝑦) =  𝑈∗(−𝑘𝑥, −𝑘𝑦) 

17. Real and even 

u(x, y) 
𝑈(𝑘𝑥 , 𝑘𝑦) is real and even 

18. Real and odd u(x, y) 𝑈(𝑘𝑥 , 𝑘𝑦) is imaginary and odd 

 

 

2.2. DFT and FFT 

 

Although a brief introduction to the Fourier Transform has been made, it is now essential 

to have a clear understanding of how the FT itself can be used for image processing. This 

is now why the Discrete Fourier Transform and the Fast Fourier Transform are now 

explained in a manner which may clarify their fundamentals and explain their relevance 

to digital image processing. 
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2.2.1 The Discrete Fourier Transform 

The discrete Fourier transform (DFT) of a periodic sequence f(x) of length M is defined 

as: 

 𝐹(𝑘) =  
1

√𝑀
∑ 𝑓(𝑥)𝑒−𝑗2𝜋𝑥𝑘/𝑀

𝑀−1

𝑥=0

 (2.2.1) 

 

with the inverse 1-D DFT given by: 

 𝑓(𝑥) =  
1

√𝑀
∑ 𝐹(𝑘)𝑒𝑗2𝜋𝑥𝑘/𝑀

𝑀−1

𝑘=0

 (2.2.2) 

 

The DFT defined above is orthonormal. The equation can then be further simplified if 

normality is not required as follow: 

 𝐹(𝑘) =  
1

𝑀
∑ 𝑓(𝑥)𝑒−𝑗2𝜋𝑥𝑘/𝑀

𝑀−1

𝑥=0

 (2.2.3) 

 𝑓(𝑥) =  ∑ 𝐹(𝑘)𝑒𝑗2𝜋𝑥𝑘/𝑀

𝑀−1

𝑘=0

 (2.2.4) 

 

Note that the constant 1/𝑀 was placed in front of the DFT, but it can be placed in front 

of either one, the DFT or its inverse equation.  

 

Now, the two-dimensional DFT is like a decomposition of an image into complex 

exponentials (sines & cosines). Which is a very powerful method to use for Image 

processing systems, therefore we must get familiarized with its principle and its formulas. 

The 2-D DFT is obtained from the 1-D DFT by applying the one-dimensional discrete 

Fourier transform first to the rows of a signal matrix, and then to its columns or vice versa. 

For a 2-D periodic sequence given by f(x, y), 0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁, its 2-D DFT can 

be written as: 
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 𝐹(𝑘𝑥, 𝑘𝑦) =  
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(

𝑥𝑘𝑥
𝑀

+
𝑦𝑘𝑦

𝑁
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (2.2.5) 

 

with the inverse 2-D DFT given by: 

 𝑓(𝑥, 𝑦) =  ∑ ∑ 𝐹(𝑘𝑥, 𝑘𝑦)𝑒
𝑗2𝜋(

𝑥𝑘𝑥
𝑀

+
𝑦𝑘𝑦

𝑁
)

𝑁−1

𝑘𝑦=0

𝑀−1

𝑘𝑥=0

 (2.2.6) 

 

their formulas by integration are as follow: 

 𝐹(𝑘𝑥, 𝑘𝑦) =  
1

𝑀𝑁
∫ ∫ 𝑓(𝑥, 𝑦)𝑒

−𝑗2𝜋(
𝑥𝑘𝑥
𝑀

+
𝑦𝑘𝑦

𝑁
)
𝑑𝑥 𝑑𝑦

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (2.2.7) 

 𝑓(𝑘𝑥, 𝑘𝑦) =  ∫ ∫ 𝐹(𝑘𝑥, 𝑘𝑦)𝑒
𝑗2𝜋(

𝑥𝑘𝑥
𝑀

+
𝑦𝑘𝑦

𝑁
)
𝑑𝑘𝑥  𝑑𝑘𝑦

𝑁−1

𝑘𝑦=0

𝑀−1

𝑘𝑥=0

 (2.2.8) 

 

For our case in Image processing our discrete Fourier transform function f(x, y) will 

represent the images of size M x N which will be analyzed with the given equations above. 

 

2.2.2 The Fast Fourier Transform 

As mentioned by Poon et al. [4] and Gonzalez and Woods [5] The DFT is a way of 

numerically approximate the continues Fourier transform of a function, and the main 

reason the DFT is of great interest in signal processing is due its efficient and rapid 

evaluatin by using the developed fast Fourier transform. For instance, the computation of 

the one-dimensional DFT (2.2.3) of 𝑀 points directly requires 𝑀2 multiplication/addition 

operations, thus for the case where 𝑀 = 1024, the method would require 106 operations; 

meanwhile the FFT accomplishes the same task on the order of 𝑀. log2 𝑀 operations 

resulting in about 104 operations for the same value of 𝑀, which in this case (𝑀 = 1024) 

the computational advantage is of 100 to 1. Something to consider is that for bigger 

problems this computational advantage also increases. If, for instance, 𝑀 = 16384(214), 

the computational advantage grows to 1170 to 1. This is a great reason of why working 

with FFT is fundamental.  

The computational advantage of the FFT over a direct implementation of the 1-D DFT is 

defined as 
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𝐶(𝑀) = 
𝑀2

𝑀. log2 𝑀
 

=
𝑀

log2 𝑀
 

(2.2.9) 

And because it is assumed that 𝑀 = 2𝑛, we can express Eq. (2.2.9) in terms of 𝑛: 

 𝐶(𝑛) =  
2𝑛

𝑛
 (2.2.10) 

 

Figure 2.6 - Computational advantage of the FFT over a direct 

implementation of the 1-D DFT 

 

The software MATLAB has the built-in function: 𝑌 = 𝑓𝑓𝑡(𝑋); which computes the 

discrete Fourier transform of 𝑋 using a fast Fourier transform algorithm [6]: 

•  If 𝑋 is a vector, then 𝑓𝑓𝑡(𝑋) returns the Fourier transform of the vector. 

• If 𝑋 is a matrix, then 𝑓𝑓𝑡(𝑋) treats the columns of 𝑋 as vectors and returns the 

Fourier transform of each column. 

We can then obtain the inverse FFT in MATLAB with the function: 𝑋 = 𝑖𝑓𝑓𝑡(𝑌), 

Nevertheless, the FFT function in MATLAB returns the Fourier transform of each 

column for the case that 𝑋 is a matrix (image), when in fact we need a two-dimensional 

Fourier transform. This 2-D FT is simply achieved by using the function 𝑌 = 𝑓𝑓𝑡2(𝑋); 

for which the inverse is defined as: 𝑋 = 𝑖𝑓𝑓𝑡2(𝑌). 

These FFT functions are very important for this project as they ease the image processing 

methods to be implemented to achieve the goal. And though MATLAB’s functions are 

very convenient tools it is also very important to understand what is behind this FFT 

algorithm, hence it shall be explained. Let’s express Eq. (2.2.3) for notational 

convenience as: 
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𝐹(𝑢) =  

1

𝑁
∑ 𝑓(𝑥)𝑊𝑁

𝑢𝑥

𝑁−1

𝑥=0

 
(2.2.11) 

where 

 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 (2.2.12) 

and N is assumed to be of the form and n being a positive integer. Therefore, N can be 

expressed as 

 
𝑁 = 2𝑛 = 2𝐾 

(2.2.13) 

 

With K also being a positive integer. Substitution Eq. (2.2.12) into Eq. (2.2.9) gives: 

𝐹(𝑢) = 
1

2𝐾
∑ 𝑓(𝑥)𝑊2𝐾

𝑢𝑥

2𝐾−1

𝑥=0

 

=
1

2
[
1

𝐾
∑ 𝑓(2𝑥)𝑊2𝐾

𝑢(2𝑥)

𝐾−1

𝑥=0

+
1

𝐾
∑ 𝑓(2𝑥 + 1)𝑊2𝐾

𝑢(2𝑥+1)

𝐾−1

𝑥=0

] (2.2.14) 

Furthermore, after few more mathematical steps we obtain the equation: 

 𝐹(𝑢 + 𝐾) =
1

2
[𝐹𝑒𝑣𝑒𝑛(𝑢) − 𝐹𝑜𝑑𝑑(𝑢)𝑊2𝐾

𝑢] (2.2.15) 

where:  

 𝐹𝑒𝑣𝑒𝑛(𝑢) =
1

𝐾
∑ 𝑓(2𝑥)𝑊𝐾

𝑢𝑥

𝐾−1

𝑥=0

 (2.2.16) 

 𝐹𝑜𝑑𝑑(𝑢) =
1

𝐾
∑ 𝑓(2𝑥 + 1)𝑊𝐾

𝑢𝑥

𝐾−1

𝑥=0

 (2.2.17) 

both for 𝑢 = 0,1,2, … . , 𝐾 − 1. 
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3 Propagation and Diffraction 

 

Wave optics accounts for the effect of diffraction which is important to know prior 

proceeding to the experimental process and analysis of the project. Therefore, in this 

chapter it is introduced the wave optics through Maxwell’s equations. We then review 

diffraction using Fourier transforms as well as the Spatial transfer function and the 

impulse response of propagation. To later continue to the next chapter where this set of 

equations will be used to create diffraction simulations of plane waves passing through 

circular and rectangular/square aperture shapes. 

 

3.1. Maxwell’s equations 

 

The mathemathical model which unites electricity, magnetism, and light into one 

phenomenon was formulated by Scottish scientist James Clerk Maxwell (1831-1879). 

In electromagnecs, we are concerned with four vector quantities called electromagnetic 

fields: the electric flux density (electric induction) 𝑫⃗⃗  [C/m2], the magnetic flux density 

(magnetic induction) 𝑩⃗⃗  [Wb/m2], the electric field strength (electric vector) 𝑬⃗⃗  [V/m], and 

the magnetic field stregth (magnetic vector)  𝑯⃗⃗⃗  [A/m]. These set of four equations are 

known as the Maxwell’s equations and are expressed in their differential form as: 

 𝑑𝑖𝑣𝐷⃗⃗ =  𝜌 (3.1.1) 

 𝑑𝑖𝑣𝐵⃗ =  0 (3.1.2) 

 𝑟𝑜𝑡𝐸⃗ =  −
𝜕𝐵⃗ 

𝜕𝑡
 (3.1.3) 

 𝑟𝑜𝑡𝐻⃗⃗ =  𝐽 = 𝐽𝑐⃗⃗  +
𝜕𝐷⃗⃗ 

𝜕𝑡
 (3.1.4) 

Where 𝒕 is time [s],  𝑱  is the electric current density [A/m2] and 𝝆 is the electric charge 

density [C/m3]. 𝑱𝒄
⃗⃗  ⃗ and 𝝆 are the sources which generate the electromagnetic fields. 

The equation (3.1.1) is the differential representation of the Gauss’s law for electric fields 

and can be converted to its integral form by integration over a volume V counded to a 

surface S and using the divergence theorem. The integral form of equation (3.1.2), the 

magnetic analog o Eq. (3.1.1), can be obtained similarly by using the divergence theorem. 

Faraday’s law of induction defined by Eq. (3.1.3) and the Generalized Ampere Law, Eq. 
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(3.1.4),  are converted to their integral forms  by integration over an open surface S 

bounded by a line C and using the Stroke’s theorem. The integral forms are then defined 

by the following equations:  

 ∮ 𝐷⃗⃗ . 𝑑𝑆 
 

𝑆

= ∫𝜌
 

𝑉

𝑑𝑉 (3.1.5) 

 ∮𝐵⃗ . 𝑑𝑆 
 

𝑆

=  0 (3.1.6) 

 ∮𝐸⃗ . 𝑑𝑙 
 

𝐶

= −∫
𝜕𝐵⃗ 

𝜕𝑡

 

𝑆

. 𝑑𝑆  (3.1.7) 

 ∮ 𝐻⃗⃗ . 𝑑𝑙 
 

𝐶

= ∫
𝜕𝐷⃗⃗ 

𝜕𝑡

 

𝑆

. 𝑑𝑆 + ∫𝐽𝑐⃗⃗  
 

𝑆

. 𝑑𝑆  (3.1.8) 

 

3.2. The wave equation 

 

By manipulations with Maxwell’s equations we can obtain differential equations for 

which each field vector must separately satisfy. Conditions are: homogeneous isotropic 

dielectric, permittivity and permeability constant in time. 

Used formulas: 

 𝐴 𝑥𝐵⃗ 𝑥𝐶 = (𝐴 𝐶 )𝐵⃗ − (𝐴 𝐵⃗ )𝐶  𝑟𝑜𝑡𝐴 = ∇𝑥𝐴  𝑑𝑖𝑣𝐴 = ∇𝐴   

 

Wave equation: 

 ∇2𝐸⃗ = 𝜀𝜇
𝜕2𝐸⃗ 

𝜕𝑡2
 (3.2.1) 

Scalar wave equation from acoustic: 

 ∇2𝑢(𝑥, 𝑦, 𝑧, 𝑡) =
1

𝑣2

𝜕2𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡2
 (3.2.2) 

The instantaneous amplitude of a particle is:   𝑢 

The exciment propagation velocity in the medium:  𝑣 

The term 
1

√𝜀𝜇
 has unit of velocity. Maxwell concluded that Eq. (3.2.1) is an equation of 

an electromagnetic vector wave motion. 

The velocity for this waves is 𝑣 =
1

√𝜀𝜇
 and 𝑐 =

1

√𝜀0𝜇0
= 299 798 458 𝑚/𝑠 in vacuum, 

which represents the speed of light (𝑐). 
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3.3. The Spatial Frequency Transfer Function for Propagation 

 

According to Poon et. al. [4] and [7]; in Fourier optics, the known Free-space spatial 

impulse response function, h(x, y: z), is defined as: 

 ℎ(𝑥, 𝑦; 𝑧) = ℎ0. 𝑒𝑥𝑝 [−𝑗𝑘0

(𝑥2 + 𝑦2)

2𝑧
] (3.3.1) 

where: 

 ℎ0 = (
j𝑘0

2πz
) . exp (−𝑗𝑘0𝑧) (3.3.2) 

 𝑘0 = 
2𝜋

𝜆
 (3.3.3) 

therefore, the Free-space impulse response function can be expressed as: 

 ℎ(𝑥, 𝑦; 𝑧) = (
j

λz
) . 𝑒𝑥𝑝 (

−𝑗2𝜋𝑧

𝜆
) . 𝑒𝑥𝑝 (

−𝑗𝜋(𝑥2 + 𝑦2)

𝜆𝑧
) (3.3.4) 

 

 

Now, by taking the 2-D Fourier transform of Eq. (3.3.1), we obtain: 

𝐻(𝑘𝑥, 𝑘𝑦; 𝑧) = 𝐹𝑥𝑦{ℎ(𝑥, 𝑦: 𝑧)} 

= exp(−𝑗𝑘0𝑧) . exp [
𝑗(𝑘𝑥

2 + 𝑘𝑦
2)𝑧

2𝑘0
] 

(3.3.5) 

𝐻(𝑘𝑥, 𝑘𝑦; 𝑧) is called the spatial frequency response in Fourier Optics. 

 

 

3.4. Diffraction  

 

Light waves, circular or planar, when passing through an aperture gets diffracted. And 

according to its definition, the bending of a wave or its deviation from the original 

direction of propagation when it meets a small obstacle is called Diffraction. This 

phenomenon is important to understand as the purpose of this thesis work is to analyze 

the diffraction pattern of the laser beam source passing through a pinhole (the 

aperture/obstacle), with the purpose to obtain a clean output beam.  
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Diffraction occurs with all types of waves, such as electromagnetic waves (light), 

acoustical waves, ultrasonic waves and radio waves among others.  

The behavior of wave fields passing through obstacles cannot be simply described in 

terms of rays. For example, when a plane wave passes through an aperture, some of the 

wave deviates from its original direction of propagation, and the resulting wave field is 

different from the wave field passing initially through the aperture, both in size and shape 

[7]. 

 

 

 

Figure 3.1 - Diffraction pattern of a red laser beam projected onto a plate after passing 

through a small circular aperture [8]. 

 

The projected diffraction interference pattern shown above in Figure3.1 is a result of a 

source beam (red laser → planar wavefront) passing through a small circular aperture 

located in front of a plane different to the projection plane. A simple explanation of why 

this occurs, we need to understand that each wave can be thought of as the combination 

of an infinite number of smaller waves which spread out in al direction. When the wave 

hits an obstacle or a hole/aperture, only the portion of the wave that is directly behind the 

hole is able to pass though. In Figure3.2, it is shown how these infinite number of smaller 

wave points (3 shown) interfere at a point −𝛳𝑀𝐼𝑁,0 in the first minima of the diffraction 

pattern. 
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Figure 3.2 - Wave points' phase contribution procucing destructive interference [8]. 

 

 

Light and waves in general can interfere both, constructively and destructively. 

Constructive interference occurs when the resultant wave amplitude at a given point has 

a greater amplitude than the individual waves forming the interference; on the other hand, 

destructive interference is the resultant wave which has a lower amplitude than the 

individual waves which are interference. For complete destructive interference waves 

which interfere must have a phase difference of 𝜋 (
𝜆

2
). 

 

 

 

Figure 3.3 - Airy disk's Minimas and Maximas diameter (y) equation [9]. 
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For the case of Circular apertures the Airy disk’s Minimas and Maximas diameter (2*y) 

can be calculated as shown in Figure 3.3. 

From this figure, it can be said that far from the aperture, the angle at which the first 

minuma occurs is given by the formula: 

 𝑠𝑖𝑛𝛳 =  1.22
𝜆

𝑑
 (3.4.1) 

and for very small angles, considering 
𝑦

𝐷
= 𝑡𝑎𝑛𝛳 ≈ 𝑠𝑖𝑛𝛳 ≈ 𝛳, the formula is simply: 

 𝛳 ≈  1.22
𝜆

𝑑
 (3.4.2) 

Please note that for Eq. (3.4.1) 𝛳 is in degrees and in Eq. (3.4.2) is in radians. Distance D 

and aperture diameter d as well as light’s wavelength λ can all have same unit in meters. 

 

 

3.4.1 Classification of diffraction phenomena 

 

 

The region of validity of Fraunhofer diffraction are shown in Figure 3.4. 

 

Figure 3.4 - Regions of validity of Fresnel and Fraunhofer diffraction. 
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3.4.2 Fraunhofer diffraction 

 

The Fraunhofer diffraction pattern at the plane point 𝑃(𝑥, 𝑦) is proportionat to the squared 

magnitude of the Fourier transform of the aperture function 𝑃0(𝑥′, 𝑦′) evaluated at the 

spatial frequencies 𝑣𝑥 = 𝑥/𝜆𝑑 and 𝑣𝑦 = 𝑦/𝜆𝑑. 

Second order tems are neglected and some additional simplification to the Fraunhofer 

diffraction is made by introducing reduced coordinates 𝑢 and 𝑣 of the point of observation 

𝑃 relative to the source point 𝑃0. 

 𝑢 =  
𝑙 − 𝑙0

𝜆
=

𝑎

𝜆
 (3.4.3) 

 𝑣 =  
𝑚 − 𝑚0

𝜆
=

𝑏

𝜆
 (3.4.4) 

their units [1/m], as the unit of space frequency. 

The constant placed before the diffraction integral is given by: 

 𝐶 = − 
𝑗𝑘

2𝜋
𝑐𝑜𝑠𝛿. 𝑎

𝑒𝑗𝑘(𝑅+𝑅0)

𝑅. 𝑅0
 (3.4.5) 

The amplitude transmissivity of the screen or the aperture funtion (a ratio of complex 

amplitudes just before and just behind the screen): 

 

 𝑝0(𝑥, 𝑦) =  
𝑢(𝑥, 𝑦)

𝑢0(𝑥, 𝑦)
= {

  0, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒
1, 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

 (3.4.6) 

From this, then the Fraunhofer integral equation of diffraction becomes: 

 𝑃(𝑥, 𝑦) =  𝐶 ∫ ∫ 𝑝0(𝑥, 𝑦).

∞

−∞

∞

−∞

𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦 (3.4.7) 
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4 Simulations 

 

In this chapter it is explained some concepts of the simulations carried out during the 

process for solution of this thesis’ main task. The applications developed which are 

mentioned are publicly available at https://github.com/gilramosx/SpatialFilter.  

 

4.1. Fraunhofer Diffraction through a circular aperture 

 

The analysis of diffraction through circular apertures is one of major importance in the 

study of Fourier Optics since this is the shape of most optical devices for image capture 

or visualization, i.e. cameras, telescopes, microscopes and also the final receptor of every 

image, the human eye (round-shaped pupil). 

Therefore, the application file FraunhoferDiffraction.mlapp, GUI shown in Figure 4.1 

and Figure 4.2, can be found in the attachments of Appendix A; in this application the 

user can simulate the diffraction pattern of light passing through a circular aperture where 

parameters such as distance z (diffraction pattern plane from aperture plane), light 

wavelength λ, and circular aperture’s radius (unit in pixels) can all be modified showing 

the change in the simulated diffraction pattern. 

 

 

Figure 4.1 - Circular aperture and its diffraction pattern [7]. 

 

The intensity of the diffraction pattern of a circular aperture (Airy disk), at a certain point 

in the observation plane is given by the equation:  

 𝐼(𝑥, 𝑦) =  𝐼0 [
2𝐽1(𝜋𝐷𝜌/𝜆𝑑)

𝜋𝐷𝜌/𝜆𝑑
]
2

 (4.1.1) 

where: 

https://github.com/gilramosx/SpatialFilter
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 𝜌 = (𝑥2 + 𝑦2)1/2 (4.1.2) 

 

 

Figure 4.2 - Diffraction of red light (λ=655nm) at a circular aperture with diameter of 20 

pixels. Airy disk pattern at a distance z of 49 cm. 
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4.2. Fraunhofer Diffraction through a rectangular aperture 

 

Similarly, as in the diffraction through a circular aperture, the application 

FraunhoferDiffraction.mlapp also has the function to simulate square aperture shapes. 

The aperture function [as Eq. (3.4.6)] for rectangular apertures where the height and the 

width are represented by a and b respectively, is given by: 

 

𝑝0(𝑥, 𝑦) = ⊓ (
𝑥

𝑎
) ⊓ (

𝑦

𝑏
) 

𝑝0(𝑥, 𝑦) = 𝑟𝑒𝑐𝑡 (
𝑥

𝑎
) 𝑟𝑒𝑐𝑡 (

𝑦

𝑏
) 

(4.2.1) 

 

Figure 4.3 - Rectangular aperture and its diffraction pattern [7], modified. 

The instensity is proportional to the squared absolute value of the Fraunhofer diffraction 

equation, Eq. (3.4.7). 

 |𝑃(𝑥, 𝑦)|2 → 𝐼(𝑥, 𝑦) =  𝐼0. 𝑠𝑖𝑛𝑐2
𝑎𝑥

𝜆𝑑
. 𝑠𝑖𝑛𝑐2

𝑏𝑦

𝜆𝑑
 (4.2.2) 

 

 

Figure 4.4 - Diffraction of blue light (λ = 447nm) at a rectangular aperture with width and 

height of 10 and 17 pixel unit respectively. Diffraction pattern at a distance z of 57 cm. 
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5 Goals 

 

 

Based on the thesis' guidelines, several goals have been set. The following tasks have 

been laid out. 

 

1. Carry out a research for the properties and function of the spatial filter in 

optical systems. 

2. Analyze necessary mechanical motions and its realization for automation of 

the adjustment of the spatial filter. 

3. Carry out the mechanical design allowing control of the spatial filter 

adjustment. 

4. Propose an algorithm for the automatic adjustment of the spatial filter. 
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6 Spatial Filtering 

 

For many applications, such as holography, spatial intensity variations in the laser beam 

are unacceptable. Therefore, a spatial filter system is ideal for producing a clean Gaussian 

beam. 

 

 

Figure 6.1  - Spatial Filter System [10]. 

 

The input Gaussian beam has spatially varying intensity "noise". When a beam is focused 

by an aspheric lens, the input beam is transformed into a central Gaussian spot (on the 

optical axis) and side fringes, which represent the unwanted "noise" (see Figure 6.2). The 

radial position of the side fringes is proportional to the spatial frequency of the "noise". 

 

 

Figure 6.2 - Input Gaussian Beam [10]. 

  

By centering a pinhole on a central Gaussian spot, the "clean" portion of the beam can 

pass while the "noise" fringes are blocked (see Figure 6.3). 

 

 

Figure 6.3 - Clean Gaussian Beam [10]. 
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The diffraction-limited spot size at the 99% contour is given by: 

 

 𝐷 =  
𝜆𝑓

𝑟
 (4.2.1) 

 

where: λ = Wavelength [µm] 

 f = Lens focal length [mm] 

 r = Input beam radius [mm] at 𝐼0. 𝑒
−2 
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7 Components and Station 

 

Certain requirements should be met when carrying out this experiment; besides a 

vibration isolating table/board, every other component must be rigid and fixed 

accordingly. The whole system has been divided into two main subassemblies for its 

description and function as follow: 

 

7.1. Objective and Pinhole sub-assemblies 

 

The purpose of the objective’s assembly is to house the objective and its piezo actuator 

in a magnetically-fixed seat which holds a single-axis (horizontal) linear stage for manual 

setting approximation, see Figure 7-1. 

Meanwhile, the pinhole’s assembly has the same purpose for the target component 

(pinhole). This assembly consists of a main base with 3-axis stage with a travel range of 

25 mm in each direction (resolution 10 µm), the pinhole itself and its 2-axis piezo drive.  

 

 

Figure 7.1 - Objective assembly (a) and Pinhole assambly (b) schematics. 
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The components of these assemblies are listed next in Table 7.1: 

 

Table 7.1 - Sub-assemblies a and b components 

 Component Brand Model/Characteristics 

1 Objective Melles Griot  

2. Piezo drive Piezosystem Jena MIPOS 100 

3. Adapter  RMS to M25 

4. Adapter  M25 to RMS 

5. Connector Lemo FFA.0S.302.CLAC37 

6. Connector Lemo PCA.0S.302.CLLC37 

7. Connector  BNC female 

8. Assembly seat Vertex + Melles Griot Travel range: 15 𝑚𝑚 

9. Pinhole  Ø: 30 μm 

10. Piezo drive Physikinstrumente P-611.XZ0 

11. Pinhole holder   

12. Piezo holder pt. 2   

13. Piezo holder pt. 1   

14. Assembly seat  X,Y,Z travel range: 25 𝑚𝑚 

 

In Figure 7.2, it is shown the minimum and maximum achievable heights, 205 and 240 

millimeters respectively, for the objective’s axis from the assembly’s base. The height 

adjustment range is 35 millimeters for the objective. 

 

 

Figure 7.2 - Objective's minumum and maximum height. 
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To match pinhole height to the objective’s height adjustment range two parts were 

designed, shown below in Figures 7.3-7.5, dimensions are in millimeters: 

 

Figure 7.3 - Designed piezo holder part 1 

 

 

Figure 7.4 - Designed piezo holder part 2 

 

 

Figure 7.5 - Pinhole holder 



 

28 

 

 

The technical drawing of these parts can be found in the Appendix A. 

Using these parts for the pinhole assembly we then obtain a minimum and maximum 

height achievable for the pinhole from its assembly’s base of 205 and 230 mm 

respectively as shown in Figure 7.6. 

 

Figure 7.6 - Pinhole's minumum and maximum height. 

 

Taking both assemblies height range into consideration, it is known that the overall height 

range falls between the 205 and 230 millimeters. Thus, the laser source should also be 

adjusted at a height between this range. 
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7.2. Piezo driver - P-611.XZ0 

 

From the company Physikinstrumente, this is a compact two-axis piezo system for 

nanopositioning [11], with a travel range of 120 µm x 120 µm at -20 to 120 V for open 

loop, and with resolution of 0.2 nm. This piezo driver is the base for the pinhole, therefore, 

the pinhole is said to have a travel range of 120 x 120 µm in the X and Y directions, see 

Figure 7.7. 

 

  

 

Figure 7.7 - P-611.XZ0 drawing [11] modified, dimensions in 

mm. And Isometric 3D view with x- and y- axes legend. 
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7.3. Piezo driver - MIPOS 100 

 

Of the brand Piezosystemjena, this Piezoelectic Objective Positioning System [12] offers 

a range up to 100 µm in open loop with operational voltage range of -20 to 130 V. 

Drawing of this driver is shown below: 

 

 

 

Figure 7.8 - MIPOS 100 drawing [12], dimensions in mm. And 

isometric 3D view with z- axis legend. 
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7.4. T-Cube Piezo controller - TPZ001 

 

The T-Cube piezo controller model TPZ001 (discontinued on February 3, 2016) from the 

company Thorlabs, can be adjusted to a high voltage output range of 75 V, 100 V, or 150 

V. As already mentioned, both piezo drivers have an operational voltage range of -20 to 

120 V for the P-611.XZ0 and -20 to 130 V in the case of the MIPOS 100. Therefore this 

controllers are adjusted to an output range of 150 V. 

 

Figure 7.9 - Piezo controller TPZ001 [13]. 

 

The graphical user interface (GUI) for this piezo controller can be accesed in MATLAB 

using the Thorlabs APT ActiveX Control, a single TPZ001 APT GUI is shown below in 

Figure 7.10. 

 

Figure 7.10 - TPZ001 Piezo Controller Software GUI. 

 

For detailed information on how to implement this or any other Thorlabs APT ActiveX 

Controller can be found from the downloadable document’s link: 

https://www.thorlabs.com/images/tabimages/Thorlabs_APT_MATLAB.docx 

 

https://www.thorlabs.com/images/tabimages/Thorlabs_APT_MATLAB.docx
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7.5. Piezo controllers’ Hub  

 

As this project would require multi-axis motion (3-axes motions, XYZ), it is then prefered 

to connect the three controller units to the PC for convenience via USB hub technology. 

The USB Controller Hub used in this project is the model TCH001 [14], which can 

support up to six T-Cube controller units. 

 

 

Table 7.2 - Hub Supply coltage and current requirements. 

Supply Minimum Maximum Max Operating Current 

+5V +4.9V +5.1V 5 A 

+15V +14.5V +15.5V 6 A 

-15V -14.5V -15.5V 1 A 

 

 

 

Figure 7.11 - T-Cube USB Controller Hub (left), Power Supply 

Unit (right) [14]. 

 

 

The compact DC power supply unit (PSU) model TPS006 has bee designed to power the 

Controller Hub, and as mentioned in the manual [14], ’the hub must be connected only to 

this PSU’.  
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8 GUI Design  

 

The Graphical User Interface designed in the GUIDE Layout Editor of MATLAB for the 

control and capture of snapshots of the diffraction patterns is shown Figure 8.1, its 

function is later explained in the Experiment chapter. 

 

 

Figure 8.1 - Graphical User Interface for the control and 

image capture of diffraction patterns. 

 

The images captured by the program are intended to be analyzed to determine the piezo 

actuator position at which the pattern would show the most circular-shaped diffraction 

pattern, these images are saves at a grayscale in the selected folder as: 

  

’FigureA_X_Y.jpg’ where:  

 A = Number of captured image 

 X = Voltage supplied for the 

motion in the x-axis direction 

 Y = Voltage supplied for the 

motion in the y-axis direction 
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9 Experiment 

 

The motion in x-, y- and z-axes of the piezo drivers was tested in this experiment with the 

use of the designed GUI. The setup of this experiment was as shown below in Figure 9.1: 

 

 

Figure 9.1 - GUI app,  piezo driver motion and image capture experimental setup. 

 

The components used in this experiment are as follow: 

 

a. LUX Tools’ Laser pointer source with adapted USB power supply connector [15]. 

b. Thorlabs’ optical breadboard B3060L [16]. 

c. T-Cube USB Controller Hub, with three Piezo controllers TPZ001 and three strain 

gauge readers (not used), TSG001; connected to its PSU (not shown). 

d. Objective’s assembly. 

e. Pinhole’s assembly. 
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9.1. The experiment steps 

 

The experiment was carried as follow: 

 

1. After completion of the equipment setup and adjusting the laser pointer axis to 

match the objectives axis, then we proceed to run the MATLAB file 

‘Spatial_Filter.m’ which opens the designed GUI shown below in Figure 9.2:  

 

 

Figure 9.2 - Initiated Spatial Filter application. 

 

2. The button ’Start ActiveX’ should then be clicked to make the connection between 

the application and the TPZ001 Piezo controllers’ software GUIs. After the 

connection has been made the ’INITIAL POSITION’ button gets enabled, 

allowing the user to set both Piezo drivers, P-6110.XZ0 and MIPOS 100, to their 

mid-range position which was defined from their operational voltage range, them 

being: 60 V for both axes motions of the P-611.XZ0 and 65 V for the MIPOS 100. 
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Figure 9.3 - TPZ001 controllers connection initiated. 

 

The mid-range Initial Position has the purpose to let the user adjust the pinhole 

position manually to a space close enough to where the objective focuses the laser 

beam and hence, a diffraction pattern can be perceived at the formation plane. 

 

3. The ’BROWSE’ button allows the user to select the folder where the snapshot 

images of the process will be stored. 

 

 

Figure 9.4 - Folder selection for saving images. 
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As already mentioned, these images are saved in grayscale which is ideal to apply 

to it the inverse Fast-Fourier Transform in MATLAB. It is recommended to create 

and store the images in a new folder for easy access in further image analysis. 

 

4. Once completed previous steps and before clicking ‘SET CAMERA’ button we 

must first select the Region of Interest from the camera’s total view are. Hence, 

we click the ‘IMAQTOOL’ button, given this name by the command in MATLAB 

of imaqtool which launches the Image Acquisition Tool. After selection of the 

camera format (circled in Figure 9.5) will be used and clicking ’Start Preview’ the 

preview for the selected format is shown. In the button tag ’Region of Interest’ 

the button ’Select or Edit’ allows to make the selection of only just the region 

which will be streamed. 

 

 

Figure 9.5 - MATLAB's  Image Acquisition Tool. Selected 

camera format and region of interest. 
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5. After Region of Interest (ROI) is defined, click enter. This ROIPosition should be 

copied (circled), ’Stop preview’ and close window. 

 

Figure 9.6 - ROIPosition 

 

6. Prior pressing ‘SET CAMERA’, this copied ROI Position must be pasted now 

into the GUI text box in the application as well as the camera format used to obtain 

this region of interest. After the user clicks ‘SET CAMERA’ the video input is 

then displayed into the application and the XY-axes motion is ready to start.  

 

 

Figure 9.7 - GUI, camera format and ROI position defined. 
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7. Once the process has started, the motion in the X-Y axes takes place, Figure 9.8 

shows the obtained diffraction pattern with  a supply voltage of 57.66 V, 25 V and 

60 V to the piezo drivers for motions X, Y and Z respectively. 

 

 

Figure 9.8 - Diffraction pattern shown in the user interface at 

57.66V (x-axis), 25V (y-axis) and 60V (z-axis) supply. 

 

9.2. Automatic motion sequence and image capture 

 

Next, it is explained the pinhole’s position displacement path for this application. 

 

Figure 9.9 - Pinhole's displacement (1V ≈ 1µm). 
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In Figure 9.9, it is shown the spatial area of the pinhole’s displacement for specific input 

voltage to each one of the motion axis in the piezo driver P-611.XZ0. The ’snake-type’ 

displacement path has step increments of 10 V of input, which may reflect into an 

approximation of 10 µm displacement. Each of the gray squares represents the area in 

which a snapshot gets taken, for this case resulting in a total of 100 images, which should 

then be analyzed to find the nearest-to a perfect Airy-disc pattern (yellow square), 

thereafter a second iteration could take place to perform the same analysis including 

surrounding areas (green squares), this area is again divided in same amout of steps, see 

Figure 9.10. The possible number of iterations which can be done is limited piexo driver 

P-611-XZ0 which has a displacement resolution of 0.2 nm. 

 

 

Figure 9.10 - Area of best Airy disk detection (left), becomes 

next analysis area for the second iteration (right). 

   

This displacement code can be adjusted to have smaller step increments resulting in more 

images captured in each iteration and therefore reducing the number of iterations needed 

to obtain same result. 
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The displacement code: 

 

function sequence(handles) 
    global xpiezo ypiezo s b v numCapturedImages selpath 

         
    n = 0; 
    Iterations = 1; 
    rangeV = 120;                           % input voltage range 
    numDiv = 12;                 
    stepVolt = rangeV/numDiv;               % = 10 V 
    mid_stepVolt = stepVolt/2;              % = 5 V 

         
    numCapturedImages = Iterations*(numDiv-2)^2; 
    iteNum=1; 

         
    if s==1   
        for ite=1:Iterations             
            for y=1:numDiv-2             
                Y=y*stepVolt+mid_stepVolt; 
                ypiezo.SetVoltOutput(0,Y); 
                if n==0                 
                    for x=1:numDiv-2  
                        if b==0 
                            break; 
                        end 
                        X = x*stepVolt+mid_stepVolt; 
                        xpiezo.SetVoltOutput(0,X); 
                        pause(0.3); 
                        img = rgb2gray(getsnapshot(v)); 
                        imwrite(img, fullfile(selpath, ['figure' 

num2str(iteNum) '_' num2str(X) '_' num2str(Y) '.jpg'])); 

  
                        iteNum = iteNum + 1; 
                        n=1; 
                    end 
                elseif n==1 
                    for x=1:numDiv-2  
                        if b==0 
                            break; 
                        end 
                        X = rangeV-(x*stepVolt+mid_stepVolt); 
                        xpiezo.SetVoltOutput(0,X); 
                        pause(0.3); 
                        img = rgb2gray(getsnapshot(v)); 
                        imwrite(img, fullfile(selpath, ['figure' 

num2str(iteNum) '_' num2str(X) '_' num2str(Y) '.jpg'])); 

  
                        iteNum = iteNum + 1; 
                        n=0; 
                    end 
                end 
                if b==0 
                    break; 
                end 
            end 
        end 
    end 
    iteNum = 1; 
end 
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10 Results 

 

The Two-dimensional Fast Fourier Transform was applied to in MATLAB to some of the 

captured images. As seen in the Figure 10.1 below, these 2D Fourier transform images 

approximately reconstruct the circular shape of the aperture pinhole. 

 

 

Figure 10.1 - Diffraction patterns (left), and their 2D Fourier 

Transform (right). 
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The quality of the 2D Fourier transfroms taken of the Diffraction patterns in Figure 10.1 

was assesed using the MATLAB functions of  fft2(), fftshift(), abs(), 

imadjust() and the Equation (2.2.5) in which the values of M and N are the same of 

150 due to the images size of 150x150 pixels.  

The used code for obtaining these reconstructed aperture shape images is: 

 

clear all; close all; clc; 

  
imgGray = imread('--IMAGE’s path name--’); 

 

% Reconstruction 

 

imgGrayFFT = (1/150)^2*fft2(imgGray); 
imgGrayFFT = fftshift(imgGrayFFT); 
imgGrayFFT = abs(imgGrayFFT); 
imgGrayFFT = imadjust(imgGrayFFT); 

 

figure(1) 
subplot(1,2,1), imshow(imgGray); 

subplot(1,2,2), imshow(imgGrayFFT); 

 

Those diffraction patterns shown in Figure 10.1 were obtaind from the experiment at 

different pinhole positions from the zero input voltage position point with approximate 

displacements of: 

 

(a) 25 µm x 45 µm. 

(b) 95 µm x 65 µm. 

(c) 55 µm x 65 µm. 

(d) 15 µm x 75 µm. 

(e) 35 µm x 105 µm. 

 

The Region point at which each of these analyzed images was taken can be seen in the 

X-Y axes map below in Figure 10.2: 
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Figure 10.2 - Region of analysed images. 

 

It can be deduced by intuition that the region where the Airy disk’s diffraction patterns 

would result in a more symmetric shape is within (or near) the X-marked area.  

A proposed way of analysing symmetry in the Airy disc would be by plotting the Cross-

setions in the X and Y axes of the image’s intensity at the center point of the highest 

intensity point in the image as shown in Figure 10.3. 
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Figure 10.3 - Propossed Symmetry analysis for next development. 



 

46 

 

11 Conclusion 

 

After getting aquainted with the basic theory in Fourier Optics & the Diffraction 

phenomena as well as getting familiarized with the functionality of Spatial Filter it was 

clear it would be best to create this work with the use of software MATLAB, which 

provides rather simple ways of handeling images to further develop a better analysis. 

 In sum, all goals initially set have been fulfilled. The method used during image 

processing (diffraction reconstruction, as seen in Figure 10.1) is very straightforward 

because the equations described in this thesis are rather explainatory as the MATLAB 

software performs all the computation needed with a simple call of these function. 

 

There is plenty of more work and analysis which should be done for future development 

of the automatic adjustment for full functionality just like the proposed Symmetry 

analysis. With MATLAB’s image processing tools more methods could be proposed. 
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Appendix A 

Contents of the attached CD 

 

• Spatial_Filter.m – main code. 

• Spatial_Filter.fig – GUI’s configurable figure file. 

• sequence.m – the pinhole’s displacement code. 

• Piezo holder part 1.pdf – designed part pdf drawing file. 

• Piezo holder part 2.pdf – designed part pdf drawing file. 

• Pinhole holder.pdf – designed part pdf drawing file. 

• FraunhoferDiffraction.mlapp – Fraunhofer’s Diffraction simulation. 
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