
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 6, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Optimization of the Matching Criteria Between the ATLAS and AFP Detectors at CERN

 Student: Petr Dostál

 Supervisor: doc. Dr. André Sopczak

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The ATLAS Forward Proton (AFP) detector took large scale data in 2017 together with the ATLAS central
detector at CERN. The goal of this project is to optimize the matching requirement between the two
detectors.
The first task is to familiarize with the existing analysis software and the literature regarding two-photon
interactions. A software development plan should be created with the focus to improve the current basic
matching criteria. The uncertainties on the ATLAS central and AFP measurements should be taken into
account in the matching optimization. The performance increase of the optimized matching should be
compared with the performance of an existing simple matching criteria. The developed code should first be
tested on a small event sample, and then applied to the whole data-set which requires the use of an user
interface to grid computing. As a bonus, the method should also be tested on simulated data.

References

Will be provided by the supervisor.

Bachelor’s thesis

Optimization of the Matching Criteria
Between the ATLAS and AFP Detectors
at CERN

Petr Dostál

Department of Software Engineering
Supervisor: doc. Dr. André Sopczak

July 30, 2020

Acknowledgements

I am very thankful to my supervisor, doc. Dr André Sopczak, for the patience
he had with me and the opportunity to be a part of a real research. Also I
would like to thank my friends and my family for the continuous support in
my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on July 30, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Petr Dostál. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Dostál, Petr. Optimization of the Matching Criteria Between the ATLAS and
AFP Detectors at CERN. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2020.

Abstract

This thesis is a part of CERN’s ongoing research of the search for axion-like-
particle (ALP). It consists of a software to modify existing data to include
calculated uncertainties on photon and proton measurements and a software
that calculates the difference between corellated and uncorellated data. Also
included is a study on matching criteria for proton-proton interactions with
two detected photons. The study discusses the performance of three different
matching criteria regarding the kinematics of the di-photon system with at
least one detected proton. The created software fulfils all stated requirements,
including execution time requirement. The main discovery from the physics
point of view is that the interactions studied in the data are caused by pile-up
background, thus they are random interactions with no indication of a specific
physics process, which is consistent with previous simulations.

Keywords CERN, LHC, ATLAS, AFP, axion-like-particle, ROOT, data
analysis, matching criteria

vii

Abstrakt

Tato bakalářská práce je součástí výzkumu CERNu, který se snaží najít axion-
like-particle (ALP). Skládá se ze softwaru, který upravuje existující data tak,
aby obsahovala vypočítané odchylky (chyby) pro měření protonů i fotonů.
Také obsahuje studii přiřazovacích kritérií pro proton-proton interakce se
dvěmi detekovanými fotony. Studie pojednává výkon tří různých přiřazovacích
kritérií ohledně kinematiky dvoj-fotonového systému s alespoň jedním dete-
kovaným protonem. Vytvořený software splňuje všechny zadané požadavky,
včetně časové složitosti. Hlavním objevem práce z fyzikálního pohledu je zjiš-
tění, že pozorované interakce vznikají díky pile-up backgroundu, tedy se jedná
o náhodné interakce bez indikace fyzikálního procesu, což je konzistentní s
předchozími simulacemi.

Klíčová slova CERN, LHC, ATLAS, AFP, axion-like-particle, ROOT, ana-
lýza dat, přiřazovací kritéria

ix

Contents

Introduction 1

1 Physics framework 3
1.1 CERN . 3
1.2 The ATLAS experiment . 3
1.3 Proton-proton interaction and ALP Search 4
1.4 Matching . 7
1.5 Matching criteria . 8
1.6 Photon systematic uncertainties 8
1.7 Proton systematic uncertainties 9
1.8 Proton selection . 11
1.9 Matching background . 11

2 Software development 13
2.1 Functional and non-functional requirements 13
2.2 Analysis and design . 14

2.2.1 Development strategy 14
2.2.2 From raw data to NTuples 14
2.2.3 ROOT . 15
2.2.4 Lxplus . 15
2.2.5 Input structure . 16
2.2.6 Output structure . 17

2.3 Implementation . 17
2.3.1 Working with two independent TTrees 17
2.3.2 Shared resources . 18
2.3.3 Matching script . 19
2.3.4 Difference script . 21

2.4 Testing . 23
2.4.1 Unit testing . 23

xi

2.4.2 Time complexity testing 24
2.4.3 User acceptance testing 24

3 Results 27
3.1 Software performance . 27

3.1.1 Matching script . 27
3.1.2 Difference script . 27

3.2 Results of using the software 28
3.2.1 Initial data selection . 28
3.2.2 Statistical uncertainties 28
3.2.3 Number of matches . 29
3.2.4 Random matches (pile-up background) 29
3.2.5 Matching efficiencies . 30

Conclusions 33

Bibliography 35

A Acronyms 39

B Contents of enclosed SD card 41

xii

List of Figures

1.1 The LHC experiments and the preaccelerators. 4
1.2 Computer generated image of the whole ATLAS detector. 5
1.3 ATLAS central and AFP detectors. 5
1.4 Feynman diagram illustrating light-by-light scattering mediated by

an ALP (a). 6
1.5 Relative proton uncertainties that are taken into account with their

quadrature sum (total proton ξ uncertainty). 10

2.1 An example window of ROOT’s TBrowser GUI. 16
2.2 Class diagram describing class Photon. 23

3.1 Relative ∆ξ uncertainty coming from signal simulation for side A
(left) and side C (right). 29

3.2 Di-photon invariant mass of the matched events on sides A and C
(at the same time) for 10% matching. 30

3.3 Di-photon invariant mass of the matched events on sides A and C
(at the same time) for 1σ matching. 31

3.4 Di-photon invariant mass of the matched events on sides A and C
(at the same time) for 2σ matching. 31

xiii

List of Tables

3.1 Number of matches across side A, side C, side A or side C, and
side A and side C for 10%, 1σ and 2σ matching (2017 data). . . . 30

3.2 Number of matches for “mixed” case (di-photon information taken
from event “n” and AFP information taken from event “n-1”). . . 32

3.3 Number of matches for “switched sides” case. 32
3.4 Comparison between the number of nominal matches and random

matches with uncertainty (2σ matching). 32
3.5 The number of matches and their percentages related to the total

number of di-photon events with at least one proton present (7377
events) for all three matching criteria. The table also lists the
percentages on the generator level for 10% matching. 32

xv

Introduction

In 2017, CERN’s ATLAS Central and ATLAS Forward Proton (AFP) detec-
tors took large scale data including proton-proton interactions data. Since
then, in 2019 ATLAS observed light-by-light (LbyL) scattering [1, 2, 3, 4] (a
rare interaction where two highly energetic photons produce another pair of
photons) by performing an analysis focused on lead-lead collisions with ex-
actly two photons present in the system. Light-by-light scattering could also
be observed in high energy proton-proton collisions, but the occurrence is very
rare.

However there is a theory of existence of an axion-like-particle (ALP) [5]
which could increase the occurrence rate over the expected amount coming
from the Standard Model (SM) of particle physics. This thesis is a part
of ongoing research that explores this ALP mediated LbyL scattering. The
specific investigation is the matching of kinematic properties of the di-photon
system with at least one proton detected.

There has already been an analysis [6] that serves as a proof of concept that
the AFP can be used together with ATLAS Central Detector data. On the
30th of July, 2020, the ATLAS Collaboration announced at the ICHEP 2020
conference the first results of matching AFP data and ATLAS Central data
using di-leptons [7]. As a former Experimental Nuclear and Particle Physics
student, the opportunity to be a part of this research has been great.

The main goal of this thesis is to create software that would modify existing
processed data to include systematic uncertainties and that would calculate
the difference between nominal matching and matching done with uncorre-
lated data. Also a secondary goal of the thesis is to analyze and optimize
the matching criteria in proton-proton interactions with exactly two outgoing
photons observed. This analysis will provide clarity to the randomness com-
ing from unwanted reactions to enhance the clarity of the signal coming from
LbyL scattering.

1

Introduction

Outline The thesis is organized into several chapters starting with the the-
oretical background and the physics needed for this thesis in Chapter 1.The
software development is discussed in Chapter 2 and the observed results, both
from software point of view and physics point of view, are discussed in Chap-
ter 3.

2

Chapter 1
Physics framework

This chapter starts with the introduction to CERN, The ATLAS Experiment
and the proton-proton interaction with ALP search The following sections
define the matching and the compared matching criteria. Next are the sections
that study the photon and proton systematic uncertainties. Lastly, the proton
selection and matching background are explained.

1.1 CERN
CERN [8], also known as the European Organization for Nuclear Research
is one of the most important contributors to particle research. The acronym
CERN (Conseil Européen pour la Recherche Nucléaire) is also used for the
largest particle physics laboratory in the world that is a part of the organiza-
tion. Another notable information is that CERN is the birthplace of World
Wide Web [9].

A very important part of the laboratory is the Large Hadron Collider
(LHC) [10, 11]. As of now it is the largest particle collider in the world. It
also holds the world record for the highest total collision energy at 13 TeV.
The LHC consists of four major experiments – the ATLAS experiment, the
ALICE experiment, the LHCb experiment and the CMS experiment. Each ex-
periment is situated at a different part of LHC and has its own set of detectors
(Figure 1.1).

1.2 The ATLAS experiment
A Toroidal LHC ApparatuS (ATLAS) is the largest experiment of LHC at
CERN [13, 14, 15]. It is also the biggest set of general purpose particle detec-
tors.

The ATLAS central detector (Figure 1.2) is a layered multipurpose particle
detector. The layers are designed to increase the spectrum of particles that

3

1. Physics framework

Figure 1.1: The LHC experiments and the preaccelerators. Source: [12]

can be identified. Each layer detects a specific region of pseudorapidity η of the
particles. The main layers are the inner detector, the calorimeters, the muon
spectrometer and the magnet system. Also a part of the ATLAS detector is
the ATLAS Forward Proton (AFP) detector.

The AFP [16] is a set of pixel sensors located at around 210 m on each
side of the beam from the interaction point (IP). The main goal is to detect
protons that lose a fraction of their energy during an interaction in the IP
(for example by photon emission). The internal structure are two stations,
referred to as NEAR and FAR stations (distance from IP ≈ 205 m and ≈
217 m, respectively). Each station consists of four 3D silicon pixel sensors
that measure the trajectory of the passing protons.

1.3 Proton-proton interaction and ALP Search
In theory, when the two very energetic protons get very close together, three
options can occur. Both of them remain intact, one of them remains intact
(the other one is destroyed) or neither of them remain intact (both protons
are destroyed). During standard proton-proton collisions the protons are de-
stroyed. In this research the detected protons are expected stay intact. If
they stay intact, the expectation is that during the interaction the protons
lose some of their energy, which alters their direction according to the energy

4

1.3. Proton-proton interaction and ALP Search

Figure 1.2: Computer generated image of the whole ATLAS detector.
Source: [17]

Figure 1.3: ATLAS central and AFP detectors. Q1–Q6 are magnets that
focus the beam, D1–D2 are dipoles that bend the beam. Source: [18]

lost.
The direction change is caused by a set of magnets that affects particles

with different electromagnetic fields differently. This electromagnetic field is
directly related to the energy of the particle, thus by extension the energy is
directly related to the path the protons take.

According to the law of conservation of energy the energy must be trans-
ferred or transformed. This analysis expects that during the interactions ex-
actly two photons are created from the energy lost by the protons. In case a
different amount of photons is detected in the central detector, the event is
filtered out. This allows to reduce the unwanted background in the search for
an axion-like-particle (ALP).

5

1. Physics framework

Figure 1.4: Feynman diagram illustrating light-by-light scattering mediated
by an ALP (a). Source: [18]

The Feynman diagram (Figure 1.4) illustrates that when the protons get
very close to each other, two photons are emitted. These photons fuse to create
an ALP that shortly after decays into a pair of photons. These photons could
be detected in the ATLAS central detector. The problem with the diagram
is that it is not self-explanatory. It can be compared to a state diagram
of particles present. Time flows from left side of the diagram to the right
side. In the beginning, on the left side, two protons exist. Next they nearly
collide and two photons are emitted. In the next step the photons collide and
fuse, creating the ALP particle. The ALP particle quickly decays into two
photons and in the final state two photons and two protons are in the system.
The diagram does not suggest the details the interaction between protons or
photons. In reality the protons fly against one another to achieve the electric
charge needed to create the two photons, even though it is not stated by the
diagram.

After the protons nearly collide and their direction is altered, there is a
possibility that the protons are detected by the AFP detector. The chance of
detection is determined by the amount of energy lost by the protons. The two
protons do not have to lose the same amount of energy during the interaction.
On the other hand, the ATLAS central detector detects all photons in the
system.

This thesis is focused on pairing the detected kinematic properties (their
energy) from the ATLAS central detector (detected photons) to the data from

6

1.4. Matching

the AFP (detected protons) to see if they match, which is called the matching.
The analysis does not include only measured data, it also includes simulated
data.

To obtain the simulated data a particle generator (in this case Super-
Chic3 [19]) is used to generate truth particles. Next, this generated data goes
through a simulation process to obtain the simulated data which models the
ATLAS detector. The simulation process is different for photons and pro-
tons. For photons, which are detected by ATLAS central detector, there is a
dedicated group that simulates the detector. The protons, detected by AFP
detector, do not have a dedicated group, but a tool called AFPFastSim exists
to obtain the simulated data for protons.

There are many measured variables by the detectors, in order to reduce
it there are so called “derivations”. There are numerous derivations, each
containing a different list of variables that suites the needs of the groups using
them. In this analysis, STDM2 (Standard Model 2) derivation is used. The
notable part about STDM2 is the inclusion of proton data measured by the
AFP detector.

1.4 Matching
Matching is the pairing between the kinematics between detected protons and
detected photons. To be precise, we are looking at relative proton energy
loss ξ. The definitions for ξAFP (protons) and ξγγ (photons) are different
(Equations 1.1, 1.2, respectively [18]). By definition both the ξAFP and ξγγ

values are in interval the ⟨0; 1⟩. The upper limit for ξγγ is a result of additional
constraints on mγγ and η coming from the law of conservation of energy.

ξAFP = 1 − E

Ebeam
(1.1)

ξγγ = mγγ · e±η

2Ebeam
(1.2)

A short explanation of the symbols used in Equations 1.1, 1.2:

• E – Energy of the proton measured by the AFP detector

• mγγ – Di-photon invariant mass

• η – Di-photon pseudorapidity, defined as η = − ln tan θ
2 , where θ is the

polar angle in relation to the beam

• Ebeam – Energy of the beam (a constant value, 6.5 TeV) [20]

Since there are two independent sides of the beam (side A, side C), the
matching is done for both sides separately. Without the loss of generality it

7

1. Physics framework

has been decided that in Equation 1.2, side A corresponds to positive η, side
C corresponds to negative η.

1.5 Matching criteria
It is natural that there cannot be an expectation that the compared energy
loss would be exactly the same for protons and photons. This is where the
matching criteria comes in. The goal is to get the highest possible amount of
matches with the lowest possible amount of false positives. The optimization
of the matching criteria refers to the inclusion of systematic uncertainties on
the photon and proton measurements.

The first matching criteria, also later referred to as standard (Equation 1.3),
is a naive approximation that the relative difference of energy losses should
be less than 10%. ∆ξ is defined as the absolute difference between proton and
photon ξ (∆ξ = ξAFP − ξγγ). Left side of the equation is divided by ξγγ , it is
more precise when compared to ξAFP.

|∆ξ|
ξγγ

< 10% (1.3)

The next matching criteria, labeled as 1σ matching (Equation 1.4), takes
into account uncertainties on the measurements. σξAFP , σξγγ represent the
absolute uncertainty on ξAFP and ξγγ , respectively. From the theoretical point
of view the values should be the same, by extension the difference between the
detected numbers should be lower than the uncertainties on the measurements.

∆ξ < σξAFP + σξγγ (1.4)

There is one more matching criteria that will be taken into account, labeled
as 2σ matching (Equation 1.5). It is included because of the fact that in reality
there will be some energy lost from other sources than the interaction itself.
But the amount of energy lost this way should be fractional compared to
the total energy. To account for this additional energy loss, the threshold
for match when taking uncertainties into account is doubled. By definition,
≈ 68.3% of the matches should be detected by 1σ constraint and ≈ 95.5% of
the matches by the 2σ constraint.

∆ξ < 2
(
σξAFP + σξγγ

)
(1.5)

1.6 Photon systematic uncertainties
The determination process of σξγγ is to partially derive Equation 1.2 by its
variables (in this case mγγ and η). It is known that the angle is measured very
precisely (the uncertainty on the angle is very small), we can approximate that

8

1.7. Proton systematic uncertainties

there is no uncertainty on the angle. With this assumption we are left with
Equation 1.6.

σξγγ = σmγγ · e±η

2Ebeam
(1.6)

In order to determine σmγγ (the absolute uncertainty on di-photon invari-
ant mass), because mγγ is calculated and not measured, we must mention how
it is calculated (Equation 1.7).

mγγ =
√

2E1E2(1 − cos α) (1.7)

In this case α is the angle between the two photons. And again it is
measured very precisely so we neglect the uncertainty on it. Again we par-
tially derive by variables and add the results in a quadrature sum in order to
determine the equation for σmγγ (Equation 1.8).

σmγγ = mγγ

2

√(
σE1

E1

)2
+

(
σE2

E2

)2
= mγγ

2
·
(

σE1

E1
⊕ σE2

E2

)
(1.8)

There has already been a study that mentions photon energy resolution
uncertainty [21], the Equation 1.9 is taken directly from it.

σ

E
= a√

E
⊕ b

E
⊕ c (1.9)

In Equation 1.9, the listed variables are:

• a – Sampling term - 9 − 10% (GeV) (10% is used)

• b – Noise term - 350 cosh η (MeV)

• c – Constant term - 0.7%

• E – Measured energy of the photon

• η – Single photon pseudorapidity

1.7 Proton systematic uncertainties
The already mentioned di-lepton study [6] includes a chapter with AFP sys-
tematic uncertainties.

Because proton energy is measured using the trajectory of the protons, the
uncertainties are related to the position on the x-axis on the detector (with
the exception of beam optics).

• Global alignment – 300 µm

• Beam optics – 50 µrad

9

1. Physics framework

Figure 1.5: Relative proton uncertainties that are taken into account with
their quadrature sum (total proton ξ uncertainty).

• Local alignment – 20 µm

• Proton transportation – 2%

In order to calculate the σξAFP there is an approximation that calculates ξ
from the x-axis position on the detector (Equation 1.10) [22]. σx is defined as
the uncertainty for the x-axis position. For the beam optics and the proton
transportation the σx(ξ) is shown in Equations 1.11, 1.12, respectively [6].

σξ = σx

−119 − 328ξ
(1.10)

σxbeam = −0.02 + 15.38ξ (1.11)

σxtransport = 0.00508 + 1.104ξ + 2.834ξ2 (1.12)

The total uncertainty σξAFP is calculated by quadrature sum of all its parts
(Equation 1.13, Figure 1.5).

σξAFP = σξglobal ⊕ σξbeam ⊕ σξlocal ⊕ σξtransport (1.13)

10

1.8. Proton selection

1.8 Proton selection

There is a requirement for the analyzed events to have exactly two photons.
For protons there is a requirement that at least one proton has to be detected
in the system. This leads to a large amount of events where there might not
be a single proton or there might be more than one proton detected on either
side of the beam. More than one proton on one side is possible, because the
interactions are not one proton to one proton, but a bunch of protons into a
bunch of protons.

The case of zero protons on either side is solved by not-matching the side
to a photon. But where there are more protons only one can be chosen as a
candidate to be matched.

There are 3 main strategies – choosing the proton with the lowest measured
energy, the highest measured energy or the proton, which has the most similar
energy loss to the compared photon. Early in this analysis the proton with
highest energy loss was chosen, but since then it was found out that the
highest efficiency is when a proton with the closest energy loss to the photon
was selected.

1.9 Matching background

The matching background is the randomness of the matching. Because the
events are uncorrelated, there are two main strategies – one is to take proton
data from a different event and try to match it to the photons from current
event (later referred to as “mixed case”), the other is to switch sides when
matching (matching side A proton to side C photon and vice versa, later
referred to as “switched sides”).

After matching, the similarities or differences between the number of
matches of nominal matching and mixed matching can serve as a background
model. This model shows how many matches from the number of nominal
matches are a random coincidence.

In order to eliminate any unwanted correlation the proton selection must
be done right before matching (after mixing events or switching sides).

For the mixed case there is a statistics that can be easily made. The
results should, by definition, be similar when taking proton information from
event n − 1, n − 2, . . .The number of matches in these can be fitted using a
Gaussian function. The width of the Gaussian fit results in the uncertainty
on the number of random matches.

In the implementation the statistics is not done using the number of
matches, but using the difference between the number of nominal matches
and the number of mixed matches. The width of the Gaussian is still the
same in both cases.

11

1. Physics framework

At this time, the number of matches for all three matching criteria (Ta-
ble 3.1) was known. As a result, the matching background was analyzed only
for 2σ matching.

12

Chapter 2
Software development

In this chapter the development process is discussed. First the functional and
non-functional requirements for the software are stated. This is followed by
the analysis and design of the software. It follows a section with a discussion
on the implementation. And lastly the software results are discussed.

2.1 Functional and non-functional requirements

The functional requirements are the correct calculation of systematic uncer-
tainties for detected protons and photons, discussed in sections 1.6, 1.7. An-
other functional requirement is to have the possibility to change the proton se-
lection (discussed in section 1.8) from “standard” to “mixed” case or “switched
sides” case. An alternative option is to include the results of all three pro-
ton selections inside one ROOT file. Lastly another functional requirement is
to calculate the difference of numbers of matches between “standard” proton
selection and “mixed” proton selection for n − 1, . . . , n − 1000.

The software should be split into two ROOT scripts, one calculating the
uncertainties, the other to calculate the difference of numbers of matches. The
most important non-functional requirement is that the software is to be run
on CERN’s lxplus servers. As a side note, it would be a plus if the code could
be run on CERN’s distributed grid network or locally. Another requirement
is that the output file is a ROOT file. Also it is important that the software
(or part of the software) that calculates the difference between the number
of matches between “standard” and “mixed” proton selection does not exceed
more than typically two hours, which relates to around 6 seconds per one
iteration (measured on lxplus servers). One iteration is defined as calculating
one difference between “standard” and “mixed” case. Because this software is
a part of an ongoing research, it is important that the code is easily modifiable
in case any parameter or calculations changes.

13

2. Software development

2.2 Analysis and design
In this section first the development strategy is discussed. It follows a short
analysis on how the data is measured and processed further. Next, ROOT,
the software used, and lxplus server cluster are briefly described. Lastly, the
input and output file structures are analysed.

2.2.1 Development strategy
The complexity of the physics behind this software resulted in my decision
to choose Iterative development over Waterfall or Agile. The main advan-
tage of Iterative development is that the software is developed in incremental
iterations where each iteration mainly includes additional functionality. In
contrast, when using Agile development strategy, there are regular iterations
that contain all functionality. And lastly the Waterfall strategy does not use
iterations and is slow to adopt changes.

To be more specific about the reasoning behind the decision, I ruled out
the Waterfall method, because during a research like this there can be new
observations that result in a need to change parts of the code and the slow
adoption of changes of the Waterfall method is not suitable for a project like
this. The decision between Agile and Iterative was done purely according to
personal preference. As I personally have very little experience with Agile,
Iterative felt like the better choice.

2.2.2 From raw data to NTuples
Every time there are interactions in LHC, to identify the date and time of
the interaction period, an unique identifier, RunNumber, is used. Each Run
is split into one minute long blocks, referred to as LumiBlock. For each in-
teraction the measured data is separated and to identify each interaction an
identifier EventNumber is used. There can be multiple events with the same
EventNumber across different RunNumbers.

First the measured data is saved into so called containers. The containers
are collections of related variables, for example the photon container contains
all measured variables related to photons. To filter the containers that are
relevant for different groups, so called derivations are used. In the case of
this research the used derivation is STDM2 (Standard model 2). The notable
containers that STDM2 contains are the photon and AFP containers.

All the data is saved on the grid. But in order for scientists to work more
efficiently, the data can be split into smaller fragments that contain a small
fraction of the data can be transferred to lxplus servers or downloaded to local
machines. These fragments are typically in the range of hundred megabytes
to hundred gigabytes. One of the main purposes for these smaller fragments
is to test software on smaller data compared to the whole data sets on the

14

2.2. Analysis and design

grid. The execution time of software that processes the data for the whole
data sets on the grid can typically be a few days.

The processing software for this research is the Group NTuple Production
code. Its input is the STDM2 derivation. It can process both real and simu-
lated data. The main task of the code is to filter events in which were detected
exactly two photons. Another important filtering is done at this stage as well.
It can sometimes happen that some detectors are malfunctioning. To remove
these cases a Good Run List (GRL) is applied and only the RunNumbers in
the GRL are processed. Each research group uses a different one since each
group needs data from different detectors. In order to access the data in the
containers it uses a so called AFPToolbox framework.

2.2.3 ROOT
ROOT [23, 24] is a multi-platform software developed by CERN with intended
use of big-data storage, analysis and visualisation. The main applications are
plotting and storing complex or high amounts of data.

The storage files are self-descriptive and compressed binary files. One of
the main benefits of ROOT’s storage solution is that one file can be split
into several smaller files that are chained and accessed as a single object.an A
simple file containing several entries for variables calso be called a ntuple.

The main way to control ROOT is using a command line interface (CLI).
By default it uses a C++ interpreter Cling, but there is also an option to have
an interactive session using a Python interpreter. This allows the creation of
very complex scripts with custom classes and structures.

Creating scripts and interpreting them using the CLI is not the only way to
interact with ROOT files. Because interpreting scripts can be time ineffective,
there is also an option to compile the scripts or compile them as separate
applications [25].

For visualization there is also a simple graphic user interface (GUI). The
basic window is the TBrowser (Figure 2.1), which serves as a tool to view the
structure of a ROOT file. It also includes a part with TCanvas, a canvas that
is used for plotting graphs.

Both the CLI and GUI include tools to modify the visualisation of data.
The visualised data can be also modified while visualising.

To keep plots and figures consistent, scripts are the best way to create
them. The ATLAS Experiment group has its own visual style that modifies
the font used, the style of lines, hides figure title by default, etc.

2.2.4 Lxplus
The software is to be run mainly on lxplus servers [26]. It is a cluster of Linux
machines running CERN CentOS 7 in 64-bit mode. It is a load balanced
cluster that is accessible by SSH. Each machine in the cluster is connected

15

2. Software development

Figure 2.1: An example window of ROOT’s TBrowser GUI.

to two file systems to share data, the AFS and EOS. Users have folders with
access on both file systems. AFS is a smaller, but faster file system while EOS
has bigger capacity, but is generally slower. Software on lxplus servers can be
run directly or using a job system HTCondor.

2.2.5 Input structure

The input file for the developed software is a ntuple created by the Group
NTuple Production code that was briefly discussed in the previous section.
The input structure is the same for both real and simulated data and both are
to be processed in the same way. The ntuple contains two TTrees, TreeProton
and TreePhoton. Inside them are TBranches, each representing a measured
variable.

There are three variables that are the same in both TTrees – RunNumber,
EventNumber and LumiBlock. It is important that in case of standard match-
ing these three variables have the same values for each event – that the code
processes protons and photons corresponding to the same event. The Group
NTuple Production code first checks if an event has exactly two photons. If the
event passes this check, the measured photon data is inserted into TreePhoton.
Failure to pass skips this event and the code processes the next event. After
this comes another important check, if at least one proton was detected by the
AFP detector. As with photons, if this check is passed, the measured variables
are written into the TreeProton. If not, nothing is written into TreeProton.
This implies that for every entry in the TreeProton there is an entry in the

16

2.3. Implementation

TreePhoton with the same RunNumber, EventNumber and LumiBlock.

2.2.6 Output structure
The output files are also ntuples. Because the scripts need to process only
the events that have exactly two photons detected and at least one proton
detected, there is no need for two separate and independent TTrees with
different amount of events. As I have decided to split the software into two
scripts, one calculating the uncertainties and one calculating the difference of
number of matches between different proton selections, the structures of the
resulting ntuples is different.

For the script that calculates the uncertainties the ntuple contains a TTree,
AnalysisTree. Inside that tree are the identifying variables, RunNumber,
EventNumber and LumiBlock, but as a safe measure the variables are there
twice, once taken from the TreePhoton and once from TreeProton. In case
there are any doubts if the proton and photon data are from the same event
the variables can be compared. Also included are almost all photon and pro-
ton variables from the input file. Added were the calculated uncertainties for
both protons and photons and also variables showing the number of protons
detected in the whole system and in both AFP detectors.

The ntuple created by the script that calculates the difference of number
of matches between the different proton selections has a simpler structure. It
contains one TTree as the previous one, but only four variables – A, C, AorC,
AandC – each variable corresponding to match on side A, side C, side A or
side C, side A and side C of the AFP.

2.3 Implementation
In this section the implementation of the software is discussed. First a short
subsection about how I worked with the input files. Next the implementa-
tion of the resources shared by both scripts is given. It follows two sections,
discussing the implementation of the matching and difference scripts, respec-
tively.

2.3.1 Working with two independent TTrees
Because of the structure of the input file, both scripts were presented with a
difficulty of working with the data. Having the photon and proton data in two
separate TTrees is a problem, since the TTrees are independent on one another
and the scripts need to access data from both TTrees. Worth mentioning is
that the code needs to process only events that are in TreeProton, because
matching can be done only when at least one proton is detected.

One option would be to brute-force and for each event in TreeProton
iterate over events in TreePhoton until the RunNumber and EventNumbers are

17

2. Software development

the same. This method is very inefficient and thus not suitable, especially
when the input files can be very large, in realm of million events.

This problem can be solved using ROOT – there is an option to assign
primary and secondary index to a TTree by using method TTree:BuildIndex.
This method needs to be called only on TreePhoton. Another important
method is TTree:AddFriend. When iterating over entries in TreeProton by
using TTree:GetEntry, TTree:GetEntry is also called on friend TTrees, in
this case TreePhoton. Because the TreePhoton has indexes set, the entry
that is returned is the one with the same values in the index variables. By
doing this the RunNumber, EventNumber and LumiBlock variables are the same
inside both TTrees when iterating over TreeProton. This means that the data
inside TreeProton corresponds to the data in TreePhoton.

This method cannot be used with “mixed” proton selection, because val-
ues of RunNumber and EventNumber variables are different for protons and
photons.

auto PhotonTree = (TTree*) Data->Get("TreePhoton");
auto ProtonTree = (TTree*) Data->Get("TreeProton");
PhotonTree ->BuildIndex("RunNumber", "EventNumber");
ProtonTree ->AddFriend("TreePhoton");

2.3.2 Shared resources
In order to reduce the possibilities of errors coming from inattention, having
one file with functions needed by two both scripts is an option. Both scripts
need to calculate the uncertainties for protons and photons and both scripts
are doing the proton selection for which a function that minimizes the differ-
ence between photon and proton xi values is needed. The definitions of the
functions that are included in both scripts are shown in Listing 2.1.

Double_t quadratureSum (vector<Double_t > list);

Double_t calcPhotonSigmaE (Double_t & PhotonE, Double_t &
PhotonEta);

Double_t calcProtonSigmaXi (Double_t & ProtonXi);

Double_t calcDeltaXi (Double_t & ProtonXi , Double_t & PhotonXi);

Double_t minimizeDeltaXi (vector<Double_T > & Protons, Double_t &
PhotonXi);

Listing 2.1: Definitions of the functions in shared.cxx.

Function quadratureSum (Listing 2.2) was implemented using a vector as
a parameter, because functions calcPhotonSigmaE and calcProtonSigmaXi
need to calculate a quadrature sum of different number of values. Other
option to vector is to define the function twice, once for three doubles as
parameters (as used in calcPhotonSigmaE) and for four parameters (as used in

18

2.3. Implementation

calcProtonSigmaXi), but that would be writing two implementations instead
of one. Using a vector and an accumulator provides an option to calculate the
quadrature sum of any amount of numbers.

Double_t quadratureSum (vector<Double_t > list) {
Double_t acc = 0;
for (auto & i : list) {

acc += pow(i, 2);
}
return sqrt(acc);

}

Listing 2.2: Implementation of the function quadratureSum.

calcDeltaXi function is a very simple function that returns −1 in case
ProtonXi equals −1 and the difference between ProtonXi and PhotonXi oth-
erwise. Functions calcPhotonSigmaE and calcProtonSigmaXi are functions
that represent Equations 1.9, 1.13, respectively.

The last function, minimizeDeltaXi (Listing 2.3) takes as input a vector
of doubles representing the Xi values of detected protons and a Xi value of
the photon the protons are to be matched with, as discussed in Section 1.8.
The purpose of the function is to return the Xi value of a proton that is the
closest to a given photon Xi value. This is done using a brute-force method –
checking the difference of each photon Xi and proton Xi and saving the lowest
value in a variable. In case the vector with proton Xi values is empty, −1
is returned. For both calcDeltaXi and minimizeDeltaXi functions the −1
return value was not chosen randomly, the value is easily distinguishable as
from the physics point of view it can not happen.

Double_t minimizeDeltaXi (vector<Double_t > & Protons, Double_t &
PhotonXi) {

Double_t minProtonXi = -1;
Double_t minDeltaXi = 99999.;
Double_t currDeltaXi;
for (auto ProtonXi : Protons) {

currDeltaXi = fabs (ProtonXi - PhotonXi);
if (currDeltaXi < minDeltaXi) {

minProtonXi = ProtonXi;
minDeltaXi = currDeltaXi;

}
}
return minProtonXi;

}

Listing 2.3: Implementation of the function minimizeDeltaXi.

2.3.3 Matching script

The main point of this script is to create a ntuple with added photon and
proton uncertainties. There is no specifically required time complexity for

19

2. Software development

this script, but the code should run with linear time with respect with the
number of events in the ROOT ntuple.

To satisfy the functional requirement that the code should have the pos-
sibility to change the proton selection from “standard” to “mixed” case or
“switched sides” case, I have decided to have three sections, two commented
and one uncommented. The two main reasons for not including all three styles
are the execution time and the size of the output ntuple. Because each event
is uncorrelated to one another, the script iterates over all events and for each
event does the proton selection routine and calculates the uncertainties.

If I put all variables for all three selection styles inside one TTree, the
structure of the TTree would not be clear. Alternative would be to separate
the selection styles into three different TTrees, but it is not suitable either,
because a big part of the data would be duplicated.

First iteration of this script opened the input ntuple and created the output
ntuple. The input file is opened in READ mode because it does not have to be
modified. The output file is opened in UPDATE mode, which creates a file or
prepares to update already existing file. Next iteration included the creation of
AnalysisTree and TBranches representing variables. I have decided to turn
off AutoSave option of TTree because if it is on, the resulting ntuple contains
multiple backup copies of the same TTree. This iteration also included the
variables for all TBranches. An important step of this iteration was also the
inclusion of iterating loop that iterates over all events in TreeProton. The
photon and proton variables were copied using this iteration loop from the
input file to the output file.

Another iteration included the “standard” proton selection and the cal-
culations of the uncertainties (Listing 2.4). “Switched sides” and “mixed”
proton selections were included in next iteration. Follows an iteration that
informs the user about the part of the code that is executed at the moment by
printing lines into standard output. In this iteration were also included time
measurements using std::chrono, but they have been removed for the final
iteration.

The final iteration first opens the input file and uses the method discussed
in subsection 2.3.1 to ensure that the photon and proton data accessed have
the same RunNumber and EventNumber. Also the output file and its TTree
is created. This is followed by declarations of variables and setting their
branch addresses (in case the variables exist in input file). Next the creation
of branches inside the output file is discussed. The iteration over all events in
the TreeProton follows. For each event PhotonE1 and PhotonE2 are converted
from MeV to GeV and the uncertainties are calculated. Then the memory is
cleaned up and the output file is written.

20

2.3. Implementation

//Conversion to GeV
PhotonE1 /= 1000;
PhotonE2 /= 1000;

//Calculating PhotonSigmas
PhotonSigmaE1 = calcPhotonSigmaE(PhotonE1 , PhotonEta1);
PhotonSigmaE2 = calcPhotonSigmaE(PhotonE2 , PhotonEta2);
PhotonSigmaInvMass = PhotonInvMass / 2 * quadratureSum({

PhotonSigmaE1 / PhotonE1 , PhotonSigmaE2 / PhotonE2 });
PhotonSigmaXiA = PhotonXiA / PhotonInvMass * PhotonSigmaInvMass;
PhotonSigmaXiC = PhotonXiC / PhotonInvMass * PhotonSigmaInvMass;

//Minimizing DeltaXi -- standard case
nProtonsA = ProtonCandsXiA ->size();
nProtonsC = ProtonCandsXiC ->size();
nProtons = nProtonsA + nProtonsC;
ProtonXiA = minimizeDeltaXi (*ProtonCandsXiA , PhotonXiA);
ProtonXiC = minimizeDeltaXi (*ProtonCandsXiC , PhotonXiC);
DeltaXiA = calcDeltaXi (ProtonXiA , PhotonXiA);
ProtonSigmaXiA = calcProtonSigmaXi (ProtonXiA);
DeltaXiC = calcDeltaXi (ProtonXiC , PhotonXiC);
ProtonSigmaXiC = calcProtonSigmaXi (ProtonXiC);

Listing 2.4: Calculations done for each event for “standard” photon-proton
matching.

2.3.4 Difference script
This script calculates the difference of number of matches between “standard”
matching and “mixed” matching, where the proton data is used from another
event. In this case the goal is to get the statistic variation between random
matching and nominal matching. In order to do that, there have to be sta-
tistical iterations of the mixed selection case. The first iteration is the proton
information from previous event, in the next iteration proton information from
the event “n-2” is taken, etc. In order to remove unwanted correlations, the
proton selection must be done separately for each statistical iteration for each
event.

This introduces a huge priority into speed optimization of the script. Be-
cause the proton selection is to be done for n − 1, . . . , n − 1000 cases, the
time to complete each iteration should be at worst constant, which results in
linear total execution time with respect to the number of iterations. Anything
asymptotically slower would result in a long execution time.

The number of matches for each iteration for each detector side option
is kept in a variable which is changed in case of match, after each iteration
the difference between the “standard” and the “mixed” matching is calculated
and saved into the output file.

One option that I had to consider was the use of multi-threading. After
a discussion with the supervisor I decided to treat multi-threading as a fi-

21

2. Software development

nal resort if I could not achieve the time requirement without it. The main
disadvantage of multi-threading is the thread safety problem which would be
present in this case.

The first idea was to check if accessing data in input ntuple has constant
time complexity. The idea is that if the time complexity is constant, then
for each iteration the script can copy photon data into separate variables and
then access proton data from different event and calculate.

The first iteration that checked the access time complexity included the
same basic layout as the matching script. First the script opened the input
file and created the output file. This was followed by declaring the necessary
variables and creating branches in the output file. This was followed by two
loops, first one looping over the set number of iterations, in this case 1000. The
second loop iterated over all events in the input file, did the proton selection,
calculated necessary variables and checked the event for a match for side A
and side C. Next the variables representing the number of matches in one
iteration for side A, side C, side A or side C, side A and side C match were
modified accordingly. After the loops only a memory cleanup and file writing
were done.

The result of this test was that the execution time for each iteration was
increasing even though the number of accesses was constant. To get over this
problem I decided to copy the proton and photon data into structures that
have constant access time (Listing 2.5). The main problem with this solution
is that there is a chance that there is a failure to allocate enough memory to
contain all data. I decided to put a try-catch block into the code to catch this
possible exception. The selected data structure was std::vector. I have also
considered a standard C++ array, but the ease of use of vector and the easier
readability of the code were the main decision arguments.

for (Long64_t i = 0; i < nEntries; i++) {
ProtonTree ->GetEntry(i);
try{

ProtonCandsA.push_back(*ProtonCandsXiA);
ProtonCandsC.push_back(*ProtonCandsXiC);
Photons.push_back(Photon(PhotonAcop , PhotonE1 , PhotonE2 ,

PhotonEta1 , PhotonEta2 , PhotonXiA , PhotonXiC ,
PhotonInvMass));

}
catch (exception e) {

cout << "Exception related to copying data occured." << endl;
cout << e.what() << endl;
return;

}
}

Listing 2.5: Loop in the difference script that is responsible for copying data
from the input file into std::vector.

For the proton data, the variables copied were already vectors of doubles,

22

2.4. Testing

Figure 2.2: Class diagram describing class Photon.

but for photons there were more variables that needed to be copied in to
calculate the uncertainties. I have decided to create a simple class (Figure
2.2) containing all the needed variables with an empty constructor and a
constructor that assigns all the variables accordingly. It is worth mentioning
that in case of memory allocation failure there is a possibility to not copy
the photon data, but the downside would be increased execution time. By
copying also the photon data the script goes through all events only once,
copies all necessary data and then only accesses the newly created vectors
with constant access time. If only proton data was copied, the script would
still need to access the ntuple once for each event in each iteration.

The final iteration first opens the input file and creates the output file.
After the declaration of variables and creating both TTree and TBranches
in the output file the script copies the photon and proton data into vectors.
After this comes a loop that iterates over the number of total iterations +1
(the reference case, number of matches when using “standard” matching).
Inside that loop is another loop that iterates over all events. Inside that are
the necessary calculations and the check if there are matches on each side of
the AFP detector. Once all events in the iteration are processed, the difference
between reference and the iteration is calculated (in case of the reference case
the values are only saved). Once all the iterations are processed, the script
cleans up memory and saves the data into the output file.

2.4 Testing
This section includes a discussion on unit, time complexity and user accep-
tance testing. All the tests were done on lxplus servers. Because the software
was run on lxplus servers at all times, no specific integration tests were made.

2.4.1 Unit testing
The purpose of unit testing is to test a very small part of code, typically one
function or method. All functions in the file with shared resources can be unit
tested. To check if the returned values of the functions are correct I chose
to create a ROOT script to unit test. Other option that I considered was

23

2. Software development

standard C++ code, but to keep everything consistent a ROOT script was
the better choice.

Most of the unit tests have trivial, edge cases and few manually created
tests, none of the unit tests were randomly generated due to lack of time to
properly create a generator. The only minor problem with unit testing in this
case is the problem of comparing doubles, an epsilon value of 1 ·10−6 was used.

bool test1() {
Double_t expected = 0;
Double_t result = quadratureSum({});

if (fabs(result-expected) < EPS) {
cout << "Test 1 passed" << endl;
return true;

}
cout << "Test 1 failed" << endl;
return false;

}

Listing 2.6: Example of unit tests used.

2.4.2 Time complexity testing

As stated in the requirements, the difference script should not exceed 6 sec-
onds per iteration and the matching script has no explicitly stated execution
time requirement. The time measurement itself was at first done by hand
using a stopwatch to get a rough idea about the execution time. To get more
precise times, std::chrono library was used with conjunction with printed
lines into standard output with time splits for each part of the scripts. This
method which uses std::chrono worked well to get the iteration times for
the difference script (results were the same for stopwatch measurements), but
the overall execution time was increased greatly. To be more specific, the
execution time increased for the initialization part of the code. This is the
reason why in the final iterations of the scripts there are no time measure-
ments. From the point of ROOT, the scripts were both only interpreted and
also pre-compiled to compare and get a rough idea about the performance
benefits of pre-compiling. The scripts were executed directly, without the use
of the HTCondor job system.

2.4.3 User acceptance testing

User acceptance tests are tests that verify with the end user if the software
completes the set requirements. The testing was done by comparing the output
to an expected result. For the matching script, the variables that were directly
taken from the input file and copied into the output file should be the same.
The calculated variables are checked by unit tests. The results of the difference

24

2.4. Testing

script were also compared to the number of matches in the matching script
when using all three different proton selection methods.

25

Chapter 3
Results

In this chapter there is a discussion on observed software performance which
is followed by section about the physics results obtained by using the software
and analyzing the data produced.

3.1 Software performance
The scripts were run on the lxplus servers as mentioned before. The full
2017 data contains 12.3 million events in PhotonTree and 4.8 million events
in ProtonTree. The simulation on the other hand contains 7377 events in both
TTrees.

3.1.1 Matching script
The final iteration has execution time of around two minutes for the whole
2017 data. There is no difference in execution time between interpreting the
code and pre-compiling the code. For the simulation the execution time was
almost instant, under five seconds.

This script was the main reason why std::chrono was removed from both
scripts. The observed execution time without std::chrono was around two
minutes, but after adding time measurements the execution time increased to
over 10 minutes.

3.1.2 Difference script
The first iteration which checked if the access time was constant had linearly
increasing execution time per iteration. While interpreting the first iteration of
the script, the first calculated iteration took on average 60 seconds to complete,
the second one 140 seconds and the third one 200 seconds.

As this result was very unsatisfying, it was followed by the iteration of
the code that copied the proton and photon data into std::vector. While

27

3. Results

interpreting this iteration of the code, the statistical iterations had an average
execution time of 7.8 seconds. The one downside was the increased time before
the code started calculating the statistical iterations, before the initialization
was almost instant, but now the software took on average 140 seconds to
copy initialize and copy the required data. The execution time per statistical
iteration was further reduced by pre-compiling the code to 1.5 seconds on
average.

After realising that std::chrono has unwanted behavior of increasing the
execution time, it was removed from this script as well and the execution
times were roughly timed again by using a stopwatch. The initialization time
was reduced to around 60 seconds and the time to calculate an iteration was
the same, around 1.5 seconds which satisfies the requirement that an iteration
should be calculated in less than 6 seconds. The total execution time for all
1000 statistical iterations is around 30 minutes.

3.2 Results of using the software
In this section are discussed all the results from the data created using the
developed code. First, the cuts on the data are mentioned. Next, the final
number of detected matches is presented and the optimization of the matching
criteria is discussed. Lastly, the randomness of the matching and the ALP
signal matching efficiencies are discussed.

3.2.1 Initial data selection
Important condition is that the 2017 data (not simulations) needs to be so
called blinded – the photon acoplanarity must be greater than 0.01. The
acoplanarity is the angle from being back-to back. The reason for blinding
is to avoid any bias in the analysis which could influence the detection or
exclusion of an ALP signal. It is a standard procedure for any search for a
new particle.

Independent of the blinding there are also cleanup cuts ξAFP > 0.01 and
ξγγ > 0.01. The reason for these cuts is the detection range of the AFP
detectors.

3.2.2 Statistical uncertainties
The statistical uncertainty on the difference between ξAF P and ξγγ can be ob-
tained from the simulated data. While the ATLAS central detector has a dedi-
cated group towards simulation, the AFP uses a module called AFPFastSimTool
inside the AFPToolbox framework to simulate the proton data. Because the
STDM2 derivation of the ATLAS simulation did not include so called Truth-
Proton container, a local modification of the AFPFastSimTool had to be done
in the Group Production NTuple code to obtain simulated data for protons.

28

3.2. Results of using the software

Figure 3.1: Relative ∆ξ uncertainty coming from signal simulation for side
A (left) and side C (right).

The statistical uncertainty represents random fluctuations on the measure-
ments by the detectors. The statistical uncertainty is determined by the width
of the gaussian fit of the ∆ξ coming from the simulations. The determined
uncertainty for the ∆ξ is around 2.5% for both sides A and C (Figure 3.1).

When comparing the statistical uncertainties to the systematic ones the
conclusion is that the systematic uncertainties are greater compared to the
statistical. The main part of systematic uncertainties is the proton systematic
uncertainty, which is around 10%.

3.2.3 Number of matches

The number of matches in 2017 data for each side and each matching condition
is shown in Table 3.1. The low amount of matches for 10% matching can be
explained by the high systematic uncertainty discussed in section systematic
uncertainties.

The di-photon invariant mass distributions for A and C matching for all
three matching criteria is shown in Figures 3.2, 3.3, 3.4. The figures show
that the shape of the di-photon invariant mass distribution look similar for
all matching criteria with a peak at around 500 GeV. Clearly, the 1σ and
2σ matching conditions increased the amount of matches significantly. It
is important to note that the optimized matching criteria take into account
varying uncertainties event by event, while the simple 10% matching criteria
does not.

3.2.4 Random matches (pile-up background)

The number of matches for “mixed” and “switched sides” cases are shown
in Tables 3.2 and 3.3, respectively. The direct comparison between nominal
and mixed matches with the respective uncertainty gained from n = 1000
statistical iterations are shown in Table 3.4.

29

3. Results

Matching A C A or C A and C
10% 34 442 47 849 82 224 67
1σ 47 421 66 642 113 943 120
2σ 95 971 135 386 230 848 509

Table 3.1: Number of matches across side A, side C, side A or side C, and
side A and side C for 10%, 1σ and 2σ matching (2017 data).

Figure 3.2: Di-photon invariant mass of the matched events on sides A and
C (at the same time) for 10% matching.

In theory there is an expectation that some fraction of matches is based on
randomness. The fraction of randomness is examined by taking by definition
uncorrelated data and looking at the number of matches. In this case the
number of nominal matches is compatible within the determined statistical
uncertainties with the number of random matches (uncorrelated matches).
This concludes that the matching done in this analysis was a series of random
coincidences. This is consistent with previous simulation results where it was
found that the dominant background comes from pile-up, not from physics
reactions [5].

3.2.5 Matching efficiencies
The ALP signal matching efficiencies are analyzed by performing the matching
criteria on the simulated data (Table 3.5). In this case the ξ data cleaning cut
is ξ ∈ ⟨0.02; 0.1⟩ for both ξAFP and ξγγ . As expected, the efficiencies are lower

30

3.2. Results of using the software

Figure 3.3: Di-photon invariant mass of the matched events on sides A and
C (at the same time) for 1σ matching.

Figure 3.4: Di-photon invariant mass of the matched events on sides A and
C (at the same time) for 2σ matching.

than at the generator level. These efficiencies are important to determine the
sensitivity to detect an axion-like-particle with the ATLAS central and AFP

31

3. Results

Matching A C A or C A and C
10% 34 534 47 870 82 338 66
1σ 47 338 67 000 114 209 129
2σ 95 469 135 636 230 580 525

Table 3.2: Number of matches for “mixed” case (di-photon information taken
from event “n” and AFP information taken from event “n-1”).

Matching A C A or C A and C
10% 34 340 48 130 82 399 71
1σ 47 296 67 068 114 224 140
2σ 95 830 136 466 231 745 551

Table 3.3: Number of matches for “switched sides” case.

Matching Nominal (blinded) Random matching Uncertainty
A 95 971 95 469 ± 271
C 135 386 135 636 ± 307

A or C 230 848 230 580 ± 415
A and C 509 525 ± 22

Table 3.4: Comparison between the number of nominal matches and random
matches with uncertainty (2σ matching).

detectors.

Matching A C A or C A and C
10% 3736 3725 5752 1709

50.6% 50.5% 78.0% 23.2%
1σ 3745 3739 5770 1714

50.8% 50.7% 78.2% 23.2%
2σ 3757 3760 5790 1727

50.9% 51.0% 78.5% 23.4%

Generator – 10% 66.9% 66.9% 89.1% 25.0%

Table 3.5: The number of matches and their percentages related to the total
number of di-photon events with at least one proton present (7377 events)
for all three matching criteria. The table also lists the percentages on the
generator level for 10% matching.

32

Conclusions

The main goal of this thesis was to create software that would modify existing
data to include calculated uncertainties and that would calculate the difference
between nominal matching and uncorrelated data matching. The software
created fulfils all stated requirements. Another goal of this thesis was to
optimize the matching criteria in proton-proton interactions with exactly two
photons observed. The important extension is the that a simple matching
criteria was extended to include the systematic uncertainties in the photon
and proton measurements. The optimization was used to study the number
of events in the recorded data and the efficiencies of a simulated ALP signal.
Also another goal was to provide clarity to the randomness of the matching.
The large data set provided by the ATLAS central and AFP detectors is a
challenge from the point of view of Information Technology.

A notable result from the physics point of view is that the analyzed sim-
ilarity between ξAFP and ξγγ is a random coincidence instead of a physics
process with low randomness. This result is consistent with previous simula-
tions. The three matching criteria were compared by the number of matches
and the di-photon invariant mass distribution. Also the uncertainties on pro-
ton and photon reconstruction were discussed. It was determined that the
sum of proton and photons systematic uncertainties is much larger than the
statistical uncertainties. Lastly, the ALP signal matching efficiencies were
compared against efficiencies determined on the generator level.

The written software can serve for similar analysis and for reproduction of
these results. The code is written in a way that can be changed in case of an
update of the selection of the di-photons or changes in the proton detection
system. Another use for the software is to serve as an example of how to work
with correlated data in two different TTrees.

33

Bibliography

[1] ATLAS Collaboration. Observation of light-by-light scattering in ultra-
peripheral Pb+Pb collisions with the ATLAS detector. Phys. Rev. Lett.,
volume 123, no. 5, 2019: p. 052001, doi:10.1103/PhysRevLett.123.052001,
1904.03536.

[2] d’Enterria, D.; da Silveira, G. G. Observing light-by-light scattering at
the Large Hadron Collider. Phys. Rev. Lett., volume 111, 2013: p. 080405,
doi:10.1103/PhysRevLett.111.080405,10.1103/PhysRevLett.116.129901,
[Erratum: Phys. Rev. Lett.116,no.12,129901(2016)], 1305.7142.

[3] Euler, H. On the scattering of light by light according to Dirac’s the-
ory. Annalen Phys., volume 26, no. 5, 1936: pp. 398–448, doi:10.1002/
andp.19364180503, [Annalen Phys.418,no.5,398(1936)].

[4] ATLAS Collaboration. Evidence for light-by-light scattering in heavy-ion
collisions with the ATLAS detector at the LHC. Nature Phys., volume 13,
no. 9, 2017: pp. 852–858, doi:10.1038/nphys4208, 1702.01625.

[5] Baldenegro, C.; Fichet, S.; et al. Searching for axion-like particles with
proton tagging at the LHC. JHEP, volume 06, 2018: p. 131, doi:10.1007/
JHEP06(2018)131, 1803.10835.

[6] Beresford, L.; Bussey, P.; et al. Measurement of proton-tagged lepton
pairs in photon fusion using the ATLAS Forward Proton spectrometer.
Technical report ATL-COM-PHYS-2020-205, CERN, Geneva, Mar 2020,
[Online; accessed April 10, 2020; public in: ATLAS-CONF-2020-041].
Available from: https://cds.cern.ch/record/2712727

[7] Looking forward: ATLAS measures proton scattering when light
turns into matter. [Online; accessed July 30, 2020]. Available from:
https://atlas.cern/updates/physics-briefing/looking-forward-
light-matter

35

1904.03536
1305.7142
1702.01625
1803.10835
https://cds.cern.ch/record/2712727
https://atlas.cern/updates/physics-briefing/looking-forward-light-matter
https://atlas.cern/updates/physics-briefing/looking-forward-light-matter

Bibliography

[8] About CERN. [Online; accessed May 28, 2020]. Available from: https:
//home.cern/about

[9] The birth of the Web. [Online; accessed May 28, 2020]. Available from:
https://home.cern/science/computing/birth-web

[10] Evans, L.; Bryant, P. LHC Machine. JINST, volume 3, 2008: p. S08001,
doi:10.1088/1748-0221/3/08/S08001.

[11] The Large Hadron Collider. [Online; accessed May 28, 2020].
Available from: https://home.cern/science/accelerators/large-
hadron-collider

[12] Horvath, A. The LHC experiments and the preaccelerators. 2006,
[Online image; accessed May 28, 2020]. Available from: https://
commons.wikimedia.org/wiki/File:LHC.svg

[13] ATLAS Collaboration. The ATLAS Experiment at the CERN Large
Hadron Collider. JINST, volume 3, 2008: p. S08003, doi:10.1088/1748-
0221/3/08/S08003.

[14] ATLAS Collaboration. Performance of the ATLAS detector using
first collision data. JHEP, volume 09, 2010: p. 056, doi:10.1007/
JHEP09(2010)056, 1005.5254.

[15] About the ATLAS Experiment. [Online; accessed May 28, 2020]. Avail-
able from: https://atlas.cern/discover/about

[16] Adamczyk, L.; et al. Technical Design Report for the ATLAS Forward
Proton Detector. 2015.

[17] Pequenao, J. Computer generated image of the whole ATLAS detector.
2008, [Online image; accessed May 28, 2020]. Available from: https:
//cds.cern.ch/images/CERN-GE-0803012-01

[18] Sopczak, A.; Bussey, P.; et al. Search for an Axion-Like Particle in Light-
by-Light scattering using the ATLAS central detector and the ATLAS
Forward Proton detector. Technical report ATL-COM-PHYS-2020-238,
CERN, Geneva, Mar 2020, [Online; accessed June 1, 2020]. Available
from: https://cds.cern.ch/record/2714416

[19] Harland-Lang, L. A.; Khoze, V. A.; et al. Photon-Photon Collisions with
SuperChic. CERN Proc., volume 1, 2018: p. 59, doi:10.23727/CERN-
Proceedings-2018-001.59, 1709.00176.

[20] Todesco, E.; Wenninger, J. Large Hadron Collider momentum cal-
ibration and accuracy. Phys. Rev. Accel. Beams, volume 20, 2017:
p. 081003, doi:10.1103/PhysRevAccelBeams.20.081003. Available from:
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.081003

36

https://home.cern/about
https://home.cern/about
https://home.cern/science/computing/birth-web
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://commons.wikimedia.org/wiki/File:LHC.svg
https://commons.wikimedia.org/wiki/File:LHC.svg
1005.5254
https://atlas.cern/discover/about
https://cds.cern.ch/images/CERN-GE-0803012-01
https://cds.cern.ch/images/CERN-GE-0803012-01
https://cds.cern.ch/record/2714416
1709.00176
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.081003

Bibliography

[21] ATLAS Collaboration. Electron and photon energy calibration with the
ATLAS detector using LHC Run 1 data. 2014, doi:10.1140/epjc/s10052-
014-3071-4, 1407.5063.

[22] Staszewski, R. Towards optics uncertainty. 2019, [Private conversation].

[23] Brun, R.; Rademakers, F. ROOT – An object oriented data analysis
framework. Nucl. Instrum. Meth. A, volume 389, no. 1, 1997: pp. 81 –
86, ISSN 0168-9002, doi:10.1016/S0168-9002(97)00048-X.

[24] About ROOT. [Online; accessed May 28, 2020]. Available from: https:
//root.cern.ch/about-root

[25] ROOT/Getting Started/Many Ways to Use ROOT. [Online; accessed
May 28, 2020]. Available from: https://en.wikibooks.org/wiki/ROOT/
Getting_Started/Many_Ways_to_Use_ROOT

[26] LXPLUS Service. [Online; accessed July 30, 2020]. Available from: http:
//information-technology.web.cern.ch/services/lxplus-service

37

1407.5063
https://root.cern.ch/about-root
https://root.cern.ch/about-root
https://en.wikibooks.org/wiki/ROOT/Getting_Started/Many_Ways_to_Use_ROOT
https://en.wikibooks.org/wiki/ROOT/Getting_Started/Many_Ways_to_Use_ROOT
http://information-technology.web.cern.ch/services/lxplus-service
http://information-technology.web.cern.ch/services/lxplus-service

Appendix A
Acronyms

AFP Atlas forward proton

ALP Axion-like-patricle

ATLAS A Toroidal LHC Apparatus

CERN Conseil Européen pour la recherche nucléaire

CLI Command line interface

GRL Good Run List

GUI Graphical user interface

IP Interaction point

LbyL Light-by-light

SM Standard model

39

Appendix B
Contents of enclosed SD card

readme.txt....................the file with SD card contents description
thesis.pdf...............................the thesis text in PDF format
implementation.................................implementation sources

input.............................example input files for the software
thesis..................the directory of LATEX source codes of the thesis

figures.....................the directory with figures in .png format

41

	Introduction
	Physics framework
	CERN
	The ATLAS experiment
	Proton-proton interaction and ALP Search
	Matching
	Matching criteria
	Photon systematic uncertainties
	Proton systematic uncertainties
	Proton selection
	Matching background

	Software development
	Functional and non-functional requirements
	Analysis and design
	Development strategy
	From raw data to NTuples
	ROOT
	Lxplus
	Input structure
	Output structure

	Implementation
	Working with two independent TTrees
	Shared resources
	Matching script
	Difference script

	Testing
	Unit testing
	Time complexity testing
	User acceptance testing

	Results
	Software performance
	Matching script
	Difference script

	Results of using the software
	Initial data selection
	Statistical uncertainties
	Number of matches
	Random matches (pile-up background)
	Matching efficiencies

	Conclusions
	Bibliography
	Acronyms
	Contents of enclosed SD card

