
�eské vysoké u£ení technické v Praze
Fakulta jaderná a fyzikáln¥ inºenýrská

Katedra matematiky

Obor: Aplikovaná informatika

Heuristiky v dolování dat z graf·

pomocí vno°ení uzl·

Heuristics in Graph Data Mining via

Node Embeddings

BAKALÁ�SKÁ PRÁCE

Vypracoval: Adeliia Gataullina

Vedoucí práce: Ing. Matej Mojze², Ph.D.

Rok: 2020

Prohlá²ení

Prohla²uji, ºe jsem svou bakalá°skou práci vypracovala samostatn¥ a pouºila jsem
pouze podklady (literaturu, projekty, SW atd.) uvedené v p°iloºeném seznamu.

V Praze dne
Adeliia Gataullina

Pod¥kování

Cht¥la bych pod¥kovat Ing. Mat¥ji Mojze²ovi, Ph.D. za vedení mé bakalá°ské práce,
cenné rady, odborný dohled, p°ipomínky a £as, který mi v¥noval. D¥kuji také �ápové
Han¥ Mgr. za pomoc p°i gramatické kontrole práce a jazykovou podporu. Mé podekovávání
pat°í téº mé rodin¥ a blízkým p°átel·m za pomoc a podporu b¥hem studia, zejména
Janu Ko°ínkovi.

Adeliia Gataullina

Název práce:

Heuristiky v dolování dat z graf· pomocí vno°ení uzl·

Autor: Adeliia Gataullina

Studijní program: Aplikace p°írodních v¥d
Obor: Aplikovaná informatika
Druh práce: Bakalá°ská práce

Vedoucí práce: Ing. Matej Mojze², Ph.D.
Katedra softwarového inºenýrství, Fakulta jaderná a fyzikáln¥ in-
ºenýrská, �eské vysoké u£ení technické v Praze

Konzultant: Ing. Petr Holík
Jumpshot s.r.o.,Pikrtova 1737/1a, 140 00 Praha 4 � Nusle

Abstrakt: Tato práce se zabývá vyuºitím heuristických algoritm· v úlohách
dolování dat v grafech. Jeden ze zp·sob· jak pracovat s grafy,
je reprezentovat ve form¥ vektor·, tak zvaných vno°ených uzl·
- embedding·. Algoritmy node2vec a word2vec vytvo°í takové
vektorové representace. Optimalizace t¥chto algoritm· zahrnuje
hledání správného nastavení jejich parametr·. P°edpokládá se, ºe
heuristiky mohou toto vyhledávání usnadnit. Tato práce si klade
za cíl ukázat pouºití algoritmu node2vec pro °e²ení úlohy shulkové
analýzy na grafech a ov¥°it, zda jsou heuristiky vhodné pro opti-
malizaci modelu node2vec.

Klí£ová slova: Dolování dat, vno°ené uzly, node2vec, heuristiky, shulková analýza

Title:

Heuristics in Graph Data Mining via Node Embeddings

Author: Adeliia Gataullina

Abstract: This paper considers the usage of heuristic algorithms in data min-
ing tasks on graphs. One of the ways how to work with graphs is to
represent them in the form of vectors, i.e. embeddings. Algorithms
node2vec and word2vec creates such embeddings. The optimisation
of those algorithms involves searching for proper settings of their
parameters. Heuristics may facilitate that searching. This work aims
to show the usage of the node2vec algorithm for solving of the clus-
ter analysis task on graphs and verify if heuristics are suitable for
the optimisation of the node2vec model.

Key words: Data mining, embeddings, node2vec, heuristics, cluster analysis

Contents

Introduction 9

1 Theoretical Basis 11
1.1 Neural Networks . 11
1.2 Embeddings . 13

1.2.1 Word Embeddings . 13
1.2.2 Graph Embeddings . 16

2 Implementation of the node2vec algorithm 19
2.1 Pseudo-code of the node2vec algorithm 19
2.2 Optimisation of the original algorithm 20

2.2.1 Speed acceleration . 20
2.2.2 Reproduction of results . 20

3 Analysis of the heuristics using in node2vec 22
3.1 Objective function . 22
3.2 Methods used . 23
3.3 Parameters sensitivity . 23
3.4 Heuristics . 25

3.4.1 Hill climbing (or Shoot and go) 25
3.4.2 Simulated annealing . 25
3.4.3 Genetic algorithms . 26

3.5 Experiments . 27
3.5.1 The functionality of instruments chosen 27
3.5.2 Parameters sensitivity . 28
3.5.3 Experiments with heuristics 30

4 Application of the algorithm on real data and analysis of results 41
4.1 Data used . 41
4.2 Data visualisation . 41
4.3 Cluster analysis . 43
4.4 Parameters sensibility . 43
4.5 Optimisation by heuristics . 45

Conclusion 46

Acronyms 47

7

Bibliography 50

8

Introduction

With the development of technology, the amount of data collected about our activ-
ities online and o�ine has become enormous.

Not everyone can accept and agree with this, but anonymous research of this data
can be useful for people in terms of business development and improving the quality
of services. For example, data gathered from the Internet of things (IoT) devices
in medical and health care spheres can enhance the functionality of quick response
medicine, of making diagnoses and preventing diseases. Users online behaviour data
study may improve recommendation systems and accelerate the development of
arti�cial intelligence, e.g. image recognition. Thence, data mining, i.e. the process
of collecting useful knowledge from the data, and data analysis became one of the
most promising and rapidly developing areas of computer science.

There are many ways to study data about objects and their relations. It is con-
venient and understandable to store them in the form of graphs, where vertices
represent the objects, and edges between the vertices represent the relationship be-
tween these objects. It is more comfortable to work with vector embeddings, i.e.
graph representations in the form of mathematical vectors.

In this paper, the algorithms node2vec and word2vec are considered, the consis-
tent use of which allows us to reconstruct a graph of data in the form of vector
embeddings. As the primary source of information, the following papers describing
these two algorithms were used: node2vec: Scalable Feature Learning for Networks

by Aditya Grover and Jure Leskove [7] and E�cient Estimation of Word Represen-

tations in Vector Space by Tomas Mikolov, Kai Chen, Greg Corrado and Je�rey
Dean [11].

The objective of this work is to learn the node2vec model usage and the principles
of its functionality. It also aims to investigate the possibility of optimisation of the
node2vec algorithm employing heuristics. Heuristics are methods of �nding solutions
using algorithms, based on natural phenomena and common sense, that may not
guarantee the optimal results, but can still be very e�ective. [1]

As an objective function of this experiment, a task of cluster analysis of graph
vertices was used. Optimisation of the objective function consisted of the search
for the correct parameters of the node2vec algorithms. It is expected to establish
that the use of heuristics can help in the relatively fast and e�cient selection of
parameters optimising the objective function. At the same time, the intention is to
show that the performance of di�erent heuristic algorithms may di�er.

9

The paper is divided into four parts. In the �rst chapter, the reader will �nd a
brief description of the theoretical foundations necessary for understanding the tech-
niques used throughout the paper. It also describes the essence of the functionality
of node2vec and word2vec. The second chapter relates to the implementation of the
node2vec algorithm. The third chapter contains a description of the heuristics con-
sidered in the paper and the results of their analysis of simple arti�cial data. The
last fourth chapter is devoted to the use of information obtained in the study on
real-world data research.

10

Chapter 1

Theoretical Basis

1.1 Neural Networks

Computer programs solve all sorts of problems that could be divided into three
groups according to the level of their complexity and existence of the known methods
of their solving:

� elementary and middle complicated problems with obtained solutions, which
can be solved by known algorithms, such as printing a document on a printer,
displaying an application window on a computer screen or numerical opera-
tions;

� simple and middle complicated problems with partially found solutions, which
can be solved by statistical models, e.g., simple prediction, calculation of errors
or approximate solutions of equations;

� severe problems without existing solutions, which can not be solved by general
algorithms, for example, image and speech recognition or complex forecasts.

One of the tasks from the latter mentioned group � recognising people's faces � is
easily solved unconsciously by the human brain. However, it seems quite challenging
to construct a computer algorithm that would cope with such a quandary. One of
the techniques that may solve it is neural networks.

Neural network is a simpli�ed model of the biological neural system, which consists
of interacting arti�cial neurons. Comparable to biological neurons, arti�cial ones
receive information, process it in some way and transmit it to other neurons.

Neural networks are composed of three main types of neurons: input, hidden, and
output (see Fig. 1.1). A large number of neurons represent a layer. Each neuron
holds input and output data. In the case of the input neuron, the input and output
data are equal. In other instances, summarised information from the previous layers
is received by the neuron, is normalised by the activation function and is sent to the
output �eld.

11

Figure 1.1: Left: a single-layer neural network; right: a multi-layer neural network

x1

x2

x3

f
∑n

i=1wi · xi y

w1

w2

w3

Figure 1.2: xi - input data with wi weights of synapses, f(x) - the activation function
and y - the output data of a neuron.

Connections (or so-called synapses) between neurons are weighted to show the
amount of in�uence that has one neuron to another. The information received from
the most weighted neuron is considered dominant in the receiving node. Precisely
due to the set of synaptic weights, input data can be processed and converted into
a meaningful result.

On initialisation, weighs of the neural network are distributed randomly. As input
data, a neuron receives a weighted sum from the previous neurons, that is, the sum
of the input signals multiplied by the corresponding weights:

n∑
i=1

wixi

The activation function of neuron accepts the sum as an argument and normalises
it into the output result (see Fig. 1.2).

At the �rst launch of a network, the answer will be far from correct since the system
is not trained. The connection weights need to be strengthened or weakened to

12

approach the right answer. The process of searching the set of weights, which will
lead to the desired output, is called the neural network training.

The �nal set of input signals used for training of the network is denoted as the
training set. Besides, there is a testing set of input data used for evaluating the
network quality. Both sets may at times contain valid output answers.

1.2 Embeddings

Further in this paper, node2vec, i.e. an algorithm representing graphs in the form
of vectors, will be considered. However, node2vec works based on word2vec, i.e. an
algorithm that represents words in the form of vectors, so-called word embeddings.
An architecture of word2vec involves neural networks.

1.2.1 Word Embeddings

For word processing by a computer, it is necessary to solve the problem of repre-
senting words in the form that the computer will understand.

One of the simplest ways of representing words can be the idea of simple numbering
words in the order they appear in a dictionary. However, this method has several
signi�cant problems. Words in most of the dictionaries are in alphabetical order, so
on adding a word, it would be necessary to renumber most of the words. However,
this is not the main problem. Words with di�erent meanings can be spelt likewise or
conversely words that looks di�erently may be semantically similar. For example, a
person who does not know the meaning of the words: "rooster", "hen" and "chicken",
may not understand that they belong to the same semantic group, because visually
they are very di�erent from each other. Whereas, for a person who is familiar with
these words, it is apparent that they denote a male, female and cub of one species
of bird. [8]

Thus, to be able to represent the semantic proximity, it was proposed to use word
embeddings, i.e., an association of a word with a speci�c vector, which re�ects its
meaning in the "space of meanings". It is a set of language modelling and feature
learning techniques in Natural Language Processing (NLP), which allows represent-
ing words and phrases as vectors of real numbers.

word2vec

In 2013, a Czech graduate student Tomas Mikolov proposed his approach to word
embedding, which he called word2vec. His approach is based on a hypothesis, which
is called the principle of locality - "words that occur in the same environments have
similar meanings". [11]

13

The principle of the word2vec model is to �nd connections between contexts of
words. More formally, the task is: to maximise cosine similarity between word vec-
tors appearing next to each other and to minimise cosine similarity between vectors
of words that do not appear next to each other. Cosine similarity is a binary mea-
sure of similarity, which shows a similarity between two non-zero vectors of inner
product space and measures the cosine of the angle between them (see Fig.1.3). Put
it di�erently, if the words are situated closely, it means that they are located in
similar contexts.

Figure 1.3: Cosine similarity of A: Orange and B: Apple words.

For example, the words "analyse" and "research" can be found in similar contexts,
such as "Students have analysed the algorithm" or "Students conducted research
on the algorithm". The word2vec model analyses these texts and concludes that the
words "analyse" and "research" are close in meaning.

The resulting representations of word vectors can be used for calculating the "se-
mantic distance" between words. Precisely based on the contextual proximity of
these words, the word2vec technology makes its predictions.

The main steps of the word2vec model processing are as follows:

1. During a corpus reading a number of each word in the corpus occurrences is
calculated. A corpus, here, is denoted as a collection of texts for model training.

2. Words stored in a hash table are sorted by frequency of occurrence, and rare
words are deleted.

3. A Hu�man tree is built. A Hu�man tree is a full binary tree representing a
given alphabet, where a leaf corresponds each letter. It is often used to encode
a dictionary - this dramatically reduces the computational complexity of the
algorithm.

14

4. The so-called sub-sentences are read from the corpus and sub-sampling of the
most frequent words is processed. A sub-sentence is an essential body element,
usually just a sentence, but it can also be a paragraph or even a whole article.
Sub-sampling is the process of removing the most frequent words from the
analysis, which speeds up the learning process and contributes to a signi�cant
increase in the quality of the resulting model.

5. The sub-sentences are processed within a window. For instance, if the win-
dow size is equal to three, then for the sentence "python interpreted high-level
programming language", the analysis will be held inside the blocks: "python
interpreted high-level" "interpreted high-level programming", "high-level pro-
gramming language". The default window size is �ve, and the recommended
value is ten. [7]

6. At last, a Feedforward neural network is used with a Hierarchical Softmax ac-
tivation function, a Negative Sampling or both. A Feedforward neural network
is a deep learning model that do not contain cycled links between neurons. In
this network, the information �ows in one direction only, from the input neu-
rons, through the hidden layer to the output neurons. In the word2vec model
information goes through a Softmax activation function, i.e. a function that
takes as input a vector of K real numbers and normalises it into a probability
distribution consisting of K probabilities proportional to the exponential of the
input numbers. If Negative Sampling also involved, weights for only a small
amount of random words are updated.

Although no semantics, but only the statistical properties of the corpus of the texts,
were taken into account in the model. It appears that the trained word2vec model
can capture some semantic features of words. So, using a large enough corpus for
training may bring quite adequate results.

A classic example of word embeddings is shown in the left part of the �gure 1.4.
The vectors of the words "man" and "woman" are related to each other, at the
similar way as vectors of the words "king" and "queen", which is completely natural
and understandable for English speaking people. In addition to semantic links, the
syntax is also captured. See the right part of the Figure 1.4, there the relationship
between singular and plural forms of the words is shown.

There are two main architectures implemented by word2vec: Continuous Bag of
Words (CBOW) and Skip-gram (Fig. 1.5). CBOW is a model architecture that pre-
dicts the current word based on its surrounding context. The architecture of the
Skip-gram type works di�erently: it uses the current word to predict the words
surrounding it. In general, CBOW and Skip-gram are neural network architectures
that describe precisely how a neural network "learns" from data and "remembers"
representations of words. The user of word2vec can switch and choose between al-
gorithms. The word order of the context does not a�ect the result in any of these
algorithms.

15

Figure 1.4: a. Relation between words; b. semantic links between words.

Figure 1.5: the CBOW and Skip-gram models' architecture. CBOW: according to
the given context words predicts a probability of a target word; Skip-gram: for the
target word given predicts a probability of context words.

1.2.2 Graph Embeddings

Graphs help to represent data in a meaningful and understandable way. However, it
is not that convenient to work with them. Machine learning on graphs is limited (only
a speci�c subset of mathematics, statistics and machine learning can be used), while
vectors have a richer tool-set of approaches. Transformation graphs into vectors or
a set of vectors, i.e. graph embeddings, may solve that issue.

Graph embeddings map each node to a low-dimensional feature vector and try to
preserve the connection strengths between vertices. Generally, graph embeddings
represent graphs by capturing the relevant information about it, such as the graph
topology, vertices relations, sub-graphs. The more properties are encoded in embed-
ding, the better results can be retrieved later in machine learning tasks.

Graph embeddings can be roughly divided into two groups: [6]

16

1. Vertex embeddings: Each vertex (node) is encoded with its vector repre-
sentation. This embedding type can be used when it is necessary to perform
visualisation or prediction the level of the nodes, e.g. 2D plane visualisation of
the graph, or connections prediction based on nodes' similarities. The node2vec
algorithm belongs to this group

2. Graph embeddings: A single vector represents the whole graph. These em-
beddings are used for making predictions at the graph level, e.g. comparison
of chemical structures.

Initially, the range of methods of graph embeddings was small and included the
following methods:

1. Methods based on neighbours in the graph � the most obvious of them
is the number of common neighbours. It is intuitive that the greater the in-
tersection of the sets of neighbours of two peaks, the more likely there is a
connection between them � for example, most new acquaintances are with
friends of friends;

2. Methods based on graph paths � the idea is that the shortest path between
two vertices on a graph is related to the chance of a connection between them
� the shorter the path, the higher the chance.

node2vec

The next milestone on the way to graph embeddings was the development of random
walk methods. The DeepWalk and the node2vec algorithms were presented. The
random walk, started in a selected node of the graph, moves to the random neighbour
from a current node in a de�ned number of steps. Thus, the algorithm visits each
vertex of the graph and collects information about the vertices and edges between
them.

Both methods consist of three steps:

1. sampling: random walks sample a graph. From each node, a few random
walks are performed.

2. training: random walks are treated as sentences, and each node is treated as
a word in word2vec algorithm. The neural network accepts each node of the
random walks as input and maximises the probability for predicting neighbour
nodes.

3. computing embeddings: embeddings are output from a hidden layer of the
neural network.

There is a di�erence between the two algorithms. The DeepWalk method performs
walks randomly, which means that embeddings may not preserve the local neigh-
bourhood of a node well. The node2vec approach corrects that by adding parameters
p and q, which allow the researcher to bias transitions between nodes.

17

The q parameter de�nes how probable it is that the random walk would discover the
undiscovered part of the graph, while the p parameter de�nes the probability of the
random walk to return to the previous node (see Fig.1.6). The Figure illustrates the
situation where a step from the red to the green vertex was made. The probability
of going back to the visited (red) node is 1/p, while the probability of going to the
node not connected with the previous (red) node 1/q. The probability of going to
the red node's neighbour is one. [7]

The parameter p controls the discovery of the microscopic view around the node. In
contrast, the parameter q discovers the broader neighbourhood. Both of them infer
communities and complex dependencies.

Figure 1.6: The probabilities of a random walk step in node2vec.

Other steps of the embedding are the same as in the DeepWalk approach. The main
goal of node2vec is to ensure that vertices closely located in the graph receive a
close representation in the vector map. In other words, the angle between the two
obtained vectors is minimal.

18

Chapter 2

Implementation of the node2vec

algorithm

2.1 Pseudo-code of the node2vec algorithm

The original paper [7] gives the following pseudo-code of the node2vec algorithm
(see Algorithm 1).

Algorithm 1 The node2vec algorithm
function LearnFeatures(Graph G = (V,E,W), Dimensions d, Walk per
node r, Walk length l, Context size k, Return p, In-out q)

π = PreprocessModi�edWeights(G, p, q)
G′ = (V,E, π)
Initialize walks to Empty
for iter = 1 to r do

for all nodes u ∈ V do
walk = node2vecWalk(G′, u, l)
Append walk to walkes

f = StochasticGradientDescent(k, d, walks)
return f

function node2vecWalk(Graph G′ = (V,E, π), Start node u, Length l)
Initialize walk to [u]
for walkiter = 1 to l do

curr = walk[−1]
Vcurr = GetNeighbors(curr,G′)
s = AliasSample(Vcurr, π)
Append s to walk

return walk

As an input the algorithm receives a graph G = (V,E,W), where V is vertices,
E is edges and W is edges' weights of the graph G. Beside of that, it receives
algorithm parameters de�ning the random walks(r number of walks made from one

19

node,l length of each random walk, p return probability parameter, q probability
parameter of visiting non-visited nodes), outputting embeddings dimension d and
the context size k as a parameter of word2vec. From each node r biased random walks
are constructed, where transitions are done with probabilities πvx. Alias sampling
allows to increase the e�ciency of the algorithm to O(1) and the optimisation by
Stochastic Gradient Descent, i.e. an optimisation method whose output is the partial
derivative of its inputs, is used. [7]

There are two o�cial implementations of the node2vec algorithm written by the au-
thors of the algorithm in Python and C++ as a part of Stanford Network Analysis
Project (SNAP), the reference and the high-performance implementations, respec-
tively [7]. Aside from that, also an implementation in Python 3 exists [3].

2.2 Optimisation of the original algorithm

The original implementation of the algorithm might be thoroughly designed; how-
ever, a study of existing uno�cial implementations has shown that some parts of it
can be improved.

2.2.1 Speed acceleration

The �rst thing to consider is the size of the graph and the time of the working on it.
Indeed, some graphs may become too huge to handle. So, calculation embeddings
on it may take a long time, especially when it is needed to make 1000 calculations
for one experiment. For example, during the learning of the node2vec parameters
sensibility, each iteration of the algorithm run took up to 100 seconds, which in turn
led to 36 days long calculation for the experiments. So, research on possible ways of
managing it was made.

One of the ways how to solve the speed problem is using multi-core computers and
running calculations parallelly. For these purposes may be appropriate to use cloud
virtual massively multi-cores machines, e.g., Google Cloud Computer Engines.

Another way of achieving speed acceleration is shown in the implementation of
node2vec with the usage of sparse matrices [14]. A sparse matrix is a matrix with
predominantly zero elements. Constructing random walks on sparse matrices is much
faster. Also, it allows reducing the number of jumping from the di�erent parts of
memory, unlike while working with graphs, which uses the linked list idea there each
node contains pointers to each other [13].

2.2.2 Reproduction of results

The second thing and the critical issue that authors of the original paper concealed is
the reproduction of results. The same results reproduce at each iteration is necessary
to conduct reliable calculations.

20

The implementation of node2vec with `seed` parameter was suggested by CSIRO's
Data61 group from Australia in the StellarGraph library for working with graphs
and machine learning. [2].

The main di�erence between the original paper algorithm and the StellarGraph im-
plementation lies in the construction of biased random walks. In latter probabilities
of transition are ruled by arbitrary weights. During the graph sampling the tran-
sition made to a next neighbour is selected at random, weighted by the iterator
weights of arbitrary (non-negative) �oats. That is, x is returned with probability
weights[x]/sum(weights). Doing a single sample with arbitrary weights is much (5x
or more) faster than doing it using the numpy.random.choice function, because the
latter requires much more preprocessing (normalised probabilities), and does a lot
of conversions, checks, preprocessing internally. [2]

21

Chapter 3

Analysis of the heuristics using in

node2vec

3.1 Objective function

Many machine learning tasks working with graphical data involve predictions on
nodes and connections between them. The most typical one is a classi�cation task
or cluster analysis, that is, the attempt to di�erentiate nodes and categorise them
into groups. For example, in social networks, it can be useful to �nd connections
between users or predict their interests depending on possible relevant properties of
nodes referring to the users.

As an objective function in this work, a cluster analysis of graph vertices task was
used. Optimisation of the objective function consisted of the search for the correct
parameters of the node2vec algorithms. Di�erent ways to solve this problem can be
found, but the goal of this work is to study the solutions employing heuristics.

The data in the objective function goes through several stages:

1. input data is converted into a graph;

2. the graph is sampled with random biased walks implemented in the node2vec
algorithm;

3. the random walks are treated as a corpus by word2vec and are transformed
into embeddings describing the graph;

4. the embeddings are used as properties for the cluster analysis;

5. the cluster analysis is evaluated using an adjusted rand score, which is max-
imised.

A pseudo-code describes the objective function (see Algorithm 2).

22

Algorithm 2 Objective function
function evaluate(p, q, num_walks, len_walks, window)

weighted_walks = RandomWalks.run(graph.nodes, p, q, num_walks, len_walks, seed)
weighted_walks = to_str(weighted_walks)
model = word2vec(weighted_walks, window)
set known_lables to Empty
for all nodes i in model.indices do

Append label of i to known_lables
n_clusters = len(labels.unique())
km = KMeans(n_clusters).�t_pedict(model.vectors)
score = RandIndex(known_labels, km)
return score

3.2 Methods used

Since the ability to replicate the results was vital, it was decided to work with the
StellarGraph implementation of the algorithm. The RandomWalks.run() function
in the Algorithm 2 creates the instance of BiasedRandomWalk class and runs the
graph sampling by random walks.

For vertices labelling the k-means clustering algorithm was chosen. This method
randomly picks the centres (centroids) of the future clusters and calculates the closest
nodes to each centre. On each iteration, the centre of the cluster moves to the actual
centre of the nodes batch and rearrange the closest nodes to the new centre. The
latter operation repeats until the centres are stabled (see Fig. 3.1). The k-means
clustering algorithm allows setting the number of clusters.

For cluster analysis estimation the Rand index was chosen. The index collates an
array of cluster numbers with a testing array of pre-de�ned labels. The closer the
value to 1.0, the better the result of clustering. If the metric reaches exactly 1.0,
then the compared arrays are identical (up to a permutation). On the contrary, 0.0
means that clusters are di�erent. This experiment aims to maximise this value.

3.3 Parameters sensitivity

The quality of the embeddings, and thus the quality of cluster analysis, heavily
depends on the parameters chosen for the model construction. Moreover, it seems
that for each data package its parameters should be detected. Thus, �nding the
optimal parameters can be quite tricky.

Some selected for studying parameters of node2vec are as follows:

dimensions (parameter) is a number of dimensions of the embeddings collected
from the algorithm. Since the model contains more information about a net-
work, the better classi�cation results might be expected. Though, calculations
on higher dimensions request more resources. The default value is 128.

23

There is a di�erence between the two algorithms.

Figure 3.1: The k-means algorithm. (a) Original dataset. (b) Random initial cluster
centroids. (c-f) Illustration of running two iterations of k-means.

walk_length is a number of nodes in each random walk. The sequences of nodes
are treated as the sentences and are fed to the word2vec algorithm. For smaller
graphs, it appears to be more feasible to decrease the length of walks. The
default value is 80.

num_walks is a number of walks made from each node. Larger values of this
parameter theoretically lead to the more detailed embeddings. The default
value is 10.

p is a return parameter that speci�es the probability of the moving back to the al-
ready visited node. Bigger values provide more local search (BFS) and describe
the local relationships between the nodes. The default value is 1.0.

q is a neighbour parameter de�ning the probability of visiting the earlier unvisited
nodes. The bigger value provides the depth �rst search technique and learns
the external relationships in a data set. Depending on the characteristics of
the graph, it may be more appropriate to commit more breadth-�rst (BFS)
like or depth-�rst (DFS) like search. The default value is 1.0.

Some selected parameters of word2vec are as follows:

window de�nes the number of nodes before and after the node given treated as
a context of the node, i.e. nodes that may appear together and have some
relations. The recommended value is 10.

24

min_count sets a minimal frequency of the node's occurrence in the training
model. The nodes with a total frequency lower than the value set are ignored.

Here, only a particular part of the parameters was considered. There are even more
possibilities to manage the work of algorithms. Heuristics can help us in choosing
the right combinations.

3.4 Heuristics

The term "heuristic" originates from the Ancient Greek word meaning "�nd" or
"discover". A heuristics technique is a method of problem-solving based on common
logic, subconscious thinking or rules of nature. Even though such methods do not
guarantee the most optimal, rational or perfect results, they can be surprisingly
e�cient in �nding quick solutions. That makes heuristics widely used in various
spheres of our lives. Examples of heuristics employment are a rule of thumb, trial
and error, educated guess, brainstorm, and lots of others. [1]

In a situation of ever-increasing data sizes, scientists are in search of methods of
analysis that will perform e�ectively and fast on big data sets. Under such conditions
often only the good enough solution, or so-called satisfactory solution, is searched.

3.4.1 Hill climbing (or Shoot and go)

A Hill climbing algorithm is a mathematical optimisation technique that belongs to
the family of local search algorithms. The algorithm starts with an arbitrary solution
to a problem and then tries to improve it by gradual changing of one of its elements.
If the new solution gives a better result, the change is accepted. The elements of
the solution continue to be changed until no improvements can be reached. At this
point, the algorithm �nishes.

The weak point of this algorithm is a risk that the solution will become trapped at
a local extremum of the objective function, or in the case of the plateau, no changes
will lead to any improvement.

The relative simplicity of the algorithm makes it popular among optimisation algo-
rithms. Although more advanced algorithms such as an annealing simulation or a
tabu search may give better results, hill climbing works just as well in some situations
(especially when the time for searching is limited). That is important in real-time
systems, provided that a small number of steps converges to a good-enough solution
(optimal or close to optimal ones). [1]

3.4.2 Simulated annealing

This method has been observed in nature. It is based on substances crystallisation
process increasing the uniformity of metals.

25

All materials have a crystalline lattice, which describes the geometrical position of
atoms. Each state of the system, the set of the atoms' positions, corresponds to a
certain level of energy. The purpose of metal annealing is to bring the system into a
state with lower energy. The lower the energy level, the "better" the crystal lattice,
i.e. the metal has fewer defects and higher strength.

During heating and subsequent slow and controlled cooling, the atoms change their
initial positions. Atoms tend to get into a state with less energy; however, with a
certain probability, they may appear in a position with higher energy. This proba-
bility decreases with temperature. The process ends when the temperature drops to
a pre-determined value.

In this process, energy is minimised. At higher temperatures, the algorithm acts
as a random search, accepting any steps even though they do not lead to a better
result. That allows us to avoid trapping in a local minimum with a high probability.
With the cooling, the algorithm becomes more greedy and accepts only improving
changes in the system, i.e. it acts like the Hill climbing algorithm. [1]

3.4.3 Genetic algorithms

Genetic or evolutionary algorithms were inspired by nature as well and are based on
Darwin's principle of natural selection. There are three stages of the method, as fol-
lows: selection, crossover, mutation. The algorithm randomly creates the populations
of the most promising solutions.

The process of creating a population from individuals of the previous generation
is called the reproduction strategy. Some of their types are canonical, simple and
breedN [1]. In a canonical approach, all parents are replaced by new o�springs, i.e.
the crossover probability equals one. In the simple method, the crossover probability
decreases and some parents may be just cloned. In a BreedN strategy, the imaginary
breeder is applied. That breeder chooses the parents with the best qualities and uses
them to create the next generation.

A crossover is carried out in several ways. For easier explanation, let us assume
parents x = (x1, x2, . . . , xn) and y2 = (y1, y2, . . . , yn). Then the children will be
created, as follows:

� one-point crossover (1-point): a cut point p1 ∈ [1, n] de�nes the point, where
the exchange between parents happens. For instance: p1 = 2 formulates the
children c1 = (x1, x2, y3, . . . , yn) and c2 = (y1, y2, x3, . . . , xn);

� two-points crossover (2-point): two cut points, p1 < p2, from the same interval
[1, n] de�ne the part of the parents' chromosomes interchange. So, for p1 = 2
and p2 = 4 children are formulated as c1 = (x1, x2, y3, y4, x5, . . . , xn) and c2 =
(y1, y2, x3, x4, y5, . . . , yn);

� uniform: each parents' chromosome exchanges with a 50/50 probability;

� parent chromosomes alternate in every child, so, c1 = (x1, y2, x3, . . . , xn) and
c2 = (y1, x2, y3, . . . , yn), assuming n is even.

26

If the result is unsatisfactory, these steps are repeated until the result starts to be
suited, or one of the following conditions occurs: the number of generations (cycles)
reaches a pre-selected maximum or the mutation time is up. [1]

3.5 Experiments

3.5.1 The functionality of instruments chosen

After a rather long series of unsuccessful attempts to work with medium-sized (with
1005 and 10312 vertices) and small graphs (just 24 vertices), it was decided to test
the functionality of the methods on elementary data. So, it is easy to interpret the
data and results achieved by the method.

An arti�cial data set was created to simplify and speed calculations. The graph
consists of 25 vertices divided into �ve equally large groups. Inside the group, all
the vertices are connected. Also, the 'leader' node of each group is connected to
the 'leader' nodes of the other groups, and one-eighth of all edges in the graph are
random (see Fig. 3.2).

Figure 3.2: The test data graph.

Only for the very �rst experiment, even simpler data was used, which should have led
to a maximum value of the objective function with a hundred per cent probability.
This data is similar to the one-eighth data, but it has edges only within each vertex
group. Thus, nodes from di�erent groups were not connected at all, and it would
be bizarre if, as a result of the experiment, they were distributed among the foreign
groups. Due to this step, it was possible to detect errors in the calculations, namely
during the cluster analysis, and correct them.

Figure 3.3 shows the result of corrected clusterisation. Nodes of the pure data set
are perfectly divided into �ve clusters. The objective function on default parameters
is maximised, i.e. its values equal to 1.0. For comparison, the value of the objective
function with the same default parameters but calculated for the one-eighth data is

27

0.625. These and the following calculations can be found in the repository dedicated
to the bachelor project on github. [5]

Figure 3.3: Clusters analysis of the pure data. Colours stand for the groups of nodes.

3.5.2 Parameters sensitivity

To �nd the optimum combination of settings, one should examine the in�uence of
individual parameters on the �nal result. In theory, knowledge of the individual
parameters extrema can help in �nding a combination of optimal parameters.

The original work shows the opposite relation between the quality of embeddings
and the p and q parameter. That means that with an increase in the value of these
two parameters, the quality of the embeddings decreases. The bond between the
result and the dimension, number of walks and length of walks, on the contrary, is
direct. That is, an increase in the value of the parameters leads to an improvement
in the result. [7]

Dependencies between parameters and the Rand index score was calculated for the
one-eight data as well. According to the schematic drawing 3.4, the parameters p
and q in�uence the result in the opposite direction. This result does not con�rm the
description of the in�uence of parameters in the original work. Therefore, it can be
assumed that for each data graph, we can �nd the optimal values of the parameters
p and q, which may not coincide with the optimal values for some other data packet.

28

Figure 3.4: Parameters sensitivity for the one-eighth graph.

Moreover, the e�ect of settings on the system may di�er. Indeed, the connections
between the points in the graph are a�ected by those parameters at most.

The drawing also clearly con�rms the assumption that the greater the length of the
walks and their number, the more qualitatively the algorithm describes the graph.

It is also interesting to note that, by simple enumeration, two optimal parameter
values were found here. It was the sixth iteration of inspecting the length of walks
with a value of 70 and also the sixth inspection iteration of a number of walks with
a value of 16. Other parameters, in this case, kept default.

Such a simple example was speci�cally used here so that �nding its optimal solution
does not take much time. The next chapter section deals with the ability of heuristics
improving that result.

29

3.5.3 Experiments with heuristics

The experimental framework was borrowed from the Heuristic course at FNSPE,
Czech Technical University, with some changes. Two super-classes are implemented
in the framework: ObjFun and Heuristic. ObjFun stores evaluation values, parameter
boundaries, a graph, a random walks generator instance. The Heuristic class stores
the best-found parameters and the corresponding objective function value. It is
responsible for the experiment to stop, in case the better solution was found, or the
maximum number of iterations was reached. [12]

In each heuristic the p parameter values were examined. Other four parameters were
unchanged, their default values were taken. The maximum number of evaluations
and the number of experiments runs were set at 50.

Hill climbing (or Shoot and go)

The Shoot and Go algorithm starts with a random point, for the neighbours of which
the value of the objective function is calculated. The "best neighbour" is accepted,
and the algorithm begins to evaluate its neighbouring points. If no improvements are
possible at the point, the algorithm starts from the random point again, i.e. makes
a jump from the local search. The hmax parameter sets the maximum of local
searches. Zero value of that parameter means that the algorithm acts as a Random
shoot, i.e. never considers the neighbour and tries to hit the optima randomly.

Algorithm 3 shows the pseudo-code of Hill climbing.

Figure 3.5: Examination of the hmax parameter of the Shoot and go heuristic. All
parameters except p are default.

The hmax parameter examination is illustrated in Fig. 3.5. The data is shown in the
form of a Box and whisker plot. It is a convenient way to map statistical information.
Whiskers show the spread of the data. For instance, for hmax = 0 the maximum
value is 1.0, and the minimum is 0.8. A line within boxes gives a medium, and it

30

Algorithm 3 Shoot and go
function search

while true do
x = of .generate_point()
parameters = [x, 1.0, 10, 80, 10]
evaluate(parameters)
if hmax > 0 then

steepest_descent(x)

function steepest_descent(x)
desc_best_y = 0
desc_best_x = x
h = 0
go = True
while go and h < hmax do

go = False
h += 1
neighborhood = of .get_neighborhood(desc_best_x, 0.125 · 2)
if random_descent then

random.shu�e(neighborhood)
for xn in neighborhood do

parameters = [xn, 1.0, 10, 80, 10]
yn = evaluate(parameters)
if yn > desc_best_y then

desc_best_y = yn
desc_best_x = xn
go = True
if random_descent then

break

function get_neighborhood(x, d)
left = [x for x in linspace(x− 0.125, x− d, 2) if x >= left_border]
right = [x for x in linspace(x+ 0.125, x+ d, 2) if x < right_border]
if size(left) == 0 then

return right
else

if size(right) == 0 then
return left

else
return concatenate(left, right)

function generate_point
return random.uniform(0.125, 4.125)

31

means that half of the values are less than the median. The borders of the boxes
are the medium of the half, i.e. lower and upper quartiles. Diamonds outside the
box and whiskers indicate statistically not important abnormal values. According
to the experiment, it seems that the algorithm acted most successfully at values
hmax = 0.0, hmax = 1.0 and hmax = 2.0 because 75% of their values are bigger
than 0.9.

Figure 3.6 shows the statistical data about the number of evaluation to �nd the
optimal solution. It is hard to tell if there is any system in this result. The maximum
value of evaluation was set to 50, and apparently, it was enough to get the right
parameter's value. It seems that the most felicitous value of hmax was 5.0 since
most of the optimal values were found on 12th-23th steps.

Figure 3.6: The number of iteration of the algorithm to �nd the optimal solution.

The reliability was measured by the Feoktistov criterion (FEO), which is calculated
by the formula:

FEO =
MNE

REL

MNE =
1

m

m∑
i=1

nevali

REL =
m

q

whereMNE is a mean number of objective function evaluations,REL is a reliability,
m is a number of successful iterations and q is a total number of iterations.

According to the Feoktistov criterion, the most reliable in this case was the Random
shooting algorithm (see Tab. 3.1), i.e. hmax = 0 setting with FEO = 42.75.

Repeating of the algorithm with Random Descent parameter improved reliability of
the result by almost 10 (see Tab. 3.2). By the neighbourhood diameter examination
no improvements were achieved.

32

Figure 3.7: Reliability of the Shoot and go algorithm according to the Feoktistov
criterion by hmax.

Heuristic hmax feo mne rel

SG_0 0.0 42.75 22.23 0.52
SG_1 1.0 51.42 23.65 0.46
SG_2 2.0 59.00 23.60 0.40
SG_5 5.0 60.93 19.50 0.32
SG_10 10.0 54.78 19.72 0.36
SG_20 20.0 63.02 23.94 0.38
SG_50 50.0 66.62 25.31 0.38
SG_inf inf 57.09 20.55 0.36

Table 3.1: Reliability of the Shoot and go heuristic.

Heuristic hmax feo mne rel

SG_RD_1 1.0 32.93 20.42 0.62
SG_0 0.0 42.75 22.23 0.52
SG_RD_0 0.0 44.16 22.08 0.50
SG_RD_2 2.0 46.02 24.85 0.54
SG_RD_inf inf 50.17 17.05 0.34

Table 3.2: Reliability of the Random Descent Shoot and go heuristic.

33

Fast simulated annealing

Fast simulated annealing (FSA) is a variation of the Simulated annealing algorithm.
FSA is a semi-local search consisting of occasional long jumps. Classical simulated
annealing (CSA) is strictly local, so it is slower compared to FSA. The di�erence is
also in the cooling schedule, which is inversely linear in time in FSA and inversely
proportional to the logarithmic function of time in CSA.

The main parameters of the FSA algorithm are:

� T0 ∈ R as an initial temperature,

� n0 ∈ N and α ∈ R as a cooling strategy parameters.

The current temperature at k-th step of the algorithm is:

T =

{
T0

1+(k
n0

)α
, if α > 0

T0 · exp(−(kn0
)−α) otherwise

(3.1)

The current solution x is mutated using a Cauchy mutation for u random number
if the following condition is true:

u <
1

2
+

arctan(s)

π

s =
fy − fx
T

The Cauchy mutation operator with perimeter controlled by parameter r ∈ R, where
r is a random number, is

y = x+ r · tan(π(r − 1

2
))

Algorithm 4 shows the pseudo-code of the algorithm.

First, an experiment with di�erent initial temperatures was carried out. In this
experiment, only the p parameter was again sought; the remaining settings were
default ones. The optimal value of the objective function was reached only occasion-
ally. Figure 3.8 shows that most of the best values of the experiment are less than
0.62.

According to Tab. 3.3, FSA performed similarly at the initial temperature T0 = 1e−2
and T0 = 1.

An attempt to increase the objective function value by changing the r mutation
parameter also was not successful (see Figure 3.9).

FSA did not reach the optimal value in 683 experiments, and in 17 cases it achieved
the optima at the �rst run. It can be assumed that this behaviour is not trustable,
and the optimal values are just random. So, the MNE values are not credible in that
case (see Tab.3.4).

34

Algorithm 4 Fast simulated annealing
function search

x = of .generate_point()
params = [x, 1.0, 10, 80, 10]
fx = evaluate(params)
while True do

k = neval − 1
T = T0/(1 + (k/n0)

α) if α > 0 else T0 · exp(−(k/n0)
−α)

y = CauchyMutation(x)
params_mut = [y, 1.0, 10, 80, 10]
fy = evaluate(params_mut)
s = (fx − fy)/T
swap = random.uniform() < 1/2 + arctan(s)/π
if swap then

x = y
fx = fy

function CauchyMutation(x)
n = size(x)
u = random.uniform(low= 0.0, high= 1.0, size= n)
xnew = x+ r · tan(π · (u− 1/2))
xnew_corrected = correct(xnew)
return xnew_corrected

Heuristic T_0 feo mne rel

FSA_1e-10_1_2_0.5 1e− 10 50.0 1.0 0.02
FSA_0.01_1_2_0.5 1e− 2 NaN NaN 0.00
FSA_1_1_2_0.5 1e− 0 50.0 1.0 0.02
FSA_inf_1_2_0.5 inf NaN NaN 0.00

Table 3.3: Reliability of FSA by the initial temperature T0.

Heuristic T_0 n_0 r feo mne rel

FSA_1e-10_5_2_0.1 1e− 10 5 0.10 12.50 1.0 0.08
FSA_1e-10_5_2_0.01 1e− 10 5 0.01 16.66 1.0 0.06
FSA_1e-10_10_2_0.5 1e− 10 10 0.50 25.00 1.0 0.04
FSA_1e-10_3_2_0.5 1e− 10 3 0.50 25.00 1.0 0.04
FSA_1e-10_5_2_0.5 1e− 10 5 0.50 25.00 1.0 0.04

Table 3.4: Reliability of FSA after all improvements.

35

Figure 3.8: FSA by initial temperature T0.

Figure 3.9: FSA by r mutation parameter.

36

Genetic algorithms

Genetic heuristics are based on the principle of Darwin's evolutional theory. The
work of the algorithm begins with the creation of a random generation of solutions,
which subsequently undergoes selection, crossbreeding, and mutation. From the gen-
eration of solutions obtained, the best representatives are selected, and the cycle
begins again. A wide variation of breeding strategies is presented in the literature.
In the experiment, a 1-point crossover and a uniform mutation were used. [4]

Algorithm 5 shows the pseudo-code of the algorithm.

In the experiment, the e�ect of the number of generations on the search speed
of optimal parameter values was considered. It was expected that the average value
should give the best results for the following reasons. When using a small population,
there is a high probability of delaying the search process. It may become that an
initial population does not contain �tting parameters, and even a mutation would
not save the situation. Variation of chromosomes can be solved by increasing the
population. However, this can signi�cantly increase the calculation time.

Figure 3.10: GO by N as size of a population.

Figure 3.11 shows the results of the experiment. According to the statistics the
algorithm worked fast with population size of 2 and 12.

According to FEO, two solutions in one population give the most reliable results in
the Genetic heuristics, as illustrated in Tab. 3.5.

Heuristic N feo mne rel

GO_2 2 126.00 12.60 0.10
GO_4 4 129.17 15.50 0.12
GO_8 8 65.63 10.50 0.16
GO_10 10 73.00 14.60 0.20
GO_12 12 73.97 16.27 0.22

Table 3.5: Reliability of the Genetic heuristics with di�erent population sizes.

37

Algorithm 5 Genetic algorithm
function search

pop_size = (N, 5)
new_population = create_population(pop_size)
while True do

for generation in range(N) do
fitness = �tness_calc(new_population)
parents = select_parents(new_population, fitness, p_num)
offspring_crossover = crossover(parents, offspring_size)
offspring_mutation = mutation(offspring_crossover)
new_population = parents+ offspring_mutation

function create_population(pop_size)
population = zeros(shape = pop_size)
for individ in population do

individ[0] = random.uniform(low = 0.125, high = 4.125)
individ[1− 4] = 1.0, 10, 80, 10

return population

function select_parents(new_population, fitness, parents_num)
for num in range(parents_num) do

max_fitness_idx =max(fitness))
max_fitness_idx = max_fitness_idx[0][0]
parents[num, :]= new_population[max_fitness_idx, :]
fitness[max_fitness_idx]= 0

return parents

function fitness_calc(new_population)
for ind in new_population do

fitness.append(of.evaluate(ind))
return fitness

function crossover(parents, offspring_size)
point = offspring_size[1]/2
for k in range(offspring_size[0]) do

parent1_idx = k % parents.shape[0]
parent2_idx = (k + 1) % parents.shape[0]
offspring[k, before point]= parents[parent1_idx, before point]
offspring[k, after point] = parents[parent2_idx, after point]

return offspring

38

Algorithm 6 Genetic algorithm: mutation

function mutation(offspring_cross, num_mutations = 1)
for idx in range(offspring_cross.shape[0]) do

for num in range(num_mutations) do
rand_value = random.uniform(−0.1, 1.0, 1)
offspring_cross[idx, 0]= offspring_cross[idx, 0]+rand_value
if offspring_cross[idx, 0]<= 0 then

offspring_cross[idx, 0]= 0.1

return offspring_crossover

Figure 3.11: The e�ect of the generations size on the number of evaluations.

39

Comparison of the used algorithms reliability

The table 3.6 contains the best FEO values for the used heuristics. The smaller
the values of the Feoktistov criterion, the more reliable and faster the heuristic.
According to the carried out experiments, the most reliable one is the Random
descent Shoot and Go algorithm with hmax = 1.

Heuristic FEO MNE REL

SG_RD_1 32.93 20.42 0.62
FSA_1e-10_1_2_0.5 50.00 1.00 0.02
GO_8 65.63 10.50 0.16

Table 3.6: The best performance values of the heuristics.

Heuristic mean median mode max

SG 0.90 0.89 1.00 1.00
FSA 0.51 0.45 0.33 1.0
GO 0.80 0.80 0.89 1.0

Table 3.7: Statistics of the heuristics performance by best_y value.

40

Chapter 4

Application of the algorithm on real

data and analysis of results

4.1 Data used

It was decided to use the email-Eu-core data set proposed by the SNAP group
at Stanford University. The network was generated using email data from a large
European research institution. So, presumably, they can be considered as data from
the real world. [9]

The network contains 1005 nodes and 25571 edges, where each node represents one
member of the institution. There is an edge (u, v) between two vertices if a person
sends at least one email to another person. It contains communication between the
institution members only, incoming and outgoing messages to the rest of the world
are ignored.

Furthermore, the network contains labels that de�ne the community membership of
each node. Each institution employee belongs to one of 42 departments. The number
of people in each department is di�erent, and groups with less than ten people may
make the data noisy. To expedite the calculations, the ten largest departments were
taken into consideration (see Figure 4.1).

4.2 Data visualisation

Figure 4.2 illustrates the graph representation of the data used, which was created
in Gephi. Gephi is an open-source application for visualisation and exploration of
various kinds of graphs and networks.

After loading an extensive data set into the software, the user can only see a cloud
of black dots displaying vertices of the graph, since their position is random at �rst.
Thus some additional manipulations with data are needed.

In Figure 4.2, each node is coloured under its membership in the particular de-

41

Figure 4.1:

partment. The biggest departments were �ltered out to make the graph clearer and
visually understandable. So nodes that belong to smaller groups were hidden. The
built-in Force Atlas2 algorithm set the graph shape. The "force-based" algorithm
works as follows: connected nodes attract one another, and disconnected nodes are
pushed apart [10]. It can be seen that the working data was grouped into homo-
geneous clusters, and vertices from each department were positioned close to each
other.

Figure 4.2: The emails network representation in Gephi. The ten prominent depart-
ment nodes are illustrated, the colours represent di�erent departments.

42

4.3 Cluster analysis

According to the technology described in Chapter 3, a cluster analysis was carried
out. Figure 4.3 shows a new representation of the graph. Colours still refer to the
departments, but the layout is di�erent. The newly discovered clusters group nodes
and the nodes with the same label number are situated close to each other. It seems
that clusters are less homogeneous than in the previous visualisation.

Figure 4.3: Visualisation of cluster obtained from the node2vec model and pre-known
departments.

The Rand index of this result is 0.46.

4.4 Parameters sensibility

Parameters sensibility for the emails data set was also calculated. (see Fig. 4.4) Not
all the charts look like it was expected, but some relationships still can be seen.

According to the �rst chart, it is evident that an increase in the value of the di-
mension improves the quality of the model and shows the best result at dimensions
values from 24 = 16 to 25 = 32.

An increasing trend was awaited for the walk_length and num_walks parameters.
Though in both cases, chart lines rose to the particular value and start to fell after

43

Figure 4.4: The parameters sensitivity for the emails data set. Default parameters
values beside of the studying one are used.

reaching the peak. Thus, it can be assumed that the best values of these parameters
are 60 and 6, respectively.

Chart lines for p and q parameters are �uctuating, so that could mean that for this
particular data changes of these parameters do not have much impact on the results.
Indeed, the data is designed in such a way that it is di�cult to claim that the search
must be done locally or more globally. People send emails within and outside their
departments. Probably, if the data also contained the information of the frequency
of the emails send, it would be easier to classify nodes representing members into
departments.

The window parameter's chart is also �ckle. The good results are reached at window
equals two and eight. What is worth noticing is that at the recommended value of
ten, the model dropped and has its local minimum. This fact once again proves that
for each data packet its combination of parameters should be selected.

44

4.5 Optimisation by heuristics

Table 4.1 shows the �ve best Rand index scores obtained during the parameters sen-
sibility examining. The best value equals to 0.49. Clearly, with the help of heuristics
the improvement of the result was managed (see Tab. 4.2).

walk_length num_walks p q window adj_rand

80.0 10.0 2.00 1.00 10.00 0.49
80.0 10.0 1.00 0.25 10.00 0.47
80.0 10.0 1.00 1.00 10.00 0.46
80.0 10.0 1.00 1.00 10.00 0.45
80.0 10.0 1.00 1.00 10.00 0.44

Table 4.1: The best scores achieved during the parameters sensibility experiment on
emails data.

Heuristic hmax best_p best_y

SG_1 1.0 1.72 0.75
SG_inf inf 1.83 0.75
SG_10 10.0 3.48 0.75
SG_1 1.0 1.85 0.75
SG_5 5.0 1.78 0.74

Table 4.2: The best scores achieved by Shoot and Go on emails data.

45

Conclusions

In this paper, node2vec, an algorithm for creating embeddings, and the use of heuris-
tics for its optimisation were considered. In its implementation, it was essential to
ensure the reproducibility of the results. The implementation of the algorithm in
the StellarGraph library coped with this.

The optimal value of the p parameter was searched utilising heuristic algorithms.
The experiments have shown that the use of heuristics makes sense in this task. The
Shoot and go algorithm was recognised as the fastest and most reliable.

De�nitely, the node2vec algorithm deserves attention, but a review of its implemen-
tation may be required. It would be bene�cial to work on optimising the process
of calculations, data storage and reproduction of results. Improving and unifying
existing implementations could be the goal of subsequent publications and Master's
thesis, or both.

In this work, an acquaintance with the problems was carried out. Three types of
heuristics have been tested. More in-depth study and testing of other heuristics
could be exciting and may reveal their potential even more.

The corresponding notebooks and source code can be found at github. [5]

46

Acronyms

BFS breadth �rst search. 24

breadth-�rst is an algorithm for traversing tree or graph data structures moving
in depth prior. 24

CBOW Continuous Bag of Words. 15

CBOW is a model architecture that predicts the current word based on its sur-
rounding context. 15

centroids are centres of future clusters. 23

classi�cation is a attempt to di�erentiate nodes and categorise them into groups.
22

corpus is a collection of texts on which the model is trained. 14

cosine similarity is a binary measure of similarity, which shows a similarity be-
tween two non-zero vectors of inner product space and measures the cosine of
the angle between them. 14

DeepWalk is an approach for learning latent representations of vertices in a net-
work, which uses unbiased random walks. 17

depth-�rst is an algorithm for traversing tree or graph data structures explores as
far as possible along each branch. 24

DFS depth �rst search. 24

dimensions is a number of dimensions of the embeddings collected from the algo-
rithm. 23

Feedforward neural network is a deep learning model, that do not contain cy-
cled links between neurons. In this network, the information �ows in one di-
rection only, from the input neurons, through the hidden layer to the output
neurons. 15

Force Atlas2 is a "force-based" algorithms of data visualisation, where connected
nodes attract one another, and disconnected nodes are pushed apart. 42

47

Genetic algorithm is a mathematical optimisation technique based Darwin's prin-
ciple of natural selection. 26

Gephi is an open-source application for visualisation and exploration of various
kinds of graphs and networks. 41

graph is a mathematical structure constructed from a set of objects having some
relations between each other. The objects are called vertices (or nodes), and
each relation of vertices is denoted as an edge (or connection). 16

graph embedding is the transformation of graphs to a vector or a set of vectors.
16

heuristics are a problem-solving method that produces good-enough solutions given
a limited time frame. It is mainly used working with complex data. 7, 22, 25

Hill climbing is a mathematical optimisation technique that belongs to the family
of local search algorithms. 25

Hu�man tree is a full binary tree representing a given alphabet, where each letter
is corresponded by a leaf. 14

k-means clustering is a clusterisation method based on k-means principle. 23

min_count is a minimal frequency of the node's occurrence in the training model.
25

Negative Sampling is a model used in word2vec algorithm, where weights for only
a small number of random words are updated. 15

network (same as a graph). 41

neural network training is the process of searching the set of weights, which will
lead to the desired output. 13

neural network is a simpli�ed model of the biological neural system, which con-
sists of interacting arti�cial neurons. Similar to biological neurons, arti�cial
ones receive information, process it in some way and transmit it to other neu-
rons. 11

NLP Natural Language Processing. 13

node2vec is an algorithm representing graphs in the form of vectors. 17, 23

num_walks is a number of walks made from each node. 24, 43

p is a return parameter that speci�es the probability of the moving back to the
already visited node. 17, 18, 24, 44

q is a neighbour parameter de�ning the probability of visiting the earlier unvisited
nodes. 17, 18, 24, 44

48

Rand index is a index that collates an array of cluster numbers with a testing
array of pre-de�ned labels. 23

random walk is a technique of a graph sampling. 24

Simulated annealing is a mathematical optimisation technique based on sub-
stances crystallization process increasing the uniformity of metals. 7, 25

Skip-gram is a model architecture that uses the current word to predict the words
surrounding it. 15

SNAP Stanford Network Analysis Project. 20

Softmax is a function that takes as input a vector of K real numbers and normalises
it into a probability distribution consisting of K probabilities proportional to
the exponentials of the input numbers. 15

sparse matrix is a matrix with predominantly zero elements. 20

walk_length is a number of nodes in each random walk. 24, 43

window is a parameter of the word2vec algorithm that sets the maximum distance
between the current and the predicted word in the sentence. 15, 24, 44

word2vec is an algorithm that represents words in the form of vectors, so-called
word embeddings. 24

word embeddings is a set of language modelling and feature learning techniques
in Natural Language Processing, where vectors of real numbers map words or
phrases. 13, 15

49

Bibliography

[1] Hussein Abbass, Ruhul Sarker, and Charles Newton. Data mining: A heuristic
approach, 2002.

[2] CSIRO's Data61. Stellargraph machine learning library, 2018.

[3] Eliorc. Python3 implementation of the node2vec algorithm. https://github.
com/eliorc/node2vec, 2018.

[4] Ahmed Gad. Genetic algorithm implementation in python, 2018.

[5] Adeliia Gataullina. Notebooks for the bachelor thesis. https://github.com/
adeliia/BP, 2020.

[6] Primoº Godec. Graph embeddings � the summary, 2018.

[7] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. 2016.

[8] Dhruvil Karani. Introduction to word embedding and word2vec, 2018.

[9] Jure Leskovec. Snap: Network datasets - email-eu-core network, 2018.

[10] Jacomy M, Venturini T, Heymann S, and Bastian M. Forceatlas2, a continuous
graph layout algorithm for handy network visualisation designed for the gephi
software. PLoS ONE, 9(6), 2014.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. E�cient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[12] Matej Mojze². Heuristics 2020, course at fnspe, ctu. https://github.com/

matejmojzes/18heur-2020, 2020.

[13] Matt Ranger. 700x faster node2vec models: fastest random walks on a graph,
2019.

[14] Matt Ranger. Nodevectors - node2vec with usage of csr graph representations,
2019.

50

https://github.com/eliorc/node2vec
https://github.com/eliorc/node2vec
https://github.com/adeliia/BP
https://github.com/adeliia/BP
https://github.com/matejmojzes/18heur-2020
https://github.com/matejmojzes/18heur-2020

	Introduction
	Theoretical Basis
	Neural Networks
	Embeddings
	Word Embeddings
	Graph Embeddings

	Implementation of the node2vec algorithm
	Pseudo-code of the node2vec algorithm
	Optimisation of the original algorithm
	Speed acceleration
	Reproduction of results

	Analysis of the heuristics using in node2vec
	Objective function
	Methods used
	Parameters sensitivity
	Heuristics
	Hill climbing (or Shoot and go)
	simulatedannealing
	Genetic algorithms

	Experiments
	The functionality of instruments chosen
	Parameters sensitivity
	Experiments with heuristics

	Application of the algorithm on real data and analysis of results
	Data used
	Data visualisation
	Cluster analysis
	Parameters sensibility
	Optimisation by heuristics

	Conclusion
	Acronyms
	Bibliography

