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palindromické čtverce a vyšší mocniny, čísla palindromická ve více bázích atd. V této práci studujeme
antipalindromická čísla, což jsou přirozená čísla, jejichž zápis v nějaké přirozené bázi je antipalindrom.
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Introduction

Palindromes, words that stay the same when read backwards, are commonly known. It is not surpris-
ing that in natural languages, it is impossible to find extremely long palindromes. The longest palindrome
in English is “tattarrattat”. However, its victory is doubtful since tattarrattat is a neologism created by
James Joyce in his novel Ulysses [6]: it expresses loud knocking at the door:

“I was just beginning to yawn with nerves thinking he was trying to make a fool of me when I knew his
tattarrattat at the door.”

Palindromic phrases are even more interesting. They provide palindromes if punctuation, capitalization,
and spaces are ignored. Some popular palindromic phrases in English are:

“Do geese see God?”
“A man, a plan, a canal: Panama. ”

“Madam, in Eden, I’m Adam.”

Mathematicians are interested in palindromic numbers: positive integers whose expansion in a certain
integer base is a palindrome. Let us make a list of the problems studied:

1. Palindromic squares, cubes, and higher powers in base 10: The first nine terms of the sequence
12, 112, 1112, 11112, . . . are palindromic numbers 1, 121, 12321, 1234321, . . . (sequence A002477
in the OEIS [9]). The only known non-palindromic number whose cube is a palindromic number
is 2201, and Simmons [8] conjectured that the fourth roots of all palindromic fourth powers are
palindromic numbers of the form 10n + 1. Simmons [7] also conjectured there are no palindromic
numbers of the form nk for k > 4 and n > 1.

2. Palindromic primes: The first 20 decimal palindromic primes are (sequence A002385 in the
OEIS [9]):

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, . . .

Except for 11, all palindromic primes have an odd number of digits because the divisibility test
for 11 indicates that every palindromic number with an even number of digits is divisible by 11.
On the one hand, it is not known if there are infinitely many palindromic primes in base 10. The
largest known decimal palindromic prime has 474,501 digits (found in 2014):

10474500 + 999 · 10237249 + 1.

On the other hand, it is known that, for any base, almost all palindromic numbers are composite [1].
It means the ratio of palindromic composites and all palindromic numbers less than n tends to 1.

Binary palindromic primes include the Mersenne primes and the Fermat primes 1. All binary
palindromic primes except the number 3 (having the expansion 11 in base 2) have an odd number
of digits; palindromic numbers with an even number of digits are divisible by 3. Let us write down
the sequence of binary expansions of the first binary palindromic primes (sequence A117697 in
the OEIS [9]):

11, 101, 111, 10001, 11111, 1001001, 1101011, 1111111, 100000001, 100111001, 110111011, . . .
1A Mersenne prime is a prime of the form 2p − 1, where p is a prime. A Fermat prime is a prime of the form 22n

+ 1.
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3. Multi-base palindromic numbers: Any positive integer n is palindromic in all bases b with b ≥ n+1
because n is then a single-digit number, and also in base n − 1 because the expansion of n in base
n − 1 equals 11. But, it is more interesting to consider bases smaller than the number itself. For
instance, the number 105 is palindromic in bases 4, 8, 14, 20, 34, 104; the expansions of 105 in
these bases are:

(105)4 = 1221, (105)8 = 151, (105)14 = 77, (105)20 = 55, (105)34 = 33, (105)104 = 11.

A palindromic number in base b whose expansion is made up of palindromic sequences of length `
arranged in a palindromic order is palindromic in base b`. For example, the number 24253 has the
expansion in base 2 equal to (24253)2 = 101 111 010 111 101, i.e., it is made up of palindromes
of length 3, and its expansion in base 23 = 8 is equal to (24253)8 = 57275.

4. Sum of palindromes: Every positive integer can be written as the sum of three palindromic numbers
in every number system with base 5 or greater [4].

In this project, we are dealing with antipalindromic numbers in various integer bases. We examine
and compare properties of palindromic numbers and antipalindromic numbers, bringing a number of new
results. These are structured as follows. Chapter 1 contains the theoretical part about antipalindromic
numbers. In Section 1.1, we show the formal definition of an antipalindromic number in an integer base
and its basic properties following from the definition. In the following section, Section 1.2, previously
discovered properties of antipalindromic numbers are described. Section 1.3 informs about the num-
ber of (anti)palindromic numbers of a certain length and their mutual positions. Results concerning the
length of gaps between antipalindromic numbers are demonstrated in Section 1.4. In Section 1.5, an-
tipalindromic squares and higher powers are examined. Section 1.6 contains information about numbers
that are antipalindromic in two or more bases at the same time. Chapter 2 offers a description of the
application that is a part of this project. In Conclusion, we summarize our results and provide a list of
conjectures and open problems.
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Chapter 1

(Anti)palindromic numbers

1.1 Definition and basic properties

Let us start with a formal definition of palindromic and antipalindromic numbers and their basic
properties.

Definition 1. Let b ∈ N, b ≥ 2. Consider a natural number m whose expansion in base b is of the
following form

m = anbn + · · · + a1b + a0,

where a0, a1, . . . , an ∈ {0, 1, . . . , b − 1}, an , 0. We usually write (m)b = an . . . a1a0. Then m is called

1. a palindromic number in base b if its digits in base b satisfy the condition:

a j = an− j for all j ∈ {0, 1, . . . , n}, (1.1)

2. an antipalindromic number in base b if its digits in base b satisfy the condition:

a j = b − 1 − an− j for all j ∈ {0, 1, . . . , n}. (1.2)

The length of the expansion of the number m is usually denoted |m|.

Example 1. Consider distinct bases b and have a look at antipalindromic numbers in these bases:

• 395406 is an antipalindromic number in base b = 10.

• (1581)3 = 2011120 is an antipalindromic number in base b = 3.

• (52)2 = 110100 is an antipalindromic number in base b = 2.

Theorem 1. An antipalindromic number can have an odd number of digits only in an odd base b. The
digit in the center is then equal to b−1

2 .

Proof. Let us denote the digits of the considered antipalindromic number a0, a1, a2, . . . , a2n. Pair the
digits and add a0 + a2n, a1 + a2n−1, . . . , an−1 + an+1. From the definition, each pair has a total of b − 1.
That leaves us with the digit an that must be paired with itself: 2an = b − 1. Therefore, the digit an is an
integer only for b = 2k + 1, where k ∈ N, i.e., for an odd b. Furthermore, an = b−1

2 . �

Theorem 2. An antipalindromic number can be palindromic at the same time only if b is an odd number
and all the digits are equal to b−1

2 .

Proof. Consider an antipalindromic number with digits a0, a1, . . . , an. For this number to be palindromic,
a j = an− j must be true for each j ∈ {0, 1, . . . , n}. From the definition of an antipalindromic number, it
follows that a j + an− j = b − 1. For each j ∈ {0, 1, . . . , n} we obtain a j = b−1

2 , i.e., all the digits are equal
to b−1

2 and the base b must therefore be odd. �
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1.2 Previously discovered properties

Let us summarize some already known properties of antipalindromic numbers, see [1] for more
details.

Lemma 3. Let m be a natural number and its expansion in base b be equal to anbn + an−1bn−1 + . . . +

a1b + a0. Then m is divisible by b − 1 if and only if the sum of its digits is divisible by b − 1, i.e.,
an + an−1 + . . . + a1 + a0 ≡ 0 mod b − 1.

Theorem 4. Any antipalindromic number with an even number of digits in base b is divisible by b − 1.

Proof. Consider an antipalindromic number

m = anbn + an−1bn−1 + . . . + a1b + a0

for an odd n. From the definition, it is true that a j + an− j = b − 1 for each j ∈ {0, 1, . . . , n}. The number
of digits is even, hence

an + an−1 + . . . + a1 + a0 = (b − 1)
n + 1

2
≡ 0 (mod b − 1).

Using Lemma 3, the antipalindromic number m is divisible by the number b − 1. �

Theorem 5. An antipalindromic number with an odd number of digits in base b is divisible by b−1
2 .

Proof. Consider the antipalindromic number

m = a2nb2n + a2n−1b2n−1 + . . . + a1b + a0.

The digit sum of the number m−anbn is divisible by b−1. From Lemma 3, we also know that the number
m − anbn itself is divisible by b − 1 and, therefore, by b−1

2 . From the definition, an = b−1
2 . The number m

is a sum of two numbers divisible by b−1
2 . �

The following properties are linked to prime numbers.

Theorem 6. Let base b > 3. Then there exists at most one antipalindromic prime number p in base b:
p = b−1

2 .

Proof. Theorems 4 and 5 show that every antipalindromic number is divisible either by b−1
2 or b − 1.

Although b − 1 may be a prime number, it is never antipalindromic. �

Theorem 7. Let base b = 2. Then there exists only one antipalindromic number p = 2, (p)2 = 10.

Proof. Every antipalindromic number in base b = 2 is even. 2 is the only even prime number. �

Theorem 8. Let base b = 3. Every antipalindromic prime in this base has an odd number of digits n ≥ 3.

Proof. From Theorem 4, antipalindromic numbers with an even number of digits in base b = 3 are even.
The only antipalindromic number in this base with one digit is 1. �

Lemma 9. Antipalindromic numbers in base b = 3 beginning with a digit 2 are divisible by 3.

Proof. Consider an antipalindromic number m = an3n + an−13n−1 + . . . + a13 + a0, where an = 2. The
sum of an and a0 need to be equal to 2, therefore a0 = 0. All the summands are divisible by three. �

Theorem 10. All antipalindromic primes in base b = 3 can be expressed as 6k + 1, where k ∈ N.

10



Proof. Consider an antipalindromic prime m = a2n32n + a2n−132n−1 + . . . + a13 + a0. (The number of
digits must be odd.) From Lemma 9, a0 is equal to 1. Let us pair the members of the antipalindromic
number m (except for a2n, an and a0): a2n− j32n− j + a j3 j, j ∈ {1, . . . , n − 1}. Let us prove that for each
j ∈ {1, . . . , n − 1} there exists s ∈ N satisfying

3 j(a2n− j32n−2 j + a j) = 6s.

We can only consider three possibilities: a2n− j = 2, a j = 0, or a2n− j = a j = 1, or a2n− j = 0, a j = 2. In
either case, the equation holds because there is an even number inside the bracket. We then get

m = a2n32n + an3n + a0 + 6l

= 32n + 3n + 1 + 6l

= 3n(3n + 1) + 1 + 6l

for some l ∈ N0. The first summand is also divisible by 6, therefore m can indeed be expressed as 6k + 1
for some k ∈ N.

�

The application that is a part of this project can be used for searching antipalindromic primes in base
3. During an extended search, the first 637807 antipalindromic primes have been found. The first 100
antipalindromic primes in base 3 are listed in the appendix of this project. Let us now list at least the first
10 of them, along with their expansions in base 3:

13 111

97 10121

853 1011121

1021 1101211

1093 1111111

7873 101210121

8161 102012021

8377 102111021

9337 110210211

12241 121210101
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1.3 Occurences of palindromic numbers between neighboring antipalin-
dromic numbers and vice versa

While it is obvious that there are more palindromic numbers than antipalindromic ones in any given
base, the way palindromic and antipalindromic numbers are ordered might not be so trivial. One of the
modes in the application that is a part of this project is dedicated to the calculation of both palindromic
and antipalindromic sequences to show the manner in which these numbers occur in relation to one an-
other, see Figure 1.1.

Figure 1.1: Application mode: Spaces between palindromic and antipalindromic numbers

Let us answer the following questions:

Question 1. What is the minimum number of palindromic numbers that may occur between two neigh-
boring antipalindromic numbers in a given base b?

Question 2. What is the minimum number of antipalindromic numbers that may occur between two
neighboring palindromic numbers in a given base b?

Question 3. What is the maximum number of palindromic numbers that may occur between two neigh-
boring antipalindromic numbers in a given base b?

Question 4. What is the maximum number of antipalindromic numbers that may occur between two
neighboring palindromic numbers in a given base b?

Definition 2. Consider a string u = u0u1 . . . un, where ui ∈ {0, 1, . . . , b−1}. The palindromic complement
of u in base b is P(u) = unun−1 . . . u0 and the antipalindromic complement of u in base b is A(u) =

(b − 1 − un)(b − 1 − un−1) . . . (b − 1 − u0).

Definition 3. Two antipalindromic numbers m, n in base b, where m < n, are called neighboring if there
are no antipalindromic numbers in base b larger than m and smaller than n at the same time.

Example 2. The numbers m = 81 and n = 90 are evidently neighboring antipalindromic numbers in
base 10.

Let us describe the form of neighboring antipalindromic numbers m and n in base b, m < n, depend-
ing on the length of their expansion in base b.

1. If (m)b and (n)b have the same and even length, then we have

(m)b = wA(w) and (n)b = vA(v),

where w = (x)b and v = (x + 1)b for some x ∈ N.
12



2. If (m)b and (n)b have the same and odd length, then b is an odd base and we have

(m)b = wb−1
2 A(w) and (n)b = v b−1

2 A(v),

where w = (x)b and v = (x + 1)b for some x ∈ N.

3. If (m)b is of odd length 2k + 1 and (n)b is of even length 2k + 2, then b is an odd base and we have

(m)b = (b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

b−1
2 0 . . . 0︸︷︷︸

k−times

and (n)b = 1 0 . . . 0︸︷︷︸
k−times

(b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

(b − 2).

4. If (m)b is of even length 2k and (n)b is of odd length 2k + 1, then b is an odd base and we have

(m)b = (b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

0 . . . 0︸︷︷︸
k−times

and (n)b = 1 0 . . . 0︸︷︷︸
(k−1)−times

b−1
2 (b − 1) . . . (b − 1)︸                ︷︷                ︸

(k−1)−times

(b − 2).

5. If (m)b is of even length 2k and (n)b is of even length 2k + 2, then b is an even base and we have

(m)b = (b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

0 . . . 0︸︷︷︸
k−times

and (n)b = 1 0 . . . 0︸︷︷︸
k−times

(b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

(b − 2).

Example 3. Consider the base b = 10. The antipalindromic numbers 5814 and 5904 illustrate case
1., the antipalindromic numbers 9900 and 100998 illustrate case 5. Let us underline that in base 10, if
w2 − w1 = 1, then w1A(w1) and w2A(w2) are neighboring.

Example 4. Consider the base b = 3. The antipalindromic numbers m = 460 and n = 510 with
expansions (m)3 = 122001 and (n)3 = 200220 illustrate case 1., the antipalindromic numbers m = 145
and n = 177 with expansions (m)3 = 12101 and (n)3 = 20120 illustrate case 2., the antipalindromic
numbers m = 225 and n = 268 with expansions (m)3 = 22100 and (n)3 = 100221 illustrate case 3.
and the antipalindromic numbers m = 72 and n = 97 with expansions (m)3 = 2200 and (n)3 = 10121
illustrate case 4.

Definition 4. Two palindromic numbers m, n in base b, where m < n, are called neighboring if there are
no palindromic numbers in base b larger than m and smaller than n at the same time.

Example 5. The numbers m = 88 and n = 99 are evidently neighboring palindromic numbers in base
10.

Let us describe the form of neighboring palindromic numbers m and n in base b, m < n, depending
on the length of their expansion in base b.

1. If (m)b and (n)b have the same and even length, then we have

(m)b = wP(w) and (n)b = vP(v),

where w = (x)b and v = (x + 1)b for some x ∈ N.

2. If (m)b and (n)b have the same and odd length, then we have either

(m)b = waP(w) and (n)b = w(a + 1)P(w),

where w = (x)b for some x ∈ N and a ∈ {0, . . . , b − 2}, or

(m)b = w(b − 1)P(w) and (n)b = v0P(v),

where w = (x)b and v = (x + 1)b for some x ∈ N.
13



3. If (m)b is of length k and (n)b is of length k + 1, then we have

(m)b = (b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

and (n)b = 1 0 . . . 0︸︷︷︸
(k−1)−times

1.

Example 6. Consider the base b = 10. The palindromic numbers 789987 and 790097 illustrate case 1.,
the palindromic numbers 7892987 and 7893987 illustrate case 2.a), the palindromic numbers 7899987
and 7900097 illustrate case 2.b) and the palindromic numbers 999 and 1001 illustrate case 3.

First, let us answer questions 1. and 2. concerning the minimum number.

Theorem 11. Let b ∈ N, b ≥ 2. Then there exist two neighboring antipalindromic numbers m, n in base
b such that there is no palindromic number p in base b satisfying m ≤ p ≤ n. Similarly, there exist two
neighboring palindromic numbers m, n in base b such that there is no antipalindromic number a in base
b satisfying m ≤ a ≤ n.

Proof. • If b is an even base, b > 2, then we may set (m)b = ( b
2 − 1)( b

2 ) and (n)b = ( b
2 )( b

2 − 1). If b is
an odd base, b > 3, then we may set (m)b = 1( b−1

2 )( b−1
2 )(b − 2) and (n)b = 1( b+1

2 )( b−3
2 )(b − 2). If

b = 2, then we may set (m)2 = 1010 and (n)2 = 1100. If b = 3, then we may set (m)3 = 2020 and
(n)3 = 2110. Then m and n are neighboring antipalindromic numbers in base b such that there is
no palindromic number in base b between them.

• We may set (m)b = (b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

and (n)b = 1 0 . . . 0︸︷︷︸
(k−1)−times

1 for some k > 1. Then m and

n are neighboring palindromic numbers in base b such that there is no antipalindromic number in
base b between them.

�

Example 7. Consider the base b = 10. There is no palindromic number between 45 and 54 (the nearest
palindromic numbers are 44 and 55). There is no antipalindromic number between 99 and 101 (the
nearest antipalindromic numbers are 90 and 1098).

Example 8. Consider the base b = 3. There is no palindromic number between m = 60 and n = 66,
i.e., (m)3 = 2020 and (n)3 = 2110. There is no antipalindromic number between m = 8 and n = 10, i.e.,
(m)3 = 22 and (n)3 = 101.

It remains to answer questions 3. and 4. concerning the maximum number. We will state the results
depending on parity of base b.

Odd base

Theorem 12. 1) Let m, n be two neighboring antipalindromic numbers in base b. Then the maximum
number of palindromic numbers p satisfying m ≤ p ≤ n equals b + 1.
2) Let m, n be two neighboring palindromic numbers in base b. Then the maximum number of antipalin-
dromic numbers a satisfying m ≤ a ≤ n equals two.

Proof. 1. Consider situations for neighboring antipalindromic numbers.
In case 1., there are at most two palindromic numbers between m and n – if such palindromic
number exists, its expansion in base b must be equal to wP(w) or vP(v).
In case 2., there are at most b + 1 palindromic numbers between m and n – their expansions are
equal to
w( b−1

2 )P(w), . . . , w(b−1)P(w), v0P(v), . . . , v( b−1
2 )P(v). The maximum number of palindromic num-

bers can be reached, for example, by choosing w =
(b−1)

2 (b−1)(b−1). The first palindromic number
greater than w is then equal to b−1

2 (b − 1)(b − 1) b−1
2 (b − 1)(b − 1) b−1

2 and the last one smaller than
v is equal to b+1

2 00 b−1
2 00 b+1

2 .
14



In case 3., there are b+1
2 + 1 palindromic numbers between m and n – their expansions are

(b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

b−1
2 (b − 1) . . . (b − 1)︸                ︷︷                ︸

k−times

,

(b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

( b−1
2 + 1) (b − 1) . . . (b − 1)︸                ︷︷                ︸

k−times

,

. . . . . . ,

(b − 1) . . . (b − 1)︸                ︷︷                ︸
(2k+1)−times

,

1 0 . . . 0︸︷︷︸
2k−times

1.

In case 4., there are b+1
2 + 1 palindromic numbers between m and n – their expansions are equal to

(b − 1) . . . (b − 1)︸                ︷︷                ︸
2k−times

,

1 0 . . . 0︸︷︷︸
(2k−1)−times

1,

1 0 . . . 0︸︷︷︸
(k−1)−times

1 0 . . . 0︸︷︷︸
(k−1)−times

1,

. . . . . . ,

1 0 . . . 0︸︷︷︸
(k−1)−times

b−1
2 0 . . . 0︸︷︷︸

(k−1)−times

1.

It follows from the above analysis that the maximum number is attained in case 2, and it equals
b + 1.

2. Consider situations for neighboring palindromic numbers. In case 1., if there are antipalindromic
numbers between m and n, then they have expansions in base b equal to wA(w) or vA(v).
In case 2., there is at most one antipalindromic number between m and n – its expansion is equal
to w b−1

2 A(w).
In case 3., there is no antipalindromic number between m and n.

It follows that the maximum number of antipalindromic numbers between palindromic numbers
is two. Consider, for instance, palindromic numbers m and n with expansions (m)b = b−1

2
b−1

2 and
(n)b = b+1

2
b+1

2 . Then the antipalindromic numbers between them are m and s with (s)b = b+1
2

b−3
2 .
�
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Example 9. Consider the base b = 3. Let m = 145 and n = 177. These numbers are antipalindromic
with expansions (m)3 = 12101 and (n)3 = 20120. There are 4 palindromic numbers between m and
n, these numbers are 151, 160, 164, 173 with expansions 12121, 12221, 20002, 20102. For palindromic
numbers m = 4 and n = 8 with expansions 11 and 22, there are two antipalindromic numbers between m
and n – these numbers are m and s = 6, i.e., (s)3 = 20.

Even base

Theorem 13. Let b be an even base. The maximum number of palindromic numbers between two neigh-
boring antipalindromic numbers in base b is not bounded. In particular, between the largest antipalin-
dromic number with 2k digits and the smallest antipalindromic number with 2k + 2 digits, there are
exactly (b − 1) · bk + 2 palindromic numbers. Let m, n be two neighboring palindromic numbers in base
b. Then the maximum number of antipalindromic numbers a satisfying m ≤ a ≤ n equals two.

Proof.

• Consider the largest antipalindromic number with 2k digits and expansion
(b − 1) . . . (b − 1)︸                ︷︷                ︸

k−times

0 . . . 0︸︷︷︸
k−times

. The only larger palindromic number with 2k digits is the largest one pos-

sible – with all digits equal to b − 1. The smallest antipalindromic number with 2k + 2 digits has
the expansion 1 0 . . . 0︸︷︷︸

k−times

(b − 1) . . . (b − 1)︸                ︷︷                ︸
k−times

(b − 2) and there is only one smaller palindromic number

with 2k + 2 digits – its expansion equals to 100...001. It remains to prove that there are exactly
(b − 1) · bk palindromic numbers of length 2k + 1.

Denote the considered palindromic number (u2k) (u2k−1) . . . (uk+1)︸              ︷︷              ︸
k−1 digits

(uk) (uk+1) . . . (u2k−1)︸              ︷︷              ︸
k−1 digits

(u2k). All

digits from u2k−1 to uk (their number is equal to k) can be chosen arbitrarily from the set
0, 1, . . . , b− 1}, u2k cannot be zero. Therefore, the number of all palindromic numbers with 2k + 1
digits is (b − 1) · bk.

• Consider situations for neighboring palindromic numbers. In case 1., if there are antipalindromic
numbers between m and n, then they have expansions in base b equal to wA(w) or vA(v).
In case 2., there is no antipalindromic number between m and n.

It follows that the maximum number of antipalindromic numbers between palindromic numbers
is two. Let b > 2 and consider, for instance, palindromic numbers m and n with expansions
(m)b = b−2

2
b−2

2 and (n)b = b
2

b
2 . Then the antipalindromic numbers between them are r and s with

(r)b = b−2
2

b
2 and (s)b = b

2
b−2

2 . Let b = 2 and consider (m)2 = 1001 and (n)2 = 1111. Then the
antipalindromic numbers between them are r and s, where (r)2 = 1010 and (s)2 = 1100.

�

Example 10. Consider the base b = 4. Let m = 12 and n = 78. These numbers are antipalindromic
with expansions (m)4 = 30 and (n)4 = 1032 and also neighboring. There are 14 palindromic numbers
between m and n, these numbers are 15, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63, 65 with expansions
33, 101, 111, 121, 131, 202, 212, 222, 232, 303, 313, 323, 333, 1001.

Consider again the base b = 4. Let m = 5 and n = 10. These numbers are palindromic with
expansions 11 and 22. There are 2 antipalindromic numbers between m and n, these numbers are 6 and
9 with expansions 12 and 21.
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1.4 Gaps between neighboring antipalindromic numbers

To produce a list of antipalindromic numbers using an algorithm, it is useful to employ a formula that
calculates the gap between the current antipalindromic number and the following one. In this section, we
present a set of such formulae, some of which have been put to use in the source code of the application
that is a part of this project. The application was also used to verify our results.

Let us answer the following question:

Question 5. How big are the gaps between neighboring antipalindromic numbers?

Example 11. Consider the base b = 10. When listing the antipalindromic numbers of length 4 from the
smallest to the largest, notice which digits are changing:

1098, 1188, 1278, 1368, 1458, 1548, 1638, 1728, 1818, 1908, 2097, 2187, ... (1.3)

Two types of gap lengths occur in this case: Either the second digit is increased by one and the third digit
is decreased by one, and then the gap is of length 90. Or the first digit is increased by one and the fourth
digit is decreased by one, the second digit (equal to 9) and the third digit (equal to 0) are exchanged,
then the gap is of length 189. The n-th number in the list (1.3) is followed by the gap of length 90 if and
only if n is not divisible by 10. There are exactly 10 antipalindromic numbers with the same first digit.

Example 12. Consider the base b = 3. When listing the antipalindromic numbers of length 6 from the
smallest to the largest, notice which digits are changing:

100221, 101121, 102021, 110211, 111111, 112011, 120201, 121101, 122001, 200220, ... (1.4)

Three types of gap lengths occur in this case:

• The third digit is increased by one and the fourth digit is decreased by one, then the gap length
equals 18.

• The second digit is increased by one and the fifth digit is decreased by one, the third digit (equal
to 2) and the fourth digit (equal to 0) are exchanged. Then the gap length equals 42.

• The first digit is increased by one and the last digit is decreased by one, the second digit (equal
to 2) and the fifth digit (equal to 0) are exchanged, the third digit (equal to 2) and the fourth digit
(equal to 0) are exchanged. Then the gap length equals 50.

The n-th number in the list (1.4) is followed by the gap

1. of length 18 if and only if n is not divisible by 3;

2. of length 42 if and only if n is divisible by 3 but not by 9;

3. of length 50 if and only if n is divisible by 9.

There are exactly 3 antipalindromic numbers with the same first two digits. There are exactly 9 antipalin-
dromic numbers with the same first digit (1 or 2). Since there are 18 antipalindromic numbers of this
length in total, only one gap of length 50 occurs - between the numbers having expansions 122001 and
200220.

Definition 5. Let us define a mapping Mb which assigns to an integer i the maximum non-negative num-
ber k such that i ≡ 0 (mod bk). Furthermore, let Ab(n) denote a sequence of all n-digit antipalindromic
numbers, ordered from the smallest to the largest.
Remark: It is easy to count the number of members of the sequence Ab(n) depending on parity of n:
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• If n is even, then the number of members is equal to (b − 1) · b
n−2

2 .

• If n is odd and b is odd, then the number of members is equal to (b − 1) · b
n−3

2 . (The middle digit of
all members of Ab(n) is b−1

2 .)

• If n is odd and b is even, then the sequence is empty.

Theorem 14. Consider an odd b and an odd n > 2. Then for all i ∈ {1, . . . , (b − 1) · b
n−3

2 − 1}, it is true:

Ab(n)i+1 − Ab(n)i = (b2 − 1) ·
Mb(i)∑
k=0

b
n−3

2 −k.

Proof. If Mb(i) = 0, we only need to change two of the digits: the ones on either side of the middle digit.
On the left side, we add 1, and on the right side, we subtract 1. This gives us the gap (b2 − 1)b(n−3)/2. If
Mb(i) = 1, the digit on the left from the central digit of Ab(n)i is equal to b− 1 and the right one is 0. The
number n must be equal to or greater than 5 because Mb(i) = 1 means we are changing four digits. In
this case, we are changing the left digit to 0 and the right one to b − 1. The digit corresponding to b

n−3
2 is

increased by 1, and, symmetrically, the digit corresponding to b
n+5

2 is decreased by 1, giving us the gap(
b4 − (b − 1) · b3 + (b − 1) · b − 1

)
· b

n−5
2 ,

which is equal to

(b3 + b2 − b − 1) · b
n−5

2 = (b + 1) · (b2 − 1) · b
n−5

2

=

(
1 +

1
b

)
· (b2 − 1) · b

n−3
2 .

By continuing to raise the value of Mb(i) = m, it can be seen that the difference is always(
b2m+2 − (b − 1) · (b2m+1 + b2m + . . . + bm+2

)
+ (b − 1) ·

(
bm + bm−1 + . . . + b) − 1

)
· b

n−2m−3
2 ,

which can be reduced to(
bm+2 + bm+1 − b − 1

)
· b

n−2m−3
2 = (b + 1)(bm+1 − 1) · b

n−2m−3
2

= (bm + bm−1 + . . . + 1) · (b2 − 1) · b
n−2m−3

2

=

(
1 +

1
b

+ . . . +
1

bm

)
· (b2 − 1) · b

n−3
2 .

�

Theorem 15. Consider an even n > 3. Then for all i ∈ {1, . . . , (b − 1) · b
n−2

2 − 1}, it is true:

a) Mb(i) = 0 :
Ab(n)i+1 − Ab(n)i = (b − 1) · b

n−2
2 ,

b) Mb(i) > 0 :

Ab(n)i+1 − Ab(n)i = (b − 1) · b
n−2

2 + (b2 − 1) ·

Mb(i)∑
k=1

b
n−2

2 −k

 .
Proof. Similar to the proof of Theorem 14. �

However, the neighboring antipalindromic numbers do not necessarily have the same length. There
are three more possible gap lengths to be considered.
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Example 13. Consider the base b = 3. Let (m)3 = 22100 and (n)3 = 100221. These two numbers are
neighboring because even though their length is different, there is no antipalindromic number between
them.

Example 14. Consider the base b = 3. Let (m)3 = 222000 and (n)3 = 1001221. These two numbers are
neighboring because even though their length is different, there is no antipalindromic number between
them.

Example 15. Consider the base b = 10. Let m = 9900 and n = 100998. These two numbers are neighbor-
ing. 9900 is the largest antipalindromic number of length 4 and 100998 is the smallest antipalindromic
number of length 6. Furthermore, since the base is even, there are no antipalindromic numbers of an
odd length.

Theorem 16. For an odd b and an odd n, the gap between the largest antipalindromic number of length
n in base b and the smallest antipalindromic number of length n + 1 in base b is equal to

3b+1
2 · b

n−1
2 − 2.

Proof. The smaller of the numbers has the expansion (b − 1) . . . (b − 1)︸                ︷︷                ︸
n−1

2 −times

(
b−1

2

)
0 . . . 0︸︷︷︸

n−1
2 −times

and the greater

one 1 0 . . . 0︸︷︷︸
n−1

2 −times

(b − 1) . . . (b − 1)︸                ︷︷                ︸
n−1

2 −times

(b − 2). By subtracting these two numbers, we get the difference

3b+1
2 · b

n−1
2 − 2.

�

Theorem 17. For an odd b and an even n, the gap between the largest antipalindromic number of length
n in base b and the smallest antipalindromic number of length n + 1 in base b is equal to

b+3
2 · b

n
2 − 2.

Proof. The smaller of the numbers has the expansion (b − 1) . . . (b − 1)︸                ︷︷                ︸
n
2−times

0 . . . 0︸︷︷︸
n
2−times

and the greater one

1 0 . . . 0︸︷︷︸
n−2

2 −times

(
b−1

2

)
(b − 1) . . . (b − 1)︸                ︷︷                ︸

n−2
2 −times

(b − 2). By subtracting these two numbers, we get the difference

b+3
2 · b

n
2 − 2.

�

Theorem 18. For an even b, the gap between the largest antipalindromic number of an even length n in
base b and the smallest antipalindromic number of length n + 2 in base b is equal to

(b − 1) · bn + (b + 1) · b
n
2 − 2.

Proof. As we know, for an even base b, there are no antipalindromic numbers of an odd length.
The smaller of the numbers has the expansion (b − 1) . . . (b − 1)︸                ︷︷                ︸

n
2−times

0 . . . 0︸︷︷︸
n
2−times

and the greater one

1 0 . . . 0︸︷︷︸
n
2−times

(b − 1) . . . (b − 1)︸                ︷︷                ︸
n
2−times

(b − 2). By subtracting these two numbers, we get the difference

(b − 1) · bn + (b + 1) · b
n
2 − 2.

�
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1.5 Squares and other powers as antipalindromes

For palindromic numbers, squares and higher powers were considered in [7, 8] by G. J. Simmons
more than thirty years ago. Simmons proved that there were infinitely many palindromic squares, cubes
and biquadrates. However, his conjecture was that for k > 4, k ∈ N, no integer n exists, such that nk is
a palindromic number (in the decimal base). This conjecture is still open. That is definitely not the case
for antipalindromic numbers as 37 = 2187 is antipalindromic in base 10.

Let us answer the following question:

Question 6. Are there any antipalindromic integer squares?

The initial observation suggested that bases b = n2 + 1, n ∈ N, have the most antipalindromic squares
and the computer application provided additional insight needed to prove this observation not only for
squares but for other powers as well. Table 1.1 expresses the number of antipalindromic squares smaller
than 1012 in some bases to underline the differences between the bases of the form n2 + 1 and the others.

base n=20 21 22 23 24 25 26 27 28 29 30
n2 3 13 3 14 9 11 35 9 6 17 1

n2 + 1 47 44 48 53 55 57 68 59 61 71 66
n2 + 2 2 2 2 2 2 1 1 2 2 1 1

Table 1.1: Number of antipalindromic squares smaller than 1012 in particular bases

As the exponent is raised, the differences become more significant but the numbers rise faster, see
Table 1.2:

base n=4 5 6 7 8 9 10 11 12
n4 0 1 0 1 0 1 0 0 0

n4 + 1 6 6 8 10 13 13 13 13 13
n4 + 2 0 0 0 0 0 0 0 0 0

Table 1.2: Number of antipalindromic biquadrates smaller than 1015 in particular bases

Example 16. Consider the base b = 10. Any antipalindromic number in this base must be divisible by
9. Every double-digit number divisible by 9 (except 99) is antipalindromic:

18, 27, 36, 45, 54, 63, 72, 81, 90.

The number 9 is a square, so if a square is divided by 9, it still is a square.

36 = 4 · 9 = 22 · 32 = 62, 81 = 9 · 9 = 92.

Lemma 19. For b = n2 + 1 and m ∈ {2, 3, . . . , n}, the number (m · n)2 is antipalindromic.

Proof. Since b = n2 + 1, we can modify the expression as follows: (m · n)2 = m2 · (b − 1). This number
has the expansion (m2 − 1) (b − m2). �

Question 7. Are there any higher integer powers that are also antipalindromic numbers?

Example 17. Consider the base b = 28. Any antipalindromic number in this base with an even number of
digits must be divisible by 27. Every double-digit number divisible by 27 (except the one with expansion
27 27) is antipalindromic. See the expansions of such numbers:

(1)(26), (2)(25), (3)(24), . . . , (24)(3), (25)(2), (26)(1), (27)(0).

The number 27 is a third power of 3, so if a third power of any number is divided by 27, it still is a third
power of an integer.

(7)(20) = (216)28 = 8 · 27 = 23 · 33 = 63, (26)(1) = (729)28 = 27 · 27 = 33 · 33 = 93.
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Theorem 20. For b = nk + 1 and m ∈ {2, 3, . . . , n}, the number (m · n)k is antipalindromic.

Proof. Since b = nk + 1, we can modify the expression as follows: (m · n)k = mk · (b − 1). This number
has the expansion (mk − 1)(b − mk). �

For odd powers and high enough bases, other patterns exist.

Lemma 21. For each m > 1, there exists a number c such that in every base b > c, the following number
is antipalindromic:

[m · (b − 1)]3.

It suffices to put c = 3 · m3 − 1.

Proof. Let us write down the expansion of [m · (b − 1)]3:

([m · (b − 1)]3)b = (m3 − 1) (b − 3 · m3) (3 · m3 − 1) (b − m3).

�

Theorem 22. For each m > 1 and odd k > 1, there exists a number c such that in every base b > c, the
following number is antipalindromic:

[m · (b − 1)]k.

It suffices to put c =
(

k
k−1

2

)
· mk − 1.

Proof. From the binomial theorem:

[m · (b − 1)]k = mk ·

k∑
i=0

(−1)i ·

(
k
i

)
· bk−i.

Since
(

k
k−1

2

)
is the maximum number among

(
k
i

)
for i ∈ {0, 1, ..., k}, the expansion in base b equals:

(
[m · (b − 1)]k

)
b

=

(
mk ·

(
k
0

)
− 1

) (
b − mk ·

(
k
1

))
. . .

(
mk ·

(
k

k − 1

)
− 1

) (
b − mk ·

(
k
k

))
.

�
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1.6 Multi-base antipalindromic numbers

Let us study the question whether there are numbers that are antipalindromic simultaneously in more
bases. In his 2010 paper, Bašić showed [2] that for any list of bases, there exists a number with palin-
dromic expansions in each of the bases. This does not necessarily apply to antipalindromic numbers as
there exist sets of bases (e.g., 6 and 8) for which our application mode for searching multi-base antipalin-
dromic numbers was unable to find any simultaneous antipalindromic numbers.

In 2014, Bérczes and Ziegler discussed [3] multi-base palindromic numbers and proposed a list of
the first 53 numbers palindromic in bases 2 and 10 simultaneously. The simple application that is a part
of this bachelor project has only been able to find one number with an antipalindromic expansion in
these bases. This number, 3276, is also antipalindromic in other 19 distinct bases, see Table 1.3. The
next greater number that is antipalindromic both in base 2 and 10 must be greater than 1010 and divisible
by 18.

It is not uncommon for a number to be antipalindromic in multiple bases. In this section, we provide
a proof that if a number is antipalindromic in a unique base, then the number must be prime or equal to
1, see Theorem 23.

Figure 1.2: Application mode: All bases in which a number is antipalindromic

Definition 6. An antipalindromic number is called multi-base if it is antipalindromic in at least two
different bases.

Observation 1. Every number m ∈ N is antipalindromic in base 2m + 1.

Example 18. The number 6192 is a multi-base antipalindromic number because (6192)9 = 8440 and
(6192)3 = 22111100.

Theorem 23. For any composite number a ∈ N, we can find at least two bases b, c such that this number
has an antipalindromic expansion in both of them.

Proof. Assume that

a = m · n, m, n ∈ N, m ≥ n,

b =
a
n

+ 1,

c = 2a + 1.

Expansions of a in bases b, c are equal to:

(a) a
n +1 = (n − 1)( a

n − n + 1),

(a)2a+1 = a.

�
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base expansion
2 110011001100
4 303030

10 3276
64 53 10
79 41 37
85 38 46
92 35 56
118 27 90
127 25 101
157 20 136
183 17 165
235 13 221
253 12 240
274 11 262
365 8 356
469 6 462
547 5 541
820 3 816
1093 2 1090
1639 1 1637
6553 3276

Table 1.3: Antipalindromic expansions of the number 3276 in 21 bases

Theorem 24. For every n ∈ N, there exist infinitely many numbers that are antipalindromic in at least n
bases.

Proof. Consider a number a such that a = (2n)!. Theorem 23 indicates that the number a is antipalin-
dromic in bases a

2 + 1, a
3 + 1, . . . , a

n + 1 and also 2a + 1. �

Theorem 25. Let b ∈ N, b ≥ 2. Then there exists m ∈ N such that m is antipalindromic in base b and in
at least one more base less than m.

Proof.

b = 2 m : = 12 (12)2 = 1100 (12)4 = 30

b = 3 m : = 72 (72)3 = 2200 (72)9 = 80

b ≥ 4 m : = 4 · (b − 1) (m)b = 3 (b − 4) (m)2b−1 = 1 (2b − 3)

�

Theorem 26. Let p, q ∈ N such that gcd(p, q) = d, p = p′ · d, q = q′ · d and p ≥ q′ > 1, q ≥ p′ > 1.
Then the number m = p′ · q′ · d = p · q′ = q · p′ is antipalindromic in bases p + 1 and q + 1.

Proof. We have

(m)p+1 = (q′ − 1)(p + 1 − q′),

(m)q+1 = (p′ − 1)(q + 1 − p′).

�

Example 19. Let p = 4, q = 6, then gcd(4, 6) = 2.
The number m = 12 is antipalindromic in bases 5 and 7: (12)5 = 22, (12)7 = 15.
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Theorem 27. Let b ∈ N, b ≥ 2. An antipalindromic number m in base bn, where (m)bn = uk . . . u1u0
and uk ≥ bn−1, is simultaneously antipalindromic in base b if and only if the expansion of u j in base b of
length n (i.e., completed with zeroes if necessary) is a palindrome for all j ∈ {0, 1, . . . , k}.

Proof. The digits of m in base bn satisfy 0 ≤ u j ≤ bn − 1. Let us denote the expansion of u j in base b by
(u j)b = v j,n−1 . . . v j,1v j,0 (where the expansion of u j in base b is completed with zeroes in order to have
the length n if necessary). The antipalindromic complement A(u j) of u j in base bn equals bn − 1 − u j

and its expansion in base b equals (A(u j))b = (b − 1 − v j,n−1) . . . (b − 1 − v j,1)(b − 1 − v j,0). Since m is
antipalindromic in base bn, we have uk− j = A(u j) = bn − 1 − u j for all j ∈ {0, 1, . . . , k}.
Let us now consider the expansion of m in base b: it is obtained by concatenation of the expansions of u j

in base b for j ∈ {0, 1, . . . , k}, i.e.,
(m)b = (uk)b . . . (u1)b(u0)b.

Following the assertion that uk ≥ bn−1, the expansion (uk)b starts in a non-zero. Thus, the length of the
expansion (m)b equals n · |(m)bn |.

The number m is antipalindromic in base b if and only if (uk− j)b = A((u j)b) for all j ∈ {0, 1, . . . , k}, i.e.,

(b − 1 − v j,n−1) . . . (b − 1 − v j,1)(b − 1 − v j,0) = A(v j,n−1 . . . v j,1v j,0)
= (b − 1 − v j,0)(b − 1 − v j,1) . . . (b − 1 − v j,n−1).

Consequently, m is antipalindromic in base b if and only if (u j)b = (v j,n−1 . . . v j,1v j,0) is a palindrome for
all j ∈ {0, 1, . . . , k}. �

Example 20. Consider m = 73652. Then (m)27 = 3 20 6 23 = u3u2u1u0, thus m is antipalindromic in
base 27 = 33. However, (m)3 = 10202020212, thus m is not antipalindromic in base 3. If we cut (m)3
into blocks of length 3, then all of them are palindromic. However, the first one equals 010 and it starts
in zero, hence the assumption u3 ≥ 9 of Theorem 27 is not met.

Example 21. Consider b = 10. The number 6633442277556633 is an antipalindromic number both in
base 10 and 100.
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Chapter 2

Description of the application

Both the Visual Studio solution and the standalone application can be found at

https://github.com/Kruml3/Antipalindromic-numbers

2.1 Source code

The application that is a part of this project was created using Microsoft Visual Studio 2019 with the
source code written in C#. The main source code file consists of a major function antipalindromy, where
most of the business logic is described, and a few auxiliary functions simplifying calculations and writing
the result to the output. More precisely, there are auxiliary functions fulfilling the following tasks:

• Determining whether a number is palindromic or antipalindromic in a given base.

• Calculating powers.

• Passing a text to a textbox or to a file.

The function antipalindromy has a special mode for each of the nine selectable tasks. The first mode
is only used to show palindromic and antipalindromic numbers in a selected base using the previously
mentioned auxiliary functions. That can also be applied to the second mode showing palindromic primes
in a given base. The mode for antipalindromic primes in base 3 is the most complex one as the algo-
rithm is swift and can be easily used for numbers exceeding 1015. For each possible expansion length,
the function first creates an array of gap lengths between each two antipalindromic numbers using a
formula that was derived in Theorem 14. Then, the antipalindromic numbers themselves are calculated.
Finally, these numbers are tested for primality and, possibly, passed on to the output. The two modes
for multi-base antipalindromic numbers, again, use a combination of the auxiliary functions. Sums of
three antipalindromic numbers are computed in the following two modes. An internal resource is used
here, containing the information about gap lengths, so as not to calculate them each time. The mode
for antipalindromic powers only uses the auxiliary functions. The last mode only recursively calls this
function in the previous mode while altering the parameters with each call.

The application also offers the user different sets of parameters depending on the selected mode and
checks if all inputs are valid. When one or more of the inputs are invalid or too high, the application
notifies the user with a simple error message.

2.2 Application from user perspective

The application first needs to be installed using the executable file setup.exe. After the installation
and a succesful launch, it presents its only window to the user, see Figure 2.1. The combo box lets the
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Figure 2.1: The application upon opening

user select one of the nine modes and lists a set of parameters needed to perform the computation. All
calculations are launched by pressing the Start button.

In the Spaces between palindromic and antipalindromic numbers mode, a desired base and a maxi-
mum value must be assigned. After that, all palindromic and antipalindromic numbers from the selected
range are shown, along with their respective expansions, expansion lengths and, in the end, the maximum
number of palindromic numbers between two antipalindromic numbers and vice-versa in the selected
range. (See Section 1.3 for details.) The Palindromic primes mode is used to calculate all palindromic
primes in the desired base and range and their expansions, and shows their number. The mode Antipalin-
dromic primes in base 3 only needs to be given a maximum value and shows all antipalindromic numbers
in base 3 less than the selected value, their expansions, and their number. (There is never more than one
antipalindromic prime in any other base, as proven in Theorems 6 and 7.) The Multi-base antipalin-
dromic numbers mode lets the user choose two bases and a maximum and presents all numbers from 1
to the maximum that are antipalindromic in both of these bases, and their expansion in each base. After
ticking the check box Three bases, an additional base can be selected and the application shows only the
numbers that are antipalindromic in all three bases at once, see Figure 2.2. Computer experiments using
this mode helped us obtain results in Section 1.6.

Figure 2.2: Application mode: Multi-base antipalindromic numbers

In the mode All bases in which a number is antipalindromic, the user inputs the desired number
range and after the launch, the application lists all bases in which each number from the desired range
has an antipalindromic expansion and, in the end, lists apart all numbers from the desired range that
only have one such base. The following mode, Sums of 3 antipalindromic numbers in base 3, again
offers the user the choice of a number range and shows one of the possible ways each number can be
expressed as a sum of three antipalindromic numbers in base 3. If the number cannot be expressed as
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such, the application only shows the message ’CANNOT BE A SUM OF THREE ANTIPALINDROMIC
NUMBERS IN BASE 3’ for this number. The mode Sums of 3 antipalindromic numbers in base 3 (only
for palindromic integers) is very similar. However, it only lists palindromic numbers from the selected
range. The eighth mode, Squares and higher powers, needs to be given a maximum base, an exponent,
and a maximum value. For each base, from 2 up to the selected one, the application lists all numbers from
the selected range that are antipalindromic and have an integer root for the required exponent, along with
their respective expansions and their number. Computer experiments using this mode helped us obtain
results in Section 1.5. The last mode, Squares and higher powers (only for bases nk, nk +1, nk +2), is used
to show the difference between “nk + 1” bases and the rest, in terms of the number of antipalindromic
k-th powers. These bases are likely to have many antipalindromic k-th powers, as stated in Theorem 20.
The user only inputs a desired exponent and a maximum value of the number. The optimal maximum
base is, in contrast with the previous mode, calculated by the application.

The user is allowed to tick the box File output, which opens up a dialogue window, letting the user
create an output file in a desired location. The output is then both presented on the screen and written to
the text file.
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Conclusion

This project carries out a thorough study of antipalindromic numbers and describes analogies and
differences between palindromic and antipalindromic numbers. It brings a number of new results and
open problems. Let us list them here:

• We determined the number of (anti)palindromic numbers of a certain length and the maximum and
minimum number of antipalindromic numbers between palindromic numbers and vice versa.

• We provided an explicit formula for the length of gaps between neighboring antipalindromic num-
bers.

• We found several classes of antipalindromic squares and higher powers.

• We described pairs of bases such that there is a number antipalindromic in both of these bases.
Moreover, we obtained the following interesting results concerning multi-base antipalindromic
numbers:

– For any composite number, there exist at least two bases such that this number is antipalin-
dromic in both of them.

– For every n ∈ N, there exist infinitely many numbers that are antipalindromic in at least n
bases.

– Let b ∈ N, b ≥ 2. Then there exists m ∈ N such that m is antipalindromic in base b and in at
least one more base less than m.

We created a user-friendly application for all the questions studied. Based on computer experiments, we
state the following conjectures and open problems:

1. Are there infinitely many antipalindromic primes in base 3? (We know there is never more than
one antipalindromic prime in any other base except for 3.) During an extended search, the first
637807 antipalindromic primes have been found.

2. We conjecture it is possible to express any integer number (except for 24, 37, 49, 117, and 421) as
the sum of three antipalindromic numbers in base 3. Our computer program shows that the answer
is positive up to 5 · 106.

3. We conjecture it is possible to express any palindromic number in base 3 as the sum of three
antipalindromic numbers in base 3. This conjecture follows evidently from the previous one, and
we verified it even for larger numbers, up to 108.

4. Is there a pair of bases such that it is impossible to find any number that has an antipalindromic
expansion in both of them? According to our computer experiments, suitable candidates seem to
be the bases 6 and 8. It is to be studied in the future.
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Appendices

Lists of antipalindromic numbers

In the first appendix, the first 31 antipalindromic numbers in base b = 2 (i.e., all antipalindromic
numbers with 10 or fewer digits), the first 53 antipalindromic numbers in base b = 3 (i.e., all antipalin-
dromic numbers with 7 or fewer digits), and the first 99 antipalindromic numbers in base b = 10 can be
found.

List of antipalindromic numbers in base b = 2

• Antipalindromic numbers with 2 digits: 2
(2)2 = 10.

• Antipalindromic numbers with 4 digits: 10, 12
(10)2 = 1010, (12)2 = 1100.

• Antipalindromic numbers with 6 digits: 38, 42, 52, 56
(38)2 = 100110, (42)2 = 101010, (52)2 = 110100, (56)2 = 111000.

• Antipalindromic numbers with 8 digits: 142, 150, 170, 178, 204, 212, 232, 240
(142)2 = 10001110, (150)2 = 10010110, (170)2 = 10101010, (178)2 = 10110010,
(204)2 = 11001100, (212)2 = 11010100, (232)2 = 11101000, (240)2 = 11110000.

• Antipalindromic numbers with 10 digits: 542, 558, 598, 614, 666, 682, 722, 738, 796, 812, 852,
868, 920, 936, 976, 992
(542)2 = 1000011110, (558)2 = 1000101110, (598)2 = 1001010110, (614)2 = 1001100110,
(666)2 = 1010011010, (682)2 = 1010101010, (722)2 = 1011010010, (738)2 = 1011100010,
(796)2 = 1100011100, (812)2 = 1100101100, (852)2 = 1101010100, (868)2 = 1101100100,
(920)2 = 1110011000, (936)2 = 1110101000, (976)2 = 1111010000, (992)2 = 1111100000.

List of antipalindromic numbers in base b = 3

• Antipalindromic numbers with 1 digit: 1
(1)3 = 1.

• Antipalindromic numbers with 2 digits: 4, 6
(4)3 = 11, (6)3 = 20.

• Antipalindromic numbers with 3 digits: 13, 21
(13)3 = 111, (21)3 = 210.

• Antipalindromic numbers with 4 digits: 34, 40, 46, 60, 66, 72
(34)3 = 1021, (40)3 = 1111, (46)3 = 1201, (60)3 = 2020, (66)3 = 2110, (72)3 = 2200.
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• Antipalindromic numbers with 5 digits: 97, 121, 145, 177, 201, 225
(97)3 = 10121, (121)3 = 11111, (145)3 = 12101,
(177)3 = 20120, (201)3 = 21110, (225)3 = 22100.

• Antipalindromic numbers with 6 digits: 268, 286, 304, 346, 364, 382, 424, 442, 460, 510, 528,
546, 588, 606, 624, 666, 684, 702
(268)3 = 100221, (286)3 = 101121, (304)3 = 102021,
(346)3 = 110211, (364)3 = 111111, (382)3 = 112011,
(424)3 = 120201, (442)3 = 121101, (460)3 = 122001,
(510)3 = 200220, (528)3 = 201120, (546)3 = 202020,
(588)3 = 210210, (606)3 = 211110, (624)3 = 212010,
(666)3 = 220200, (684)3 = 221100, (702)3 = 222000.

• Antipalindromic numbers with 7 digits: 781, 853, 925, 1021, 1093, 1165, 1261, 1333, 1405, 1509,
1581, 1653, 1749, 1821, 1893, 1989, 2061, 2133
(781)3 = 1001221, (853)3 = 1011121, (925)3 = 1021021,
(1021)3 = 1101211, (1093)3 = 1111111, (1165)3 = 1121011,
(1261)3 = 1201201, (1333)3 = 1211101, (1405)3 = 1221001,
(1509)3 = 2001220, (1581)3 = 2011120, (1653)3 = 2021020,
(1749)3 = 2101210, (1821)3 = 2111110, (1893)3 = 2121010,
(1989)3 = 2201200, (2061)3 = 2211100, (2133)3 = 2221000.

List of antipalindromic numbers in base b = 10

• Antipalindromic numbers with 2 digits: 18, 27, 36, 45, 54, 63, 72, 81, 90

• Antipalindromic numbers with 4 digits: 1098, 1188, 1278, 1368, 1458, 1548, 1638, 1728, 1818,
1908, 2097, 2187, 2277, 2367, 2457, 2547, 2637, 2727, 2817, 2907, 3096, 3186, 3276, 3366,
3456, 3546, 3636, 3726, 3816, 3906, 4095, 4185, 4275, 4365, 4455, 4635, 4725, 4815, 4905,
5094, 5184, 5274, 5364, 5454, 5634, 5724, 5814, 5904, 6093, 6183, 6273, 6363, 6453, 6633,
6723, 6813, 6903, 7092, 7182, 7272, 7362, 7452, 7632, 7722, 7812, 7902, 8091, 8181, 8271,
8361, 8451, 8631, 8721, 8811, 8901, 9090, 9180, 9270, 9360, 9450, 9540, 9630, 9720, 9810,
9900

Lists of multi-base antipalindromic numbers

In the second appendix, the first 17 numbers that are antipalindromic in bases b = 3 and c = 9 and
the first 7 numbers that are antipalindromic in bases b = 2, c = 4 and d = 16 can be found.

List of numbers antipalindromic in bases b = 3 and c = 9

• Antipalindromic numbers with 2/1 digits: 4
((4)3 = 11, (4)9 = 4)

• Antipalindromic numbers with 4/2 digits: 40, 72
((40)3 = 1111, (40)9 = 44), ((72)3 = 2200, (72)9 = 80)

• Antipalindromic numbers with 6/3 digits: 364, 684
((364)3 = 111111, (364)9 = 444), ((684)3 = 221100, (684)9 = 840)

• Antipalindromic numbers with 8/4 digits: 2992, 3280, 3586, 5904, 6192, 6480
((2992)3 = 11002211, (2992)9 = 4084), ((3280)3 = 11111111, (3280)9 = 4444),
((3586)3 = 11220011, (3586)9 = 4804), ((5904)3 = 22002200, (5904)9 = 8080),
((6192)3 = 22111100, (6192)9 = 8440), ((6480)3 = 22220000, (6480)9 = 8800).
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• Antipalindromic numbers with 10/5 digits: 26644, 29524, 32404, 5284, 55764, 58644
((26644)3 = 1100112211, (26644)9 = 40484),
((29524)3 = 1111111111, (29524)9 = 44444),
((32404)3 = 1122110011, (32404)9 = 48404),
((52884)3 = 2200112200, (52884)9 = 80480),
((55764)3 = 2211111100, (55764)9 = 84440),
((58644)3 = 2222110000, (58644)9 = 88400).

List of numbers antipalindromic in bases b = 2, c = 4, and d = 16

• Antipalindromic numbers with 8/4/2 digits: 240
((240)2 = 11110000, (240)4 = 3300, (240)16 = 15 0)

• Antipalindromic numbers with 16/8/4 digits: 61680, 65280
((61680)2 = 1111000011110000, (65280)4 = 33003300, (61680)16 = 15 0 15 0),
((65280)2 = 1111111100000000, (65280)4 = 33330000, (65280)16 = 15 15 0 0),

• Antipalindromic numbers with 24/12/6 digits: 15732720, 15790320,
16715520, 16773120
((15732720)2 = 111100000000111111110000, (15732720)4 = 330000333300,
(15732720)16 = 15 0 0 15 15 0),
((15790320)2 = 111100001111000011110000, (15790320)4 = 330033003300,
(15790320)16 = 15 0 15 0 15 0),
((16715520)2 = 111111110000111100000000, (16715520)4 = 333300330000,
(16715520)16 = 15 15 0 15 0 0),
((16773120)2 = 111111111111000000000000, (16773120)4 = 333333000000,
(16773120)16 = 15 15 15 0 0 0).

Lists of antipalindromic squares

In the third appendix, the first 3 numbers that are squares and antipalindromic in base b = 2, the first
10 numbers that are squares and antipalindromic in base b = 3, and the first 10 numbers that are squares
and antipalindromic in base b = 10 can be found. The following square in base b = 2 must be greater
than 1017.

List of antipalindromic squares in base b = 2

• Antipalindromic squares in base b = 2: 13924, 56644, 16160400

(13924)2 = 11011001100100, (56644)2 = 1101110101000100,
(16160400)2 = 111101101001011010010000.

List of antipalindromic squares in base b = 3

• Antipalindromic squares in base b = 3: 1, 4, 121, 225, 2500, 302500, 606841, 73427761,
5993701561, 6453390889

(1)3 = 1, (4)3 = 11, (121)3 = 11111, (225)3 = 22100, (2500)3 = 10102121,
(302500)3 = 120100221201, (606841)3 = 1010211102121, (73427761)3 = 12010011111221201,
(5993701561)3 = 120110201012120211201, (6453390889)3 = 121122202012020001101
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List of antipalindromic squares in base b = 10

• Antipalindromic squares in base b = 10: 36, 81, 5184, 367236, 3636813636, 8911548801,
388186318116, 479355446025, 531720972864, 811604593881

Lists of antipalindromic primes

In the fourth appendix, the first 100 antipalindromic primes in base b = 3 can be found. For their
expansions in base b = 3, see Table 2.1.

List of antipalindromic primes in base b = 3

• Antipalindromic primes in base b = 3: 13, 97, 853, 1021, 1093, 7873, 8161, 8377, 9337, 12241,
62989, 63853, 66733, 74797, 79861, 81373, 82021, 84181, 86413, 91381, 92317, 64477, 95773,
98893, 100189, 101701, 111997, 114157, 534841, 552553, 556441, 560977, 578689, 580633,
591937, 600361, 631249, 637729, 648097, 652921, 663937, 677113, 677113, 681001, 685537,
687481, 698713, 703249, 738121, 742657, 751297, 769081, 795217, 797161, 812281, 814873,
816817, 825241, 84101, 849721, 854257, 873913, 897553, 902089, 913321, 917209, 948169,
954649, 993961, 998497, 1009153, 1022113, 1024921, 1028809, 4832056, 4857973, 4936381,
4944157, 4964461, 5029261, 5225821, 5259517, 5310061, 5397181, 5259517, 5310061, 5397181,
5422453, 5436709, 5456149, 5487253, 5515333, 5534773, 5625493, 5633269, 5673013, 5731981,
5757253, 5790949, 5816221, 5909173, 5968141, 5973973
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Prime number Expansion Prime number Expansion
13 111 751297 1102011120211
97 10121 769081 1110001222111
853 1011121 795217 1111101211111

1021 1101211 797161 1111111111111
1093 1111111 812281 1112021020111
7873 101210121 814873 1112101210111
8161 102012021 816817 1112111110111
8377 102111021 825241 1112221000111
9337 110210211 841081 1120201202011

12241 121210101 849721 1121011121011
62989 10012101221 854257 1121101211011
63853 10020120221 873913 1122101210011
66733 10101112121 897553 1200121012201
74797 10210121021 902089 1200211102201
79861 11001112211 913321 1201101211201
81373 11010121211 917209 1201121011201
82021 11011111211 948169 1210011122101
84181 11021110211 954649 1210111112101
86413 11101112111 993961 1212111110101
91381 11122100111 998497 1212201200101
92317 11200122011 1009153 1220021022001
94477 11210121011 1022113 1220221002001
95773 11212101011 1024921 1221001221001
98893 12000122201 1028809 1221021021001
100189 12002102201 4832053 100002111022221
101701 12011111201 4857973 100010210212221
111997 12200122001 4936381 100021210102221
114157 12210121001 4944157 100022012002221
534841 1000011122221 4964461 100100012221221
552553 1001001221221 5029261 100110111211221
556441 1001021021221 5225821 100211111110221
560977 1001111111221 5259517 100220012200221
578689 1002101210221 5310061 100222210000221
580633 1002111110221 5397181 101011012112121
591937 1010001222121 5422453 101012111012121
600361 1010111112121 5436709 101020012202121
631249 1012001220121 5456149 101021012102121
637729 1012101210121 5487253 101022210002121
648097 1012221000121 5515333 101101012121121
652921 1020011122021 5534773 101102012021121
663937 1020201202021 5625493 101120210201121
672577 1021011121021 5633269 101121012101121
677113 1021101211021 5673013 101200012220121
681001 1021121011021 5731981 101210012210121
685537 1021211101021 5757253 101211111110121
687481 1021221001021 5790949 101220012200121
698713 1022111110021 5816221 101221111100121
703249 1022201200021 5909173 102010012212021
738121 1101111111211 5968141 102020012202021
742657 1101201201211 5973973 102020111202021

Table 2.1: Prime antipalindromic numbers and their expansions in base b = 3
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