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Instructions

Antibodies are proteins produced by the immune system to detect and neutralize intruders. Their analysis
is crucial for understanding immune processes as well as for designing new antibodies and vaccines. Deep
learning is showing significant progress in binding prediction, secondary structure prediction and other sub-
tasks in the analysis of the protein universe. Additionally, transfer learning has gained an indispensable role
in natural language understanding, which bears similarities to biological sequence analysis. The goal of this
thesis will be to:

1) Utilize transfer learning on an antibody classification task using an existing deep learning model pre-
trained on a corpus of antibody sequences.
2) Train the model with and without fine-tuning of intermediate layers and report results on a left-out
dataset.
3) Apply the model to a study not used in the train set and report biologically relevant results in a case
study format.
4) Discuss results and contribution of fine-tuning, if any.
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Abstrakt

Pokroky v sekvenovaní umožňujú vedcom zbierať veľké množstvá DNA sek-
venovaných dát a spolu s výpočtovými zdrojmi poskytovanými výpočtovými
klastermi umožnňujú využívať výpočtové prístupy napomáhajúce v mnohých
biologických procesoch ako vývoj vakcín alebo návrh protilátok, ktoré mo-
mentálne využívajú pracné a drahé in-vitro techniky.

Spracovanie prirodzeného jazyka (NLP) je odbor zaoberajúci sa slovami a
sekvenciami slov. Analógia medzi vetami, teda sekvenciami slov a biologickými
sekvenciami, teda sekvenciami aminokyselín viedla k mnohým experimentom,
ktoré aplikujú modely na spracovanie prirodzeného jazyka na modelovanie
biologických sekvencií.

V tejto práci som natrénoval NLP modely hlbokého učenia, predtrénované
na ľudských protilátkach z the Observed Antibody Space database, s cieľom
klasifikácie špecificity protilátok voči Hepatitíde typu B. Finálny model je
schopný predikovať špecificitu protilátok voči Hepatitíde typu B s nasledov-
ným F1 skóre a ROC AUC proporcioniálnym k veľkosti klonotypov: 0.116,
0.829 pre validačné dáta a 0.333, 0.509 pre testovacie dáta (z inej vakcinačnej
štúdie), v danom poradí. Tento model bol prekonaný jednoduchším modelom
používajúcim molekulárne odtlačky s nasledovnými výsledkami: 0.155, 0.715
a 0.474, 0.645, v odpovedajúcom poradí.

V práci je navrhnutá postupnosť operácií, ktorá môže byť ďalej vylep-
šená pomocou iných metód alebo jej rozšírením o ďalšie predspracovanie dát
alebo iné reprezentácie protilátok. Napriek tomu, že výkon in-silico metód je
horší oproti in-vitro metódam, poskytujú lacnejšiu, rýchlejšiu a škálovateľnej-
šiu alternatívu alebo dodatočnú techniku, ktorá môže byť v budúcnosti ďalej
vylepšovaná.

Kľúčové slová hlboké učenie, NLP, hepatitída typu B, strojové učenie, kla-
sifikácia, protilátky
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Abstract

Advances in sequencing technologies allow scientist to gather large amounts
of DNA sequence data and together with computational resources provided
by high-performance computing clusters allow the use of computational ap-
proaches aiding in many biological processes such as vaccine development or
antibody design which currently employ laborious and expensive in-vitro tech-
niques.

Natural Language Processing (NLP) is a field dealing with words and
sequences of words. The analogy between sentences as sequences of words and
biological sequences as sequences of amino acids led to experiments applying
NLP models for modelling biological sequences.

In this work, I train deep learning NLP models pre-trained on human
antibodies from the Observed Antibody Space database in order to classify
Hepatitis B specificity of antibodies. The final model can predict antibodies’
Hepatitis B specificity with following F1 scores and ROC AUC proportional
to the clonotype sizes: 0.116, 0.829 for validation data and 0.333, 0.509 for
the test data (from different vaccination study), in the given order. This
model has been outperformed by a simpler model using molecular fingerprints
yielding following results: 0.155, 0.715 and 0.474, 0.645, in the same order.

The thesis outlines a pipeline which can be further improved by using
different models or extending the pipeline by additional data preprocessing
or different representations of antibodies. Even though the performance of
the in-silico methods is worse than the performance of in-vitro methods, they
provides a cheaper, faster and more scalable alternative or additional technique
that can be further improved.

Keywords deep learning, NLP, hepatitis B, machine learning, classifaction,
antibodies
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Introduction

Artificial intelligence (AI) has proved to be a field with very broad application
domain. One such aspiring field is bioinformatics which focuses on applying
computer science and AI techniques to biology.

Development of antibodies and vaccines is crucial, and it is necessary to
do so promptly. However, antibody design and vaccine development are very
long and expensive processes, often consisting of many “trials and errors”. The
Ebola outbreak or the most recent COVID-19 pandemic are a case in point.
In such times, developing a vaccine in a fast manner is the most important
thing to prevent spreading and to “control” the outbreak as much as possible.

Advances in sequencing technologies allow scientist to sequence antibodies
from living organisms quickly and in large amounts. Therefore these subsets
of present antibodies can be used to represent the immune system, analyse it
and perform various tasks, such as analysing subjects’ response to a vaccine,
by using statistical, data mining and machine learning techniques. These
tasks can be performed on a rising number of high-performance computers.
analysing and modelling antibody properties can speed up and reduce the
costs of antibody design and vaccine development.

The similarities between natural language text and biological sequences
and previous efforts of learning the representation of proteins using NLP deep
learning architectures inspired me to choose a similar approach with the cur-
rent state-of-the-art model for multiple NLP tasks. And therefore, the main
goal of this thesis is to analyse possible approaches to predict antibody speci-
ficity and explore how large amounts of available data can be used to train
a pre-trained Natural Language Processing (NLP) model and use it to make
classification predictions that can replace or supplement currently used in-
vitro tests.

Numerous deep learning models, as well as simpler baseline approaches
with comparable performance, are the outcomes of this thesis. These mod-
els can be used as an in-silico alternative or supplementary approach to the
current in-vitro tests.
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Introduction

Goals

The goal of this thesis is to explore and compare various antibody specificity
prediction methods and to design and implement the pipeline of data prepro-
cessing and modelling on a vaccination study and use it on another vaccination
study. The main product of this thesis is a deep learning pipeline capable of
antibodies’ specificity prediction defined as a binary classification task.

The theoretical part covers various concepts in both bioinformatics and
machine learning necessary for understanding the methods used in the prac-
tical part.

The practical part covers analysis and preprocessing of the data and imple-
mentation of the whole modelling and validation pipeline, and finally compares
results with other simpler (baseline) approaches. An implementation of the
representation part of the NLP model is not an objective of this work and is
based on the work of my thesis supervisor David Příhoda (results in progress,
unpublished).

Related work

Antibody–antigen binding, also called antibody specificity, is one of the essen-
tial protein–protein interaction (PPI) in immunology. PPIs are the processes
responsible for a wide range of biological processes (cell-to-cell interactions,
cell growth. . .) and are the critical element in understating the protein’s func-
tion [1]. Numerous computational methods have been proposed in the field
of PPIs. Even though numerous advances, PPIs remain a very challenging
problem [2]. Predicting PPIs is hard also due to the diversity of proteins,
long-range dependencies, and generally the variable nature of chemical space.

From the deep learning perspective, there have been approaches such
as LSTM and convolutional neural network (CNN) architectures from [3],
Ens-Grad ensemble of 5 CNNs and single fully connected neural network from
[4], MaSIF (molecular surface interaction fingerprinting) framework based on
the geometric deep learning from [5]. Overview of other deep learning methods
not only for predicting PPIs can be found at [6]. From a technical perspective,
the closest method to the one proposed in this work is the Tasks Assessing
Protein Embeddings (TAPE) benchmark introduced in [7]. This paper focuses
on pre-training and various downstream tasks using BERT architecture which
is the predecessor architecture of the one used in this thesis. The downstream
tasks in the paper include structure prediction tasks, protein engineering tasks
and an evolutionary understanding task. However, it does not include the
antibody–antigen binding task.

2



Outline

Specifically, in the field of antibody–antigen binding, [8] proposes a method
in which authors show how clustering by paratopes (paratyping) as well as
clonotyping can be used to predict whether an antibody is Pertussis toxoid–
binding or non-binding.

Outline
The work is split into 5 chapters. In Chapter 1: Theoretical background all the
theoretical background from both biological and AI point of view, necessary
to understand the following chapters is provided. Chapter 2: Methods focuses
on the data used in this work as well as the methods for antibody classification
proposed in this thesis, namely, data preprocessing the representations used for
training the models, models themselves and evaluation techniques. Chapter 3:
Results sums up the performance of the trained models on validation and
test data. Chapter 4: Discussion provides a discussion about the models’
performance and the achieved results. Chapter 5: Case study serves as a
stand-alone case study which showcases the usage of the models on another
study together with a discussion of biological aspects. The Conclusion sums
up the outcomes of the thesis and discusses ideas for future work.

3





Chapter 1
Theoretical background

1.1 Antibodies and the immune system
This chapter discusses the biological aspects of the thesis and the essential
background necessary to understand the topic at hand.

1.1.1 The immune system
The immune system is a defence system of a living being which protects it
from various disease-causing germs (also called pathogens). The tasks of the
immune system are to recognize such harmful germs and substances, neutral-
ize them and to adapt to be more potent against them in the future.

The immune system consists of 2 subsystems:

The innate immune system (also called “non-specific”) provides a general
way of fighting foreign substances, for example through the skin or di-
gestive system.

The adaptive immune system (also called “specific”) provides a tailored
way of fighting harmful germs and substances by producing antibodies
targeting given germs or substances. This is commonly referred to as
“acquired”, “learned” or specific immune response.

For more details on this topic, see [9].

1.1.2 Antibodies
Responses of the adaptive immune system are carried out by lymphocytes
which are white blood cells. There are 2 types of lymphocytes, namely: B-cells
(B-lymphocytes) and T-cells (T-lymphocytes). These lymphocyte types are
responsible for 2 different adaptive immune responses: antibody responses and

5



1. Theoretical background

cell-mediated immune responses, respectively. B-cells take care of antibody
responses by secreting antibodies which are then responsible for neutralizing
antigens. Antigens are structures that cause an immune response from the im-
mune system. For instance, proteins on the surfaces of pathogens are antigens.
More details can be found at [10].

Antibodies (also known as immunoglobulins) are Y-shaped proteins con-
sisting of 4 polypeptide chains: “two identical light (L) chains (each containing
about 220 amino acids) and two identical heavy (H) chains (each usually con-
taining about 440 amino acids)” [10]. Antibody structure can be seen in
figure 1.2. Some regions of antibodies are more important for antigen binding
or non-binding. The most variable region CDR3 has a significant impact on
the binding properties of the antibody [11]. Paratope is a part of an antibody
which binds to its counterpart in antigen called epitope (Figure 1.1).

Figure 1.1: Scheme describing the “lock–key” relation between antibodies and antigens [12]

Deoxyribonucleic acid (DNA) is a hereditary material responsible for car-
rying genetic information of humans and most of the other organisms. The
information in DNA is encoded by 4 nucleotides, namely: adenine (A), gua-
nine (G), cytosine (C) and thymine (T).

An antigen induces production of antibodies, and then these antibodies
bind to that specific antigen. The high diversity of the adaptive immune
system, such that there are specific antibodies for many different antigens,
is mainly enabled by a process called V(D)J recombination. In this process,
the variable region of an antibody is assembled from separate gene segments,
namely, V (variable), J (joining) and in some cases, D (diversity). The anti-
bodies are then detected by B-cell receptor (BCR) of a B-cell allowing it to
act [14].

6



1.1. Antibodies and the immune system

Figure 1.2: Antibody structure: (A) General antibody structure highlighting the position of
constant regions, variable heavy chain (VH) and variable light chain (VL) domains. CDRs are
represented as 3 red bars in each variable region (VH and VL). (B) Linearized representation
of the VH and VL regions. In this work, the focus is put only on VH and its CDR3 region.
[13]

Amino acids, which are made up from triplets of nucleotides, are funda-
mental building blocks of peptides and proteins. Amino acids can be rep-
resented by their corresponding letter codes which allows one to represent
proteins (and therefore antibodies) as sequences of characters. In this thesis,
antibodies are represented in such a way while using only natural amino acids
(Table 1.1).

1.1.3 Sequence alignment
Sequence alignment is a common technique for comparing conserved sequences.
As stated in [15], sequence alignment is a procedure which attempts to find
which positions within a pair of sequences share a common evolutionary his-
tory by finding which amino acids on which positions are shared.

Sequence alignment over the whole lengths of the sequences is called global
alignment. On the other hand, local alignment focuses on aligning the query
sequence to the best sub-region in the target sequence. Formally, global align-
ment for sequences s1 and s2, while allowing gaps (“-” symbol) can be under-
stood as insertions of gaps (“-” symbols) to either of sequences such that
resulting sequences s′

1 and s′
2 of the same length are considered to be the

alignment between the original sequences s1 and s2 (Figure 1.3). In the case
of local alignment same definition applies while arbitrary suffix and prefix
sequences can be removed from both s1 and s2 prior to the aligning process
(inserting gaps).

Various kinds of scoring are being used to decide which alignment is best.
The scoring parameters are scores for matches, mismatches, starting a gap and
extending a gap. Substitution scoring matrix can be used for scoring matches
and mismatches. Such matrices contain scores proportional to the probability

7



1. Theoretical background

Table 1.1: List of all natural amino acids with their abbreviations and letter codes

Abbreviation Code Full name
Ala A Alanine
Arg R Arginine
Asn N Asparagine
Asp D Aspartic acid
Cys C Cysteine
Gln Q Glutamine
Glu E Glutamic acid
Gly G Glycine
His H Histidine
Ile I Isoleucine
Leu L Leucine
Lys K Lysine
Met M Methionine
Phe F Phenylalanine
Pro P Proline
Ser S Serine
Thr T Threonine
Trp W Tryptophan
Tyr Y Tyrosine
Val V Valine

that amino acid i mutates into amino acid j for all amino acid pairs [16]. An
example of such a matrix is the BLOSUM62 (Figure 1.4). These terms are
tied to a hypothesis based on observations, called sequence homology, which
is a similarity that is attributed to a shared ancestry in the evolution of the
sequences.

CCAGTGTGGCCGATACCCCAGGTTGGCACGCATCGTTGCCTTGGTAAGC
CCAGTGTGGCCGATGCCCGTGCTACGCATCGTTGCCTTGGTAAGC

Alignment:
Ref+: 1 CCAGTGTGGCCGATaCCCcagGTtgGC-ACGCATCGTTGCCTTGGTAAGC 49

|||||||||||||| ||| || || ||||||||||||||||||||||
Qry+: 1 CCAGTGTGGCCGATgCCC---GT--GCtACGCATCGTTGCCTTGGTAAGC 45

Figure 1.3: An example of global alignment of 2 sequences of different lengths (49 and 45).
Uppercase letters (and vertical lines) symbolise matches, lowercase letter mismatches and
“-” symbolises a gap (example from [16])

8



1.1. Antibodies and the immune system

Figure 1.4: Score values of the BLOSUM62 substitution scoring matrix

1.1.4 Clonotyping

Clonotyping is a common approach of clustering antibodies together based
on their shared genetic history which often causes antibodies from the same
clonotype to bind to the same epitope [8]. This technique ensures error cor-
rection and preserving a maximal amount of data while removing artificial
diversity [17]. Widely used conditions for 2 antibodies to belong to the same
clonotype is to have same V, J regions, CDR3 length and highly similar CDR3
region (measured by Hamming distance). Usual CDR3 homology range used
in clonotyping is 80–100 %.

Hamming distance between 2 words of the same length can be defined as
a number of character positions at which the words differ [18]. Formally, for
x, y ∈ F n where x = (x0, x1...xn), y = (y0, y1...yn), F is a finite alphabet, and
F n is a set of words from this alphabet of length n, Hamming distance can be
defined as follows:

d(x, y) = |{i ∈ [0, n] | xi 6= yi}| (1.1)

9



1. Theoretical background

1.1.5 Next-generation sequencing

Next-generation sequencing “refers to the deep, high-throughput, in-parallel
DNA sequencing technologies developed a few decades after the Sanger DNA
sequencing method first emerged in 1977” [19]. The main advantage against
its predecessors is that NGS is massively parallel and provides extremely high
throughput at a much lower cost.

The growth of the amount of data, which emerged thanks to NGS, has
created a lot of opportunities in antibody science, as described in [20].

1.2 Vaccines

In the late 18th century Edward Jenner invented a procedure called vacci-
nation which is a process of inoculating a healthy individual with a dead or
weakened pathogen in order to provide protection for future encounters with
the pathogen. After exposure to vaccination, some of the B and T cells ac-
tivated by the antigen will differentiate to memory cells which are the cells
providing long-lasting immunity. During this process, the B-cells undergo
random mutations in order to improve antibodies’ ability to bind to the new
antigen. For more information, see [14].

Hepatitis B is a viral infection attacking the liver and is caused by the
hepatitis B virus. The vaccine for Hepatitis B, which is one of the most com-
mon vaccines nowadays, is successfully used to prevent infection of Hepatitis
B.

1.3 Serological tests

Serological tests are commonly used laboratory tests to find antibodies specific
to a selected antigen. Such tests rely on a host’s ability to produce an antibody
for a specific antigen. The usual approach is to take a serum (blood) from the
host, mix it with antigen and inspect the following reaction. One of the most
widely used serological tests nowadays is the enzyme-linked immunosorbent
assay (ELISA) test. ELISA test makes use of enzymes linked to antibodies
which react with a substrate and produce colour (Figure 1.5). The intensity of
the colour is proportional to the concentration of antibodies that are present.
For more information about ELISA tests, see [21]. ELISA tests can be used
in vaccination studies to study a patient’s response to the vaccination (such
as Hepatitis B vaccination) by detecting antigen-specific antibodies.
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Figure 1.5: A high-level overview of how different types of ELISA tests work [22]

1.4 Machine learning
1.4.1 Supervised learning
Supervised learning is a strategy in machine learning which goal is to harness
training data pairs of feature vectors (x = (x0, x1, ...xn) where n is the dimen-
sion of the feature space) and corresponding targets (y) to learn to predict
targets for previously unseen feature vectors.

Classification is one of the basic tasks in supervised learning. The goal
is to predict a discrete (i.e. having only a finite number of values) target,
also called label, based on the given input feature vector. A common type of
classification is a binary classification problem where the target is one of 2
classes that are usually named as positive and negative class.

There are many evaluation metrics for classification tasks. Widely used
and easily interpretable way of evaluating a binary classifier is to use a con-
fusion matrix. Let’s consider y as a true label of a data point x from dataset
X and y′ as a label that has been predicted by classifier at hand. In the
following definition, −1 is a negative label, and +1 is a positive label. Then,
a confusion matrix for a binary classifier (Table 1.2) is a matrix consisting of
4 terms, namely:

True Positives (TP) :

TP = |{x | y = +1 ∧ y′ = +1}| (1.2)

True Negatives (TN) :

TN = |{x | y = −1 ∧ y′ = −1}| (1.3)

False Positives (FP) :

FP = |{x | y = −1 ∧ y′ = +1}| (1.4)

False Negatives (FN) :

FN = |{x | y = +1 ∧ y′ = −1}| (1.5)

11



1. Theoretical background

Table 1.2: A confusion matrix of a binary classification task

Predicted
Positive Negative

A
ct

ua
l Positive TP FN

Negative FP TN

Terms from the confusion matrix are used to compose other terms useful
for evaluating classifiers, which will be used throughout the thesis:

Precision is defined as a proportion of correct positive predictions. In
the case of this work, it is a number of sequences correctly predicted as Hep
B–binding divided by a number of all sequences predicted to be positive.

Precision = TP

TP + FP
(1.6)

Recall is defined as a proportion of actual positive data points that were
predicted correctly. In the case of this work, it is a number of sequences cor-
rectly predicted as Hep B–binding divided by a number of positive sequences.

Recall = TP

TP + FN
(1.7)

False positive rate (FPR) is defined as a proportion of wrongly predicted
data points as negative and the total number of negative data points. In the
case of this work, it is a number of sequences wrongly predicted as Hep B
non-binding divided by a number of negative sequences.

FPR = FP

FP + TN
(1.8)

Accuracy is defined as a ratio of correctly predicted labels over all predic-
tions. The main shortcoming of accuracy is that it provides a distorted view
of the performance for an imbalanced dataset. As an example, for a dataset
with 90 % of negative data points and 10 % of positive datapoins, a classifier
making only negative predictions would achieve accuracy of 0.9 (90 %). That
is why accuracy is not a suitable metric for highly imbalanced datasets.

In the case of this work, accuracy is a number of sequences correctly pre-
dicted as either Hep B–binding or non-binding divided by a number of all
sequences.

Accuracy = TP + TN

TP + TN + FP + FN
(1.9)

F1 score is defined as a harmonic mean of precision and recall.

F1 = 2
Precision−1 + Recall−1 (1.10)
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1.4. Machine learning

There are also curves that are commonly used for evaluation of binary
classifiers, such as Receiver operating characteristic (ROC) curve which plots
recall against the FPR and Precision-Recall curve (PRC) which plots precision
against the recall. In both cases, the values are plotted for a variable positive
classification threshold. The area under such a curve can be reported as a
single-value metric and be used for the classifier’s evaluation.

1.4.2 Decision tree

Decision tree is one of the most basic models that can be used for classification.
The idea of decision trees is to iteratively build up a tree from given training
data such that at each iteration the best split is selected. For a feature with
discrete values, the data can be split according to each of the values. For a
feature with continuous values, a threshold is necessary.

The goodness of the split is measured in multiple ways. The one used in
Classification And Regression Trees (CART) algorithm is called the gini index.
Gini index can be seen as a probability of misclassification of a new element.
Therefore it reaches its minimum (0) if all data points have the same label
and its maximum (0.5) when there is the same ratio of all class labels. For
dataset D consisting of k classes and pj which is a relative frequency of class
j in D, the gini index is defined as follows:

GI(D) =
k∑

i=0
pi(1− pi) (1.11)

During a decision tree construction, gini index can be used within the
information gain where the split with the highest information gain is selected.
Let’s consider dataset D, feature i for which the information gain is being
computed, and D0, D1 which are the resulting datasets after the split, then
information gain is defined as:

IG(D, i) = GI(D)− |D0|
|D|

GI(D0)− |D1|
|D|

GI(D1) (1.12)

For making predictions using the constructed decision tree for a data point,
path from the root node to leaf node is followed by taking paths based on the
conditions set during the training. The leaf node determines the predicted
label by a majority vote of the training data points in the leaf node.

A common extension of decision trees is to use ensembles of decision trees
such as Random Forests or Extremely randomized trees (ET) (Methods Sec-
tion 2.2.1.3). One of the main advantages of these randomized ensembles is
its ability to mitigate overfitting.
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1. Theoretical background

1.4.3 Unsupervised learning

In unsupervised learning, there are no targets for the data. Unsupervised
learning is more about finding patterns, similarities or summary of given data.

Clustering is a typical example of unsupervised learning. The main goal of
clustering is to group a set of objects such that similar objects are in the same
clusters (groups) and dissimilar objects are separated into different clusters
(groups) [23].

Another example of unsupervised learning is a nonlinear dimensionality
reduction technique called t-Distributed Stochastic Neighbor Embedding (t-
SNE) [24]. It is especially intended for visualization of high dimensional data
(usually in two or three dimensions).

1.4.4 Self-supervised learning

In the world, there are large amounts of unlabeled data, but much less la-
beled data. This problem has been addressed by a field called self-supervised
learning which can be seen as a subclass of unsupervised learning. The goal
of self-supervision is to get supervision from the unlabeled data itself. Hence
model learns to predict a hidden part of its input using the other parts from
the input. This way, it is possible for models to learn the representation of
input without specific labels. Self-supervised learning is a technique utilized
in the latest state-of-the-art NLP models [25]. A typical task for NLP models
is to mask out random words of the input and let the model predict what
words should be filled in there (Figure 1.6).

1.4.5 Train-test split

In machine learning it is essential to evaluate trained estimators such that
estimator does not perform well only on the data it has been trained on but
also on the previously unseen data (estimator “generalizes” well). Overfitting
is “learning too much” from the training data and therefore capturing patterns
and noise in the data which is unlikely to occur generally. On the other hand,
underfitting is failing to capture underlying trends and patterns in the training
data (Figure 1.7).

For this reason, data is commonly split to train and test datasets. The
most common way to do so is a random split. The model is then trained on
the train set, and its ability to generalize is evaluated on the test set.

Data can also be split into 3 parts, namely train, validation and test set.
The validation set is useful for model selection or optimizing hyperparameters,
which in short are model’s parameters that have to be set before training
and are not learned from training. Otherwise, if models or hyperparameters
would be chosen based on the test set, the model’s ability to generalize would
be compromised, and it could be overfitting to the test set.
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Figure 1.6: “Masking out” self-supervised language modeling task on a BERT model [26]

Figure 1.7: Plots showcasing how underfit, overfit, and a well fit predictors behave [27]

1.4.6 Undersampling

Undersampling is a common practice in machine learning which consists of
removing data points from data. One of the most popular methods is to use
random undersampling, in which data points are being removed randomly.
This technique is particularly useful to get balanced dataset (dataset with
equal distribution of classes) out of an imbalanced one by undersampling the
majority class(es). The other reason for undersampling might be to reduce
the computational resources needed for training.
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1.5 Deep learning
Deep learning is a subfield of machine learning utilizing neural networks that
are based on trying to build more complex representations based on the simpler
ones [28].

1.5.1 Perceptron
Perceptron is the basic building block of neural networks. Let x ∈ Rn be an
input vector, w ∈ Rn be a weights vector and w0 ∈ R a bias, σ a non-linear
activation function then perceptron can be defined as follows:

f(x) = σ

(
w0 +

n∑
i=1

wixi

)
(1.13)

The major shortcoming of the single-layer perceptron is that it is able to
represent only linear functions. For example, it cannot represent simple XOR
function in 2-dimensional space because it is not linearly separable. However,
the XOR function is linearly separable by a hyperplane in the space of di-
mension 3. Therefore using more layers can solve the problem of representing
non-linear functions.

1.5.2 Feedforward neural network
Feedforward neural network or multilayer perceptron (MLP) is the basic deep
learning model. Name feedforward comes from the concept that information in
these networks flows only forward, meaning there are no feedback connections
intended for feeding the output of the network back to it as an input. The
goal of such models is to approximate function f∗. Therefore a feedforward
network tries to find the best parameters θ such that fθ results in the best
approximation. As the name “multilayer perceptron” suggests, these archi-
tectures consist of multiple layers. The layers between the input and output
layer are commonly called hidden layers. The layers of MLP can be seen as
functions, and then the whole network can be seen as a composition of these
functions. For example let’s take a 3-layer MLP with f1, f2, f3 layer functions,
then f(x) = f3(f2(f1(x))) is the definition of the whole MLP (Figure 1.8).
More information can be found in [29].

In fact, in [31], it has been shown that universal approximation theorem
holds for MLP with a single hidden layer. This theorem states that any func-
tion can be approximated by such MLP with an arbitrary degree of accuracy.

1.5.3 Activation functions
Activation functions are the essential parts of neural networks. By [30], acti-
vation functions serve to approximate non-linear functions, because no matter
how many layers it has “a linear function of a linear function is linear”.
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Figure 1.8: Structure of a multilayer perceptron with 2-dimensional input, 2 hidden layers
with 4 units and a single unit output layer [30]

Rectified linear unit (ReLU) (Figure 1.9) is an activation function defined
as:

relu(x) =
{

0 if x < 0
x otherwise

(1.14)

Figure 1.9: Rectified linear unit (ReLU)

Softmax is widely used activation function mainly in the last layer of multi-
label classification neural networks. Softmax turns logits, which refer to the
outputs of the last layer of a neural network prior to applying activation
functions, into corresponding probabilities that sum up to 1. Let n be a
number of classes, y = (y1, ..., yn) ∈ Rn be the vector consisting of logits, then
softmax function σ : Rn 7→ Rn is defined as:

σ(y)i = eyi∑n
j=1 eyj

(1.15)
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Then the output of softmax function is a probability distribution over all
classes. Often used variation of softmax is LogSoftmax which is defined as
follows:

σ(y)i = log

(
eyi∑n

j=1 eyj

)
(1.16)

In both cases, the position in the output vector with maximum value can
be interpreted as a prediction of the corresponding label.

1.5.4 Backpropagation

In order to train neural networks, it is necessary to optimize (minimize or
maximize) an objective function of some sort. In the case of neural networks
when minimizing the objective function, such function is called a loss function,
a cost function or an error function. The loss function is calculated for the
output after performing a forward pass in the network, and gradient descent
is used to compute the change necessary to minimize the loss function. In
gradient descent technique,a gradient of the loss function w.r.t. to the weights
and biases is calculated, and step (size of the step is dependent on the learn-
ing rate) in the direction of the negative gradient is taken. Formally, in the
n-dimensional space, for a function f : Rn 7→ R, gradient ∇f : Rn 7→ Rn at
point x = (x1, ..., xn) is defined as:

∇f(x) =


∂f

∂x1
(x)

...
∂f

∂xn
(x)

 (1.17)

The shortcoming of this optimization technique is that it might get stuck in
a local minimum or a saddle point of the loss function. For more information,
see [29].

Negative log-likelihood (NLL) is an example of a loss function which is
commonly used in conjunction with LogSoftmax for classification tasks and
can be found grouped into a single function called cross-entropy loss. It is
defined as a LogSoftmax value corresponding to the correct class label multi-
plied by -1. Formally, let n be a number of classes, i the index of a softmax
position corresponding to the true class label, y = (y1, ..., yn) ∈ Rn the vector
consisting of logits, then the conjunction of LogSoftmax and NLL, i.e. the
cross-entropy loss can be defined as:

loss(y) = −log

(
eyi∑n

j=1 eyj

)
(1.18)
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1.5.5 Transformers
In sequence modelling, especially in Natural Language Processing, deep learn-
ing models play an essential role. State-of-the-art models moved from word2vec
models introduced in 2013 [32] to pure recurrent neural network (RNN) capa-
ble of processing sequential inputs of variable lengths (as opposed to a regular
MLP) [33, 34, 35]. Simple RNN suffered from vanishing gradient, which pre-
vented them from capturing long-range dependencies (analysed in [36]). To
mitigate the vanishing gradient problem and capture long-term dependencies,
special RNN architecture called long short-term memory (LSTM) has been
proposed in [37]. After that, architectures based on transformers [38] became
the latest state-of-the-art. The main advantage of transformers is that they
are not of sequential nature as previous models, and therefore the paralleliza-
tion is much easier.

The “cornerstone” mechanism of transformers is attention. Attention
mechanism introduced a way to “pay attention” to the relevant parts of a
sequence while “ignoring other parts”(Figure 1.10). An attention function
can be perceived as a mapping of a query and a set of key-value pairs to an
output, where the query, keys, values and output are all vectors. A weighted
sum of the values is the output, where the weights assigned to the values are
computed using a compatibility function of the query with the corresponding
key [38]. There are many variants of attention, but the one relevant for this
work is the scaled dot-product attention (Figure 1.11a).

Figure 1.10: Neural machine translation attention visualization for a sentence translation
from English to French [39]

Scaled dot-product attention from [38], takes queries and keys of dimension
dk and values of dimension dv as an input. It computes the dot products
of queries and keys and scales them by dividing them by

√
dk and applies

a softmax function which outputs the weights for the values. This can be
viewed as following matrix operations, where Q, K and V are matrices of
queries, keys and values:

Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V (1.19)

Multi-head attention from [38], allows models to attend to information
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(a) Scale Dot-Product At-
tention

(b) Muti-Head Attention

Figure 1.11: (a) Scaled Dot-Product Attention. (b) Multi-Head Attention consisting of
multiple attention layers [38]

from different representation subspaces at the same time. It can be seen as
applying multiple attention layers. Formally:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

(1.20)

Where the parameter matrices are as follows:

• W Q
i ∈ Rdmodel×dk

• W K
i ∈ Rdmodel×dk

• W V
i ∈ Rdmodel×dk

• W O ∈ Rhdv×dmodel

As described in [38], the architecture of a transformer has an “encoder–
decoder” structure, where “encoder maps an input sequence of symbols (x1, ..., xn)
to a sequence of continuous representations z = (z1, ..., zn). Given z, the de-
coder then generates an output sequence (y1, ..., yn) of symbols one element
at a time”. The model is auto-regressive, meaning that it uses the previously
generated output as its input.
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Besides the attention sub-layers in both encoder and decoder, there is a
fully connected feedforward network applied to each position separately and
identically. This network consists of 2 linear transformations with ReLU in
between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (1.21)

Embedding layers in the architecture are used to convert the input and
output tokens to vectors of dimension dmodel. The output of embedding layers
is summed up with a positional encoding vector of the same length to inject
information about the order of the sequence.

Figure 1.12: The transformer model architecture [38]

1.5.6 Transfer learning
Intuitively, as the name suggests, transfer learning is about transferring knowl-
edge and using this prior knowledge as a starting point to continue learning
further. Formally, transfer learning can be defined as follows [40]:
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“Given a learning task Tt based on Dt, and we can get the help
from Ds for the learning task Ts. Transfer learning aims to improve
the performance of predictive function fT (·) for learning task Tt

by discover and transfer latent knowledge from Ds and Ts, where
Ds 6= Dt and/or Ts 6= Tt. In addition, in most cases, the size of
Ds is much larger than the size of Dt.”

This way of pre-training models is especially useful for deep learning mod-
els for fields where the amount of specific data is insufficient, such as in com-
puter vision or Natural Language Processing.

Fine-tuning is a process that comes after pre-training the model. After
the model has been pre-trained, it can be further improved for task-specific
data while re-using the knowledge from pre-training. Fine-tuning can be done
in various ways. For example, some of the model’s (pre-trained) parameters
might be “frozen”, and only subset of the parameters may be further changed.
This allows to reduce the training time, save computational resources and
avoid potential overfitting.

Figure 1.13: High-level overview of model pre-training and fine-tuning

1.5.7 BERT and RoBERTa
Bidirectional Encoder Representations from Transformers (BERT) proposed
by [41] is a deep learning architecture constructed from Transformer Encoders
which were proposed by [38]. This architecture formed the basis for the model
architecture used in this work.

In [41], 2 model sizes have been introduced: smaller BERTBASE and very
large BERTLARGE which is the model that achieved the state-of-the-art per-
formance on multiple NLP tasks (GLUE [42], MultiNLI [43]. . .). These 2
models are stacks of Transformer Encoders (Figure 1.14) with a few differ-
ent hyperparameter values (Table 1.3) from the original Transformer Encoder
from [38].

As described in [38], in the pre-training phase, 2 objectives are used:

Masked Language Model (MLM) objective inspired by so-called “Cloze
procedure” [44]. In this objective, randomly selected tokens in the input
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Figure 1.14: High-level architecture of BERT models consisting of stacks of Transformer
Encoders [26]

Table 1.3: Values of hyperparameters of the original Transformer Encoder from [38], values
used in BERTBASE and BERTLARGE and values used in RoBERTaSMALL, the model used
in this thesis. Namely the number of encoder layers, attention heads in the Multi-Head
attentions and number of hidden units in the feedforward networks

Architetcture Encoder layers Attention heads Hidden units
Original 6 8 512
BERTBASE 12 12 768
BERTLARGE 24 16 1024
RoBERTaSMALL 4 8 256

are masked out, and the goal for the model is to predict the vocabulary
id of the masked word based on the other parts (Figure 1.6). In the case
of BERT pre-training, random 15 % of words is selected and out of these
80 % is masked out, 10 % are left unchanged and 10 % are replaced with
a randomly selected token. In the case of this thesis, amino acid letters
are considered to be words, and therefore amino acids are being masked
out, and model is trying to predict them.

Next Sentence Prediction (NSP) objective is a binary classification task,
where for 2 given segments model should classify whether they follow
each other in the original data (text) or not.

Few changes in the architecture of BERT and the pre-training process re-
sulted in Robustly optimized BERT approach (RoBERTa), its better-performing
successor proposed by [45]. RoBERTa revealed undertraining of BERT and ex-
hibited performance gains for numerous benchmarks. The main architectural
difference is removing the NSP objective. It has been shown [45] that removing
the NSP for BERTBASE results in matching or slightly improved performance
on the downstream tasks. RoBERTa is an architecture especially optimized
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for pre-training and self-supervision. Analogically to the BERT there are 2
models: RoBERTaBASE and RoBERTaLARGE with the same hyperparameter
values of the architecture from Table 1.3.

Both BERT and RoBERTA yielded outstanding results for numerous tasks
(GLUE benchmark [42], RACE benchmark [46]. . .) by pre-training on large
amounts of data and fine-tuning the models for these downstream tasks.

In the case of classification problem special [CLS] token is used on the first
position of the input. Corresponding first output token is then used to accu-
mulate information about the whole sentence (in the case of this thesis whole
sequence) and is used as an input for the classifier network, fully-connected
feedforward network (Figure 1.15).

Figure 1.15: Illustration of a binary classification using BERT [26]
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Chapter 2
Methods

This chapter describes my approach to solve the task of predicting antibody–
antigen binding, including data preprocessing, models that have been used as
well as how the models have been evaluated in Chapter 3: Results.

2.1 Data
2.1.1 Observed Antibody Space
Advances in the next-generation sequencing (previously described in Sec-
tion 1.1.5) allowed gathering large amounts of natural antibody sequences.
However, the data is usually scattered, and different formats are being used,
which makes working with different data sources and re-applying already de-
veloped techniques harder. The Observed Antibody Space (OAS) database,
introduced in [47], mitigates this problem by collecting and processing anti-
body variable region sequences to the same format from more than 60 different
studies (resulting in over one billion sequences).

OAS database is structured into studies which are further divided into
data units. A data unit is a collection of sequences with the same metadata
information. Metadata of a data unit consists of:

Chain annotating whether given sequences are heavy or light chain sequences.

Isotype (class) of antibodies which is either provided or determined by the
constant region.

Age of the human subject.

Disease (if applicable) of the subject at the time of B-cell extraction.

Vaccine (if applicable) given to the subject prior to B-cell extraction.

B-cell subset from which antibodies originate.
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Species of the subject. For example human, mouse, camel. . .

Author who first published the study together with the date of publication.

Link to the publication with the study.

Size defining the number of non-redundant (unique) sequences.

B-cell source (organ/tissue) from which the B-cells were extracted from.

Subject (identifier) whose B-cells were extracted.

Longitudinal defining the timepoint at which B-cells were extracted (if the
study has been conducted over a period of time).

For each sequence from a data unit following data is provided:

Amino acid sequence of the variable region formatted as a string.

V gene annotation according to the IMGT numbering scheme [48].

J gene annotation according to the IMGT numbering scheme.

CDR3 region defined by IMGT.

IMGT-numbered sequence amino acid sequence annotated according to
the IMGT numbering scheme.

Redundancy defining how often does this sequence appear in the given data
unit.

Full documentation of the data and links to download the data can be
found at [49].

2.1.1.1 Galson 2015 and 2016

Galson 2015 [50] and Galson 2016 [51] are the two Hepatitis B vaccination
studies from OAS database included in this thesis. In both studies, Hep B
labels have been constructed by ELISA test on blood serum and are further
used in this work as a “ground truth”.

For each study, there are 9 source subjects from which the sequences orig-
inate. Distribution of sequenced sequences among subjects can be seen in
Figure 2.1. The distribution of B-cell annotations can be seen in Figure 2.2.
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(a) Galson 2015

(b) Galson 2016

Figure 2.1: Number of sequences from all subjects in the (a) Galson 2015 and (b) Galson
2016 studies

2.1.2 Clonotyping

In the beginning, data size is reduced, and the artificial diversity is removed by
clonotyping. Based on the clonotyping definition (Chapter 1 Section 1.1.4),
the data is initially grouped by V, J regions and CDR3 lengths. Each of
such groups is then clustered (in parallel) into clonotypes in a greedy fashion
by constructing the largest clonotypes first. Within the group, as it already
fulfills pre-requisites of same V, J regions and same CDR3 length, 2 sequences
might be in the same clonotype if there is a maximum of 1 mismatch per
12 amino acids [52]. Meaning that sequences of length < 12 might contain
1 mismatch, sequences of length in [12, 24) might contain 2 mismatches. . .If
there are multiple clonotypes with the largest size, the “tightest” one is selected
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(a) Galson 2015

(b) Galson 2016

Figure 2.2: Number of all B-cell labels in the (a) Galson 2015 and (b) Galson 2016 studies,
where “HepB+B-cells” is the positive label for our task

by taking the one with the minimal number of total mismatches in CDR3
region between the centroid sequence and all other sequences within the cluster
(full pseudo code is available in Algorithm 1).

For each of the clonotype sequences with the most common CDR3 re-
gion within the clonotype are extracted, and the representative sequence is
randomly sampled out of these sequences. Those are then used as an input
for the models. This way, the data consists of sequences that make up the
immune repertoire, which is still highly heterogeneous but does not contain
duplicates and artificial diversity. In this thesis, “clonotypes”, “representative
sequences” and “sequence clusters” are used interchangeably.

Each of the clonotypes (representative sequences) is marked as positive
(binding to Hep B antigen) or negative (non-binding to Hep B antigen) as a
“majority vote” of the original sequences in the clonotype, where everything
except Hep B antibodies is considered as non-binding (i.e. antibodies with
label “HLA-DR+-Plasma-B-Cells” are considered as non-binding). Formally,
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y : C 7→ {−1, +1} where C is a set of all clonotypes, while for c ∈ C c+ is a
set of binding sequences from given clonotype and c− is a set of non-binding
sequences, −1 and +1 match negative and positive class accordingly, then:

∀c ∈ C : y(c) =

+1 if |c+|
|c+|+|c−| > 0.5

−1 otherwise
(2.1)

Algorithm 1 High-level overview pseudocode of clonotyping algorithm that
has been used. The exact implementation uses Pandas library for data group-
ing and handling and numpy for computing CDR3 mismatches and getting
the largest clusters.

1: function cluster_clonotypes(sequences)
2: grouped_sequences← sequences grouped by V, J regions and CDR3 length
3: clusters← []
4: for each group in grouped_sequences do
5: group_clusters← []
6: unclustered_seq_cnt← len(group)
7: while unclustered_seq_cnt > 0 do
8: largest_clusters← all largest clusters from the group ▷

Based on the CDR3 mismatches
9: best_cluster ← the “tightest” cluster from the largest_clusters

unclustered_seq_cnt← unclustered_seq_cnt− len(best_cluster)
10: group_clusters← group_clusters ∪ best_cluster
11: end while
12: clusters← clusters ∪ group_clusters
13: end for
14: return clusters
15: end function

Final counts of Hep B antibodies and non–Hep B antibodies on Galson
2015 and Galson 2016 are shown in Figure 2.3. Clonotyping reduced the
number of data points heavily (Table 2.1). Most of the clonotypes consist of
sequences from single subjects (Figure 2.4).

Table 2.1: Size reductions achieved by clonotyping on both Galson 2015 and Galson 2016
datasets

Study Sequences count Clusters count
Galson 2015 14,738,476 5,698,104
Galson 2016 10,598,377 1,682,432
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(a) Galson 2015 (b) Galson 2016

Figure 2.3: Targets distribution in the (a) Galson 2015 and (b) Galson 2016 studies. Non–
Hep B sequences greatly outnumber the Hep B sequences, and that is the reason why negative
undersampling is used in this work (Section 2.1.3)

(a) Galson 2015 (b) Galson 2016

Figure 2.4: Number of source subjects for clusters (clonotypes) in the (a) Galson 2015 and
(b) Galson 2016 studies. As figures suggest, clusters (clonotypes) originating only from a
single subject are the most common

2.1.3 Training and validation data

Sequences from Hep B vaccination study Galson 2015 [50] have been used for
training and validation data.

Following the random split, the subject split has been used to split the
data for training and validation. Subject split is intended to simulate the
real-world scenario, where predictions are performed on subjects different from
the training subjects. Based on the Figure 2.4 it is clear that most of the
clusters are made up of sequences with a single source subject. Numbers of
the clonotypes with single source subjects for each subject range from slightly
below 300, 000 up to over 1 million (Figure 2.5).
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2.1. Data

The single-subject clonotypes of 5 least frequent subjects (Subject-1368,
Subject-1070, Subject-1212, Subject-1032 and Subject-1614) are set aside as a
validation set. The rest of the data, from 4 subjects, is marked as a training set.
This reflects the real-word scenario because the data consists of all the clusters
from the remaining 4 subjects including single-subject clonotypes, which rep-
resent subject-specific clonotypes, as well as multi-subject clonotypes, which
can be seen as a public antibody repertoire shared among individuals.

After splitting the data, negative samples from each of the splits are fur-
ther randomly undersampled to achieve balanced datasets. This random un-
dersampling is weighted by cluster (clonotype) sizes. Therefore in clusters’
representative sequences (which make up the training and validation sets at
this point), the ones originating from larger clusters are more likely to get
sampled than sequences from smaller clusters. Final training and validation
set sizes are 99, 004 and 23, 892, respectively.

Figure 2.5: Graph showing how many single-subject clusters there are in Galson 2015 per
each subject

In general, sequences within a single Hep B cluster (clonotype) seem to
mostly share the same or have very similar CDR3 regions (Figure 2.6). In
contrast, sequences within non–Hep B clusters are more diverse in terms of
CDR3 regions (Figure 2.7).

2.1.4 Test data

Sequences from a separate Hep B vaccination study Galson 2016 [51] have
been used as test data. As opposed to the training and validation data, besides
clonotyping and using representative sequences, the test data is not randomly
undersampled in any way.
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Figure 2.6: Sequence logos, representing the frequency of amino acids at each position, of
the top 10 clusters with the most Hep B sequences and Hep B ratio above 0.95

2.2 Models

2.2.1 Baseline models

This section describes the methodology used for constructing various baseline
models which served for comparison to the deep learning approach. Different
data representations have been used for the baseline models and for the deep
learning approach.

2.2.1.1 Fingerprints

Molecular fingerprints have been used to create a chemical feature representa-
tion of the protein sequences. The idea of molecular fingerprints lies in gener-
ating feature vectors by applying kernels to molecules [53]. The usual proce-
dure consists of extracting features, hashing them and setting bits/positions
of output vector based on those features. The fingerprint type used is the
Circular (Morgan) fingerprint described in [54], with binary representation,
final vector length of 512 and a radius of 6. The fingerprints are constructed
only from CDR3 regions.
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2.2. Models

Figure 2.7: Sequence logos, representing the frequency of amino acids at each position, of
the top 10 largest clusters, where 9 out of clusters would be considered as non–Hep B based
on the 0.5 ratio threshold (the one Hep B cluster is marked by bold title)

2.2.1.2 k-mers

The second data representation for baseline models is based on k-mer fre-
quency. K-mers are defined as subsequences of length k. K-mers can be seen
as an analogy of n-grams [55] used in NLP. K-mer frequency can provide
a fixed-size vectors for variable-length sequences. However, the issue with
k-mers (and n-grams) is that they cannot incorporate long-range relations
within the sequence.

Actual feature vectors built from 3-mers contain (unnormalized) number
of occurrences of given 3-mer in the given CDR3 sequence. Given 20 natural
amino acids, final vectors are of length 8000, since there are 203 possible 3-
mers.

2.2.1.3 Extremely randomized trees

Extremely randomized trees (ET), introduced by [56], is an ensemble model
based on decision trees which randomizes both attribute and cut-point choice
when splitting the tree. The construction of trees is similar to the algorithm
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used for decision trees (Theoretical background Section 1.4.2), but the best
node split is evaluated only for a subset of randomly chosen k features and for
each of such feature x, the threshold for split is sampled uniformly at random
from the interval [min(x), max(x)]. Afterwards, the best split from them is
selected using a criterion measuring the goodness of the split (Theoretical
background Section 1.4.2). The ET model serves as a baseline model for
comparison to the suggested deep learning approach.

2.2.2 RoBERTa
In the deep learning approach, raw amino acid sequences are used as an input
for Robustly optimized BERT approach (RoBERTa) which is responsible for
both the sequence representations of antibodies and their classification.

The architecture used in this work is a reduced RoBERTa architecture
which will be referred to as RoBERTaSMALL. While the original BERT archi-
tectures BERTLARGE and BASE contain 110 million and 340 million parameters
respectively, the RoBERTaSMALL architecture used int this work slightly less
than 600, 000 parameters. This architecture has following differences from the
original RoBERTaBASE architecture (1.3):

• 4 encoder layers

• 128 hidden size

• 256 inner hidden size in feedforward networks

• 8 attention heads

Based on the pre-training data, the maximum input sequence lengths of
the architectures have been selected as 32 and 144 for CDR3 model and heavy
sequence model, respectively.

Based on the sequence length distributions from Galson 2015 (Figure 2.8),
all the full variable heavy chain sequences fit in this range. For CDR3 se-
quences there are some sequences which are longer and are therefore skipped
during training. However, predictions on longer CDR3 sequences are made by
truncating the input sequence (trailing region of the sequence is cut off).

2.2.2.1 Pre-training

RoBERTa model has been pre-trained by thesis supervisor David Příhoda (re-
sults in progress, unpublished) on a large corpus of human antibodies avail-
able from the OAS database. There are 2 models, one pre-trained on whole
variable regions of the heavy chains and the other one pre-trained on CDR3
regions of the heavy chains. Temporal split has been used for the data, where
2011–2017 studies have been used as training data, 2018 studies as validation
data and 2019 studies as test data. These splits have been further randomly
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2.2. Models

(a) CDR3 sequence lengths in Galson 2015 (b) Heavy sequence lengths in Galson 2015

Figure 2.8: Distribution of lengths of sequences in the Galson 2015 study for (a) CDR3
sequences and (b) full heavy sequences

down-sampled to 20 million sequences each while keeping the ratios of original
source data units.

2.2.2.2 Training

Pre-trained architectures have been further trained on the Hepatitis B anti-
body specificity classification task in 2 ways.

First training approach took place on the whole architecture, fine-tuning
both parts of the architecture, encoder responsible for the modelling of anti-
bodies and classification head responsible for predicting the Hep B–binding
property.

In the second approach, only the classification head (single fully connected
layer) has been trained while keeping the parameters of the encoder “frozen”.

In both cases, the deep learning models have been trained on balanced
training data (49, 502 positive, 49, 502 negative sequences) and balanced val-
idation (11, 946 positive, 11, 946 negative sequences) data from the subject
split. The validation data is used to control overfitting of the models. Numer-
ous hyperparameter setups have been tried, including increased learning rates
(such as 1e−4 and 1e−3 instead of 1e−5), more training epochs (ranging from
2000 to 6000), more regularization by rising dropout probabilities (from 0.1
for both regular dropout and attention dropout to 0.25, 0.3 and 0.5), adding
class weights by using a weighted loss function (such as 1:2, 1:3, 1:99 for neg-
ative to positive class weight ratio). Eventually all the final models have been
trained with the following set of hyperparameters:

• 2000 epochs

• 256 batch size

• adam optimizer
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• 1e−5 target learning rate with inverse square root learning rate scheduler
and 10, 000 warmup updates

• update frequency set to 1 (updating after every batch)

• 0.1 dropout and 0.1 attention dropout

• 144 max positions in positional embeddings for full variable heavy chain
sequences and 32 for CDR3 sequences

• validate interval set to 1 (each epoch)

The number of epochs (2000) proved to be long enough to start overfitting
or plateauing. Following the training, the best checkpoints have been taken
based on the Negative log-likelihood (NLL) loss on balanced validation data,
while LogSoftmax is being used as an activation function in the final layer.

Afterwards, models have been re-trained on the complete Galson 2015
dataset by combining the balanced training and validation splits while keeping
the number of epochs set to the epoch from which the best checkpoint came
from. These models were then considered to be final models applied to Galson
2016 test data (Results section 3.4).

(a) CDR3 model (b) CDR3 model with frozen encoder

(c) Heavy model (d) Heavy model with frozen encoder

Figure 2.9: Training (blue) and validation (orange) loss progress throughout the 2000 train-
ing epochs for RoBERTa models with encoder fine-tuning (a, b) and for RoBERTa models
with frozen encoder. The curves have been smoothened by exponential moving average with
a coefficient equal to 0.6
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2.3 Evaluation
Evaluation of models in this work is generally performed in 2 ways. The
non-weighted evaluation which treats all the representative clonotype sequences
as equal with regard to evaluation. The second method is the weighted evalu-
ation in which weights are used for all the metrics and other evaluation tech-
niques proportionally to the size of the clonotype cluster from which given
representative sequence originates (Methods Section 2.1.2). The weighted
evaluation is intended to reflect real-world usage when larger clusters would
occur more often, and therefore their correct prediction is more important.

For evaluation on the validation dataset, predictions are made on the both
balanced (11, 946 positive, 11, 946 negative sequences), and whole data (11, 946
positive, 1, 761, 834 negative sequences) and the performances are reported.

Evaluation on the test dataset proved to be a hard task, and therefore the
performance is reported in regards to the similarity to the training data. The
best matches of all Galson 2016 positive test sequences are found in both pos-
itive and negative Galson 2015 training sequences by aligning the sequences
and getting the sequences with the best scores. The global alignment function
from module pairwise2 of Biopython library [57] has been used with BLO-
SUM62 substitution matrix, open gap penalization set to −5 and extending
gap penalization set to −2.

Afterwards, identity is used as a number of matching positions within the
alignment divided by the alignment’s length, where a pair of gaps is considered
to be a mismatch. Then the positive data points are split based on the identity
percentage of their CDR3 regions (value is multiplied by 100) into 6 bins
consisting of sequences with 0–50 %, 50–60 %, 60–70 %, 70–80 %, 80–90
% and 90–100 % identity. For each of the classifiers, positive classification
threshold is found such that all the models yield as close to the given FPR
(it is either an exact match or below given FPR value). Then all classifiers,
having roughly the same FPR, are used to make predictions, and recalls are
reported for all the bins.

2.4 Implementation
On the implementation side of the thesis, Python programming language has
been used for the majority of the tasks. GNU Make has been used for Make-
file targets using simple bash commands or Python scripts to perform more
complex tasks and ensure reproducibility together with the conda package
manager [58]. Most of the data analysis and exploratory work has been done
in jupyterlab environment, which was used to interact with the jupyter note-
books [59] together with papermill [60] to parametrize the notebooks.

Pandas [61] library has been used for data handling and together with
numpy [62] for computations on the data, such as in Clonotyping. Circular
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fingerprints (Section 2.2.1.1) have been constructed via RDkit [63], Biopython
library [57] has been used for sequence alignments and scoring (Section 2.3),
scikit-learn [64] for the random split, k-mers (Section 2.2.1.2) generation
and baseline models. The RoBERTa models have been trained using fairseq
library [65] and further used as a PyTorch [66] model for making the predic-
tions. For the plots and various visualizations matplotlib [67], seaborn [68],
logomaker [69], tensorboard [70] and MulticoreTSNE [71] have been used.

Because of the dataset sizes, all the data has been stored, analysed and
processed on a high-performance computing (HPC) cluster. Most of the tasks
have been first split into smaller parts, submitted and in the end merged.
This provided the first level of parallelization (and saving of time), while also
multiprocessing module has been used as another level of parallelization
within the Python source code. All of the deep learning models have been
trained on GPUs on this cluster.
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Chapter 3
Results

The goal of the thesis was to implement a pipeline capable of binary classifica-
tion of antibodies to either Hep B–binding or non-binding class. The data from
2 vaccination studies, Galson 2015 [50] and Galson 2016 [51] was first prepro-
cessed by performing clonotyping and taking a single representative sequence
of each clonotype (Section 2.1.2). The sequences from Galson 2015 have been
split into training and validation set via the subject split method and negative
sequences of the validation set have been undersampled to achieve a balanced
validation set (Section 2.1.3).

Models have been evaluated on representative sequences of single-subject
clusters from 5 subjects (validation data) in Section 3.3 as well as its balanced
variation (balanced validation data) in Section 3.2 and on Galson 2016 study
in Section 3.4. The baselines models and deep learning models mentioned
in this chapter have been trained on 49, 502 positive and 49, 502 negative
single and multi-subject representative clonotype sequences from 4 subjects
(Methods Section 2.1.3).

RoBERTa pre-trained on a large corpus of human full variable heavy chain
sequences which has been further fine-tuned is used as a model for the classi-
fication of antibodies to be either Hep B–binding or non-binding. This final
model has been selected based on the performance on the balanced validation
dataset (Results Chapter 3), and then used to make predictions on represen-
tative sequences of clonotypes from study Galson 2016. The model has been
trained using fairseq library [65] and further used as a PyTorch [66] model.
All the methods are described in details in Chapter 2.

3.1 Data exploration
One of the outcomes of the thesis was also an analysis of the Galson 2015 and
Galson 2016 vaccination studies. Various visualizations of the sequences are
available throughout the Chapter 2: Methods.
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For different representations, t-SNE has been used to generate visualiza-
tions of positive Galson 2015 sequences as well as balanced subset including
both negative and positive sequences from Galson 2015 (aggregation of bal-
anced training and validation sequences) using k-mers (Figure 3.1a and Fig-
ure 3.3a), Circular fingerprints (Figure 3.1b and Figure 3.3b) and final layer
embeddings from fully fine-tuned RoBERTaSMALL models using both CDR3
(Figure 3.2a and Figure 3.4a) and full variable heavy chain sequences (Fig-
ure 3.2b and Figure 3.4b).

(a) k-mers

(b) Circular fingerprints

Figure 3.1: t-SNE of Hep B–specific (positive) Galson 2015 sequences for (a) k-mers and (b)
Circular fingerprints representation
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(a) CDR3 sequences

(b) Full variable heavy chain sequences

Figure 3.2: t-SNE of Hep B–specific (positive) Galson 2015 sequences for final layer embed-
dings from RoBERTa using (a) CDR3 and (b) full variable heavy chain sequences

3.2 Balanced validation

The balanced validation dataset (11, 946 positive, 11, 946 negative sequences)
is the result of undersampling negatives in all validation sequences while us-
ing cluster sizes as weights for the random sampling. This includes results of
Extremely randomized trees baselines using k-mers and Circular fingerprints
and pre-trained RoBERTa models with and without frozen encoder using
CDR3 regions and whole heavy sequences (49, 502 positive, 49, 502 negative
sequences). Both weighted and non-weighted metrics are listed in Table 3.1
and discussed in Discussion. The best performing model is RoBERTaSMALL
with fine-tuned encoder, using full variable heavy chain sequences with 0.476
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(a) k-mers

(b) Circular fingerprints

Figure 3.3: t-SNE of Galson 2015 sequences for (a) k-mers and (b) Circular fingerprints
representation

and 0.765 weighted and non-weighted F1 score and 0.740 and 0.845 weighted
and non-weighted ROC AUC.

3.3 Full validation
The full validation dataset (11, 946 positive, 1, 761, 834 negative sequences)
is a superset of previously used balanced validation dataset (3.2). The full
validation dataset corresponds to a real-world scenario of the non-binding
antibodies being present in several orders of magnitude higher number than
binding antibodies. This includes results of Extremely randomized trees base-
lines using k-mers and Circular fingerprints and pre-trained RoBERTa mod-
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(a) CDR3 sequences

(b) Full variable heavy chain sequences

Figure 3.4: t-SNE of Galson 2015 sequences for final layer embeddings from RoBERTa using
(a) CDR3 and (b) full variable heavy chain sequences

els with and without frozen encoder using CDR3 regions and whole heavy
sequences (49, 502 positive, 49, 502 negative sequences). Both weighted and
non-weighted metrics are listed in Table 3.2 and discussed in Discussion. Ex-
tremely randomized trees (ET) model using Circular fingerprints yielded the
best F1 score results: 0.155 weighted and 0.0.083 non-weighted. The fully
fine-tuned RoBERTaSMALL using full variable heavy chain sequences achieved
the best ROC AUC: 0.829 weighted and 0.875 non-weighted.
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Table 3.1: Galson 2015 balanced validation results including weighted and non-weighted F1
score, area under the precision-recall curve (AP) and area under ROC curve for baseline and
deep learning models trained on the training clusters

Model Weighted valid Non-weighted valid
F1 AP ROC

AUC
F1 AP ROC

AUC
ET (Circular fin-
gerprints)

0.387 0.470 0.667 0.542 0.798 0.777

ET (k-mers) 0.369 0.473 0.681 0.594 0.810 0.792
RoBERTaSMALL
(Heavy)

0.476 0.457 0.740 0.765 0.825 0.845

RoBERTaSMALL
(CDR3)

0.396 0.383 0.647 0.700 0.766 0.764

RoBERTaSMALL
+ frozen enc.
(Heavy)

0.412 0.377 0.693 0.759 0.768 0.805

RoBERTaSMALL
+ frozen enc.
(CDR3)

0.417 0.361 0.668 0.697 0.752 0.752

Table 3.2: Galson 2015 full validation results including weighted and non-weighted F1 score,
area under the precision-recall curve (AP) and area under ROC curve for baseline and deep
learning models trained on the training clusters

Model Weighted valid Non-weighted valid
F1 AP ROC

AUC
F1 AP ROC

AUC
ET (Circular fin-
gerprints)

0.155 0.214 0.715 0.083 0.185 0.790

ET (k-mers) 0.132 0.213 0.741 0.075 0.187 0.812
RoBERTaSMALL
(Heavy)

0.116 0.112 0.829 0.049 0.054 0.875

RoBERTaSMALL
(CDR3)

0.083 0.074 0.723 0.034 0.039 0.788

RoBERTaSMALL
+ frozen enc.
(Heavy)

0.088 0.080 0.800 0.037 0.032 0.847

RoBERTaSMALL
+ frozen enc.
(CDR3)

0.080 0.063 0.727 0.030 0.035 0.773
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3.4 Test results
This section lists models’ performance on 1, 682, 432 sequences from differ-
ent study (Galson 2016 [51]). This includes results of k-mers and Circular
fingerprints Extremely randomized trees baselines and pre-trained RoBERTa
models with and without frozen encoder using CDR3 regions and whole heavy
sequences. All of the models have been re-trained on the balanced training set
together with balanced validation set from Galson 2015 study [50] (122, 896 se-
quences). Both weighted and non-weighted metrics are listed in the Table 3.3.
The best performing model is Extremely randomized trees (ET) model using
Circular fingerprints with 0.474 and 0.261 weighted and non-weighted F1 score
and 0.645 and 0.597 weighted and non-weighted ROC AUC.

Table 3.3: Galson 2016 test results including Weighted and non-weighted F1 score, area
under the precision-recall curve (AP) and area under ROC curve for baseline and deep
learning models trained on both, the training and validation clusters

Model Weighted test Non-weighted test
F1 AP ROC

AUC
F1 AP ROC

AUC
ET (Circular fin-
gerprints)

0.474 0.575 0.645 0.261 0.292 0.597

ET (k-mers) 0.469 0.570 0.640 0.261 0.284 0.594
RoBERTaSMALL
(Heavy)

0.333 0.315 0.509 0.162 0.121 0.454

RoBERTaSMALL
(CDR3)

0.393 0.320 0.499 0.195 0.124 0.453

RoBERTaSMALL
+ frozen enc.
(Heavy)

0.305 0.315 0.507 0.161 0.125 0.466

RoBERTaSMALL
+ frozen enc.
(CDR3)

0.386 0.318 0.504 0.191 0.125 0.461

Since it proved to be hard for the models to make predictions on datasets
with a large volume of negative sequences, models’ evaluations on positive
test sequences are also available separately as heat maps divided into bins by
their identity to negative and positive training sequences. This way, it can be
inspected how the model’s ability to detect the binding antibodies is affected
by their similarity to the positive and negative training sequences. Intuitively,
it is expected to observe better performance for sequences highly similar to
the positive training sequences and very dissimilar from the negative training
sequences and vice versa. A detailed description of this evaluation method
is available in Methods Section 2.3. Performance on the data bins split by
identity are listed in this section (Figure 3.5, Figure 3.6 and Figure 3.7). The
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positive classification thresholds have been set such that the target FPR of all
the models is as close as possible to the 0.3 while FPR ≤ 0.3. The achieved
results are further discussed in Chapter 4: Discussion.

(a) k-mers ET (weighted) (b) k-mers ET (non-weighted)

(c) Circular fingerprints ET (weighted) (d) Circular fingerprints ET (non-weighted)

Figure 3.5: Weighted and non-weighted recall values of baseline models on the positive
test sequences split into bins by identity percentage to training positive (vertical axis) and
negative sequences (horizontal axis), while F P R ≤ 0.3 (Methods Section 2.3). The models
perform best for the sequences most similar to the positive sequences and worse for sequences
being more similar to the negative sequences
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(a) Heavy RoBERTa (weighted) (b) Heavy RoBERTa (non-weighted)

(c) Heavy frozen encoder RoBERTa
(weighted)

(d) Heavy frozen encoder RoBERTa
(non-weighted)

Figure 3.6: Weighted and non-weighted evaluation of RoBERTa models, using full variable
heavy chain sequences, on the positive test sequences split into bins by identity percentage
to positive and negative training sequences, while F P R ≤ 0.3 (Methods Section 2.3). The
models seem to achieve higher recall values with rising identity to both positive (vertical
axis) and negative training sequences (horizontal axis), with the exception of 90-100 %
positive-to-negative bins. Intriguingly, this does not hold for low positive-to-negative identity
and rising positive-to-positive identity
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(a) CDR3 RoBERTa (weighted) (b) CDR3 RoBERTa (non-weighted)

(c) CDR3 frozen encoder RoBERTa
(weighted)

(d) CDR3 frozen encoder RoBERTa
(non-weighted)

Figure 3.7: Weighted and non-weighted evaluation of RoBERTa models, using CDR3 se-
quences, on the positive test sequences split into bins by identity percentage to positive
(vertical axis) and negative training sequences (horizontal axis), while F P R ≤ 0.3 (Meth-
ods Section 2.3). The models seem to achieve higher recall values with rising identity to
both positive and negative training sequences, with exception of 90-100 % identity bin (up-
per right corner). Intriguingly, this does not hold for low positive-to-negative identity and
rising positive-to-positive identity
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Chapter 4
Discussion

Based on the performance on the balanced validation results of binary clas-
sification of sequences to either Hep B–binding or non-binding (Results Sec-
tion 3.2), pre-trained, fully fine-tuned RoBERTa using full variable heavy
chain sequences as input would be selected as the best model. Performance
on the full validation set of Hep B–specific and non-specific antibodies from
Galson 2015 (Section 3.3) showed that the size of the negative set (11, 946
negative sequences in the balanced set and 1, 761, 834 negative sequences in
the full set) can affect the performance of the models. For example, weighted
and non-weighted F1 score of the best performing model on the balanced
validation dataset, RoBERTa using full variable heavy chain sequences, de-
creased from 0.476 to 0.116 and from 0.765 to 0.049, respectively. The models
have also been evaluated on Galson 2016 study (Section 3.4) again containing
mostly negative sequences (229, 352 positive sequences, 1, 453, 080 negative
sequences) and performance similar to the performance on the full validation
set.

Generally, it can be seen that in the case of CDR3 models, overfitting
or plateauing has been reached quicker than for the models using full-length
heavy sequences. Whereas between the model using the same sequences, the
models with encoder fine-tuning seem to train or overfit much quicker than
the models with frozen encoder (Figure 2.9). Furthermore, the models with
encoder fine-tuning seem to provide better performance than the ones without
encoder fine-tuning.

Modest performance on the imbalanced data with a prevalent number
of negative sequences can be justified by high diversity in the data. This
is especially problematic for the models using whole heavy sequences. On
the other hand, models using only CDR3 regions have to deal with lower
diversity because of being shorter in comparison to the full variable heavy
chain sequences. Furthermore, for some CDR3 sequences, there are both
Hep B and non–Hep B antibodies sharing this region and differing only in
other parts of the antibody and thus possibly causing problems for a classifier.

49



4. Discussion

Another reason could be the fact that the ELISA test, used to separate the
Hep B–specific antibodies (being the ground truth in this thesis), does not
provide 100 % sensitivity, leading to some Hep B–specific sequences being
present in the negative set.

Moreover, the antibodies might be liable to so-called “activity-cliff”, the
term common in medicinal chemistry, which means that a compound’s activity
might change significantly given only a small change in its structure. For more
details at this topic, see [72].

ET baseline models using k-mers and Circular fingerprints are the models
that exhibit very rational behaviour in regards to the performance on the test
data. The higher the positive to positive identity is the higher are the recall
values and the lower the positive to negative identity is the lower are the recall
values (Figure 3.5).

However, in the case of RoBERTa models, the reasoning behind the results
becomes less clear. Models using whole heavy sequences generally performs the
best on bins with higher positive-to-positive identity and positive-to-negative
identity. However, the performance does not rise with rising positive-to-
positive identity with low positive-to-negative identity. In the case of heavy
sequences, this could be caused by identity being computed only on CDR3
regions, and therefore the sequence could differ very much in the other parts
of the full variable heavy chain sequence. Nevertheless, this trend holds even
for the models using only CDR3 regions. This could be partially explained by
a cardinality of the sets. In general, there is much fewer sequences in the high
identity bins than in the ones with lower identity. Also, the identity has been
computed as the best match to the single sequence in the training data, and
due to the size of the training dataset (122, 896 sequences consisting of previ-
ous training and validation data), the single match might not be sufficient for
a model.

Although the RoBERTa deep learning approaches slightly overperformed
baselines in the case of balanced validation dataset (Table 3.1), for the data
with prevailing negative sequences, such as in full validation data (Table 3.2)
and test data (Table 3.3), Extremely randomized trees (ET) baseline models
using Circular fingerprints and k-mers outperform the deep learning models.

The performance decrease between balanced validation and full validation
dataset is notable for both the deep learning and the baseline models. One of
the reasons could be the diversity of the immune repertoire as such. Antibod-
ies, in general, are very diverse and antibodies for a certain antigen make up
only a tiny subset of the whole repertoire where the negative sequences make
up the rest. Therefore even though the small positive subset (~200 thousand
sequences) can be predicted very well, there might be a lot of “outlier” se-
quences present in the larger negative dataset (~1.4 million sequences) which
are more similar to the positive than negative sequences, and the classifier
misclassifies them and thus the False positive rate raises.

Even though the modest results are most likely caused by the negative
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sequences, another plausible reason for the performance on Galson 2016 could
be the difference in experimental conditions. For example, Galson 2015 [50]
patients were previously vaccinated (“booster vaccine”) and Galson 2016 [51]
patients were not (“vaccine-naive patients”).
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Chapter 5
Case study

5.1 Introduction
This chapter serves as a stand-alone part which sums up the methods proposed
in this work, and showcases use of a deep learning model on a separate Hepati-
tis B vaccination study (Galson 2016 from [51]). The results are presented and
evaluated in a fashion suitable for this task, and potential biological outcomes
are discussed.

5.2 Methods
In high-level overview, the data from 2 vaccination studies, Galson 2015 [50]
and Galson 2016 [51] is first preprocessed by performing clonotyping and tak-
ing a single representative sequence of each clonotype (Section 2.1.2). The
sequences from Galson 2015 have been split into training and validation split
via the subject split method and negative sequences of the validation set have
been undersampled to achieve a balanced validation set (Section 2.1.3).

RoBERTa pre-trained on a large corpus of human full variable heavy chain
sequences which has been further fine-tuned is used as a model for the classifi-
cation of antibodies to be either Hep B–binding or non-binding as annotated
by an ELISA assay. This final model has been selected based on the perfor-
mance on the balanced validation dataset (Results Chapter 3), and then used
to make predictions on representative sequences of clonotypes from study Gal-
son 2016. The model has been trained using fairseq library [65] and further
used as a PyTorch [66] model.

Two different ways of evaluation have been introduced in Chapter 2: Methods,
namely weighted and non-weighted. In this chapter, only results weighted by
clonotype sizes are reported, since giving higher importance to the antibodies
from larger clonotypes should result in the better real-word performance. All
the methods are described in details in Chapter 2: Methods.
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5. Case study

5.3 Results
The RoBERTaSMALL using full variable heavy chain sequences is a model
that would be selected among other classifiers (Table 3.1) based on its perfor-
mance on the balanced validation dataset with the 0.476 weighted and 0.765
non-weighted F1 score and 0.740 weighted and 0.845 non-weighted ROC AUC
(Figure 5.1, Figure 5.2). But on the full validation, it has been outperformed
by Extremely randomized trees (ET) models using Circular fingerprints and
k-mers (Methods Section 2.2.1.1 and Section 2.2.1.2) as its input.

Figure 5.1: Weighted confusion matrix of predictions of RoBERTaSMALL using full variable
heavy chain sequences on the balanced validation data

Figure 5.2: Weighted PRC and ROC curves RoBERTaSMALL using full variable heavy chain
sequences on the balanced validation data

The model applied on a study different from the one used for training,
Galson 2016 [51], yields modest results (Figure 5.3, Figure 5.4) mainly due to
high imbalance in the data (229, 352 positive sequences, 1, 453, 080 negative
sequences). The model achieved 0.333 and 0.162 weighted and non-weighted
F1 score and 0.509 and 0.454 weighted and non-weighted ROC AUC.
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5.4. Discussion

Figure 5.3: Weighted confusion matrix of predictions of RoBERTaSMALL using full variable
heavy chain sequences on the test data

Figure 5.4: Weighted PRC and ROC curves RoBERTaSMALL using full variable heavy chain
sequences on the test data

The final model has also been used to generate feature representations of
the positive representative sequences from Galson 2016 and t-SNE has been
used to reduce its dimensionality and plot its visualization showing that even
the positive representative sequences of clonotypes seem to further cluster into
groups (Figure 5.5).

5.4 Discussion

The results show that the deep learning approach applied to classify specificity
of antibodies from the Galson 2016 study exhibits modest performance. The
ROC AUC values are roughly 0.5 which would be the AUC of a random
classifier.
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5. Case study

Figure 5.5: t-SNE visualization of the feature representation of positive representative se-
quences from the Galson 2016 study, generated by RoBERTaSMALL model using full variable
heavy chain sequences

Figure 5.6: Positive clonotype counts in Galson 2016 split by positive-to-positive and
positive-to-negative identity to training clonotypes from Galson 2015

It might be partially explained by a small overlap between different stud-
ies. It can be seen that the representative sequences of the positive clonotypes
from Galson 2016 have mostly same similarity to both positive and negative
clonotype representative sequences from training set from Galson 2015 (diag-
onal line in Figure 5.6).

Even though the performance is modest at the time, new techniques from
various subfields of AI (especially NLP) can be added, and the whole process
can be reapplied, possibly providing improved results. This would allow mod-
els to be applied as a supplementary in-silico technique to the current in-vitro
techniques such as the ELISA tests where it can be used to affirm or deny its
results since even the ELISA tests are not entirely accurate.
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Conclusion

The goal of the thesis was to analyse the Galson 2015 vaccination study and
build a pipeline capable of classifying Hepatitis B specificity of antibody se-
quences and apply the final model on the sequences from the Galson 2016
vaccination study.

In this work, the data has been analysed and numerous preprocessing
techniques, based on the biological properties of antibodies, have been applied.
Several sequence representations have been tested with baseline Extremely
randomized trees (ET) models, as well as a state-of-the-art NLP model called
RoBERTa previously pre-trained on a large corpus of human antibodies.

Also, more sophisticated evaluation metrics based on the similarity be-
tween test and training sequences have been used to investigate models’ re-
sults further. The results have been discussed, and possible causes of the
classification errors have proposed in Chapter 4: Discussion.

In general, the deep learning approach seems to yield modest result but has
a large potential in further improvements and provides a cheaper alternative
or supplementary technique to the in-vitro techniques such as the ELISA tests.

Further research

The modest performance of the models does not necessarily mean that the
antibody antigen binding cannot be predicted. Considering the “free lunch
theorem” [73], it might just suggest a mismatch between the task and the
model.

Other reason could be that the 3D structure of antibodies is required to
make good predictions about the binding properties of antibodies. However,
nowadays, there is a very few resources providing also the structural informa-
tion data, and its modelling is a challenging problem with ongoing research
(for example [74]).
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Conclusion

Additionally, the large amounts of negative sequences proved to be prob-
lematic. Other data preprocessing techniques, besides the already applied
clonotyping, might be helpful. One such example is alternative or additional
data clustering via paratyping [8], a method grouping antibodies with the
same paratope together, where the paratope is usually inferred by using other
predictive models. Yet another option which could possibly reduce FPR and
thus improve the performance on the negative data is a technique coming
from computer vision, mainly used for the object detection task, called hard
negative mining [75]. In this setup, the positive sequences could be seen as the
objects that should be detected and the negative sequences as the background
data which prevails.

In conclusion, to make reliable antibody-antigen binding predictions the
further research is necessary. Antibody-antigen binding, as well as general
protein binding interactions as such, remain an ongoing effort.

58



Bibliography

1. RAO, V. Srinivasa; SRINIVAS, K.; SUJINI, G. N.; KUMAR,
G. N. Sunand. Protein-Protein Interaction Detection: Methods and
Analysis. International Journal of Proteomics. 2014, vol. 2014, pp. 1–
12. Available from DOI: 10.1155/2014/147648.

2. BAKAIL, May; OCHSENBEIN, Francoise. Targeting protein–protein
interactions, a wide open field for drug design. Comptes Rendus
Chimie. 2016, vol. 19, no. 1-2, pp. 19–27. Available from DOI:
10.1016/j.crci.2015.12.004.

3. MASON, Derek M; FRIEDENSOHN, Simon; WEBER, Cédric R;
JORDI, Christian; WAGNER, Bastian; MENG, Simon; GAINZA,
Pablo; CORREIA, Bruno E; REDDY, Sai T. Deep learning enables
therapeutic antibody optimization in mammalian cells by deciphering
high-dimensional protein sequence space. bioRxiv. [preprint]. 2019.
Available from DOI: 10.1101/617860.

4. LIU, Ge et al. Antibody complementarity determining region design
using high-capacity machine learning. Bioinformatics. 2019, vol. 36,
no. 7, pp. 2126–2133. ISSN 1367-4803. Available from DOI: 10.1093/
bioinformatics/btz895.

5. GAINZA, P.; SVERRISSON, F.; MONTI, F.; RODOLÀ, E.;
BOSCAINI, D.; BRONSTEIN, M. M.; CORREIA, B. E. Deciphering
interaction fingerprints from protein molecular surfaces using geometric
deep learning. Nature Methods. 2019, vol. 17, pp. 184–192. Available
from DOI: 10.1038/s41592-019-0666-6.

6. GRAVES, Jordan; BYERLY, Jacob; PRIEGO, Eduardo; MAKKAPATI,
Naren; PARISH, S. Vince; MEDELLIN, Brenda; BERRONDO, Monica.
A Review of Deep Learning Methods for Antibodies. Antibodies. 2020,
vol. 9, no. 2, pp. 12. ISSN 2073-4468. Available from DOI: 10.3390/
antib9020012.

59

https://doi.org/10.1155/2014/147648
https://doi.org/10.1016/j.crci.2015.12.004
https://doi.org/10.1101/617860
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.3390/antib9020012
https://doi.org/10.3390/antib9020012


Bibliography

7. RAO, Roshan; BHATTACHARYA, Nicholas; THOMAS, Neil; DUAN,
Yan; CHEN, Xi; CANNY, John; ABBEEL, Pieter; SONG, Yun S. Eval-
uating Protein Transfer Learning with TAPE. bioRxiv. [preprint]. 2019.
Available from DOI: 10.1101/676825.

8. RICHARDSON, Eve; GALSON, Jacob D.; KELLAM, Paul; KELLY,
Dominic F.; SMITH, Sarah E.; PALSER, Anne; WATSON, Simon;
DEANE, Charlotte M. A computational method for immune reper-
toire mining that identifies novel binders from different clonotypes,
demonstrated by identifying anti-Pertussis toxoid antibodies. bioRxiv.
[preprint]. 2020. Available from DOI: 10.1101/2020.06.02.121129.

9. INSTITUTE FOR QUALITY AND EFFICIENCY IN HEALTH CARE
(IQWIG). How does the immune system work? In: National Center for
Biotechnology Information [online]. 2020 [visited on 2020-07-06]. Avail-
able from: https://www.ncbi.nlm.nih.gov/books/NBK279364.

10. ALBERTS, Bruce; JOHNSON, Alexander; LEWIS, Julian; RAFF, Mar-
tin; ROBERTS, Keith; WALTER, Peter. The Adaptive Immune System.
In: Molecular biology of the cell. 4th ed. New York, NY: Garland Science,
2002. ISBN 0815332181.

11. XU, John L; DAVIS, Mark M. Diversity in the CDR3 Region of VH Is
Sufficient for Most Antibody Specificities. Immunity. 2000, vol. 13, no.
1, pp. 37–45. Available from DOI: 10.1016/s1074-7613(00)00006-6.

12. GRAHAM, Bettie J. Antibody [online] [visited on 2020-07-25]. Available
from: https://www.genome.gov/genetics-glossary/Antibody.

13. MIRSKY, Alexander; KAZANDJIAN, Linda; ANISIMOVA, Maria.
Antibody-Specific Model of Amino Acid Substitution for Immunologi-
cal Inferences from Alignments of Antibody Sequences. Molecular Biol-
ogy and Evolution. 2014, vol. 32, no. 3, pp. 806–819. ISSN 0737-4038.
Available from DOI: 10.1093/molbev/msu340.

14. MURPHY, Kenneth; WEAVER, Casey. Janeway’s Immunobiology.
9th ed. New York, NY, USA: Garland Science/Taylor & Francis Group,
LLC, 2017. ISBN 9780815345510.

15. ROSENBERG, Michael S. Sequence Alignment. In: Sequence alignment:
methods, models, concepts, and strategies. Berkeley, CA, USA: University
of California Press, 2009. ISBN 9780520256972.

16. LI, Heng. On the definition of sequence identity [online]. 2018 [visited
on 2020-07-18]. Available from: https://lh3.github.io/2018/11/25/
on-the-definition-of-sequence-identity.

17. GREIFF, Victor; MIHO, Enkelejda; MENZEL, Ulrike; REDDY, Sai T.
Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires.
Trends in Immunology. 2015, vol. 36, no. 11, pp. 738–749. Available
from DOI: 10.1016/j.it.2015.09.006.

60

https://doi.org/10.1101/676825
https://doi.org/10.1101/2020.06.02.121129
https://www.ncbi.nlm.nih.gov/books/NBK279364
https://doi.org/10.1016/s1074-7613(00)00006-6
https://www.genome.gov/genetics-glossary/Antibody
https://doi.org/10.1093/molbev/msu340
https://lh3.github.io/2018/11/25/on-the-definition-of-sequence-identity
https://lh3.github.io/2018/11/25/on-the-definition-of-sequence-identity
https://doi.org/10.1016/j.it.2015.09.006


Bibliography

18. ROTH, Ron M. Introduction. In: Introduction to coding theory.
New York, NY, USA: Cambridge University Press, 2007. ISBN
9780521845045.

19. KULSKI, Jerzy K. Next-generation sequencing—an overview of the his-
tory, tools, and “Omic” applications. Next Generation Sequencing -
Advances, Applications and Challenges. 2016, pp. 3–60. Available from
DOI: 10.5772/61964.

20. MARKS, Claire; DEANE, Charlotte M. How repertoire data is changing
antibody science. Journal of Biological Chemistry. 2020, vol. 295, pp.
9823–9837. Available from DOI: 10.1074/jbc.rev120.010181.

21. BERKOWITZ, Frank E.; JERRIS, Robert C. Microbiology laboratory
methods. In: Practical medical microbiology for clinicians. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2016. ISBN 9781119066743.

22. ABNOVA CORPORATION. ELISA [online] [visited on 2020-07-09].
Available from: http://www.abnova.com/images/content/support/
ELISA.gif.

23. SHALEV-SHWARTZ, Shai; BEN-DAVID, Shai. Clustering. In: Under-
standing machine learning: from theory to algorithms. New York, NY,
USA: Cambridge University Press, 2014. ISBN 9781107057135.

24. MAATEN, Laurens van der; HINTON, Geoffrey. Viualizing data using
t-SNE. Journal of Machine Learning Research. 2008, vol. 9, pp. 2579–
2605.

25. BROWN, Tom B. et al. Language Models are Few-Shot Learners. arXiv
e-prints. [online]. 2020, pp. arXiv:2005.14165. Available from arXiv:
2005.14165.

26. ALAMMAR, Jay. The Illustrated BERT, ELMo, and co. (How NLP
Cracked Transfer Learning) [online]. 2018 [visited on 2020-07-10]. Avail-
able from: https://jalammar.github.io/illustrated-bert/.

27. Overfitting and underfitting [online] [visited on 2020-07-10]. Avail-
able from: https://www.educative.io/edpresso/overfitting-and-
underfitting.

28. LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning.
Nature. 2015, vol. 521, no. 7553, pp. 436–444. Available from DOI:
10.1038/nature14539.

29. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE,
Aaron. Deep Learning. Cambridge, MA, USA: MIT Press,
2016. ISBN 9780262035613. Available also from: http:
//www.deeplearningbook.org.

30. BURKOV, Andriy. Chapter 6. In: The hundred-page machine learning
book. Andriy Burkov, 2019. ISBN 9781999579500.

61

https://doi.org/10.5772/61964
https://doi.org/10.1074/jbc.rev120.010181
http://www.abnova.com/images/content/support/ELISA.gif
http://www.abnova.com/images/content/support/ELISA.gif
https://arxiv.org/abs/2005.14165
https://jalammar.github.io/illustrated-bert/
https://www.educative.io/edpresso/overfitting-and-underfitting
https://www.educative.io/edpresso/overfitting-and-underfitting
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
http://www.deeplearningbook.org


Bibliography

31. HORNIK, Kurt; STINCHCOMBE, Maxwell; WHITE, Halbert. Mul-
tilayer feedforward networks are universal approximators. Neural Net-
works. 1989, vol. 2, no. 5, pp. 359–366. Available from DOI: 10.1016/
0893-6080(89)90020-8.

32. MIKOLOV, Tomas; CHEN, Kai; CORRADO, Greg; DEAN, Jeffrey.
Efficient Estimation of Word Representations in Vector Space. arXiv
e-prints. [online]. 2013, pp. arXiv:1301.3781. Available from arXiv:
1301.3781.

33. RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald
J. Learning representations by back-propagating errors. Nature. 1986,
vol. 323, no. 6088, pp. 533–536. Available from DOI: 10.1038/323533a0.

34. WERBOS, Paul J. Generalization of backpropagation with application
to a recurrent gas market model. Neural Networks. 1988, vol. 1, no. 4,
pp. 339–356. Available from DOI: 10.1016/0893-6080(88)90007-x.

35. ELMAN, Jeffrey L. Finding Structure in Time. Cognitive Science.
1990, vol. 14, no. 2, pp. 179–211. Available from DOI: 10.1207/
s15516709cog1402_1.

36. PASCANU, Razvan; MIKOLOV, Tomas; BENGIO, Yoshua. On the
difficulty of training Recurrent Neural Networks. arXiv e-prints. [online].
2012, pp. arXiv:1211.5063. Available from arXiv: 1211.5063.

37. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term
Memory. Neural Computation. 1997, vol. 9, no. 8, pp. 1735–1780. Avail-
able from DOI: 10.1162/neco.1997.9.8.1735.

38. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural
Machine Translation by Jointly Learning to Align and Translate. arXiv
e-prints. [online]. 2014, pp. arXiv:1409.0473. Available from arXiv:
1409.0473.

39. OLAH, Chris; CARTER, Shan. Attention and Augmented Recurrent
Neural Networks [online]. Distill. 2016. Available from DOI: 10.23915/
distill.00001.

40. TAN, Chuanqi; SUN, Fuchun; KONG, Tao; ZHANG, Wenchang; YANG,
Chao; LIU, Chunfang. A Survey on Deep Transfer Learning. arXiv
e-prints. [online]. 2018, pp. arXiv:1808.01974. Available from arXiv:
1808.01974.

41. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA,
Kristina. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. arXiv e-prints. [online]. 2018, pp.
arXiv:1810.04805. Available from arXiv: 1810.04805.

62

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1301.3781
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/0893-6080(88)90007-x
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://arxiv.org/abs/1211.5063
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1409.0473
https://doi.org/10.23915/distill.00001
https://doi.org/10.23915/distill.00001
https://arxiv.org/abs/1808.01974
https://arxiv.org/abs/1810.04805


Bibliography

42. WANG, Alex et al. GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In: Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Brussels, Belgium: Association for Computational
Linguistics, 2018, pp. 353–355. Available from DOI: 10.18653/v1/W18-
5446.

43. WILLIAMS, Adina; NANGIA, Nikita; BOWMAN, Samuel. A Broad-
Coverage Challenge Corpus for Sentence Understanding through Infer-
ence. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, 2018, pp. 1112–1122. Avail-
able from DOI: 10.18653/v1/N18-1101.

44. TAYLOR, Wilson L. “Cloze Procedure”: A New Tool for Measuring
Readability. Journalism Quarterly. 1953, vol. 30, no. 4, pp. 415–433.
Available from DOI: 10.1177/107769905303000401.

45. LIU, Yinhan et al. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv e-prints. [online]. 2019, pp. arXiv:1907.11692. Avail-
able from arXiv: 1907.11692.

46. LAI, Guokun; XIE, Qizhe; LIU, Hanxiao; YANG, Yiming; HOVY, Ed-
uard. RACE: Large-scale ReAding Comprehension Dataset From Exam-
inations. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. Copenhagen, Denmark: Association
for Computational Linguistics, 2017, pp. 785–794. Available from DOI:
10.18653/v1/D17-1082.

47. KOVALTSUK, Aleksandr; LEEM, Jinwoo; KELM, Sebastian; SNOW-
DEN, James; DEANE, Charlotte M.; KRAWCZYK, Konrad. Observed
Antibody Space: A Resource for Data Mining Next-Generation Se-
quencing of Antibody Repertoires. The Journal of Immunology. 2018,
vol. 201, no. 8, pp. 2502–2509. ISSN 0022-1767. Available from DOI:
10.4049/jimmunol.1800708.

48. LEFRANC, Marie-Paule; POMMIÉ, Christelle; RUIZ, Manuel;
GIUDICELLI, Véronique; FOULQUIER, Elodie; TRUONG, Lisa;
THOUVENIN-CONTET, Valérie; LEFRANC, Gérard. IMGT unique
numbering for immunoglobulin and T cell receptor variable domains
and Ig superfamily V-like domains. Developmental & Comparative
Immunology. 2003, vol. 27, no. 1, pp. 55–77. Available from DOI:
10.1016/s0145-305x(02)00039-3.

49. OAS Documentation [online] [visited on 2020-07-10]. Available from:
http://opig.stats.ox.ac.uk/webapps/oas/documentation.

63

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1177/107769905303000401
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.4049/jimmunol.1800708
https://doi.org/10.1016/s0145-305x(02)00039-3
http://opig.stats.ox.ac.uk/webapps/oas/documentation


Bibliography

50. GALSON, Jacob D. et al. Analysis of B Cell Repertoire Dynamics Fol-
lowing Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-
specific Antibody Sequences. EBioMedicine. 2015, vol. 2, no. 12, pp.
2070–2079. Available from DOI: 10.1016/j.ebiom.2015.11.034.

51. GALSON, Jacob D.; TRÜCK, Johannes; CLUTTERBUCK, Elizabeth
A.; FOWLER, Anna; CERUNDOLO, Vincenzo; POLLARD, Andrew J.;
LUNTER, Gerton; KELLY, Dominic F. B-cell repertoire dynamics after
sequential hepatitis B vaccination and evidence for cross-reactive B-cell
activation. Genome Medicine. 2016, vol. 8, no. 1. Available from DOI:
10.1186/s13073-016-0322-z.

52. GALSON, Jacob D et al. BCR repertoire sequencing: different patterns
of B-cell activation after two Meningococcal vaccines. Immunology &
Cell Biology. 2015, vol. 93, no. 10, pp. 885–895. Available from DOI:
10.1038/icb.2015.57.

53. LANDRUMY, Gregory. Fingerprints in the RDKit [online]. 2012 [visited
on 2020-07-10]. Available from: https://www.rdkit.org/UGM/2012/
Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf.

54. ROGERS, David; HAHN, Mathew. Extended-Connectivity Finger-
prints. Journal of Chemical Information and Modeling. 2010, vol. 50,
no. 5, pp. 742–754. Available from DOI: 10.1021/ci100050t. PMID:
20426451.

55. JURAFSKY, Dan; MARTIN, James H. N-grams. In: Speech and lan-
guage processing: an introduction to natural language processing, compu-
tational linguistics, and speech recognition. 2nd ed. Prentice Hall, 2008.
ISBN 9780131873216.

56. GEURTS, Pierre; ERNST, Damien; WEHENKEL, Louis. Extremely
randomized trees. Machine Learning. 2006, vol. 63, no. 1, pp. 3–42.
Available from DOI: 10.1007/s10994-006-6226-1.

57. COCK, P. J. A. et al. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics.
2009, vol. 25, no. 11, pp. 1422–1423. Available from DOI: 10.1093/
bioinformatics/btp163.

58. Conda [online]. Anaconda Inc., 2020. Vers. 4.8.3 [visited on 2020-07-28].
Available from: https://docs.conda.io.

59. KLUYVER, Thomas et al. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In: LOIZIDES, F.; SCHMIDT,
B. (eds.). Positioning and Power in Academic Publishing: Players,
Agents and Agendas. 2016, pp. 87–90.

60. Papermill [online]. nteract, 2020. Vers. 2.1.2 [visited on 2020-07-28].
Available from: https://papermill.readthedocs.io.

64

https://doi.org/10.1016/j.ebiom.2015.11.034
https://doi.org/10.1186/s13073-016-0322-z
https://doi.org/10.1038/icb.2015.57
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
https://doi.org/10.1021/ci100050t
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://docs.conda.io
https://papermill.readthedocs.io


Bibliography

61. REBACK, Jeff et al. pandas-dev/pandas: Pandas 1.1.0rc0 [online]. Zen-
odo, 2020. V1.1.0rc0 [visited on 2020-07-26]. Available from DOI:
10.5281/zenodo.3950442.

62. VAN DER WALT, S.; COLBERT, S. C.; VAROQUAUX, G. The
NumPy Array: A Structure for Efficient Numerical Computation. Com-
puting in Science Engineering. 2011, vol. 13, no. 2, pp. 22–30. Available
from DOI: 10.1109/MCSE.2011.37.

63. LANDRUM, Greg et al. rdkit/rdkit: 2020_03_4 (Q1 2020) Release.
Zenodo, 2020. Release_2020_03_4. Available from DOI: 10.5281/
zenodo.3929204.

64. PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

65. OTT, Myle; EDUNOV, Sergey; BAEVSKI, Alexei; FAN, Angela;
GROSS, Sam; NG, Nathan; GRANGIER, David; AULI, Michael.
fairseq: A Fast, Extensible Toolkit for Sequence Modeling. arXiv e-
prints. [online]. 2019, pp. arXiv:1904.01038. Available from arXiv:
1904.01038.

66. PASZKE, Adam et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In: WALLACH, H.; LAROCHELLE, H.;
BEYGELZIMER, A.; D’ALCHÉ-BUC, F.; FOX, E.; GARNETT,
R. (eds.). Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8026–8037. Available also
from: http://papers.nips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

67. HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing
in Science & Engineering. 2007, vol. 9, no. 3, pp. 90–95. Available from
DOI: 10.1109/MCSE.2007.55.

68. WASKOM, Michael et al. mwaskom/seaborn: v0.10.1 (April 2020) [on-
line]. Zenodo, 2020. Version v0.10.1 [visited on 2020-07-26]. Available
from DOI: 10.5281/zenodo.3767070.

69. TAREEN, Ammar; KINNEY, Justin B. Logomaker: beautiful sequence
logos in Python. Bioinformatics. 2019, vol. 36, no. 7, pp. 2272–2274.
ISSN 1367-4803. Available from DOI: 10.1093/bioinformatics/btz921.

70. ABADI, Martı́n et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv e-prints. [online]. 2016, pp.
arXiv:1603.04467. Available from arXiv: 1603.04467.

71. ULYANOV, Dmitry. Multicore-TSNE [online]. GitHub, 2016 [visited
on 2020-07-26]. Available from: https://github.com/DmitryUlyanov/
Multicore-TSNE.

65

https://doi.org/10.5281/zenodo.3950442
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.5281/zenodo.3929204
https://doi.org/10.5281/zenodo.3929204
https://arxiv.org/abs/1904.01038
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.3767070
https://doi.org/10.1093/bioinformatics/btz921
https://arxiv.org/abs/1603.04467
https://github.com/DmitryUlyanov/Multicore-TSNE
https://github.com/DmitryUlyanov/Multicore-TSNE


Bibliography

72. STUMPFE, Dagmar; HU, Ye; DIMOVA, Dilyana; BAJORATH, Jürgen.
Recent Progress in Understanding Activity Cliffs and Their Utility in
Medicinal Chemistry. Journal of Medicinal Chemistry. 2014, vol. 57, no.
1, pp. 18–28. Available from DOI: 10.1021/jm401120g.

73. WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation. 1997,
vol. 1, no. 1, pp. 67–82. Available from DOI: 10.1109/4235.585893.

74. SENIOR, Andrew W. et al. Improved protein structure prediction using
potentials from deep learning. Nature. 2020, vol. 577, no. 7792, pp. 706–
710. Available from DOI: 10.1038/s41586-019-1923-7.

75. DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human
detection. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). 2005, vol. 1, pp. 886–893.
Available from DOI: 10.1109/CVPR.2005.177.

66

https://doi.org/10.1021/jm401120g
https://doi.org/10.1109/4235.585893
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1109/CVPR.2005.177


Appendix A
Acronyms

AI Artificial intelligence.

AUC area under the curve.

BCR B-cell receptor.

BERT Bidirectional Encoder Representations from Transformers.

CART Classification And Regression Trees.

CDR Complementarity-determining region.

CDR3 Complementarity-determining region 3.

CNN convolutional neural network.

DNA Deoxyribonucleic acid.

ELISA enzyme-linked immunosorbent assay.

ET Extremely randomized trees.

FN False Negatives.

FP False Positives.

FPR False positive rate.

GPU graphics processing unit.

Hep B Hepatitis B.

HPC high-performance computing.
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Acronyms

IMGT The international ImMunoGeneTics information system.

LSTM long short-term memory.

MLM Masked Language Model.

MLP multilayer perceptron.

NGS Next-generation sequencing.

NLL Negative log-likelihood.

NLP Natural Language Processing.

NSP Next Sentence Prediction.

OAS Observed Antibody Space.

PPI protein–protein interaction.

PRC Precision-Recall curve.

ReLU Rectified linear unit.

RNN recurrent neural network.

RoBERTa Robustly optimized BERT approach.

ROC Receiver operating characteristic.

t-SNE t-Distributed Stochastic Neighbor Embedding.

TN True Negatives.

TP True Positives.
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Appendix B
Contents of enclosed SD card

README.md.....................the file with SD card’s content description
setup.py............................the Python package installation file
environment.yml.............................the conda environment file
Makefile ..... GNU Makefile for submitting the jobs on the HPC cluster
notebooks ......................... the directory with jupyter notebooks
models......................the directory with trained weights of models
bin..............................the directory with Python source codes

fairseq_plugins........the directory with custom fairseq extensions
text............................................ the thesis text directory

source..........................................the thesis source files
thesis.pdf............................the thesis text in PDF format
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