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Abstrakt: Hlavńım cı́ılem tohoto projektu je studium vlastnost́ı pozičńıho

numeračńıho sytému, jehož báze je posloupnost splňuj́ıćı rekurenci Gn =

2Gn−1 +Gn−2. Zaj́ımá nás předevš́ım funkce R(n) udávaj́ıćı počet reprezen-

taćı č́ısla n ve studovaném systému. Popisujeme algoritmus nalezeńı hod-

noty R(n) pro dané n. Na základě výpočetńıch výsledk̊u uvád́ıme několik

hypotéz/pozorováńı o chováńı funce R(n) a o symetríıch jej́ıho grafu.
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Title: Representation of integers in a linear recurrent system

Author: Ramina Khusnutdinova

Abstract: The main aim of this project is to study the properties of the posi-

tional numeration system whose base is a sequence satisfying the recurrence

Gn = 2Gn−1+Gn−2. We are mainly interested in the function R(n) indicating

the number of representations of the number n in the studied system. There

is a description of an algorithm for finding the value of R(n) for a given n.

Based on the computational results, several hypotheses/observations about

behaviour of the function R(n) and about the symmetries of its graph are

presented.
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Introduction

There are various types of numeration systems, i.e. systems used for repre-

senting numbers. Each system has its own field where it can be used. The

decimal system, for example, is commonly used in ordinary life. The binary

system is a base principle of all computers. The heximal and the hexadeci-

mal systems are used for coding as well, however, all these systems are based

on the main idea of being positional. Numbers in such numeration systems

are represented by the powers of one natural number b > 2, which is called

the base. A system being positional means that the position of a coefficient

in the representation of a number is important – it determines which power

of the base is multiplied by this coefficient. Nevertheless, there are systems,

which are not based on this principle. Roman numerals, for example, are not

the positional ones, as position of a symbol in the representation bears no

relation to its value – the value of each symbol is fixed.

Some systems are even more complicated: the Fibonacci numeration system

is one of them. Even though this system is close to the binary system and it

is positional, numbers in this system can have more than one representation.

Number redundancy (ability to have more than one representation) may be

very quaint. Avizienis [1], for instance, used a redundant variant of the

decimal system to construct an algorithm for parallel addition.

As the best known redundant system, the Fibonacci linear recurrent system

is the one which is well-studied, but there are some variations of it, which are
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still unresearched. One of these systems, which we study here, is so-called

Raminacci linear recurrent system. In this project we investigate and present

properties and features of this system.

The study is divided into four main chapters: a brief description of the

most common numeration systems (1), an acquaintance with the Raminacci

numeration system and the Greedy algorithm (2), methods of finding the

total number of representations R(n) including the C++ program and results

(3), and observations about the symmetry of the graph of R(n) (4).

10



Chapter 1

Numeration systems

1.1 Common positional numeration systems

Every number can be represented using different systems which are called

numeration systems. The numeration system is a technique to represent

numbers in various ways for different purposes. The decimal system, for

example, is the best known and the most used one. Every number X ∈ N in

the decimal system is represented by the sum:

X =
k∑

i=1

αi10i, (1.1)

for some k ∈ N, αi ∈ {0, . . . , 9} are called coefficients, and 10 is the base of

this system. Binary and hexadecimal numeration systems are the next most

common. There are two differences from the decimal system, namely the

base and the set of coefficients. In the binary system, X ∈ N is represented

as

X =
k∑

i=1

αi2
i, (1.2)
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where αi ∈ {0, 1} and the base is 2. Similarly, X in the hexadecimal system

is represented

X =
k∑

i=1

αi16i, (1.3)

where αi ∈ {0, . . . , 15} and the base is 16.

Remark. Representations in such numeration systems are written with coeffi-

cients of the sum only, not using the whole sum. For example, number 1024,

as it is normally used, is a representation of number 1024 in the decimal

system:

4× 100 + 2× 101 + 0× 102 + 1× 103 = 4 + 20 + 0 + 1000 = 1024.

Similarly, 1101011 in the binary system represents number

1× 20 + 1× 21 + 0× 22 + 1× 23 + 0× 24 + 1× 25 + 1× 26 =

1 + 2 + 0 + 8 + 0 + 32 + 64 = 107.

We will use notation (X)k for the representation of X in the numeration

system with the base k. For example, (107)2 = 1101011.

Remark. There is only one representation for each number in such numeration

systems due to the natural number base.

1.2 More exotic numeration systems

All three numeration systems mentioned in the previous section have the

same type of base {Bi : i ≥ 0}, where B ∈ N, B ≥ 2. Not only powers of a

natural number can be used as a base of the numeration system. In general,

any strictly increasing sequence (Bi)i≥0 can be taken. Then a natural number
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X has the representation

X =
k∑

i=0

αiBi. (1.4)

The best known numeration system using such a base is the Fibonacci nu-

meration system based on the sequence of the Fibonacci numbers

Fn+2 = Fn+1 + Fn, (1.5)

where

F−1 = 1, F0 = 1. (1.6)

The Fibonacci numbers are used as a base (Bi) for this system. In this par-

ticular case αi ∈ {0, 1}. More information about the Fibonacci numeration

system may be found in [2, 3, 4].

Such a numeration system is an example of what is called a linear recurrent

system, i.e. of a system which base (Bi) is given by the linear recurrence.
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Chapter 2

Raminacci numeration system

2.1 Acquaitance with Raminacci system

This bachelor project deals with the linear recurrent system with the base

(Gi)i≥0, where

Gi = 2Gi−1 +Gi−2, ∀i ≥ 2, (2.1)

and

G0 = 1, G1 = 1. (2.2)

First elements of Gi are given in Table 3.1:

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

1 1 3 7 17 41 99 239 577 1393

Table 2.1: First ten elements of the sequence (Gi)i≥0

Using the previous information from Chapter 1 about bases and coefficients,
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every X ∈ N in the Raminacci system is expressed as

X =
k∑

i=1

αiGi, (2.3)

for some k ∈ N.

As in the decimal numeration system, X is represented by the sequence

of coefficients of its representation. We write

(X)G = αkαk−1 · · ·α1. (2.4)

Concerning the set of digits, there is a known result [3] stating that the

coefficients are αi ∈ {0, . . . ,M} where

M = sup

{
Gi+1

Gi

∣∣∣∣ i ≥ 1

}
. (2.5)

For our numeration system, using (2.1) we get

Gi+1

Gi

=
2Gi +Gi−1

Gi

=
2 + Gi−1

Gi

1
, (2.6)

and thus

M = sup

{
2 +

Gi−1

Gi

∣∣∣∣ i ≥ 1

}
. (2.7)

Since Gi−1

Gi
< 1, it is obvious that supM = 2. Thus, the alphabet of the

Raminacci linear recurrent system consists of three numbers: A = {0, 1, 2}.

2.2 Greedy algorithm for Raminacci system

To find a representation of a number in the Raminacci linear recurrent system

an algorithm was created. The following steps show the so-called Greedy al-
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gorithm for finding a representation of a natural number X in the Raminacci

linear recurrent system, called greedy representation.

Algoritmus 1: Greedy representation in Raminacci system

input : An integer X ≥ 1

output: Representation (X)G = αk · · ·α1

1 Find k ∈ N such that Gk ≤ X < Gk+1

2 αk ←
⌊

X
Gk

⌋
3 rk ← X − αkGk

4 for i← k − 1 to 1 do

5 αi ←
⌊
ri+1

Gi

⌋
6 ri ← ri+1 − αiGi

7 end

To explain the principle of this algorithm in more detail number 90 will be

used as an example. In the first step two numbers closest to the X from

Raminacci numbers are found. For this particular number we get Gk =

41, Gk+1 = 99, where coefficient k = 5.

In the next step coefficient α5 is obtained as the result of integer division of

X by Gk. For number 90 α5 = 2. Next, the residue r5 is found, r5 = 8.

The rest of the coefficients are gradually calculated in the for cycle:

n αn rn

4 0 8

3 1 1

2 0 1

1 1 0
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After all the steps are done, number 90 can be rewritten as the sum

90 = 2× 41 + 1× 7 + 1× 1, (2.8)

and the greedy representation for this number is

(90)G = 20101. (2.9)

The next section explains how and why numbers in the Raminacci system

can have more than one representation.

2.3 Other representations

The basic difference of the Raminacci and other linear recurrent systems on

the one hand, from the numeration systems like decimal on the other hand

is the possibility of existence of more than one representation for the number

given. As an example the number from Section 2.2 can be taken. With a

close look at (2.8) we can notice that such a sum is not the only way to

represent this number. For example, another way is

90 = 41 + 2× 17 + 2× 7 + 1 (2.10)

and the representation for this is

(90)G = 12201. (2.11)

Both representations in (2.9) and (2.11) has the same numerical value and

represent the same number. If we compare them, we can notice that a block

of numbers ’201’ in (2.9) was replaced by ’122’ in (2.11). However, the

value of the representation did not change. This is due to the fact that the

base of our system fulfils (2.1). The following notation is introduced for the

representation of such cases.
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Let αkαk−1 · · ·α1 and βlβl−1 · · · β1 be two representations in the Raminacci

system. We write

αk · · ·α1 ≡G βl · · · β1 (2.12)

if
k∑

i=1

αiGi =
l∑

i=1

βiGi. (2.13)

For example, since 2G3 + 1G1 = 15 = 1G3 + 2G2 + 2G1 we write

201 ≡G 122. (2.14)

From that simple example we can say that due to the linear recurrence and

alphabet A = {0, 1, 2} the existence of other representations of a number

depends on special combinations of three consecutive digits, which will be

called blocks. For the Raminacci system there are four such blocks:

100 ≡G 021

101 ≡G 022

200 ≡G 121

201 ≡G 122.

(2.15)

The representation (2.9) can now be tested for all these four blocks and some

more representations can be found. Our representation has two blocks from

the list above: ’201’ and ’101’. If every combination of replacements of blocks

is used, we will get three more representations:

20101 ≡G 12201

20101 ≡G 20022

20101 ≡G 12122.

The representation found by the greedy algorithm – greedy representation –

has a prominent position among all representations of a given X ∈ N. It is
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the greatest one in the so-called radix order.

Definition 2.1. Let x = xn · · ·x1 and y = yn · · · y1 be two strings (sequences)

of symbols in a totally ordered alphabet. We say that x is bigger than y in

a radix order x >rad y if one of the following possibilities occurs:

� n > m, i.e. x is longer than y;

� n = m, and there is an index r ∈ N such that xr > yr and xi = yi for

every r < i ≤ n.

The radix order is very similar to the lexicographical order, i.e. alphabetical

order, which is used in dictionaries. These two orders coincide for strings of

the same lengths, but for the strings of different length they differ – in the

radix order the length of a string is more important.

Example. Let us have an alphabet A = {0, 1, 2} with a classical order 0 <

1 < 2. Then

21 <rad 102 <rad 110.

In the lexicographical order, the second inequality is the same, but 21 is

bigger than both of the strings of length three.

The radix order corresponds to the order of numbers’ representations by

value.

Theorem 2.2. Let (x)G = xn · · ·x1 be a greedy representation of a number

x ∈ N in the Raminacci numeration system. Then

1. xn 6= 0;

2. (x)G is greater in radix order than any representation of x.

Proof. 1. It follows from Algorithm 1;
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2. The greedy representation of x is the longest of all representations of x,

it comes from Algorithm 1: the most significant coefficient xn appears

from the division of x with the biggest possible element of the base. At

the same time, this digit is the biggest possible, since it corresponds to

the biggest multiple of Gn, which is smaller than x:

xn = max{k ∈ N | kGn < x}.

Let us have another representation of the number x and denote it as

(x)G = x̃m · · · x̃1.

Due to the previous considerations about coefficient xn, one of the

following possibilities occurs:

a) n > m;

b) n = m and xn > x̃n;

c) n = m and xn = x̃n;

In cases a) and b) it is obvious from the Definition 2.1 that

xn · · ·x1 >rad x̃m · · · x̃1.

In the case c) words xn · · ·x1 and x̃n · · · x̃1 have a common prefix (of

at least length 1). From both of the words, we remove the maximal

common prefix and receive words xl · · ·x1 and x̃l · · · x̃1, where l < n

and xl 6= x̃l.

Since the greedy algorithm in every step uses the biggest possible digit

(step 5 in Algorithm 1), xl > x̃l necessarily holds and

xn · · ·x1 >rad x̃m · · · x̃l.

20



It may seem quite easy to find the total number of representations. Since all

the changeable blocks are known from the greedy representation, the total

number of them may be easily found by the formula

N = 2n, (2.16)

where n is the number of changeable blocks in the greedy representation.

Unfortunately, such a method cannot be used. Let us take the number 800

to see the problem in more detail. Using the greedy algorithm we find the

representation for this number:

(800)G = 10201101. (2.17)

As can be seen above, the greedy representation has two changeable blocks:

’201’ and ’101’. Using the formula from (2.16) we can predict the total

number of representations, which will be N = 22 = 4. And here is the list of

these representations we got using this method:

10122101

10201022

10122022.

With a close look at the first and the last representations it can be noticed

that a new block ’101’ appears, which can be changed too, but which was not

predicted from the greedy representation. After a change we get two more

representations for the number 800:

02222101

02222022.

The total number of representations for the number 800 is 6, even though

the result which was given by the formula (2.16) was 4. It is clear now that
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representations can be created not only from the greedy one, but from each

other. For this reason, formula (2.16) can be used only as a lower estimate

on the number of representations of the given number.
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Chapter 3

Finding the number of

representations in Raminacci

system

3.1 Introduction to issue

As mentioned in the previous Chapter, every natural number may have more

than one representation in the Raminacci linear recurrent system. In this

Chapter we investigate the function R : N → N given by the following

definition.

Definition 3.1. Let X ∈ N. Then R(X) is the number of representations of

X in the Raminacci numeration system.

Using the greedy algorithm it is possible to find the first, greedy representa-

tion, but finding others is more complicated. Nevertheless, there is a way for

finding the number of representations using the information and representa-

tion properties we already have. This principle is used in the method called

Direct method.

23



3.2 Direct method

The direct method of finding more representations in the Raminacci system

is based on the greedy representation and four changeable blocks (2.15). The

goal is to find all the representations of the number given by replacing the

blocks (2.15) with their numerical equivalences. We have already seen that

new representations are generated not only from the greedy representation,

but from other representations, too.

To create a system which will help us to find other representations, a suitable

data structure should be found. The use of this structure would be the

preservation of intermediate results, i.e. the creation of the list of all generated

representations together with the information about all representations which

have been processed (used in the process). The set container from the

standard template library [6] turned out to be a suitable data structure for

this purpose.

Set is an associative container, which contains ordered unique objects. There

are situations when during the process of finding representations we can

generate a representation, which has already been found. The uniqueness of

elements in the set will manage this problem and will not allow including

an object, which already exists on the list, again.

Remark. Theorem 2.2 says that the greedy representation is maximal in

radix, but not in the lexicographical order. First of all, in the algorithm,

we generate the greedy representation, then we get every other representa-

tion by replacing changeable blocks in it. Even if we were to replace the first

block at the very beginning and get a shorter representation, we replace the

leading digit with 0. In the direct method, every representation we work with

is of the same length, and for strings of the same length, the lexicographical

and radix orders coincide.

The orderliness of the objects in the container is helpful as well: all the

representations are saved as string type, set<string> is then arranged
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lexicographically. This is advantageous, since the greedy representation is

lexicographically the biggest of all the representations of the given number.

With every adjustment on the representation according to (2.15), the new

appearing representation is lexicographically smaller, i.e. it is put into the

container above the currently processed representation.

The whole process of generating representations is possible to put into one

for cycle:

set<s t r i ng> m r ;

m r . i n s e r t ( greedy (N) ) ;

for ( set<s t r i ng > : : i t e r a t o r i = m r . rbeg in ( ) ;

i != m r . rend ( ) ; i++)

ana lyze ( m r , * i ) ;

where

� the greedy(N) function finds (and returns as string) the greedy rep-

resentation of the number N (see Algorithm 1);

� the analyze(set<string> m_r, string rep) goes through the rep-

resentation rep, and when it hits one of the blocks from (2.15), this

block is replaced with its numerical equivalent and this generated rep-

resentation is inserted into m_r (see Algorithm 2);
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Algoritmus 2: Process of blocks replacement

1 function analyze(set〈string〉 m r, string rep)

2 blocks ← {‘100’:‘021’, ‘101’:‘022’, ‘200’:‘121’, ‘201’:‘122’}
3 for i← 0 to rep.length()− 3 do

4 if rep[i,i+ 2] is in blocks.keys() then

5 string new r = rep

6 new r[i,i+ 2] ← blocks[rep[i,i+ 2]]

7 m r.insert(new r)

8 end

9 end

Since any representation generated using changeable blocks from (2.15) is

lexicographically smaller than the currently processed one, it is inserted into

m_r above the element pointed to by the iterator i.

The iterator i goes till the 1st element of m_r, therefore this new inserted

representation will be analyzed with time as well.

To explain the algorithm of finding more representations in more detail we

will continue using the number 90 as an example.

At the very first step the greedy representation of the number 90 from (2.9)

is taken into account: (90)G = 20101. From now t5t4t3t2t1 = 20101.

This greedy representation is inserted into m_r:

m_r: rend();

20101 ← i

Now, as shown above, we start working with t5t4t3t2t1 = 20101. We see a

block ’201’, which starts at the coefficient t5, and a block ’101’ starting at t3.

By replacing these two blocks using (2.15), we generate two representations:

12201 and 20022. After they are inserted into the m_r, we get:
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m_r: rend();

12201
20022
20101 ← i

There are no more changeable blocks in the greedy representation, so we

can move the iterator i to the next element of m_r: 20022. From now

t5t4t3t2t1 = 20022.

m_r: rend();

12201
20022 ← i
20101

There is a block ’200’ starting at t5. After this block is replaced by its

equivalent, we generate the representation 12122. This representation is new

(did not appear on the list before), so it can be inserted into m_r:

m_r: rend();

12122
12201
20022 ← i
20101

There are no more blocks in 20022 to change, so we move on to the next

representation: t5t4t3t2t1 = 12201.

The changeable block starts at t3. After the replacement, we generate the

representation 12122. However, the same representation has already been

generated and exists in the m_r. This representation will not be inserted

into the list again. Strictly speaking, we call the insert method of the set

container, but the method will not insert 12122 into m_r since it is already

there.

Moving on, there is only one representation left: 12122. It does not contain

any changeable blocks from (2.15), so it will stay as it is, which means we
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reached the end of the m_r.

In the end we found four representations of the number 90 in the Raminacci

system:

(90)G = 20101,

(90)G = 20022,

(90)G = 12201,

(90)G = 12122.

(3.1)

therefore R(90) = 4.

3.3 Results

During the use of the program for finding representations in the Raminacci

linear recurrent system, the first ten thousand numbers were tested. Table

3.1 shows the number of representations for each of the first 100 integers.
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n R(n) n R(n) n R(n) n R(n)

1 1 26 1 51 2 76 2
2 1 27 1 52 2 77 2
3 1 28 1 53 2 78 2
4 1 29 1 54 2 79 2
5 1 30 1 55 3 80 2
6 1 31 2 56 3 81 1
7 2 32 2 57 1 82 3
8 2 33 1 58 2 83 3
9 1 34 2 59 2 84 2
10 1 35 2 60 2 85 2
11 1 36 2 61 2 86 2
12 1 37 2 62 2 87 2
13 1 38 2 63 2 88 2
14 2 39 2 64 1 89 4
15 2 40 1 65 2 90 4
16 1 41 3 66 2 91 2
17 2 42 3 67 1 92 2
18 2 43 2 68 1 93 2
19 2 44 2 69 1 94 2
20 2 45 2 70 1 95 2
21 2 46 2 71 1 96 3
22 2 47 2 72 2 97 3
23 1 48 4 73 2 98 1
24 2 49 4 74 1 99 3
25 2 50 2 75 2 100 3

Table 3.1: First 100 integers and their number of representations

The graph in Figure 3.1 shows the results, where all the first 10,000 integers

and their numbers of representations were put together.
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3.4 Numbers with one representation

It may seem to be impossible to predict how many representations a num-

ber has in the Raminacci system. However, with a close look at the graph

it can noticed that some parts of it are symmetrical to one another. In

fact, this symmetry represents the opportunity for finding a system or cycle,

which can, for example, predict which numbers may have the same number

of representations. The numbers with one representation only are one of such

examples.

It was found that 110 numbers from the first 10,000 tested have only one

representation. The following table lists all of these numbers.

1 16 67 166 395 576 989 2372 2785 5740

2 23 68 167 402 815 996 2375 3362 5741

3 26 69 168 405 914 1013 2376 4755 5742

4 27 70 169 406 955 1054 2377 5332 5745

5 28 71 170 407 972 1153 2378 5571 5752

6 29 74 173 408 979 1392 2379 5670 5769

9 30 81 180 409 982 1969 2382 5711 5810

10 33 98 197 412 983 2208 2389 5728 5909

11 40 139 238 419 984 2307 2406 5735 6148

12 57 156 337 436 985 2348 2447 5739 6725

13 64 163 378 477 986 2365 2546 5739 8118

Table 3.2: Integers with one representation

Even though it seems that these numbers do not have anything in common,

they do share a strong connection with the Raminacci sequence. Moreover,

there is a certain pattern in the manifestation of the numbers with one rep-

resentation. The Raminacci sequence, however, is not the only one numbers
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with one representation share connection with. The sequence

1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, . . . (3.2)

obtained by concatenating the strings of raising and falling integers, i.e. of

strings (1, 2, . . . , n−1, n, n−1, . . . , 2, 1) for n > 1, is called the Smarandache

crescendo pyramidal sequence [5]. Let the sequence (3.2) be denoted as

(Si)i>1. The following observation shows how this sequence is connected with

the Raminacci one in more detail.

Observation 3.2. Let (URi)i>1 be the sequence of the natural numbers with

only one representation in the Raminacci numeration system. Then

UR1 = 1,

URi = URi−1 +GSi−1, ∀i ≥ 2.
(3.3)

Numbers in (URi) may be divided into pyramid cycles of odd length, cor-

responding to pyramid cycles in Si, always starting and ending with the

addition of G0 (to the previous element).

In (3.4) can be seen the first three cycles, namely

(UR1)

(UR2, UR3, UR4)

(UR5, UR6, UR7, UR8, UR9).

The example below shows these cycles creating pyramids in more detail with

the last added Gi.
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UR1 = 1 = +G0

UR2 = 2 = 1 +G0

UR3 = 3 = 2 +G1

UR4 = 4 = 3 +G0

UR5 = 5 = 4 +G0

UR6 = 6 = 5 +G1

UR7 = 9 = 6 +G2

UR8 = 10 = 9 +G1

UR9 = 11 = 10 +G0

(3.4)

These pyramid cycles from (3.4) represent a strong connection with the next

observation, creating a base for new following patterns.

Observation 3.3. Let URk+1, . . . , URk+2l−1 be a pyramid cycle in (URi).

Then

a) (URk+l)G = 1w, where w ∈ {0, 1, 2}∗,

b) ∀i ∈ {1, . . . , l − 1} |(URk+i)G| = |(URk+l)G| − 1,

c) (URk+2l−1)G = 1m for some m ∈ N.

To demonstrate these individual statements from Observation 3.3 the third

cycle in (3.4) will be used as example:

UR5 = 5, UR6 = 6, UR7 = 9, UR8 = 10, UR9 = 11.

It is said in a) that the element in the centre of a pyramid (corresponding

to the peak of the sequences’ Si part) has a representation in the Raminacci

numeration system beginning with the coefficient 1

(UR7)G = 102,
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which is, in accordance with b), longer than representations in the first half

of the pyramid

(UR5)G = 12,

(UR6)G = 20.

In c) it has been claimed that the last element of any pyramid has a repre-

sentation which consists of ones only

(UR9)G = 111.

3.5 Representations of Raminacci numbers

Not only the numbers with one representation have something in common.

Members of the Raminacci sequence themselves have their own system for

finding the numbers of representation. Using the following theorem, we can

easily find all the representations for these special numbers.

Theorem 3.4. Let Gi be an element of the base of the Raminacci linear

recurrent system. Then

R(Gi) =

⌈
i

2

⌉
.

Proof. Let i be an odd number, i.e. i = 2k + 1 for some k ∈ N. Then

(Gi)G = 10 · · · 0︸ ︷︷ ︸
2k zeros

We can generate other representations of Gi using the first rewriting rule
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given in (2.13).

10 · · · 0︸ ︷︷ ︸
2k zeros

≡G 0210 · · · 0︸ ︷︷ ︸
2(k−1) zeros

≡G 020210 · · · 0︸ ︷︷ ︸
2(k−2) zeros

≡G · · ·

≡G 02020 · · · 20︸ ︷︷ ︸
k−1 blocks 20

21.
(3.5)

In each step there is a unique rewritable block, thus there is no other repre-

sentation of Gi than those in (3.5). We did k steps in (3.5), therefore

R(Gi) = k + 1 =

⌊
i

2

⌋
+ 1 =

⌈
i

2

⌉
.

Let i be an even number, i.e. i = 2k for some k ∈ N. Then

(Gi)G = 10 · · · 0︸ ︷︷ ︸
2(k−1) zeros

0.

The proof follows analogically to the case of odd i.

10 · · · 0︸ ︷︷ ︸
2(k−1) zeros

0 ≡G 0210 · · · 0︸ ︷︷ ︸
2(k−2) zeros

0 ≡G 020210 · · · 0︸ ︷︷ ︸
2(k−3) zeros

0 ≡G · · ·

≡G 020 · · · 20︸ ︷︷ ︸
k−2 blocks 20

210.
(3.6)

In this case we did k − 1 steps in (3.6), therefore

R(Gi) = k =
i

2
=

⌈
i

2

⌉
.

As an example of the use of this theorem let us have a look at the number

G4 = 17. Index i = 4 is even, so R(17) = 4/2 = 2. To prove this in another

way the greedy algorithm and the direct method may be used. After applying

them for this particular number we see that there are, as expected, only two
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representations:

(17)G = 1000,

(17)G = 0210.

The same as with the number with the even index, the number G9 = 1393

will be taken. For this particular number R(1393) =
⌈
9
2

⌉
= 5. Once more we

see the correspondence with Theorem 3.4 as there are 5 representations in

the Raminacci system:

(1393)G = 100000000,

(1393)G = 021000000,

(1393)G = 020210000,

(1393)G = 020202100,

(1393)G = 020202021.
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Chapter 4

Symmetry of graph of R(n)

4.1 Types of symmetry

In this part of this project, we will have a closer look at the symmetry of the

graph in Figure 3.1. Some parts of it do repeat, rise to the peaks and fall,

creating symmetrical ’triangles’. However, this graph does not correspond to

one-type symmetry only.

The whole graph is composed of longer and longer centrally symmetrical

sections. There are two such types, which alternate:

� ’Acute’ peak section

– the maximum value appears two times only in the middle of the

section;

� ’Obtuse’ peak section

– the maximum value appears six times in the middle of the section,

moreover, it appears in other places of the section as well.
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We can say from the graph that new maximum values at first appear at the

acute sections, which are followed by obtuse ones with the same value of the

peak.

Let us have a look at examples of both types of symmetries.

As an example of the acute peak section let us take a section from n = 16 to

n = 81. For this particular part, the maximal number of representations of

a number is 4:

max
16 ≤ i ≤ 82

R(i) = 4. (4.1)

As previously mentioned, there are two numbers with the maximal number

of representations in the section. Such two numbers for this section are 48

and 49, both of them have four representations in the Raminacci system:

argmax
16 ≤ i ≤ 82

R(i) = {48, 49}. (4.2)

Analogically, one of the examples of the obtuse peak section is a section from

n = 82 to n = 155. It has the same maximal value as in (4.1). However,

since the peak in this type of symmetry does not only appear in the middle

of the section, the argmax part is slightly different:

argmax
16 ≤ i ≤ 82

R(i) = {89, 90, 106, 107, 113, 114,

center of the section︷ ︸︸ ︷
116, . . . , 121,

123, 124, 130, 131, 147, 148}.

(4.3)

During the study of symmetry, a few observations were made.

Observation 4.1. Let (n− k + 1, . . . , n, n+ 1, . . . , n+ k) be a symmetrical

section of the acute type of length 2k. Then

� R(n) = R(n+ 1) = 2l for some l ∈ N;
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� max
i < n

R(i) < 2l.

Observation 4.2. Let (n−k+ 1, . . . , n, n+ 1, . . . , n+k) be the symmetrical

section of the acute type and (m − l + 1, . . . ,m − 2,m − 1,m,m + 1,m +

+2,m+ 3, . . . ,m+ l) be the obtuse section, which immediately follows, then

R(n) = R(n+ 1) = R(m− 1) = · · · = R(m+ 3) = 2p for some p ∈ N.

To sum up, for any acute type section it is not possible to have more than

one peak, in which the maximum value appears twice. Since two types of

symmetry alternate, after any acute section there is the obtuse section, which

immediately follows it and has the same value of the peak as the section

before.
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Conclusion

In this project, we became acquainted with the Raminacci sequence. We also

became familiar with the way of calculating Raminacci numbers and with

using them to expand natural numbers into the Raminacci linear recurrent

system. For studying the features and properties of this system, a greedy

algorithm for finding the very first representation was created.

The properties of the Raminacci system gave us the possibility of having more

than one representation for some natural numbers. A suitable algorithm for

finding these representations was created as well. For faster calculations,

C++ program was created.

Together with multi-representation natural numbers, numbers with one rep-

resentation only were studied here. In this work, we represented the patterns

these numbers have between each other. The Raminacci numbers themselves

(and their number of representations) were examined here in detail.

The symmetry of the graph of R(n) was mentioned as well, and a few obser-

vations and features were presented.
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Raminacci program

The Raminacci program for finding representations of natural numbers may

be found under this link:

https://github.com/JaNeProgrammist/Raminacci

The program is easy to run and use. After the program starts running, it asks

the user to enter a natural number to convert it into the Raminacci system.

After an integer has been entered, the Raminacci sequence will appear, and

all representations for an entered number will be shown to the user. At the

end of the list, the total number of representations may be found.
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